• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/kmemleak.h>
14 #include <linux/mm.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 #include <linux/smp.h>
19 #include <linux/llist.h>
20 #include <linux/list_sort.h>
21 #include <linux/cpu.h>
22 #include <linux/cache.h>
23 #include <linux/sched/sysctl.h>
24 #include <linux/sched/topology.h>
25 #include <linux/sched/signal.h>
26 #include <linux/delay.h>
27 #include <linux/crash_dump.h>
28 #include <linux/prefetch.h>
29 #include <linux/blk-crypto.h>
30 
31 #include <trace/events/block.h>
32 
33 #include <linux/blk-mq.h>
34 #include <linux/t10-pi.h>
35 #include "blk.h"
36 #include "blk-mq.h"
37 #include "blk-mq-debugfs.h"
38 #include "blk-mq-tag.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 
44 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
45 
46 static void blk_mq_poll_stats_start(struct request_queue *q);
47 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
48 
blk_mq_poll_stats_bkt(const struct request * rq)49 static int blk_mq_poll_stats_bkt(const struct request *rq)
50 {
51 	int ddir, sectors, bucket;
52 
53 	ddir = rq_data_dir(rq);
54 	sectors = blk_rq_stats_sectors(rq);
55 
56 	bucket = ddir + 2 * ilog2(sectors);
57 
58 	if (bucket < 0)
59 		return -1;
60 	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
61 		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
62 
63 	return bucket;
64 }
65 
66 /*
67  * Check if any of the ctx, dispatch list or elevator
68  * have pending work in this hardware queue.
69  */
blk_mq_hctx_has_pending(struct blk_mq_hw_ctx * hctx)70 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
71 {
72 	return !list_empty_careful(&hctx->dispatch) ||
73 		sbitmap_any_bit_set(&hctx->ctx_map) ||
74 			blk_mq_sched_has_work(hctx);
75 }
76 
77 /*
78  * Mark this ctx as having pending work in this hardware queue
79  */
blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)80 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
81 				     struct blk_mq_ctx *ctx)
82 {
83 	const int bit = ctx->index_hw[hctx->type];
84 
85 	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
86 		sbitmap_set_bit(&hctx->ctx_map, bit);
87 }
88 
blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)89 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
90 				      struct blk_mq_ctx *ctx)
91 {
92 	const int bit = ctx->index_hw[hctx->type];
93 
94 	sbitmap_clear_bit(&hctx->ctx_map, bit);
95 }
96 
97 struct mq_inflight {
98 	struct hd_struct *part;
99 	unsigned int inflight[2];
100 };
101 
blk_mq_check_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)102 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
103 				  struct request *rq, void *priv,
104 				  bool reserved)
105 {
106 	struct mq_inflight *mi = priv;
107 
108 	if ((!mi->part->partno || rq->part == mi->part) &&
109 	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
110 		mi->inflight[rq_data_dir(rq)]++;
111 
112 	return true;
113 }
114 
blk_mq_in_flight(struct request_queue * q,struct hd_struct * part)115 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
116 {
117 	struct mq_inflight mi = { .part = part };
118 
119 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
120 
121 	return mi.inflight[0] + mi.inflight[1];
122 }
123 
blk_mq_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])124 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
125 			 unsigned int inflight[2])
126 {
127 	struct mq_inflight mi = { .part = part };
128 
129 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
130 	inflight[0] = mi.inflight[0];
131 	inflight[1] = mi.inflight[1];
132 }
133 
blk_freeze_queue_start(struct request_queue * q)134 void blk_freeze_queue_start(struct request_queue *q)
135 {
136 	mutex_lock(&q->mq_freeze_lock);
137 	if (++q->mq_freeze_depth == 1) {
138 		percpu_ref_kill(&q->q_usage_counter);
139 		mutex_unlock(&q->mq_freeze_lock);
140 		if (queue_is_mq(q))
141 			blk_mq_run_hw_queues(q, false);
142 	} else {
143 		mutex_unlock(&q->mq_freeze_lock);
144 	}
145 }
146 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
147 
blk_mq_freeze_queue_wait(struct request_queue * q)148 void blk_mq_freeze_queue_wait(struct request_queue *q)
149 {
150 	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
151 }
152 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
153 
blk_mq_freeze_queue_wait_timeout(struct request_queue * q,unsigned long timeout)154 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
155 				     unsigned long timeout)
156 {
157 	return wait_event_timeout(q->mq_freeze_wq,
158 					percpu_ref_is_zero(&q->q_usage_counter),
159 					timeout);
160 }
161 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
162 
163 /*
164  * Guarantee no request is in use, so we can change any data structure of
165  * the queue afterward.
166  */
blk_freeze_queue(struct request_queue * q)167 void blk_freeze_queue(struct request_queue *q)
168 {
169 	/*
170 	 * In the !blk_mq case we are only calling this to kill the
171 	 * q_usage_counter, otherwise this increases the freeze depth
172 	 * and waits for it to return to zero.  For this reason there is
173 	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
174 	 * exported to drivers as the only user for unfreeze is blk_mq.
175 	 */
176 	blk_freeze_queue_start(q);
177 	blk_mq_freeze_queue_wait(q);
178 }
179 
blk_mq_freeze_queue(struct request_queue * q)180 void blk_mq_freeze_queue(struct request_queue *q)
181 {
182 	/*
183 	 * ...just an alias to keep freeze and unfreeze actions balanced
184 	 * in the blk_mq_* namespace
185 	 */
186 	blk_freeze_queue(q);
187 }
188 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
189 
blk_mq_unfreeze_queue(struct request_queue * q)190 void blk_mq_unfreeze_queue(struct request_queue *q)
191 {
192 	mutex_lock(&q->mq_freeze_lock);
193 	q->mq_freeze_depth--;
194 	WARN_ON_ONCE(q->mq_freeze_depth < 0);
195 	if (!q->mq_freeze_depth) {
196 		percpu_ref_resurrect(&q->q_usage_counter);
197 		wake_up_all(&q->mq_freeze_wq);
198 	}
199 	mutex_unlock(&q->mq_freeze_lock);
200 }
201 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
202 
203 /*
204  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
205  * mpt3sas driver such that this function can be removed.
206  */
blk_mq_quiesce_queue_nowait(struct request_queue * q)207 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
208 {
209 	unsigned long flags;
210 
211 	spin_lock_irqsave(&q->queue_lock, flags);
212 	if (!q->quiesce_depth++)
213 		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 	spin_unlock_irqrestore(&q->queue_lock, flags);
215 }
216 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 
218 /**
219  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220  * @q: request queue.
221  *
222  * Note: this function does not prevent that the struct request end_io()
223  * callback function is invoked. Once this function is returned, we make
224  * sure no dispatch can happen until the queue is unquiesced via
225  * blk_mq_unquiesce_queue().
226  */
blk_mq_quiesce_queue(struct request_queue * q)227 void blk_mq_quiesce_queue(struct request_queue *q)
228 {
229 	struct blk_mq_hw_ctx *hctx;
230 	unsigned int i;
231 	bool rcu = false;
232 
233 	blk_mq_quiesce_queue_nowait(q);
234 
235 	queue_for_each_hw_ctx(q, hctx, i) {
236 		if (hctx->flags & BLK_MQ_F_BLOCKING)
237 			synchronize_srcu(hctx->srcu);
238 		else
239 			rcu = true;
240 	}
241 	if (rcu)
242 		synchronize_rcu();
243 }
244 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 
246 /*
247  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248  * @q: request queue.
249  *
250  * This function recovers queue into the state before quiescing
251  * which is done by blk_mq_quiesce_queue.
252  */
blk_mq_unquiesce_queue(struct request_queue * q)253 void blk_mq_unquiesce_queue(struct request_queue *q)
254 {
255 	unsigned long flags;
256 	bool run_queue = false;
257 
258 	spin_lock_irqsave(&q->queue_lock, flags);
259 	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
260 		;
261 	} else if (!--q->quiesce_depth) {
262 		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
263 		run_queue = true;
264 	}
265 	spin_unlock_irqrestore(&q->queue_lock, flags);
266 
267 	/* dispatch requests which are inserted during quiescing */
268 	if (run_queue)
269 		blk_mq_run_hw_queues(q, true);
270 }
271 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
272 
blk_mq_wake_waiters(struct request_queue * q)273 void blk_mq_wake_waiters(struct request_queue *q)
274 {
275 	struct blk_mq_hw_ctx *hctx;
276 	unsigned int i;
277 
278 	queue_for_each_hw_ctx(q, hctx, i)
279 		if (blk_mq_hw_queue_mapped(hctx))
280 			blk_mq_tag_wakeup_all(hctx->tags, true);
281 }
282 
283 /*
284  * Only need start/end time stamping if we have iostat or
285  * blk stats enabled, or using an IO scheduler.
286  */
blk_mq_need_time_stamp(struct request * rq)287 static inline bool blk_mq_need_time_stamp(struct request *rq)
288 {
289 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
290 }
291 
blk_mq_rq_ctx_init(struct blk_mq_alloc_data * data,unsigned int tag,u64 alloc_time_ns)292 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
293 		unsigned int tag, u64 alloc_time_ns)
294 {
295 	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
296 	struct request *rq = tags->static_rqs[tag];
297 
298 	if (data->q->elevator) {
299 		rq->tag = BLK_MQ_NO_TAG;
300 		rq->internal_tag = tag;
301 	} else {
302 		rq->tag = tag;
303 		rq->internal_tag = BLK_MQ_NO_TAG;
304 	}
305 
306 	/* csd/requeue_work/fifo_time is initialized before use */
307 	rq->q = data->q;
308 	rq->mq_ctx = data->ctx;
309 	rq->mq_hctx = data->hctx;
310 	rq->rq_flags = 0;
311 	rq->cmd_flags = data->cmd_flags;
312 	if (data->flags & BLK_MQ_REQ_PM)
313 		rq->rq_flags |= RQF_PM;
314 	if (blk_queue_io_stat(data->q))
315 		rq->rq_flags |= RQF_IO_STAT;
316 	INIT_LIST_HEAD(&rq->queuelist);
317 	INIT_HLIST_NODE(&rq->hash);
318 	RB_CLEAR_NODE(&rq->rb_node);
319 	rq->rq_disk = NULL;
320 	rq->part = NULL;
321 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
322 	rq->alloc_time_ns = alloc_time_ns;
323 #endif
324 	if (blk_mq_need_time_stamp(rq))
325 		rq->start_time_ns = ktime_get_ns();
326 	else
327 		rq->start_time_ns = 0;
328 	rq->io_start_time_ns = 0;
329 	rq->stats_sectors = 0;
330 	rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 	rq->nr_integrity_segments = 0;
333 #endif
334 	blk_crypto_rq_set_defaults(rq);
335 	/* tag was already set */
336 	WRITE_ONCE(rq->deadline, 0);
337 
338 	rq->timeout = 0;
339 
340 	rq->end_io = NULL;
341 	rq->end_io_data = NULL;
342 
343 	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
344 	refcount_set(&rq->ref, 1);
345 
346 	if (!op_is_flush(data->cmd_flags)) {
347 		struct elevator_queue *e = data->q->elevator;
348 
349 		rq->elv.icq = NULL;
350 		if (e && e->type->ops.prepare_request) {
351 			if (e->type->icq_cache)
352 				blk_mq_sched_assign_ioc(rq);
353 
354 			e->type->ops.prepare_request(rq);
355 			rq->rq_flags |= RQF_ELVPRIV;
356 		}
357 	}
358 
359 	data->hctx->queued++;
360 	return rq;
361 }
362 
__blk_mq_alloc_request(struct blk_mq_alloc_data * data)363 static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
364 {
365 	struct request_queue *q = data->q;
366 	struct elevator_queue *e = q->elevator;
367 	u64 alloc_time_ns = 0;
368 	unsigned int tag;
369 
370 	/* alloc_time includes depth and tag waits */
371 	if (blk_queue_rq_alloc_time(q))
372 		alloc_time_ns = ktime_get_ns();
373 
374 	if (data->cmd_flags & REQ_NOWAIT)
375 		data->flags |= BLK_MQ_REQ_NOWAIT;
376 
377 	if (e) {
378 		/*
379 		 * Flush requests are special and go directly to the
380 		 * dispatch list. Don't include reserved tags in the
381 		 * limiting, as it isn't useful.
382 		 */
383 		if (!op_is_flush(data->cmd_flags) &&
384 		    e->type->ops.limit_depth &&
385 		    !(data->flags & BLK_MQ_REQ_RESERVED))
386 			e->type->ops.limit_depth(data->cmd_flags, data);
387 	}
388 
389 retry:
390 	data->ctx = blk_mq_get_ctx(q);
391 	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
392 	if (!e)
393 		blk_mq_tag_busy(data->hctx);
394 
395 	/*
396 	 * Waiting allocations only fail because of an inactive hctx.  In that
397 	 * case just retry the hctx assignment and tag allocation as CPU hotplug
398 	 * should have migrated us to an online CPU by now.
399 	 */
400 	tag = blk_mq_get_tag(data);
401 	if (tag == BLK_MQ_NO_TAG) {
402 		if (data->flags & BLK_MQ_REQ_NOWAIT)
403 			return NULL;
404 
405 		/*
406 		 * Give up the CPU and sleep for a random short time to ensure
407 		 * that thread using a realtime scheduling class are migrated
408 		 * off the CPU, and thus off the hctx that is going away.
409 		 */
410 		msleep(3);
411 		goto retry;
412 	}
413 	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
414 }
415 
blk_mq_alloc_request(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags)416 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
417 		blk_mq_req_flags_t flags)
418 {
419 	struct blk_mq_alloc_data data = {
420 		.q		= q,
421 		.flags		= flags,
422 		.cmd_flags	= op,
423 	};
424 	struct request *rq;
425 	int ret;
426 
427 	ret = blk_queue_enter(q, flags);
428 	if (ret)
429 		return ERR_PTR(ret);
430 
431 	rq = __blk_mq_alloc_request(&data);
432 	if (!rq)
433 		goto out_queue_exit;
434 	rq->__data_len = 0;
435 	rq->__sector = (sector_t) -1;
436 	rq->bio = rq->biotail = NULL;
437 	return rq;
438 out_queue_exit:
439 	blk_queue_exit(q);
440 	return ERR_PTR(-EWOULDBLOCK);
441 }
442 EXPORT_SYMBOL(blk_mq_alloc_request);
443 
blk_mq_alloc_request_hctx(struct request_queue * q,unsigned int op,blk_mq_req_flags_t flags,unsigned int hctx_idx)444 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
445 	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
446 {
447 	struct blk_mq_alloc_data data = {
448 		.q		= q,
449 		.flags		= flags,
450 		.cmd_flags	= op,
451 	};
452 	u64 alloc_time_ns = 0;
453 	unsigned int cpu;
454 	unsigned int tag;
455 	int ret;
456 
457 	/* alloc_time includes depth and tag waits */
458 	if (blk_queue_rq_alloc_time(q))
459 		alloc_time_ns = ktime_get_ns();
460 
461 	/*
462 	 * If the tag allocator sleeps we could get an allocation for a
463 	 * different hardware context.  No need to complicate the low level
464 	 * allocator for this for the rare use case of a command tied to
465 	 * a specific queue.
466 	 */
467 	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
468 	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
469 		return ERR_PTR(-EINVAL);
470 
471 	if (hctx_idx >= q->nr_hw_queues)
472 		return ERR_PTR(-EIO);
473 
474 	ret = blk_queue_enter(q, flags);
475 	if (ret)
476 		return ERR_PTR(ret);
477 
478 	/*
479 	 * Check if the hardware context is actually mapped to anything.
480 	 * If not tell the caller that it should skip this queue.
