• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
4  *
5  * Copyright (C) 2014 Atmel Corporation
6  *
7  * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
8  */
9 
10 #include <asm/barrier.h>
11 #include <dt-bindings/dma/at91.h>
12 #include <linux/clk.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm.h>
24 
25 #include "dmaengine.h"
26 
27 /* Global registers */
28 #define AT_XDMAC_GTYPE		0x00	/* Global Type Register */
29 #define		AT_XDMAC_NB_CH(i)	(((i) & 0x1F) + 1)		/* Number of Channels Minus One */
30 #define		AT_XDMAC_FIFO_SZ(i)	(((i) >> 5) & 0x7FF)		/* Number of Bytes */
31 #define		AT_XDMAC_NB_REQ(i)	((((i) >> 16) & 0x3F) + 1)	/* Number of Peripheral Requests Minus One */
32 #define AT_XDMAC_GCFG		0x04	/* Global Configuration Register */
33 #define AT_XDMAC_GWAC		0x08	/* Global Weighted Arbiter Configuration Register */
34 #define AT_XDMAC_GIE		0x0C	/* Global Interrupt Enable Register */
35 #define AT_XDMAC_GID		0x10	/* Global Interrupt Disable Register */
36 #define AT_XDMAC_GIM		0x14	/* Global Interrupt Mask Register */
37 #define AT_XDMAC_GIS		0x18	/* Global Interrupt Status Register */
38 #define AT_XDMAC_GE		0x1C	/* Global Channel Enable Register */
39 #define AT_XDMAC_GD		0x20	/* Global Channel Disable Register */
40 #define AT_XDMAC_GS		0x24	/* Global Channel Status Register */
41 #define AT_XDMAC_GRS		0x28	/* Global Channel Read Suspend Register */
42 #define AT_XDMAC_GWS		0x2C	/* Global Write Suspend Register */
43 #define AT_XDMAC_GRWS		0x30	/* Global Channel Read Write Suspend Register */
44 #define AT_XDMAC_GRWR		0x34	/* Global Channel Read Write Resume Register */
45 #define AT_XDMAC_GSWR		0x38	/* Global Channel Software Request Register */
46 #define AT_XDMAC_GSWS		0x3C	/* Global channel Software Request Status Register */
47 #define AT_XDMAC_GSWF		0x40	/* Global Channel Software Flush Request Register */
48 #define AT_XDMAC_VERSION	0xFFC	/* XDMAC Version Register */
49 
50 /* Channel relative registers offsets */
51 #define AT_XDMAC_CIE		0x00	/* Channel Interrupt Enable Register */
52 #define		AT_XDMAC_CIE_BIE	BIT(0)	/* End of Block Interrupt Enable Bit */
53 #define		AT_XDMAC_CIE_LIE	BIT(1)	/* End of Linked List Interrupt Enable Bit */
54 #define		AT_XDMAC_CIE_DIE	BIT(2)	/* End of Disable Interrupt Enable Bit */
55 #define		AT_XDMAC_CIE_FIE	BIT(3)	/* End of Flush Interrupt Enable Bit */
56 #define		AT_XDMAC_CIE_RBEIE	BIT(4)	/* Read Bus Error Interrupt Enable Bit */
57 #define		AT_XDMAC_CIE_WBEIE	BIT(5)	/* Write Bus Error Interrupt Enable Bit */
58 #define		AT_XDMAC_CIE_ROIE	BIT(6)	/* Request Overflow Interrupt Enable Bit */
59 #define AT_XDMAC_CID		0x04	/* Channel Interrupt Disable Register */
60 #define		AT_XDMAC_CID_BID	BIT(0)	/* End of Block Interrupt Disable Bit */
61 #define		AT_XDMAC_CID_LID	BIT(1)	/* End of Linked List Interrupt Disable Bit */
62 #define		AT_XDMAC_CID_DID	BIT(2)	/* End of Disable Interrupt Disable Bit */
63 #define		AT_XDMAC_CID_FID	BIT(3)	/* End of Flush Interrupt Disable Bit */
64 #define		AT_XDMAC_CID_RBEID	BIT(4)	/* Read Bus Error Interrupt Disable Bit */
65 #define		AT_XDMAC_CID_WBEID	BIT(5)	/* Write Bus Error Interrupt Disable Bit */
66 #define		AT_XDMAC_CID_ROID	BIT(6)	/* Request Overflow Interrupt Disable Bit */
67 #define AT_XDMAC_CIM		0x08	/* Channel Interrupt Mask Register */
68 #define		AT_XDMAC_CIM_BIM	BIT(0)	/* End of Block Interrupt Mask Bit */
69 #define		AT_XDMAC_CIM_LIM	BIT(1)	/* End of Linked List Interrupt Mask Bit */
70 #define		AT_XDMAC_CIM_DIM	BIT(2)	/* End of Disable Interrupt Mask Bit */
71 #define		AT_XDMAC_CIM_FIM	BIT(3)	/* End of Flush Interrupt Mask Bit */
72 #define		AT_XDMAC_CIM_RBEIM	BIT(4)	/* Read Bus Error Interrupt Mask Bit */
73 #define		AT_XDMAC_CIM_WBEIM	BIT(5)	/* Write Bus Error Interrupt Mask Bit */
74 #define		AT_XDMAC_CIM_ROIM	BIT(6)	/* Request Overflow Interrupt Mask Bit */
75 #define AT_XDMAC_CIS		0x0C	/* Channel Interrupt Status Register */
76 #define		AT_XDMAC_CIS_BIS	BIT(0)	/* End of Block Interrupt Status Bit */
77 #define		AT_XDMAC_CIS_LIS	BIT(1)	/* End of Linked List Interrupt Status Bit */
78 #define		AT_XDMAC_CIS_DIS	BIT(2)	/* End of Disable Interrupt Status Bit */
79 #define		AT_XDMAC_CIS_FIS	BIT(3)	/* End of Flush Interrupt Status Bit */
80 #define		AT_XDMAC_CIS_RBEIS	BIT(4)	/* Read Bus Error Interrupt Status Bit */
81 #define		AT_XDMAC_CIS_WBEIS	BIT(5)	/* Write Bus Error Interrupt Status Bit */
82 #define		AT_XDMAC_CIS_ROIS	BIT(6)	/* Request Overflow Interrupt Status Bit */
83 #define AT_XDMAC_CSA		0x10	/* Channel Source Address Register */
84 #define AT_XDMAC_CDA		0x14	/* Channel Destination Address Register */
85 #define AT_XDMAC_CNDA		0x18	/* Channel Next Descriptor Address Register */
86 #define		AT_XDMAC_CNDA_NDAIF(i)	((i) & 0x1)			/* Channel x Next Descriptor Interface */
87 #define		AT_XDMAC_CNDA_NDA(i)	((i) & 0xfffffffc)		/* Channel x Next Descriptor Address */
88 #define AT_XDMAC_CNDC		0x1C	/* Channel Next Descriptor Control Register */
89 #define		AT_XDMAC_CNDC_NDE		(0x1 << 0)		/* Channel x Next Descriptor Enable */
90 #define		AT_XDMAC_CNDC_NDSUP		(0x1 << 1)		/* Channel x Next Descriptor Source Update */
91 #define		AT_XDMAC_CNDC_NDDUP		(0x1 << 2)		/* Channel x Next Descriptor Destination Update */
92 #define		AT_XDMAC_CNDC_NDVIEW_MASK	GENMASK(28, 27)
93 #define		AT_XDMAC_CNDC_NDVIEW_NDV0	(0x0 << 3)		/* Channel x Next Descriptor View 0 */
94 #define		AT_XDMAC_CNDC_NDVIEW_NDV1	(0x1 << 3)		/* Channel x Next Descriptor View 1 */
