• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_data {
121 	char *memdump_buf_head;
122 	char *memdump_buf_tail;
123 	u32 current_seq_no;
124 	u32 received_dump;
125 	u32 ram_dump_size;
126 };
127 
128 struct qca_memdump_event_hdr {
129 	__u8    evt;
130 	__u8    plen;
131 	__u16   opcode;
132 	__u16   seq_no;
133 	__u8    reserved;
134 } __packed;
135 
136 
137 struct qca_dump_size {
138 	u32 dump_size;
139 } __packed;
140 
141 struct qca_data {
142 	struct hci_uart *hu;
143 	struct sk_buff *rx_skb;
144 	struct sk_buff_head txq;
145 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
146 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
147 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
148 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
149 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
150 	bool tx_vote;		/* Clock must be on for TX */
151 	bool rx_vote;		/* Clock must be on for RX */
152 	struct timer_list tx_idle_timer;
153 	u32 tx_idle_delay;
154 	struct timer_list wake_retrans_timer;
155 	u32 wake_retrans;
156 	struct workqueue_struct *workqueue;
157 	struct work_struct ws_awake_rx;
158 	struct work_struct ws_awake_device;
159 	struct work_struct ws_rx_vote_off;
160 	struct work_struct ws_tx_vote_off;
161 	struct work_struct ctrl_memdump_evt;
162 	struct delayed_work ctrl_memdump_timeout;
163 	struct qca_memdump_data *qca_memdump;
164 	unsigned long flags;
165 	struct completion drop_ev_comp;
166 	wait_queue_head_t suspend_wait_q;
167 	enum qca_memdump_states memdump_state;
168 	struct mutex hci_memdump_lock;
169 
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct clk	 *susclk;
223 	enum qca_btsoc_type btsoc_type;
224 	struct qca_power *bt_power;
225 	u32 init_speed;
226 	u32 oper_speed;
227 	const char *firmware_name;
228 };
229 
230 static int qca_regulator_enable(struct qca_serdev *qcadev);
231 static void qca_regulator_disable(struct qca_serdev *qcadev);
232 static void qca_power_shutdown(struct hci_uart *hu);
233 static int qca_power_off(struct hci_dev *hdev);
234 static void qca_controller_memdump(struct work_struct *work);
235 
qca_soc_type(struct hci_uart * hu)236 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
237 {
238 	enum qca_btsoc_type soc_type;
239 
240 	if (hu->serdev) {
241 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
242 
243 		soc_type = qsd->btsoc_type;
244 	} else {
245 		soc_type = QCA_ROME;
246 	}
247 
248 	return soc_type;
249 }
250 
qca_get_firmware_name(struct hci_uart * hu)251 static const char *qca_get_firmware_name(struct hci_uart *hu)
252 {
253 	if (hu->serdev) {
254 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
255 
256 		return qsd->firmware_name;
257 	} else {
258 		return NULL;
259 	}
260 }
261 
__serial_clock_on(struct tty_struct * tty)262 static void __serial_clock_on(struct tty_struct *tty)
263 {
264 	/* TODO: Some chipset requires to enable UART clock on client
265 	 * side to save power consumption or manual work is required.
266 	 * Please put your code to control UART clock here if needed
267 	 */
268 }
269 
__serial_clock_off(struct tty_struct * tty)270 static void __serial_clock_off(struct tty_struct *tty)
271 {
272 	/* TODO: Some chipset requires to disable UART clock on client
273 	 * side to save power consumption or manual work is required.
274 	 * Please put your code to control UART clock off here if needed
275 	 */
276 }
277 
278 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)279 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
280 {
281 	struct qca_data *qca = hu->priv;
282 	unsigned int diff;
283 
284 	bool old_vote = (qca->tx_vote | qca->rx_vote);
285 	bool new_vote;
286 
287 	switch (vote) {
288 	case HCI_IBS_VOTE_STATS_UPDATE:
289 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
290 
291 		if (old_vote)
292 			qca->vote_off_ms += diff;
293 		else
294 			qca->vote_on_ms += diff;
295 		return;
296 
297 	case HCI_IBS_TX_VOTE_CLOCK_ON:
298 		qca->tx_vote = true;
299 		qca->tx_votes_on++;
300 		break;
301 
302 	case HCI_IBS_RX_VOTE_CLOCK_ON:
303 		qca->rx_vote = true;
304 		qca->rx_votes_on++;
305 		break;
306 
307 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
308 		qca->tx_vote = false;
309 		qca->tx_votes_off++;
310 		break;
311 
312 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
313 		qca->rx_vote = false;
314 		qca->rx_votes_off++;
315 		break;
316 
317 	default:
318 		BT_ERR("Voting irregularity");
319 		return;
320 	}
321 
322 	new_vote = qca->rx_vote | qca->tx_vote;
323 
324 	if (new_vote != old_vote) {
325 		if (new_vote)
326 			__serial_clock_on(hu->tty);
327 		else
328 			__serial_clock_off(hu->tty);
329 
330 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
331 		       vote ? "true" : "false");
332 
333 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
334 
335 		if (new_vote) {
336 			qca->votes_on++;
337 			qca->vote_off_ms += diff;
338 		} else {
339 			qca->votes_off++;
340 			qca->vote_on_ms += diff;
341 		}
342 		qca->vote_last_jif = jiffies;
343 	}
344 }
345 
346 /* Builds and sends an HCI_IBS command packet.
347  * These are very simple packets with only 1 cmd byte.
348  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)349 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
350 {
351 	int err = 0;
352 	struct sk_buff *skb = NULL;
353 	struct qca_data *qca = hu->priv;
354 
355 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
356 
357 	skb = bt_skb_alloc(1, GFP_ATOMIC);
358 	if (!skb) {
359 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
360 		return -ENOMEM;
361 	}
362 
363 	/* Assign HCI_IBS type */
364 	skb_put_u8(skb, cmd);
365 
366 	skb_queue_tail(&qca->txq, skb);
367 
368 	return err;
369 }
370 
qca_wq_awake_device(struct work_struct * work)371 static void qca_wq_awake_device(struct work_struct *work)
372 {
373 	struct qca_data *qca = container_of(work, struct qca_data,
374 					    ws_awake_device);
375 	struct hci_uart *hu = qca->hu;
376 	unsigned long retrans_delay;
377 	unsigned long flags;
378 
379 	BT_DBG("hu %p wq awake device", hu);
380 
381 	/* Vote for serial clock */
382 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
383 
384 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
385 
386 	/* Send wake indication to device */
387 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
388 		BT_ERR("Failed to send WAKE to device");
389 
390 	qca->ibs_sent_wakes++;
391 
392 	/* Start retransmit timer */
393 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
394 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
395 
396 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
397 
398 	/* Actually send the packets */
399 	hci_uart_tx_wakeup(hu);
400 }
401 
qca_wq_awake_rx(struct work_struct * work)402 static void qca_wq_awake_rx(struct work_struct *work)
403 {
404 	struct qca_data *qca = container_of(work, struct qca_data,
405 					    ws_awake_rx);
406 	struct hci_uart *hu = qca->hu;
407 	unsigned long flags;
408 
409 	BT_DBG("hu %p wq awake rx", hu);
410 
411 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
412 
413 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
414 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
415 
416 	/* Always acknowledge device wake up,
417 	 * sending IBS message doesn't count as TX ON.
418 	 */
419 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
420 		BT_ERR("Failed to acknowledge device wake up");
421 
422 	qca->ibs_sent_wacks++;
423 
424 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
425 
426 	/* Actually send the packets */
427 	hci_uart_tx_wakeup(hu);
428 }
429 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)430 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
431 {
432 	struct qca_data *qca = container_of(work, struct qca_data,
433 					    ws_rx_vote_off);
434 	struct hci_uart *hu = qca->hu;
435 
436 	BT_DBG("hu %p rx clock vote off", hu);
437 
438 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
439 }
440 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)441 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
442 {
443 	struct qca_data *qca = container_of(work, struct qca_data,
444 					    ws_tx_vote_off);
445 	struct hci_uart *hu = qca->hu;
446 
447 	BT_DBG("hu %p tx clock vote off", hu);
448 
449 	/* Run HCI tx handling unlocked */
450 	hci_uart_tx_wakeup(hu);
451 
452 	/* Now that message queued to tty driver, vote for tty clocks off.