481 	 */
482 	ret = -EXDEV;
483 	data.hctx = q->queue_hw_ctx[hctx_idx];
484 	if (!blk_mq_hw_queue_mapped(data.hctx))
485 		goto out_queue_exit;
486 	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
487 	if (cpu >= nr_cpu_ids)
488 		goto out_queue_exit;
489 	data.ctx = __blk_mq_get_ctx(q, cpu);
490 
491 	if (!q->elevator)
492 		blk_mq_tag_busy(data.hctx);
493 
494 	ret = -EWOULDBLOCK;
495 	tag = blk_mq_get_tag(&data);
496 	if (tag == BLK_MQ_NO_TAG)
497 		goto out_queue_exit;
498 	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
499 
500 out_queue_exit:
501 	blk_queue_exit(q);
502 	return ERR_PTR(ret);
503 }
504 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
505 
__blk_mq_free_request(struct request * rq)506 static void __blk_mq_free_request(struct request *rq)
507 {
508 	struct request_queue *q = rq->q;
509 	struct blk_mq_ctx *ctx = rq->mq_ctx;
510 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
511 	const int sched_tag = rq->internal_tag;
512 
513 	blk_crypto_free_request(rq);
514 	blk_pm_mark_last_busy(rq);
515 	rq->mq_hctx = NULL;
516 	if (rq->tag != BLK_MQ_NO_TAG)
517 		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
518 	if (sched_tag != BLK_MQ_NO_TAG)
519 		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
520 	blk_mq_sched_restart(hctx);
521 	blk_queue_exit(q);
522 }
523 
blk_mq_free_request(struct request * rq)524 void blk_mq_free_request(struct request *rq)
525 {
526 	struct request_queue *q = rq->q;
527 	struct elevator_queue *e = q->elevator;
528 	struct blk_mq_ctx *ctx = rq->mq_ctx;
529 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
530 
531 	if (rq->rq_flags & RQF_ELVPRIV) {
532 		if (e && e->type->ops.finish_request)
533 			e->type->ops.finish_request(rq);
534 		if (rq->elv.icq) {
535 			put_io_context(rq->elv.icq->ioc);
536 			rq->elv.icq = NULL;
537 		}
538 	}
539 
540 	ctx->rq_completed[rq_is_sync(rq)]++;
541 	if (rq->rq_flags & RQF_MQ_INFLIGHT)
542 		__blk_mq_dec_active_requests(hctx);
543 
544 	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
545 		laptop_io_completion(q->backing_dev_info);
546 
547 	rq_qos_done(q, rq);
548 
549 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
550 	if (refcount_dec_and_test(&rq->ref))
551 		__blk_mq_free_request(rq);
552 }
553 EXPORT_SYMBOL_GPL(blk_mq_free_request);
554 
__blk_mq_end_request(struct request * rq,blk_status_t error)555 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
556 {
557 	u64 now = 0;
558 
559 	if (blk_mq_need_time_stamp(rq))
560 		now = ktime_get_ns();
561 
562 	if (rq->rq_flags & RQF_STATS) {
563 		blk_mq_poll_stats_start(rq->q);
564 		blk_stat_add(rq, now);
565 	}
566 
567 	blk_mq_sched_completed_request(rq, now);
568 
569 	blk_account_io_done(rq, now);
570 
571 	if (rq->end_io) {
572 		rq_qos_done(rq->q, rq);
573 		rq->end_io(rq, error);
574 	} else {
575 		blk_mq_free_request(rq);
576 	}
577 }
578 EXPORT_SYMBOL(__blk_mq_end_request);
579 
blk_mq_end_request(struct request * rq,blk_status_t error)580 void blk_mq_end_request(struct request *rq, blk_status_t error)
581 {
582 	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
583 		BUG();
584 	__blk_mq_end_request(rq, error);
585 }
586 EXPORT_SYMBOL(blk_mq_end_request);
587 
588 /*
589  * Softirq action handler - move entries to local list and loop over them
590  * while passing them to the queue registered handler.
591  */
blk_done_softirq(struct softirq_action * h)592 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
593 {
594 	struct list_head *cpu_list, local_list;
595 
596 	local_irq_disable();
597 	cpu_list = this_cpu_ptr(&blk_cpu_done);
598 	list_replace_init(cpu_list, &local_list);
599 	local_irq_enable();
600 
601 	while (!list_empty(&local_list)) {
602 		struct request *rq;
603 
604 		rq = list_entry(local_list.next, struct request, ipi_list);
605 		list_del_init(&rq->ipi_list);
606 		rq->q->mq_ops->complete(rq);
607 	}
608 }
609 
blk_mq_trigger_softirq(struct request * rq)610 static void blk_mq_trigger_softirq(struct request *rq)
611 {
612 	struct list_head *list;
613 	unsigned long flags;
614 
615 	local_irq_save(flags);
616 	list = this_cpu_ptr(&blk_cpu_done);
617 	list_add_tail(&rq->ipi_list, list);
618 
619 	/*
620 	 * If the list only contains our just added request, signal a raise of
621 	 * the softirq.  If there are already entries there, someone already
622 	 * raised the irq but it hasn't run yet.
623 	 */
624 	if (list->next == &rq->ipi_list)
625 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
626 	local_irq_restore(flags);
627 }
628 
blk_softirq_cpu_dead(unsigned int cpu)629 static int blk_softirq_cpu_dead(unsigned int cpu)
630 {
631 	/*
632 	 * If a CPU goes away, splice its entries to the current CPU
633 	 * and trigger a run of the softirq
634 	 */
635 	local_irq_disable();
636 	list_splice_init(&per_cpu(blk_cpu_done, cpu),
637 			 this_cpu_ptr(&blk_cpu_done));
638 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
639 	local_irq_enable();
640 
641 	return 0;
642 }
643 
644 
__blk_mq_complete_request_remote(void * data)645 static void __blk_mq_complete_request_remote(void *data)
646 {
647 	struct request *rq = data;
648 
649 	/*
650 	 * For most of single queue controllers, there is only one irq vector
651 	 * for handling I/O completion, and the only irq's affinity is set
652 	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
653 	 * is handled on one specific CPU.
654 	 *
655 	 * So complete I/O requests in softirq context in case of single queue
656 	 * devices to avoid degrading I/O performance due to irqsoff latency.
657 	 */
658 	if (rq->q->nr_hw_queues == 1)
659 		blk_mq_trigger_softirq(rq);
660 	else
661 		rq->q->mq_ops->complete(rq);
662 }
663 
blk_mq_complete_need_ipi(struct request * rq)664 static inline bool blk_mq_complete_need_ipi(struct request *rq)
665 {
666 	int cpu = raw_smp_processor_id();
667 
668 	if (!IS_ENABLED(CONFIG_SMP) ||
669 	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
670 		return false;
671 
672 	/* same CPU or cache domain?  Complete locally */
673 	if (cpu == rq->mq_ctx->cpu ||
674 	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
675 	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
676 		return false;
677 
678 	/* don't try to IPI to an offline CPU */
679 	return cpu_online(rq->mq_ctx->cpu);
680 }
681 
blk_mq_complete_request_remote(struct request * rq)682 bool blk_mq_complete_request_remote(struct request *rq)
683 {
684 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
685 
686 	/*
687 	 * For a polled request, always complete locallly, it's pointless
688 	 * to redirect the completion.
689 	 */
690 	if (rq->cmd_flags & REQ_HIPRI)
691 		return false;
692 
693 	if (blk_mq_complete_need_ipi(rq)) {
694 		rq->csd.func = __blk_mq_complete_request_remote;
695 		rq->csd.info = rq;
696 		rq->csd.flags = 0;
697 		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
698 	} else {
699 		if (rq->q->nr_hw_queues > 1)
700 			return false;
701 		blk_mq_trigger_softirq(rq);
702 	}
703 
704 	return true;
705 }
706 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
707 
708 /**
709  * blk_mq_complete_request - end I/O on a request
710  * @rq:		the request being processed
711  *
712  * Description:
713  *	Complete a request by scheduling the ->complete_rq operation.
714  **/
blk_mq_complete_request(struct request * rq)715 void blk_mq_complete_request(struct request *rq)
716 {
717 	if (!blk_mq_complete_request_remote(rq))
718 		rq->q->mq_ops->complete(rq);
719 }
720 EXPORT_SYMBOL(blk_mq_complete_request);
721 
hctx_unlock(struct blk_mq_hw_ctx * hctx,int srcu_idx)722 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
723 	__releases(hctx->srcu)
724 {
725 	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
726 		rcu_read_unlock();
727 	else
728 		srcu_read_unlock(hctx->srcu, srcu_idx);
729 }
730 
hctx_lock(struct blk_mq_hw_ctx * hctx,int * srcu_idx)731 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
732 	__acquires(hctx->srcu)
733 {
734 	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
735 		/* shut up gcc false positive */
736 		*srcu_idx = 0;
737 		rcu_read_lock();
738 	} else
739 		*srcu_idx = srcu_read_lock(hctx->srcu);
740 }
741 
742 /**
743  * blk_mq_start_request - Start processing a request
744  * @rq: Pointer to request to be started
745  *
746  * Function used by device drivers to notify the block layer that a request
747  * is going to be processed now, so blk layer can do proper initializations
748  * such as starting the timeout timer.
749  */
blk_mq_start_request(struct request * rq)750 void blk_mq_start_request(struct request *rq)
751 {
752 	struct request_queue *q = rq->q;
753 
754 	trace_block_rq_issue(rq);
755 
756 	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
757 		rq->io_start_time_ns = ktime_get_ns();
758 		rq->stats_sectors = blk_rq_sectors(rq);
759 		rq->rq_flags |= RQF_STATS;
760 		rq_qos_issue(q, rq);
761 	}
762 
763 	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
764 
765 	blk_add_timer(rq);
766 	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
767 
768 #ifdef CONFIG_BLK_DEV_INTEGRITY
769 	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
770 		q->integrity.profile->prepare_fn(rq);
771 #endif
772 }
773 EXPORT_SYMBOL(blk_mq_start_request);
774 
__blk_mq_requeue_request(struct request * rq)775 static void __blk_mq_requeue_request(struct request *rq)
776 {
777 	struct request_queue *q = rq->q;
778 
779 	blk_mq_put_driver_tag(rq);
780 
781 	trace_block_rq_requeue(rq);
782 	rq_qos_requeue(q, rq);
783 
784 	if (blk_mq_request_started(rq)) {
785 		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
786 		rq->rq_flags &= ~RQF_TIMED_OUT;
787 	}
788 }
789 
blk_mq_requeue_request(struct request * rq,bool kick_requeue_list)790 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
791 {
792 	__blk_mq_requeue_request(rq);
793 
794 	/* this request will be re-inserted to io scheduler queue */
795 	blk_mq_sched_requeue_request(rq);
796 
797 	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
798 }
799 EXPORT_SYMBOL(blk_mq_requeue_request);
800 
blk_mq_requeue_work(struct work_struct * work)801 static void blk_mq_requeue_work(struct work_struct *work)
802 {
803 	struct request_queue *q =
804 		container_of(work, struct request_queue, requeue_work.work);
805 	LIST_HEAD(rq_list);
806 	struct request *rq, *next;
807 
808 	spin_lock_irq(&q->requeue_lock);
809 	list_splice_init(&q->requeue_list, &rq_list);
810 	spin_unlock_irq(&q->requeue_lock);
811 
812 	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
813 		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
814 			continue;
815 
816 		rq->rq_flags &= ~RQF_SOFTBARRIER;
817 		list_del_init(&rq->queuelist);
818 		/*
819 		 * If RQF_DONTPREP, rq has contained some driver specific
820 		 * data, so insert it to hctx dispatch list to avoid any
821 		 * merge.
822 		 */
823 		if (rq->rq_flags & RQF_DONTPREP)
824 			blk_mq_request_bypass_insert(rq, false, false);
825 		else
826 			blk_mq_sched_insert_request(rq, true, false, false);
827 	}
828 
829 	while (!list_empty(&rq_list)) {
830 		rq = list_entry(rq_list.next, struct request, queuelist);
831 		list_del_init(&rq->queuelist);
832 		blk_mq_sched_insert_request(rq, false, false, false);
833 	}
834 
835 	blk_mq_run_hw_queues(q, false);
836 }
837 
blk_mq_add_to_requeue_list(struct request * rq,bool at_head,bool kick_requeue_list)838 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
839 				bool kick_requeue_list)
840 {
841 	struct request_queue *q = rq->q;
842 	unsigned long flags;
843 
844 	/*
845 	 * We abuse this flag that is otherwise used by the I/O scheduler to
846 	 * request head insertion from the workqueue.
847 	 */
848 	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
849 
850 	spin_lock_irqsave(&q->requeue_lock, flags);
851 	if (at_head) {
852 		rq->rq_flags |= RQF_SOFTBARRIER;
853 		list_add(&rq->queuelist, &q->requeue_list);
854 	} else {
855 		list_add_tail(&rq->queuelist, &q->requeue_list);
856 	}
857 	spin_unlock_irqrestore(&q->requeue_lock, flags);
858 
859 	if (kick_requeue_list)
860 		blk_mq_kick_requeue_list(q);
861 }
862 
blk_mq_kick_requeue_list(struct request_queue * q)863 void blk_mq_kick_requeue_list(struct request_queue *q)
864 {
865 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
866 }
867 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
868 
blk_mq_delay_kick_requeue_list(struct request_queue * q,unsigned long msecs)869 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
870 				    unsigned long msecs)
871 {
872 	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
873 				    msecs_to_jiffies(msecs));
874 }
875 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
876 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)877 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
878 {
879 	if (tag < tags->nr_tags) {
880 		prefetch(tags->rqs[tag]);
881 		return tags->rqs[tag];
882 	}
883 
884 	return NULL;
885 }
886 EXPORT_SYMBOL(blk_mq_tag_to_rq);
887 
blk_mq_rq_inflight(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)888 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
889 			       void *priv, bool reserved)
890 {
891 	/*
892 	 * If we find a request that isn't idle and the queue matches,
893 	 * we know the queue is busy. Return false to stop the iteration.
894 	 */
895 	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
896 		bool *busy = priv;
897 
898 		*busy = true;
899 		return false;
900 	}
901 
902 	return true;
903 }
904 
blk_mq_queue_inflight(struct request_queue * q)905 bool blk_mq_queue_inflight(struct request_queue *q)
906 {
907 	bool busy = false;
908 
909 	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
910 	return busy;
911 }
912 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
913 
blk_mq_rq_timed_out(struct request * req,bool reserved)914 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
915 {
916 	req->rq_flags |= RQF_TIMED_OUT;
917 	if (req->q->mq_ops->timeout) {
918 		enum blk_eh_timer_return ret;
919 
920 		ret = req->q->mq_ops->timeout(req, reserved);
921 		if (ret == BLK_EH_DONE)
922 			return;
923 		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
924 	}
925 
926 	blk_add_timer(req);
927 }
928 
blk_mq_req_expired(struct request * rq,unsigned long * next)929 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
930 {
931 	unsigned long deadline;
932 
933 	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
934 		return false;
935 	if (rq->rq_flags & RQF_TIMED_OUT)
936 		return false;
937 
938 	deadline = READ_ONCE(rq->deadline);
939 	if (time_after_eq(jiffies, deadline))
940 		return true;
941 
942 	if (*next == 0)
943 		*next = deadline;
944 	else if (time_after(*next, deadline))
945 		*next = deadline;
946 	return false;
947 }
948 
blk_mq_put_rq_ref(struct request * rq)949 void blk_mq_put_rq_ref(struct request *rq)
950 {
951 	if (is_flush_rq(rq))
952 		rq->end_io(rq, 0);
953 	else if (refcount_dec_and_test(&rq->ref))
954 		__blk_mq_free_request(rq);
955 }
956 
blk_mq_check_expired(struct blk_mq_hw_ctx * hctx,struct request * rq,void * priv,bool reserved)957 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
958 		struct request *rq, void *priv, bool reserved)
959 {
960 	unsigned long *next = priv;
961 
962 	/*
963 	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
964 	 * be reallocated underneath the timeout handler's processing, then
965 	 * the expire check is reliable. If the request is not expired, then
966 	 * it was completed and reallocated as a new request after returning
967 	 * from blk_mq_check_expired().
968 	 */
969 	if (blk_mq_req_expired(rq, next))
970 		blk_mq_rq_timed_out(rq, reserved);
971 	return true;
972 }
973 
blk_mq_timeout_work(struct work_struct * work)974 static void blk_mq_timeout_work(struct work_struct *work)
975 {
976 	struct request_queue *q =
977 		container_of(work, struct request_queue, timeout_work);
978 	unsigned long next = 0;
979 	struct blk_mq_hw_ctx *hctx;
980 	int i;
981 
982 	/* A deadlock might occur if a request is stuck requiring a
983 	 * timeout at the same time a queue freeze is waiting
984 	 * completion, since the timeout code would not be able to
985 	 * acquire the queue reference here.
986 	 *
987 	 * That's why we don't use blk_queue_enter here; instead, we use
988 	 * percpu_ref_tryget directly, because we need to be able to
989 	 * obtain a reference even in the short window between the queue
990 	 * starting to freeze, by dropping the first reference in
991 	 * blk_freeze_queue_start, and the moment the last request is
992 	 * consumed, marked by the instant q_usage_counter reaches
993 	 * zero.
994 	 */
995 	if (!percpu_ref_tryget(&q->q_usage_counter))
996 		return;
997 
998 	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
999 
1000 	if (next != 0) {
1001 		mod_timer(&q->timeout, next);
1002 	} else {
1003 		/*
1004 		 * Request timeouts are handled as a forward rolling timer. If
1005 		 * we end up here it means that no requests are pending and
1006 		 * also that no request has been pending for a while. Mark
1007 		 * each hctx as idle.