95 #define		AT_XDMAC_CNDC_NDVIEW_NDV2	(0x2 << 3)		/* Channel x Next Descriptor View 2 */
96 #define		AT_XDMAC_CNDC_NDVIEW_NDV3	(0x3 << 3)		/* Channel x Next Descriptor View 3 */
97 #define AT_XDMAC_CUBC		0x20	/* Channel Microblock Control Register */
98 #define AT_XDMAC_CBC		0x24	/* Channel Block Control Register */
99 #define AT_XDMAC_CC		0x28	/* Channel Configuration Register */
100 #define		AT_XDMAC_CC_TYPE	(0x1 << 0)	/* Channel Transfer Type */
101 #define			AT_XDMAC_CC_TYPE_MEM_TRAN	(0x0 << 0)	/* Memory to Memory Transfer */
102 #define			AT_XDMAC_CC_TYPE_PER_TRAN	(0x1 << 0)	/* Peripheral to Memory or Memory to Peripheral Transfer */
103 #define		AT_XDMAC_CC_MBSIZE_MASK	(0x3 << 1)
104 #define			AT_XDMAC_CC_MBSIZE_SINGLE	(0x0 << 1)
105 #define			AT_XDMAC_CC_MBSIZE_FOUR		(0x1 << 1)
106 #define			AT_XDMAC_CC_MBSIZE_EIGHT	(0x2 << 1)
107 #define			AT_XDMAC_CC_MBSIZE_SIXTEEN	(0x3 << 1)
108 #define		AT_XDMAC_CC_DSYNC	(0x1 << 4)	/* Channel Synchronization */
109 #define			AT_XDMAC_CC_DSYNC_PER2MEM	(0x0 << 4)
110 #define			AT_XDMAC_CC_DSYNC_MEM2PER	(0x1 << 4)
111 #define		AT_XDMAC_CC_PROT	(0x1 << 5)	/* Channel Protection */
112 #define			AT_XDMAC_CC_PROT_SEC		(0x0 << 5)
113 #define			AT_XDMAC_CC_PROT_UNSEC		(0x1 << 5)
114 #define		AT_XDMAC_CC_SWREQ	(0x1 << 6)	/* Channel Software Request Trigger */
115 #define			AT_XDMAC_CC_SWREQ_HWR_CONNECTED	(0x0 << 6)
116 #define			AT_XDMAC_CC_SWREQ_SWR_CONNECTED	(0x1 << 6)
117 #define		AT_XDMAC_CC_MEMSET	(0x1 << 7)	/* Channel Fill Block of memory */
118 #define			AT_XDMAC_CC_MEMSET_NORMAL_MODE	(0x0 << 7)
119 #define			AT_XDMAC_CC_MEMSET_HW_MODE	(0x1 << 7)
120 #define		AT_XDMAC_CC_CSIZE(i)	((0x7 & (i)) << 8)	/* Channel Chunk Size */
121 #define		AT_XDMAC_CC_DWIDTH_OFFSET	11
122 #define		AT_XDMAC_CC_DWIDTH_MASK	(0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
123 #define		AT_XDMAC_CC_DWIDTH(i)	((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET)	/* Channel Data Width */
124 #define			AT_XDMAC_CC_DWIDTH_BYTE		0x0
125 #define			AT_XDMAC_CC_DWIDTH_HALFWORD	0x1
126 #define			AT_XDMAC_CC_DWIDTH_WORD		0x2
127 #define			AT_XDMAC_CC_DWIDTH_DWORD	0x3
128 #define		AT_XDMAC_CC_SIF(i)	((0x1 & (i)) << 13)	/* Channel Source Interface Identifier */
129 #define		AT_XDMAC_CC_DIF(i)	((0x1 & (i)) << 14)	/* Channel Destination Interface Identifier */
130 #define		AT_XDMAC_CC_SAM_MASK	(0x3 << 16)	/* Channel Source Addressing Mode */
131 #define			AT_XDMAC_CC_SAM_FIXED_AM	(0x0 << 16)
132 #define			AT_XDMAC_CC_SAM_INCREMENTED_AM	(0x1 << 16)
133 #define			AT_XDMAC_CC_SAM_UBS_AM		(0x2 << 16)
134 #define			AT_XDMAC_CC_SAM_UBS_DS_AM	(0x3 << 16)
135 #define		AT_XDMAC_CC_DAM_MASK	(0x3 << 18)	/* Channel Source Addressing Mode */
136 #define			AT_XDMAC_CC_DAM_FIXED_AM	(0x0 << 18)
137 #define			AT_XDMAC_CC_DAM_INCREMENTED_AM	(0x1 << 18)
138 #define			AT_XDMAC_CC_DAM_UBS_AM		(0x2 << 18)
139 #define			AT_XDMAC_CC_DAM_UBS_DS_AM	(0x3 << 18)
140 #define		AT_XDMAC_CC_INITD	(0x1 << 21)	/* Channel Initialization Terminated (read only) */
141 #define			AT_XDMAC_CC_INITD_TERMINATED	(0x0 << 21)
142 #define			AT_XDMAC_CC_INITD_IN_PROGRESS	(0x1 << 21)
143 #define		AT_XDMAC_CC_RDIP	(0x1 << 22)	/* Read in Progress (read only) */
144 #define			AT_XDMAC_CC_RDIP_DONE		(0x0 << 22)
145 #define			AT_XDMAC_CC_RDIP_IN_PROGRESS	(0x1 << 22)
146 #define		AT_XDMAC_CC_WRIP	(0x1 << 23)	/* Write in Progress (read only) */
147 #define			AT_XDMAC_CC_WRIP_DONE		(0x0 << 23)
148 #define			AT_XDMAC_CC_WRIP_IN_PROGRESS	(0x1 << 23)
149 #define		AT_XDMAC_CC_PERID(i)	((0x7f & (i)) << 24)	/* Channel Peripheral Identifier */
150 #define AT_XDMAC_CDS_MSP	0x2C	/* Channel Data Stride Memory Set Pattern */
151 #define AT_XDMAC_CSUS		0x30	/* Channel Source Microblock Stride */
152 #define AT_XDMAC_CDUS		0x34	/* Channel Destination Microblock Stride */
153 
154 #define AT_XDMAC_CHAN_REG_BASE	0x50	/* Channel registers base address */
155 
156 /* Microblock control members */
157 #define AT_XDMAC_MBR_UBC_UBLEN_MAX	0xFFFFFFUL	/* Maximum Microblock Length */
158 #define AT_XDMAC_MBR_UBC_NDE		(0x1 << 24)	/* Next Descriptor Enable */
159 #define AT_XDMAC_MBR_UBC_NSEN		(0x1 << 25)	/* Next Descriptor Source Update */
160 #define AT_XDMAC_MBR_UBC_NDEN		(0x1 << 26)	/* Next Descriptor Destination Update */
161 #define AT_XDMAC_MBR_UBC_NDV0		(0x0 << 27)	/* Next Descriptor View 0 */
162 #define AT_XDMAC_MBR_UBC_NDV1		(0x1 << 27)	/* Next Descriptor View 1 */
163 #define AT_XDMAC_MBR_UBC_NDV2		(0x2 << 27)	/* Next Descriptor View 2 */
164 #define AT_XDMAC_MBR_UBC_NDV3		(0x3 << 27)	/* Next Descriptor View 3 */
165 
166 #define AT_XDMAC_MAX_CHAN	0x20
167 #define AT_XDMAC_MAX_CSIZE	16	/* 16 data */
168 #define AT_XDMAC_MAX_DWIDTH	8	/* 64 bits */
169 #define AT_XDMAC_RESIDUE_MAX_RETRIES	5
170 
171 #define AT_XDMAC_DMA_BUSWIDTHS\
172 	(BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
173 	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
174 	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
175 	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
176 	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
177 
178 enum atc_status {
179 	AT_XDMAC_CHAN_IS_CYCLIC = 0,
180 	AT_XDMAC_CHAN_IS_PAUSED,
181 };
182 
183 /* ----- Channels ----- */
184 struct at_xdmac_chan {
185 	struct dma_chan			chan;
186 	void __iomem			*ch_regs;
187 	u32				mask;		/* Channel Mask */
188 	u32				cfg;		/* Channel Configuration Register */
189 	u8				perid;		/* Peripheral ID */
190 	u8				perif;		/* Peripheral Interface */
191 	u8				memif;		/* Memory Interface */
