• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2022 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore as ms
20import mindspore.nn as nn
21import mindspore.ops as ops
22
23
24class Net(nn.Cell):
25    def construct(self, x, dim):
26        out = ops.unsqueeze(x, dim)
27        return out
28
29
30@pytest.mark.level2
31@pytest.mark.platform_x86_cpu
32@pytest.mark.platform_arm_cpu
33@pytest.mark.platform_x86_gpu_training
34@pytest.mark.platform_arm_ascend_training
35@pytest.mark.platform_x86_ascend_training
36@pytest.mark.env_onecard
37@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
38def test_unsqueeze_normal(mode):
39    """
40    Feature: unqueeze
41    Description: Verify the result of unqueeze
42    Expectation: success
43    """
44    ms.set_context(mode=mode)
45    net = Net()
46    x = ms.Tensor(np.arange(2 * 3).reshape((2, 3)), dtype=ms.float32)
47    out = net(x, dim=0)
48    expect_out = np.array([np.arange(2 * 3).reshape((2, 3))])
49    assert np.allclose(out.asnumpy(), expect_out)
50