• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4  *
5  * Copyright (C) 2008 Atmel Corporation
6  *
7  * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
8  * The only Atmel DMA Controller that is not covered by this driver is the one
9  * found on AT91SAM9263.
10  */
11 
12 #include <dt-bindings/dma/at91.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmapool.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 
25 #include "at_hdmac_regs.h"
26 #include "dmaengine.h"
27 
28 /*
29  * Glossary
30  * --------
31  *
32  * at_hdmac		: Name of the ATmel AHB DMA Controller
33  * at_dma_ / atdma	: ATmel DMA controller entity related
34  * atc_	/ atchan	: ATmel DMA Channel entity related
35  */
36 
37 #define	ATC_DEFAULT_CFG		(ATC_FIFOCFG_HALFFIFO)
38 #define	ATC_DEFAULT_CTRLB	(ATC_SIF(AT_DMA_MEM_IF) \
39 				|ATC_DIF(AT_DMA_MEM_IF))
40 #define ATC_DMA_BUSWIDTHS\
41 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
42 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
43 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
44 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
45 
46 #define ATC_MAX_DSCR_TRIALS	10
47 
48 /*
49  * Initial number of descriptors to allocate for each channel. This could
50  * be increased during dma usage.
51  */
52 static unsigned int init_nr_desc_per_channel = 64;
53 module_param(init_nr_desc_per_channel, uint, 0644);
54 MODULE_PARM_DESC(init_nr_desc_per_channel,
55 		 "initial descriptors per channel (default: 64)");
56 
57 
58 /* prototypes */
59 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
60 static void atc_issue_pending(struct dma_chan *chan);
61 
62 
63 /*----------------------------------------------------------------------*/
64 
atc_get_xfer_width(dma_addr_t src,dma_addr_t dst,size_t len)65 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
66 						size_t len)
67 {
68 	unsigned int width;
69 
70 	if (!((src | dst  | len) & 3))
71 		width = 2;
72 	else if (!((src | dst | len) & 1))
73 		width = 1;
74 	else
75 		width = 0;
76 
77 	return width;
78 }
79 
atc_first_active(struct at_dma_chan * atchan)80 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
81 {
82 	return list_first_entry(&atchan->active_list,
83 				struct at_desc, desc_node);
84 }
85 
atc_first_queued(struct at_dma_chan * atchan)86 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
87 {
88 	return list_first_entry(&atchan->queue,
89 				struct at_desc, desc_node);
90 }
91 
92 /**
93  * atc_alloc_descriptor - allocate and return an initialized descriptor
94  * @chan: the channel to allocate descriptors for
95  * @gfp_flags: GFP allocation flags
96  *
97  * Note: The ack-bit is positioned in the descriptor flag at creation time
98  *       to make initial allocation more convenient. This bit will be cleared
99  *       and control will be given to client at usage time (during
100  *       preparation functions).
101  */
atc_alloc_descriptor(struct dma_chan * chan,gfp_t gfp_flags)102 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
103 					    gfp_t gfp_flags)
104 {
105 	struct at_desc	*desc = NULL;
106 	struct at_dma	*atdma = to_at_dma(chan->device);
107 	dma_addr_t phys;
108 
109 	desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
110 	if (desc) {
111 		INIT_LIST_HEAD(&desc->tx_list);
112 		dma_async_tx_descriptor_init(&desc->txd, chan);
113 		/* txd.flags will be overwritten in prep functions */
114 		desc->txd.flags = DMA_CTRL_ACK;
115 		desc->txd.tx_submit = atc_tx_submit;
116 		desc->txd.phys = phys;
117 	}
118 
119 	return desc;
120 }
121 
122 /**
123  * atc_desc_get - get an unused descriptor from free_list
124  * @atchan: channel we want a new descriptor for
125  */
atc_desc_get(struct at_dma_chan * atchan)126 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
127 {
128 	struct at_desc *desc, *_desc;
129 	struct at_desc *ret = NULL;
130 	unsigned long flags;
131 	unsigned int i = 0;
132 
133 	spin_lock_irqsave(&atchan->lock, flags);
134 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
135 		i++;
136 		if (async_tx_test_ack(&desc->txd)) {
137 			list_del(&desc->desc_node);
138 			ret = desc;
139 			break;
140 		}
141 		dev_dbg(chan2dev(&atchan->chan_common),
142 				"desc %p not ACKed\n", desc);
143 	}
144 	spin_unlock_irqrestore(&atchan->lock, flags);
145 	dev_vdbg(chan2dev(&atchan->chan_common),
146 		"scanned %u descriptors on freelist\n", i);
147 
148 	/* no more descriptor available in initial pool: create one more */
149 	if (!ret)
150 		ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
151 
152 	return ret;
153 }
154 
155 /**
156  * atc_desc_put - move a descriptor, including any children, to the free list
157  * @atchan: channel we work on
158  * @desc: descriptor, at the head of a chain, to move to free list
159  */
atc_desc_put(struct at_dma_chan * atchan,struct at_desc * desc)160 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
161 {
162 	if (desc) {
163 		struct at_desc *child;
164 		unsigned long flags;
165 
166 		spin_lock_irqsave(&atchan->lock, flags);
167 		list_for_each_entry(child, &desc->tx_list, desc_node)
168 			dev_vdbg(chan2dev(&atchan->chan_common),
169 					"moving child desc %p to freelist\n",
170 					child);
171 		list_splice_init(&desc->tx_list, &atchan->free_list);
172 		dev_vdbg(chan2dev(&atchan->chan_common),
173 			 "moving desc %p to freelist\n", desc);
174 		list_add(&desc->desc_node, &atchan->free_list);
175 		spin_unlock_irqrestore(&atchan->lock, flags);
176 	}
177 }
178 
179 /**
180  * atc_desc_chain - build chain adding a descriptor
181  * @first: address of first descriptor of the chain
182  * @prev: address of previous descriptor of the chain
183  * @desc: descriptor to queue
184  *
185  * Called from prep_* functions
186  */
atc_desc_chain(struct at_desc ** first,struct at_desc ** prev,struct at_desc * desc)187 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
188 			   struct at_desc *desc)
189 {
190 	if (!(*first)) {
191 		*first = desc;
192 	} else {
193 		/* inform the HW lli about chaining */
194 		(*prev)->lli.dscr = desc->txd.phys;
195 		/* insert the link descriptor to the LD ring */
196 		list_add_tail(&desc->desc_node,
197 				&(*first)->tx_list);
198 	}
199 	*prev = desc;
200 }
201 
202 /**
203  * atc_dostart - starts the DMA engine for real
204  * @atchan: the channel we want to start
205  * @first: first descriptor in the list we want to begin with
206  *
207  * Called with atchan->lock held and bh disabled
208  */
atc_dostart(struct at_dma_chan * atchan,struct at_desc * first)209 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
210 {
211 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
212 
213 	/* ASSERT:  channel is idle */
214 	if (atc_chan_is_enabled(atchan)) {
215 		dev_err(chan2dev(&atchan->chan_common),
216 			"BUG: Attempted to start non-idle channel\n");
217 		dev_err(chan2dev(&atchan->chan_common),
218 			"  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
219 			channel_readl(atchan, SADDR),
220 			channel_readl(atchan, DADDR),
221 			channel_readl(atchan, CTRLA),
222 			channel_readl(atchan, CTRLB),
223 			channel_readl(atchan, DSCR));
224 
225 		/* The tasklet will hopefully advance the queue... */
226 		return;
227 	}
228 
229 	vdbg_dump_regs(atchan);
230 
231 	channel_writel(atchan, SADDR, 0);
232 	channel_writel(atchan, DADDR, 0);
233 	channel_writel(atchan, CTRLA, 0);
234 	channel_writel(atchan, CTRLB, 0);
235 	channel_writel(atchan, DSCR, first->txd.phys);
236 	channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
237 		       ATC_SPIP_BOUNDARY(first->boundary));
238 	channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
239 		       ATC_DPIP_BOUNDARY(first->boundary));
240 	/* Don't allow CPU to reorder channel enable. */
241 	wmb();
242 	dma_writel(atdma, CHER, atchan->mask);
243 
244 	vdbg_dump_regs(atchan);
245 }
246 
247 /*
248  * atc_get_desc_by_cookie - get the descriptor of a cookie
249  * @atchan: the DMA channel
250  * @cookie: the cookie to get the descriptor for
251  */
atc_get_desc_by_cookie(struct at_dma_chan * atchan,dma_cookie_t cookie)252 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
253 						dma_cookie_t cookie)
254 {
255 	struct at_desc *desc, *_desc;
256 
257 	list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
258 		if (desc->txd.cookie == cookie)
259 			return desc;
260 	}
261 
262 	list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
263 		if (desc->txd.cookie == cookie)
264 			return desc;
265 	}
266 
267 	return NULL;
268 }
269 
270 /**
271  * atc_calc_bytes_left - calculates the number of bytes left according to the
272  * value read from CTRLA.