192 	u32				save_cc;
193 	u32				save_cim;
194 	u32				save_cnda;
195 	u32				save_cndc;
196 	u32				irq_status;
197 	unsigned long			status;
198 	struct tasklet_struct		tasklet;
199 	struct dma_slave_config		sconfig;
200 
201 	spinlock_t			lock;
202 
203 	struct list_head		xfers_list;
204 	struct list_head		free_descs_list;
205 };
206 
207 
208 /* ----- Controller ----- */
209 struct at_xdmac {
210 	struct dma_device	dma;
211 	void __iomem		*regs;
212 	int			irq;
213 	struct clk		*clk;
214 	u32			save_gim;
215 	u32			save_gs;
216 	struct dma_pool		*at_xdmac_desc_pool;
217 	struct at_xdmac_chan	chan[];
218 };
219 
220 
221 /* ----- Descriptors ----- */
222 
223 /* Linked List Descriptor */
224 struct at_xdmac_lld {
225 	u32 mbr_nda;	/* Next Descriptor Member */
226 	u32 mbr_ubc;	/* Microblock Control Member */
227 	u32 mbr_sa;	/* Source Address Member */
228 	u32 mbr_da;	/* Destination Address Member */
229 	u32 mbr_cfg;	/* Configuration Register */
230 	u32 mbr_bc;	/* Block Control Register */
231 	u32 mbr_ds;	/* Data Stride Register */
232 	u32 mbr_sus;	/* Source Microblock Stride Register */
233 	u32 mbr_dus;	/* Destination Microblock Stride Register */
234 };
235 
236 /* 64-bit alignment needed to update CNDA and CUBC registers in an atomic way. */
237 struct at_xdmac_desc {
238 	struct at_xdmac_lld		lld;
239 	enum dma_transfer_direction	direction;
240 	struct dma_async_tx_descriptor	tx_dma_desc;
241 	struct list_head		desc_node;
242 	/* Following members are only used by the first descriptor */
243 	bool				active_xfer;
244 	unsigned int			xfer_size;
245 	struct list_head		descs_list;
246 	struct list_head		xfer_node;
247 } __aligned(sizeof(u64));
248 
at_xdmac_chan_reg_base(struct at_xdmac * atxdmac,unsigned int chan_nb)249 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
250 {
251 	return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
252 }
253 
254 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
255 #define at_xdmac_write(atxdmac, reg, value) \
256 	writel_relaxed((value), (atxdmac)->regs + (reg))
257 
258 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
259 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
260 
to_at_xdmac_chan(struct dma_chan * dchan)261 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
262 {
263 	return container_of(dchan, struct at_xdmac_chan, chan);
264 }
265 
chan2dev(struct dma_chan * chan)266 static struct device *chan2dev(struct dma_chan *chan)
267 {
268 	return &chan->dev->device;
269 }
270 
to_at_xdmac(struct dma_device * ddev)271 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
272 {
273 	return container_of(ddev, struct at_xdmac, dma);
274 }
275 
txd_to_at_desc(struct dma_async_tx_descriptor * txd)276 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
277 {
278 	return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
279 }
280 
at_xdmac_chan_is_cyclic(struct at_xdmac_chan * atchan)281 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
282 {
283 	return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
284 }
285 
at_xdmac_chan_is_paused(struct at_xdmac_chan * atchan)286 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
287 {
288 	return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
289 }
290 
at_xdmac_csize(u32 maxburst)291 static inline int at_xdmac_csize(u32 maxburst)
292 {
293 	int csize;
294 
295 	csize = ffs(maxburst) - 1;
296 	if (csize > 4)
297 		csize = -EINVAL;
298 
299 	return csize;
300 };
301 
at_xdmac_chan_is_peripheral_xfer(u32 cfg)302 static inline bool at_xdmac_chan_is_peripheral_xfer(u32 cfg)
303 {
304 	return cfg & AT_XDMAC_CC_TYPE_PER_TRAN;
305 }
306 
at_xdmac_get_dwidth(u32 cfg)307 static inline u8 at_xdmac_get_dwidth(u32 cfg)
308 {
309 	return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
310 };
311 
312 static unsigned int init_nr_desc_per_channel = 64;
313 module_param(init_nr_desc_per_channel, uint, 0644);
314 MODULE_PARM_DESC(init_nr_desc_per_channel,
315 		 "initial descriptors per channel (default: 64)");
316 
317 
at_xdmac_chan_is_enabled(struct at_xdmac_chan * atchan)318 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
319 {
320 	return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
321 }
322 
at_xdmac_off(struct at_xdmac * atxdmac)323 static void at_xdmac_off(struct at_xdmac *atxdmac)
324 {
325 	at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
326 
327 	/* Wait that all chans are disabled. */
328 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
329 		cpu_relax();
330 
331 	at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
332 }
333 
334 /* Call with lock hold. */
at_xdmac_start_xfer(struct at_xdmac_chan * atchan,struct at_xdmac_desc * first)335 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
336 				struct at_xdmac_desc *first)
337 {
338 	struct at_xdmac	*atxdmac = to_at_xdmac(atchan->chan.device);
339 	u32		reg;
340 
341 	dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
342 
343 	/* Set transfer as active to not try to start it again. */
344 	first->active_xfer = true;
345 
346 	/* Tell xdmac where to get the first descriptor. */
347 	reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
348 	      | AT_XDMAC_CNDA_NDAIF(atchan->memif);
349 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
350 
351 	/*
352 	 * When doing non cyclic transfer we need to use the next
353 	 * descriptor view 2 since some fields of the configuration register
354 	 * depend on transfer size and src/dest addresses.
