• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
blk_rq_init(struct request_queue * q,struct request * rq)111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	rq->q = q;
117 	rq->__sector = (sector_t) -1;
118 	INIT_HLIST_NODE(&rq->hash);
119 	RB_CLEAR_NODE(&rq->rb_node);
120 	rq->tag = BLK_MQ_NO_TAG;
121 	rq->internal_tag = BLK_MQ_NO_TAG;
122 	rq->start_time_ns = ktime_get_ns();
123 	rq->part = NULL;
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(SCSI_IN),
144 	REQ_OP_NAME(SCSI_OUT),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
blk_op_str(unsigned int op)158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* zone device specific errors */
190 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
191 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
192 
193 	/* everything else not covered above: */
194 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
195 };
196 
errno_to_blk_status(int errno)197 blk_status_t errno_to_blk_status(int errno)
198 {
199 	int i;
200 
201 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 		if (blk_errors[i].errno == errno)
203 			return (__force blk_status_t)i;
204 	}
205 
206 	return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209 
blk_status_to_errno(blk_status_t status)210 int blk_status_to_errno(blk_status_t status)
211 {
212 	int idx = (__force int)status;
213 
214 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 		return -EIO;
216 	return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219 
print_req_error(struct request * req,blk_status_t status,const char * caller)220 static void print_req_error(struct request *req, blk_status_t status,
221 		const char *caller)
222 {
223 	int idx = (__force int)status;
224 
225 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 		return;
227 
228 	printk_ratelimited(KERN_ERR
229 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 		"phys_seg %u prio class %u\n",
231 		caller, blk_errors[idx].name,
232 		req->rq_disk ? req->rq_disk->disk_name : "?",
233 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 		req->cmd_flags & ~REQ_OP_MASK,
235 		req->nr_phys_segments,
236 		IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238 
req_bio_endio(struct request * rq,struct bio * bio,unsigned int nbytes,blk_status_t error)239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 			  unsigned int nbytes, blk_status_t error)
241 {
242 	if (error)
243 		bio->bi_status = error;
244 
245 	if (unlikely(rq->rq_flags & RQF_QUIET))
246 		bio_set_flag(bio, BIO_QUIET);
247 
248 	bio_advance(bio, nbytes);
249 
250 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 		/*
252 		 * Partial zone append completions cannot be supported as the
253 		 * BIO fragments may end up not being written sequentially.
254 		 */
255 		if (bio->bi_iter.bi_size)
256 			bio->bi_status = BLK_STS_IOERR;
257 		else
258 			bio->bi_iter.bi_sector = rq->__sector;
259 	}
260 
261 	/* don't actually finish bio if it's part of flush sequence */
262 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 		bio_endio(bio);
264 }
265 
blk_dump_rq_flags(struct request * rq,char * msg)266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 		(unsigned long long) rq->cmd_flags);
271 
272 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
273 	       (unsigned long long)blk_rq_pos(rq),
274 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
276 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279 
280 /**
281  * blk_sync_queue - cancel any pending callbacks on a queue
282  * @q: the queue
283  *
284  * Description:
285  *     The block layer may perform asynchronous callback activity
286  *     on a queue, such as calling the unplug function after a timeout.
287  *     A block device may call blk_sync_queue to ensure that any
288  *     such activity is cancelled, thus allowing it to release resources
289  *     that the callbacks might use. The caller must already have made sure
290  *     that its ->submit_bio will not re-add plugging prior to calling
291  *     this function.
292  *
293  *     This function does not cancel any asynchronous activity arising
294  *     out of elevator or throttling code. That would require elevator_exit()
295  *     and blkcg_exit_queue() to be called with queue lock initialized.
296  *
297  */
blk_sync_queue(struct request_queue * q)298 void blk_sync_queue(struct request_queue *q)
299 {
300 	del_timer_sync(&q->timeout);
301 	cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304 
305 /**
306  * blk_set_pm_only - increment pm_only counter
307  * @q: request queue pointer
308  */
blk_set_pm_only(struct request_queue * q)309 void blk_set_pm_only(struct request_queue *q)
310 {
311 	atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314 
blk_clear_pm_only(struct request_queue * q)315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 	int pm_only;
318 
319 	pm_only = atomic_dec_return(&q->pm_only);
320 	WARN_ON_ONCE(pm_only < 0);
321 	if (pm_only == 0)
322 		wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325 
326 /**
327  * blk_put_queue - decrement the request_queue refcount
328  * @q: the request_queue structure to decrement the refcount for
329  *
330  * Decrements the refcount of the request_queue kobject. When this reaches 0
331  * we'll have blk_release_queue() called.
332  *
333  * Context: Any context, but the last reference must not be dropped from
334  *          atomic context.
335  */
blk_put_queue(struct request_queue * q)336 void blk_put_queue(struct request_queue *q)
337 {
338 	kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341 
blk_set_queue_dying(struct request_queue * q)342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 
346 	/*
347 	 * When queue DYING flag is set, we need to block new req
348 	 * entering queue, so we call blk_freeze_queue_start() to
349 	 * prevent I/O from crossing blk_queue_enter().
350 	 */
351 	blk_freeze_queue_start(q);
352 
353 	if (queue_is_mq(q))
354 		blk_mq_wake_waiters(q);
355 
356 	/* Make blk_queue_enter() reexamine the DYING flag. */
357 	wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360 
361 /**
362  * blk_cleanup_queue - shutdown a request queue
363  * @q: request queue to shutdown
364  *
365  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366  * put it.  All future requests will be failed immediately with -ENODEV.
367  *
368  * Context: can sleep
369  */
blk_cleanup_queue(struct request_queue * q)370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 	/* cannot be called from atomic context */
373 	might_sleep();
374 
375 	WARN_ON_ONCE(blk_queue_registered(q));
376 
377 	/* mark @q DYING, no new request or merges will be allowed afterwards */
378 	blk_set_queue_dying(q);
379 
380 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382 
383 	/*
384 	 * Drain all requests queued before DYING marking. Set DEAD flag to
385 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 	 * after draining finished.
387 	 */
388 	blk_freeze_queue(q);
389 
390 	rq_qos_exit(q);
391 
392 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393 
394 	/* for synchronous bio-based driver finish in-flight integrity i/o */
395 	blk_flush_integrity();
396 
397 	/* @q won't process any more request, flush async actions */
398 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 	blk_sync_queue(q);
400 	if (queue_is_mq(q)) {
401 		blk_mq_cancel_work_sync(q);
402 		blk_mq_exit_queue(q);
403 	}
404 
405 	/*
406 	 * In theory, request pool of sched_tags belongs to request queue.