273  *
274  * @current_len: the number of bytes left before reading CTRLA
275  * @ctrla: the value of CTRLA
276  */
atc_calc_bytes_left(int current_len,u32 ctrla)277 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
278 {
279 	u32 btsize = (ctrla & ATC_BTSIZE_MAX);
280 	u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
281 
282 	/*
283 	 * According to the datasheet, when reading the Control A Register
284 	 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
285 	 * number of transfers completed on the Source Interface.
286 	 * So btsize is always a number of source width transfers.
287 	 */
288 	return current_len - (btsize << src_width);
289 }
290 
291 /**
292  * atc_get_bytes_left - get the number of bytes residue for a cookie
293  * @chan: DMA channel
294  * @cookie: transaction identifier to check status of
295  */
atc_get_bytes_left(struct dma_chan * chan,dma_cookie_t cookie)296 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
297 {
298 	struct at_dma_chan      *atchan = to_at_dma_chan(chan);
299 	struct at_desc *desc_first = atc_first_active(atchan);
300 	struct at_desc *desc;
301 	int ret;
302 	u32 ctrla, dscr;
303 	unsigned int i;
304 
305 	/*
306 	 * If the cookie doesn't match to the currently running transfer then
307 	 * we can return the total length of the associated DMA transfer,
308 	 * because it is still queued.
309 	 */
310 	desc = atc_get_desc_by_cookie(atchan, cookie);
311 	if (desc == NULL)
312 		return -EINVAL;
313 	else if (desc != desc_first)
314 		return desc->total_len;
315 
316 	/* cookie matches to the currently running transfer */
317 	ret = desc_first->total_len;
318 
319 	if (desc_first->lli.dscr) {
320 		/* hardware linked list transfer */
321 
322 		/*
323 		 * Calculate the residue by removing the length of the child
324 		 * descriptors already transferred from the total length.
325 		 * To get the current child descriptor we can use the value of
326 		 * the channel's DSCR register and compare it against the value
327 		 * of the hardware linked list structure of each child
328 		 * descriptor.
329 		 *
330 		 * The CTRLA register provides us with the amount of data
331 		 * already read from the source for the current child
332 		 * descriptor. So we can compute a more accurate residue by also
333 		 * removing the number of bytes corresponding to this amount of
334 		 * data.
335 		 *
336 		 * However, the DSCR and CTRLA registers cannot be read both
337 		 * atomically. Hence a race condition may occur: the first read
338 		 * register may refer to one child descriptor whereas the second
339 		 * read may refer to a later child descriptor in the list
340 		 * because of the DMA transfer progression inbetween the two
341 		 * reads.
342 		 *
343 		 * One solution could have been to pause the DMA transfer, read
344 		 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
345 		 * this approach presents some drawbacks:
346 		 * - If the DMA transfer is paused, RX overruns or TX underruns
347 		 *   are more likey to occur depending on the system latency.
348 		 *   Taking the USART driver as an example, it uses a cyclic DMA
349 		 *   transfer to read data from the Receive Holding Register
350 		 *   (RHR) to avoid RX overruns since the RHR is not protected
351 		 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
352 		 *   to compute the residue would break the USART driver design.
353 		 * - The atc_pause() function masks interrupts but we'd rather
354 		 *   avoid to do so for system latency purpose.
355 		 *
356 		 * Then we'd rather use another solution: the DSCR is read a
357 		 * first time, the CTRLA is read in turn, next the DSCR is read
358 		 * a second time. If the two consecutive read values of the DSCR
359 		 * are the same then we assume both refers to the very same
360 		 * child descriptor as well as the CTRLA value read inbetween
361 		 * does. For cyclic tranfers, the assumption is that a full loop
362 		 * is "not so fast".
363 		 * If the two DSCR values are different, we read again the CTRLA
364 		 * then the DSCR till two consecutive read values from DSCR are
365 		 * equal or till the maxium trials is reach.
366 		 * This algorithm is very unlikely not to find a stable value for
367 		 * DSCR.
368 		 */
369 
370 		dscr = channel_readl(atchan, DSCR);
371 		rmb(); /* ensure DSCR is read before CTRLA */
372 		ctrla = channel_readl(atchan, CTRLA);
373 		for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
374 			u32 new_dscr;
375 
376 			rmb(); /* ensure DSCR is read after CTRLA */
377 			new_dscr = channel_readl(atchan, DSCR);
378 
379 			/*
380 			 * If the DSCR register value has not changed inside the
381 			 * DMA controller since the previous read, we assume
382 			 * that both the dscr and ctrla values refers to the
383 			 * very same descriptor.
384 			 */
385 			if (likely(new_dscr == dscr))
386 				break;
387 
388 			/*
389 			 * DSCR has changed inside the DMA controller, so the
390 			 * previouly read value of CTRLA may refer to an already
391 			 * processed descriptor hence could be outdated.
392 			 * We need to update ctrla to match the current
393 			 * descriptor.
394 			 */
395 			dscr = new_dscr;
396 			rmb(); /* ensure DSCR is read before CTRLA */
397 			ctrla = channel_readl(atchan, CTRLA);
398 		}
399 		if (unlikely(i == ATC_MAX_DSCR_TRIALS))
400 			return -ETIMEDOUT;
401 
402 		/* for the first descriptor we can be more accurate */
403 		if (desc_first->lli.dscr == dscr)
404 			return atc_calc_bytes_left(ret, ctrla);
405 
406 		ret -= desc_first->len;
407 		list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
408 			if (desc->lli.dscr == dscr)
409 				break;
410 
411 			ret -= desc->len;
412 		}
413 
414 		/*
415 		 * For the current descriptor in the chain we can calculate
416 		 * the remaining bytes using the channel's register.
417 		 */
418 		ret = atc_calc_bytes_left(ret, ctrla);
419 	} else {
420 		/* single transfer */
421 		ctrla = channel_readl(atchan, CTRLA);
422 		ret = atc_calc_bytes_left(ret, ctrla);
423 	}
424 
425 	return ret;
426 }
427 
428 /**
429  * atc_chain_complete - finish work for one transaction chain
430  * @atchan: channel we work on
431  * @desc: descriptor at the head of the chain we want do complete
432  */
433 static void
atc_chain_complete(struct at_dma_chan * atchan,struct at_desc * desc)434 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
435 {
436 	struct dma_async_tx_descriptor	*txd = &desc->txd;
437 	struct at_dma			*atdma = to_at_dma(atchan->chan_common.device);
438 	unsigned long flags;
439 
440 	dev_vdbg(chan2dev(&atchan->chan_common),
441 		"descriptor %u complete\n", txd->cookie);
442 
443 	spin_lock_irqsave(&atchan->lock, flags);
444 
445 	/* mark the descriptor as complete for non cyclic cases only */
446 	if (!atc_chan_is_cyclic(atchan))
447 		dma_cookie_complete(txd);
448 
449 	spin_unlock_irqrestore(&atchan->lock, flags);
450 
451 	dma_descriptor_unmap(txd);
452 	/* for cyclic transfers,
453 	 * no need to replay callback function while stopping */
454 	if (!atc_chan_is_cyclic(atchan))
455 		dmaengine_desc_get_callback_invoke(txd, NULL);
456 
457 	dma_run_dependencies(txd);
458 
459 	spin_lock_irqsave(&atchan->lock, flags);
460 	/* move children to free_list */
461 	list_splice_init(&desc->tx_list, &atchan->free_list);
462 	/* add myself to free_list */
463 	list_add(&desc->desc_node, &atchan->free_list);
464 	spin_unlock_irqrestore(&atchan->lock, flags);
465 
466 	/* If the transfer was a memset, free our temporary buffer */
467 	if (desc->memset_buffer) {
468 		dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
469 			      desc->memset_paddr);
470 		desc->memset_buffer = false;
471 	}
472 }
473 
474 /**
475  * atc_advance_work - at the end of a transaction, move forward
476  * @atchan: channel where the transaction ended
477  */
atc_advance_work(struct at_dma_chan * atchan)478 static void atc_advance_work(struct at_dma_chan *atchan)
479 {
480 	struct at_desc *desc;
481 	unsigned long flags;
482 
483 	dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
484 
485 	spin_lock_irqsave(&atchan->lock, flags);
486 	if (atc_chan_is_enabled(atchan) || list_empty(&atchan->active_list))
487 		return spin_unlock_irqrestore(&atchan->lock, flags);
488 
489 	desc = atc_first_active(atchan);
490 	/* Remove the transfer node from the active list. */
491 	list_del_init(&desc->desc_node);
492 	spin_unlock_irqrestore(&atchan->lock, flags);
493 	atc_chain_complete(atchan, desc);
494 
495 	/* advance work */
496 	spin_lock_irqsave(&atchan->lock, flags);
497 	if (!list_empty(&atchan->active_list)) {
498 		desc = atc_first_queued(atchan);
499 		list_move_tail(&desc->desc_node, &atchan->active_list);
500 		atc_dostart(atchan, desc);
501 	}
502 	spin_unlock_irqrestore(&atchan->lock, flags);
503 }
504 
505 
506 /**
507  * atc_handle_error - handle errors reported by DMA controller
508  * @atchan: channel where error occurs
509  */
atc_handle_error(struct at_dma_chan * atchan)510 static void atc_handle_error(struct at_dma_chan *atchan)
511 {
512 	struct at_desc *bad_desc;
513 	struct at_desc *desc;
514 	struct at_desc *child;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&atchan->lock, flags);
518 	/*
519 	 * The descriptor currently at the head of the active list is
520 	 * broked. Since we don't have any way to report errors, we'll
521 	 * just have to scream loudly and try to carry on.