355 	 */
356 	if (at_xdmac_chan_is_cyclic(atchan))
357 		reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
358 	else if ((first->lld.mbr_ubc &
359 		  AT_XDMAC_CNDC_NDVIEW_MASK) == AT_XDMAC_MBR_UBC_NDV3)
360 		reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
361 	else
362 		reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
363 	/*
364 	 * Even if the register will be updated from the configuration in the
365 	 * descriptor when using view 2 or higher, the PROT bit won't be set
366 	 * properly. This bit can be modified only by using the channel
367 	 * configuration register.
368 	 */
369 	at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
370 
371 	reg |= AT_XDMAC_CNDC_NDDUP
372 	       | AT_XDMAC_CNDC_NDSUP
373 	       | AT_XDMAC_CNDC_NDE;
374 	at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
375 
376 	dev_vdbg(chan2dev(&atchan->chan),
377 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
378 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
379 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
380 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
381 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
382 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
383 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
384 
385 	at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
386 	reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE;
387 	/*
388 	 * Request Overflow Error is only for peripheral synchronized transfers
389 	 */
390 	if (at_xdmac_chan_is_peripheral_xfer(first->lld.mbr_cfg))
391 		reg |= AT_XDMAC_CIE_ROIE;
392 
393 	/*
394 	 * There is no end of list when doing cyclic dma, we need to get
395 	 * an interrupt after each periods.
396 	 */
397 	if (at_xdmac_chan_is_cyclic(atchan))
398 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
399 				    reg | AT_XDMAC_CIE_BIE);
400 	else
401 		at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
402 				    reg | AT_XDMAC_CIE_LIE);
403 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
404 	dev_vdbg(chan2dev(&atchan->chan),
405 		 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
406 	wmb();
407 	at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
408 
409 	dev_vdbg(chan2dev(&atchan->chan),
410 		 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
411 		 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
412 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
413 		 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
414 		 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
415 		 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
416 		 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
417 
418 }
419 
at_xdmac_tx_submit(struct dma_async_tx_descriptor * tx)420 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
421 {
422 	struct at_xdmac_desc	*desc = txd_to_at_desc(tx);
423 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(tx->chan);
424 	dma_cookie_t		cookie;
425 	unsigned long		irqflags;
426 
427 	spin_lock_irqsave(&atchan->lock, irqflags);
428 	cookie = dma_cookie_assign(tx);
429 
430 	list_add_tail(&desc->xfer_node, &atchan->xfers_list);
431 	spin_unlock_irqrestore(&atchan->lock, irqflags);
432 
433 	dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
434 		 __func__, atchan, desc);
435 
436 	return cookie;
437 }
438 
at_xdmac_alloc_desc(struct dma_chan * chan,gfp_t gfp_flags)439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
440 						 gfp_t gfp_flags)
441 {
442 	struct at_xdmac_desc	*desc;
443 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
444 	dma_addr_t		phys;
445 
446 	desc = dma_pool_zalloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
447 	if (desc) {
448 		INIT_LIST_HEAD(&desc->descs_list);
449 		dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
450 		desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
451 		desc->tx_dma_desc.phys = phys;
452 	}
453 
454 	return desc;
455 }
456 
at_xdmac_init_used_desc(struct at_xdmac_desc * desc)457 static void at_xdmac_init_used_desc(struct at_xdmac_desc *desc)
458 {
459 	memset(&desc->lld, 0, sizeof(desc->lld));
460 	INIT_LIST_HEAD(&desc->descs_list);
461 	desc->direction = DMA_TRANS_NONE;
462 	desc->xfer_size = 0;
463 	desc->active_xfer = false;
464 }
465 
466 /* Call must be protected by lock. */
at_xdmac_get_desc(struct at_xdmac_chan * atchan)467 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
468 {
469 	struct at_xdmac_desc *desc;
470 
471 	if (list_empty(&atchan->free_descs_list)) {
472 		desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
473 	} else {
474 		desc = list_first_entry(&atchan->free_descs_list,
475 					struct at_xdmac_desc, desc_node);
476 		list_del(&desc->desc_node);
477 		at_xdmac_init_used_desc(desc);
478 	}
479 
480 	return desc;
481 }
482 
at_xdmac_queue_desc(struct dma_chan * chan,struct at_xdmac_desc * prev,struct at_xdmac_desc * desc)483 static void at_xdmac_queue_desc(struct dma_chan *chan,
484 				struct at_xdmac_desc *prev,
485 				struct at_xdmac_desc *desc)
486 {
487 	if (!prev || !desc)
488 		return;
489 
490 	prev->lld.mbr_nda = desc->tx_dma_desc.phys;
491 	prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
492 
493 	dev_dbg(chan2dev(chan),	"%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
494 		__func__, prev, &prev->lld.mbr_nda);
495 }
496 
at_xdmac_increment_block_count(struct dma_chan * chan,struct at_xdmac_desc * desc)497 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
498 						  struct at_xdmac_desc *desc)
499 {
500 	if (!desc)
501 		return;
502 
503 	desc->lld.mbr_bc++;
504 
505 	dev_dbg(chan2dev(chan),
506 		"%s: incrementing the block count of the desc 0x%p\n",
507 		__func__, desc);
508 }
509 
at_xdmac_xlate(struct of_phandle_args * dma_spec,struct of_dma * of_dma)510 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
511 				       struct of_dma *of_dma)
512 {
513 	struct at_xdmac		*atxdmac = of_dma->of_dma_data;
514 	struct at_xdmac_chan	*atchan;
515 	struct dma_chan		*chan;
516 	struct device		*dev = atxdmac->dma.dev;
517 
518 	if (dma_spec->args_count != 1) {
519 		dev_err(dev, "dma phandler args: bad number of args\n");
520 		return NULL;
521 	}
522 
523 	chan = dma_get_any_slave_channel(&atxdmac->dma);
524 	if (!chan) {
525 		dev_err(dev, "can't get a dma channel\n");
526 		return NULL;
527 	}
528 
529 	atchan = to_at_xdmac_chan(chan);
530 	atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
531 	atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
532 	atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
533 	dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
534 		 atchan->memif, atchan->perif, atchan->perid);
535 
536 	return chan;
537 }
538 
at_xdmac_compute_chan_conf(struct dma_chan * chan,enum dma_transfer_direction direction)539 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
540 				      enum dma_transfer_direction direction)
541 {
542 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
543 	int			csize, dwidth;
544 
545 	if (direction == DMA_DEV_TO_MEM) {
546 		atchan->cfg =
547 			AT91_XDMAC_DT_PERID(atchan->perid)
548 			| AT_XDMAC_CC_DAM_INCREMENTED_AM
549 			| AT_XDMAC_CC_SAM_FIXED_AM
550 			| AT_XDMAC_CC_DIF(atchan->memif)
551 			| AT_XDMAC_CC_SIF(atchan->perif)
552 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
553 			| AT_XDMAC_CC_DSYNC_PER2MEM
554 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
555 			| AT_XDMAC_CC_TYPE_PER_TRAN;
556 		csize = ffs(atchan->sconfig.src_maxburst) - 1;
557 		if (csize < 0) {
558 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
559 			return -EINVAL;
560 		}
561 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
562 		dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
563 		if (dwidth < 0) {
564 			dev_err(chan2dev(chan), "invalid src addr width value\n");
565 			return -EINVAL;
566 		}
567 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
568 	} else if (direction == DMA_MEM_TO_DEV) {
569 		atchan->cfg =
570 			AT91_XDMAC_DT_PERID(atchan->perid)
571 			| AT_XDMAC_CC_DAM_FIXED_AM
572 			| AT_XDMAC_CC_SAM_INCREMENTED_AM
573 			| AT_XDMAC_CC_DIF(atchan->perif)
574 			| AT_XDMAC_CC_SIF(atchan->memif)
575 			| AT_XDMAC_CC_SWREQ_HWR_CONNECTED
576 			| AT_XDMAC_CC_DSYNC_MEM2PER
577 			| AT_XDMAC_CC_MBSIZE_SIXTEEN
578 			| AT_XDMAC_CC_TYPE_PER_TRAN;
579 		csize = ffs(atchan->sconfig.dst_maxburst) - 1;
580 		if (csize < 0) {
581 			dev_err(chan2dev(chan), "invalid src maxburst value\n");
582 			return -EINVAL;
583 		}
584 		atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
585 		dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
586 		if (dwidth < 0) {
587 			dev_err(chan2dev(chan), "invalid dst addr width value\n");
588 			return -EINVAL;
589 		}
590 		atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
591 	}
592 
593 	dev_dbg(chan2dev(chan),	"%s: cfg=0x%08x\n", __func__, atchan->cfg);
594 
595 	return 0;
596 }
597 
598 /*
599  * Only check that maxburst and addr width values are supported by the
600  * the controller but not that the configuration is good to perform the
601  * transfer since we don't know the direction at this stage.