453 	 * It is up to the tty driver to pend the clocks off until tx done.
454 	 */
455 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
456 }
457 
hci_ibs_tx_idle_timeout(struct timer_list * t)458 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
459 {
460 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
461 	struct hci_uart *hu = qca->hu;
462 	unsigned long flags;
463 
464 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
465 
466 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
467 				 flags, SINGLE_DEPTH_NESTING);
468 
469 	switch (qca->tx_ibs_state) {
470 	case HCI_IBS_TX_AWAKE:
471 		/* TX_IDLE, go to SLEEP */
472 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
473 			BT_ERR("Failed to send SLEEP to device");
474 			break;
475 		}
476 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
477 		qca->ibs_sent_slps++;
478 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
479 		break;
480 
481 	case HCI_IBS_TX_ASLEEP:
482 	case HCI_IBS_TX_WAKING:
483 	default:
484 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
485 		break;
486 	}
487 
488 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
489 }
490 
hci_ibs_wake_retrans_timeout(struct timer_list * t)491 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
492 {
493 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
494 	struct hci_uart *hu = qca->hu;
495 	unsigned long flags, retrans_delay;
496 	bool retransmit = false;
497 
498 	BT_DBG("hu %p wake retransmit timeout in %d state",
499 		hu, qca->tx_ibs_state);
500 
501 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
502 				 flags, SINGLE_DEPTH_NESTING);
503 
504 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
505 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
506 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
507 		return;
508 	}
509 
510 	switch (qca->tx_ibs_state) {
511 	case HCI_IBS_TX_WAKING:
512 		/* No WAKE_ACK, retransmit WAKE */
513 		retransmit = true;
514 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
515 			BT_ERR("Failed to acknowledge device wake up");
516 			break;
517 		}
518 		qca->ibs_sent_wakes++;
519 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
520 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
521 		break;
522 
523 	case HCI_IBS_TX_ASLEEP:
524 	case HCI_IBS_TX_AWAKE:
525 	default:
526 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
527 		break;
528 	}
529 
530 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
531 
532 	if (retransmit)
533 		hci_uart_tx_wakeup(hu);
534 }
535 
536 
qca_controller_memdump_timeout(struct work_struct * work)537 static void qca_controller_memdump_timeout(struct work_struct *work)
538 {
539 	struct qca_data *qca = container_of(work, struct qca_data,
540 					ctrl_memdump_timeout.work);
541 	struct hci_uart *hu = qca->hu;
542 
543 	mutex_lock(&qca->hci_memdump_lock);
544 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
545 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
546 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
547 			/* Inject hw error event to reset the device
548 			 * and driver.
549 			 */
550 			hci_reset_dev(hu->hdev);
551 		}
552 	}
553 
554 	mutex_unlock(&qca->hci_memdump_lock);
555 }
556 
557 
558 /* Initialize protocol */
qca_open(struct hci_uart * hu)559 static int qca_open(struct hci_uart *hu)
560 {
561 	struct qca_serdev *qcadev;
562 	struct qca_data *qca;
563 
564 	BT_DBG("hu %p qca_open", hu);
565 
566 	if (!hci_uart_has_flow_control(hu))
567 		return -EOPNOTSUPP;
568 
569 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
570 	if (!qca)
571 		return -ENOMEM;
572 
573 	skb_queue_head_init(&qca->txq);
574 	skb_queue_head_init(&qca->tx_wait_q);
575 	skb_queue_head_init(&qca->rx_memdump_q);
576 	spin_lock_init(&qca->hci_ibs_lock);
577 	mutex_init(&qca->hci_memdump_lock);
578 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
579 	if (!qca->workqueue) {
580 		BT_ERR("QCA Workqueue not initialized properly");
581 		kfree(qca);
582 		return -ENOMEM;
583 	}
584 
585 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
586 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
587 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
588 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
589 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
590 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
591 			  qca_controller_memdump_timeout);
592 	init_waitqueue_head(&qca->suspend_wait_q);
593 
594 	qca->hu = hu;
595 	init_completion(&qca->drop_ev_comp);
596 
597 	/* Assume we start with both sides asleep -- extra wakes OK */
598 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
599 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
600 
601 	qca->vote_last_jif = jiffies;
602 
603 	hu->priv = qca;
604 
605 	if (hu->serdev) {
606 		qcadev = serdev_device_get_drvdata(hu->serdev);
607 
608 		if (qca_is_wcn399x(qcadev->btsoc_type))
609 			hu->init_speed = qcadev->init_speed;
610 
611 		if (qcadev->oper_speed)
612 			hu->oper_speed = qcadev->oper_speed;
613 	}
614 
615 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
616 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
617 
618 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
619 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
620 
621 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
622 	       qca->tx_idle_delay, qca->wake_retrans);
623 
624 	return 0;
625 }
626 
qca_debugfs_init(struct hci_dev * hdev)627 static void qca_debugfs_init(struct hci_dev *hdev)
628 {
629 	struct hci_uart *hu = hci_get_drvdata(hdev);
630 	struct qca_data *qca = hu->priv;
631 	struct dentry *ibs_dir;
632 	umode_t mode;
633 
634 	if (!hdev->debugfs)
635 		return;
636 
637 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
638 		return;
639 
640 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
641 
642 	/* read only */
643 	mode = S_IRUGO;
644 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
645 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
646 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
647 			   &qca->ibs_sent_slps);
648 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
649 			   &qca->ibs_sent_wakes);
650 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
651 			   &qca->ibs_sent_wacks);
652 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
653 			   &qca->ibs_recv_slps);
654 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
655 			   &qca->ibs_recv_wakes);
656 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
657 			   &qca->ibs_recv_wacks);
658 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
659 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
660 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
661 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
662 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
663 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
664 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
665 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
666 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
667 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
668 
669 	/* read/write */
670 	mode = S_IRUGO | S_IWUSR;
671 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
672 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
673 			   &qca->tx_idle_delay);
674 }
675 
676 /* Flush protocol data */
qca_flush(struct hci_uart * hu)677 static int qca_flush(struct hci_uart *hu)
678 {
679 	struct qca_data *qca = hu->priv;
680 
681 	BT_DBG("hu %p qca flush", hu);
682 
683 	skb_queue_purge(&qca->tx_wait_q);
684 	skb_queue_purge(&qca->txq);
685 
686 	return 0;
687 }
688 
689 /* Close protocol */
qca_close(struct hci_uart * hu)690 static int qca_close(struct hci_uart *hu)
691 {
692 	struct qca_data *qca = hu->priv;
693 
694 	BT_DBG("hu %p qca close", hu);
695 
696 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
697 
698 	skb_queue_purge(&qca->tx_wait_q);
699 	skb_queue_purge(&qca->txq);
700 	skb_queue_purge(&qca->rx_memdump_q);
701 	destroy_workqueue(qca->workqueue);
702 	del_timer_sync(&qca->tx_idle_timer);
703 	del_timer_sync(&qca->wake_retrans_timer);
704 	qca->hu = NULL;
705 
706 	kfree_skb(qca->rx_skb);
707 
708 	hu->priv = NULL;
709 
710 	kfree(qca);
711 
712 	return 0;
713 }
714 
715 /* Called upon a wake-up-indication from the device.
716  */
device_want_to_wakeup(struct hci_uart * hu)717 static void device_want_to_wakeup(struct hci_uart *hu)
718 {
719 	unsigned long flags;
720 	struct qca_data *qca = hu->priv;
721 
722 	BT_DBG("hu %p want to wake up", hu);
723 
724 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
725 
726 	qca->ibs_recv_wakes++;
727 
728 	/* Don't wake the rx up when suspending. */
729 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
730 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
731 		return;
732 	}
733 
734 	switch (qca->rx_ibs_state) {
735 	case HCI_IBS_RX_ASLEEP:
736 		/* Make sure clock is on - we may have turned clock off since
737 		 * receiving the wake up indicator awake rx clock.