522 	 */
523 	bad_desc = atc_first_active(atchan);
524 	list_del_init(&bad_desc->desc_node);
525 
526 	/* Try to restart the controller */
527 	if (!list_empty(&atchan->active_list)) {
528 		desc = atc_first_queued(atchan);
529 		list_move_tail(&desc->desc_node, &atchan->active_list);
530 		atc_dostart(atchan, desc);
531 	}
532 
533 	/*
534 	 * KERN_CRITICAL may seem harsh, but since this only happens
535 	 * when someone submits a bad physical address in a
536 	 * descriptor, we should consider ourselves lucky that the
537 	 * controller flagged an error instead of scribbling over
538 	 * random memory locations.
539 	 */
540 	dev_crit(chan2dev(&atchan->chan_common),
541 			"Bad descriptor submitted for DMA!\n");
542 	dev_crit(chan2dev(&atchan->chan_common),
543 			"  cookie: %d\n", bad_desc->txd.cookie);
544 	atc_dump_lli(atchan, &bad_desc->lli);
545 	list_for_each_entry(child, &bad_desc->tx_list, desc_node)
546 		atc_dump_lli(atchan, &child->lli);
547 
548 	spin_unlock_irqrestore(&atchan->lock, flags);
549 
550 	/* Pretend the descriptor completed successfully */
551 	atc_chain_complete(atchan, bad_desc);
552 }
553 
554 /**
555  * atc_handle_cyclic - at the end of a period, run callback function
556  * @atchan: channel used for cyclic operations
557  */
atc_handle_cyclic(struct at_dma_chan * atchan)558 static void atc_handle_cyclic(struct at_dma_chan *atchan)
559 {
560 	struct at_desc			*first = atc_first_active(atchan);
561 	struct dma_async_tx_descriptor	*txd = &first->txd;
562 
563 	dev_vdbg(chan2dev(&atchan->chan_common),
564 			"new cyclic period llp 0x%08x\n",
565 			channel_readl(atchan, DSCR));
566 
567 	dmaengine_desc_get_callback_invoke(txd, NULL);
568 }
569 
570 /*--  IRQ & Tasklet  ---------------------------------------------------*/
571 
atc_tasklet(struct tasklet_struct * t)572 static void atc_tasklet(struct tasklet_struct *t)
573 {
574 	struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
575 
576 	if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
577 		return atc_handle_error(atchan);
578 
579 	if (atc_chan_is_cyclic(atchan))
580 		return atc_handle_cyclic(atchan);
581 
582 	atc_advance_work(atchan);
583 }
584 
at_dma_interrupt(int irq,void * dev_id)585 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
586 {
587 	struct at_dma		*atdma = (struct at_dma *)dev_id;
588 	struct at_dma_chan	*atchan;
589 	int			i;
590 	u32			status, pending, imr;
591 	int			ret = IRQ_NONE;
592 
593 	do {
594 		imr = dma_readl(atdma, EBCIMR);
595 		status = dma_readl(atdma, EBCISR);
596 		pending = status & imr;
597 
598 		if (!pending)
599 			break;
600 
601 		dev_vdbg(atdma->dma_common.dev,
602 			"interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
603 			 status, imr, pending);
604 
605 		for (i = 0; i < atdma->dma_common.chancnt; i++) {
606 			atchan = &atdma->chan[i];
607 			if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
608 				if (pending & AT_DMA_ERR(i)) {
609 					/* Disable channel on AHB error */
610 					dma_writel(atdma, CHDR,
611 						AT_DMA_RES(i) | atchan->mask);
612 					/* Give information to tasklet */
613 					set_bit(ATC_IS_ERROR, &atchan->status);
614 				}
615 				tasklet_schedule(&atchan->tasklet);
616 				ret = IRQ_HANDLED;
617 			}
618 		}
619 
620 	} while (pending);
621 
622 	return ret;
623 }
624 
625 
626 /*--  DMA Engine API  --------------------------------------------------*/
627 
628 /**
629  * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
630  * @tx: descriptor at the head of the transaction chain
631  *
632  * Queue chain if DMA engine is working already
633  *
634  * Cookie increment and adding to active_list or queue must be atomic
635  */
atc_tx_submit(struct dma_async_tx_descriptor * tx)636 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
637 {
638 	struct at_desc		*desc = txd_to_at_desc(tx);
639 	struct at_dma_chan	*atchan = to_at_dma_chan(tx->chan);
640 	dma_cookie_t		cookie;
641 	unsigned long		flags;
642 
643 	spin_lock_irqsave(&atchan->lock, flags);
644 	cookie = dma_cookie_assign(tx);
645 
646 	list_add_tail(&desc->desc_node, &atchan->queue);
647 	spin_unlock_irqrestore(&atchan->lock, flags);
648 
649 	dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
650 		 desc->txd.cookie);
651 	return cookie;
652 }
653 
654 /**
655  * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
656  * @chan: the channel to prepare operation on
657  * @xt: Interleaved transfer template
658  * @flags: tx descriptor status flags
659  */
660 static struct dma_async_tx_descriptor *
atc_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)661 atc_prep_dma_interleaved(struct dma_chan *chan,
662 			 struct dma_interleaved_template *xt,
663 			 unsigned long flags)
664 {
665 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
666 	struct data_chunk	*first;
667 	struct at_desc		*desc = NULL;
668 	size_t			xfer_count;
669 	unsigned int		dwidth;
670 	u32			ctrla;
671 	u32			ctrlb;
672 	size_t			len = 0;
673 	int			i;
674 
675 	if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
676 		return NULL;
677 
678 	first = xt->sgl;
679 
680 	dev_info(chan2dev(chan),
681 		 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
682 		__func__, &xt->src_start, &xt->dst_start, xt->numf,
683 		xt->frame_size, flags);
684 
685 	/*
686 	 * The controller can only "skip" X bytes every Y bytes, so we
687 	 * need to make sure we are given a template that fit that
688 	 * description, ie a template with chunks that always have the
689 	 * same size, with the same ICGs.
690 	 */
691 	for (i = 0; i < xt->frame_size; i++) {
692 		struct data_chunk *chunk = xt->sgl + i;
693 
694 		if ((chunk->size != xt->sgl->size) ||
695 		    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
696 		    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
697 			dev_err(chan2dev(chan),
698 				"%s: the controller can transfer only identical chunks\n",
699 				__func__);
700 			return NULL;
701 		}
702 
703 		len += chunk->size;
704 	}
705 
706 	dwidth = atc_get_xfer_width(xt->src_start,
707 				    xt->dst_start, len);
708 
709 	xfer_count = len >> dwidth;
710 	if (xfer_count > ATC_BTSIZE_MAX) {
711 		dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
712 		return NULL;
713 	}
714 
715 	ctrla = ATC_SRC_WIDTH(dwidth) |
716 		ATC_DST_WIDTH(dwidth);
717 
718 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
719 		| ATC_SRC_ADDR_MODE_INCR
720 		| ATC_DST_ADDR_MODE_INCR
721 		| ATC_SRC_PIP
722 		| ATC_DST_PIP
723 		| ATC_FC_MEM2MEM;
724 
725 	/* create the transfer */
726 	desc = atc_desc_get(atchan);
727 	if (!desc) {
728 		dev_err(chan2dev(chan),
729 			"%s: couldn't allocate our descriptor\n", __func__);
730 		return NULL;
731 	}
732 
733 	desc->lli.saddr = xt->src_start;
734 	desc->lli.daddr = xt->dst_start;
735 	desc->lli.ctrla = ctrla | xfer_count;
736 	desc->lli.ctrlb = ctrlb;
737 
738 	desc->boundary = first->size >> dwidth;
739 	desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
740 	desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
741 
742 	desc->txd.cookie = -EBUSY;
743 	desc->total_len = desc->len = len;
744 
745 	/* set end-of-link to the last link descriptor of list*/
746 	set_desc_eol(desc);
747 
748 	desc->txd.flags = flags; /* client is in control of this ack */
749 
750 	return &desc->txd;
751 }
752 
753 /**
754  * atc_prep_dma_memcpy - prepare a memcpy operation
755  * @chan: the channel to prepare operation on
756  * @dest: operation virtual destination address
757  * @src: operation virtual source address
758  * @len: operation length
759  * @flags: tx descriptor status flags
760  */
761 static struct dma_async_tx_descriptor *
atc_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)762 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
763 		size_t len, unsigned long flags)
764 {
765 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
766 	struct at_desc		*desc = NULL;
767 	struct at_desc		*first = NULL;
768 	struct at_desc		*prev = NULL;
769 	size_t			xfer_count;
770 	size_t			offset;
771 	unsigned int		src_width;
772 	unsigned int		dst_width;
773 	u32			ctrla;
774 	u32			ctrlb;
775 
776 	dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
777 			&dest, &src, len, flags);
778 
779 	if (unlikely(!len)) {
780 		dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
781 		return NULL;
782 	}
783 
784 	ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
785 		| ATC_SRC_ADDR_MODE_INCR
786 		| ATC_DST_ADDR_MODE_INCR
787 		| ATC_FC_MEM2MEM;
788 
789 	/*
790 	 * We can be a lot more clever here, but this should take care
791 	 * of the most common optimization.