602  */
at_xdmac_check_slave_config(struct dma_slave_config * sconfig)603 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
604 {
605 	if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
606 	    || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
607 		return -EINVAL;
608 
609 	if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
610 	    || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
611 		return -EINVAL;
612 
613 	return 0;
614 }
615 
at_xdmac_set_slave_config(struct dma_chan * chan,struct dma_slave_config * sconfig)616 static int at_xdmac_set_slave_config(struct dma_chan *chan,
617 				      struct dma_slave_config *sconfig)
618 {
619 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
620 
621 	if (at_xdmac_check_slave_config(sconfig)) {
622 		dev_err(chan2dev(chan), "invalid slave configuration\n");
623 		return -EINVAL;
624 	}
625 
626 	memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
627 
628 	return 0;
629 }
630 
631 static struct dma_async_tx_descriptor *
at_xdmac_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)632 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
633 		       unsigned int sg_len, enum dma_transfer_direction direction,
634 		       unsigned long flags, void *context)
635 {
636 	struct at_xdmac_chan		*atchan = to_at_xdmac_chan(chan);
637 	struct at_xdmac_desc		*first = NULL, *prev = NULL;
638 	struct scatterlist		*sg;
639 	int				i;
640 	unsigned int			xfer_size = 0;
641 	unsigned long			irqflags;
642 	struct dma_async_tx_descriptor	*ret = NULL;
643 
644 	if (!sgl)
645 		return NULL;
646 
647 	if (!is_slave_direction(direction)) {
648 		dev_err(chan2dev(chan), "invalid DMA direction\n");
649 		return NULL;
650 	}
651 
652 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
653 		 __func__, sg_len,
654 		 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
655 		 flags);
656 
657 	/* Protect dma_sconfig field that can be modified by set_slave_conf. */
658 	spin_lock_irqsave(&atchan->lock, irqflags);
659 
660 	if (at_xdmac_compute_chan_conf(chan, direction))
661 		goto spin_unlock;
662 
663 	/* Prepare descriptors. */
664 	for_each_sg(sgl, sg, sg_len, i) {
665 		struct at_xdmac_desc	*desc = NULL;
666 		u32			len, mem, dwidth, fixed_dwidth;
667 
668 		len = sg_dma_len(sg);
669 		mem = sg_dma_address(sg);
670 		if (unlikely(!len)) {
671 			dev_err(chan2dev(chan), "sg data length is zero\n");
672 			goto spin_unlock;
673 		}
674 		dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
675 			 __func__, i, len, mem);
676 
677 		desc = at_xdmac_get_desc(atchan);
678 		if (!desc) {
679 			dev_err(chan2dev(chan), "can't get descriptor\n");
680 			if (first)
681 				list_splice_tail_init(&first->descs_list,
682 						      &atchan->free_descs_list);
683 			goto spin_unlock;
684 		}
685 
686 		/* Linked list descriptor setup. */
687 		if (direction == DMA_DEV_TO_MEM) {
688 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
689 			desc->lld.mbr_da = mem;
690 		} else {
691 			desc->lld.mbr_sa = mem;
692 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
693 		}
694 		dwidth = at_xdmac_get_dwidth(atchan->cfg);
695 		fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
696 			       ? dwidth
697 			       : AT_XDMAC_CC_DWIDTH_BYTE;
698 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2			/* next descriptor view */
699 			| AT_XDMAC_MBR_UBC_NDEN					/* next descriptor dst parameter update */
700 			| AT_XDMAC_MBR_UBC_NSEN					/* next descriptor src parameter update */
701 			| (len >> fixed_dwidth);				/* microblock length */
702 		desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
703 				    AT_XDMAC_CC_DWIDTH(fixed_dwidth);
704 		dev_dbg(chan2dev(chan),
705 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
706 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
707 
708 		/* Chain lld. */
709 		if (prev)
710 			at_xdmac_queue_desc(chan, prev, desc);
711 
712 		prev = desc;
713 		if (!first)
714 			first = desc;
715 
716 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
717 			 __func__, desc, first);
718 		list_add_tail(&desc->desc_node, &first->descs_list);
719 		xfer_size += len;
720 	}
721 
722 
723 	first->tx_dma_desc.flags = flags;
724 	first->xfer_size = xfer_size;
725 	first->direction = direction;
726 	ret = &first->tx_dma_desc;
727 
728 spin_unlock:
729 	spin_unlock_irqrestore(&atchan->lock, irqflags);
730 	return ret;
731 }
732 
733 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)734 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
735 			 size_t buf_len, size_t period_len,
736 			 enum dma_transfer_direction direction,
737 			 unsigned long flags)
738 {
739 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
740 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
741 	unsigned int		periods = buf_len / period_len;
742 	int			i;
743 	unsigned long		irqflags;
744 
745 	dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
746 		__func__, &buf_addr, buf_len, period_len,
747 		direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
748 
749 	if (!is_slave_direction(direction)) {
750 		dev_err(chan2dev(chan), "invalid DMA direction\n");
751 		return NULL;
752 	}
753 
754 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
755 		dev_err(chan2dev(chan), "channel currently used\n");
756 		return NULL;
757 	}
758 
759 	if (at_xdmac_compute_chan_conf(chan, direction))
760 		return NULL;
761 
762 	for (i = 0; i < periods; i++) {
763 		struct at_xdmac_desc	*desc = NULL;
764 
765 		spin_lock_irqsave(&atchan->lock, irqflags);
766 		desc = at_xdmac_get_desc(atchan);
767 		if (!desc) {
768 			dev_err(chan2dev(chan), "can't get descriptor\n");
769 			if (first)
770 				list_splice_tail_init(&first->descs_list,
771 						      &atchan->free_descs_list);
772 			spin_unlock_irqrestore(&atchan->lock, irqflags);
773 			return NULL;
774 		}
775 		spin_unlock_irqrestore(&atchan->lock, irqflags);
776 		dev_dbg(chan2dev(chan),
777 			"%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
778 			__func__, desc, &desc->tx_dma_desc.phys);
779 
780 		if (direction == DMA_DEV_TO_MEM) {