738 		 */
739 		queue_work(qca->workqueue, &qca->ws_awake_rx);
740 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
741 		return;
742 
743 	case HCI_IBS_RX_AWAKE:
744 		/* Always acknowledge device wake up,
745 		 * sending IBS message doesn't count as TX ON.
746 		 */
747 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
748 			BT_ERR("Failed to acknowledge device wake up");
749 			break;
750 		}
751 		qca->ibs_sent_wacks++;
752 		break;
753 
754 	default:
755 		/* Any other state is illegal */
756 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
757 		       qca->rx_ibs_state);
758 		break;
759 	}
760 
761 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
762 
763 	/* Actually send the packets */
764 	hci_uart_tx_wakeup(hu);
765 }
766 
767 /* Called upon a sleep-indication from the device.
768  */
device_want_to_sleep(struct hci_uart * hu)769 static void device_want_to_sleep(struct hci_uart *hu)
770 {
771 	unsigned long flags;
772 	struct qca_data *qca = hu->priv;
773 
774 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
775 
776 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
777 
778 	qca->ibs_recv_slps++;
779 
780 	switch (qca->rx_ibs_state) {
781 	case HCI_IBS_RX_AWAKE:
782 		/* Update state */
783 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
784 		/* Vote off rx clock under workqueue */
785 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
786 		break;
787 
788 	case HCI_IBS_RX_ASLEEP:
789 		break;
790 
791 	default:
792 		/* Any other state is illegal */
793 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
794 		       qca->rx_ibs_state);
795 		break;
796 	}
797 
798 	wake_up_interruptible(&qca->suspend_wait_q);
799 
800 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
801 }
802 
803 /* Called upon wake-up-acknowledgement from the device
804  */
device_woke_up(struct hci_uart * hu)805 static void device_woke_up(struct hci_uart *hu)
806 {
807 	unsigned long flags, idle_delay;
808 	struct qca_data *qca = hu->priv;
809 	struct sk_buff *skb = NULL;
810 
811 	BT_DBG("hu %p woke up", hu);
812 
813 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
814 
815 	qca->ibs_recv_wacks++;
816 
817 	/* Don't react to the wake-up-acknowledgment when suspending. */
818 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
819 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
820 		return;
821 	}
822 
823 	switch (qca->tx_ibs_state) {
824 	case HCI_IBS_TX_AWAKE:
825 		/* Expect one if we send 2 WAKEs */
826 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
827 		       qca->tx_ibs_state);
828 		break;
829 
830 	case HCI_IBS_TX_WAKING:
831 		/* Send pending packets */
832 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
833 			skb_queue_tail(&qca->txq, skb);
834 
835 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
836 		del_timer(&qca->wake_retrans_timer);
837 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
838 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
839 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
840 		break;
841 
842 	case HCI_IBS_TX_ASLEEP:
843 	default:
844 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
845 		       qca->tx_ibs_state);
846 		break;
847 	}
848 
849 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
850 
851 	/* Actually send the packets */
852 	hci_uart_tx_wakeup(hu);
853 }
854 
855 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
856  * two simultaneous tasklets.
857  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)858 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
859 {
860 	unsigned long flags = 0, idle_delay;
861 	struct qca_data *qca = hu->priv;
862 
863 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
864 	       qca->tx_ibs_state);
865 
866 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
867 		/* As SSR is in progress, ignore the packets */
868 		bt_dev_dbg(hu->hdev, "SSR is in progress");
869 		kfree_skb(skb);
870 		return 0;
871 	}
872 
873 	/* Prepend skb with frame type */
874 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
875 
876 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
877 
878 	/* Don't go to sleep in middle of patch download or
879 	 * Out-Of-Band(GPIOs control) sleep is selected.
880 	 * Don't wake the device up when suspending.
881 	 */
882 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
883 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
884 		skb_queue_tail(&qca->txq, skb);
885 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
886 		return 0;
887 	}
888 
889 	/* Act according to current state */
890 	switch (qca->tx_ibs_state) {
891 	case HCI_IBS_TX_AWAKE:
892 		BT_DBG("Device awake, sending normally");
893 		skb_queue_tail(&qca->txq, skb);
894 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
895 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
896 		break;
897 
898 	case HCI_IBS_TX_ASLEEP:
899 		BT_DBG("Device asleep, waking up and queueing packet");
900 		/* Save packet for later */
901 		skb_queue_tail(&qca->tx_wait_q, skb);
902 
903 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
904 		/* Schedule a work queue to wake up device */
905 		queue_work(qca->workqueue, &qca->ws_awake_device);
906 		break;
907 
908 	case HCI_IBS_TX_WAKING:
909 		BT_DBG("Device waking up, queueing packet");
910 		/* Transient state; just keep packet for later */
911 		skb_queue_tail(&qca->tx_wait_q, skb);
912 		break;
913 
914 	default:
915 		BT_ERR("Illegal tx state: %d (losing packet)",
916 		       qca->tx_ibs_state);
917 		dev_kfree_skb_irq(skb);
918 		break;
919 	}
920 
921 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
922 
923 	return 0;
924 }
925 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)926 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
927 {
928 	struct hci_uart *hu = hci_get_drvdata(hdev);
929 
930 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
931 
932 	device_want_to_sleep(hu);
933 
934 	kfree_skb(skb);
935 	return 0;
936 }
937 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)938 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
939 {
940 	struct hci_uart *hu = hci_get_drvdata(hdev);
941 
942 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
943 
944 	device_want_to_wakeup(hu);
945 
946 	kfree_skb(skb);
947 	return 0;
948 }
949 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)950 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
951 {
952 	struct hci_uart *hu = hci_get_drvdata(hdev);
953 
954 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
955 
956 	device_woke_up(hu);
957 
958 	kfree_skb(skb);
959 	return 0;
960 }
961 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)962 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
963 {
964 	/* We receive debug logs from chip as an ACL packets.
965 	 * Instead of sending the data to ACL to decode the
966 	 * received data, we are pushing them to the above layers
967 	 * as a diagnostic packet.
968 	 */
969 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
970 		return hci_recv_diag(hdev, skb);
971 
972 	return hci_recv_frame(hdev, skb);
973 }
974 
qca_controller_memdump(struct work_struct * work)975 static void qca_controller_memdump(struct work_struct *work)
976 {
977 	struct qca_data *qca = container_of(work, struct qca_data,
978 					    ctrl_memdump_evt);
979 	struct hci_uart *hu = qca->hu;
980 	struct sk_buff *skb;
981 	struct qca_memdump_event_hdr *cmd_hdr;
982 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
983 	struct qca_dump_size *dump;
984 	char *memdump_buf;
985 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
986 	u16 seq_no;
987 	u32 dump_size;
988 	u32 rx_size;
989 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
990 
991 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
992 
993 		mutex_lock(&qca->hci_memdump_lock);
994 		/* Skip processing the received packets if timeout detected
995 		 * or memdump collection completed.
996 		 */
997 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
998 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
999 			mutex_unlock(&qca->hci_memdump_lock);
1000 			return;
1001 		}
1002 
1003 		if (!qca_memdump) {
1004 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1005 					      GFP_ATOMIC);
1006 			if (!qca_memdump) {
1007 				mutex_unlock(&qca->hci_memdump_lock);
1008 				return;
1009 			}
1010 
1011 			qca->qca_memdump = qca_memdump;
1012 		}
1013 
1014 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1015 		cmd_hdr = (void *) skb->data;
1016 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1017 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1018 
1019 		if (!seq_no) {
1020 
1021 			/* This is the first frame of memdump packet from
1022 			 * the controller, Disable IBS to recevie dump
1023 			 * with out any interruption, ideally time required for
1024 			 * the controller to send the dump is 8 seconds. let us
1025 			 * start timer to handle this asynchronous activity.