792 	 */
793 	src_width = dst_width = atc_get_xfer_width(src, dest, len);
794 
795 	ctrla = ATC_SRC_WIDTH(src_width) |
796 		ATC_DST_WIDTH(dst_width);
797 
798 	for (offset = 0; offset < len; offset += xfer_count << src_width) {
799 		xfer_count = min_t(size_t, (len - offset) >> src_width,
800 				ATC_BTSIZE_MAX);
801 
802 		desc = atc_desc_get(atchan);
803 		if (!desc)
804 			goto err_desc_get;
805 
806 		desc->lli.saddr = src + offset;
807 		desc->lli.daddr = dest + offset;
808 		desc->lli.ctrla = ctrla | xfer_count;
809 		desc->lli.ctrlb = ctrlb;
810 
811 		desc->txd.cookie = 0;
812 		desc->len = xfer_count << src_width;
813 
814 		atc_desc_chain(&first, &prev, desc);
815 	}
816 
817 	/* First descriptor of the chain embedds additional information */
818 	first->txd.cookie = -EBUSY;
819 	first->total_len = len;
820 
821 	/* set end-of-link to the last link descriptor of list*/
822 	set_desc_eol(desc);
823 
824 	first->txd.flags = flags; /* client is in control of this ack */
825 
826 	return &first->txd;
827 
828 err_desc_get:
829 	atc_desc_put(atchan, first);
830 	return NULL;
831 }
832 
atc_create_memset_desc(struct dma_chan * chan,dma_addr_t psrc,dma_addr_t pdst,size_t len)833 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
834 					      dma_addr_t psrc,
835 					      dma_addr_t pdst,
836 					      size_t len)
837 {
838 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
839 	struct at_desc *desc;
840 	size_t xfer_count;
841 
842 	u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
843 	u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
844 		ATC_SRC_ADDR_MODE_FIXED |
845 		ATC_DST_ADDR_MODE_INCR |
846 		ATC_FC_MEM2MEM;
847 
848 	xfer_count = len >> 2;
849 	if (xfer_count > ATC_BTSIZE_MAX) {
850 		dev_err(chan2dev(chan), "%s: buffer is too big\n",
851 			__func__);
852 		return NULL;
853 	}
854 
855 	desc = atc_desc_get(atchan);
856 	if (!desc) {
857 		dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
858 			__func__);
859 		return NULL;
860 	}
861 
862 	desc->lli.saddr = psrc;
863 	desc->lli.daddr = pdst;
864 	desc->lli.ctrla = ctrla | xfer_count;
865 	desc->lli.ctrlb = ctrlb;
866 
867 	desc->txd.cookie = 0;
868 	desc->len = len;
869 
870 	return desc;
871 }
872 
873 /**
874  * atc_prep_dma_memset - prepare a memcpy operation
875  * @chan: the channel to prepare operation on
876  * @dest: operation virtual destination address
877  * @value: value to set memory buffer to
878  * @len: operation length
879  * @flags: tx descriptor status flags
880  */
881 static struct dma_async_tx_descriptor *
atc_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)882 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
883 		    size_t len, unsigned long flags)
884 {
885 	struct at_dma		*atdma = to_at_dma(chan->device);
886 	struct at_desc		*desc;
887 	void __iomem		*vaddr;
888 	dma_addr_t		paddr;
889 
890 	dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
891 		&dest, value, len, flags);
892 
893 	if (unlikely(!len)) {
894 		dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
895 		return NULL;
896 	}
897 
898 	if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
899 		dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
900 			__func__);
901 		return NULL;
902 	}
903 
904 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
905 	if (!vaddr) {
906 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
907 			__func__);
908 		return NULL;
909 	}
910 	*(u32*)vaddr = value;
911 
912 	desc = atc_create_memset_desc(chan, paddr, dest, len);
913 	if (!desc) {
914 		dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
915 			__func__);
916 		goto err_free_buffer;
917 	}
918 
919 	desc->memset_paddr = paddr;
920 	desc->memset_vaddr = vaddr;
921 	desc->memset_buffer = true;
922 
923 	desc->txd.cookie = -EBUSY;
924 	desc->total_len = len;
925 
926 	/* set end-of-link on the descriptor */
927 	set_desc_eol(desc);
928 
929 	desc->txd.flags = flags;
930 
931 	return &desc->txd;
932 
933 err_free_buffer:
934 	dma_pool_free(atdma->memset_pool, vaddr, paddr);
935 	return NULL;
936 }
937 
938 static struct dma_async_tx_descriptor *
atc_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)939 atc_prep_dma_memset_sg(struct dma_chan *chan,
940 		       struct scatterlist *sgl,
941 		       unsigned int sg_len, int value,
942 		       unsigned long flags)
943 {
944 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
945 	struct at_dma		*atdma = to_at_dma(chan->device);
946 	struct at_desc		*desc = NULL, *first = NULL, *prev = NULL;
947 	struct scatterlist	*sg;
948 	void __iomem		*vaddr;
949 	dma_addr_t		paddr;
950 	size_t			total_len = 0;
951 	int			i;
952 
953 	dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
954 		 value, sg_len, flags);
955 
956 	if (unlikely(!sgl || !sg_len)) {
957 		dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
958 			__func__);
959 		return NULL;
960 	}
961 
962 	vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
963 	if (!vaddr) {
964 		dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
965 			__func__);
966 		return NULL;
967 	}
968 	*(u32*)vaddr = value;
969 
970 	for_each_sg(sgl, sg, sg_len, i) {
971 		dma_addr_t dest = sg_dma_address(sg);
972 		size_t len = sg_dma_len(sg);
973 
974 		dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
975 			 __func__, &dest, len);
976 
977 		if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
978 			dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
979 				__func__);
980 			goto err_put_desc;
981 		}
982 
983 		desc = atc_create_memset_desc(chan, paddr, dest, len);
984 		if (!desc)
985 			goto err_put_desc;
986 
987 		atc_desc_chain(&first, &prev, desc);
988 
989 		total_len += len;
990 	}
991 
992 	/*
993 	 * Only set the buffer pointers on the last descriptor to
994 	 * avoid free'ing while we have our transfer still going
995 	 */
996 	desc->memset_paddr = paddr;
997 	desc->memset_vaddr = vaddr;
998 	desc->memset_buffer = true;
999 
1000 	first->txd.cookie = -EBUSY;
1001 	first->total_len = total_len;
1002 
1003 	/* set end-of-link on the descriptor */
1004 	set_desc_eol(desc);
1005 
1006 	first->txd.flags = flags;
1007 
1008 	return &first->txd;
1009 
1010 err_put_desc:
1011 	atc_desc_put(atchan, first);
1012 	return NULL;
1013 }
1014 
1015 /**
1016  * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1017  * @chan: DMA channel
1018  * @sgl: scatterlist to transfer to/from
1019  * @sg_len: number of entries in @scatterlist
1020  * @direction: DMA direction
1021  * @flags: tx descriptor status flags
1022  * @context: transaction context (ignored)
1023  */
1024 static struct dma_async_tx_descriptor *
atc_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1025 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026 		unsigned int sg_len, enum dma_transfer_direction direction,
1027 		unsigned long flags, void *context)
1028 {
1029 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1030 	struct at_dma_slave	*atslave = chan->private;
1031 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1032 	struct at_desc		*first = NULL;
1033 	struct at_desc		*prev = NULL;
1034 	u32			ctrla;
1035 	u32			ctrlb;
1036 	dma_addr_t		reg;
1037 	unsigned int		reg_width;
1038 	unsigned int		mem_width;
1039 	unsigned int		i;
1040 	struct scatterlist	*sg;
1041 	size_t			total_len = 0;
1042 
1043 	dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1044 			sg_len,
1045 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1046 			flags);
1047 
1048 	if (unlikely(!atslave || !sg_len)) {
1049 		dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1050 		return NULL;
1051 	}
1052 
1053 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1054 		| ATC_DCSIZE(sconfig->dst_maxburst);
1055 	ctrlb = ATC_IEN;
1056 
1057 	switch (direction) {
1058 	case DMA_MEM_TO_DEV:
1059 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1060 		ctrla |=  ATC_DST_WIDTH(reg_width);
1061 		ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1062 			| ATC_SRC_ADDR_MODE_INCR
1063 			| ATC_FC_MEM2PER
1064 			| ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1065 		reg = sconfig->dst_addr;
1066 		for_each_sg(sgl, sg, sg_len, i) {
1067 			struct at_desc	*desc;
1068 			u32		len;
1069 			u32		mem;
1070 
1071 			desc = atc_desc_get(atchan);
1072 			if (!desc)
1073 				goto err_desc_get;
1074 
1075 			mem = sg_dma_address(sg);
1076 			len = sg_dma_len(sg);
1077 			if (unlikely(!len)) {
1078 				dev_dbg(chan2dev(chan),
1079 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1080 				goto err;
1081 			}
1082 			mem_width = 2;
1083 			if (unlikely(mem & 3 || len & 3))
1084 				mem_width = 0;
1085 
1086 			desc->lli.saddr = mem;
1087 			desc->lli.daddr = reg;
1088 			desc->lli.ctrla = ctrla
1089 					| ATC_SRC_WIDTH(mem_width)
1090 					| len >> mem_width;
1091 			desc->lli.ctrlb = ctrlb;
1092 			desc->len = len;
1093 
1094 			atc_desc_chain(&first, &prev, desc);
1095 			total_len += len;
1096 		}
1097 		break;
1098 	case DMA_DEV_TO_MEM:
1099 		reg_width = convert_buswidth(sconfig->src_addr_width);
1100 		ctrla |=  ATC_SRC_WIDTH(reg_width);
1101 		ctrlb |=  ATC_DST_ADDR_MODE_INCR
1102 			| ATC_SRC_ADDR_MODE_FIXED
1103 			| ATC_FC_PER2MEM
1104 			| ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1105 
1106 		reg = sconfig->src_addr;
