• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
4  * Copyright (C) 2019 Topic Embedded Products
5  * Author: Mike Looijmans <mike.looijmans@topic.nl>
6  *
7  * The Si5341 has 10 outputs and 5 synthesizers.
8  * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9  * The Si5345 is similar to the Si5341, with the addition of fractional input
10  * dividers and automatic input selection.
11  * The Si5342 and Si5344 are smaller versions of the Si5345.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/delay.h>
17 #include <linux/gcd.h>
18 #include <linux/math64.h>
19 #include <linux/i2c.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 
26 #define SI5341_NUM_INPUTS 4
27 
28 #define SI5340_MAX_NUM_OUTPUTS 4
29 #define SI5341_MAX_NUM_OUTPUTS 10
30 #define SI5342_MAX_NUM_OUTPUTS 2
31 #define SI5344_MAX_NUM_OUTPUTS 4
32 #define SI5345_MAX_NUM_OUTPUTS 10
33 
34 #define SI5340_NUM_SYNTH 4
35 #define SI5341_NUM_SYNTH 5
36 #define SI5342_NUM_SYNTH 2
37 #define SI5344_NUM_SYNTH 4
38 #define SI5345_NUM_SYNTH 5
39 
40 /* Range of the synthesizer fractional divider */
41 #define SI5341_SYNTH_N_MIN	10
42 #define SI5341_SYNTH_N_MAX	4095
43 
44 /* The chip can get its input clock from 3 input pins or an XTAL */
45 
46 /* There is one PLL running at 13500–14256 MHz */
47 #define SI5341_PLL_VCO_MIN 13500000000ull
48 #define SI5341_PLL_VCO_MAX 14256000000ull
49 
50 /* The 5 frequency synthesizers obtain their input from the PLL */
51 struct clk_si5341_synth {
52 	struct clk_hw hw;
53 	struct clk_si5341 *data;
54 	u8 index;
55 };
56 #define to_clk_si5341_synth(_hw) \
57 	container_of(_hw, struct clk_si5341_synth, hw)
58 
59 /* The output stages can be connected to any synth (full mux) */
60 struct clk_si5341_output {
61 	struct clk_hw hw;
62 	struct clk_si5341 *data;
63 	struct regulator *vddo_reg;
64 	u8 index;
65 };
66 #define to_clk_si5341_output(_hw) \
67 	container_of(_hw, struct clk_si5341_output, hw)
68 
69 struct clk_si5341 {
70 	struct clk_hw hw;
71 	struct regmap *regmap;
72 	struct i2c_client *i2c_client;
73 	struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
74 	struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
75 	struct clk *input_clk[SI5341_NUM_INPUTS];
76 	const char *input_clk_name[SI5341_NUM_INPUTS];
77 	const u16 *reg_output_offset;
78 	const u16 *reg_rdiv_offset;
79 	u64 freq_vco; /* 13500–14256 MHz */
80 	u8 num_outputs;
81 	u8 num_synth;
82 	u16 chip_id;
83 };
84 #define to_clk_si5341(_hw)	container_of(_hw, struct clk_si5341, hw)
85 
86 struct clk_si5341_output_config {
87 	u8 out_format_drv_bits;
88 	u8 out_cm_ampl_bits;
89 	u8 vdd_sel_bits;
90 	bool synth_master;
91 	bool always_on;
92 };
93 
94 #define SI5341_PAGE		0x0001
95 #define SI5341_PN_BASE		0x0002
96 #define SI5341_DEVICE_REV	0x0005
97 #define SI5341_STATUS		0x000C
98 #define SI5341_LOS		0x000D
99 #define SI5341_STATUS_STICKY	0x0011
100 #define SI5341_LOS_STICKY	0x0012
101 #define SI5341_SOFT_RST		0x001C
102 #define SI5341_IN_SEL		0x0021
103 #define SI5341_DEVICE_READY	0x00FE
104 #define SI5341_XAXB_CFG		0x090E
105 #define SI5341_IN_EN		0x0949
106 #define SI5341_INX_TO_PFD_EN	0x094A
107 
108 /* Status bits */
109 #define SI5341_STATUS_SYSINCAL	BIT(0)
110 #define SI5341_STATUS_LOSXAXB	BIT(1)
111 #define SI5341_STATUS_LOSREF	BIT(2)
112 #define SI5341_STATUS_LOL	BIT(3)
113 
114 /* Input selection */
115 #define SI5341_IN_SEL_MASK	0x06
116 #define SI5341_IN_SEL_SHIFT	1
117 #define SI5341_IN_SEL_REGCTRL	0x01
118 #define SI5341_INX_TO_PFD_SHIFT	4
119 
120 /* XTAL config bits */
121 #define SI5341_XAXB_CFG_EXTCLK_EN	BIT(0)
122 #define SI5341_XAXB_CFG_PDNB		BIT(1)
123 
124 /* Input dividers (48-bit) */
125 #define SI5341_IN_PDIV(x)	(0x0208 + ((x) * 10))
126 #define SI5341_IN_PSET(x)	(0x020E + ((x) * 10))
127 #define SI5341_PX_UPD		0x0230
128 
129 /* PLL configuration */
130 #define SI5341_PLL_M_NUM	0x0235
131 #define SI5341_PLL_M_DEN	0x023B
132 
133 /* Output configuration */
134 #define SI5341_OUT_CONFIG(output)	\
135 			((output)->data->reg_output_offset[(output)->index])
136 #define SI5341_OUT_FORMAT(output)	(SI5341_OUT_CONFIG(output) + 1)
137 #define SI5341_OUT_CM(output)		(SI5341_OUT_CONFIG(output) + 2)
138 #define SI5341_OUT_MUX_SEL(output)	(SI5341_OUT_CONFIG(output) + 3)
139 #define SI5341_OUT_R_REG(output)	\
140 			((output)->data->reg_rdiv_offset[(output)->index])
141 
142 #define SI5341_OUT_MUX_VDD_SEL_MASK 0x38
143 
144 /* Synthesize N divider */
145 #define SI5341_SYNTH_N_NUM(x)	(0x0302 + ((x) * 11))
146 #define SI5341_SYNTH_N_DEN(x)	(0x0308 + ((x) * 11))
147 #define SI5341_SYNTH_N_UPD(x)	(0x030C + ((x) * 11))
148 
149 /* Synthesizer output enable, phase bypass, power mode */
150 #define SI5341_SYNTH_N_CLK_TO_OUTX_EN	0x0A03
151 #define SI5341_SYNTH_N_PIBYP		0x0A04
152 #define SI5341_SYNTH_N_PDNB		0x0A05
153 #define SI5341_SYNTH_N_CLK_DIS		0x0B4A
154 
155 #define SI5341_REGISTER_MAX	0xBFF
156 
157 /* SI5341_OUT_CONFIG bits */
158 #define SI5341_OUT_CFG_PDN		BIT(0)
159 #define SI5341_OUT_CFG_OE		BIT(1)
160 #define SI5341_OUT_CFG_RDIV_FORCE2	BIT(2)
161 
162 /* Static configuration (to be moved to firmware) */
163 struct si5341_reg_default {
164 	u16 address;
165 	u8 value;
166 };
167 
168 static const char * const si5341_input_clock_names[] = {
169 	"in0", "in1", "in2", "xtal"
170 };
171 
172 /* Output configuration registers 0..9 are not quite logically organized */
173 /* Also for si5345 */
174 static const u16 si5341_reg_output_offset[] = {
175 	0x0108,
176 	0x010D,
177 	0x0112,
178 	0x0117,
179 	0x011C,
180 	0x0121,
181 	0x0126,
182 	0x012B,
183 	0x0130,
184 	0x013A,
185 };
186 
187 /* for si5340, si5342 and si5344 */
188 static const u16 si5340_reg_output_offset[] = {
189 	0x0112,
190 	0x0117,
191 	0x0126,
192 	0x012B,
193 };
194 
195 /* The location of the R divider registers */
196 static const u16 si5341_reg_rdiv_offset[] = {
197 	0x024A,
198 	0x024D,
199 	0x0250,
200 	0x0253,
201 	0x0256,
202 	0x0259,
203 	0x025C,
204 	0x025F,
205 	0x0262,
206 	0x0268,
207 };
208 static const u16 si5340_reg_rdiv_offset[] = {
209 	0x0250,
210 	0x0253,
211 	0x025C,
212 	0x025F,
213 };
214 
215 /*
216  * Programming sequence from ClockBuilder, settings to initialize the system
217  * using only the XTAL input, without pre-divider.