1026 			 */
1027 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1028 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1029 			dump = (void *) skb->data;
1030 			dump_size = __le32_to_cpu(dump->dump_size);
1031 			if (!(dump_size)) {
1032 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1033 				kfree(qca_memdump);
1034 				kfree_skb(skb);
1035 				qca->qca_memdump = NULL;
1036 				mutex_unlock(&qca->hci_memdump_lock);
1037 				return;
1038 			}
1039 
1040 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1041 				    dump_size);
1042 			queue_delayed_work(qca->workqueue,
1043 					   &qca->ctrl_memdump_timeout,
1044 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1045 					  );
1046 
1047 			skb_pull(skb, sizeof(dump_size));
1048 			memdump_buf = vmalloc(dump_size);
1049 			qca_memdump->ram_dump_size = dump_size;
1050 			qca_memdump->memdump_buf_head = memdump_buf;
1051 			qca_memdump->memdump_buf_tail = memdump_buf;
1052 		}
1053 
1054 		memdump_buf = qca_memdump->memdump_buf_tail;
1055 
1056 		/* If sequence no 0 is missed then there is no point in
1057 		 * accepting the other sequences.
1058 		 */
1059 		if (!memdump_buf) {
1060 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1061 			kfree(qca_memdump);
1062 			kfree_skb(skb);
1063 			qca->qca_memdump = NULL;
1064 			mutex_unlock(&qca->hci_memdump_lock);
1065 			return;
1066 		}
1067 
1068 		/* There could be chance of missing some packets from
1069 		 * the controller. In such cases let us store the dummy
1070 		 * packets in the buffer.
1071 		 */
1072 		/* For QCA6390, controller does not lost packets but
1073 		 * sequence number field of packat sometimes has error
1074 		 * bits, so skip this checking for missing packet.
1075 		 */
1076 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1077 		       (soc_type != QCA_QCA6390) &&
1078 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1079 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1080 				   qca_memdump->current_seq_no);
1081 			rx_size = qca_memdump->received_dump;
1082 			rx_size += QCA_DUMP_PACKET_SIZE;
1083 			if (rx_size > qca_memdump->ram_dump_size) {
1084 				bt_dev_err(hu->hdev,
1085 					   "QCA memdump received %d, no space for missed packet",
1086 					   qca_memdump->received_dump);
1087 				break;
1088 			}
1089 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1090 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1091 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1092 			qca_memdump->current_seq_no++;
1093 		}
1094 
1095 		rx_size = qca_memdump->received_dump + skb->len;
1096 		if (rx_size <= qca_memdump->ram_dump_size) {
1097 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1098 			    (seq_no != qca_memdump->current_seq_no))
1099 				bt_dev_err(hu->hdev,
1100 					   "QCA memdump unexpected packet %d",
1101 					   seq_no);
1102 			bt_dev_dbg(hu->hdev,
1103 				   "QCA memdump packet %d with length %d",
1104 				   seq_no, skb->len);
1105 			memcpy(memdump_buf, (unsigned char *)skb->data,
1106 			       skb->len);
1107 			memdump_buf = memdump_buf + skb->len;
1108 			qca_memdump->memdump_buf_tail = memdump_buf;
1109 			qca_memdump->current_seq_no = seq_no + 1;
1110 			qca_memdump->received_dump += skb->len;
1111 		} else {
1112 			bt_dev_err(hu->hdev,
1113 				   "QCA memdump received %d, no space for packet %d",
1114 				   qca_memdump->received_dump, seq_no);
1115 		}
1116 		qca->qca_memdump = qca_memdump;
1117 		kfree_skb(skb);
1118 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1119 			bt_dev_info(hu->hdev,
1120 				    "QCA memdump Done, received %d, total %d",
1121 				    qca_memdump->received_dump,
1122 				    qca_memdump->ram_dump_size);
1123 			memdump_buf = qca_memdump->memdump_buf_head;
1124 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1125 				      qca_memdump->received_dump, GFP_KERNEL);
1126 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1127 			kfree(qca->qca_memdump);
1128 			qca->qca_memdump = NULL;
1129 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1130 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1131 		}
1132 
1133 		mutex_unlock(&qca->hci_memdump_lock);
1134 	}
1135 
1136 }
1137 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1138 static int qca_controller_memdump_event(struct hci_dev *hdev,
1139 					struct sk_buff *skb)
1140 {
1141 	struct hci_uart *hu = hci_get_drvdata(hdev);
1142 	struct qca_data *qca = hu->priv;
1143 
1144 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1145 	skb_queue_tail(&qca->rx_memdump_q, skb);
1146 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1147 
1148 	return 0;
1149 }
1150 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1151 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1152 {
1153 	struct hci_uart *hu = hci_get_drvdata(hdev);
1154 	struct qca_data *qca = hu->priv;
1155 
1156 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1157 		struct hci_event_hdr *hdr = (void *)skb->data;
1158 
1159 		/* For the WCN3990 the vendor command for a baudrate change
1160 		 * isn't sent as synchronous HCI command, because the
1161 		 * controller sends the corresponding vendor event with the
1162 		 * new baudrate. The event is received and properly decoded
1163 		 * after changing the baudrate of the host port. It needs to
1164 		 * be dropped, otherwise it can be misinterpreted as
1165 		 * response to a later firmware download command (also a
1166 		 * vendor command).
1167 		 */
1168 
1169 		if (hdr->evt == HCI_EV_VENDOR)
1170 			complete(&qca->drop_ev_comp);
1171 
1172 		kfree_skb(skb);
1173 
1174 		return 0;
1175 	}
1176 	/* We receive chip memory dump as an event packet, With a dedicated
1177 	 * handler followed by a hardware error event. When this event is
1178 	 * received we store dump into a file before closing hci. This
1179 	 * dump will help in triaging the issues.
1180 	 */
1181 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1182 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1183 		return qca_controller_memdump_event(hdev, skb);
1184 
1185 	return hci_recv_frame(hdev, skb);
1186 }
1187 
1188 #define QCA_IBS_SLEEP_IND_EVENT \
1189 	.type = HCI_IBS_SLEEP_IND, \
1190 	.hlen = 0, \
1191 	.loff = 0, \
1192 	.lsize = 0, \
1193 	.maxlen = HCI_MAX_IBS_SIZE
1194 
1195 #define QCA_IBS_WAKE_IND_EVENT \
1196 	.type = HCI_IBS_WAKE_IND, \
1197 	.hlen = 0, \
1198 	.loff = 0, \
1199 	.lsize = 0, \
1200 	.maxlen = HCI_MAX_IBS_SIZE
1201 
1202 #define QCA_IBS_WAKE_ACK_EVENT \
1203 	.type = HCI_IBS_WAKE_ACK, \
1204 	.hlen = 0, \
1205 	.loff = 0, \
1206 	.lsize = 0, \
1207 	.maxlen = HCI_MAX_IBS_SIZE
1208 
1209 static const struct h4_recv_pkt qca_recv_pkts[] = {
1210 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1211 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1212 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1213 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1214 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1215 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1216 };
1217 
qca_recv(struct hci_uart * hu,const void * data,int count)1218 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1219 {
1220 	struct qca_data *qca = hu->priv;
1221 
1222 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1223 		return -EUNATCH;
1224 
1225 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1226 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1227 	if (IS_ERR(qca->rx_skb)) {
1228 		int err = PTR_ERR(qca->rx_skb);
1229 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1230 		qca->rx_skb = NULL;
1231 		return err;
1232 	}
1233 
1234 	return count;
1235 }
1236 
qca_dequeue(struct hci_uart * hu)1237 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1238 {
1239 	struct qca_data *qca = hu->priv;
1240 
1241 	return skb_dequeue(&qca->txq);
1242 }
1243 
qca_get_baudrate_value(int speed)1244 static uint8_t qca_get_baudrate_value(int speed)
1245 {
1246 	switch (speed) {
1247 	case 9600:
1248 		return QCA_BAUDRATE_9600;
1249 	case 19200:
1250 		return QCA_BAUDRATE_19200;
1251 	case 38400:
1252 		return QCA_BAUDRATE_38400;
1253 	case 57600:
1254 		return QCA_BAUDRATE_57600;
1255 	case 115200:
1256 		return QCA_BAUDRATE_115200;
1257 	case 230400:
1258 		return QCA_BAUDRATE_230400;
1259 	case 460800:
1260 		return QCA_BAUDRATE_460800;
1261 	case 500000:
1262 		return QCA_BAUDRATE_500000;
1263 	case 921600:
1264 		return QCA_BAUDRATE_921600;
1265 	case 1000000:
1266 		return QCA_BAUDRATE_1000000;
1267 	case 2000000:
1268 		return QCA_BAUDRATE_2000000;
1269 	case 3000000:
1270 		return QCA_BAUDRATE_3000000;
1271 	case 3200000:
1272 		return QCA_BAUDRATE_3200000;
1273 	case 3500000:
1274 		return QCA_BAUDRATE_3500000;
1275 	default:
1276 		return QCA_BAUDRATE_115200;
1277 	}
1278 }
1279 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1280 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1281 {
1282 	struct hci_uart *hu = hci_get_drvdata(hdev);
1283 	struct qca_data *qca = hu->priv;
1284 	struct sk_buff *skb;
1285 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1286 
1287 	if (baudrate > QCA_BAUDRATE_3200000)
1288 		return -EINVAL;
1289 
1290 	cmd[4] = baudrate;
1291 
1292 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1293 	if (!skb) {
1294 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1295 		return -ENOMEM;
1296 	}
1297 
1298 	/* Assign commands to change baudrate and packet type. */
1299 	skb_put_data(skb, cmd, sizeof(cmd));
1300 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1301 
1302 	skb_queue_tail(&qca->txq, skb);
1303 	hci_uart_tx_wakeup(hu);
1304 
1305 	/* Wait for the baudrate change request to be sent */
1306 
1307 	while (!skb_queue_empty(&qca->txq))
1308 		usleep_range(100, 200);
1309 
1310 	if (hu->serdev)
1311 		serdev_device_wait_until_sent(hu->serdev,
1312 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1313 
1314 	/* Give the controller time to process the request */
1315 	if (qca_is_wcn399x(qca_soc_type(hu)))
1316 		msleep(10);
1317 	else
1318 		msleep(300);
1319 
1320 	return 0;
1321 }
1322 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1323 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1324 {
1325 	if (hu->serdev)
1326 		serdev_device_set_baudrate(hu->serdev, speed);
1327 	else
1328 		hci_uart_set_baudrate(hu, speed);
1329 }
1330 
qca_send_power_pulse(struct hci_uart * hu,bool on)1331 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1332 {
1333 	int ret;
1334 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1335 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1336 
1337 	/* These power pulses are single byte command which are sent
1338 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1339 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1340 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1341 	 * and also we use the same power inputs to turn on and off for
1342 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1343 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1344 	 * save power. Disabling hardware flow control is mandatory while
1345 	 * sending power pulses to SoC.