1107 		for_each_sg(sgl, sg, sg_len, i) {
1108 			struct at_desc	*desc;
1109 			u32		len;
1110 			u32		mem;
1111 
1112 			desc = atc_desc_get(atchan);
1113 			if (!desc)
1114 				goto err_desc_get;
1115 
1116 			mem = sg_dma_address(sg);
1117 			len = sg_dma_len(sg);
1118 			if (unlikely(!len)) {
1119 				dev_dbg(chan2dev(chan),
1120 					"prep_slave_sg: sg(%d) data length is zero\n", i);
1121 				goto err;
1122 			}
1123 			mem_width = 2;
1124 			if (unlikely(mem & 3 || len & 3))
1125 				mem_width = 0;
1126 
1127 			desc->lli.saddr = reg;
1128 			desc->lli.daddr = mem;
1129 			desc->lli.ctrla = ctrla
1130 					| ATC_DST_WIDTH(mem_width)
1131 					| len >> reg_width;
1132 			desc->lli.ctrlb = ctrlb;
1133 			desc->len = len;
1134 
1135 			atc_desc_chain(&first, &prev, desc);
1136 			total_len += len;
1137 		}
1138 		break;
1139 	default:
1140 		return NULL;
1141 	}
1142 
1143 	/* set end-of-link to the last link descriptor of list*/
1144 	set_desc_eol(prev);
1145 
1146 	/* First descriptor of the chain embedds additional information */
1147 	first->txd.cookie = -EBUSY;
1148 	first->total_len = total_len;
1149 
1150 	/* first link descriptor of list is responsible of flags */
1151 	first->txd.flags = flags; /* client is in control of this ack */
1152 
1153 	return &first->txd;
1154 
1155 err_desc_get:
1156 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1157 err:
1158 	atc_desc_put(atchan, first);
1159 	return NULL;
1160 }
1161 
1162 /*
1163  * atc_dma_cyclic_check_values
1164  * Check for too big/unaligned periods and unaligned DMA buffer
1165  */
1166 static int
atc_dma_cyclic_check_values(unsigned int reg_width,dma_addr_t buf_addr,size_t period_len)1167 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1168 		size_t period_len)
1169 {
1170 	if (period_len > (ATC_BTSIZE_MAX << reg_width))
1171 		goto err_out;
1172 	if (unlikely(period_len & ((1 << reg_width) - 1)))
1173 		goto err_out;
1174 	if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1175 		goto err_out;
1176 
1177 	return 0;
1178 
1179 err_out:
1180 	return -EINVAL;
1181 }
1182 
1183 /*
1184  * atc_dma_cyclic_fill_desc - Fill one period descriptor
1185  */
1186 static int
atc_dma_cyclic_fill_desc(struct dma_chan * chan,struct at_desc * desc,unsigned int period_index,dma_addr_t buf_addr,unsigned int reg_width,size_t period_len,enum dma_transfer_direction direction)1187 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1188 		unsigned int period_index, dma_addr_t buf_addr,
1189 		unsigned int reg_width, size_t period_len,
1190 		enum dma_transfer_direction direction)
1191 {
1192 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1193 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1194 	u32			ctrla;
1195 
1196 	/* prepare common CRTLA value */
1197 	ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1198 		| ATC_DCSIZE(sconfig->dst_maxburst)
1199 		| ATC_DST_WIDTH(reg_width)
1200 		| ATC_SRC_WIDTH(reg_width)
1201 		| period_len >> reg_width;
1202 
1203 	switch (direction) {
1204 	case DMA_MEM_TO_DEV:
1205 		desc->lli.saddr = buf_addr + (period_len * period_index);
1206 		desc->lli.daddr = sconfig->dst_addr;
1207 		desc->lli.ctrla = ctrla;
1208 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1209 				| ATC_SRC_ADDR_MODE_INCR
1210 				| ATC_FC_MEM2PER
1211 				| ATC_SIF(atchan->mem_if)
1212 				| ATC_DIF(atchan->per_if);
1213 		desc->len = period_len;
1214 		break;
1215 
1216 	case DMA_DEV_TO_MEM:
1217 		desc->lli.saddr = sconfig->src_addr;
1218 		desc->lli.daddr = buf_addr + (period_len * period_index);
1219 		desc->lli.ctrla = ctrla;
1220 		desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1221 				| ATC_SRC_ADDR_MODE_FIXED
1222 				| ATC_FC_PER2MEM
1223 				| ATC_SIF(atchan->per_if)
1224 				| ATC_DIF(atchan->mem_if);
1225 		desc->len = period_len;
1226 		break;
1227 
1228 	default:
1229 		return -EINVAL;
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /**
1236  * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1237  * @chan: the DMA channel to prepare
1238  * @buf_addr: physical DMA address where the buffer starts
1239  * @buf_len: total number of bytes for the entire buffer
1240  * @period_len: number of bytes for each period
1241  * @direction: transfer direction, to or from device
1242  * @flags: tx descriptor status flags
1243  */
1244 static struct dma_async_tx_descriptor *
atc_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)1245 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1246 		size_t period_len, enum dma_transfer_direction direction,
1247 		unsigned long flags)
1248 {
1249 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1250 	struct at_dma_slave	*atslave = chan->private;
1251 	struct dma_slave_config	*sconfig = &atchan->dma_sconfig;
1252 	struct at_desc		*first = NULL;
1253 	struct at_desc		*prev = NULL;
1254 	unsigned long		was_cyclic;
1255 	unsigned int		reg_width;
1256 	unsigned int		periods = buf_len / period_len;
1257 	unsigned int		i;
1258 
1259 	dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1260 			direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1261 			&buf_addr,
1262 			periods, buf_len, period_len);
1263 
1264 	if (unlikely(!atslave || !buf_len || !period_len)) {
1265 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1266 		return NULL;
1267 	}
1268 
1269 	was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1270 	if (was_cyclic) {
1271 		dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1272 		return NULL;
1273 	}
1274 
1275 	if (unlikely(!is_slave_direction(direction)))
1276 		goto err_out;
1277 
1278 	if (direction == DMA_MEM_TO_DEV)
1279 		reg_width = convert_buswidth(sconfig->dst_addr_width);
1280 	else
1281 		reg_width = convert_buswidth(sconfig->src_addr_width);
1282 
1283 	/* Check for too big/unaligned periods and unaligned DMA buffer */
1284 	if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1285 		goto err_out;
1286 
1287 	/* build cyclic linked list */
1288 	for (i = 0; i < periods; i++) {
1289 		struct at_desc	*desc;
1290 
1291 		desc = atc_desc_get(atchan);
1292 		if (!desc)
1293 			goto err_desc_get;
1294 
1295 		if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1296 					     reg_width, period_len, direction))
1297 			goto err_desc_get;
1298 
1299 		atc_desc_chain(&first, &prev, desc);
1300 	}
1301 
1302 	/* lets make a cyclic list */
1303 	prev->lli.dscr = first->txd.phys;
1304 
1305 	/* First descriptor of the chain embedds additional information */
1306 	first->txd.cookie = -EBUSY;
1307 	first->total_len = buf_len;
1308 
1309 	return &first->txd;
1310 
1311 err_desc_get:
1312 	dev_err(chan2dev(chan), "not enough descriptors available\n");
1313 	atc_desc_put(atchan, first);
1314 err_out:
1315 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1316 	return NULL;
1317 }
1318 
atc_config(struct dma_chan * chan,struct dma_slave_config * sconfig)1319 static int atc_config(struct dma_chan *chan,
1320 		      struct dma_slave_config *sconfig)
1321 {
1322 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1323 
1324 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1325 
1326 	/* Check if it is chan is configured for slave transfers */
1327 	if (!chan->private)
1328 		return -EINVAL;
1329 
1330 	memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1331 
1332 	convert_burst(&atchan->dma_sconfig.src_maxburst);
1333 	convert_burst(&atchan->dma_sconfig.dst_maxburst);
1334 
1335 	return 0;
1336 }
1337 
atc_pause(struct dma_chan * chan)1338 static int atc_pause(struct dma_chan *chan)
1339 {
1340 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1341 	struct at_dma		*atdma = to_at_dma(chan->device);
1342 	int			chan_id = atchan->chan_common.chan_id;
1343 	unsigned long		flags;
1344 
1345 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1346 
1347 	spin_lock_irqsave(&atchan->lock, flags);
1348 
1349 	dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1350 	set_bit(ATC_IS_PAUSED, &atchan->status);
1351 
1352 	spin_unlock_irqrestore(&atchan->lock, flags);
1353 
1354 	return 0;
1355 }
1356 
atc_resume(struct dma_chan * chan)1357 static int atc_resume(struct dma_chan *chan)
1358 {
1359 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1360 	struct at_dma		*atdma = to_at_dma(chan->device);
1361 	int			chan_id = atchan->chan_common.chan_id;
1362 	unsigned long		flags;
1363 
1364 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1365 
1366 	if (!atc_chan_is_paused(atchan))
1367 		return 0;
1368 
1369 	spin_lock_irqsave(&atchan->lock, flags);
1370 
1371 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1372 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1373 
1374 	spin_unlock_irqrestore(&atchan->lock, flags);
1375 
1376 	return 0;
1377 }
1378 
atc_terminate_all(struct dma_chan * chan)1379 static int atc_terminate_all(struct dma_chan *chan)
1380 {
1381 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1382 	struct at_dma		*atdma = to_at_dma(chan->device);
1383 	int			chan_id = atchan->chan_common.chan_id;
1384 	unsigned long		flags;
1385 
1386 	dev_vdbg(chan2dev(chan), "%s\n", __func__);
1387 
1388 	/*
1389 	 * This is only called when something went wrong elsewhere, so
1390 	 * we don't really care about the data. Just disable the
1391 	 * channel. We still have to poll the channel enable bit due
1392 	 * to AHB/HSB limitations.