218  * This also contains settings that aren't mentioned anywhere in the datasheet.
219  * The "known" settings like synth and output configuration are done later.
220  */
221 static const struct si5341_reg_default si5341_reg_defaults[] = {
222 	{ 0x0017, 0x3A }, /* INT mask (disable interrupts) */
223 	{ 0x0018, 0xFF }, /* INT mask */
224 	{ 0x0021, 0x0F }, /* Select XTAL as input */
225 	{ 0x0022, 0x00 }, /* Not in datasheet */
226 	{ 0x002B, 0x02 }, /* SPI config */
227 	{ 0x002C, 0x20 }, /* LOS enable for XTAL */
228 	{ 0x002D, 0x00 }, /* LOS timing */
229 	{ 0x002E, 0x00 },
230 	{ 0x002F, 0x00 },
231 	{ 0x0030, 0x00 },
232 	{ 0x0031, 0x00 },
233 	{ 0x0032, 0x00 },
234 	{ 0x0033, 0x00 },
235 	{ 0x0034, 0x00 },
236 	{ 0x0035, 0x00 },
237 	{ 0x0036, 0x00 },
238 	{ 0x0037, 0x00 },
239 	{ 0x0038, 0x00 }, /* LOS setting (thresholds) */
240 	{ 0x0039, 0x00 },
241 	{ 0x003A, 0x00 },
242 	{ 0x003B, 0x00 },
243 	{ 0x003C, 0x00 },
244 	{ 0x003D, 0x00 }, /* LOS setting (thresholds) end */
245 	{ 0x0041, 0x00 }, /* LOS0_DIV_SEL */
246 	{ 0x0042, 0x00 }, /* LOS1_DIV_SEL */
247 	{ 0x0043, 0x00 }, /* LOS2_DIV_SEL */
248 	{ 0x0044, 0x00 }, /* LOS3_DIV_SEL */
249 	{ 0x009E, 0x00 }, /* Not in datasheet */
250 	{ 0x0102, 0x01 }, /* Enable outputs */
251 	{ 0x013F, 0x00 }, /* Not in datasheet */
252 	{ 0x0140, 0x00 }, /* Not in datasheet */
253 	{ 0x0141, 0x40 }, /* OUT LOS */
254 	{ 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
255 	{ 0x0203, 0x00 },
256 	{ 0x0204, 0x00 },
257 	{ 0x0205, 0x00 },
258 	{ 0x0206, 0x00 }, /* PXAXB (2^x) */
259 	{ 0x0208, 0x00 }, /* Px divider setting (usually 0) */
260 	{ 0x0209, 0x00 },
261 	{ 0x020A, 0x00 },
262 	{ 0x020B, 0x00 },
263 	{ 0x020C, 0x00 },
264 	{ 0x020D, 0x00 },
265 	{ 0x020E, 0x00 },
266 	{ 0x020F, 0x00 },
267 	{ 0x0210, 0x00 },
268 	{ 0x0211, 0x00 },
269 	{ 0x0212, 0x00 },
270 	{ 0x0213, 0x00 },
271 	{ 0x0214, 0x00 },
272 	{ 0x0215, 0x00 },
273 	{ 0x0216, 0x00 },
274 	{ 0x0217, 0x00 },
275 	{ 0x0218, 0x00 },
276 	{ 0x0219, 0x00 },
277 	{ 0x021A, 0x00 },
278 	{ 0x021B, 0x00 },
279 	{ 0x021C, 0x00 },
280 	{ 0x021D, 0x00 },
281 	{ 0x021E, 0x00 },
282 	{ 0x021F, 0x00 },
283 	{ 0x0220, 0x00 },
284 	{ 0x0221, 0x00 },
285 	{ 0x0222, 0x00 },
286 	{ 0x0223, 0x00 },
287 	{ 0x0224, 0x00 },
288 	{ 0x0225, 0x00 },
289 	{ 0x0226, 0x00 },
290 	{ 0x0227, 0x00 },
291 	{ 0x0228, 0x00 },
292 	{ 0x0229, 0x00 },
293 	{ 0x022A, 0x00 },
294 	{ 0x022B, 0x00 },
295 	{ 0x022C, 0x00 },
296 	{ 0x022D, 0x00 },
297 	{ 0x022E, 0x00 },
298 	{ 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
299 	{ 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
300 	{ 0x026C, 0x00 },
301 	{ 0x026D, 0x00 },
302 	{ 0x026E, 0x00 },
303 	{ 0x026F, 0x00 },
304 	{ 0x0270, 0x00 },
305 	{ 0x0271, 0x00 },
306 	{ 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
307 	{ 0x0339, 0x1F }, /* N_FSTEP_MSK */
308 	{ 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
309 	{ 0x033C, 0x00 },
310 	{ 0x033D, 0x00 },
311 	{ 0x033E, 0x00 },
312 	{ 0x033F, 0x00 },
313 	{ 0x0340, 0x00 },
314 	{ 0x0341, 0x00 },
315 	{ 0x0342, 0x00 },
316 	{ 0x0343, 0x00 },
317 	{ 0x0344, 0x00 },
318 	{ 0x0345, 0x00 },
319 	{ 0x0346, 0x00 },
320 	{ 0x0347, 0x00 },
321 	{ 0x0348, 0x00 },
322 	{ 0x0349, 0x00 },
323 	{ 0x034A, 0x00 },
324 	{ 0x034B, 0x00 },
325 	{ 0x034C, 0x00 },
326 	{ 0x034D, 0x00 },
327 	{ 0x034E, 0x00 },
328 	{ 0x034F, 0x00 },
329 	{ 0x0350, 0x00 },
330 	{ 0x0351, 0x00 },
331 	{ 0x0352, 0x00 },
332 	{ 0x0353, 0x00 },
333 	{ 0x0354, 0x00 },
334 	{ 0x0355, 0x00 },
335 	{ 0x0356, 0x00 },
336 	{ 0x0357, 0x00 },
337 	{ 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
338 	{ 0x0359, 0x00 }, /* Nx_DELAY */
339 	{ 0x035A, 0x00 },
340 	{ 0x035B, 0x00 },
341 	{ 0x035C, 0x00 },
342 	{ 0x035D, 0x00 },
343 	{ 0x035E, 0x00 },
344 	{ 0x035F, 0x00 },
345 	{ 0x0360, 0x00 },
346 	{ 0x0361, 0x00 },
347 	{ 0x0362, 0x00 }, /* Nx_DELAY end */
348 	{ 0x0802, 0x00 }, /* Not in datasheet */
349 	{ 0x0803, 0x00 }, /* Not in datasheet */
350 	{ 0x0804, 0x00 }, /* Not in datasheet */
351 	{ 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
352 	{ 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
353 	{ 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
354 	{ 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
355 	{ 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
356 	{ 0x0A02, 0x00 }, /* Not in datasheet */
357 	{ 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
358 	{ 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
359 	{ 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
360 };
361 
362 /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
si5341_decode_44_32(struct regmap * regmap,unsigned int reg,u64 * val1,u32 * val2)363 static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
364 	u64 *val1, u32 *val2)
365 {
366 	int err;
367 	u8 r[10];
368 
369 	err = regmap_bulk_read(regmap, reg, r, 10);
370 	if (err < 0)
371 		return err;
372 
373 	*val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
374 		 (get_unaligned_le32(r));
375 	*val2 = get_unaligned_le32(&r[6]);
376 
377 	return 0;
378 }
379 
si5341_encode_44_32(struct regmap * regmap,unsigned int reg,u64 n_num,u32 n_den)380 static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
381 	u64 n_num, u32 n_den)
382 {
383 	u8 r[10];
384 
385 	/* Shift left as far as possible without overflowing */
386 	while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
387 		n_num <<= 1;
388 		n_den <<= 1;
389 	}
390 
391 	/* 44 bits (6 bytes) numerator */
392 	put_unaligned_le32(n_num, r);
393 	r[4] = (n_num >> 32) & 0xff;
394 	r[5] = (n_num >> 40) & 0x0f;
395 	/* 32 bits denominator */
396 	put_unaligned_le32(n_den, &r[6]);
397 
398 	/* Program the fraction */
399 	return regmap_bulk_write(regmap, reg, r, sizeof(r));
400 }
401 
402 /* VCO, we assume it runs at a constant frequency */
si5341_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)403 static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
404 		unsigned long parent_rate)
405 {
406 	struct clk_si5341 *data = to_clk_si5341(hw);
407 	int err;
408 	u64 res;
409 	u64 m_num;
410 	u32 m_den;
411 	unsigned int shift;
412 
413 	/* Assume that PDIV is not being used, just read the PLL setting */
414 	err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
415 				&m_num, &m_den);
416 	if (err < 0)
417 		return 0;
418 
419 	if (!m_num || !m_den)
420 		return 0;
421 
422 	/*
423 	 * Though m_num is 64-bit, only the upper bits are actually used. While
424 	 * calculating m_num and m_den, they are shifted as far as possible to
425 	 * the left. To avoid 96-bit division here, we just shift them back so
426 	 * we can do with just 64 bits.