781 			desc->lld.mbr_sa = atchan->sconfig.src_addr;
782 			desc->lld.mbr_da = buf_addr + i * period_len;
783 		} else {
784 			desc->lld.mbr_sa = buf_addr + i * period_len;
785 			desc->lld.mbr_da = atchan->sconfig.dst_addr;
786 		}
787 		desc->lld.mbr_cfg = atchan->cfg;
788 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
789 			| AT_XDMAC_MBR_UBC_NDEN
790 			| AT_XDMAC_MBR_UBC_NSEN
791 			| period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
792 
793 		dev_dbg(chan2dev(chan),
794 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
795 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
796 
797 		/* Chain lld. */
798 		if (prev)
799 			at_xdmac_queue_desc(chan, prev, desc);
800 
801 		prev = desc;
802 		if (!first)
803 			first = desc;
804 
805 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
806 			 __func__, desc, first);
807 		list_add_tail(&desc->desc_node, &first->descs_list);
808 	}
809 
810 	at_xdmac_queue_desc(chan, prev, first);
811 	first->tx_dma_desc.flags = flags;
812 	first->xfer_size = buf_len;
813 	first->direction = direction;
814 
815 	return &first->tx_dma_desc;
816 }
817 
at_xdmac_align_width(struct dma_chan * chan,dma_addr_t addr)818 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
819 {
820 	u32 width;
821 
822 	/*
823 	 * Check address alignment to select the greater data width we
824 	 * can use.
825 	 *
826 	 * Some XDMAC implementations don't provide dword transfer, in
827 	 * this case selecting dword has the same behavior as
828 	 * selecting word transfers.
829 	 */
830 	if (!(addr & 7)) {
831 		width = AT_XDMAC_CC_DWIDTH_DWORD;
832 		dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
833 	} else if (!(addr & 3)) {
834 		width = AT_XDMAC_CC_DWIDTH_WORD;
835 		dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
836 	} else if (!(addr & 1)) {
837 		width = AT_XDMAC_CC_DWIDTH_HALFWORD;
838 		dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
839 	} else {
840 		width = AT_XDMAC_CC_DWIDTH_BYTE;
841 		dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
842 	}
843 
844 	return width;
845 }
846 
847 static struct at_xdmac_desc *
at_xdmac_interleaved_queue_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,struct at_xdmac_desc * prev,dma_addr_t src,dma_addr_t dst,struct dma_interleaved_template * xt,struct data_chunk * chunk)848 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
849 				struct at_xdmac_chan *atchan,
850 				struct at_xdmac_desc *prev,
851 				dma_addr_t src, dma_addr_t dst,
852 				struct dma_interleaved_template *xt,
853 				struct data_chunk *chunk)
854 {
855 	struct at_xdmac_desc	*desc;
856 	u32			dwidth;
857 	unsigned long		flags;
858 	size_t			ublen;
859 	/*
860 	 * WARNING: The channel configuration is set here since there is no
861 	 * dmaengine_slave_config call in this case. Moreover we don't know the
862 	 * direction, it involves we can't dynamically set the source and dest
863 	 * interface so we have to use the same one. Only interface 0 allows EBI
864 	 * access. Hopefully we can access DDR through both ports (at least on
865 	 * SAMA5D4x), so we can use the same interface for source and dest,
866 	 * that solves the fact we don't know the direction.
867 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
868 	 * match the one of another channel. If not, it could lead to spurious
869 	 * flag status.
870 	 */
871 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
872 					| AT_XDMAC_CC_DIF(0)
873 					| AT_XDMAC_CC_SIF(0)
874 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
875 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
876 
877 	dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
878 	if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
879 		dev_dbg(chan2dev(chan),
880 			"%s: chunk too big (%zu, max size %lu)...\n",
881 			__func__, chunk->size,
882 			AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
883 		return NULL;
884 	}
885 
886 	if (prev)
887 		dev_dbg(chan2dev(chan),
888 			"Adding items at the end of desc 0x%p\n", prev);
889 
890 	if (xt->src_inc) {
891 		if (xt->src_sgl)
892 			chan_cc |=  AT_XDMAC_CC_SAM_UBS_AM;
893 		else
894 			chan_cc |=  AT_XDMAC_CC_SAM_INCREMENTED_AM;
895 	}
896 
897 	if (xt->dst_inc) {
898 		if (xt->dst_sgl)
899 			chan_cc |=  AT_XDMAC_CC_DAM_UBS_AM;
900 		else
901 			chan_cc |=  AT_XDMAC_CC_DAM_INCREMENTED_AM;
902 	}
903 
904 	spin_lock_irqsave(&atchan->lock, flags);
905 	desc = at_xdmac_get_desc(atchan);
906 	spin_unlock_irqrestore(&atchan->lock, flags);
907 	if (!desc) {
908 		dev_err(chan2dev(chan), "can't get descriptor\n");
909 		return NULL;
910 	}
911 
912 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
913 
914 	ublen = chunk->size >> dwidth;
915 
916 	desc->lld.mbr_sa = src;
917 	desc->lld.mbr_da = dst;
918 	desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
919 	desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
920 
921 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
922 		| AT_XDMAC_MBR_UBC_NDEN
923 		| AT_XDMAC_MBR_UBC_NSEN
924 		| ublen;
925 	desc->lld.mbr_cfg = chan_cc;
926 
927 	dev_dbg(chan2dev(chan),
928 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
929 		__func__, &desc->lld.mbr_sa, &desc->lld.mbr_da,
930 		desc->lld.mbr_ubc, desc->lld.mbr_cfg);
931 
932 	/* Chain lld. */
933 	if (prev)
934 		at_xdmac_queue_desc(chan, prev, desc);
935 
936 	return desc;
937 }
938 
939 static struct dma_async_tx_descriptor *
at_xdmac_prep_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)940 at_xdmac_prep_interleaved(struct dma_chan *chan,
941 			  struct dma_interleaved_template *xt,
942 			  unsigned long flags)
943 {
944 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
945 	struct at_xdmac_desc	*prev = NULL, *first = NULL;
946 	dma_addr_t		dst_addr, src_addr;
947 	size_t			src_skip = 0, dst_skip = 0, len = 0;
948 	struct data_chunk	*chunk;
949 	int			i;
950 
951 	if (!xt || !xt->numf || (xt->dir != DMA_MEM_TO_MEM))
952 		return NULL;
953 
954 	/*
955 	 * TODO: Handle the case where we have to repeat a chain of
956 	 * descriptors...