1393 	 */
1394 	spin_lock_irqsave(&atchan->lock, flags);
1395 
1396 	/* disabling channel: must also remove suspend state */
1397 	dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1398 
1399 	/* confirm that this channel is disabled */
1400 	while (dma_readl(atdma, CHSR) & atchan->mask)
1401 		cpu_relax();
1402 
1403 	/* active_list entries will end up before queued entries */
1404 	list_splice_tail_init(&atchan->queue, &atchan->free_list);
1405 	list_splice_tail_init(&atchan->active_list, &atchan->free_list);
1406 
1407 	spin_unlock_irqrestore(&atchan->lock, flags);
1408 
1409 	clear_bit(ATC_IS_PAUSED, &atchan->status);
1410 	/* if channel dedicated to cyclic operations, free it */
1411 	clear_bit(ATC_IS_CYCLIC, &atchan->status);
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * atc_tx_status - poll for transaction completion
1418  * @chan: DMA channel
1419  * @cookie: transaction identifier to check status of
1420  * @txstate: if not %NULL updated with transaction state
1421  *
1422  * If @txstate is passed in, upon return it reflect the driver
1423  * internal state and can be used with dma_async_is_complete() to check
1424  * the status of multiple cookies without re-checking hardware state.
1425  */
1426 static enum dma_status
atc_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1427 atc_tx_status(struct dma_chan *chan,
1428 		dma_cookie_t cookie,
1429 		struct dma_tx_state *txstate)
1430 {
1431 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1432 	unsigned long		flags;
1433 	enum dma_status		ret;
1434 	int bytes = 0;
1435 
1436 	ret = dma_cookie_status(chan, cookie, txstate);
1437 	if (ret == DMA_COMPLETE)
1438 		return ret;
1439 	/*
1440 	 * There's no point calculating the residue if there's
1441 	 * no txstate to store the value.
1442 	 */
1443 	if (!txstate)
1444 		return DMA_ERROR;
1445 
1446 	spin_lock_irqsave(&atchan->lock, flags);
1447 
1448 	/*  Get number of bytes left in the active transactions */
1449 	bytes = atc_get_bytes_left(chan, cookie);
1450 
1451 	spin_unlock_irqrestore(&atchan->lock, flags);
1452 
1453 	if (unlikely(bytes < 0)) {
1454 		dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1455 		return DMA_ERROR;
1456 	} else {
1457 		dma_set_residue(txstate, bytes);
1458 	}
1459 
1460 	dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1461 		 ret, cookie, bytes);
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  * atc_issue_pending - takes the first transaction descriptor in the pending
1468  * queue and starts the transfer.
1469  * @chan: target DMA channel
1470  */
atc_issue_pending(struct dma_chan * chan)1471 static void atc_issue_pending(struct dma_chan *chan)
1472 {
1473 	struct at_dma_chan *atchan = to_at_dma_chan(chan);
1474 	struct at_desc *desc;
1475 	unsigned long flags;
1476 
1477 	dev_vdbg(chan2dev(chan), "issue_pending\n");
1478 
1479 	spin_lock_irqsave(&atchan->lock, flags);
1480 	if (atc_chan_is_enabled(atchan) || list_empty(&atchan->queue))
1481 		return spin_unlock_irqrestore(&atchan->lock, flags);
1482 
1483 	desc = atc_first_queued(atchan);
1484 	list_move_tail(&desc->desc_node, &atchan->active_list);
1485 	atc_dostart(atchan, desc);
1486 	spin_unlock_irqrestore(&atchan->lock, flags);
1487 }
1488 
1489 /**
1490  * atc_alloc_chan_resources - allocate resources for DMA channel
1491  * @chan: allocate descriptor resources for this channel
1492  *
1493  * return - the number of allocated descriptors
1494  */
atc_alloc_chan_resources(struct dma_chan * chan)1495 static int atc_alloc_chan_resources(struct dma_chan *chan)
1496 {
1497 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1498 	struct at_dma		*atdma = to_at_dma(chan->device);
1499 	struct at_desc		*desc;
1500 	struct at_dma_slave	*atslave;
1501 	int			i;
1502 	u32			cfg;
1503 
1504 	dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1505 
1506 	/* ASSERT:  channel is idle */
1507 	if (atc_chan_is_enabled(atchan)) {
1508 		dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1509 		return -EIO;
1510 	}
1511 
1512 	if (!list_empty(&atchan->free_list)) {
1513 		dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1514 		return -EIO;
1515 	}
1516 
1517 	cfg = ATC_DEFAULT_CFG;
1518 
1519 	atslave = chan->private;
1520 	if (atslave) {
1521 		/*
1522 		 * We need controller-specific data to set up slave
1523 		 * transfers.
1524 		 */
1525 		BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1526 
1527 		/* if cfg configuration specified take it instead of default */
1528 		if (atslave->cfg)
1529 			cfg = atslave->cfg;
1530 	}
1531 
1532 	/* Allocate initial pool of descriptors */
1533 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1534 		desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1535 		if (!desc) {
1536 			dev_err(atdma->dma_common.dev,
1537 				"Only %d initial descriptors\n", i);
1538 			break;
1539 		}
1540 		list_add_tail(&desc->desc_node, &atchan->free_list);
1541 	}
1542 
1543 	dma_cookie_init(chan);
1544 
1545 	/* channel parameters */
1546 	channel_writel(atchan, CFG, cfg);
1547 
1548 	dev_dbg(chan2dev(chan),
1549 		"alloc_chan_resources: allocated %d descriptors\n", i);
1550 
1551 	return i;
1552 }
1553 
1554 /**
1555  * atc_free_chan_resources - free all channel resources
1556  * @chan: DMA channel
1557  */
atc_free_chan_resources(struct dma_chan * chan)1558 static void atc_free_chan_resources(struct dma_chan *chan)
1559 {
1560 	struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1561 	struct at_dma		*atdma = to_at_dma(chan->device);
1562 	struct at_desc		*desc, *_desc;
1563 	LIST_HEAD(list);
1564 
1565 	/* ASSERT:  channel is idle */
1566 	BUG_ON(!list_empty(&atchan->active_list));
1567 	BUG_ON(!list_empty(&atchan->queue));
1568 	BUG_ON(atc_chan_is_enabled(atchan));
1569 
1570 	list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1571 		dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1572 		list_del(&desc->desc_node);
1573 		/* free link descriptor */
1574 		dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1575 	}
1576 	list_splice_init(&atchan->free_list, &list);
1577 	atchan->status = 0;
1578 
1579 	/*
1580 	 * Free atslave allocated in at_dma_xlate()
1581 	 */
1582 	kfree(chan->private);
1583 	chan->private = NULL;
1584 
1585 	dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1586 }
1587 
1588 #ifdef CONFIG_OF
at_dma_filter(struct dma_chan * chan,void * slave)1589 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1590 {
1591 	struct at_dma_slave *atslave = slave;
1592 
1593 	if (atslave->dma_dev == chan->device->dev) {
1594 		chan->private = atslave;
1595 		return true;
1596 	} else {
1597 		return false;
1598 	}
1599 }
1600 
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1601 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1602 				     struct of_dma *of_dma)
1603 {
1604 	struct dma_chan *chan;
1605 	struct at_dma_chan *atchan;
1606 	struct at_dma_slave *atslave;
1607 	dma_cap_mask_t mask;
1608 	unsigned int per_id;
1609 	struct platform_device *dmac_pdev;
1610 
1611 	if (dma_spec->args_count != 2)
1612 		return NULL;
1613 
1614 	dmac_pdev = of_find_device_by_node(dma_spec->np);
1615 	if (!dmac_pdev)
1616 		return NULL;
1617 
1618 	dma_cap_zero(mask);
1619 	dma_cap_set(DMA_SLAVE, mask);
1620 
1621 	atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1622 	if (!atslave) {
1623 		put_device(&dmac_pdev->dev);
1624 		return NULL;
1625 	}
1626 
1627 	atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1628 	/*
1629 	 * We can fill both SRC_PER and DST_PER, one of these fields will be
1630 	 * ignored depending on DMA transfer direction.