407 	 * However, the current implementation requires tag_set for freeing
408 	 * requests, so free the pool now.
409 	 *
410 	 * Queue has become frozen, there can't be any in-queue requests, so
411 	 * it is safe to free requests now.
412 	 */
413 	mutex_lock(&q->sysfs_lock);
414 	if (q->elevator)
415 		blk_mq_sched_free_requests(q);
416 	mutex_unlock(&q->sysfs_lock);
417 
418 	/* @q is and will stay empty, shutdown and put */
419 	blk_put_queue(q);
420 }
421 EXPORT_SYMBOL(blk_cleanup_queue);
422 
423 /**
424  * blk_queue_enter() - try to increase q->q_usage_counter
425  * @q: request queue pointer
426  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
427  */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)428 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
429 {
430 	const bool pm = flags & BLK_MQ_REQ_PM;
431 
432 	while (true) {
433 		bool success = false;
434 
435 		rcu_read_lock();
436 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
437 			/*
438 			 * The code that increments the pm_only counter is
439 			 * responsible for ensuring that that counter is
440 			 * globally visible before the queue is unfrozen.
441 			 */
442 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
443 			    !blk_queue_pm_only(q)) {
444 				success = true;
445 			} else {
446 				percpu_ref_put(&q->q_usage_counter);
447 			}
448 		}
449 		rcu_read_unlock();
450 
451 		if (success)
452 			return 0;
453 
454 		if (flags & BLK_MQ_REQ_NOWAIT)
455 			return -EBUSY;
456 
457 		/*
458 		 * read pair of barrier in blk_freeze_queue_start(),
459 		 * we need to order reading __PERCPU_REF_DEAD flag of
460 		 * .q_usage_counter and reading .mq_freeze_depth or
461 		 * queue dying flag, otherwise the following wait may
462 		 * never return if the two reads are reordered.
463 		 */
464 		smp_rmb();
465 
466 		wait_event(q->mq_freeze_wq,
467 			   (!q->mq_freeze_depth &&
468 			    blk_pm_resume_queue(pm, q)) ||
469 			   blk_queue_dying(q));
470 		if (blk_queue_dying(q))
471 			return -ENODEV;
472 	}
473 }
474 
bio_queue_enter(struct bio * bio)475 static inline int bio_queue_enter(struct bio *bio)
476 {
477 	struct request_queue *q = bio->bi_disk->queue;
478 	bool nowait = bio->bi_opf & REQ_NOWAIT;
479 	int ret;
480 
481 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
482 	if (unlikely(ret)) {
483 		if (nowait && !blk_queue_dying(q))
484 			bio_wouldblock_error(bio);
485 		else
486 			bio_io_error(bio);
487 	}
488 
489 	return ret;
490 }
491 
blk_queue_exit(struct request_queue * q)492 void blk_queue_exit(struct request_queue *q)
493 {
494 	percpu_ref_put(&q->q_usage_counter);
495 }
496 
blk_queue_usage_counter_release(struct percpu_ref * ref)497 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
498 {
499 	struct request_queue *q =
500 		container_of(ref, struct request_queue, q_usage_counter);
501 
502 	wake_up_all(&q->mq_freeze_wq);
503 }
504 
blk_rq_timed_out_timer(struct timer_list * t)505 static void blk_rq_timed_out_timer(struct timer_list *t)
506 {
507 	struct request_queue *q = from_timer(q, t, timeout);
508 
509 	kblockd_schedule_work(&q->timeout_work);
510 }
511 
blk_timeout_work(struct work_struct * work)512 static void blk_timeout_work(struct work_struct *work)
513 {
514 }
515 
blk_alloc_queue(int node_id)516 struct request_queue *blk_alloc_queue(int node_id)
517 {
518 	struct request_queue *q;
519 	int ret;
520 
521 	q = kmem_cache_alloc_node(blk_requestq_cachep,
522 				GFP_KERNEL | __GFP_ZERO, node_id);
523 	if (!q)
524 		return NULL;
525 
526 	q->last_merge = NULL;
527 
528 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
529 	if (q->id < 0)
530 		goto fail_q;
531 
532 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
533 	if (ret)
534 		goto fail_id;
535 
536 	q->backing_dev_info = bdi_alloc(node_id);
537 	if (!q->backing_dev_info)
538 		goto fail_split;
539 
540 	q->stats = blk_alloc_queue_stats();
541 	if (!q->stats)
542 		goto fail_stats;
543 
544 	q->node = node_id;
545 
546 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
547 
548 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
549 		    laptop_mode_timer_fn, 0);
550 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
551 	INIT_WORK(&q->timeout_work, blk_timeout_work);
552 	INIT_LIST_HEAD(&q->icq_list);
553 #ifdef CONFIG_BLK_CGROUP
554 	INIT_LIST_HEAD(&q->blkg_list);
555 #endif
556 
557 	kobject_init(&q->kobj, &blk_queue_ktype);
558 
559 	mutex_init(&q->debugfs_mutex);
560 	mutex_init(&q->sysfs_lock);
561 	mutex_init(&q->sysfs_dir_lock);
562 	spin_lock_init(&q->queue_lock);
563 
564 	init_waitqueue_head(&q->mq_freeze_wq);
565 	mutex_init(&q->mq_freeze_lock);
566 
567 	/*
568 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
569 	 * See blk_register_queue() for details.
570 	 */
571 	if (percpu_ref_init(&q->q_usage_counter,
572 				blk_queue_usage_counter_release,
573 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
574 		goto fail_bdi;
575 
576 	if (blkcg_init_queue(q))
577 		goto fail_ref;
578 
579 	blk_queue_dma_alignment(q, 511);
580 	blk_set_default_limits(&q->limits);
581 	q->nr_requests = BLKDEV_MAX_RQ;
582 
583 	return q;
584 
585 fail_ref:
586 	percpu_ref_exit(&q->q_usage_counter);
587 fail_bdi:
588 	blk_free_queue_stats(q->stats);
589 fail_stats:
590 	bdi_put(q->backing_dev_info);
591 fail_split:
592 	bioset_exit(&q->bio_split);
593 fail_id:
594 	ida_simple_remove(&blk_queue_ida, q->id);
595 fail_q:
596 	kmem_cache_free(blk_requestq_cachep, q);
597 	return NULL;
598 }
599 EXPORT_SYMBOL(blk_alloc_queue);
600 
601 /**
602  * blk_get_queue - increment the request_queue refcount
603  * @q: the request_queue structure to increment the refcount for
604  *
605  * Increment the refcount of the request_queue kobject.