957 	 */
958 	if ((xt->numf > 1) && (xt->frame_size > 1))
959 		return NULL;
960 
961 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, numf=%zu, frame_size=%zu, flags=0x%lx\n",
962 		__func__, &xt->src_start, &xt->dst_start,	xt->numf,
963 		xt->frame_size, flags);
964 
965 	src_addr = xt->src_start;
966 	dst_addr = xt->dst_start;
967 
968 	if (xt->numf > 1) {
969 		first = at_xdmac_interleaved_queue_desc(chan, atchan,
970 							NULL,
971 							src_addr, dst_addr,
972 							xt, xt->sgl);
973 		if (!first)
974 			return NULL;
975 
976 		/* Length of the block is (BLEN+1) microblocks. */
977 		for (i = 0; i < xt->numf - 1; i++)
978 			at_xdmac_increment_block_count(chan, first);
979 
980 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
981 			__func__, first, first);
982 		list_add_tail(&first->desc_node, &first->descs_list);
983 	} else {
984 		for (i = 0; i < xt->frame_size; i++) {
985 			size_t src_icg = 0, dst_icg = 0;
986 			struct at_xdmac_desc *desc;
987 
988 			chunk = xt->sgl + i;
989 
990 			dst_icg = dmaengine_get_dst_icg(xt, chunk);
991 			src_icg = dmaengine_get_src_icg(xt, chunk);
992 
993 			src_skip = chunk->size + src_icg;
994 			dst_skip = chunk->size + dst_icg;
995 
996 			dev_dbg(chan2dev(chan),
997 				"%s: chunk size=%zu, src icg=%zu, dst icg=%zu\n",
998 				__func__, chunk->size, src_icg, dst_icg);
999 
1000 			desc = at_xdmac_interleaved_queue_desc(chan, atchan,
1001 							       prev,
1002 							       src_addr, dst_addr,
1003 							       xt, chunk);
1004 			if (!desc) {
1005 				if (first)
1006 					list_splice_tail_init(&first->descs_list,
1007 							      &atchan->free_descs_list);
1008 				return NULL;
1009 			}
1010 
1011 			if (!first)
1012 				first = desc;
1013 
1014 			dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1015 				__func__, desc, first);
1016 			list_add_tail(&desc->desc_node, &first->descs_list);
1017 
1018 			if (xt->src_sgl)
1019 				src_addr += src_skip;
1020 
1021 			if (xt->dst_sgl)
1022 				dst_addr += dst_skip;
1023 
1024 			len += chunk->size;
1025 			prev = desc;
1026 		}
1027 	}
1028 
1029 	first->tx_dma_desc.cookie = -EBUSY;
1030 	first->tx_dma_desc.flags = flags;
1031 	first->xfer_size = len;
1032 
1033 	return &first->tx_dma_desc;
1034 }
1035 
1036 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1037 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1038 			 size_t len, unsigned long flags)
1039 {
1040 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1041 	struct at_xdmac_desc	*first = NULL, *prev = NULL;
1042 	size_t			remaining_size = len, xfer_size = 0, ublen;
1043 	dma_addr_t		src_addr = src, dst_addr = dest;
1044 	u32			dwidth;
1045 	/*
1046 	 * WARNING: We don't know the direction, it involves we can't
1047 	 * dynamically set the source and dest interface so we have to use the
1048 	 * same one. Only interface 0 allows EBI access. Hopefully we can
1049 	 * access DDR through both ports (at least on SAMA5D4x), so we can use
1050 	 * the same interface for source and dest, that solves the fact we
1051 	 * don't know the direction.
1052 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1053 	 * match the one of another channel. If not, it could lead to spurious
1054 	 * flag status.
1055 	 */
1056 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1057 					| AT_XDMAC_CC_DAM_INCREMENTED_AM
1058 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1059 					| AT_XDMAC_CC_DIF(0)
1060 					| AT_XDMAC_CC_SIF(0)
1061 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1062 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1063 	unsigned long		irqflags;
1064 
1065 	dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1066 		__func__, &src, &dest, len, flags);
1067 
1068 	if (unlikely(!len))
1069 		return NULL;
1070 
1071 	dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1072 
1073 	/* Prepare descriptors. */
1074 	while (remaining_size) {
1075 		struct at_xdmac_desc	*desc = NULL;
1076 
1077 		dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1078 
1079 		spin_lock_irqsave(&atchan->lock, irqflags);
1080 		desc = at_xdmac_get_desc(atchan);
1081 		spin_unlock_irqrestore(&atchan->lock, irqflags);
1082 		if (!desc) {
1083 			dev_err(chan2dev(chan), "can't get descriptor\n");
1084 			if (first)
1085 				list_splice_tail_init(&first->descs_list,
1086 						      &atchan->free_descs_list);
1087 			return NULL;
1088 		}
1089 
1090 		/* Update src and dest addresses. */
1091 		src_addr += xfer_size;
1092 		dst_addr += xfer_size;
1093 
1094 		if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1095 			xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1096 		else
1097 			xfer_size = remaining_size;
1098 
1099 		dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1100 
1101 		/* Check remaining length and change data width if needed. */
1102 		dwidth = at_xdmac_align_width(chan,
1103 					      src_addr | dst_addr | xfer_size);
1104 		chan_cc &= ~AT_XDMAC_CC_DWIDTH_MASK;
1105 		chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1106 
1107 		ublen = xfer_size >> dwidth;
1108 		remaining_size -= xfer_size;
1109 
1110 		desc->lld.mbr_sa = src_addr;
1111 		desc->lld.mbr_da = dst_addr;
1112 		desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1113 			| AT_XDMAC_MBR_UBC_NDEN
1114 			| AT_XDMAC_MBR_UBC_NSEN
1115 			| ublen;
1116 		desc->lld.mbr_cfg = chan_cc;
1117 
1118 		dev_dbg(chan2dev(chan),
1119 			 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1120 			 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1121 
1122 		/* Chain lld. */
1123 		if (prev)
1124 			at_xdmac_queue_desc(chan, prev, desc);
1125 
1126 		prev = desc;
1127 		if (!first)
1128 			first = desc;
1129 
1130 		dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1131 			 __func__, desc, first);
1132 		list_add_tail(&desc->desc_node, &first->descs_list);
1133 	}
1134 
1135 	first->tx_dma_desc.flags = flags;
1136 	first->xfer_size = len;
1137 
1138 	return &first->tx_dma_desc;
1139 }
1140 
at_xdmac_memset_create_desc(struct dma_chan * chan,struct at_xdmac_chan * atchan,dma_addr_t dst_addr,size_t len,int value)1141 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1142 							 struct at_xdmac_chan *atchan,
1143 							 dma_addr_t dst_addr,
1144 							 size_t len,
1145 							 int value)
1146 {
1147 	struct at_xdmac_desc	*desc;
1148 	unsigned long		flags;
1149 	size_t			ublen;
1150 	u32			dwidth;
1151 	/*
1152 	 * WARNING: The channel configuration is set here since there is no
1153 	 * dmaengine_slave_config call in this case. Moreover we don't know the
1154 	 * direction, it involves we can't dynamically set the source and dest
1155 	 * interface so we have to use the same one. Only interface 0 allows EBI
1156 	 * access. Hopefully we can access DDR through both ports (at least on
1157 	 * SAMA5D4x), so we can use the same interface for source and dest,
1158 	 * that solves the fact we don't know the direction.