1008 		 */
1009 		queue_for_each_hw_ctx(q, hctx, i) {
1010 			/* the hctx may be unmapped, so check it here */
1011 			if (blk_mq_hw_queue_mapped(hctx))
1012 				blk_mq_tag_idle(hctx);
1013 		}
1014 	}
1015 	blk_queue_exit(q);
1016 }
1017 
1018 struct flush_busy_ctx_data {
1019 	struct blk_mq_hw_ctx *hctx;
1020 	struct list_head *list;
1021 };
1022 
flush_busy_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1023 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1024 {
1025 	struct flush_busy_ctx_data *flush_data = data;
1026 	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1027 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1028 	enum hctx_type type = hctx->type;
1029 
1030 	spin_lock(&ctx->lock);
1031 	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1032 	sbitmap_clear_bit(sb, bitnr);
1033 	spin_unlock(&ctx->lock);
1034 	return true;
1035 }
1036 
1037 /*
1038  * Process software queues that have been marked busy, splicing them
1039  * to the for-dispatch
1040  */
blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx * hctx,struct list_head * list)1041 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1042 {
1043 	struct flush_busy_ctx_data data = {
1044 		.hctx = hctx,
1045 		.list = list,
1046 	};
1047 
1048 	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1049 }
1050 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1051 
1052 struct dispatch_rq_data {
1053 	struct blk_mq_hw_ctx *hctx;
1054 	struct request *rq;
1055 };
1056 
dispatch_rq_from_ctx(struct sbitmap * sb,unsigned int bitnr,void * data)1057 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1058 		void *data)
1059 {
1060 	struct dispatch_rq_data *dispatch_data = data;
1061 	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1062 	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1063 	enum hctx_type type = hctx->type;
1064 
1065 	spin_lock(&ctx->lock);
1066 	if (!list_empty(&ctx->rq_lists[type])) {
1067 		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1068 		list_del_init(&dispatch_data->rq->queuelist);
1069 		if (list_empty(&ctx->rq_lists[type]))
1070 			sbitmap_clear_bit(sb, bitnr);
1071 	}
1072 	spin_unlock(&ctx->lock);
1073 
1074 	return !dispatch_data->rq;
1075 }
1076 
blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * start)1077 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1078 					struct blk_mq_ctx *start)
1079 {
1080 	unsigned off = start ? start->index_hw[hctx->type] : 0;
1081 	struct dispatch_rq_data data = {
1082 		.hctx = hctx,
1083 		.rq   = NULL,
1084 	};
1085 
1086 	__sbitmap_for_each_set(&hctx->ctx_map, off,
1087 			       dispatch_rq_from_ctx, &data);
1088 
1089 	return data.rq;
1090 }
1091 
queued_to_index(unsigned int queued)1092 static inline unsigned int queued_to_index(unsigned int queued)
1093 {
1094 	if (!queued)
1095 		return 0;
1096 
1097 	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1098 }
1099 
__blk_mq_get_driver_tag(struct request * rq)1100 static bool __blk_mq_get_driver_tag(struct request *rq)
1101 {
1102 	struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags;
1103 	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1104 	int tag;
1105 
1106 	blk_mq_tag_busy(rq->mq_hctx);
1107 
1108 	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1109 		bt = rq->mq_hctx->tags->breserved_tags;
1110 		tag_offset = 0;
1111 	} else {
1112 		if (!hctx_may_queue(rq->mq_hctx, bt))
1113 			return false;
1114 	}
1115 
1116 	tag = __sbitmap_queue_get(bt);
1117 	if (tag == BLK_MQ_NO_TAG)
1118 		return false;
1119 
1120 	rq->tag = tag + tag_offset;
1121 	return true;
1122 }
1123 
blk_mq_get_driver_tag(struct request * rq)1124 static bool blk_mq_get_driver_tag(struct request *rq)
1125 {
1126 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1127 
1128 	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1129 		return false;
1130 
1131 	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1132 			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1133 		rq->rq_flags |= RQF_MQ_INFLIGHT;
1134 		__blk_mq_inc_active_requests(hctx);
1135 	}
1136 	hctx->tags->rqs[rq->tag] = rq;
1137 	return true;
1138 }
1139 
blk_mq_dispatch_wake(wait_queue_entry_t * wait,unsigned mode,int flags,void * key)1140 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1141 				int flags, void *key)
1142 {
1143 	struct blk_mq_hw_ctx *hctx;
1144 
1145 	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1146 
1147 	spin_lock(&hctx->dispatch_wait_lock);
1148 	if (!list_empty(&wait->entry)) {
1149 		struct sbitmap_queue *sbq;
1150 
1151 		list_del_init(&wait->entry);
1152 		sbq = hctx->tags->bitmap_tags;
1153 		atomic_dec(&sbq->ws_active);
1154 	}
1155 	spin_unlock(&hctx->dispatch_wait_lock);
1156 
1157 	blk_mq_run_hw_queue(hctx, true);
1158 	return 1;
1159 }
1160 
1161 /*
1162  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1163  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1164  * restart. For both cases, take care to check the condition again after
1165  * marking us as waiting.
1166  */
blk_mq_mark_tag_wait(struct blk_mq_hw_ctx * hctx,struct request * rq)1167 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1168 				 struct request *rq)
1169 {
1170 	struct sbitmap_queue *sbq = hctx->tags->bitmap_tags;
1171 	struct wait_queue_head *wq;
1172 	wait_queue_entry_t *wait;
1173 	bool ret;
1174 
1175 	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
1176 		blk_mq_sched_mark_restart_hctx(hctx);
1177 
1178 		/*
1179 		 * It's possible that a tag was freed in the window between the
1180 		 * allocation failure and adding the hardware queue to the wait
1181 		 * queue.
1182 		 *
1183 		 * Don't clear RESTART here, someone else could have set it.
1184 		 * At most this will cost an extra queue run.
1185 		 */
1186 		return blk_mq_get_driver_tag(rq);
1187 	}
1188 
1189 	wait = &hctx->dispatch_wait;
1190 	if (!list_empty_careful(&wait->entry))
1191 		return false;
1192 
1193 	wq = &bt_wait_ptr(sbq, hctx)->wait;
1194 
1195 	spin_lock_irq(&wq->lock);
1196 	spin_lock(&hctx->dispatch_wait_lock);
1197 	if (!list_empty(&wait->entry)) {
1198 		spin_unlock(&hctx->dispatch_wait_lock);
1199 		spin_unlock_irq(&wq->lock);
1200 		return false;
1201 	}
1202 
1203 	atomic_inc(&sbq->ws_active);
1204 	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1205 	__add_wait_queue(wq, wait);
1206 
1207 	/*
1208 	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1209 	 * not imply barrier in case of failure.
1210 	 *
1211 	 * Order adding us to wait queue and allocating driver tag.
1212 	 *
1213 	 * The pair is the one implied in sbitmap_queue_wake_up() which
1214 	 * orders clearing sbitmap tag bits and waitqueue_active() in
1215 	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1216 	 *
1217 	 * Otherwise, re-order of adding wait queue and getting driver tag
1218 	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1219 	 * the waitqueue_active() may not observe us in wait queue.
1220 	 */
1221 	smp_mb();
1222 
1223 	/*
1224 	 * It's possible that a tag was freed in the window between the
1225 	 * allocation failure and adding the hardware queue to the wait
1226 	 * queue.
1227 	 */
1228 	ret = blk_mq_get_driver_tag(rq);
1229 	if (!ret) {
1230 		spin_unlock(&hctx->dispatch_wait_lock);
1231 		spin_unlock_irq(&wq->lock);
1232 		return false;
1233 	}
1234 
1235 	/*
1236 	 * We got a tag, remove ourselves from the wait queue to ensure
1237 	 * someone else gets the wakeup.
1238 	 */
1239 	list_del_init(&wait->entry);
1240 	atomic_dec(&sbq->ws_active);
1241 	spin_unlock(&hctx->dispatch_wait_lock);
1242 	spin_unlock_irq(&wq->lock);
1243 
1244 	return true;
1245 }
1246 
1247 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1248 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1249 /*
1250  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1251  * - EWMA is one simple way to compute running average value
1252  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1253  * - take 4 as factor for avoiding to get too small(0) result, and this
1254  *   factor doesn't matter because EWMA decreases exponentially
1255  */
blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx * hctx,bool busy)1256 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1257 {
1258 	unsigned int ewma;
1259 
1260 	ewma = hctx->dispatch_busy;
1261 
1262 	if (!ewma && !busy)
1263 		return;
1264 
1265 	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1266 	if (busy)
1267 		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1268 	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1269 
1270 	hctx->dispatch_busy = ewma;
1271 }
1272 
1273 #define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1274 
blk_mq_handle_dev_resource(struct request * rq,struct list_head * list)1275 static void blk_mq_handle_dev_resource(struct request *rq,
1276 				       struct list_head *list)
1277 {
1278 	struct request *next =
1279 		list_first_entry_or_null(list, struct request, queuelist);
1280 
1281 	/*
1282 	 * If an I/O scheduler has been configured and we got a driver tag for
1283 	 * the next request already, free it.
1284 	 */
1285 	if (next)
1286 		blk_mq_put_driver_tag(next);
1287 
1288 	list_add(&rq->queuelist, list);
1289 	__blk_mq_requeue_request(rq);
1290 }
1291 
blk_mq_handle_zone_resource(struct request * rq,struct list_head * zone_list)1292 static void blk_mq_handle_zone_resource(struct request *rq,
1293 					struct list_head *zone_list)
1294 {
1295 	/*
1296 	 * If we end up here it is because we cannot dispatch a request to a
1297 	 * specific zone due to LLD level zone-write locking or other zone
1298 	 * related resource not being available. In this case, set the request
1299 	 * aside in zone_list for retrying it later.
1300 	 */
1301 	list_add(&rq->queuelist, zone_list);
1302 	__blk_mq_requeue_request(rq);
1303 }
1304 
1305 enum prep_dispatch {
1306 	PREP_DISPATCH_OK,
1307 	PREP_DISPATCH_NO_TAG,
1308 	PREP_DISPATCH_NO_BUDGET,
1309 };
1310 
blk_mq_prep_dispatch_rq(struct request * rq,bool need_budget)1311 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1312 						  bool need_budget)
1313 {
1314 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1315 
1316 	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1317 		blk_mq_put_driver_tag(rq);
1318 		return PREP_DISPATCH_NO_BUDGET;
1319 	}
1320 
1321 	if (!blk_mq_get_driver_tag(rq)) {
1322 		/*
1323 		 * The initial allocation attempt failed, so we need to
1324 		 * rerun the hardware queue when a tag is freed. The
1325 		 * waitqueue takes care of that. If the queue is run
1326 		 * before we add this entry back on the dispatch list,
1327 		 * we'll re-run it below.
1328 		 */
1329 		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1330 			/*
1331 			 * All budgets not got from this function will be put
1332 			 * together during handling partial dispatch
1333 			 */
1334 			if (need_budget)
1335 				blk_mq_put_dispatch_budget(rq->q);
1336 			return PREP_DISPATCH_NO_TAG;
1337 		}
1338 	}
1339 
1340 	return PREP_DISPATCH_OK;
1341 }
1342 
1343 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
blk_mq_release_budgets(struct request_queue * q,unsigned int nr_budgets)1344 static void blk_mq_release_budgets(struct request_queue *q,
1345 		unsigned int nr_budgets)
1346 {
1347 	int i;
1348 
1349 	for (i = 0; i < nr_budgets; i++)
1350 		blk_mq_put_dispatch_budget(q);
1351 }
1352 
1353 /*
1354  * Returns true if we did some work AND can potentially do more.
1355  */
blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx * hctx,struct list_head * list,unsigned int nr_budgets)1356 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1357 			     unsigned int nr_budgets)
1358 {
1359 	enum prep_dispatch prep;
1360 	struct request_queue *q = hctx->queue;
1361 	struct request *rq, *nxt;
1362 	int errors, queued;
1363 	blk_status_t ret = BLK_STS_OK;
1364 	LIST_HEAD(zone_list);
1365 	bool needs_resource = false;
1366 
1367 	if (list_empty(list))
1368 		return false;
1369 
1370 	/*
1371 	 * Now process all the entries, sending them to the driver.
1372 	 */
1373 	errors = queued = 0;
1374 	do {
1375 		struct blk_mq_queue_data bd;
1376 
1377 		rq = list_first_entry(list, struct request, queuelist);
1378 
1379 		WARN_ON_ONCE(hctx != rq->mq_hctx);
1380 		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1381 		if (prep != PREP_DISPATCH_OK)
1382 			break;
1383 
1384 		list_del_init(&rq->queuelist);
1385 
1386 		bd.rq = rq;
1387 
1388 		/*
1389 		 * Flag last if we have no more requests, or if we have more
1390 		 * but can't assign a driver tag to it.
1391 		 */
1392 		if (list_empty(list))
1393 			bd.last = true;
1394 		else {
1395 			nxt = list_first_entry(list, struct request, queuelist);
1396 			bd.last = !blk_mq_get_driver_tag(nxt);
1397 		}
1398 
1399 		/*
1400 		 * once the request is queued to lld, no need to cover the
1401 		 * budget any more
1402 		 */
1403 		if (nr_budgets)
1404 			nr_budgets--;
1405 		ret = q->mq_ops->queue_rq(hctx, &bd);
1406 		switch (ret) {
1407 		case BLK_STS_OK:
1408 			queued++;
1409 			break;
1410 		case BLK_STS_RESOURCE:
1411 			needs_resource = true;
1412 			fallthrough;
1413 		case BLK_STS_DEV_RESOURCE:
1414 			blk_mq_handle_dev_resource(rq, list);
1415 			goto out;
1416 		case BLK_STS_ZONE_RESOURCE:
1417 			/*
1418 			 * Move the request to zone_list and keep going through
1419 			 * the dispatch list to find more requests the drive can
1420 			 * accept.
1421 			 */
1422 			blk_mq_handle_zone_resource(rq, &zone_list);
1423 			needs_resource = true;
1424 			break;
1425 		default:
1426 			errors++;
1427 			blk_mq_end_request(rq, BLK_STS_IOERR);
1428 		}
1429 	} while (!list_empty(list));
1430 out:
1431 	if (!list_empty(&zone_list))
1432 		list_splice_tail_init(&zone_list, list);
1433 
1434 	hctx->dispatched[queued_to_index(queued)]++;
1435 
1436 	/* If we didn't flush the entire list, we could have told the driver
1437 	 * there was more coming, but that turned out to be a lie.
1438 	 */
1439 	if ((!list_empty(list) || errors || needs_resource ||
1440 	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
1441 		q->mq_ops->commit_rqs(hctx);
1442 	/*
1443 	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1444 	 * that is where we will continue on next queue run.
1445 	 */
1446 	if (!list_empty(list)) {
1447 		bool needs_restart;
1448 		/* For non-shared tags, the RESTART check will suffice */
1449 		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1450 			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
1451 
1452 		blk_mq_release_budgets(q, nr_budgets);
1453 
1454 		spin_lock(&hctx->lock);
1455 		list_splice_tail_init(list, &hctx->dispatch);
1456 		spin_unlock(&hctx->lock);
1457 
1458 		/*
1459 		 * Order adding requests to hctx->dispatch and checking
1460 		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1461 		 * in blk_mq_sched_restart(). Avoid restart code path to
1462 		 * miss the new added requests to hctx->dispatch, meantime
1463 		 * SCHED_RESTART is observed here.
1464 		 */
1465 		smp_mb();
1466 
1467 		/*
1468 		 * If SCHED_RESTART was set by the caller of this function and
1469 		 * it is no longer set that means that it was cleared by another
1470 		 * thread and hence that a queue rerun is needed.
1471 		 *
1472 		 * If 'no_tag' is set, that means that we failed getting
1473 		 * a driver tag with an I/O scheduler attached. If our dispatch
1474 		 * waitqueue is no longer active, ensure that we run the queue
1475 		 * AFTER adding our entries back to the list.
1476 		 *
1477 		 * If no I/O scheduler has been configured it is possible that
1478 		 * the hardware queue got stopped and restarted before requests
1479 		 * were pushed back onto the dispatch list. Rerun the queue to
1480 		 * avoid starvation. Notes:
1481 		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1482 		 *   been stopped before rerunning a queue.
1483 		 * - Some but not all block drivers stop a queue before
1484 		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1485 		 *   and dm-rq.
1486 		 *
1487 		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1488 		 * bit is set, run queue after a delay to avoid IO stalls
1489 		 * that could otherwise occur if the queue is idle.  We'll do
1490 		 * similar if we couldn't get budget or couldn't lock a zone
1491 		 * and SCHED_RESTART is set.
1492 		 */
1493 		needs_restart = blk_mq_sched_needs_restart(hctx);
1494 		if (prep == PREP_DISPATCH_NO_BUDGET)
1495 			needs_resource = true;
1496 		if (!needs_restart ||
1497 		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1498 			blk_mq_run_hw_queue(hctx, true);
1499 		else if (needs_restart && needs_resource)
1500 			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1501 
1502 		blk_mq_update_dispatch_busy(hctx, true);
1503 		return false;
1504 	} else
1505 		blk_mq_update_dispatch_busy(hctx, false);
1506 
1507 	return (queued + errors) != 0;
1508 }
1509 
1510 /**
1511  * __blk_mq_run_hw_queue - Run a hardware queue.
1512  * @hctx: Pointer to the hardware queue to run.
1513  *
1514  * Send pending requests to the hardware.
1515  */
__blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx)1516 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1517 {
1518 	int srcu_idx;
1519 
1520 	/*
1521 	 * We should be running this queue from one of the CPUs that
1522 	 * are mapped to it.