427 	 */
428 	shift = 0;
429 	res = m_num;
430 	while (res & 0xffff00000000ULL) {
431 		++shift;
432 		res >>= 1;
433 	}
434 	res *= parent_rate;
435 	do_div(res, (m_den >> shift));
436 
437 	/* We cannot return the actual frequency in 32 bit, store it locally */
438 	data->freq_vco = res;
439 
440 	/* Report kHz since the value is out of range */
441 	do_div(res, 1000);
442 
443 	return (unsigned long)res;
444 }
445 
si5341_clk_get_selected_input(struct clk_si5341 * data)446 static int si5341_clk_get_selected_input(struct clk_si5341 *data)
447 {
448 	int err;
449 	u32 val;
450 
451 	err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
452 	if (err < 0)
453 		return err;
454 
455 	return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
456 }
457 
si5341_clk_get_parent(struct clk_hw * hw)458 static u8 si5341_clk_get_parent(struct clk_hw *hw)
459 {
460 	struct clk_si5341 *data = to_clk_si5341(hw);
461 	int res = si5341_clk_get_selected_input(data);
462 
463 	if (res < 0)
464 		return 0; /* Apparently we cannot report errors */
465 
466 	return res;
467 }
468 
si5341_clk_reparent(struct clk_si5341 * data,u8 index)469 static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
470 {
471 	int err;
472 	u8 val;
473 
474 	val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
475 	/* Enable register-based input selection */
476 	val |= SI5341_IN_SEL_REGCTRL;
477 
478 	err = regmap_update_bits(data->regmap,
479 		SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
480 	if (err < 0)
481 		return err;
482 
483 	if (index < 3) {
484 		/* Enable input buffer for selected input */
485 		err = regmap_update_bits(data->regmap,
486 				SI5341_IN_EN, 0x07, BIT(index));
487 		if (err < 0)
488 			return err;
489 
490 		/* Enables the input to phase detector */
491 		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
492 				0x7 << SI5341_INX_TO_PFD_SHIFT,
493 				BIT(index + SI5341_INX_TO_PFD_SHIFT));
494 		if (err < 0)
495 			return err;
496 
497 		/* Power down XTAL oscillator and buffer */
498 		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
499 				SI5341_XAXB_CFG_PDNB, 0);
500 		if (err < 0)
501 			return err;
502 
503 		/*
504 		 * Set the P divider to "1". There's no explanation in the
505 		 * datasheet of these registers, but the clockbuilder software
506 		 * programs a "1" when the input is being used.
507 		 */
508 		err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
509 		if (err < 0)
510 			return err;
511 
512 		err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
513 		if (err < 0)
514 			return err;
515 
516 		/* Set update PDIV bit */
517 		err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
518 		if (err < 0)
519 			return err;
520 	} else {
521 		/* Disable all input buffers */
522 		err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
523 		if (err < 0)
524 			return err;
525 
526 		/* Disable input to phase detector */
527 		err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
528 				0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
529 		if (err < 0)
530 			return err;
531 
532 		/* Power up XTAL oscillator and buffer */
533 		err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
534 				SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
535 		if (err < 0)
536 			return err;
537 	}
538 
539 	return 0;
540 }
541 
si5341_clk_set_parent(struct clk_hw * hw,u8 index)542 static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
543 {
544 	struct clk_si5341 *data = to_clk_si5341(hw);
545 
546 	return si5341_clk_reparent(data, index);
547 }
548 
549 static const struct clk_ops si5341_clk_ops = {
550 	.set_parent = si5341_clk_set_parent,
551 	.get_parent = si5341_clk_get_parent,
552 	.recalc_rate = si5341_clk_recalc_rate,
553 };
554 
555 /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
556 
557 /* The synthesizer is on if all power and enable bits are set */
si5341_synth_clk_is_on(struct clk_hw * hw)558 static int si5341_synth_clk_is_on(struct clk_hw *hw)
559 {
560 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
561 	int err;
562 	u32 val;
563 	u8 index = synth->index;
564 
565 	err = regmap_read(synth->data->regmap,
566 			SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
567 	if (err < 0)
568 		return 0;
569 
570 	if (!(val & BIT(index)))
571 		return 0;
572 
573 	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
574 	if (err < 0)
575 		return 0;
576 
577 	if (!(val & BIT(index)))
578 		return 0;
579 
580 	/* This bit must be 0 for the synthesizer to receive clock input */
581 	err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
582 	if (err < 0)
583 		return 0;
584 
585 	return !(val & BIT(index));
586 }
587 
si5341_synth_clk_unprepare(struct clk_hw * hw)588 static void si5341_synth_clk_unprepare(struct clk_hw *hw)
589 {
590 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
591 	u8 index = synth->index; /* In range 0..5 */
592 	u8 mask = BIT(index);
593 
594 	/* Disable output */
595 	regmap_update_bits(synth->data->regmap,
596 		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
597 	/* Power down */
598 	regmap_update_bits(synth->data->regmap,
599 		SI5341_SYNTH_N_PDNB, mask, 0);
600 	/* Disable clock input to synth (set to 1 to disable) */
601 	regmap_update_bits(synth->data->regmap,
602 		SI5341_SYNTH_N_CLK_DIS, mask, mask);
603 }
604 
si5341_synth_clk_prepare(struct clk_hw * hw)605 static int si5341_synth_clk_prepare(struct clk_hw *hw)
606 {
607 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
608 	int err;
609 	u8 index = synth->index;
610 	u8 mask = BIT(index);
611 
612 	/* Power up */
613 	err = regmap_update_bits(synth->data->regmap,
614 		SI5341_SYNTH_N_PDNB, mask, mask);
615 	if (err < 0)
616 		return err;
617 
618 	/* Enable clock input to synth (set bit to 0 to enable) */
619 	err = regmap_update_bits(synth->data->regmap,
620 		SI5341_SYNTH_N_CLK_DIS, mask, 0);
621 	if (err < 0)
622 		return err;
623 
624 	/* Enable output */
625 	return regmap_update_bits(synth->data->regmap,
626 		SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
627 }
628 
629 /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
si5341_synth_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)630 static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
631 		unsigned long parent_rate)
632 {
633 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
634 	u64 f;
635 	u64 n_num;
636 	u32 n_den;
637 	int err;
638 
639 	err = si5341_decode_44_32(synth->data->regmap,
640 			SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
641 	if (err < 0)
642 		return err;
643 	/* Check for bogus/uninitialized settings */
644 	if (!n_num || !n_den)
645 		return 0;
646 
647 	/*
648 	 * n_num and n_den are shifted left as much as possible, so to prevent
649 	 * overflow in 64-bit math, we shift n_den 4 bits to the right
650 	 */
651 	f = synth->data->freq_vco;
652 	f *= n_den >> 4;
653 
654 	/* Now we need to to 64-bit division: f/n_num */
655 	/* And compensate for the 4 bits we dropped */
656 	f = div64_u64(f, (n_num >> 4));
657 
658 	return f;
659 }
660 
si5341_synth_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)661 static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
662 		unsigned long *parent_rate)
663 {
664 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
665 	u64 f;
666 
667 	/* The synthesizer accuracy is such that anything in range will work */
668 	f = synth->data->freq_vco;
669 	do_div(f, SI5341_SYNTH_N_MAX);
670 	if (rate < f)
671 		return f;
672 
673 	f = synth->data->freq_vco;
674 	do_div(f, SI5341_SYNTH_N_MIN);
675 	if (rate > f)
676 		return f;
677 
678 	return rate;
679 }
680 
si5341_synth_program(struct clk_si5341_synth * synth,u64 n_num,u32 n_den,bool is_integer)681 static int si5341_synth_program(struct clk_si5341_synth *synth,
682 	u64 n_num, u32 n_den, bool is_integer)