1346 	 */
1347 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1348 
1349 	serdev_device_write_flush(hu->serdev);
1350 	hci_uart_set_flow_control(hu, true);
1351 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1352 	if (ret < 0) {
1353 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1354 		return ret;
1355 	}
1356 
1357 	serdev_device_wait_until_sent(hu->serdev, timeout);
1358 	hci_uart_set_flow_control(hu, false);
1359 
1360 	/* Give to controller time to boot/shutdown */
1361 	if (on)
1362 		msleep(100);
1363 	else
1364 		msleep(10);
1365 
1366 	return 0;
1367 }
1368 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1369 static unsigned int qca_get_speed(struct hci_uart *hu,
1370 				  enum qca_speed_type speed_type)
1371 {
1372 	unsigned int speed = 0;
1373 
1374 	if (speed_type == QCA_INIT_SPEED) {
1375 		if (hu->init_speed)
1376 			speed = hu->init_speed;
1377 		else if (hu->proto->init_speed)
1378 			speed = hu->proto->init_speed;
1379 	} else {
1380 		if (hu->oper_speed)
1381 			speed = hu->oper_speed;
1382 		else if (hu->proto->oper_speed)
1383 			speed = hu->proto->oper_speed;
1384 	}
1385 
1386 	return speed;
1387 }
1388 
qca_check_speeds(struct hci_uart * hu)1389 static int qca_check_speeds(struct hci_uart *hu)
1390 {
1391 	if (qca_is_wcn399x(qca_soc_type(hu))) {
1392 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1393 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1394 			return -EINVAL;
1395 	} else {
1396 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1397 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1398 			return -EINVAL;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1404 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1405 {
1406 	unsigned int speed, qca_baudrate;
1407 	struct qca_data *qca = hu->priv;
1408 	int ret = 0;
1409 
1410 	if (speed_type == QCA_INIT_SPEED) {
1411 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1412 		if (speed)
1413 			host_set_baudrate(hu, speed);
1414 	} else {
1415 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1416 
1417 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1418 		if (!speed)
1419 			return 0;
1420 
1421 		/* Disable flow control for wcn3990 to deassert RTS while
1422 		 * changing the baudrate of chip and host.
1423 		 */
1424 		if (qca_is_wcn399x(soc_type))
1425 			hci_uart_set_flow_control(hu, true);
1426 
1427 		if (soc_type == QCA_WCN3990) {
1428 			reinit_completion(&qca->drop_ev_comp);
1429 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1430 		}
1431 
1432 		qca_baudrate = qca_get_baudrate_value(speed);
1433 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1434 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1435 		if (ret)
1436 			goto error;
1437 
1438 		host_set_baudrate(hu, speed);
1439 
1440 error:
1441 		if (qca_is_wcn399x(soc_type))
1442 			hci_uart_set_flow_control(hu, false);
1443 
1444 		if (soc_type == QCA_WCN3990) {
1445 			/* Wait for the controller to send the vendor event
1446 			 * for the baudrate change command.
1447 			 */
1448 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1449 						 msecs_to_jiffies(100))) {
1450 				bt_dev_err(hu->hdev,
1451 					   "Failed to change controller baudrate\n");
1452 				ret = -ETIMEDOUT;
1453 			}
1454 
1455 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1456 		}
1457 	}
1458 
1459 	return ret;
1460 }
1461 
qca_send_crashbuffer(struct hci_uart * hu)1462 static int qca_send_crashbuffer(struct hci_uart *hu)
1463 {
1464 	struct qca_data *qca = hu->priv;
1465 	struct sk_buff *skb;
1466 
1467 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1468 	if (!skb) {
1469 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1470 		return -ENOMEM;
1471 	}
1472 
1473 	/* We forcefully crash the controller, by sending 0xfb byte for
1474 	 * 1024 times. We also might have chance of losing data, To be
1475 	 * on safer side we send 1096 bytes to the SoC.
1476 	 */
1477 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1478 	       QCA_CRASHBYTE_PACKET_LEN);
1479 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1480 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1481 	skb_queue_tail(&qca->txq, skb);
1482 	hci_uart_tx_wakeup(hu);
1483 
1484 	return 0;
1485 }
1486 
qca_wait_for_dump_collection(struct hci_dev * hdev)1487 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1488 {
1489 	struct hci_uart *hu = hci_get_drvdata(hdev);
1490 	struct qca_data *qca = hu->priv;
1491 
1492 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1493 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1494 
1495 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1496 }
1497 
qca_hw_error(struct hci_dev * hdev,u8 code)1498 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1499 {
1500 	struct hci_uart *hu = hci_get_drvdata(hdev);
1501 	struct qca_data *qca = hu->priv;
1502 
1503 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1504 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1505 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1506 
1507 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1508 		/* If hardware error event received for other than QCA
1509 		 * soc memory dump event, then we need to crash the SOC
1510 		 * and wait here for 8 seconds to get the dump packets.
1511 		 * This will block main thread to be on hold until we
1512 		 * collect dump.
1513 		 */
1514 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1515 		qca_send_crashbuffer(hu);
1516 		qca_wait_for_dump_collection(hdev);
1517 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1518 		/* Let us wait here until memory dump collected or
1519 		 * memory dump timer expired.