1523 	 *
1524 	 * There are at least two related races now between setting
1525 	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1526 	 * __blk_mq_run_hw_queue():
1527 	 *
1528 	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1529 	 *   but later it becomes online, then this warning is harmless
1530 	 *   at all
1531 	 *
1532 	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1533 	 *   but later it becomes offline, then the warning can't be
1534 	 *   triggered, and we depend on blk-mq timeout handler to
1535 	 *   handle dispatched requests to this hctx
1536 	 */
1537 	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1538 		cpu_online(hctx->next_cpu)) {
1539 		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1540 			raw_smp_processor_id(),
1541 			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1542 		dump_stack();
1543 	}
1544 
1545 	/*
1546 	 * We can't run the queue inline with ints disabled. Ensure that
1547 	 * we catch bad users of this early.
1548 	 */
1549 	WARN_ON_ONCE(in_interrupt());
1550 
1551 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1552 
1553 	hctx_lock(hctx, &srcu_idx);
1554 	blk_mq_sched_dispatch_requests(hctx);
1555 	hctx_unlock(hctx, srcu_idx);
1556 }
1557 
blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx * hctx)1558 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1559 {
1560 	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1561 
1562 	if (cpu >= nr_cpu_ids)
1563 		cpu = cpumask_first(hctx->cpumask);
1564 	return cpu;
1565 }
1566 
1567 /*
1568  * It'd be great if the workqueue API had a way to pass
1569  * in a mask and had some smarts for more clever placement.
1570  * For now we just round-robin here, switching for every
1571  * BLK_MQ_CPU_WORK_BATCH queued items.
1572  */
blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx * hctx)1573 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1574 {
1575 	bool tried = false;
1576 	int next_cpu = hctx->next_cpu;
1577 
1578 	if (hctx->queue->nr_hw_queues == 1)
1579 		return WORK_CPU_UNBOUND;
1580 
1581 	if (--hctx->next_cpu_batch <= 0) {
1582 select_cpu:
1583 		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1584 				cpu_online_mask);
1585 		if (next_cpu >= nr_cpu_ids)
1586 			next_cpu = blk_mq_first_mapped_cpu(hctx);
1587 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1588 	}
1589 
1590 	/*
1591 	 * Do unbound schedule if we can't find a online CPU for this hctx,
1592 	 * and it should only happen in the path of handling CPU DEAD.
1593 	 */
1594 	if (!cpu_online(next_cpu)) {
1595 		if (!tried) {
1596 			tried = true;
1597 			goto select_cpu;
1598 		}
1599 
1600 		/*
1601 		 * Make sure to re-select CPU next time once after CPUs
1602 		 * in hctx->cpumask become online again.
1603 		 */
1604 		hctx->next_cpu = next_cpu;
1605 		hctx->next_cpu_batch = 1;
1606 		return WORK_CPU_UNBOUND;
1607 	}
1608 
1609 	hctx->next_cpu = next_cpu;
1610 	return next_cpu;
1611 }
1612 
1613 /**
1614  * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1615  * @hctx: Pointer to the hardware queue to run.
1616  * @async: If we want to run the queue asynchronously.
1617  * @msecs: Microseconds of delay to wait before running the queue.
1618  *
1619  * If !@async, try to run the queue now. Else, run the queue asynchronously and
1620  * with a delay of @msecs.
1621  */
__blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async,unsigned long msecs)1622 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1623 					unsigned long msecs)
1624 {
1625 	if (unlikely(blk_mq_hctx_stopped(hctx)))
1626 		return;
1627 
1628 	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1629 		int cpu = get_cpu();
1630 		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1631 			__blk_mq_run_hw_queue(hctx);
1632 			put_cpu();
1633 			return;
1634 		}
1635 
1636 		put_cpu();
1637 	}
1638 
1639 	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1640 				    msecs_to_jiffies(msecs));
1641 }
1642 
1643 /**
1644  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1645  * @hctx: Pointer to the hardware queue to run.
1646  * @msecs: Microseconds of delay to wait before running the queue.
1647  *
1648  * Run a hardware queue asynchronously with a delay of @msecs.
1649  */
blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx * hctx,unsigned long msecs)1650 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1651 {
1652 	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1653 }
1654 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1655 
1656 /**
1657  * blk_mq_run_hw_queue - Start to run a hardware queue.
1658  * @hctx: Pointer to the hardware queue to run.
1659  * @async: If we want to run the queue asynchronously.
1660  *
1661  * Check if the request queue is not in a quiesced state and if there are
1662  * pending requests to be sent. If this is true, run the queue to send requests
1663  * to hardware.
1664  */
blk_mq_run_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1665 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1666 {
1667 	int srcu_idx;
1668 	bool need_run;
1669 
1670 	/*
1671 	 * When queue is quiesced, we may be switching io scheduler, or
1672 	 * updating nr_hw_queues, or other things, and we can't run queue
1673 	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1674 	 *
1675 	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1676 	 * quiesced.
1677 	 */
1678 	hctx_lock(hctx, &srcu_idx);
1679 	need_run = !blk_queue_quiesced(hctx->queue) &&
1680 		blk_mq_hctx_has_pending(hctx);
1681 	hctx_unlock(hctx, srcu_idx);
1682 
1683 	if (need_run)
1684 		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1685 }
1686 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1687 
1688 /**
1689  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
1690  * @q: Pointer to the request queue to run.
1691  * @async: If we want to run the queue asynchronously.
1692  */
blk_mq_run_hw_queues(struct request_queue * q,bool async)1693 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1694 {
1695 	struct blk_mq_hw_ctx *hctx;
1696 	int i;
1697 
1698 	queue_for_each_hw_ctx(q, hctx, i) {
1699 		if (blk_mq_hctx_stopped(hctx))
1700 			continue;
1701 
1702 		blk_mq_run_hw_queue(hctx, async);
1703 	}
1704 }
1705 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1706 
1707 /**
1708  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1709  * @q: Pointer to the request queue to run.
1710  * @msecs: Microseconds of delay to wait before running the queues.
1711  */
blk_mq_delay_run_hw_queues(struct request_queue * q,unsigned long msecs)1712 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1713 {
1714 	struct blk_mq_hw_ctx *hctx;
1715 	int i;
1716 
1717 	queue_for_each_hw_ctx(q, hctx, i) {
1718 		if (blk_mq_hctx_stopped(hctx))
1719 			continue;
1720 
1721 		blk_mq_delay_run_hw_queue(hctx, msecs);
1722 	}
1723 }
1724 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1725 
1726 /**
1727  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1728  * @q: request queue.
1729  *
1730  * The caller is responsible for serializing this function against
1731  * blk_mq_{start,stop}_hw_queue().
1732  */
blk_mq_queue_stopped(struct request_queue * q)1733 bool blk_mq_queue_stopped(struct request_queue *q)
1734 {
1735 	struct blk_mq_hw_ctx *hctx;
1736 	int i;
1737 
1738 	queue_for_each_hw_ctx(q, hctx, i)
1739 		if (blk_mq_hctx_stopped(hctx))
1740 			return true;
1741 
1742 	return false;
1743 }
1744 EXPORT_SYMBOL(blk_mq_queue_stopped);
1745 
1746 /*
1747  * This function is often used for pausing .queue_rq() by driver when
1748  * there isn't enough resource or some conditions aren't satisfied, and
1749  * BLK_STS_RESOURCE is usually returned.
1750  *
1751  * We do not guarantee that dispatch can be drained or blocked
1752  * after blk_mq_stop_hw_queue() returns. Please use
1753  * blk_mq_quiesce_queue() for that requirement.
1754  */
blk_mq_stop_hw_queue(struct blk_mq_hw_ctx * hctx)1755 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1756 {
1757 	cancel_delayed_work(&hctx->run_work);
1758 
1759 	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1760 }
1761 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1762 
1763 /*
1764  * This function is often used for pausing .queue_rq() by driver when
1765  * there isn't enough resource or some conditions aren't satisfied, and
1766  * BLK_STS_RESOURCE is usually returned.
1767  *
1768  * We do not guarantee that dispatch can be drained or blocked
1769  * after blk_mq_stop_hw_queues() returns. Please use
1770  * blk_mq_quiesce_queue() for that requirement.
1771  */
blk_mq_stop_hw_queues(struct request_queue * q)1772 void blk_mq_stop_hw_queues(struct request_queue *q)
1773 {
1774 	struct blk_mq_hw_ctx *hctx;
1775 	int i;
1776 
1777 	queue_for_each_hw_ctx(q, hctx, i)
1778 		blk_mq_stop_hw_queue(hctx);
1779 }
1780 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1781 
blk_mq_start_hw_queue(struct blk_mq_hw_ctx * hctx)1782 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1783 {
1784 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1785 
1786 	blk_mq_run_hw_queue(hctx, false);
1787 }
1788 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1789 
blk_mq_start_hw_queues(struct request_queue * q)1790 void blk_mq_start_hw_queues(struct request_queue *q)
1791 {
1792 	struct blk_mq_hw_ctx *hctx;
1793 	int i;
1794 
1795 	queue_for_each_hw_ctx(q, hctx, i)
1796 		blk_mq_start_hw_queue(hctx);
1797 }
1798 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1799 
blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx * hctx,bool async)1800 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1801 {
1802 	if (!blk_mq_hctx_stopped(hctx))
1803 		return;
1804 
1805 	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1806 	blk_mq_run_hw_queue(hctx, async);
1807 }
1808 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1809 
blk_mq_start_stopped_hw_queues(struct request_queue * q,bool async)1810 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1811 {
1812 	struct blk_mq_hw_ctx *hctx;
1813 	int i;
1814 
1815 	queue_for_each_hw_ctx(q, hctx, i)
1816 		blk_mq_start_stopped_hw_queue(hctx, async);
1817 }
1818 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1819 
blk_mq_run_work_fn(struct work_struct * work)1820 static void blk_mq_run_work_fn(struct work_struct *work)
1821 {
1822 	struct blk_mq_hw_ctx *hctx;
1823 
1824 	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1825 
1826 	/*
1827 	 * If we are stopped, don't run the queue.
1828 	 */
1829 	if (blk_mq_hctx_stopped(hctx))
1830 		return;
1831 
1832 	__blk_mq_run_hw_queue(hctx);
1833 }
1834 
__blk_mq_insert_req_list(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1835 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1836 					    struct request *rq,
1837 					    bool at_head)
1838 {
1839 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1840 	enum hctx_type type = hctx->type;
1841 
1842 	lockdep_assert_held(&ctx->lock);
1843 
1844 	trace_block_rq_insert(rq);
1845 
1846 	if (at_head)
1847 		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1848 	else
1849 		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1850 }
1851 
__blk_mq_insert_request(struct blk_mq_hw_ctx * hctx,struct request * rq,bool at_head)1852 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1853 			     bool at_head)
1854 {
1855 	struct blk_mq_ctx *ctx = rq->mq_ctx;
1856 
1857 	lockdep_assert_held(&ctx->lock);
1858 
1859 	__blk_mq_insert_req_list(hctx, rq, at_head);
1860 	blk_mq_hctx_mark_pending(hctx, ctx);
1861 }
1862 
1863 /**
1864  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1865  * @rq: Pointer to request to be inserted.
1866  * @at_head: true if the request should be inserted at the head of the list.
1867  * @run_queue: If we should run the hardware queue after inserting the request.
1868  *
1869  * Should only be used carefully, when the caller knows we want to
1870  * bypass a potential IO scheduler on the target device.
1871  */
blk_mq_request_bypass_insert(struct request * rq,bool at_head,bool run_queue)1872 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1873 				  bool run_queue)
1874 {
1875 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1876 
1877 	spin_lock(&hctx->lock);
1878 	if (at_head)
1879 		list_add(&rq->queuelist, &hctx->dispatch);
1880 	else
1881 		list_add_tail(&rq->queuelist, &hctx->dispatch);
1882 	spin_unlock(&hctx->lock);
1883 
1884 	if (run_queue)
1885 		blk_mq_run_hw_queue(hctx, false);
1886 }
1887 
blk_mq_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list)1888 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1889 			    struct list_head *list)
1890 
1891 {
1892 	struct request *rq;
1893 	enum hctx_type type = hctx->type;
1894 
1895 	/*
1896 	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1897 	 * offline now
1898 	 */
1899 	list_for_each_entry(rq, list, queuelist) {
1900 		BUG_ON(rq->mq_ctx != ctx);
1901 		trace_block_rq_insert(rq);
1902 	}
1903 
1904 	spin_lock(&ctx->lock);
1905 	list_splice_tail_init(list, &ctx->rq_lists[type]);
1906 	blk_mq_hctx_mark_pending(hctx, ctx);
1907 	spin_unlock(&ctx->lock);
1908 }
1909 
plug_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)1910 static int plug_rq_cmp(void *priv, const struct list_head *a,
1911 		       const struct list_head *b)
1912 {
1913 	struct request *rqa = container_of(a, struct request, queuelist);
1914 	struct request *rqb = container_of(b, struct request, queuelist);
1915 
1916 	if (rqa->mq_ctx != rqb->mq_ctx)
1917 		return rqa->mq_ctx > rqb->mq_ctx;
1918 	if (rqa->mq_hctx != rqb->mq_hctx)
1919 		return rqa->mq_hctx > rqb->mq_hctx;
1920 
1921 	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1922 }
1923 
blk_mq_flush_plug_list(struct blk_plug * plug,bool from_schedule)1924 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1925 {
1926 	LIST_HEAD(list);
1927 
1928 	if (list_empty(&plug->mq_list))
1929 		return;
1930 	list_splice_init(&plug->mq_list, &list);
1931 
1932 	if (plug->rq_count > 2 && plug->multiple_queues)
1933 		list_sort(NULL, &list, plug_rq_cmp);
1934 
1935 	plug->rq_count = 0;
1936 
1937 	do {
1938 		struct list_head rq_list;
1939 		struct request *rq, *head_rq = list_entry_rq(list.next);
1940 		struct list_head *pos = &head_rq->queuelist; /* skip first */
1941 		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1942 		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1943 		unsigned int depth = 1;
1944 
1945 		list_for_each_continue(pos, &list) {
1946 			rq = list_entry_rq(pos);
1947 			BUG_ON(!rq->q);
1948 			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1949 				break;
1950 			depth++;
1951 		}
1952 
1953 		list_cut_before(&rq_list, &list, pos);
1954 		trace_block_unplug(head_rq->q, depth, !from_schedule);
1955 		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1956 						from_schedule);
1957 	} while(!list_empty(&list));
1958 }
1959 
blk_mq_bio_to_request(struct request * rq,struct bio * bio,unsigned int nr_segs)1960 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1961 		unsigned int nr_segs)
1962 {
1963 	int err;
1964 
1965 	if (bio->bi_opf & REQ_RAHEAD)
1966 		rq->cmd_flags |= REQ_FAILFAST_MASK;
1967 
1968 	rq->__sector = bio->bi_iter.bi_sector;
1969 	rq->write_hint = bio->bi_write_hint;
1970 	blk_rq_bio_prep(rq, bio, nr_segs);
1971 
1972 	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
1973 	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
1974 	WARN_ON_ONCE(err);
1975 
1976 	blk_account_io_start(rq);
1977 }
1978 
__blk_mq_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool last)1979 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1980 					    struct request *rq,
1981 					    blk_qc_t *cookie, bool last)
1982 {
1983 	struct request_queue *q = rq->q;
1984 	struct blk_mq_queue_data bd = {
1985 		.rq = rq,
1986 		.last = last,
1987 	};
1988 	blk_qc_t new_cookie;
1989 	blk_status_t ret;
1990 
1991 	new_cookie = request_to_qc_t(hctx, rq);
1992 
1993 	/*
1994 	 * For OK queue, we are done. For error, caller may kill it.
1995 	 * Any other error (busy), just add it to our list as we
1996 	 * previously would have done.
1997 	 */
1998 	ret = q->mq_ops->queue_rq(hctx, &bd);
1999 	switch (ret) {
2000 	case BLK_STS_OK:
2001 		blk_mq_update_dispatch_busy(hctx, false);
2002 		*cookie = new_cookie;
2003 		break;
2004 	case BLK_STS_RESOURCE:
2005 	case BLK_STS_DEV_RESOURCE:
2006 		blk_mq_update_dispatch_busy(hctx, true);
2007 		__blk_mq_requeue_request(rq);
2008 		break;
2009 	default:
2010 		blk_mq_update_dispatch_busy(hctx, false);
2011 		*cookie = BLK_QC_T_NONE;
2012 		break;
2013 	}
2014 
2015 	return ret;
2016 }
2017 
__blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie,bool bypass_insert,bool last)2018 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2019 						struct request *rq,
2020 						blk_qc_t *cookie,
2021 						bool bypass_insert, bool last)
2022 {
2023 	struct request_queue *q = rq->q;
2024 	bool run_queue = true;
2025 
2026 	/*
2027 	 * RCU or SRCU read lock is needed before checking quiesced flag.
2028 	 *
2029 	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2030 	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2031 	 * and avoid driver to try to dispatch again.