683 {
684 	int err;
685 	u8 index = synth->index;
686 
687 	err = si5341_encode_44_32(synth->data->regmap,
688 			SI5341_SYNTH_N_NUM(index), n_num, n_den);
689 
690 	err = regmap_update_bits(synth->data->regmap,
691 		SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
692 	if (err < 0)
693 		return err;
694 
695 	return regmap_write(synth->data->regmap,
696 		SI5341_SYNTH_N_UPD(index), 0x01);
697 }
698 
699 
si5341_synth_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)700 static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
701 		unsigned long parent_rate)
702 {
703 	struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
704 	u64 n_num;
705 	u32 n_den;
706 	u32 r;
707 	u32 g;
708 	bool is_integer;
709 
710 	n_num = synth->data->freq_vco;
711 
712 	/* see if there's an integer solution */
713 	r = do_div(n_num, rate);
714 	is_integer = (r == 0);
715 	if (is_integer) {
716 		/* Integer divider equal to n_num */
717 		n_den = 1;
718 	} else {
719 		/* Calculate a fractional solution */
720 		g = gcd(r, rate);
721 		n_den = rate / g;
722 		n_num *= n_den;
723 		n_num += r / g;
724 	}
725 
726 	dev_dbg(&synth->data->i2c_client->dev,
727 			"%s(%u): n=0x%llx d=0x%x %s\n", __func__,
728 				synth->index, n_num, n_den,
729 				is_integer ? "int" : "frac");
730 
731 	return si5341_synth_program(synth, n_num, n_den, is_integer);
732 }
733 
734 static const struct clk_ops si5341_synth_clk_ops = {
735 	.is_prepared = si5341_synth_clk_is_on,
736 	.prepare = si5341_synth_clk_prepare,
737 	.unprepare = si5341_synth_clk_unprepare,
738 	.recalc_rate = si5341_synth_clk_recalc_rate,
739 	.round_rate = si5341_synth_clk_round_rate,
740 	.set_rate = si5341_synth_clk_set_rate,
741 };
742 
si5341_output_clk_is_on(struct clk_hw * hw)743 static int si5341_output_clk_is_on(struct clk_hw *hw)
744 {
745 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
746 	int err;
747 	u32 val;
748 
749 	err = regmap_read(output->data->regmap,
750 			SI5341_OUT_CONFIG(output), &val);
751 	if (err < 0)
752 		return err;
753 
754 	/* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
755 	return (val & 0x03) == SI5341_OUT_CFG_OE;
756 }
757 
758 /* Disables and then powers down the output */
si5341_output_clk_unprepare(struct clk_hw * hw)759 static void si5341_output_clk_unprepare(struct clk_hw *hw)
760 {
761 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
762 
763 	regmap_update_bits(output->data->regmap,
764 			SI5341_OUT_CONFIG(output),
765 			SI5341_OUT_CFG_OE, 0);
766 	regmap_update_bits(output->data->regmap,
767 			SI5341_OUT_CONFIG(output),
768 			SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
769 }
770 
771 /* Powers up and then enables the output */
si5341_output_clk_prepare(struct clk_hw * hw)772 static int si5341_output_clk_prepare(struct clk_hw *hw)
773 {
774 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
775 	int err;
776 
777 	err = regmap_update_bits(output->data->regmap,
778 			SI5341_OUT_CONFIG(output),
779 			SI5341_OUT_CFG_PDN, 0);
780 	if (err < 0)
781 		return err;
782 
783 	return regmap_update_bits(output->data->regmap,
784 			SI5341_OUT_CONFIG(output),
785 			SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
786 }
787 
si5341_output_clk_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)788 static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
789 		unsigned long parent_rate)
790 {
791 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
792 	int err;
793 	u32 val;
794 	u32 r_divider;
795 	u8 r[3];
796 
797 	err = regmap_read(output->data->regmap,
798 			SI5341_OUT_CONFIG(output), &val);
799 	if (err < 0)
800 		return err;
801 
802 	/* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
803 	if (val & SI5341_OUT_CFG_RDIV_FORCE2)
804 		return parent_rate / 2;
805 
806 	err = regmap_bulk_read(output->data->regmap,
807 			SI5341_OUT_R_REG(output), r, 3);
808 	if (err < 0)
809 		return err;
810 
811 	/* Calculate value as 24-bit integer*/
812 	r_divider = r[2] << 16 | r[1] << 8 | r[0];
813 
814 	/* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
815 	if (!r_divider)
816 		return 0;
817 
818 	/* Divider is 2*(Rx_REG+1) */
819 	r_divider += 1;
820 	r_divider <<= 1;
821 
822 
823 	return parent_rate / r_divider;
824 }
825 
si5341_output_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)826 static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
827 		unsigned long *parent_rate)
828 {
829 	unsigned long r;
830 
831 	if (!rate)
832 		return 0;
833 
834 	r = *parent_rate >> 1;
835 
836 	/* If rate is an even divisor, no changes to parent required */
837 	if (r && !(r % rate))
838 		return (long)rate;
839 
840 	if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
841 		if (rate > 200000000) {
842 			/* minimum r-divider is 2 */
843 			r = 2;
844 		} else {
845 			/* Take a parent frequency near 400 MHz */
846 			r = (400000000u / rate) & ~1;
847 		}
848 		*parent_rate = r * rate;
849 	} else {
850 		/* We cannot change our parent's rate, report what we can do */
851 		r /= rate;
852 		rate = *parent_rate / (r << 1);
853 	}
854 
855 	return rate;
856 }
857 
si5341_output_clk_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)858 static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
859 		unsigned long parent_rate)
860 {
861 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
862 	u32 r_div;
863 	int err;
864 	u8 r[3];
865 
866 	if (!rate)
867 		return -EINVAL;
868 
869 	/* Frequency divider is (r_div + 1) * 2 */
870 	r_div = (parent_rate / rate) >> 1;
871 
872 	if (r_div <= 1)
873 		r_div = 0;
874 	else if (r_div >= BIT(24))
875 		r_div = BIT(24) - 1;
876 	else
877 		--r_div;
878 
879 	/* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
880 	err = regmap_update_bits(output->data->regmap,
881 			SI5341_OUT_CONFIG(output),
882 			SI5341_OUT_CFG_RDIV_FORCE2,
883 			(r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
884 	if (err < 0)
885 		return err;
886 
887 	/* Always write Rx_REG, because a zero value disables the divider */
888 	r[0] = r_div ? (r_div & 0xff) : 1;
889 	r[1] = (r_div >> 8) & 0xff;
890 	r[2] = (r_div >> 16) & 0xff;
891 	return regmap_bulk_write(output->data->regmap,
892 			SI5341_OUT_R_REG(output), r, 3);
893 }
894 
si5341_output_reparent(struct clk_si5341_output * output,u8 index)895 static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
896 {
897 	return regmap_update_bits(output->data->regmap,
898 		SI5341_OUT_MUX_SEL(output), 0x07, index);
899 }
900 
si5341_output_set_parent(struct clk_hw * hw,u8 index)901 static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
902 {
903 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
904 
905 	if (index >= output->data->num_synth)
906 		return -EINVAL;
907 
908 	return si5341_output_reparent(output, index);
909 }
910 
si5341_output_get_parent(struct clk_hw * hw)911 static u8 si5341_output_get_parent(struct clk_hw *hw)
912 {
913 	struct clk_si5341_output *output = to_clk_si5341_output(hw);
914 	u32 val;
915 
916 	regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
917 
918 	return val & 0x7;
919 }
920 
921 static const struct clk_ops si5341_output_clk_ops = {
922 	.is_prepared = si5341_output_clk_is_on,
923 	.prepare = si5341_output_clk_prepare,
924 	.unprepare = si5341_output_clk_unprepare,
925 	.recalc_rate = si5341_output_clk_recalc_rate,
926 	.round_rate = si5341_output_clk_round_rate,
927 	.set_rate = si5341_output_clk_set_rate,
928 	.set_parent = si5341_output_set_parent,
929 	.get_parent = si5341_output_get_parent,
930 };
931 
932 /*
933  * The chip can be bought in a pre-programmed version, or one can program the
934  * NVM in the chip to boot up in a preset mode. This routine tries to determine
935  * if that's the case, or if we need to reset and program everything from
936  * scratch. Returns negative error, or true/false.