606  *
607  * Context: Any context.
608  */
blk_get_queue(struct request_queue * q)609 bool blk_get_queue(struct request_queue *q)
610 {
611 	if (likely(!blk_queue_dying(q))) {
612 		__blk_get_queue(q);
613 		return true;
614 	}
615 
616 	return false;
617 }
618 EXPORT_SYMBOL(blk_get_queue);
619 
620 /**
621  * blk_get_request - allocate a request
622  * @q: request queue to allocate a request for
623  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
624  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
625  */
blk_get_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)626 struct request *blk_get_request(struct request_queue *q, unsigned int op,
627 				blk_mq_req_flags_t flags)
628 {
629 	struct request *req;
630 
631 	WARN_ON_ONCE(op & REQ_NOWAIT);
632 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
633 
634 	req = blk_mq_alloc_request(q, op, flags);
635 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
636 		q->mq_ops->initialize_rq_fn(req);
637 
638 	return req;
639 }
640 EXPORT_SYMBOL(blk_get_request);
641 
blk_put_request(struct request * req)642 void blk_put_request(struct request *req)
643 {
644 	blk_mq_free_request(req);
645 }
646 EXPORT_SYMBOL(blk_put_request);
647 
handle_bad_sector(struct bio * bio,sector_t maxsector)648 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
649 {
650 	char b[BDEVNAME_SIZE];
651 
652 	pr_info_ratelimited("attempt to access beyond end of device\n"
653 			    "%s: rw=%d, want=%llu, limit=%llu\n",
654 			    bio_devname(bio, b), bio->bi_opf,
655 			    bio_end_sector(bio), maxsector);
656 }
657 
658 #ifdef CONFIG_FAIL_MAKE_REQUEST
659 
660 static DECLARE_FAULT_ATTR(fail_make_request);
661 
setup_fail_make_request(char * str)662 static int __init setup_fail_make_request(char *str)
663 {
664 	return setup_fault_attr(&fail_make_request, str);
665 }
666 __setup("fail_make_request=", setup_fail_make_request);
667 
should_fail_request(struct hd_struct * part,unsigned int bytes)668 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
669 {
670 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
671 }
672 
fail_make_request_debugfs(void)673 static int __init fail_make_request_debugfs(void)
674 {
675 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
676 						NULL, &fail_make_request);
677 
678 	return PTR_ERR_OR_ZERO(dir);
679 }
680 
681 late_initcall(fail_make_request_debugfs);
682 
683 #else /* CONFIG_FAIL_MAKE_REQUEST */
684 
should_fail_request(struct hd_struct * part,unsigned int bytes)685 static inline bool should_fail_request(struct hd_struct *part,
686 					unsigned int bytes)
687 {
688 	return false;
689 }
690 
691 #endif /* CONFIG_FAIL_MAKE_REQUEST */
692 
bio_check_ro(struct bio * bio,struct hd_struct * part)693 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
694 {
695 	const int op = bio_op(bio);
696 
697 	if (part->policy && op_is_write(op)) {
698 		char b[BDEVNAME_SIZE];
699 
700 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701 			return false;
702 		pr_warn("Trying to write to read-only block-device %s (partno %d)\n",
703 			bio_devname(bio, b), part->partno);
704 		/* Older lvm-tools actually trigger this */
705 		return false;
706 	}
707 
708 	return false;
709 }
710 
should_fail_bio(struct bio * bio)711 static noinline int should_fail_bio(struct bio *bio)
712 {
713 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
714 		return -EIO;
715 	return 0;
716 }
717 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
718 
719 /*
720  * Check whether this bio extends beyond the end of the device or partition.
721  * This may well happen - the kernel calls bread() without checking the size of
722  * the device, e.g., when mounting a file system.
723  */
bio_check_eod(struct bio * bio,sector_t maxsector)724 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
725 {
726 	unsigned int nr_sectors = bio_sectors(bio);
727 
728 	if (nr_sectors && maxsector &&
729 	    (nr_sectors > maxsector ||
730 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
731 		handle_bad_sector(bio, maxsector);
732 		return -EIO;
733 	}
734 	return 0;
735 }
736 
737 /*
738  * Remap block n of partition p to block n+start(p) of the disk.
739  */
blk_partition_remap(struct bio * bio)740 static inline int blk_partition_remap(struct bio *bio)
741 {
742 	struct hd_struct *p;
743 	int ret = -EIO;
744 
745 	rcu_read_lock();
746 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
747 	if (unlikely(!p))
748 		goto out;
749 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
750 		goto out;
751 	if (unlikely(bio_check_ro(bio, p)))
752 		goto out;
753 
754 	if (bio_sectors(bio)) {
755 		if (bio_check_eod(bio, part_nr_sects_read(p)))
756 			goto out;
757 		bio->bi_iter.bi_sector += p->start_sect;
758 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
759 				      bio->bi_iter.bi_sector - p->start_sect);
760 	}
761 	bio->bi_partno = 0;
762 	ret = 0;
763 out:
764 	rcu_read_unlock();
765 	return ret;
766 }
767 
768 /*
769  * Check write append to a zoned block device.
770  */
blk_check_zone_append(struct request_queue * q,struct bio * bio)771 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
772 						 struct bio *bio)
773 {
774 	sector_t pos = bio->bi_iter.bi_sector;
775 	int nr_sectors = bio_sectors(bio);
776 
777 	/* Only applicable to zoned block devices */
778 	if (!blk_queue_is_zoned(q))
779 		return BLK_STS_NOTSUPP;
780 
781 	/* The bio sector must point to the start of a sequential zone */
782 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
783 	    !blk_queue_zone_is_seq(q, pos))
784 		return BLK_STS_IOERR;
785 
786 	/*
787 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
788 	 * split and could result in non-contiguous sectors being written in
789 	 * different zones.
790 	 */
791 	if (nr_sectors > q->limits.chunk_sectors)
792 		return BLK_STS_IOERR;
793 
794 	/* Make sure the BIO is small enough and will not get split */
795 	if (nr_sectors > q->limits.max_zone_append_sectors)
796 		return BLK_STS_IOERR;
797 
798 	bio->bi_opf |= REQ_NOMERGE;
799 
800 	return BLK_STS_OK;
801 }
802 
submit_bio_checks(struct bio * bio)803 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
804 {
805 	struct request_queue *q = bio->bi_disk->queue;
806 	blk_status_t status = BLK_STS_IOERR;
807 	struct blk_plug *plug;
808 
809 	might_sleep();
810 
811 	plug = blk_mq_plug(q, bio);
812 	if (plug && plug->nowait)
813 		bio->bi_opf |= REQ_NOWAIT;
814 
815 	/*
816 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
817 	 * if queue does not support NOWAIT.