1520 		 */
1521 		bt_dev_info(hdev, "waiting for dump to complete");
1522 		qca_wait_for_dump_collection(hdev);
1523 	}
1524 
1525 	mutex_lock(&qca->hci_memdump_lock);
1526 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1527 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1528 		if (qca->qca_memdump) {
1529 			vfree(qca->qca_memdump->memdump_buf_head);
1530 			kfree(qca->qca_memdump);
1531 			qca->qca_memdump = NULL;
1532 		}
1533 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1534 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1535 	}
1536 	mutex_unlock(&qca->hci_memdump_lock);
1537 
1538 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1539 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1540 		cancel_work_sync(&qca->ctrl_memdump_evt);
1541 		skb_queue_purge(&qca->rx_memdump_q);
1542 	}
1543 
1544 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1545 }
1546 
qca_cmd_timeout(struct hci_dev * hdev)1547 static void qca_cmd_timeout(struct hci_dev *hdev)
1548 {
1549 	struct hci_uart *hu = hci_get_drvdata(hdev);
1550 	struct qca_data *qca = hu->priv;
1551 
1552 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1553 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1554 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1555 		qca_send_crashbuffer(hu);
1556 		qca_wait_for_dump_collection(hdev);
1557 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1558 		/* Let us wait here until memory dump collected or
1559 		 * memory dump timer expired.
1560 		 */
1561 		bt_dev_info(hdev, "waiting for dump to complete");
1562 		qca_wait_for_dump_collection(hdev);
1563 	}
1564 
1565 	mutex_lock(&qca->hci_memdump_lock);
1566 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1567 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1568 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1569 			/* Inject hw error event to reset the device
1570 			 * and driver.
1571 			 */
1572 			hci_reset_dev(hu->hdev);
1573 		}
1574 	}
1575 	mutex_unlock(&qca->hci_memdump_lock);
1576 }
1577 
qca_wcn3990_init(struct hci_uart * hu)1578 static int qca_wcn3990_init(struct hci_uart *hu)
1579 {
1580 	struct qca_serdev *qcadev;
1581 	int ret;
1582 
1583 	/* Check for vregs status, may be hci down has turned
1584 	 * off the voltage regulator.
1585 	 */
1586 	qcadev = serdev_device_get_drvdata(hu->serdev);
1587 	if (!qcadev->bt_power->vregs_on) {
1588 		serdev_device_close(hu->serdev);
1589 		ret = qca_regulator_enable(qcadev);
1590 		if (ret)
1591 			return ret;
1592 
1593 		ret = serdev_device_open(hu->serdev);
1594 		if (ret) {
1595 			bt_dev_err(hu->hdev, "failed to open port");
1596 			return ret;
1597 		}
1598 	}
1599 
1600 	/* Forcefully enable wcn3990 to enter in to boot mode. */
1601 	host_set_baudrate(hu, 2400);
1602 	ret = qca_send_power_pulse(hu, false);
1603 	if (ret)
1604 		return ret;
1605 
1606 	qca_set_speed(hu, QCA_INIT_SPEED);
1607 	ret = qca_send_power_pulse(hu, true);
1608 	if (ret)
1609 		return ret;
1610 
1611 	/* Now the device is in ready state to communicate with host.
1612 	 * To sync host with device we need to reopen port.
1613 	 * Without this, we will have RTS and CTS synchronization
1614 	 * issues.
1615 	 */
1616 	serdev_device_close(hu->serdev);
1617 	ret = serdev_device_open(hu->serdev);
1618 	if (ret) {
1619 		bt_dev_err(hu->hdev, "failed to open port");
1620 		return ret;
1621 	}
1622 
1623 	hci_uart_set_flow_control(hu, false);
1624 
1625 	return 0;
1626 }
1627 
qca_power_on(struct hci_dev * hdev)1628 static int qca_power_on(struct hci_dev *hdev)
1629 {
1630 	struct hci_uart *hu = hci_get_drvdata(hdev);
1631 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1632 	struct qca_serdev *qcadev;
1633 	struct qca_data *qca = hu->priv;
1634 	int ret = 0;
1635 
1636 	/* Non-serdev device usually is powered by external power
1637 	 * and don't need additional action in driver for power on
1638 	 */
1639 	if (!hu->serdev)
1640 		return 0;
1641 
1642 	if (qca_is_wcn399x(soc_type)) {
1643 		ret = qca_wcn3990_init(hu);
1644 	} else {
1645 		qcadev = serdev_device_get_drvdata(hu->serdev);
1646 		if (qcadev->bt_en) {
1647 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1648 			/* Controller needs time to bootup. */
1649 			msleep(150);
1650 		}
1651 	}
1652 
1653 	clear_bit(QCA_BT_OFF, &qca->flags);
1654 	return ret;
1655 }
1656 
qca_setup(struct hci_uart * hu)1657 static int qca_setup(struct hci_uart *hu)
1658 {
1659 	struct hci_dev *hdev = hu->hdev;
1660 	struct qca_data *qca = hu->priv;
1661 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1662 	unsigned int retries = 0;
1663 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1664 	const char *firmware_name = qca_get_firmware_name(hu);
1665 	int ret;
1666 	int soc_ver = 0;
1667 
1668 	ret = qca_check_speeds(hu);
1669 	if (ret)
1670 		return ret;
1671 
1672 	clear_bit(QCA_ROM_FW, &qca->flags);
1673 	/* Patch downloading has to be done without IBS mode */
1674 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1675 
1676 	/* Enable controller to do both LE scan and BR/EDR inquiry
1677 	 * simultaneously.
1678 	 */
1679 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1680 
1681 	bt_dev_info(hdev, "setting up %s",
1682 		qca_is_wcn399x(soc_type) ? "wcn399x" : "ROME/QCA6390");
1683 
1684 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1685 
1686 retry:
1687 	ret = qca_power_on(hdev);
1688 	if (ret)
1689 		return ret;
1690 
1691 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1692 
1693 	if (qca_is_wcn399x(soc_type)) {
1694 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1695 
1696 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1697 		if (ret)
1698 			return ret;
1699 	} else {
1700 		qca_set_speed(hu, QCA_INIT_SPEED);
1701 	}
1702 
1703 	/* Setup user speed if needed */
1704 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1705 	if (speed) {
1706 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1707 		if (ret)
1708 			return ret;
1709 
1710 		qca_baudrate = qca_get_baudrate_value(speed);
1711 	}
1712 
1713 	if (!qca_is_wcn399x(soc_type)) {
1714 		/* Get QCA version information */
1715 		ret = qca_read_soc_version(hdev, &soc_ver, soc_type);
1716 		if (ret)
1717 			return ret;
1718 	}
1719 
1720 	bt_dev_info(hdev, "QCA controller version 0x%08x", soc_ver);
1721 	/* Setup patch / NVM configurations */
1722 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, soc_ver,
1723 			firmware_name);
1724 	if (!ret) {
1725 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1726 		qca_debugfs_init(hdev);
1727 		hu->hdev->hw_error = qca_hw_error;
1728 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1729 	} else if (ret == -ENOENT) {
1730 		/* No patch/nvm-config found, run with original fw/config */
1731 		set_bit(QCA_ROM_FW, &qca->flags);
1732 		ret = 0;
1733 	} else if (ret == -EAGAIN) {
1734 		/*
1735 		 * Userspace firmware loader will return -EAGAIN in case no
1736 		 * patch/nvm-config is found, so run with original fw/config.