937  */
si5341_is_programmed_already(struct clk_si5341 * data)938 static int si5341_is_programmed_already(struct clk_si5341 *data)
939 {
940 	int err;
941 	u8 r[4];
942 
943 	/* Read the PLL divider value, it must have a non-zero value */
944 	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
945 			r, ARRAY_SIZE(r));
946 	if (err < 0)
947 		return err;
948 
949 	return !!get_unaligned_le32(r);
950 }
951 
952 static struct clk_hw *
of_clk_si5341_get(struct of_phandle_args * clkspec,void * _data)953 of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
954 {
955 	struct clk_si5341 *data = _data;
956 	unsigned int idx = clkspec->args[1];
957 	unsigned int group = clkspec->args[0];
958 
959 	switch (group) {
960 	case 0:
961 		if (idx >= data->num_outputs) {
962 			dev_err(&data->i2c_client->dev,
963 				"invalid output index %u\n", idx);
964 			return ERR_PTR(-EINVAL);
965 		}
966 		return &data->clk[idx].hw;
967 	case 1:
968 		if (idx >= data->num_synth) {
969 			dev_err(&data->i2c_client->dev,
970 				"invalid synthesizer index %u\n", idx);
971 			return ERR_PTR(-EINVAL);
972 		}
973 		return &data->synth[idx].hw;
974 	case 2:
975 		if (idx > 0) {
976 			dev_err(&data->i2c_client->dev,
977 				"invalid PLL index %u\n", idx);
978 			return ERR_PTR(-EINVAL);
979 		}
980 		return &data->hw;
981 	default:
982 		dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
983 		return ERR_PTR(-EINVAL);
984 	}
985 }
986 
si5341_probe_chip_id(struct clk_si5341 * data)987 static int si5341_probe_chip_id(struct clk_si5341 *data)
988 {
989 	int err;
990 	u8 reg[4];
991 	u16 model;
992 
993 	err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
994 				ARRAY_SIZE(reg));
995 	if (err < 0) {
996 		dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
997 		return err;
998 	}
999 
1000 	model = get_unaligned_le16(reg);
1001 
1002 	dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1003 		 model, reg[2], reg[3]);
1004 
1005 	switch (model) {
1006 	case 0x5340:
1007 		data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1008 		data->num_synth = SI5340_NUM_SYNTH;
1009 		data->reg_output_offset = si5340_reg_output_offset;
1010 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1011 		break;
1012 	case 0x5341:
1013 		data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1014 		data->num_synth = SI5341_NUM_SYNTH;
1015 		data->reg_output_offset = si5341_reg_output_offset;
1016 		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1017 		break;
1018 	case 0x5342:
1019 		data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1020 		data->num_synth = SI5342_NUM_SYNTH;
1021 		data->reg_output_offset = si5340_reg_output_offset;
1022 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1023 		break;
1024 	case 0x5344:
1025 		data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1026 		data->num_synth = SI5344_NUM_SYNTH;
1027 		data->reg_output_offset = si5340_reg_output_offset;
1028 		data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1029 		break;
1030 	case 0x5345:
1031 		data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1032 		data->num_synth = SI5345_NUM_SYNTH;
1033 		data->reg_output_offset = si5341_reg_output_offset;
1034 		data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1035 		break;
1036 	default:
1037 		dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1038 			model);
1039 		return -EINVAL;
1040 	}
1041 
1042 	data->chip_id = model;
1043 
1044 	return 0;
1045 }
1046 
1047 /* Read active settings into the regmap cache for later reference */
si5341_read_settings(struct clk_si5341 * data)1048 static int si5341_read_settings(struct clk_si5341 *data)
1049 {
1050 	int err;
1051 	u8 i;
1052 	u8 r[10];
1053 
1054 	err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1055 	if (err < 0)
1056 		return err;
1057 
1058 	err = regmap_bulk_read(data->regmap,
1059 				SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1060 	if (err < 0)
1061 		return err;
1062 
1063 	err = regmap_bulk_read(data->regmap,
1064 				SI5341_SYNTH_N_CLK_DIS, r, 1);
1065 	if (err < 0)
1066 		return err;
1067 
1068 	for (i = 0; i < data->num_synth; ++i) {
1069 		err = regmap_bulk_read(data->regmap,
1070 					SI5341_SYNTH_N_NUM(i), r, 10);
1071 		if (err < 0)
1072 			return err;
1073 	}
1074 
1075 	for (i = 0; i < data->num_outputs; ++i) {
1076 		err = regmap_bulk_read(data->regmap,
1077 					data->reg_output_offset[i], r, 4);
1078 		if (err < 0)
1079 			return err;
1080 
1081 		err = regmap_bulk_read(data->regmap,
1082 					data->reg_rdiv_offset[i], r, 3);
1083 		if (err < 0)
1084 			return err;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
si5341_write_multiple(struct clk_si5341 * data,const struct si5341_reg_default * values,unsigned int num_values)1090 static int si5341_write_multiple(struct clk_si5341 *data,
1091 	const struct si5341_reg_default *values, unsigned int num_values)
1092 {
1093 	unsigned int i;
1094 	int res;
1095 
1096 	for (i = 0; i < num_values; ++i) {
1097 		res = regmap_write(data->regmap,
1098 			values[i].address, values[i].value);
1099 		if (res < 0) {
1100 			dev_err(&data->i2c_client->dev,
1101 				"Failed to write %#x:%#x\n",
1102 				values[i].address, values[i].value);
1103 			return res;
1104 		}
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 static const struct si5341_reg_default si5341_preamble[] = {
1111 	{ 0x0B25, 0x00 },
1112 	{ 0x0502, 0x01 },
1113 	{ 0x0505, 0x03 },
1114 	{ 0x0957, 0x17 },
1115 	{ 0x0B4E, 0x1A },
1116 };
1117 
1118 static const struct si5341_reg_default si5345_preamble[] = {
1119 	{ 0x0B25, 0x00 },
1120 	{ 0x0540, 0x01 },
1121 };
1122 
si5341_send_preamble(struct clk_si5341 * data)1123 static int si5341_send_preamble(struct clk_si5341 *data)
1124 {
1125 	int res;
1126 	u32 revision;
1127 
1128 	/* For revision 2 and up, the values are slightly different */
1129 	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1130 	if (res < 0)
1131 		return res;
1132 
1133 	/* Write "preamble" as specified by datasheet */
1134 	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1135 	if (res < 0)
1136 		return res;
1137 
1138 	/* The si5342..si5345 require a different preamble */
1139 	if (data->chip_id > 0x5341)
1140 		res = si5341_write_multiple(data,
1141 			si5345_preamble, ARRAY_SIZE(si5345_preamble));
1142 	else
1143 		res = si5341_write_multiple(data,
1144 			si5341_preamble, ARRAY_SIZE(si5341_preamble));
1145 	if (res < 0)
1146 		return res;
1147 
1148 	/* Datasheet specifies a 300ms wait after sending the preamble */
1149 	msleep(300);
1150 
1151 	return 0;
1152 }
1153 
1154 /* Perform a soft reset and write post-amble */
si5341_finalize_defaults(struct clk_si5341 * data)1155 static int si5341_finalize_defaults(struct clk_si5341 *data)
1156 {
1157 	int res;
1158 	u32 revision;
1159 
1160 	res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1161 	if (res < 0)
1162 		return res;
1163 
1164 	dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1165 
1166 	res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1167 	if (res < 0)
1168 		return res;
1169 
1170 	/* The si5342..si5345 have an additional post-amble */
1171 	if (data->chip_id > 0x5341) {
1172 		res = regmap_write(data->regmap, 0x540, 0x0);
1173 		if (res < 0)
1174 			return res;
1175 	}
1176 
1177 	/* Datasheet does not explain these nameless registers */
1178 	res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1179 	if (res < 0)
1180 		return res;
1181 	res = regmap_write(data->regmap, 0x0B25, 0x02);
1182 	if (res < 0)
1183 		return res;
1184 
1185 	return 0;
1186 }
1187 
1188 
1189 static const struct regmap_range si5341_regmap_volatile_range[] = {
1190 	regmap_reg_range(0x000C, 0x0012), /* Status */
1191 	regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1192 	regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
1193 	/* Update bits for P divider and synth config */
1194 	regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
1195 	regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1196 	regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1197 	regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1198 	regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1199 	regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1200 };
1201 
1202 static const struct regmap_access_table si5341_regmap_volatile = {
1203 	.yes_ranges = si5341_regmap_volatile_range,
1204 	.n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1205 };
1206 
1207 /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1208 static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1209 	{
1210 		.range_min = 0,
1211 		.range_max = SI5341_REGISTER_MAX,
1212 		.selector_reg = SI5341_PAGE,
1213 		.selector_mask = 0xff,
1214 		.selector_shift = 0,
1215 		.window_start = 0,
1216 		.window_len = 256,
1217 	},
1218 };
1219 
si5341_wait_device_ready(struct i2c_client * client)1220 static int si5341_wait_device_ready(struct i2c_client *client)
1221 {
1222 	int count;
1223 
1224 	/* Datasheet warns: Any attempt to read or write any register other
1225 	 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1226 	 * NVM programming and may corrupt the register contents, as they are
1227 	 * read from NVM. Note that this includes accesses to the PAGE register.