818 	 */
819 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
820 		goto not_supported;
821 
822 	if (should_fail_bio(bio))
823 		goto end_io;
824 
825 	if (bio->bi_partno) {
826 		if (unlikely(blk_partition_remap(bio)))
827 			goto end_io;
828 	} else {
829 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
830 			goto end_io;
831 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
832 			goto end_io;
833 	}
834 
835 	/*
836 	 * Filter flush bio's early so that bio based drivers without flush
837 	 * support don't have to worry about them.
838 	 */
839 	if (op_is_flush(bio->bi_opf) &&
840 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
841 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
842 		if (!bio_sectors(bio)) {
843 			status = BLK_STS_OK;
844 			goto end_io;
845 		}
846 	}
847 
848 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
849 		bio->bi_opf &= ~REQ_HIPRI;
850 
851 	switch (bio_op(bio)) {
852 	case REQ_OP_DISCARD:
853 		if (!blk_queue_discard(q))
854 			goto not_supported;
855 		break;
856 	case REQ_OP_SECURE_ERASE:
857 		if (!blk_queue_secure_erase(q))
858 			goto not_supported;
859 		break;
860 	case REQ_OP_WRITE_SAME:
861 		if (!q->limits.max_write_same_sectors)
862 			goto not_supported;
863 		break;
864 	case REQ_OP_ZONE_APPEND:
865 		status = blk_check_zone_append(q, bio);
866 		if (status != BLK_STS_OK)
867 			goto end_io;
868 		break;
869 	case REQ_OP_ZONE_RESET:
870 	case REQ_OP_ZONE_OPEN:
871 	case REQ_OP_ZONE_CLOSE:
872 	case REQ_OP_ZONE_FINISH:
873 		if (!blk_queue_is_zoned(q))
874 			goto not_supported;
875 		break;
876 	case REQ_OP_ZONE_RESET_ALL:
877 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
878 			goto not_supported;
879 		break;
880 	case REQ_OP_WRITE_ZEROES:
881 		if (!q->limits.max_write_zeroes_sectors)
882 			goto not_supported;
883 		break;
884 	default:
885 		break;
886 	}
887 
888 	/*
889 	 * Various block parts want %current->io_context, so allocate it up
890 	 * front rather than dealing with lots of pain to allocate it only
891 	 * where needed. This may fail and the block layer knows how to live
892 	 * with it.
893 	 */
894 	if (unlikely(!current->io_context))
895 		create_task_io_context(current, GFP_ATOMIC, q->node);
896 
897 	if (blk_throtl_bio(bio))
898 		return false;
899 
900 	blk_cgroup_bio_start(bio);
901 	blkcg_bio_issue_init(bio);
902 
903 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
904 		trace_block_bio_queue(q, bio);
905 		/* Now that enqueuing has been traced, we need to trace
906 		 * completion as well.
907 		 */
908 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
909 	}
910 	return true;
911 
912 not_supported:
913 	status = BLK_STS_NOTSUPP;
914 end_io:
915 	bio->bi_status = status;
916 	bio_endio(bio);
917 	return false;
918 }
919 
__submit_bio(struct bio * bio)920 static blk_qc_t __submit_bio(struct bio *bio)
921 {
922 	struct gendisk *disk = bio->bi_disk;
923 	blk_qc_t ret = BLK_QC_T_NONE;
924 
925 	if (blk_crypto_bio_prep(&bio)) {
926 		if (!disk->fops->submit_bio)
927 			return blk_mq_submit_bio(bio);
928 		ret = disk->fops->submit_bio(bio);
929 	}
930 	blk_queue_exit(disk->queue);
931 	return ret;
932 }
933 
934 /*
935  * The loop in this function may be a bit non-obvious, and so deserves some
936  * explanation:
937  *
938  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
939  *    that), so we have a list with a single bio.
940  *  - We pretend that we have just taken it off a longer list, so we assign
941  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
942  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
943  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
944  *    non-NULL value in bio_list and re-enter the loop from the top.
945  *  - In this case we really did just take the bio of the top of the list (no
946  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
947  *    again.
948  *
949  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
950  * bio_list_on_stack[1] contains bios that were submitted before the current
951  *	->submit_bio_bio, but that haven't been processed yet.
952  */
__submit_bio_noacct(struct bio * bio)953 static blk_qc_t __submit_bio_noacct(struct bio *bio)
954 {
955 	struct bio_list bio_list_on_stack[2];
956 	blk_qc_t ret = BLK_QC_T_NONE;
957 
958 	BUG_ON(bio->bi_next);
959 
960 	bio_list_init(&bio_list_on_stack[0]);
961 	current->bio_list = bio_list_on_stack;
962 
963 	do {
964 		struct request_queue *q = bio->bi_disk->queue;
965 		struct bio_list lower, same;
966 
967 		if (unlikely(bio_queue_enter(bio) != 0))
968 			continue;
969 
970 		/*
971 		 * Create a fresh bio_list for all subordinate requests.
972 		 */
973 		bio_list_on_stack[1] = bio_list_on_stack[0];
974 		bio_list_init(&bio_list_on_stack[0]);
975 
976 		ret = __submit_bio(bio);
977 
978 		/*
979 		 * Sort new bios into those for a lower level and those for the
980 		 * same level.
981 		 */
982 		bio_list_init(&lower);
983 		bio_list_init(&same);
984 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
985 			if (q == bio->bi_disk->queue)
986 				bio_list_add(&same, bio);
987 			else
988 				bio_list_add(&lower, bio);
989 
990 		/*
991 		 * Now assemble so we handle the lowest level first.
992 		 */
993 		bio_list_merge(&bio_list_on_stack[0], &lower);
994 		bio_list_merge(&bio_list_on_stack[0], &same);
995 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
996 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
997 
998 	current->bio_list = NULL;
999 	return ret;
1000 }
1001 
__submit_bio_noacct_mq(struct bio * bio)1002 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1003 {
1004 	struct bio_list bio_list[2] = { };
1005 	blk_qc_t ret = BLK_QC_T_NONE;
1006 
1007 	current->bio_list = bio_list;
1008 
1009 	do {
1010 		struct gendisk *disk = bio->bi_disk;
1011 
1012 		if (unlikely(bio_queue_enter(bio) != 0))
1013 			continue;
1014 
1015 		if (!blk_crypto_bio_prep(&bio)) {
1016 			blk_queue_exit(disk->queue);
1017 			ret = BLK_QC_T_NONE;
1018 			continue;
1019 		}
1020 
1021 		ret = blk_mq_submit_bio(bio);
1022 	} while ((bio = bio_list_pop(&bio_list[0])));
1023 
1024 	current->bio_list = NULL;
1025 	return ret;
1026 }
1027 
1028 /**
1029  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1030  * @bio:  The bio describing the location in memory and on the device.