1737 		 */
1738 		set_bit(QCA_ROM_FW, &qca->flags);
1739 		ret = 0;
1740 	} else {
1741 		if (retries < MAX_INIT_RETRIES) {
1742 			qca_power_shutdown(hu);
1743 			if (hu->serdev) {
1744 				serdev_device_close(hu->serdev);
1745 				ret = serdev_device_open(hu->serdev);
1746 				if (ret) {
1747 					bt_dev_err(hdev, "failed to open port");
1748 					return ret;
1749 				}
1750 			}
1751 			retries++;
1752 			goto retry;
1753 		}
1754 	}
1755 
1756 	/* Setup bdaddr */
1757 	if (soc_type == QCA_ROME)
1758 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1759 	else
1760 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1761 
1762 	return ret;
1763 }
1764 
1765 static const struct hci_uart_proto qca_proto = {
1766 	.id		= HCI_UART_QCA,
1767 	.name		= "QCA",
1768 	.manufacturer	= 29,
1769 	.init_speed	= 115200,
1770 	.oper_speed	= 3000000,
1771 	.open		= qca_open,
1772 	.close		= qca_close,
1773 	.flush		= qca_flush,
1774 	.setup		= qca_setup,
1775 	.recv		= qca_recv,
1776 	.enqueue	= qca_enqueue,
1777 	.dequeue	= qca_dequeue,
1778 };
1779 
1780 static const struct qca_device_data qca_soc_data_wcn3990 = {
1781 	.soc_type = QCA_WCN3990,
1782 	.vregs = (struct qca_vreg []) {
1783 		{ "vddio", 15000  },
1784 		{ "vddxo", 80000  },
1785 		{ "vddrf", 300000 },
1786 		{ "vddch0", 450000 },
1787 	},
1788 	.num_vregs = 4,
1789 };
1790 
1791 static const struct qca_device_data qca_soc_data_wcn3991 = {
1792 	.soc_type = QCA_WCN3991,
1793 	.vregs = (struct qca_vreg []) {
1794 		{ "vddio", 15000  },
1795 		{ "vddxo", 80000  },
1796 		{ "vddrf", 300000 },
1797 		{ "vddch0", 450000 },
1798 	},
1799 	.num_vregs = 4,
1800 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1801 };
1802 
1803 static const struct qca_device_data qca_soc_data_wcn3998 = {
1804 	.soc_type = QCA_WCN3998,
1805 	.vregs = (struct qca_vreg []) {
1806 		{ "vddio", 10000  },
1807 		{ "vddxo", 80000  },
1808 		{ "vddrf", 300000 },
1809 		{ "vddch0", 450000 },
1810 	},
1811 	.num_vregs = 4,
1812 };
1813 
1814 static const struct qca_device_data qca_soc_data_qca6390 = {
1815 	.soc_type = QCA_QCA6390,
1816 	.num_vregs = 0,
1817 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1818 };
1819 
qca_power_shutdown(struct hci_uart * hu)1820 static void qca_power_shutdown(struct hci_uart *hu)
1821 {
1822 	struct qca_serdev *qcadev;
1823 	struct qca_data *qca = hu->priv;
1824 	unsigned long flags;
1825 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1826 
1827 	/* From this point we go into power off state. But serial port is
1828 	 * still open, stop queueing the IBS data and flush all the buffered
1829 	 * data in skb's.
1830 	 */
1831 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1832 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1833 	qca_flush(hu);
1834 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1835 
1836 	/* Non-serdev device usually is powered by external power
1837 	 * and don't need additional action in driver for power down
1838 	 */
1839 	if (!hu->serdev)
1840 		return;
1841 
1842 	qcadev = serdev_device_get_drvdata(hu->serdev);
1843 
1844 	if (qca_is_wcn399x(soc_type)) {
1845 		host_set_baudrate(hu, 2400);
1846 		qca_send_power_pulse(hu, false);
1847 		qca_regulator_disable(qcadev);
1848 	} else if (qcadev->bt_en) {
1849 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1850 	}
1851 
1852 	set_bit(QCA_BT_OFF, &qca->flags);
1853 }
1854 
qca_power_off(struct hci_dev * hdev)1855 static int qca_power_off(struct hci_dev *hdev)
1856 {
1857 	struct hci_uart *hu = hci_get_drvdata(hdev);
1858 	struct qca_data *qca = hu->priv;
1859 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1860 
1861 	hu->hdev->hw_error = NULL;
1862 	hu->hdev->cmd_timeout = NULL;
1863 
1864 	del_timer_sync(&qca->wake_retrans_timer);
1865 	del_timer_sync(&qca->tx_idle_timer);
1866 
1867 	/* Stop sending shutdown command if soc crashes. */
1868 	if (soc_type != QCA_ROME
1869 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1870 		qca_send_pre_shutdown_cmd(hdev);
1871 		usleep_range(8000, 10000);
1872 	}
1873 
1874 	qca_power_shutdown(hu);
1875 	return 0;
1876 }
1877 
qca_regulator_enable(struct qca_serdev * qcadev)1878 static int qca_regulator_enable(struct qca_serdev *qcadev)
1879 {
1880 	struct qca_power *power = qcadev->bt_power;
1881 	int ret;
1882 
1883 	/* Already enabled */
1884 	if (power->vregs_on)
1885 		return 0;
1886 
1887 	BT_DBG("enabling %d regulators)", power->num_vregs);
1888 
1889 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1890 	if (ret)
1891 		return ret;
1892 
1893 	power->vregs_on = true;
1894 
1895 	ret = clk_prepare_enable(qcadev->susclk);
1896 	if (ret)
1897 		qca_regulator_disable(qcadev);
1898 
1899 	return ret;
1900 }
1901 
qca_regulator_disable(struct qca_serdev * qcadev)1902 static void qca_regulator_disable(struct qca_serdev *qcadev)
1903 {
1904 	struct qca_power *power;
1905 
1906 	if (!qcadev)
1907 		return;
1908 
1909 	power = qcadev->bt_power;
1910 
1911 	/* Already disabled? */
1912 	if (!power->vregs_on)
1913 		return;
1914 
1915 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1916 	power->vregs_on = false;
1917 
1918 	clk_disable_unprepare(qcadev->susclk);
1919 }
1920 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1921 static int qca_init_regulators(struct qca_power *qca,
1922 				const struct qca_vreg *vregs, size_t num_vregs)
1923 {
1924 	struct regulator_bulk_data *bulk;
1925 	int ret;
1926 	int i;
1927 
1928 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
1929 	if (!bulk)
1930 		return -ENOMEM;
1931 
1932 	for (i = 0; i < num_vregs; i++)
1933 		bulk[i].supply = vregs[i].name;
1934 
1935 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
1936 	if (ret < 0)
1937 		return ret;
1938 
1939 	for (i = 0; i < num_vregs; i++) {
1940 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
1941 		if (ret)
1942 			return ret;
1943 	}
1944 
1945 	qca->vreg_bulk = bulk;
1946 	qca->num_vregs = num_vregs;
1947 
1948 	return 0;
1949 }
1950 
qca_serdev_probe(struct serdev_device * serdev)1951 static int qca_serdev_probe(struct serdev_device *serdev)
1952 {
1953 	struct qca_serdev *qcadev;
1954 	struct hci_dev *hdev;
1955 	const struct qca_device_data *data;
1956 	int err;
1957 	bool power_ctrl_enabled = true;
1958 
1959 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
1960 	if (!qcadev)
1961 		return -ENOMEM;
1962 
1963 	qcadev->serdev_hu.serdev = serdev;
1964 	data = device_get_match_data(&serdev->dev);
1965 	serdev_device_set_drvdata(serdev, qcadev);
1966 	device_property_read_string(&serdev->dev, "firmware-name",
1967 					 &qcadev->firmware_name);
1968 	device_property_read_u32(&serdev->dev, "max-speed",
1969 				 &qcadev->oper_speed);
1970 	if (!qcadev->oper_speed)
1971 		BT_DBG("UART will pick default operating speed");
1972 
1973 	if (data && qca_is_wcn399x(data->soc_type)) {
1974 		qcadev->btsoc_type = data->soc_type;
1975 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
1976 						sizeof(struct qca_power),
1977 						GFP_KERNEL);
1978 		if (!qcadev->bt_power)
1979 			return -ENOMEM;
1980 
1981 		qcadev->bt_power->dev = &serdev->dev;
1982 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
1983 					  data->num_vregs);
1984 		if (err) {
1985 			BT_ERR("Failed to init regulators:%d", err);
1986 			return err;
1987 		}
1988 
1989 		qcadev->bt_power->vregs_on = false;
1990 
1991 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
1992 		if (IS_ERR(qcadev->susclk)) {
1993 			dev_err(&serdev->dev, "failed to acquire clk\n");
1994 			return PTR_ERR(qcadev->susclk);
1995 		}
1996 
1997 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
1998 		if (err) {
1999 			BT_ERR("wcn3990 serdev registration failed");
2000 			return err;
2001 		}
2002 	} else {
2003 		if (data)
2004 			qcadev->btsoc_type = data->soc_type;
2005 		else
2006 			qcadev->btsoc_type = QCA_ROME;
2007 
2008 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2009 					       GPIOD_OUT_LOW);
2010 		if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2011 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2012 			power_ctrl_enabled = false;
2013 		}
2014 
2015 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2016 		if (IS_ERR(qcadev->susclk)) {
2017 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2018 			return PTR_ERR(qcadev->susclk);
2019 		}
2020 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2021 		if (err)
2022 			return err;
2023 
2024 		err = clk_prepare_enable(qcadev->susclk);
2025 		if (err)
2026 			return err;
2027 
2028 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2029 		if (err) {
2030 			BT_ERR("Rome serdev registration failed");
2031 			clk_disable_unprepare(qcadev->susclk);
2032 			return err;
2033 		}
2034 	}
2035 
2036 	hdev = qcadev->serdev_hu.hdev;
2037 
2038 	if (power_ctrl_enabled) {
2039 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2040 		hdev->shutdown = qca_power_off;
2041 	}
2042 
2043 	if (data) {
2044 		/* Wideband speech support must be set per driver since it can't
2045 		 * be queried via hci. Same with the valid le states quirk.