1631 	 */
1632 	per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1633 	atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1634 		     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1635 	/*
1636 	 * We have to translate the value we get from the device tree since
1637 	 * the half FIFO configuration value had to be 0 to keep backward
1638 	 * compatibility.
1639 	 */
1640 	switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1641 	case AT91_DMA_CFG_FIFOCFG_ALAP:
1642 		atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1643 		break;
1644 	case AT91_DMA_CFG_FIFOCFG_ASAP:
1645 		atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1646 		break;
1647 	case AT91_DMA_CFG_FIFOCFG_HALF:
1648 	default:
1649 		atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1650 	}
1651 	atslave->dma_dev = &dmac_pdev->dev;
1652 
1653 	chan = dma_request_channel(mask, at_dma_filter, atslave);
1654 	if (!chan) {
1655 		put_device(&dmac_pdev->dev);
1656 		kfree(atslave);
1657 		return NULL;
1658 	}
1659 
1660 	atchan = to_at_dma_chan(chan);
1661 	atchan->per_if = dma_spec->args[0] & 0xff;
1662 	atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1663 
1664 	return chan;
1665 }
1666 #else
at_dma_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)1667 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1668 				     struct of_dma *of_dma)
1669 {
1670 	return NULL;
1671 }
1672 #endif
1673 
1674 /*--  Module Management  -----------------------------------------------*/
1675 
1676 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1677 static struct at_dma_platform_data at91sam9rl_config = {
1678 	.nr_channels = 2,
1679 };
1680 static struct at_dma_platform_data at91sam9g45_config = {
1681 	.nr_channels = 8,
1682 };
1683 
1684 #if defined(CONFIG_OF)
1685 static const struct of_device_id atmel_dma_dt_ids[] = {
1686 	{
1687 		.compatible = "atmel,at91sam9rl-dma",
1688 		.data = &at91sam9rl_config,
1689 	}, {
1690 		.compatible = "atmel,at91sam9g45-dma",
1691 		.data = &at91sam9g45_config,
1692 	}, {
1693 		/* sentinel */
1694 	}
1695 };
1696 
1697 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1698 #endif
1699 
1700 static const struct platform_device_id atdma_devtypes[] = {
1701 	{
1702 		.name = "at91sam9rl_dma",
1703 		.driver_data = (unsigned long) &at91sam9rl_config,
1704 	}, {
1705 		.name = "at91sam9g45_dma",
1706 		.driver_data = (unsigned long) &at91sam9g45_config,
1707 	}, {
1708 		/* sentinel */
1709 	}
1710 };
1711 
at_dma_get_driver_data(struct platform_device * pdev)1712 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1713 						struct platform_device *pdev)
1714 {
1715 	if (pdev->dev.of_node) {
1716 		const struct of_device_id *match;
1717 		match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1718 		if (match == NULL)
1719 			return NULL;
1720 		return match->data;
1721 	}
1722 	return (struct at_dma_platform_data *)
1723 			platform_get_device_id(pdev)->driver_data;
1724 }
1725 
1726 /**
1727  * at_dma_off - disable DMA controller
1728  * @atdma: the Atmel HDAMC device
1729  */
at_dma_off(struct at_dma * atdma)1730 static void at_dma_off(struct at_dma *atdma)
1731 {
1732 	dma_writel(atdma, EN, 0);
1733 
1734 	/* disable all interrupts */
1735 	dma_writel(atdma, EBCIDR, -1L);
1736 
1737 	/* confirm that all channels are disabled */
1738 	while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1739 		cpu_relax();
1740 }
1741 
at_dma_probe(struct platform_device * pdev)1742 static int __init at_dma_probe(struct platform_device *pdev)
1743 {
1744 	struct resource		*io;
1745 	struct at_dma		*atdma;
1746 	size_t			size;
1747 	int			irq;
1748 	int			err;
1749 	int			i;
1750 	const struct at_dma_platform_data *plat_dat;
1751 
1752 	/* setup platform data for each SoC */
1753 	dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1754 	dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1755 	dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1756 	dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1757 	dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1758 	dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1759 	dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1760 
1761 	/* get DMA parameters from controller type */
1762 	plat_dat = at_dma_get_driver_data(pdev);
1763 	if (!plat_dat)
1764 		return -ENODEV;
1765 
1766 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1767 	if (!io)
1768 		return -EINVAL;
1769 
1770 	irq = platform_get_irq(pdev, 0);
1771 	if (irq < 0)
1772 		return irq;
1773 
1774 	size = sizeof(struct at_dma);
1775 	size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1776 	atdma = kzalloc(size, GFP_KERNEL);
1777 	if (!atdma)
1778 		return -ENOMEM;
1779 
1780 	/* discover transaction capabilities */
1781 	atdma->dma_common.cap_mask = plat_dat->cap_mask;
1782 	atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1783 
1784 	size = resource_size(io);
1785 	if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1786 		err = -EBUSY;
1787 		goto err_kfree;
1788 	}
1789 
1790 	atdma->regs = ioremap(io->start, size);
1791 	if (!atdma->regs) {
1792 		err = -ENOMEM;
1793 		goto err_release_r;
1794 	}
1795 
1796 	atdma->clk = clk_get(&pdev->dev, "dma_clk");
1797 	if (IS_ERR(atdma->clk)) {
1798 		err = PTR_ERR(atdma->clk);
1799 		goto err_clk;
1800 	}
1801 	err = clk_prepare_enable(atdma->clk);
1802 	if (err)
1803 		goto err_clk_prepare;
1804 
1805 	/* force dma off, just in case */
1806 	at_dma_off(atdma);
1807 
1808 	err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1809 	if (err)
1810 		goto err_irq;
1811 
1812 	platform_set_drvdata(pdev, atdma);
1813 
1814 	/* create a pool of consistent memory blocks for hardware descriptors */
1815 	atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1816 			&pdev->dev, sizeof(struct at_desc),
1817 			4 /* word alignment */, 0);
1818 	if (!atdma->dma_desc_pool) {
1819 		dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1820 		err = -ENOMEM;
1821 		goto err_desc_pool_create;
1822 	}
1823 
1824 	/* create a pool of consistent memory blocks for memset blocks */
1825 	atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1826 					     &pdev->dev, sizeof(int), 4, 0);
1827 	if (!atdma->memset_pool) {
1828 		dev_err(&pdev->dev, "No memory for memset dma pool\n");
1829 		err = -ENOMEM;
1830 		goto err_memset_pool_create;
1831 	}
1832 
1833 	/* clear any pending interrupt */
1834 	while (dma_readl(atdma, EBCISR))
1835 		cpu_relax();
1836 
1837 	/* initialize channels related values */
1838 	INIT_LIST_HEAD(&atdma->dma_common.channels);
1839 	for (i = 0; i < plat_dat->nr_channels; i++) {
1840 		struct at_dma_chan	*atchan = &atdma->chan[i];
1841 
1842 		atchan->mem_if = AT_DMA_MEM_IF;
1843 		atchan->per_if = AT_DMA_PER_IF;
1844 		atchan->chan_common.device = &atdma->dma_common;
1845 		dma_cookie_init(&atchan->chan_common);
1846 		list_add_tail(&atchan->chan_common.device_node,
1847 				&atdma->dma_common.channels);
1848 
1849 		atchan->ch_regs = atdma->regs + ch_regs(i);
1850 		spin_lock_init(&atchan->lock);
1851 		atchan->mask = 1 << i;
1852 
1853 		INIT_LIST_HEAD(&atchan->active_list);
1854 		INIT_LIST_HEAD(&atchan->queue);
1855 		INIT_LIST_HEAD(&atchan->free_list);
1856 
1857 		tasklet_setup(&atchan->tasklet, atc_tasklet);
1858 		atc_enable_chan_irq(atdma, i);
1859 	}
1860 
1861 	/* set base routines */
1862 	atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1863 	atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1864 	atdma->dma_common.device_tx_status = atc_tx_status;
1865 	atdma->dma_common.device_issue_pending = atc_issue_pending;
1866 	atdma->dma_common.dev = &pdev->dev;
1867 
1868 	/* set prep routines based on capability */
1869 	if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1870 		atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1871 
1872 	if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1873 		atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1874 
1875 	if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1876 		atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1877 		atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1878 		atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1879 	}
1880 
1881 	if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1882 		atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1883 		/* controller can do slave DMA: can trigger cyclic transfers */
1884 		dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1885 		atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1886 		atdma->dma_common.device_config = atc_config;
1887 		atdma->dma_common.device_pause = atc_pause;
1888 		atdma->dma_common.device_resume = atc_resume;
1889 		atdma->dma_common.device_terminate_all = atc_terminate_all;
1890 		atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1891 		atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1892 		atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1893 		atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1894 	}
1895 
1896 	dma_writel(atdma, EN, AT_DMA_ENABLE);
1897 
1898 	dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1899 	  dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1900 	  dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1901 	  dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1902 	  plat_dat->nr_channels);
1903 
1904 	err = dma_async_device_register(&atdma->dma_common);
1905 	if (err) {
1906 		dev_err(&pdev->dev, "Unable to register: %d.\n", err);
1907 		goto err_dma_async_device_register;
1908 	}
1909 
1910 	/*
1911 	 * Do not return an error if the dmac node is not present in order to
1912 	 * not break the existing way of requesting channel with
1913 	 * dma_request_channel().