2032 	 */
2033 	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2034 		run_queue = false;
2035 		bypass_insert = false;
2036 		goto insert;
2037 	}
2038 
2039 	if (q->elevator && !bypass_insert)
2040 		goto insert;
2041 
2042 	if (!blk_mq_get_dispatch_budget(q))
2043 		goto insert;
2044 
2045 	if (!blk_mq_get_driver_tag(rq)) {
2046 		blk_mq_put_dispatch_budget(q);
2047 		goto insert;
2048 	}
2049 
2050 	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2051 insert:
2052 	if (bypass_insert)
2053 		return BLK_STS_RESOURCE;
2054 
2055 	blk_mq_sched_insert_request(rq, false, run_queue, false);
2056 
2057 	return BLK_STS_OK;
2058 }
2059 
2060 /**
2061  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2062  * @hctx: Pointer of the associated hardware queue.
2063  * @rq: Pointer to request to be sent.
2064  * @cookie: Request queue cookie.
2065  *
2066  * If the device has enough resources to accept a new request now, send the
2067  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2068  * we can try send it another time in the future. Requests inserted at this
2069  * queue have higher priority.
2070  */
blk_mq_try_issue_directly(struct blk_mq_hw_ctx * hctx,struct request * rq,blk_qc_t * cookie)2071 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2072 		struct request *rq, blk_qc_t *cookie)
2073 {
2074 	blk_status_t ret;
2075 	int srcu_idx;
2076 
2077 	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2078 
2079 	hctx_lock(hctx, &srcu_idx);
2080 
2081 	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2082 	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2083 		blk_mq_request_bypass_insert(rq, false, true);
2084 	else if (ret != BLK_STS_OK)
2085 		blk_mq_end_request(rq, ret);
2086 
2087 	hctx_unlock(hctx, srcu_idx);
2088 }
2089 
blk_mq_request_issue_directly(struct request * rq,bool last)2090 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2091 {
2092 	blk_status_t ret;
2093 	int srcu_idx;
2094 	blk_qc_t unused_cookie;
2095 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2096 
2097 	hctx_lock(hctx, &srcu_idx);
2098 	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2099 	hctx_unlock(hctx, srcu_idx);
2100 
2101 	return ret;
2102 }
2103 
blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx * hctx,struct list_head * list)2104 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2105 		struct list_head *list)
2106 {
2107 	int queued = 0;
2108 	int errors = 0;
2109 
2110 	while (!list_empty(list)) {
2111 		blk_status_t ret;
2112 		struct request *rq = list_first_entry(list, struct request,
2113 				queuelist);
2114 
2115 		list_del_init(&rq->queuelist);
2116 		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2117 		if (ret != BLK_STS_OK) {
2118 			errors++;
2119 			if (ret == BLK_STS_RESOURCE ||
2120 					ret == BLK_STS_DEV_RESOURCE) {
2121 				blk_mq_request_bypass_insert(rq, false,
2122 							list_empty(list));
2123 				break;
2124 			}
2125 			blk_mq_end_request(rq, ret);
2126 		} else
2127 			queued++;
2128 	}
2129 
2130 	/*
2131 	 * If we didn't flush the entire list, we could have told
2132 	 * the driver there was more coming, but that turned out to
2133 	 * be a lie.
2134 	 */
2135 	if ((!list_empty(list) || errors) &&
2136 	     hctx->queue->mq_ops->commit_rqs && queued)
2137 		hctx->queue->mq_ops->commit_rqs(hctx);
2138 }
2139 
blk_add_rq_to_plug(struct blk_plug * plug,struct request * rq)2140 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2141 {
2142 	list_add_tail(&rq->queuelist, &plug->mq_list);
2143 	plug->rq_count++;
2144 	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2145 		struct request *tmp;
2146 
2147 		tmp = list_first_entry(&plug->mq_list, struct request,
2148 						queuelist);
2149 		if (tmp->q != rq->q)
2150 			plug->multiple_queues = true;
2151 	}
2152 }
2153 
2154 /*
2155  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
2156  * queues. This is important for md arrays to benefit from merging
2157  * requests.
2158  */
blk_plug_max_rq_count(struct blk_plug * plug)2159 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
2160 {
2161 	if (plug->multiple_queues)
2162 		return BLK_MAX_REQUEST_COUNT * 2;
2163 	return BLK_MAX_REQUEST_COUNT;
2164 }
2165 
2166 /**
2167  * blk_mq_submit_bio - Create and send a request to block device.
2168  * @bio: Bio pointer.
2169  *
2170  * Builds up a request structure from @q and @bio and send to the device. The
2171  * request may not be queued directly to hardware if:
2172  * * This request can be merged with another one
2173  * * We want to place request at plug queue for possible future merging
2174  * * There is an IO scheduler active at this queue
2175  *
2176  * It will not queue the request if there is an error with the bio, or at the
2177  * request creation.
2178  *
2179  * Returns: Request queue cookie.
2180  */
blk_mq_submit_bio(struct bio * bio)2181 blk_qc_t blk_mq_submit_bio(struct bio *bio)
2182 {
2183 	struct request_queue *q = bio->bi_disk->queue;
2184 	const int is_sync = op_is_sync(bio->bi_opf);
2185 	const int is_flush_fua = op_is_flush(bio->bi_opf);
2186 	struct blk_mq_alloc_data data = {
2187 		.q		= q,
2188 	};
2189 	struct request *rq;
2190 	struct blk_plug *plug;
2191 	struct request *same_queue_rq = NULL;
2192 	unsigned int nr_segs;
2193 	blk_qc_t cookie;
2194 	blk_status_t ret;
2195 
2196 	blk_queue_bounce(q, &bio);
2197 	__blk_queue_split(&bio, &nr_segs);
2198 
2199 	if (!bio_integrity_prep(bio))
2200 		goto queue_exit;
2201 
2202 	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2203 	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2204 		goto queue_exit;
2205 
2206 	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2207 		goto queue_exit;
2208 
2209 	rq_qos_throttle(q, bio);
2210 
2211 	data.cmd_flags = bio->bi_opf;
2212 	rq = __blk_mq_alloc_request(&data);
2213 	if (unlikely(!rq)) {
2214 		rq_qos_cleanup(q, bio);
2215 		if (bio->bi_opf & REQ_NOWAIT)
2216 			bio_wouldblock_error(bio);
2217 		goto queue_exit;
2218 	}
2219 
2220 	trace_block_getrq(q, bio, bio->bi_opf);
2221 
2222 	rq_qos_track(q, rq, bio);
2223 
2224 	cookie = request_to_qc_t(data.hctx, rq);
2225 
2226 	blk_mq_bio_to_request(rq, bio, nr_segs);
2227 
2228 	ret = blk_crypto_rq_get_keyslot(rq);
2229 	if (ret != BLK_STS_OK) {
2230 		bio->bi_status = ret;
2231 		bio_endio(bio);
2232 		blk_mq_free_request(rq);
2233 		return BLK_QC_T_NONE;
2234 	}
2235 
2236 	plug = blk_mq_plug(q, bio);
2237 	if (unlikely(is_flush_fua)) {
2238 		/* Bypass scheduler for flush requests */
2239 		blk_insert_flush(rq);
2240 		blk_mq_run_hw_queue(data.hctx, true);
2241 	} else if (plug && (q->nr_hw_queues == 1 ||
2242 		   blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) ||
2243 		   q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) {
2244 		/*
2245 		 * Use plugging if we have a ->commit_rqs() hook as well, as
2246 		 * we know the driver uses bd->last in a smart fashion.
2247 		 *
2248 		 * Use normal plugging if this disk is slow HDD, as sequential
2249 		 * IO may benefit a lot from plug merging.
2250 		 */
2251 		unsigned int request_count = plug->rq_count;
2252 		struct request *last = NULL;
2253 
2254 		if (!request_count)
2255 			trace_block_plug(q);
2256 		else
2257 			last = list_entry_rq(plug->mq_list.prev);
2258 
2259 		if (request_count >= blk_plug_max_rq_count(plug) || (last &&
2260 		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2261 			blk_flush_plug_list(plug, false);
2262 			trace_block_plug(q);
2263 		}
2264 
2265 		blk_add_rq_to_plug(plug, rq);
2266 	} else if (q->elevator) {
2267 		/* Insert the request at the IO scheduler queue */
2268 		blk_mq_sched_insert_request(rq, false, true, true);
2269 	} else if (plug && !blk_queue_nomerges(q)) {
2270 		/*
2271 		 * We do limited plugging. If the bio can be merged, do that.
2272 		 * Otherwise the existing request in the plug list will be
2273 		 * issued. So the plug list will have one request at most
2274 		 * The plug list might get flushed before this. If that happens,
2275 		 * the plug list is empty, and same_queue_rq is invalid.
2276 		 */
2277 		if (list_empty(&plug->mq_list))
2278 			same_queue_rq = NULL;
2279 		if (same_queue_rq) {
2280 			list_del_init(&same_queue_rq->queuelist);
2281 			plug->rq_count--;
2282 		}
2283 		blk_add_rq_to_plug(plug, rq);
2284 		trace_block_plug(q);
2285 
2286 		if (same_queue_rq) {
2287 			data.hctx = same_queue_rq->mq_hctx;
2288 			trace_block_unplug(q, 1, true);
2289 			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2290 					&cookie);
2291 		}
2292 	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2293 			!data.hctx->dispatch_busy) {
2294 		/*
2295 		 * There is no scheduler and we can try to send directly
2296 		 * to the hardware.
2297 		 */
2298 		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2299 	} else {
2300 		/* Default case. */
2301 		blk_mq_sched_insert_request(rq, false, true, true);
2302 	}
2303 
2304 	return cookie;
2305 queue_exit:
2306 	blk_queue_exit(q);
2307 	return BLK_QC_T_NONE;
2308 }
2309 
order_to_size(unsigned int order)2310 static size_t order_to_size(unsigned int order)
2311 {
2312 	return (size_t)PAGE_SIZE << order;
2313 }
2314 
2315 /* called before freeing request pool in @tags */
blk_mq_clear_rq_mapping(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2316 static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set,
2317 		struct blk_mq_tags *tags, unsigned int hctx_idx)
2318 {
2319 	struct blk_mq_tags *drv_tags = set->tags[hctx_idx];
2320 	struct page *page;
2321 	unsigned long flags;
2322 
2323 	list_for_each_entry(page, &tags->page_list, lru) {
2324 		unsigned long start = (unsigned long)page_address(page);
2325 		unsigned long end = start + order_to_size(page->private);
2326 		int i;
2327 
2328 		for (i = 0; i < set->queue_depth; i++) {
2329 			struct request *rq = drv_tags->rqs[i];
2330 			unsigned long rq_addr = (unsigned long)rq;
2331 
2332 			if (rq_addr >= start && rq_addr < end) {
2333 				WARN_ON_ONCE(refcount_read(&rq->ref) != 0);
2334 				cmpxchg(&drv_tags->rqs[i], rq, NULL);
2335 			}
2336 		}
2337 	}
2338 
2339 	/*
2340 	 * Wait until all pending iteration is done.
2341 	 *
2342 	 * Request reference is cleared and it is guaranteed to be observed
2343 	 * after the ->lock is released.
2344 	 */
2345 	spin_lock_irqsave(&drv_tags->lock, flags);
2346 	spin_unlock_irqrestore(&drv_tags->lock, flags);
2347 }
2348 
blk_mq_free_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx)2349 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2350 		     unsigned int hctx_idx)
2351 {
2352 	struct page *page;
2353 
2354 	if (tags->rqs && set->ops->exit_request) {
2355 		int i;
2356 
2357 		for (i = 0; i < tags->nr_tags; i++) {
2358 			struct request *rq = tags->static_rqs[i];
2359 
2360 			if (!rq)
2361 				continue;
2362 			set->ops->exit_request(set, rq, hctx_idx);
2363 			tags->static_rqs[i] = NULL;
2364 		}
2365 	}
2366 
2367 	blk_mq_clear_rq_mapping(set, tags, hctx_idx);
2368 
2369 	while (!list_empty(&tags->page_list)) {
2370 		page = list_first_entry(&tags->page_list, struct page, lru);
2371 		list_del_init(&page->lru);
2372 		/*
2373 		 * Remove kmemleak object previously allocated in
2374 		 * blk_mq_alloc_rqs().
2375 		 */
2376 		kmemleak_free(page_address(page));
2377 		__free_pages(page, page->private);
2378 	}
2379 }
2380 
blk_mq_free_rq_map(struct blk_mq_tags * tags,unsigned int flags)2381 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags)
2382 {
2383 	kfree(tags->rqs);
2384 	tags->rqs = NULL;
2385 	kfree(tags->static_rqs);
2386 	tags->static_rqs = NULL;
2387 
2388 	blk_mq_free_tags(tags, flags);
2389 }
2390 
blk_mq_alloc_rq_map(struct blk_mq_tag_set * set,unsigned int hctx_idx,unsigned int nr_tags,unsigned int reserved_tags,unsigned int flags)2391 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2392 					unsigned int hctx_idx,
2393 					unsigned int nr_tags,
2394 					unsigned int reserved_tags,
2395 					unsigned int flags)
2396 {
2397 	struct blk_mq_tags *tags;
2398 	int node;
2399 
2400 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2401 	if (node == NUMA_NO_NODE)
2402 		node = set->numa_node;
2403 
2404 	tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags);
2405 	if (!tags)
2406 		return NULL;
2407 
2408 	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2409 				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2410 				 node);
2411 	if (!tags->rqs) {
2412 		blk_mq_free_tags(tags, flags);
2413 		return NULL;
2414 	}
2415 
2416 	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2417 					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2418 					node);
2419 	if (!tags->static_rqs) {
2420 		kfree(tags->rqs);
2421 		blk_mq_free_tags(tags, flags);
2422 		return NULL;
2423 	}
2424 
2425 	return tags;
2426 }
2427 
blk_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,int node)2428 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2429 			       unsigned int hctx_idx, int node)
2430 {
2431 	int ret;
2432 
2433 	if (set->ops->init_request) {
2434 		ret = set->ops->init_request(set, rq, hctx_idx, node);
2435 		if (ret)
2436 			return ret;
2437 	}
2438 
2439 	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2440 	return 0;
2441 }
2442 
blk_mq_alloc_rqs(struct blk_mq_tag_set * set,struct blk_mq_tags * tags,unsigned int hctx_idx,unsigned int depth)2443 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2444 		     unsigned int hctx_idx, unsigned int depth)
2445 {
2446 	unsigned int i, j, entries_per_page, max_order = 4;
2447 	size_t rq_size, left;
2448 	int node;
2449 
2450 	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2451 	if (node == NUMA_NO_NODE)
2452 		node = set->numa_node;
2453 
2454 	INIT_LIST_HEAD(&tags->page_list);
2455 
2456 	/*
2457 	 * rq_size is the size of the request plus driver payload, rounded
2458 	 * to the cacheline size
2459 	 */
2460 	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2461 				cache_line_size());
2462 	left = rq_size * depth;
2463 
2464 	for (i = 0; i < depth; ) {
2465 		int this_order = max_order;
2466 		struct page *page;
2467 		int to_do;
2468 		void *p;
2469 
2470 		while (this_order && left < order_to_size(this_order - 1))
2471 			this_order--;
2472 
2473 		do {
2474 			page = alloc_pages_node(node,
2475 				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2476 				this_order);
2477 			if (page)
2478 				break;
2479 			if (!this_order--)
2480 				break;
2481 			if (order_to_size(this_order) < rq_size)
2482 				break;
2483 		} while (1);
2484 
2485 		if (!page)
2486 			goto fail;
2487 
2488 		page->private = this_order;
2489 		list_add_tail(&page->lru, &tags->page_list);
2490 
2491 		p = page_address(page);
2492 		/*
2493 		 * Allow kmemleak to scan these pages as they contain pointers
2494 		 * to additional allocations like via ops->init_request().
2495 		 */
2496 		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2497 		entries_per_page = order_to_size(this_order) / rq_size;
2498 		to_do = min(entries_per_page, depth - i);
2499 		left -= to_do * rq_size;
2500 		for (j = 0; j < to_do; j++) {
2501 			struct request *rq = p;
2502 
2503 			tags->static_rqs[i] = rq;
2504 			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2505 				tags->static_rqs[i] = NULL;
2506 				goto fail;
2507 			}
2508 
2509 			p += rq_size;
2510 			i++;
2511 		}
2512 	}
2513 	return 0;
2514 
2515 fail:
2516 	blk_mq_free_rqs(set, tags, hctx_idx);
2517 	return -ENOMEM;
2518 }
2519 
2520 struct rq_iter_data {
2521 	struct blk_mq_hw_ctx *hctx;
2522 	bool has_rq;
2523 };
2524 
blk_mq_has_request(struct request * rq,void * data,bool reserved)2525 static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2526 {
2527 	struct rq_iter_data *iter_data = data;
2528 
2529 	if (rq->mq_hctx != iter_data->hctx)
2530 		return true;
2531 	iter_data->has_rq = true;
2532 	return false;
2533 }
2534 
blk_mq_hctx_has_requests(struct blk_mq_hw_ctx * hctx)2535 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2536 {
2537 	struct blk_mq_tags *tags = hctx->sched_tags ?