1031  *
1032  * This is a version of submit_bio() that shall only be used for I/O that is
1033  * resubmitted to lower level drivers by stacking block drivers.  All file
1034  * systems and other upper level users of the block layer should use
1035  * submit_bio() instead.
1036  */
submit_bio_noacct(struct bio * bio)1037 blk_qc_t submit_bio_noacct(struct bio *bio)
1038 {
1039 	if (!submit_bio_checks(bio))
1040 		return BLK_QC_T_NONE;
1041 
1042 	/*
1043 	 * We only want one ->submit_bio to be active at a time, else stack
1044 	 * usage with stacked devices could be a problem.  Use current->bio_list
1045 	 * to collect a list of requests submited by a ->submit_bio method while
1046 	 * it is active, and then process them after it returned.
1047 	 */
1048 	if (current->bio_list) {
1049 		bio_list_add(&current->bio_list[0], bio);
1050 		return BLK_QC_T_NONE;
1051 	}
1052 
1053 	if (!bio->bi_disk->fops->submit_bio)
1054 		return __submit_bio_noacct_mq(bio);
1055 	return __submit_bio_noacct(bio);
1056 }
1057 EXPORT_SYMBOL(submit_bio_noacct);
1058 
1059 /**
1060  * submit_bio - submit a bio to the block device layer for I/O
1061  * @bio: The &struct bio which describes the I/O
1062  *
1063  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1064  * fully set up &struct bio that describes the I/O that needs to be done.  The
1065  * bio will be send to the device described by the bi_disk and bi_partno fields.
1066  *
1067  * The success/failure status of the request, along with notification of
1068  * completion, is delivered asynchronously through the ->bi_end_io() callback
1069  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1070  * been called.
1071  */
submit_bio(struct bio * bio)1072 blk_qc_t submit_bio(struct bio *bio)
1073 {
1074 	if (blkcg_punt_bio_submit(bio))
1075 		return BLK_QC_T_NONE;
1076 
1077 	/*
1078 	 * If it's a regular read/write or a barrier with data attached,
1079 	 * go through the normal accounting stuff before submission.
1080 	 */
1081 	if (bio_has_data(bio)) {
1082 		unsigned int count;
1083 
1084 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1085 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1086 		else
1087 			count = bio_sectors(bio);
1088 
1089 		if (op_is_write(bio_op(bio))) {
1090 			count_vm_events(PGPGOUT, count);
1091 		} else {
1092 			task_io_account_read(bio->bi_iter.bi_size);
1093 			count_vm_events(PGPGIN, count);
1094 		}
1095 	}
1096 
1097 	/*
1098 	 * If we're reading data that is part of the userspace workingset, count
1099 	 * submission time as memory stall.  When the device is congested, or
1100 	 * the submitting cgroup IO-throttled, submission can be a significant
1101 	 * part of overall IO time.
1102 	 */
1103 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1104 	    bio_flagged(bio, BIO_WORKINGSET))) {
1105 		unsigned long pflags;
1106 		blk_qc_t ret;
1107 
1108 		psi_memstall_enter(&pflags);
1109 		ret = submit_bio_noacct(bio);
1110 		psi_memstall_leave(&pflags);
1111 
1112 		return ret;
1113 	}
1114 
1115 	return submit_bio_noacct(bio);
1116 }
1117 EXPORT_SYMBOL(submit_bio);
1118 
1119 /**
1120  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1121  *                              for the new queue limits
1122  * @q:  the queue
1123  * @rq: the request being checked
1124  *
1125  * Description:
1126  *    @rq may have been made based on weaker limitations of upper-level queues
1127  *    in request stacking drivers, and it may violate the limitation of @q.
1128  *    Since the block layer and the underlying device driver trust @rq
1129  *    after it is inserted to @q, it should be checked against @q before
1130  *    the insertion using this generic function.
1131  *
1132  *    Request stacking drivers like request-based dm may change the queue
1133  *    limits when retrying requests on other queues. Those requests need
1134  *    to be checked against the new queue limits again during dispatch.
1135  */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1136 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1137 				      struct request *rq)
1138 {
1139 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1140 
1141 	if (blk_rq_sectors(rq) > max_sectors) {
1142 		/*
1143 		 * SCSI device does not have a good way to return if
1144 		 * Write Same/Zero is actually supported. If a device rejects
1145 		 * a non-read/write command (discard, write same,etc.) the
1146 		 * low-level device driver will set the relevant queue limit to
1147 		 * 0 to prevent blk-lib from issuing more of the offending
1148 		 * operations. Commands queued prior to the queue limit being
1149 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1150 		 * errors being propagated to upper layers.
1151 		 */
1152 		if (max_sectors == 0)
1153 			return BLK_STS_NOTSUPP;
1154 
1155 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1156 			__func__, blk_rq_sectors(rq), max_sectors);
1157 		return BLK_STS_IOERR;
1158 	}
1159 
1160 	/*
1161 	 * queue's settings related to segment counting like q->bounce_pfn
1162 	 * may differ from that of other stacking queues.
1163 	 * Recalculate it to check the request correctly on this queue's
1164 	 * limitation.
1165 	 */
1166 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1167 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1168 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1169 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1170 		return BLK_STS_IOERR;
1171 	}
1172 
1173 	return BLK_STS_OK;
1174 }
1175 
1176 /**
1177  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1178  * @q:  the queue to submit the request
1179  * @rq: the request being queued
1180  */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1181 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1182 {
1183 	blk_status_t ret;
1184 
1185 	ret = blk_cloned_rq_check_limits(q, rq);
1186 	if (ret != BLK_STS_OK)
1187 		return ret;
1188 
1189 	if (rq->rq_disk &&
1190 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1191 		return BLK_STS_IOERR;
1192 
1193 	if (blk_crypto_insert_cloned_request(rq))
1194 		return BLK_STS_IOERR;
1195 
1196 	if (blk_queue_io_stat(q))
1197 		blk_account_io_start(rq);
1198 
1199 	/*
1200 	 * Since we have a scheduler attached on the top device,
1201 	 * bypass a potential scheduler on the bottom device for
1202 	 * insert.