2046 		 */
2047 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2048 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2049 				&hdev->quirks);
2050 
2051 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2052 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2053 	}
2054 
2055 	return 0;
2056 }
2057 
qca_serdev_remove(struct serdev_device * serdev)2058 static void qca_serdev_remove(struct serdev_device *serdev)
2059 {
2060 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2061 	struct qca_power *power = qcadev->bt_power;
2062 
2063 	if (qca_is_wcn399x(qcadev->btsoc_type) && power->vregs_on)
2064 		qca_power_shutdown(&qcadev->serdev_hu);
2065 	else if (qcadev->susclk)
2066 		clk_disable_unprepare(qcadev->susclk);
2067 
2068 	hci_uart_unregister_device(&qcadev->serdev_hu);
2069 }
2070 
qca_serdev_shutdown(struct device * dev)2071 static void qca_serdev_shutdown(struct device *dev)
2072 {
2073 	int ret;
2074 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2075 	struct serdev_device *serdev = to_serdev_device(dev);
2076 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2077 	struct hci_uart *hu = &qcadev->serdev_hu;
2078 	struct hci_dev *hdev = hu->hdev;
2079 	struct qca_data *qca = hu->priv;
2080 	const u8 ibs_wake_cmd[] = { 0xFD };
2081 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2082 
2083 	if (qcadev->btsoc_type == QCA_QCA6390) {
2084 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2085 		    !test_bit(HCI_RUNNING, &hdev->flags))
2086 			return;
2087 
2088 		serdev_device_write_flush(serdev);
2089 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2090 					      sizeof(ibs_wake_cmd));
2091 		if (ret < 0) {
2092 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2093 			return;
2094 		}
2095 		serdev_device_wait_until_sent(serdev, timeout);
2096 		usleep_range(8000, 10000);
2097 
2098 		serdev_device_write_flush(serdev);
2099 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2100 					      sizeof(edl_reset_soc_cmd));
2101 		if (ret < 0) {
2102 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2103 			return;
2104 		}
2105 		serdev_device_wait_until_sent(serdev, timeout);
2106 		usleep_range(8000, 10000);
2107 	}
2108 }
2109 
qca_suspend(struct device * dev)2110 static int __maybe_unused qca_suspend(struct device *dev)
2111 {
2112 	struct serdev_device *serdev = to_serdev_device(dev);
2113 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2114 	struct hci_uart *hu = &qcadev->serdev_hu;
2115 	struct qca_data *qca = hu->priv;
2116 	unsigned long flags;
2117 	bool tx_pending = false;
2118 	int ret = 0;
2119 	u8 cmd;
2120 	u32 wait_timeout = 0;
2121 
2122 	set_bit(QCA_SUSPENDING, &qca->flags);
2123 
2124 	/* if BT SoC is running with default firmware then it does not
2125 	 * support in-band sleep
2126 	 */
2127 	if (test_bit(QCA_ROM_FW, &qca->flags))
2128 		return 0;
2129 
2130 	/* During SSR after memory dump collection, controller will be
2131 	 * powered off and then powered on.If controller is powered off
2132 	 * during SSR then we should wait until SSR is completed.
2133 	 */
2134 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2135 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2136 		return 0;
2137 
2138 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2139 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2140 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2141 					IBS_DISABLE_SSR_TIMEOUT_MS :
2142 					FW_DOWNLOAD_TIMEOUT_MS;
2143 
2144 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2145 		 * and during memory dump collection. It is reset to false,
2146 		 * After FW download complete.
2147 		 */
2148 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2149 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2150 
2151 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2152 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2153 			ret = -ETIMEDOUT;
2154 			goto error;
2155 		}
2156 	}
2157 
2158 	cancel_work_sync(&qca->ws_awake_device);
2159 	cancel_work_sync(&qca->ws_awake_rx);
2160 
2161 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2162 				 flags, SINGLE_DEPTH_NESTING);
2163 
2164 	switch (qca->tx_ibs_state) {
2165 	case HCI_IBS_TX_WAKING:
2166 		del_timer(&qca->wake_retrans_timer);
2167 		fallthrough;
2168 	case HCI_IBS_TX_AWAKE:
2169 		del_timer(&qca->tx_idle_timer);
2170 
2171 		serdev_device_write_flush(hu->serdev);
2172 		cmd = HCI_IBS_SLEEP_IND;
2173 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2174 
2175 		if (ret < 0) {
2176 			BT_ERR("Failed to send SLEEP to device");
2177 			break;
2178 		}
2179 
2180 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2181 		qca->ibs_sent_slps++;
2182 		tx_pending = true;
2183 		break;
2184 
2185 	case HCI_IBS_TX_ASLEEP:
2186 		break;
2187 
2188 	default:
2189 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2190 		ret = -EINVAL;
2191 		break;
2192 	}
2193 
2194 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2195 
2196 	if (ret < 0)
2197 		goto error;
2198 
2199 	if (tx_pending) {
2200 		serdev_device_wait_until_sent(hu->serdev,
2201 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2202 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2203 	}
2204 
2205 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2206 	 * to sleep, so that the packet does not wake the system later.
2207 	 */
2208 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2209 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2210 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2211 	if (ret == 0) {
2212 		ret = -ETIMEDOUT;
2213 		goto error;
2214 	}
2215 
2216 	return 0;
2217 
2218 error:
2219 	clear_bit(QCA_SUSPENDING, &qca->flags);
2220 
2221 	return ret;
2222 }
2223 
qca_resume(struct device * dev)2224 static int __maybe_unused qca_resume(struct device *dev)
2225 {
2226 	struct serdev_device *serdev = to_serdev_device(dev);
2227 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2228 	struct hci_uart *hu = &qcadev->serdev_hu;
2229 	struct qca_data *qca = hu->priv;
2230 
2231 	clear_bit(QCA_SUSPENDING, &qca->flags);
2232 
2233 	return 0;
2234 }
2235 
2236 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2237 
2238 #ifdef CONFIG_OF
2239 static const struct of_device_id qca_bluetooth_of_match[] = {
2240 	{ .compatible = "qcom,qca6174-bt" },
2241 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2242 	{ .compatible = "qcom,qca9377-bt" },
2243 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2244 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2245 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2246 	{ /* sentinel */ }
2247 };
2248 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2249 #endif
2250 
2251 #ifdef CONFIG_ACPI
2252 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2253 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2254 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2255 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2256 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2257 	{ },
2258 };
2259 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2260 #endif
2261 
2262 
2263 static struct serdev_device_driver qca_serdev_driver = {
2264 	.probe = qca_serdev_probe,
2265 	.remove = qca_serdev_remove,
2266 	.driver = {
2267 		.name = "hci_uart_qca",
2268 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2269 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2270 		.shutdown = qca_serdev_shutdown,
2271 		.pm = &qca_pm_ops,
2272 	},
2273 };
2274 
qca_init(void)2275 int __init qca_init(void)
2276 {
2277 	serdev_device_driver_register(&qca_serdev_driver);
2278 
2279 	return hci_uart_register_proto(&qca_proto);
2280 }
2281 
qca_deinit(void)2282 int __exit qca_deinit(void)
2283 {
2284 	serdev_device_driver_unregister(&qca_serdev_driver);
2285 
2286 	return hci_uart_unregister_proto(&qca_proto);
2287 }
2288