2538 			hctx->sched_tags : hctx->tags;
2539 	struct rq_iter_data data = {
2540 		.hctx	= hctx,
2541 	};
2542 
2543 	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2544 	return data.has_rq;
2545 }
2546 
blk_mq_last_cpu_in_hctx(unsigned int cpu,struct blk_mq_hw_ctx * hctx)2547 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2548 		struct blk_mq_hw_ctx *hctx)
2549 {
2550 	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2551 		return false;
2552 	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2553 		return false;
2554 	return true;
2555 }
2556 
blk_mq_hctx_notify_offline(unsigned int cpu,struct hlist_node * node)2557 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2558 {
2559 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2560 			struct blk_mq_hw_ctx, cpuhp_online);
2561 
2562 	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2563 	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2564 		return 0;
2565 
2566 	/*
2567 	 * Prevent new request from being allocated on the current hctx.
2568 	 *
2569 	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2570 	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2571 	 * seen once we return from the tag allocator.
2572 	 */
2573 	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2574 	smp_mb__after_atomic();
2575 
2576 	/*
2577 	 * Try to grab a reference to the queue and wait for any outstanding
2578 	 * requests.  If we could not grab a reference the queue has been
2579 	 * frozen and there are no requests.
2580 	 */
2581 	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2582 		while (blk_mq_hctx_has_requests(hctx))
2583 			msleep(5);
2584 		percpu_ref_put(&hctx->queue->q_usage_counter);
2585 	}
2586 
2587 	return 0;
2588 }
2589 
blk_mq_hctx_notify_online(unsigned int cpu,struct hlist_node * node)2590 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2591 {
2592 	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2593 			struct blk_mq_hw_ctx, cpuhp_online);
2594 
2595 	if (cpumask_test_cpu(cpu, hctx->cpumask))
2596 		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2597 	return 0;
2598 }
2599 
2600 /*
2601  * 'cpu' is going away. splice any existing rq_list entries from this
2602  * software queue to the hw queue dispatch list, and ensure that it
2603  * gets run.
2604  */
blk_mq_hctx_notify_dead(unsigned int cpu,struct hlist_node * node)2605 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2606 {
2607 	struct blk_mq_hw_ctx *hctx;
2608 	struct blk_mq_ctx *ctx;
2609 	LIST_HEAD(tmp);
2610 	enum hctx_type type;
2611 
2612 	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2613 	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2614 		return 0;
2615 
2616 	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2617 	type = hctx->type;
2618 
2619 	spin_lock(&ctx->lock);
2620 	if (!list_empty(&ctx->rq_lists[type])) {
2621 		list_splice_init(&ctx->rq_lists[type], &tmp);
2622 		blk_mq_hctx_clear_pending(hctx, ctx);
2623 	}
2624 	spin_unlock(&ctx->lock);
2625 
2626 	if (list_empty(&tmp))
2627 		return 0;
2628 
2629 	spin_lock(&hctx->lock);
2630 	list_splice_tail_init(&tmp, &hctx->dispatch);
2631 	spin_unlock(&hctx->lock);
2632 
2633 	blk_mq_run_hw_queue(hctx, true);
2634 	return 0;
2635 }
2636 
blk_mq_remove_cpuhp(struct blk_mq_hw_ctx * hctx)2637 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2638 {
2639 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2640 		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2641 						    &hctx->cpuhp_online);
2642 	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2643 					    &hctx->cpuhp_dead);
2644 }
2645 
2646 /*
2647  * Before freeing hw queue, clearing the flush request reference in
2648  * tags->rqs[] for avoiding potential UAF.
2649  */
blk_mq_clear_flush_rq_mapping(struct blk_mq_tags * tags,unsigned int queue_depth,struct request * flush_rq)2650 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
2651 		unsigned int queue_depth, struct request *flush_rq)
2652 {
2653 	int i;
2654 	unsigned long flags;
2655 
2656 	/* The hw queue may not be mapped yet */
2657 	if (!tags)
2658 		return;
2659 
2660 	WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0);
2661 
2662 	for (i = 0; i < queue_depth; i++)
2663 		cmpxchg(&tags->rqs[i], flush_rq, NULL);
2664 
2665 	/*
2666 	 * Wait until all pending iteration is done.
2667 	 *
2668 	 * Request reference is cleared and it is guaranteed to be observed
2669 	 * after the ->lock is released.
2670 	 */
2671 	spin_lock_irqsave(&tags->lock, flags);
2672 	spin_unlock_irqrestore(&tags->lock, flags);
2673 }
2674 
2675 /* hctx->ctxs will be freed in queue's release handler */
blk_mq_exit_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)2676 static void blk_mq_exit_hctx(struct request_queue *q,
2677 		struct blk_mq_tag_set *set,
2678 		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2679 {
2680 	struct request *flush_rq = hctx->fq->flush_rq;
2681 
2682 	if (blk_mq_hw_queue_mapped(hctx))
2683 		blk_mq_tag_idle(hctx);
2684 
2685 	blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
2686 			set->queue_depth, flush_rq);
2687 	if (set->ops->exit_request)
2688 		set->ops->exit_request(set, flush_rq, hctx_idx);
2689 
2690 	if (set->ops->exit_hctx)
2691 		set->ops->exit_hctx(hctx, hctx_idx);
2692 
2693 	blk_mq_remove_cpuhp(hctx);
2694 
2695 	spin_lock(&q->unused_hctx_lock);
2696 	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2697 	spin_unlock(&q->unused_hctx_lock);
2698 }
2699 
blk_mq_exit_hw_queues(struct request_queue * q,struct blk_mq_tag_set * set,int nr_queue)2700 static void blk_mq_exit_hw_queues(struct request_queue *q,
2701 		struct blk_mq_tag_set *set, int nr_queue)
2702 {
2703 	struct blk_mq_hw_ctx *hctx;
2704 	unsigned int i;
2705 
2706 	queue_for_each_hw_ctx(q, hctx, i) {
2707 		if (i == nr_queue)
2708 			break;
2709 		blk_mq_debugfs_unregister_hctx(hctx);
2710 		blk_mq_exit_hctx(q, set, hctx, i);
2711 	}
2712 }
2713 
blk_mq_hw_ctx_size(struct blk_mq_tag_set * tag_set)2714 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2715 {
2716 	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2717 
2718 	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2719 			   __alignof__(struct blk_mq_hw_ctx)) !=
2720 		     sizeof(struct blk_mq_hw_ctx));
2721 
2722 	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2723 		hw_ctx_size += sizeof(struct srcu_struct);
2724 
2725 	return hw_ctx_size;
2726 }
2727 
blk_mq_init_hctx(struct request_queue * q,struct blk_mq_tag_set * set,struct blk_mq_hw_ctx * hctx,unsigned hctx_idx)2728 static int blk_mq_init_hctx(struct request_queue *q,
2729 		struct blk_mq_tag_set *set,
2730 		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2731 {
2732 	hctx->queue_num = hctx_idx;
2733 
2734 	if (!(hctx->flags & BLK_MQ_F_STACKING))
2735 		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2736 				&hctx->cpuhp_online);
2737 	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2738 
2739 	hctx->tags = set->tags[hctx_idx];
2740 
2741 	if (set->ops->init_hctx &&
2742 	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2743 		goto unregister_cpu_notifier;
2744 
2745 	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2746 				hctx->numa_node))
2747 		goto exit_hctx;
2748 	return 0;
2749 
2750  exit_hctx:
2751 	if (set->ops->exit_hctx)
2752 		set->ops->exit_hctx(hctx, hctx_idx);
2753  unregister_cpu_notifier:
2754 	blk_mq_remove_cpuhp(hctx);
2755 	return -1;
2756 }
2757 
2758 static struct blk_mq_hw_ctx *
blk_mq_alloc_hctx(struct request_queue * q,struct blk_mq_tag_set * set,int node)2759 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2760 		int node)
2761 {
2762 	struct blk_mq_hw_ctx *hctx;
2763 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2764 
2765 	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2766 	if (!hctx)
2767 		goto fail_alloc_hctx;
2768 
2769 	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2770 		goto free_hctx;
2771 
2772 	atomic_set(&hctx->nr_active, 0);
2773 	atomic_set(&hctx->elevator_queued, 0);
2774 	if (node == NUMA_NO_NODE)
2775 		node = set->numa_node;
2776 	hctx->numa_node = node;
2777 
2778 	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2779 	spin_lock_init(&hctx->lock);
2780 	INIT_LIST_HEAD(&hctx->dispatch);
2781 	hctx->queue = q;
2782 	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
2783 
2784 	INIT_LIST_HEAD(&hctx->hctx_list);
2785 
2786 	/*
2787 	 * Allocate space for all possible cpus to avoid allocation at
2788 	 * runtime
2789 	 */
2790 	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2791 			gfp, node);
2792 	if (!hctx->ctxs)
2793 		goto free_cpumask;
2794 
2795 	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2796 				gfp, node))
2797 		goto free_ctxs;
2798 	hctx->nr_ctx = 0;
2799 
2800 	spin_lock_init(&hctx->dispatch_wait_lock);
2801 	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2802 	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2803 
2804 	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2805 	if (!hctx->fq)
2806 		goto free_bitmap;
2807 
2808 	if (hctx->flags & BLK_MQ_F_BLOCKING)
2809 		init_srcu_struct(hctx->srcu);
2810 	blk_mq_hctx_kobj_init(hctx);
2811 
2812 	return hctx;
2813 
2814  free_bitmap:
2815 	sbitmap_free(&hctx->ctx_map);
2816  free_ctxs:
2817 	kfree(hctx->ctxs);
2818  free_cpumask:
2819 	free_cpumask_var(hctx->cpumask);
2820  free_hctx:
2821 	kfree(hctx);
2822  fail_alloc_hctx:
2823 	return NULL;
2824 }
2825 
blk_mq_init_cpu_queues(struct request_queue * q,unsigned int nr_hw_queues)2826 static void blk_mq_init_cpu_queues(struct request_queue *q,
2827 				   unsigned int nr_hw_queues)
2828 {
2829 	struct blk_mq_tag_set *set = q->tag_set;
2830 	unsigned int i, j;
2831 
2832 	for_each_possible_cpu(i) {
2833 		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2834 		struct blk_mq_hw_ctx *hctx;
2835 		int k;
2836 
2837 		__ctx->cpu = i;
2838 		spin_lock_init(&__ctx->lock);
2839 		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2840 			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2841 
2842 		__ctx->queue = q;
2843 
2844 		/*
2845 		 * Set local node, IFF we have more than one hw queue. If
2846 		 * not, we remain on the home node of the device
2847 		 */
2848 		for (j = 0; j < set->nr_maps; j++) {
2849 			hctx = blk_mq_map_queue_type(q, j, i);
2850 			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2851 				hctx->numa_node = cpu_to_node(i);
2852 		}
2853 	}
2854 }
2855 
__blk_mq_alloc_map_and_request(struct blk_mq_tag_set * set,int hctx_idx)2856 static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2857 					int hctx_idx)
2858 {
2859 	unsigned int flags = set->flags;
2860 	int ret = 0;
2861 
2862 	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2863 					set->queue_depth, set->reserved_tags, flags);
2864 	if (!set->tags[hctx_idx])
2865 		return false;
2866 
2867 	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2868 				set->queue_depth);
2869 	if (!ret)
2870 		return true;
2871 
2872 	blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2873 	set->tags[hctx_idx] = NULL;
2874 	return false;
2875 }
2876 
blk_mq_free_map_and_requests(struct blk_mq_tag_set * set,unsigned int hctx_idx)2877 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2878 					 unsigned int hctx_idx)
2879 {
2880 	unsigned int flags = set->flags;
2881 
2882 	if (set->tags && set->tags[hctx_idx]) {
2883 		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2884 		blk_mq_free_rq_map(set->tags[hctx_idx], flags);
2885 		set->tags[hctx_idx] = NULL;
2886 	}
2887 }
2888 
blk_mq_map_swqueue(struct request_queue * q)2889 static void blk_mq_map_swqueue(struct request_queue *q)
2890 {
2891 	unsigned int i, j, hctx_idx;
2892 	struct blk_mq_hw_ctx *hctx;
2893 	struct blk_mq_ctx *ctx;
2894 	struct blk_mq_tag_set *set = q->tag_set;
2895 
2896 	queue_for_each_hw_ctx(q, hctx, i) {
2897 		cpumask_clear(hctx->cpumask);
2898 		hctx->nr_ctx = 0;
2899 		hctx->dispatch_from = NULL;
2900 	}
2901 
2902 	/*
2903 	 * Map software to hardware queues.
2904 	 *
2905 	 * If the cpu isn't present, the cpu is mapped to first hctx.
2906 	 */
2907 	for_each_possible_cpu(i) {
2908 
2909 		ctx = per_cpu_ptr(q->queue_ctx, i);
2910 		for (j = 0; j < set->nr_maps; j++) {
2911 			if (!set->map[j].nr_queues) {
2912 				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2913 						HCTX_TYPE_DEFAULT, i);
2914 				continue;
2915 			}
2916 			hctx_idx = set->map[j].mq_map[i];
2917 			/* unmapped hw queue can be remapped after CPU topo changed */
2918 			if (!set->tags[hctx_idx] &&
2919 			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2920 				/*
2921 				 * If tags initialization fail for some hctx,
2922 				 * that hctx won't be brought online.  In this
2923 				 * case, remap the current ctx to hctx[0] which
2924 				 * is guaranteed to always have tags allocated
2925 				 */
2926 				set->map[j].mq_map[i] = 0;
2927 			}
2928 
2929 			hctx = blk_mq_map_queue_type(q, j, i);
2930 			ctx->hctxs[j] = hctx;
2931 			/*
2932 			 * If the CPU is already set in the mask, then we've
2933 			 * mapped this one already. This can happen if
2934 			 * devices share queues across queue maps.
2935 			 */
2936 			if (cpumask_test_cpu(i, hctx->cpumask))
2937 				continue;
2938 
2939 			cpumask_set_cpu(i, hctx->cpumask);
2940 			hctx->type = j;
2941 			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2942 			hctx->ctxs[hctx->nr_ctx++] = ctx;
2943 
2944 			/*
2945 			 * If the nr_ctx type overflows, we have exceeded the
2946 			 * amount of sw queues we can support.
2947 			 */
2948 			BUG_ON(!hctx->nr_ctx);
2949 		}
2950 
2951 		for (; j < HCTX_MAX_TYPES; j++)
2952 			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2953 					HCTX_TYPE_DEFAULT, i);
2954 	}
2955 
2956 	queue_for_each_hw_ctx(q, hctx, i) {
2957 		/*
2958 		 * If no software queues are mapped to this hardware queue,
2959 		 * disable it and free the request entries.
2960 		 */
2961 		if (!hctx->nr_ctx) {
2962 			/* Never unmap queue 0.  We need it as a
2963 			 * fallback in case of a new remap fails
2964 			 * allocation
2965 			 */
2966 			if (i && set->tags[i])
2967 				blk_mq_free_map_and_requests(set, i);
2968 
2969 			hctx->tags = NULL;
2970 			continue;
2971 		}
2972 
2973 		hctx->tags = set->tags[i];
2974 		WARN_ON(!hctx->tags);
2975 
2976 		/*
2977 		 * Set the map size to the number of mapped software queues.
2978 		 * This is more accurate and more efficient than looping
2979 		 * over all possibly mapped software queues.
2980 		 */
2981 		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2982 
2983 		/*
2984 		 * Initialize batch roundrobin counts
2985 		 */
2986 		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2987 		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2988 	}
2989 }
2990 
2991 /*
2992  * Caller needs to ensure that we're either frozen/quiesced, or that
2993  * the queue isn't live yet.