1203 	 */
1204 	return blk_mq_request_issue_directly(rq, true);
1205 }
1206 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1207 
1208 /**
1209  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1210  * @rq: request to examine
1211  *
1212  * Description:
1213  *     A request could be merge of IOs which require different failure
1214  *     handling.  This function determines the number of bytes which
1215  *     can be failed from the beginning of the request without
1216  *     crossing into area which need to be retried further.
1217  *
1218  * Return:
1219  *     The number of bytes to fail.
1220  */
blk_rq_err_bytes(const struct request * rq)1221 unsigned int blk_rq_err_bytes(const struct request *rq)
1222 {
1223 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1224 	unsigned int bytes = 0;
1225 	struct bio *bio;
1226 
1227 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1228 		return blk_rq_bytes(rq);
1229 
1230 	/*
1231 	 * Currently the only 'mixing' which can happen is between
1232 	 * different fastfail types.  We can safely fail portions
1233 	 * which have all the failfast bits that the first one has -
1234 	 * the ones which are at least as eager to fail as the first
1235 	 * one.
1236 	 */
1237 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1238 		if ((bio->bi_opf & ff) != ff)
1239 			break;
1240 		bytes += bio->bi_iter.bi_size;
1241 	}
1242 
1243 	/* this could lead to infinite loop */
1244 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1245 	return bytes;
1246 }
1247 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1248 
update_io_ticks(struct hd_struct * part,unsigned long now,bool end)1249 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1250 {
1251 	unsigned long stamp;
1252 again:
1253 	stamp = READ_ONCE(part->stamp);
1254 	if (unlikely(stamp != now)) {
1255 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1256 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1257 	}
1258 	if (part->partno) {
1259 		part = &part_to_disk(part)->part0;
1260 		goto again;
1261 	}
1262 }
1263 
blk_account_io_completion(struct request * req,unsigned int bytes)1264 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1265 {
1266 	if (req->part && blk_do_io_stat(req)) {
1267 		const int sgrp = op_stat_group(req_op(req));
1268 		struct hd_struct *part;
1269 
1270 		part_stat_lock();
1271 		part = req->part;
1272 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1273 		part_stat_unlock();
1274 	}
1275 }
1276 
blk_account_io_done(struct request * req,u64 now)1277 void blk_account_io_done(struct request *req, u64 now)
1278 {
1279 	/*
1280 	 * Account IO completion.  flush_rq isn't accounted as a
1281 	 * normal IO on queueing nor completion.  Accounting the
1282 	 * containing request is enough.
1283 	 */
1284 	if (req->part && blk_do_io_stat(req) &&
1285 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1286 		const int sgrp = op_stat_group(req_op(req));
1287 		struct hd_struct *part;
1288 
1289 		part_stat_lock();
1290 		part = req->part;
1291 
1292 		update_io_ticks(part, jiffies, true);
1293 		part_stat_inc(part, ios[sgrp]);
1294 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1295 		part_stat_unlock();
1296 
1297 		hd_struct_put(part);
1298 	}
1299 }
1300 
blk_account_io_start(struct request * rq)1301 void blk_account_io_start(struct request *rq)
1302 {
1303 	if (!blk_do_io_stat(rq))
1304 		return;
1305 
1306 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1307 
1308 	part_stat_lock();
1309 	update_io_ticks(rq->part, jiffies, false);
1310 	part_stat_unlock();
1311 }
1312 
__part_start_io_acct(struct hd_struct * part,unsigned int sectors,unsigned int op)1313 static unsigned long __part_start_io_acct(struct hd_struct *part,
1314 					  unsigned int sectors, unsigned int op)
1315 {
1316 	const int sgrp = op_stat_group(op);
1317 	unsigned long now = READ_ONCE(jiffies);
1318 
1319 	part_stat_lock();
1320 	update_io_ticks(part, now, false);
1321 	part_stat_inc(part, ios[sgrp]);
1322 	part_stat_add(part, sectors[sgrp], sectors);
1323 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1324 	part_stat_unlock();
1325 
1326 	return now;
1327 }
1328 
part_start_io_acct(struct gendisk * disk,struct hd_struct ** part,struct bio * bio)1329 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1330 				 struct bio *bio)
1331 {
1332 	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1333 
1334 	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1335 }
1336 EXPORT_SYMBOL_GPL(part_start_io_acct);
1337 
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1338 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1339 				 unsigned int op)
1340 {
1341 	return __part_start_io_acct(&disk->part0, sectors, op);
1342 }
1343 EXPORT_SYMBOL(disk_start_io_acct);
1344 
__part_end_io_acct(struct hd_struct * part,unsigned int op,unsigned long start_time)1345 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1346 			       unsigned long start_time)
1347 {
1348 	const int sgrp = op_stat_group(op);
1349 	unsigned long now = READ_ONCE(jiffies);
1350 	unsigned long duration = now - start_time;
1351 
1352 	part_stat_lock();
1353 	update_io_ticks(part, now, true);
1354 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1355 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1356 	part_stat_unlock();
1357 }
1358 
part_end_io_acct(struct hd_struct * part,struct bio * bio,unsigned long start_time)1359 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1360 		      unsigned long start_time)
1361 {
1362 	__part_end_io_acct(part, bio_op(bio), start_time);
1363 	hd_struct_put(part);
1364 }
1365 EXPORT_SYMBOL_GPL(part_end_io_acct);
1366 
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1367 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1368 		      unsigned long start_time)
1369 {
1370 	__part_end_io_acct(&disk->part0, op, start_time);
1371 }
1372 EXPORT_SYMBOL(disk_end_io_acct);
1373 
1374 /*
1375  * Steal bios from a request and add them to a bio list.
1376  * The request must not have been partially completed before.
1377  */
blk_steal_bios(struct bio_list * list,struct request * rq)1378 void blk_steal_bios(struct bio_list *list, struct request *rq)
1379 {
1380 	if (rq->bio) {
1381 		if (list->tail)
1382 			list->tail->bi_next = rq->bio;
1383 		else
1384 			list->head = rq->bio;
1385 		list->tail = rq->biotail;
1386 
1387 		rq->bio = NULL;
1388 		rq->biotail = NULL;
1389 	}
1390 
1391 	rq->__data_len = 0;
1392 }
1393 EXPORT_SYMBOL_GPL(blk_steal_bios);
1394 
1395 /**
1396  * blk_update_request - Special helper function for request stacking drivers
1397  * @req:      the request being processed
1398  * @error:    block status code
1399  * @nr_bytes: number of bytes to complete @req
1400  *
1401  * Description:
1402  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1403  *     the request structure even if @req doesn't have leftover.
1404  *     If @req has leftover, sets it up for the next range of segments.