1228 	 * Also: DEVICE_READY is available on every register page, so no page
1229 	 * change is needed to read it.
1230 	 * Do this outside regmap to avoid automatic PAGE register access.
1231 	 * May take up to 300ms to complete.
1232 	 */
1233 	for (count = 0; count < 15; ++count) {
1234 		s32 result = i2c_smbus_read_byte_data(client,
1235 						      SI5341_DEVICE_READY);
1236 		if (result < 0)
1237 			return result;
1238 		if (result == 0x0F)
1239 			return 0;
1240 		msleep(20);
1241 	}
1242 	dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1243 	return -EIO;
1244 }
1245 
1246 static const struct regmap_config si5341_regmap_config = {
1247 	.reg_bits = 8,
1248 	.val_bits = 8,
1249 	.cache_type = REGCACHE_RBTREE,
1250 	.ranges = si5341_regmap_ranges,
1251 	.num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1252 	.max_register = SI5341_REGISTER_MAX,
1253 	.volatile_table = &si5341_regmap_volatile,
1254 };
1255 
si5341_dt_parse_dt(struct clk_si5341 * data,struct clk_si5341_output_config * config)1256 static int si5341_dt_parse_dt(struct clk_si5341 *data,
1257 			      struct clk_si5341_output_config *config)
1258 {
1259 	struct device_node *child;
1260 	struct device_node *np = data->i2c_client->dev.of_node;
1261 	u32 num;
1262 	u32 val;
1263 
1264 	memset(config, 0, sizeof(struct clk_si5341_output_config) *
1265 				SI5341_MAX_NUM_OUTPUTS);
1266 
1267 	for_each_child_of_node(np, child) {
1268 		if (of_property_read_u32(child, "reg", &num)) {
1269 			dev_err(&data->i2c_client->dev, "missing reg property of %s\n",
1270 				child->name);
1271 			goto put_child;
1272 		}
1273 
1274 		if (num >= SI5341_MAX_NUM_OUTPUTS) {
1275 			dev_err(&data->i2c_client->dev, "invalid clkout %d\n", num);
1276 			goto put_child;
1277 		}
1278 
1279 		if (!of_property_read_u32(child, "silabs,format", &val)) {
1280 			/* Set cm and ampl conservatively to 3v3 settings */
1281 			switch (val) {
1282 			case 1: /* normal differential */
1283 				config[num].out_cm_ampl_bits = 0x33;
1284 				break;
1285 			case 2: /* low-power differential */
1286 				config[num].out_cm_ampl_bits = 0x13;
1287 				break;
1288 			case 4: /* LVCMOS */
1289 				config[num].out_cm_ampl_bits = 0x33;
1290 				/* Set SI recommended impedance for LVCMOS */
1291 				config[num].out_format_drv_bits |= 0xc0;
1292 				break;
1293 			default:
1294 				dev_err(&data->i2c_client->dev,
1295 					"invalid silabs,format %u for %u\n",
1296 					val, num);
1297 				goto put_child;
1298 			}
1299 			config[num].out_format_drv_bits &= ~0x07;
1300 			config[num].out_format_drv_bits |= val & 0x07;
1301 			/* Always enable the SYNC feature */
1302 			config[num].out_format_drv_bits |= 0x08;
1303 		}
1304 
1305 		if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1306 			if (val > 0xf) {
1307 				dev_err(&data->i2c_client->dev,
1308 					"invalid silabs,common-mode %u\n",
1309 					val);
1310 				goto put_child;
1311 			}
1312 			config[num].out_cm_ampl_bits &= 0xf0;
1313 			config[num].out_cm_ampl_bits |= val & 0x0f;
1314 		}
1315 
1316 		if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1317 			if (val > 0xf) {
1318 				dev_err(&data->i2c_client->dev,
1319 					"invalid silabs,amplitude %u\n",
1320 					val);
1321 				goto put_child;
1322 			}
1323 			config[num].out_cm_ampl_bits &= 0x0f;
1324 			config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1325 		}
1326 
1327 		if (of_property_read_bool(child, "silabs,disable-high"))
1328 			config[num].out_format_drv_bits |= 0x10;
1329 
1330 		config[num].synth_master =
1331 			of_property_read_bool(child, "silabs,synth-master");
1332 
1333 		config[num].always_on =
1334 			of_property_read_bool(child, "always-on");
1335 
1336 		config[num].vdd_sel_bits = 0x08;
1337 		if (data->clk[num].vddo_reg) {
1338 			int vdd = regulator_get_voltage(data->clk[num].vddo_reg);
1339 
1340 			switch (vdd) {
1341 			case 3300000:
1342 				config[num].vdd_sel_bits |= 0 << 4;
1343 				break;
1344 			case 1800000:
1345 				config[num].vdd_sel_bits |= 1 << 4;
1346 				break;
1347 			case 2500000:
1348 				config[num].vdd_sel_bits |= 2 << 4;
1349 				break;
1350 			default:
1351 				dev_err(&data->i2c_client->dev,
1352 					"unsupported vddo voltage %d for %s\n",
1353 					vdd, child->name);
1354 				goto put_child;
1355 			}
1356 		} else {
1357 			/* chip seems to default to 2.5V when not set */
1358 			dev_warn(&data->i2c_client->dev,
1359 				"no regulator set, defaulting vdd_sel to 2.5V for %s\n",
1360 				child->name);
1361 			config[num].vdd_sel_bits |= 2 << 4;
1362 		}
1363 	}
1364 
1365 	return 0;
1366 
1367 put_child:
1368 	of_node_put(child);
1369 	return -EINVAL;
1370 }
1371 
1372 /*
1373  * If not pre-configured, calculate and set the PLL configuration manually.
1374  * For low-jitter performance, the PLL should be set such that the synthesizers
1375  * only need integer division.
1376  * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1377  * the chip to generate any frequency on its outputs, but jitter performance
1378  * may be sub-optimal.