1914 	 */
1915 	if (pdev->dev.of_node) {
1916 		err = of_dma_controller_register(pdev->dev.of_node,
1917 						 at_dma_xlate, atdma);
1918 		if (err) {
1919 			dev_err(&pdev->dev, "could not register of_dma_controller\n");
1920 			goto err_of_dma_controller_register;
1921 		}
1922 	}
1923 
1924 	return 0;
1925 
1926 err_of_dma_controller_register:
1927 	dma_async_device_unregister(&atdma->dma_common);
1928 err_dma_async_device_register:
1929 	dma_pool_destroy(atdma->memset_pool);
1930 err_memset_pool_create:
1931 	dma_pool_destroy(atdma->dma_desc_pool);
1932 err_desc_pool_create:
1933 	free_irq(platform_get_irq(pdev, 0), atdma);
1934 err_irq:
1935 	clk_disable_unprepare(atdma->clk);
1936 err_clk_prepare:
1937 	clk_put(atdma->clk);
1938 err_clk:
1939 	iounmap(atdma->regs);
1940 	atdma->regs = NULL;
1941 err_release_r:
1942 	release_mem_region(io->start, size);
1943 err_kfree:
1944 	kfree(atdma);
1945 	return err;
1946 }
1947 
at_dma_remove(struct platform_device * pdev)1948 static int at_dma_remove(struct platform_device *pdev)
1949 {
1950 	struct at_dma		*atdma = platform_get_drvdata(pdev);
1951 	struct dma_chan		*chan, *_chan;
1952 	struct resource		*io;
1953 
1954 	at_dma_off(atdma);
1955 	if (pdev->dev.of_node)
1956 		of_dma_controller_free(pdev->dev.of_node);
1957 	dma_async_device_unregister(&atdma->dma_common);
1958 
1959 	dma_pool_destroy(atdma->memset_pool);
1960 	dma_pool_destroy(atdma->dma_desc_pool);
1961 	free_irq(platform_get_irq(pdev, 0), atdma);
1962 
1963 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1964 			device_node) {
1965 		struct at_dma_chan	*atchan = to_at_dma_chan(chan);
1966 
1967 		/* Disable interrupts */
1968 		atc_disable_chan_irq(atdma, chan->chan_id);
1969 
1970 		tasklet_kill(&atchan->tasklet);
1971 		list_del(&chan->device_node);
1972 	}
1973 
1974 	clk_disable_unprepare(atdma->clk);
1975 	clk_put(atdma->clk);
1976 
1977 	iounmap(atdma->regs);
1978 	atdma->regs = NULL;
1979 
1980 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1981 	release_mem_region(io->start, resource_size(io));
1982 
1983 	kfree(atdma);
1984 
1985 	return 0;
1986 }
1987 
at_dma_shutdown(struct platform_device * pdev)1988 static void at_dma_shutdown(struct platform_device *pdev)
1989 {
1990 	struct at_dma	*atdma = platform_get_drvdata(pdev);
1991 
1992 	at_dma_off(platform_get_drvdata(pdev));
1993 	clk_disable_unprepare(atdma->clk);
1994 }
1995 
at_dma_prepare(struct device * dev)1996 static int at_dma_prepare(struct device *dev)
1997 {
1998 	struct at_dma *atdma = dev_get_drvdata(dev);
1999 	struct dma_chan *chan, *_chan;
2000 
2001 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2002 			device_node) {
2003 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2004 		/* wait for transaction completion (except in cyclic case) */
2005 		if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2006 			return -EAGAIN;
2007 	}
2008 	return 0;
2009 }
2010 
atc_suspend_cyclic(struct at_dma_chan * atchan)2011 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2012 {
2013 	struct dma_chan	*chan = &atchan->chan_common;
2014 
2015 	/* Channel should be paused by user
2016 	 * do it anyway even if it is not done already */
2017 	if (!atc_chan_is_paused(atchan)) {
2018 		dev_warn(chan2dev(chan),
2019 		"cyclic channel not paused, should be done by channel user\n");
2020 		atc_pause(chan);
2021 	}
2022 
2023 	/* now preserve additional data for cyclic operations */
2024 	/* next descriptor address in the cyclic list */
2025 	atchan->save_dscr = channel_readl(atchan, DSCR);
2026 
2027 	vdbg_dump_regs(atchan);
2028 }
2029 
at_dma_suspend_noirq(struct device * dev)2030 static int at_dma_suspend_noirq(struct device *dev)
2031 {
2032 	struct at_dma *atdma = dev_get_drvdata(dev);
2033 	struct dma_chan *chan, *_chan;
2034 
2035 	/* preserve data */
2036 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2037 			device_node) {
2038 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2039 
2040 		if (atc_chan_is_cyclic(atchan))
2041 			atc_suspend_cyclic(atchan);
2042 		atchan->save_cfg = channel_readl(atchan, CFG);
2043 	}
2044 	atdma->save_imr = dma_readl(atdma, EBCIMR);
2045 
2046 	/* disable DMA controller */
2047 	at_dma_off(atdma);
2048 	clk_disable_unprepare(atdma->clk);
2049 	return 0;
2050 }
2051 
atc_resume_cyclic(struct at_dma_chan * atchan)2052 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2053 {
2054 	struct at_dma	*atdma = to_at_dma(atchan->chan_common.device);
2055 
2056 	/* restore channel status for cyclic descriptors list:
2057 	 * next descriptor in the cyclic list at the time of suspend */
2058 	channel_writel(atchan, SADDR, 0);
2059 	channel_writel(atchan, DADDR, 0);
2060 	channel_writel(atchan, CTRLA, 0);
2061 	channel_writel(atchan, CTRLB, 0);
2062 	channel_writel(atchan, DSCR, atchan->save_dscr);
2063 	dma_writel(atdma, CHER, atchan->mask);
2064 
2065 	/* channel pause status should be removed by channel user
2066 	 * We cannot take the initiative to do it here */
2067 
2068 	vdbg_dump_regs(atchan);
2069 }
2070 
at_dma_resume_noirq(struct device * dev)2071 static int at_dma_resume_noirq(struct device *dev)
2072 {
2073 	struct at_dma *atdma = dev_get_drvdata(dev);
2074 	struct dma_chan *chan, *_chan;
2075 
2076 	/* bring back DMA controller */
2077 	clk_prepare_enable(atdma->clk);
2078 	dma_writel(atdma, EN, AT_DMA_ENABLE);
2079 
2080 	/* clear any pending interrupt */
2081 	while (dma_readl(atdma, EBCISR))
2082 		cpu_relax();
2083 
2084 	/* restore saved data */
2085 	dma_writel(atdma, EBCIER, atdma->save_imr);
2086 	list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2087 			device_node) {
2088 		struct at_dma_chan *atchan = to_at_dma_chan(chan);
2089 
2090 		channel_writel(atchan, CFG, atchan->save_cfg);
2091 		if (atc_chan_is_cyclic(atchan))
2092 			atc_resume_cyclic(atchan);
2093 	}
2094 	return 0;
2095 }
2096 
2097 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2098 	.prepare = at_dma_prepare,
2099 	.suspend_noirq = at_dma_suspend_noirq,
2100 	.resume_noirq = at_dma_resume_noirq,
2101 };
2102 
2103 static struct platform_driver at_dma_driver = {
2104 	.remove		= at_dma_remove,
2105 	.shutdown	= at_dma_shutdown,
2106 	.id_table	= atdma_devtypes,
2107 	.driver = {
2108 		.name	= "at_hdmac",
2109 		.pm	= &at_dma_dev_pm_ops,
2110 		.of_match_table	= of_match_ptr(atmel_dma_dt_ids),
2111 	},
2112 };
2113 
at_dma_init(void)2114 static int __init at_dma_init(void)
2115 {
2116 	return platform_driver_probe(&at_dma_driver, at_dma_probe);
2117 }
2118 subsys_initcall(at_dma_init);
2119 
at_dma_exit(void)2120 static void __exit at_dma_exit(void)
2121 {
2122 	platform_driver_unregister(&at_dma_driver);
2123 }
2124 module_exit(at_dma_exit);
2125 
2126 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2127 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2128 MODULE_LICENSE("GPL");
2129 MODULE_ALIAS("platform:at_hdmac");
2130