1405  *
1406  *     This special helper function is only for request stacking drivers
1407  *     (e.g. request-based dm) so that they can handle partial completion.
1408  *     Actual device drivers should use blk_mq_end_request instead.
1409  *
1410  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1411  *     %false return from this function.
1412  *
1413  * Note:
1414  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1415  *	blk_rq_bytes() and in blk_update_request().
1416  *
1417  * Return:
1418  *     %false - this request doesn't have any more data
1419  *     %true  - this request has more data
1420  **/
blk_update_request(struct request * req,blk_status_t error,unsigned int nr_bytes)1421 bool blk_update_request(struct request *req, blk_status_t error,
1422 		unsigned int nr_bytes)
1423 {
1424 	int total_bytes;
1425 
1426 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1427 
1428 	if (!req->bio)
1429 		return false;
1430 
1431 #ifdef CONFIG_BLK_DEV_INTEGRITY
1432 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1433 	    error == BLK_STS_OK)
1434 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1435 #endif
1436 
1437 	/*
1438 	 * Upper layers may call blk_crypto_evict_key() anytime after the last
1439 	 * bio_endio().  Therefore, the keyslot must be released before that.
1440 	 */
1441 	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
1442 		__blk_crypto_rq_put_keyslot(req);
1443 
1444 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1445 		     !(req->rq_flags & RQF_QUIET)))
1446 		print_req_error(req, error, __func__);
1447 
1448 	blk_account_io_completion(req, nr_bytes);
1449 
1450 	total_bytes = 0;
1451 	while (req->bio) {
1452 		struct bio *bio = req->bio;
1453 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1454 
1455 		if (bio_bytes == bio->bi_iter.bi_size)
1456 			req->bio = bio->bi_next;
1457 
1458 		/* Completion has already been traced */
1459 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1460 		req_bio_endio(req, bio, bio_bytes, error);
1461 
1462 		total_bytes += bio_bytes;
1463 		nr_bytes -= bio_bytes;
1464 
1465 		if (!nr_bytes)
1466 			break;
1467 	}
1468 
1469 	/*
1470 	 * completely done
1471 	 */
1472 	if (!req->bio) {
1473 		/*
1474 		 * Reset counters so that the request stacking driver
1475 		 * can find how many bytes remain in the request
1476 		 * later.
1477 		 */
1478 		req->__data_len = 0;
1479 		return false;
1480 	}
1481 
1482 	req->__data_len -= total_bytes;
1483 
1484 	/* update sector only for requests with clear definition of sector */
1485 	if (!blk_rq_is_passthrough(req))
1486 		req->__sector += total_bytes >> 9;
1487 
1488 	/* mixed attributes always follow the first bio */
1489 	if (req->rq_flags & RQF_MIXED_MERGE) {
1490 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1491 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1492 	}
1493 
1494 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1495 		/*
1496 		 * If total number of sectors is less than the first segment
1497 		 * size, something has gone terribly wrong.
1498 		 */
1499 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1500 			blk_dump_rq_flags(req, "request botched");
1501 			req->__data_len = blk_rq_cur_bytes(req);
1502 		}
1503 
1504 		/* recalculate the number of segments */
1505 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1506 	}
1507 
1508 	return true;
1509 }
1510 EXPORT_SYMBOL_GPL(blk_update_request);
1511 
1512 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1513 /**
1514  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1515  * @rq: the request to be flushed
1516  *
1517  * Description:
1518  *     Flush all pages in @rq.
1519  */
rq_flush_dcache_pages(struct request * rq)1520 void rq_flush_dcache_pages(struct request *rq)
1521 {
1522 	struct req_iterator iter;
1523 	struct bio_vec bvec;
1524 
1525 	rq_for_each_segment(bvec, rq, iter)
1526 		flush_dcache_page(bvec.bv_page);
1527 }
1528 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1529 #endif
1530 
1531 /**
1532  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1533  * @q : the queue of the device being checked
1534  *
1535  * Description:
1536  *    Check if underlying low-level drivers of a device are busy.
1537  *    If the drivers want to export their busy state, they must set own
1538  *    exporting function using blk_queue_lld_busy() first.
1539  *
1540  *    Basically, this function is used only by request stacking drivers
1541  *    to stop dispatching requests to underlying devices when underlying
1542  *    devices are busy.  This behavior helps more I/O merging on the queue
1543  *    of the request stacking driver and prevents I/O throughput regression
1544  *    on burst I/O load.
1545  *
1546  * Return:
1547  *    0 - Not busy (The request stacking driver should dispatch request)
1548  *    1 - Busy (The request stacking driver should stop dispatching request)
1549  */
blk_lld_busy(struct request_queue * q)1550 int blk_lld_busy(struct request_queue *q)
1551 {
1552 	if (queue_is_mq(q) && q->mq_ops->busy)
1553 		return q->mq_ops->busy(q);
1554 
1555 	return 0;
1556 }
1557 EXPORT_SYMBOL_GPL(blk_lld_busy);
1558 
1559 /**
1560  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1561  * @rq: the clone request to be cleaned up
1562  *
1563  * Description:
1564  *     Free all bios in @rq for a cloned request.
1565  */
blk_rq_unprep_clone(struct request * rq)1566 void blk_rq_unprep_clone(struct request *rq)
1567 {
1568 	struct bio *bio;
1569 
1570 	while ((bio = rq->bio) != NULL) {
1571 		rq->bio = bio->bi_next;
1572 
1573 		bio_put(bio);
1574 	}
1575 }
1576 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1577 
1578 /**
1579  * blk_rq_prep_clone - Helper function to setup clone request
1580  * @rq: the request to be setup
1581  * @rq_src: original request to be cloned
1582  * @bs: bio_set that bios for clone are allocated from
1583  * @gfp_mask: memory allocation mask for bio
1584  * @bio_ctr: setup function to be called for each clone bio.
1585  *           Returns %0 for success, non %0 for failure.
1586  * @data: private data to be passed to @bio_ctr
1587  *
1588  * Description:
1589  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1590  *     Also, pages which the original bios are pointing to are not copied
1591  *     and the cloned bios just point same pages.
1592  *     So cloned bios must be completed before original bios, which means
1593  *     the caller must complete @rq before @rq_src.