1379  */
si5341_initialize_pll(struct clk_si5341 * data)1380 static int si5341_initialize_pll(struct clk_si5341 *data)
1381 {
1382 	struct device_node *np = data->i2c_client->dev.of_node;
1383 	u32 m_num = 0;
1384 	u32 m_den = 0;
1385 	int sel;
1386 
1387 	if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1388 		dev_err(&data->i2c_client->dev,
1389 			"PLL configuration requires silabs,pll-m-num\n");
1390 	}
1391 	if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1392 		dev_err(&data->i2c_client->dev,
1393 			"PLL configuration requires silabs,pll-m-den\n");
1394 	}
1395 
1396 	if (!m_num || !m_den) {
1397 		dev_err(&data->i2c_client->dev,
1398 			"PLL configuration invalid, assume 14GHz\n");
1399 		sel = si5341_clk_get_selected_input(data);
1400 		if (sel < 0)
1401 			return sel;
1402 
1403 		m_den = clk_get_rate(data->input_clk[sel]) / 10;
1404 		m_num = 1400000000;
1405 	}
1406 
1407 	return si5341_encode_44_32(data->regmap,
1408 			SI5341_PLL_M_NUM, m_num, m_den);
1409 }
1410 
si5341_clk_select_active_input(struct clk_si5341 * data)1411 static int si5341_clk_select_active_input(struct clk_si5341 *data)
1412 {
1413 	int res;
1414 	int err;
1415 	int i;
1416 
1417 	res = si5341_clk_get_selected_input(data);
1418 	if (res < 0)
1419 		return res;
1420 
1421 	/* If the current register setting is invalid, pick the first input */
1422 	if (!data->input_clk[res]) {
1423 		dev_dbg(&data->i2c_client->dev,
1424 			"Input %d not connected, rerouting\n", res);
1425 		res = -ENODEV;
1426 		for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1427 			if (data->input_clk[i]) {
1428 				res = i;
1429 				break;
1430 			}
1431 		}
1432 		if (res < 0) {
1433 			dev_err(&data->i2c_client->dev,
1434 				"No clock input available\n");
1435 			return res;
1436 		}
1437 	}
1438 
1439 	/* Make sure the selected clock is also enabled and routed */
1440 	err = si5341_clk_reparent(data, res);
1441 	if (err < 0)
1442 		return err;
1443 
1444 	err = clk_prepare_enable(data->input_clk[res]);
1445 	if (err < 0)
1446 		return err;
1447 
1448 	return res;
1449 }
1450 
input_present_show(struct device * dev,struct device_attribute * attr,char * buf)1451 static ssize_t input_present_show(struct device *dev,
1452 				  struct device_attribute *attr,
1453 				  char *buf)
1454 {
1455 	struct clk_si5341 *data = dev_get_drvdata(dev);
1456 	u32 status;
1457 	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1458 
1459 	if (res < 0)
1460 		return res;
1461 	res = !(status & SI5341_STATUS_LOSREF);
1462 	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1463 }
1464 static DEVICE_ATTR_RO(input_present);
1465 
input_present_sticky_show(struct device * dev,struct device_attribute * attr,char * buf)1466 static ssize_t input_present_sticky_show(struct device *dev,
1467 					 struct device_attribute *attr,
1468 					 char *buf)
1469 {
1470 	struct clk_si5341 *data = dev_get_drvdata(dev);
1471 	u32 status;
1472 	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1473 
1474 	if (res < 0)
1475 		return res;
1476 	res = !(status & SI5341_STATUS_LOSREF);
1477 	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1478 }
1479 static DEVICE_ATTR_RO(input_present_sticky);
1480 
pll_locked_show(struct device * dev,struct device_attribute * attr,char * buf)1481 static ssize_t pll_locked_show(struct device *dev,
1482 			       struct device_attribute *attr,
1483 			       char *buf)
1484 {
1485 	struct clk_si5341 *data = dev_get_drvdata(dev);
1486 	u32 status;
1487 	int res = regmap_read(data->regmap, SI5341_STATUS, &status);
1488 
1489 	if (res < 0)
1490 		return res;
1491 	res = !(status & SI5341_STATUS_LOL);
1492 	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1493 }
1494 static DEVICE_ATTR_RO(pll_locked);
1495 
pll_locked_sticky_show(struct device * dev,struct device_attribute * attr,char * buf)1496 static ssize_t pll_locked_sticky_show(struct device *dev,
1497 				      struct device_attribute *attr,
1498 				      char *buf)
1499 {
1500 	struct clk_si5341 *data = dev_get_drvdata(dev);
1501 	u32 status;
1502 	int res = regmap_read(data->regmap, SI5341_STATUS_STICKY, &status);
1503 
1504 	if (res < 0)
1505 		return res;
1506 	res = !(status & SI5341_STATUS_LOL);
1507 	return snprintf(buf, PAGE_SIZE, "%d\n", res);
1508 }
1509 static DEVICE_ATTR_RO(pll_locked_sticky);
1510 
clear_sticky_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1511 static ssize_t clear_sticky_store(struct device *dev,
1512 				  struct device_attribute *attr,
1513 				  const char *buf, size_t count)
1514 {
1515 	struct clk_si5341 *data = dev_get_drvdata(dev);
1516 	long val;
1517 
1518 	if (kstrtol(buf, 10, &val))
1519 		return -EINVAL;
1520 	if (val) {
1521 		int res = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1522 
1523 		if (res < 0)
1524 			return res;
1525 	}
1526 	return count;
1527 }
1528 static DEVICE_ATTR_WO(clear_sticky);
1529 
1530 static const struct attribute *si5341_attributes[] = {
1531 	&dev_attr_input_present.attr,
1532 	&dev_attr_input_present_sticky.attr,
1533 	&dev_attr_pll_locked.attr,
1534 	&dev_attr_pll_locked_sticky.attr,
1535 	&dev_attr_clear_sticky.attr,
1536 	NULL
1537 };
1538 
si5341_probe(struct i2c_client * client,const struct i2c_device_id * id)1539 static int si5341_probe(struct i2c_client *client,
1540 		const struct i2c_device_id *id)
1541 {
1542 	struct clk_si5341 *data;
1543 	struct clk_init_data init;
1544 	struct clk *input;
1545 	const char *root_clock_name;
1546 	const char *synth_clock_names[SI5341_NUM_SYNTH] = { NULL };
1547 	int err;
1548 	unsigned int i;
1549 	struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1550 	bool initialization_required;
1551 	u32 status;
1552 
1553 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1554 	if (!data)
1555 		return -ENOMEM;
1556 
1557 	data->i2c_client = client;
1558 
1559 	/* Must be done before otherwise touching hardware */
1560 	err = si5341_wait_device_ready(client);
1561 	if (err)
1562 		return err;
1563 
1564 	for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1565 		input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1566 		if (IS_ERR(input)) {
1567 			if (PTR_ERR(input) == -EPROBE_DEFER)
1568 				return -EPROBE_DEFER;
1569 			data->input_clk_name[i] = si5341_input_clock_names[i];
1570 		} else {
1571 			data->input_clk[i] = input;
1572 			data->input_clk_name[i] = __clk_get_name(input);
1573 		}
1574 	}
1575 
1576 	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1577 		char reg_name[10];
1578 
1579 		snprintf(reg_name, sizeof(reg_name), "vddo%d", i);
1580 		data->clk[i].vddo_reg = devm_regulator_get_optional(
1581 			&client->dev, reg_name);
1582 		if (IS_ERR(data->clk[i].vddo_reg)) {
1583 			err = PTR_ERR(data->clk[i].vddo_reg);
1584 			data->clk[i].vddo_reg = NULL;
1585 			if (err == -ENODEV)
1586 				continue;
1587 			goto cleanup;
1588 		} else {
1589 			err = regulator_enable(data->clk[i].vddo_reg);
1590 			if (err) {
1591 				dev_err(&client->dev,
1592 					"failed to enable %s regulator: %d\n",
1593 					reg_name, err);
1594 				data->clk[i].vddo_reg = NULL;
1595 				goto cleanup;
1596 			}
1597 		}
1598 	}
1599 
1600 	err = si5341_dt_parse_dt(data, config);
1601 	if (err)
1602 		goto cleanup;
1603 
1604 	if (of_property_read_string(client->dev.of_node, "clock-output-names",
1605 			&init.name))
1606 		init.name = client->dev.of_node->name;
1607 	root_clock_name = init.name;
1608 
1609 	data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1610 	if (IS_ERR(data->regmap)) {
1611 		err = PTR_ERR(data->regmap);
1612 		goto cleanup;
1613 	}
1614 
1615 	i2c_set_clientdata(client, data);
1616 
1617 	err = si5341_probe_chip_id(data);
1618 	if (err < 0)
1619 		goto cleanup;
1620 
1621 	if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1622 		initialization_required = true;
1623 	} else {
1624 		err = si5341_is_programmed_already(data);
1625 		if (err < 0)
1626 			goto cleanup;
1627 
1628 		initialization_required = !err;
1629 	}
1630 
1631 	if (initialization_required) {
1632 		/* Populate the regmap cache in preparation for "cache only" */
1633 		err = si5341_read_settings(data);
1634 		if (err < 0)
1635 			goto cleanup;
1636 
1637 		err = si5341_send_preamble(data);
1638 		if (err < 0)
1639 			goto cleanup;
1640 
1641 		/*
1642 		 * We intend to send all 'final' register values in a single
1643 		 * transaction. So cache all register writes until we're done
1644 		 * configuring.