2994  */
queue_set_hctx_shared(struct request_queue * q,bool shared)2995 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2996 {
2997 	struct blk_mq_hw_ctx *hctx;
2998 	int i;
2999 
3000 	queue_for_each_hw_ctx(q, hctx, i) {
3001 		if (shared) {
3002 			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3003 		} else {
3004 			blk_mq_tag_idle(hctx);
3005 			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3006 		}
3007 	}
3008 }
3009 
blk_mq_update_tag_set_shared(struct blk_mq_tag_set * set,bool shared)3010 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3011 					 bool shared)
3012 {
3013 	struct request_queue *q;
3014 
3015 	lockdep_assert_held(&set->tag_list_lock);
3016 
3017 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3018 		blk_mq_freeze_queue(q);
3019 		queue_set_hctx_shared(q, shared);
3020 		blk_mq_unfreeze_queue(q);
3021 	}
3022 }
3023 
blk_mq_del_queue_tag_set(struct request_queue * q)3024 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3025 {
3026 	struct blk_mq_tag_set *set = q->tag_set;
3027 
3028 	mutex_lock(&set->tag_list_lock);
3029 	list_del(&q->tag_set_list);
3030 	if (list_is_singular(&set->tag_list)) {
3031 		/* just transitioned to unshared */
3032 		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3033 		/* update existing queue */
3034 		blk_mq_update_tag_set_shared(set, false);
3035 	}
3036 	mutex_unlock(&set->tag_list_lock);
3037 	INIT_LIST_HEAD(&q->tag_set_list);
3038 }
3039 
blk_mq_add_queue_tag_set(struct blk_mq_tag_set * set,struct request_queue * q)3040 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3041 				     struct request_queue *q)
3042 {
3043 	mutex_lock(&set->tag_list_lock);
3044 
3045 	/*
3046 	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3047 	 */
3048 	if (!list_empty(&set->tag_list) &&
3049 	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3050 		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3051 		/* update existing queue */
3052 		blk_mq_update_tag_set_shared(set, true);
3053 	}
3054 	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3055 		queue_set_hctx_shared(q, true);
3056 	list_add_tail(&q->tag_set_list, &set->tag_list);
3057 
3058 	mutex_unlock(&set->tag_list_lock);
3059 }
3060 
3061 /* All allocations will be freed in release handler of q->mq_kobj */
blk_mq_alloc_ctxs(struct request_queue * q)3062 static int blk_mq_alloc_ctxs(struct request_queue *q)
3063 {
3064 	struct blk_mq_ctxs *ctxs;
3065 	int cpu;
3066 
3067 	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3068 	if (!ctxs)
3069 		return -ENOMEM;
3070 
3071 	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3072 	if (!ctxs->queue_ctx)
3073 		goto fail;
3074 
3075 	for_each_possible_cpu(cpu) {
3076 		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3077 		ctx->ctxs = ctxs;
3078 	}
3079 
3080 	q->mq_kobj = &ctxs->kobj;
3081 	q->queue_ctx = ctxs->queue_ctx;
3082 
3083 	return 0;
3084  fail:
3085 	kfree(ctxs);
3086 	return -ENOMEM;
3087 }
3088 
3089 /*
3090  * It is the actual release handler for mq, but we do it from
3091  * request queue's release handler for avoiding use-after-free
3092  * and headache because q->mq_kobj shouldn't have been introduced,
3093  * but we can't group ctx/kctx kobj without it.
3094  */
blk_mq_release(struct request_queue * q)3095 void blk_mq_release(struct request_queue *q)
3096 {
3097 	struct blk_mq_hw_ctx *hctx, *next;
3098 	int i;
3099 
3100 	queue_for_each_hw_ctx(q, hctx, i)
3101 		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
3102 
3103 	/* all hctx are in .unused_hctx_list now */
3104 	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
3105 		list_del_init(&hctx->hctx_list);
3106 		kobject_put(&hctx->kobj);
3107 	}
3108 
3109 	kfree(q->queue_hw_ctx);
3110 
3111 	/*
3112 	 * release .mq_kobj and sw queue's kobject now because
3113 	 * both share lifetime with request queue.
3114 	 */
3115 	blk_mq_sysfs_deinit(q);
3116 }
3117 
blk_mq_init_queue_data(struct blk_mq_tag_set * set,void * queuedata)3118 struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3119 		void *queuedata)
3120 {
3121 	struct request_queue *uninit_q, *q;
3122 
3123 	uninit_q = blk_alloc_queue(set->numa_node);
3124 	if (!uninit_q)
3125 		return ERR_PTR(-ENOMEM);
3126 	uninit_q->queuedata = queuedata;
3127 
3128 	/*
3129 	 * Initialize the queue without an elevator. device_add_disk() will do
3130 	 * the initialization.
3131 	 */
3132 	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3133 	if (IS_ERR(q))
3134 		blk_cleanup_queue(uninit_q);
3135 
3136 	return q;
3137 }
3138 EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3139 
blk_mq_init_queue(struct blk_mq_tag_set * set)3140 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3141 {
3142 	return blk_mq_init_queue_data(set, NULL);
3143 }
3144 EXPORT_SYMBOL(blk_mq_init_queue);
3145 
3146 /*
3147  * Helper for setting up a queue with mq ops, given queue depth, and
3148  * the passed in mq ops flags.
3149  */
blk_mq_init_sq_queue(struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int queue_depth,unsigned int set_flags)3150 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3151 					   const struct blk_mq_ops *ops,
3152 					   unsigned int queue_depth,
3153 					   unsigned int set_flags)
3154 {
3155 	struct request_queue *q;
3156 	int ret;
3157 
3158 	memset(set, 0, sizeof(*set));
3159 	set->ops = ops;
3160 	set->nr_hw_queues = 1;
3161 	set->nr_maps = 1;
3162 	set->queue_depth = queue_depth;
3163 	set->numa_node = NUMA_NO_NODE;
3164 	set->flags = set_flags;
3165 
3166 	ret = blk_mq_alloc_tag_set(set);
3167 	if (ret)
3168 		return ERR_PTR(ret);
3169 
3170 	q = blk_mq_init_queue(set);
3171 	if (IS_ERR(q)) {
3172 		blk_mq_free_tag_set(set);
3173 		return q;
3174 	}
3175 
3176 	return q;
3177 }
3178 EXPORT_SYMBOL(blk_mq_init_sq_queue);
3179 
blk_mq_alloc_and_init_hctx(struct blk_mq_tag_set * set,struct request_queue * q,int hctx_idx,int node)3180 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3181 		struct blk_mq_tag_set *set, struct request_queue *q,
3182 		int hctx_idx, int node)
3183 {
3184 	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3185 
3186 	/* reuse dead hctx first */
3187 	spin_lock(&q->unused_hctx_lock);
3188 	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3189 		if (tmp->numa_node == node) {
3190 			hctx = tmp;
3191 			break;
3192 		}
3193 	}
3194 	if (hctx)
3195 		list_del_init(&hctx->hctx_list);
3196 	spin_unlock(&q->unused_hctx_lock);
3197 
3198 	if (!hctx)
3199 		hctx = blk_mq_alloc_hctx(q, set, node);
3200 	if (!hctx)
3201 		goto fail;
3202 
3203 	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3204 		goto free_hctx;
3205 
3206 	return hctx;
3207 
3208  free_hctx:
3209 	kobject_put(&hctx->kobj);
3210  fail:
3211 	return NULL;
3212 }
3213 
blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set * set,struct request_queue * q)3214 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3215 						struct request_queue *q)
3216 {
3217 	int i, j, end;
3218 	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3219 
3220 	if (q->nr_hw_queues < set->nr_hw_queues) {
3221 		struct blk_mq_hw_ctx **new_hctxs;
3222 
3223 		new_hctxs = kcalloc_node(set->nr_hw_queues,
3224 				       sizeof(*new_hctxs), GFP_KERNEL,
3225 				       set->numa_node);
3226 		if (!new_hctxs)
3227 			return;
3228 		if (hctxs)
3229 			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3230 			       sizeof(*hctxs));
3231 		q->queue_hw_ctx = new_hctxs;
3232 		kfree(hctxs);
3233 		hctxs = new_hctxs;
3234 	}
3235 
3236 	/* protect against switching io scheduler  */
3237 	mutex_lock(&q->sysfs_lock);
3238 	for (i = 0; i < set->nr_hw_queues; i++) {
3239 		int node;
3240 		struct blk_mq_hw_ctx *hctx;
3241 
3242 		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3243 		/*
3244 		 * If the hw queue has been mapped to another numa node,
3245 		 * we need to realloc the hctx. If allocation fails, fallback
3246 		 * to use the previous one.
3247 		 */
3248 		if (hctxs[i] && (hctxs[i]->numa_node == node))
3249 			continue;
3250 
3251 		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3252 		if (hctx) {
3253 			if (hctxs[i])
3254 				blk_mq_exit_hctx(q, set, hctxs[i], i);
3255 			hctxs[i] = hctx;
3256 		} else {
3257 			if (hctxs[i])
3258 				pr_warn("Allocate new hctx on node %d fails,\
3259 						fallback to previous one on node %d\n",
3260 						node, hctxs[i]->numa_node);
3261 			else
3262 				break;
3263 		}
3264 	}
3265 	/*
3266 	 * Increasing nr_hw_queues fails. Free the newly allocated
3267 	 * hctxs and keep the previous q->nr_hw_queues.
3268 	 */
3269 	if (i != set->nr_hw_queues) {
3270 		j = q->nr_hw_queues;
3271 		end = i;
3272 	} else {
3273 		j = i;
3274 		end = q->nr_hw_queues;
3275 		q->nr_hw_queues = set->nr_hw_queues;
3276 	}
3277 
3278 	for (; j < end; j++) {
3279 		struct blk_mq_hw_ctx *hctx = hctxs[j];
3280 
3281 		if (hctx) {
3282 			blk_mq_exit_hctx(q, set, hctx, j);
3283 			hctxs[j] = NULL;
3284 		}
3285 	}
3286 	mutex_unlock(&q->sysfs_lock);
3287 }
3288 
blk_mq_init_allocated_queue(struct blk_mq_tag_set * set,struct request_queue * q,bool elevator_init)3289 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3290 						  struct request_queue *q,
3291 						  bool elevator_init)
3292 {
3293 	/* mark the queue as mq asap */
3294 	q->mq_ops = set->ops;
3295 
3296 	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3297 					     blk_mq_poll_stats_bkt,
3298 					     BLK_MQ_POLL_STATS_BKTS, q);
3299 	if (!q->poll_cb)
3300 		goto err_exit;
3301 
3302 	if (blk_mq_alloc_ctxs(q))
3303 		goto err_poll;
3304 
3305 	/* init q->mq_kobj and sw queues' kobjects */
3306 	blk_mq_sysfs_init(q);
3307 
3308 	INIT_LIST_HEAD(&q->unused_hctx_list);
3309 	spin_lock_init(&q->unused_hctx_lock);
3310 
3311 	blk_mq_realloc_hw_ctxs(set, q);
3312 	if (!q->nr_hw_queues)
3313 		goto err_hctxs;
3314 
3315 	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3316 	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3317 
3318 	q->tag_set = set;
3319 
3320 	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3321 	if (set->nr_maps > HCTX_TYPE_POLL &&
3322 	    set->map[HCTX_TYPE_POLL].nr_queues)
3323 		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3324 
3325 	q->sg_reserved_size = INT_MAX;
3326 
3327 	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3328 	INIT_LIST_HEAD(&q->requeue_list);
3329 	spin_lock_init(&q->requeue_lock);
3330 
3331 	q->nr_requests = set->queue_depth;
3332 
3333 	/*
3334 	 * Default to classic polling
3335 	 */
3336 	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3337 
3338 	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3339 	blk_mq_add_queue_tag_set(set, q);
3340 	blk_mq_map_swqueue(q);
3341 
3342 	if (elevator_init)
3343 		elevator_init_mq(q);
3344 
3345 	return q;
3346 
3347 err_hctxs:
3348 	kfree(q->queue_hw_ctx);
3349 	q->nr_hw_queues = 0;
3350 	blk_mq_sysfs_deinit(q);
3351 err_poll:
3352 	blk_stat_free_callback(q->poll_cb);
3353 	q->poll_cb = NULL;
3354 err_exit:
3355 	q->mq_ops = NULL;
3356 	return ERR_PTR(-ENOMEM);
3357 }
3358 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3359 
3360 /* tags can _not_ be used after returning from blk_mq_exit_queue */
blk_mq_exit_queue(struct request_queue * q)3361 void blk_mq_exit_queue(struct request_queue *q)
3362 {
3363 	struct blk_mq_tag_set *set = q->tag_set;
3364 
3365 	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
3366 	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3367 	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
3368 	blk_mq_del_queue_tag_set(q);
3369 }
3370 
__blk_mq_alloc_rq_maps(struct blk_mq_tag_set * set)3371 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3372 {
3373 	int i;
3374 
3375 	for (i = 0; i < set->nr_hw_queues; i++) {
3376 		if (!__blk_mq_alloc_map_and_request(set, i))
3377 			goto out_unwind;
3378 		cond_resched();
3379 	}
3380 
3381 	return 0;
3382 
3383 out_unwind:
3384 	while (--i >= 0)
3385 		blk_mq_free_map_and_requests(set, i);
3386 
3387 	return -ENOMEM;
3388 }
3389 
3390 /*
3391  * Allocate the request maps associated with this tag_set. Note that this
3392  * may reduce the depth asked for, if memory is tight. set->queue_depth
3393  * will be updated to reflect the allocated depth.
3394  */
blk_mq_alloc_map_and_requests(struct blk_mq_tag_set * set)3395 static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3396 {
3397 	unsigned int depth;
3398 	int err;
3399 
3400 	depth = set->queue_depth;
3401 	do {
3402 		err = __blk_mq_alloc_rq_maps(set);
3403 		if (!err)
3404 			break;
3405 
3406 		set->queue_depth >>= 1;
3407 		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3408 			err = -ENOMEM;
3409 			break;
3410 		}
3411 	} while (set->queue_depth);
3412 
3413 	if (!set->queue_depth || err) {
3414 		pr_err("blk-mq: failed to allocate request map\n");
3415 		return -ENOMEM;
3416 	}
3417 
3418 	if (depth != set->queue_depth)
3419 		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3420 						depth, set->queue_depth);
3421 
3422 	return 0;
3423 }
3424 
blk_mq_update_queue_map(struct blk_mq_tag_set * set)3425 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3426 {
3427 	/*
3428 	 * blk_mq_map_queues() and multiple .map_queues() implementations
3429 	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3430 	 * number of hardware queues.
3431 	 */
3432 	if (set->nr_maps == 1)
3433 		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3434 
3435 	if (set->ops->map_queues && !is_kdump_kernel()) {
3436 		int i;
3437 
3438 		/*
3439 		 * transport .map_queues is usually done in the following
3440 		 * way:
3441 		 *
3442 		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3443 		 * 	mask = get_cpu_mask(queue)
3444 		 * 	for_each_cpu(cpu, mask)
3445 		 * 		set->map[x].mq_map[cpu] = queue;
3446 		 * }
3447 		 *
3448 		 * When we need to remap, the table has to be cleared for
3449 		 * killing stale mapping since one CPU may not be mapped
3450 		 * to any hw queue.
3451 		 */
3452 		for (i = 0; i < set->nr_maps; i++)
3453 			blk_mq_clear_mq_map(&set->map[i]);
3454 
3455 		return set->ops->map_queues(set);
3456 	} else {
3457 		BUG_ON(set->nr_maps > 1);
3458 		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3459 	}
3460 }
3461 
blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set * set,int cur_nr_hw_queues,int new_nr_hw_queues)3462 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3463 				  int cur_nr_hw_queues, int new_nr_hw_queues)
3464 {
3465 	struct blk_mq_tags **new_tags;
3466 
3467 	if (cur_nr_hw_queues >= new_nr_hw_queues)
3468 		return 0;
3469 
3470 	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3471 				GFP_KERNEL, set->numa_node);
3472 	if (!new_tags)
3473 		return -ENOMEM;
3474 
3475 	if (set->tags)
3476 		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3477 		       sizeof(*set->tags));
3478 	kfree(set->tags);
3479 	set->tags = new_tags;
3480 	set->nr_hw_queues = new_nr_hw_queues;
3481 
3482 	return 0;
3483 }
3484 
3485 /*
3486  * Alloc a tag set to be associated with one or more request queues.
3487  * May fail with EINVAL for various error conditions. May adjust the
3488  * requested depth down, if it's too large. In that case, the set
3489  * value will be stored in set->queue_depth.
3490  */
blk_mq_alloc_tag_set(struct blk_mq_tag_set * set)3491 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3492 {
3493 	int i, ret;
3494 
3495 	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3496 
3497 	if (!set->nr_hw_queues)
3498 		return -EINVAL;
3499 	if (!set->queue_depth)
3500 		return -EINVAL;
3501 	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3502 		return -EINVAL;
3503 
3504 	if (!set->ops->queue_rq)
3505 		return -EINVAL;
3506 
3507 	if (!set->ops->get_budget ^ !set->ops->put_budget)
3508 		return -EINVAL;
3509 
3510 	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3511 		pr_info("blk-mq: reduced tag depth to %u\n",
3512 			BLK_MQ_MAX_DEPTH);
3513 		set->queue_depth = BLK_MQ_MAX_DEPTH;
3514 	}
3515 
3516 	if (!set->nr_maps)
3517 		set->nr_maps = 1;
3518 	else if (set->nr_maps > HCTX_MAX_TYPES)
3519 		return -EINVAL;
3520 
3521 	/*
3522 	 * If a crashdump is active, then we are potentially in a very
3523 	 * memory constrained environment. Limit us to 1 queue and
3524 	 * 64 tags to prevent using too much memory.