1594  */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1595 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1596 		      struct bio_set *bs, gfp_t gfp_mask,
1597 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1598 		      void *data)
1599 {
1600 	struct bio *bio, *bio_src;
1601 
1602 	if (!bs)
1603 		bs = &fs_bio_set;
1604 
1605 	__rq_for_each_bio(bio_src, rq_src) {
1606 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1607 		if (!bio)
1608 			goto free_and_out;
1609 
1610 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1611 			goto free_and_out;
1612 
1613 		if (rq->bio) {
1614 			rq->biotail->bi_next = bio;
1615 			rq->biotail = bio;
1616 		} else {
1617 			rq->bio = rq->biotail = bio;
1618 		}
1619 		bio = NULL;
1620 	}
1621 
1622 	/* Copy attributes of the original request to the clone request. */
1623 	rq->__sector = blk_rq_pos(rq_src);
1624 	rq->__data_len = blk_rq_bytes(rq_src);
1625 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1626 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1627 		rq->special_vec = rq_src->special_vec;
1628 	}
1629 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1630 	rq->ioprio = rq_src->ioprio;
1631 
1632 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1633 		goto free_and_out;
1634 
1635 	return 0;
1636 
1637 free_and_out:
1638 	if (bio)
1639 		bio_put(bio);
1640 	blk_rq_unprep_clone(rq);
1641 
1642 	return -ENOMEM;
1643 }
1644 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1645 
kblockd_schedule_work(struct work_struct * work)1646 int kblockd_schedule_work(struct work_struct *work)
1647 {
1648 	return queue_work(kblockd_workqueue, work);
1649 }
1650 EXPORT_SYMBOL(kblockd_schedule_work);
1651 
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1652 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1653 				unsigned long delay)
1654 {
1655 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1656 }
1657 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1658 
1659 /**
1660  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1661  * @plug:	The &struct blk_plug that needs to be initialized
1662  *
1663  * Description:
1664  *   blk_start_plug() indicates to the block layer an intent by the caller
1665  *   to submit multiple I/O requests in a batch.  The block layer may use
1666  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1667  *   is called.  However, the block layer may choose to submit requests
1668  *   before a call to blk_finish_plug() if the number of queued I/Os
1669  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1670  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1671  *   the task schedules (see below).
1672  *
1673  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1674  *   pending I/O should the task end up blocking between blk_start_plug() and
1675  *   blk_finish_plug(). This is important from a performance perspective, but
1676  *   also ensures that we don't deadlock. For instance, if the task is blocking
1677  *   for a memory allocation, memory reclaim could end up wanting to free a
1678  *   page belonging to that request that is currently residing in our private
1679  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1680  *   this kind of deadlock.
1681  */
blk_start_plug(struct blk_plug * plug)1682 void blk_start_plug(struct blk_plug *plug)
1683 {
1684 	struct task_struct *tsk = current;
1685 
1686 	/*
1687 	 * If this is a nested plug, don't actually assign it.
1688 	 */
1689 	if (tsk->plug)
1690 		return;
1691 
1692 	INIT_LIST_HEAD(&plug->mq_list);
1693 	INIT_LIST_HEAD(&plug->cb_list);
1694 	plug->rq_count = 0;
1695 	plug->multiple_queues = false;
1696 	plug->nowait = false;
1697 
1698 	/*
1699 	 * Store ordering should not be needed here, since a potential
1700 	 * preempt will imply a full memory barrier
1701 	 */
1702 	tsk->plug = plug;
1703 }
1704 EXPORT_SYMBOL(blk_start_plug);
1705 
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1706 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1707 {
1708 	LIST_HEAD(callbacks);
1709 
1710 	while (!list_empty(&plug->cb_list)) {
1711 		list_splice_init(&plug->cb_list, &callbacks);
1712 
1713 		while (!list_empty(&callbacks)) {
1714 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1715 							  struct blk_plug_cb,
1716 							  list);
1717 			list_del(&cb->list);
1718 			cb->callback(cb, from_schedule);
1719 		}
1720 	}
1721 }
1722 
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1723 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1724 				      int size)
1725 {
1726 	struct blk_plug *plug = current->plug;
1727 	struct blk_plug_cb *cb;
1728 
1729 	if (!plug)
1730 		return NULL;
1731 
1732 	list_for_each_entry(cb, &plug->cb_list, list)
1733 		if (cb->callback == unplug && cb->data == data)
1734 			return cb;
1735 
1736 	/* Not currently on the callback list */
1737 	BUG_ON(size < sizeof(*cb));
1738 	cb = kzalloc(size, GFP_ATOMIC);
1739 	if (cb) {
1740 		cb->data = data;
1741 		cb->callback = unplug;
1742 		list_add(&cb->list, &plug->cb_list);
1743 	}
1744 	return cb;
1745 }
1746 EXPORT_SYMBOL(blk_check_plugged);
1747 
blk_flush_plug_list(struct blk_plug * plug,bool from_schedule)1748 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1749 {
1750 	flush_plug_callbacks(plug, from_schedule);
1751 
1752 	if (!list_empty(&plug->mq_list))
1753 		blk_mq_flush_plug_list(plug, from_schedule);
1754 }
1755 
1756 /**
1757  * blk_finish_plug - mark the end of a batch of submitted I/O
1758  * @plug:	The &struct blk_plug passed to blk_start_plug()
1759  *
1760  * Description:
1761  * Indicate that a batch of I/O submissions is complete.  This function
1762  * must be paired with an initial call to blk_start_plug().  The intent
1763  * is to allow the block layer to optimize I/O submission.  See the
1764  * documentation for blk_start_plug() for more information.
1765  */
blk_finish_plug(struct blk_plug * plug)1766 void blk_finish_plug(struct blk_plug *plug)
1767 {
1768 	if (plug != current->plug)
1769 		return;
1770 	blk_flush_plug_list(plug, false);
1771 
1772 	current->plug = NULL;
1773 }
1774 EXPORT_SYMBOL(blk_finish_plug);
1775 
blk_io_schedule(void)1776 void blk_io_schedule(void)
1777 {
1778 	/* Prevent hang_check timer from firing at us during very long I/O */
1779 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1780 
1781 	if (timeout)
1782 		io_schedule_timeout(timeout);
1783 	else
1784 		io_schedule();
1785 }
1786 EXPORT_SYMBOL_GPL(blk_io_schedule);
1787 
blk_dev_init(void)1788 int __init blk_dev_init(void)
1789 {
1790 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1791 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1792 			sizeof_field(struct request, cmd_flags));
1793 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1794 			sizeof_field(struct bio, bi_opf));
1795 
1796 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1797 	kblockd_workqueue = alloc_workqueue("kblockd",
1798 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1799 	if (!kblockd_workqueue)
1800 		panic("Failed to create kblockd\n");
1801 
1802 	blk_requestq_cachep = kmem_cache_create("request_queue",
1803 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1804 
1805 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1806 
1807 	return 0;
1808 }
1809