1645 		 */
1646 		regcache_cache_only(data->regmap, true);
1647 
1648 		/* Write the configuration pairs from the firmware blob */
1649 		err = si5341_write_multiple(data, si5341_reg_defaults,
1650 					ARRAY_SIZE(si5341_reg_defaults));
1651 		if (err < 0)
1652 			goto cleanup;
1653 	}
1654 
1655 	/* Input must be up and running at this point */
1656 	err = si5341_clk_select_active_input(data);
1657 	if (err < 0)
1658 		goto cleanup;
1659 
1660 	if (initialization_required) {
1661 		/* PLL configuration is required */
1662 		err = si5341_initialize_pll(data);
1663 		if (err < 0)
1664 			goto cleanup;
1665 	}
1666 
1667 	/* Register the PLL */
1668 	init.parent_names = data->input_clk_name;
1669 	init.num_parents = SI5341_NUM_INPUTS;
1670 	init.ops = &si5341_clk_ops;
1671 	init.flags = 0;
1672 	data->hw.init = &init;
1673 
1674 	err = devm_clk_hw_register(&client->dev, &data->hw);
1675 	if (err) {
1676 		dev_err(&client->dev, "clock registration failed\n");
1677 		goto cleanup;
1678 	}
1679 
1680 	init.num_parents = 1;
1681 	init.parent_names = &root_clock_name;
1682 	init.ops = &si5341_synth_clk_ops;
1683 	for (i = 0; i < data->num_synth; ++i) {
1684 		synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1685 				"%s.N%u", client->dev.of_node->name, i);
1686 		if (!synth_clock_names[i]) {
1687 			err = -ENOMEM;
1688 			goto free_clk_names;
1689 		}
1690 		init.name = synth_clock_names[i];
1691 		data->synth[i].index = i;
1692 		data->synth[i].data = data;
1693 		data->synth[i].hw.init = &init;
1694 		err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1695 		if (err) {
1696 			dev_err(&client->dev,
1697 				"synth N%u registration failed\n", i);
1698 			goto free_clk_names;
1699 		}
1700 	}
1701 
1702 	init.num_parents = data->num_synth;
1703 	init.parent_names = synth_clock_names;
1704 	init.ops = &si5341_output_clk_ops;
1705 	for (i = 0; i < data->num_outputs; ++i) {
1706 		init.name = kasprintf(GFP_KERNEL, "%s.%d",
1707 			client->dev.of_node->name, i);
1708 		if (!init.name) {
1709 			err = -ENOMEM;
1710 			goto free_clk_names;
1711 		}
1712 		init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1713 		data->clk[i].index = i;
1714 		data->clk[i].data = data;
1715 		data->clk[i].hw.init = &init;
1716 		if (config[i].out_format_drv_bits & 0x07) {
1717 			regmap_write(data->regmap,
1718 				SI5341_OUT_FORMAT(&data->clk[i]),
1719 				config[i].out_format_drv_bits);
1720 			regmap_write(data->regmap,
1721 				SI5341_OUT_CM(&data->clk[i]),
1722 				config[i].out_cm_ampl_bits);
1723 			regmap_update_bits(data->regmap,
1724 				SI5341_OUT_MUX_SEL(&data->clk[i]),
1725 				SI5341_OUT_MUX_VDD_SEL_MASK,
1726 				config[i].vdd_sel_bits);
1727 		}
1728 		err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1729 		kfree(init.name); /* clock framework made a copy of the name */
1730 		if (err) {
1731 			dev_err(&client->dev,
1732 				"output %u registration failed\n", i);
1733 			goto free_clk_names;
1734 		}
1735 		if (config[i].always_on)
1736 			clk_prepare(data->clk[i].hw.clk);
1737 	}
1738 
1739 	err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
1740 			data);
1741 	if (err) {
1742 		dev_err(&client->dev, "unable to add clk provider\n");
1743 		goto free_clk_names;
1744 	}
1745 
1746 	if (initialization_required) {
1747 		/* Synchronize */
1748 		regcache_cache_only(data->regmap, false);
1749 		err = regcache_sync(data->regmap);
1750 		if (err < 0)
1751 			goto free_clk_names;
1752 
1753 		err = si5341_finalize_defaults(data);
1754 		if (err < 0)
1755 			goto free_clk_names;
1756 	}
1757 
1758 	/* wait for device to report input clock present and PLL lock */
1759 	err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1760 		!(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1761 	       10000, 250000);
1762 	if (err) {
1763 		dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1764 		goto free_clk_names;
1765 	}
1766 
1767 	/* clear sticky alarm bits from initialization */
1768 	err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1769 	if (err) {
1770 		dev_err(&client->dev, "unable to clear sticky status\n");
1771 		goto free_clk_names;
1772 	}
1773 
1774 	err = sysfs_create_files(&client->dev.kobj, si5341_attributes);
1775 	if (err)
1776 		dev_err(&client->dev, "unable to create sysfs files\n");
1777 
1778 free_clk_names:
1779 	/* Free the names, clk framework makes copies */
1780 	for (i = 0; i < data->num_synth; ++i)
1781 		 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1782 
1783 cleanup:
1784 	if (err) {
1785 		for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1786 			if (data->clk[i].vddo_reg)
1787 				regulator_disable(data->clk[i].vddo_reg);
1788 		}
1789 	}
1790 	return err;
1791 }
1792 
si5341_remove(struct i2c_client * client)1793 static int si5341_remove(struct i2c_client *client)
1794 {
1795 	struct clk_si5341 *data = i2c_get_clientdata(client);
1796 	int i;
1797 
1798 	sysfs_remove_files(&client->dev.kobj, si5341_attributes);
1799 
1800 	for (i = 0; i < SI5341_MAX_NUM_OUTPUTS; ++i) {
1801 		if (data->clk[i].vddo_reg)
1802 			regulator_disable(data->clk[i].vddo_reg);
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static const struct i2c_device_id si5341_id[] = {
1809 	{ "si5340", 0 },
1810 	{ "si5341", 1 },
1811 	{ "si5342", 2 },
1812 	{ "si5344", 4 },
1813 	{ "si5345", 5 },
1814 	{ }
1815 };
1816 MODULE_DEVICE_TABLE(i2c, si5341_id);
1817 
1818 static const struct of_device_id clk_si5341_of_match[] = {
1819 	{ .compatible = "silabs,si5340" },
1820 	{ .compatible = "silabs,si5341" },
1821 	{ .compatible = "silabs,si5342" },
1822 	{ .compatible = "silabs,si5344" },
1823 	{ .compatible = "silabs,si5345" },
1824 	{ }
1825 };
1826 MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1827 
1828 static struct i2c_driver si5341_driver = {
1829 	.driver = {
1830 		.name = "si5341",
1831 		.of_match_table = clk_si5341_of_match,
1832 	},
1833 	.probe		= si5341_probe,
1834 	.remove		= si5341_remove,
1835 	.id_table	= si5341_id,
1836 };
1837 module_i2c_driver(si5341_driver);
1838 
1839 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1840 MODULE_DESCRIPTION("Si5341 driver");
1841 MODULE_LICENSE("GPL");
1842