3525 	 */
3526 	if (is_kdump_kernel()) {
3527 		set->nr_hw_queues = 1;
3528 		set->nr_maps = 1;
3529 		set->queue_depth = min(64U, set->queue_depth);
3530 	}
3531 	/*
3532 	 * There is no use for more h/w queues than cpus if we just have
3533 	 * a single map
3534 	 */
3535 	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3536 		set->nr_hw_queues = nr_cpu_ids;
3537 
3538 	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3539 		return -ENOMEM;
3540 
3541 	ret = -ENOMEM;
3542 	for (i = 0; i < set->nr_maps; i++) {
3543 		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3544 						  sizeof(set->map[i].mq_map[0]),
3545 						  GFP_KERNEL, set->numa_node);
3546 		if (!set->map[i].mq_map)
3547 			goto out_free_mq_map;
3548 		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3549 	}
3550 
3551 	ret = blk_mq_update_queue_map(set);
3552 	if (ret)
3553 		goto out_free_mq_map;
3554 
3555 	ret = blk_mq_alloc_map_and_requests(set);
3556 	if (ret)
3557 		goto out_free_mq_map;
3558 
3559 	if (blk_mq_is_sbitmap_shared(set->flags)) {
3560 		atomic_set(&set->active_queues_shared_sbitmap, 0);
3561 
3562 		if (blk_mq_init_shared_sbitmap(set, set->flags)) {
3563 			ret = -ENOMEM;
3564 			goto out_free_mq_rq_maps;
3565 		}
3566 	}
3567 
3568 	mutex_init(&set->tag_list_lock);
3569 	INIT_LIST_HEAD(&set->tag_list);
3570 
3571 	return 0;
3572 
3573 out_free_mq_rq_maps:
3574 	for (i = 0; i < set->nr_hw_queues; i++)
3575 		blk_mq_free_map_and_requests(set, i);
3576 out_free_mq_map:
3577 	for (i = 0; i < set->nr_maps; i++) {
3578 		kfree(set->map[i].mq_map);
3579 		set->map[i].mq_map = NULL;
3580 	}
3581 	kfree(set->tags);
3582 	set->tags = NULL;
3583 	return ret;
3584 }
3585 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3586 
blk_mq_free_tag_set(struct blk_mq_tag_set * set)3587 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3588 {
3589 	int i, j;
3590 
3591 	for (i = 0; i < set->nr_hw_queues; i++)
3592 		blk_mq_free_map_and_requests(set, i);
3593 
3594 	if (blk_mq_is_sbitmap_shared(set->flags))
3595 		blk_mq_exit_shared_sbitmap(set);
3596 
3597 	for (j = 0; j < set->nr_maps; j++) {
3598 		kfree(set->map[j].mq_map);
3599 		set->map[j].mq_map = NULL;
3600 	}
3601 
3602 	kfree(set->tags);
3603 	set->tags = NULL;
3604 }
3605 EXPORT_SYMBOL(blk_mq_free_tag_set);
3606 
blk_mq_update_nr_requests(struct request_queue * q,unsigned int nr)3607 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3608 {
3609 	struct blk_mq_tag_set *set = q->tag_set;
3610 	struct blk_mq_hw_ctx *hctx;
3611 	int i, ret;
3612 
3613 	if (!set)
3614 		return -EINVAL;
3615 
3616 	if (q->nr_requests == nr)
3617 		return 0;
3618 
3619 	blk_mq_freeze_queue(q);
3620 	blk_mq_quiesce_queue(q);
3621 
3622 	ret = 0;
3623 	queue_for_each_hw_ctx(q, hctx, i) {
3624 		if (!hctx->tags)
3625 			continue;
3626 		/*
3627 		 * If we're using an MQ scheduler, just update the scheduler
3628 		 * queue depth. This is similar to what the old code would do.
3629 		 */
3630 		if (!hctx->sched_tags) {
3631 			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3632 							false);
3633 			if (!ret && blk_mq_is_sbitmap_shared(set->flags))
3634 				blk_mq_tag_resize_shared_sbitmap(set, nr);
3635 		} else {
3636 			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3637 							nr, true);
3638 		}
3639 		if (ret)
3640 			break;
3641 		if (q->elevator && q->elevator->type->ops.depth_updated)
3642 			q->elevator->type->ops.depth_updated(hctx);
3643 	}
3644 
3645 	if (!ret)
3646 		q->nr_requests = nr;
3647 
3648 	blk_mq_unquiesce_queue(q);
3649 	blk_mq_unfreeze_queue(q);
3650 
3651 	return ret;
3652 }
3653 
3654 /*
3655  * request_queue and elevator_type pair.
3656  * It is just used by __blk_mq_update_nr_hw_queues to cache
3657  * the elevator_type associated with a request_queue.
3658  */
3659 struct blk_mq_qe_pair {
3660 	struct list_head node;
3661 	struct request_queue *q;
3662 	struct elevator_type *type;
3663 };
3664 
3665 /*
3666  * Cache the elevator_type in qe pair list and switch the
3667  * io scheduler to 'none'
3668  */
blk_mq_elv_switch_none(struct list_head * head,struct request_queue * q)3669 static bool blk_mq_elv_switch_none(struct list_head *head,
3670 		struct request_queue *q)
3671 {
3672 	struct blk_mq_qe_pair *qe;
3673 
3674 	if (!q->elevator)
3675 		return true;
3676 
3677 	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3678 	if (!qe)
3679 		return false;
3680 
3681 	INIT_LIST_HEAD(&qe->node);
3682 	qe->q = q;
3683 	qe->type = q->elevator->type;
3684 	list_add(&qe->node, head);
3685 
3686 	mutex_lock(&q->sysfs_lock);
3687 	/*
3688 	 * After elevator_switch_mq, the previous elevator_queue will be
3689 	 * released by elevator_release. The reference of the io scheduler
3690 	 * module get by elevator_get will also be put. So we need to get
3691 	 * a reference of the io scheduler module here to prevent it to be
3692 	 * removed.
3693 	 */
3694 	__module_get(qe->type->elevator_owner);
3695 	elevator_switch_mq(q, NULL);
3696 	mutex_unlock(&q->sysfs_lock);
3697 
3698 	return true;
3699 }
3700 
blk_mq_elv_switch_back(struct list_head * head,struct request_queue * q)3701 static void blk_mq_elv_switch_back(struct list_head *head,
3702 		struct request_queue *q)
3703 {
3704 	struct blk_mq_qe_pair *qe;
3705 	struct elevator_type *t = NULL;
3706 
3707 	list_for_each_entry(qe, head, node)
3708 		if (qe->q == q) {
3709 			t = qe->type;
3710 			break;
3711 		}
3712 
3713 	if (!t)
3714 		return;
3715 
3716 	list_del(&qe->node);
3717 	kfree(qe);
3718 
3719 	mutex_lock(&q->sysfs_lock);
3720 	elevator_switch_mq(q, t);
3721 	mutex_unlock(&q->sysfs_lock);
3722 }
3723 
__blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3724 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3725 							int nr_hw_queues)
3726 {
3727 	struct request_queue *q;
3728 	LIST_HEAD(head);
3729 	int prev_nr_hw_queues;
3730 
3731 	lockdep_assert_held(&set->tag_list_lock);
3732 
3733 	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3734 		nr_hw_queues = nr_cpu_ids;
3735 	if (nr_hw_queues < 1)
3736 		return;
3737 	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3738 		return;
3739 
3740 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3741 		blk_mq_freeze_queue(q);
3742 	/*
3743 	 * Switch IO scheduler to 'none', cleaning up the data associated
3744 	 * with the previous scheduler. We will switch back once we are done
3745 	 * updating the new sw to hw queue mappings.
3746 	 */
3747 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3748 		if (!blk_mq_elv_switch_none(&head, q))
3749 			goto switch_back;
3750 
3751 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3752 		blk_mq_debugfs_unregister_hctxs(q);
3753 		blk_mq_sysfs_unregister(q);
3754 	}
3755 
3756 	prev_nr_hw_queues = set->nr_hw_queues;
3757 	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3758 	    0)
3759 		goto reregister;
3760 
3761 	set->nr_hw_queues = nr_hw_queues;
3762 fallback:
3763 	blk_mq_update_queue_map(set);
3764 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3765 		blk_mq_realloc_hw_ctxs(set, q);
3766 		if (q->nr_hw_queues != set->nr_hw_queues) {
3767 			int i = prev_nr_hw_queues;
3768 
3769 			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3770 					nr_hw_queues, prev_nr_hw_queues);
3771 			for (; i < set->nr_hw_queues; i++)
3772 				blk_mq_free_map_and_requests(set, i);
3773 
3774 			set->nr_hw_queues = prev_nr_hw_queues;
3775 			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3776 			goto fallback;
3777 		}
3778 		blk_mq_map_swqueue(q);
3779 	}
3780 
3781 reregister:
3782 	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3783 		blk_mq_sysfs_register(q);
3784 		blk_mq_debugfs_register_hctxs(q);
3785 	}
3786 
3787 switch_back:
3788 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3789 		blk_mq_elv_switch_back(&head, q);
3790 
3791 	list_for_each_entry(q, &set->tag_list, tag_set_list)
3792 		blk_mq_unfreeze_queue(q);
3793 }
3794 
blk_mq_update_nr_hw_queues(struct blk_mq_tag_set * set,int nr_hw_queues)3795 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3796 {
3797 	mutex_lock(&set->tag_list_lock);
3798 	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3799 	mutex_unlock(&set->tag_list_lock);
3800 }
3801 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3802 
3803 /* Enable polling stats and return whether they were already enabled. */
blk_poll_stats_enable(struct request_queue * q)3804 static bool blk_poll_stats_enable(struct request_queue *q)
3805 {
3806 	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3807 	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3808 		return true;
3809 	blk_stat_add_callback(q, q->poll_cb);
3810 	return false;
3811 }
3812 
blk_mq_poll_stats_start(struct request_queue * q)3813 static void blk_mq_poll_stats_start(struct request_queue *q)
3814 {
3815 	/*
3816 	 * We don't arm the callback if polling stats are not enabled or the
3817 	 * callback is already active.
3818 	 */
3819 	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3820 	    blk_stat_is_active(q->poll_cb))
3821 		return;
3822 
3823 	blk_stat_activate_msecs(q->poll_cb, 100);
3824 }
3825 
blk_mq_poll_stats_fn(struct blk_stat_callback * cb)3826 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3827 {
3828 	struct request_queue *q = cb->data;
3829 	int bucket;
3830 
3831 	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3832 		if (cb->stat[bucket].nr_samples)
3833 			q->poll_stat[bucket] = cb->stat[bucket];
3834 	}
3835 }
3836 
blk_mq_poll_nsecs(struct request_queue * q,struct request * rq)3837 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3838 				       struct request *rq)
3839 {
3840 	unsigned long ret = 0;
3841 	int bucket;
3842 
3843 	/*
3844 	 * If stats collection isn't on, don't sleep but turn it on for
3845 	 * future users
3846 	 */
3847 	if (!blk_poll_stats_enable(q))
3848 		return 0;
3849 
3850 	/*
3851 	 * As an optimistic guess, use half of the mean service time
3852 	 * for this type of request. We can (and should) make this smarter.
3853 	 * For instance, if the completion latencies are tight, we can
3854 	 * get closer than just half the mean. This is especially
3855 	 * important on devices where the completion latencies are longer
3856 	 * than ~10 usec. We do use the stats for the relevant IO size
3857 	 * if available which does lead to better estimates.
3858 	 */
3859 	bucket = blk_mq_poll_stats_bkt(rq);
3860 	if (bucket < 0)
3861 		return ret;
3862 
3863 	if (q->poll_stat[bucket].nr_samples)
3864 		ret = (q->poll_stat[bucket].mean + 1) / 2;
3865 
3866 	return ret;
3867 }
3868 
blk_mq_poll_hybrid_sleep(struct request_queue * q,struct request * rq)3869 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3870 				     struct request *rq)
3871 {
3872 	struct hrtimer_sleeper hs;
3873 	enum hrtimer_mode mode;
3874 	unsigned int nsecs;
3875 	ktime_t kt;
3876 
3877 	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3878 		return false;
3879 
3880 	/*
3881 	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3882 	 *
3883 	 *  0:	use half of prev avg
3884 	 * >0:	use this specific value
3885 	 */
3886 	if (q->poll_nsec > 0)
3887 		nsecs = q->poll_nsec;
3888 	else
3889 		nsecs = blk_mq_poll_nsecs(q, rq);
3890 
3891 	if (!nsecs)
3892 		return false;
3893 
3894 	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3895 
3896 	/*
3897 	 * This will be replaced with the stats tracking code, using
3898 	 * 'avg_completion_time / 2' as the pre-sleep target.
3899 	 */
3900 	kt = nsecs;
3901 
3902 	mode = HRTIMER_MODE_REL;
3903 	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3904 	hrtimer_set_expires(&hs.timer, kt);
3905 
3906 	do {
3907 		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3908 			break;
3909 		set_current_state(TASK_UNINTERRUPTIBLE);
3910 		hrtimer_sleeper_start_expires(&hs, mode);
3911 		if (hs.task)
3912 			io_schedule();
3913 		hrtimer_cancel(&hs.timer);
3914 		mode = HRTIMER_MODE_ABS;
3915 	} while (hs.task && !signal_pending(current));
3916 
3917 	__set_current_state(TASK_RUNNING);
3918 	destroy_hrtimer_on_stack(&hs.timer);
3919 	return true;
3920 }
3921 
blk_mq_poll_hybrid(struct request_queue * q,struct blk_mq_hw_ctx * hctx,blk_qc_t cookie)3922 static bool blk_mq_poll_hybrid(struct request_queue *q,
3923 			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3924 {
3925 	struct request *rq;
3926 
3927 	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3928 		return false;
3929 
3930 	if (!blk_qc_t_is_internal(cookie))
3931 		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3932 	else {
3933 		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3934 		/*
3935 		 * With scheduling, if the request has completed, we'll
3936 		 * get a NULL return here, as we clear the sched tag when
3937 		 * that happens. The request still remains valid, like always,
3938 		 * so we should be safe with just the NULL check.
3939 		 */
3940 		if (!rq)
3941 			return false;
3942 	}
3943 
3944 	return blk_mq_poll_hybrid_sleep(q, rq);
3945 }
3946 
3947 /**
3948  * blk_poll - poll for IO completions
3949  * @q:  the queue
3950  * @cookie: cookie passed back at IO submission time
3951  * @spin: whether to spin for completions
3952  *
3953  * Description:
3954  *    Poll for completions on the passed in queue. Returns number of
3955  *    completed entries found. If @spin is true, then blk_poll will continue
3956  *    looping until at least one completion is found, unless the task is
3957  *    otherwise marked running (or we need to reschedule).
3958  */
blk_poll(struct request_queue * q,blk_qc_t cookie,bool spin)3959 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3960 {
3961 	struct blk_mq_hw_ctx *hctx;
3962 	long state;
3963 
3964 	if (!blk_qc_t_valid(cookie) ||
3965 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3966 		return 0;
3967 
3968 	if (current->plug)
3969 		blk_flush_plug_list(current->plug, false);
3970 
3971 	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3972 
3973 	/*
3974 	 * If we sleep, have the caller restart the poll loop to reset
3975 	 * the state. Like for the other success return cases, the
3976 	 * caller is responsible for checking if the IO completed. If
3977 	 * the IO isn't complete, we'll get called again and will go
3978 	 * straight to the busy poll loop.
3979 	 */
3980 	if (blk_mq_poll_hybrid(q, hctx, cookie))
3981 		return 1;
3982 
3983 	hctx->poll_considered++;
3984 
3985 	state = current->state;
3986 	do {
3987 		int ret;
3988 
3989 		hctx->poll_invoked++;
3990 
3991 		ret = q->mq_ops->poll(hctx);
3992 		if (ret > 0) {
3993 			hctx->poll_success++;
3994 			__set_current_state(TASK_RUNNING);
3995 			return ret;
3996 		}
3997 
3998 		if (signal_pending_state(state, current))
3999 			__set_current_state(TASK_RUNNING);
4000 
4001 		if (current->state == TASK_RUNNING)
4002 			return 1;
4003 		if (ret < 0 || !spin)
4004 			break;
4005 		cpu_relax();
4006 	} while (!need_resched());
4007 
4008 	__set_current_state(TASK_RUNNING);
4009 	return 0;
4010 }
4011 EXPORT_SYMBOL_GPL(blk_poll);
4012 
blk_mq_rq_cpu(struct request * rq)4013 unsigned int blk_mq_rq_cpu(struct request *rq)
4014 {
4015 	return rq->mq_ctx->cpu;
4016 }
4017 EXPORT_SYMBOL(blk_mq_rq_cpu);
4018 
blk_mq_cancel_work_sync(struct request_queue * q)4019 void blk_mq_cancel_work_sync(struct request_queue *q)
4020 {
4021 	if (queue_is_mq(q)) {
4022 		struct blk_mq_hw_ctx *hctx;
4023 		int i;
4024 
4025 		cancel_delayed_work_sync(&q->requeue_work);
4026 
4027 		queue_for_each_hw_ctx(q, hctx, i)
4028 			cancel_delayed_work_sync(&hctx->run_work);
4029 	}
4030 }
4031 
blk_mq_init(void)4032 static int __init blk_mq_init(void)
4033 {
4034 	int i;
4035 
4036 	for_each_possible_cpu(i)
4037 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
4038 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4039 
4040 	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4041 				  "block/softirq:dead", NULL,
4042 				  blk_softirq_cpu_dead);
4043 	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4044 				blk_mq_hctx_notify_dead);
4045 	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4046 				blk_mq_hctx_notify_online,
4047 				blk_mq_hctx_notify_offline);
4048 	return 0;
4049 }
4050 subsys_initcall(blk_mq_init);
4051