1159 	 * ERRATA: Even if useless for memory transfers, the PERID has to not
1160 	 * match the one of another channel. If not, it could lead to spurious
1161 	 * flag status.
1162 	 */
1163 	u32			chan_cc = AT_XDMAC_CC_PERID(0x3f)
1164 					| AT_XDMAC_CC_DAM_UBS_AM
1165 					| AT_XDMAC_CC_SAM_INCREMENTED_AM
1166 					| AT_XDMAC_CC_DIF(0)
1167 					| AT_XDMAC_CC_SIF(0)
1168 					| AT_XDMAC_CC_MBSIZE_SIXTEEN
1169 					| AT_XDMAC_CC_MEMSET_HW_MODE
1170 					| AT_XDMAC_CC_TYPE_MEM_TRAN;
1171 
1172 	dwidth = at_xdmac_align_width(chan, dst_addr);
1173 
1174 	if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1175 		dev_err(chan2dev(chan),
1176 			"%s: Transfer too large, aborting...\n",
1177 			__func__);
1178 		return NULL;
1179 	}
1180 
1181 	spin_lock_irqsave(&atchan->lock, flags);
1182 	desc = at_xdmac_get_desc(atchan);
1183 	spin_unlock_irqrestore(&atchan->lock, flags);
1184 	if (!desc) {
1185 		dev_err(chan2dev(chan), "can't get descriptor\n");
1186 		return NULL;
1187 	}
1188 
1189 	chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1190 
1191 	ublen = len >> dwidth;
1192 
1193 	desc->lld.mbr_da = dst_addr;
1194 	desc->lld.mbr_ds = value;
1195 	desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1196 		| AT_XDMAC_MBR_UBC_NDEN
1197 		| AT_XDMAC_MBR_UBC_NSEN
1198 		| ublen;
1199 	desc->lld.mbr_cfg = chan_cc;
1200 
1201 	dev_dbg(chan2dev(chan),
1202 		"%s: lld: mbr_da=%pad, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1203 		__func__, &desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1204 		desc->lld.mbr_cfg);
1205 
1206 	return desc;
1207 }
1208 
1209 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1210 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1211 			 size_t len, unsigned long flags)
1212 {
1213 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1214 	struct at_xdmac_desc	*desc;
1215 
1216 	dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%zu, pattern=0x%x, flags=0x%lx\n",
1217 		__func__, &dest, len, value, flags);
1218 
1219 	if (unlikely(!len))
1220 		return NULL;
1221 
1222 	desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1223 	list_add_tail(&desc->desc_node, &desc->descs_list);
1224 
1225 	desc->tx_dma_desc.cookie = -EBUSY;
1226 	desc->tx_dma_desc.flags = flags;
1227 	desc->xfer_size = len;
1228 
1229 	return &desc->tx_dma_desc;
1230 }
1231 
1232 static struct dma_async_tx_descriptor *
at_xdmac_prep_dma_memset_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,int value,unsigned long flags)1233 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1234 			    unsigned int sg_len, int value,
1235 			    unsigned long flags)
1236 {
1237 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1238 	struct at_xdmac_desc	*desc, *pdesc = NULL,
1239 				*ppdesc = NULL, *first = NULL;
1240 	struct scatterlist	*sg, *psg = NULL, *ppsg = NULL;
1241 	size_t			stride = 0, pstride = 0, len = 0;
1242 	int			i;
1243 
1244 	if (!sgl)
1245 		return NULL;
1246 
1247 	dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1248 		__func__, sg_len, value, flags);
1249 
1250 	/* Prepare descriptors. */
1251 	for_each_sg(sgl, sg, sg_len, i) {
1252 		dev_dbg(chan2dev(chan), "%s: dest=%pad, len=%d, pattern=0x%x, flags=0x%lx\n",
1253 			__func__, &sg_dma_address(sg), sg_dma_len(sg),
1254 			value, flags);
1255 		desc = at_xdmac_memset_create_desc(chan, atchan,
1256 						   sg_dma_address(sg),
1257 						   sg_dma_len(sg),
1258 						   value);
1259 		if (!desc && first)
1260 			list_splice_tail_init(&first->descs_list,
1261 					      &atchan->free_descs_list);
1262 
1263 		if (!first)
1264 			first = desc;
1265 
1266 		/* Update our strides */
1267 		pstride = stride;
1268 		if (psg)
1269 			stride = sg_dma_address(sg) -
1270 				(sg_dma_address(psg) + sg_dma_len(psg));
1271 
1272 		/*
1273 		 * The scatterlist API gives us only the address and
1274 		 * length of each elements.
1275 		 *
1276 		 * Unfortunately, we don't have the stride, which we
1277 		 * will need to compute.
1278 		 *
1279 		 * That make us end up in a situation like this one:
1280 		 *    len    stride    len    stride    len
1281 		 * +-------+        +-------+        +-------+
1282 		 * |  N-2  |        |  N-1  |        |   N   |
1283 		 * +-------+        +-------+        +-------+
1284 		 *
1285 		 * We need all these three elements (N-2, N-1 and N)
1286 		 * to actually take the decision on whether we need to
1287 		 * queue N-1 or reuse N-2.
1288 		 *
1289 		 * We will only consider N if it is the last element.
1290 		 */
1291 		if (ppdesc && pdesc) {
1292 			if ((stride == pstride) &&
1293 			    (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1294 				dev_dbg(chan2dev(chan),
1295 					"%s: desc 0x%p can be merged with desc 0x%p\n",
1296 					__func__, pdesc, ppdesc);
1297 
1298 				/*
1299 				 * Increment the block count of the
1300 				 * N-2 descriptor
1301 				 */
1302 				at_xdmac_increment_block_count(chan, ppdesc);
1303 				ppdesc->lld.mbr_dus = stride;
1304 
1305 				/*
1306 				 * Put back the N-1 descriptor in the
1307 				 * free descriptor list
1308 				 */
1309 				list_add_tail(&pdesc->desc_node,
1310 					      &atchan->free_descs_list);
1311 
1312 				/*
1313 				 * Make our N-1 descriptor pointer
1314 				 * point to the N-2 since they were
1315 				 * actually merged.
1316 				 */
1317 				pdesc = ppdesc;
1318 
1319 			/*
1320 			 * Rule out the case where we don't have
1321 			 * pstride computed yet (our second sg
1322 			 * element)
1323 			 *
1324 			 * We also want to catch the case where there
1325 			 * would be a negative stride,
1326 			 */
1327 			} else if (pstride ||
1328 				   sg_dma_address(sg) < sg_dma_address(psg)) {
1329 				/*
1330 				 * Queue the N-1 descriptor after the
1331 				 * N-2
1332 				 */
1333 				at_xdmac_queue_desc(chan, ppdesc, pdesc);
1334 
1335 				/*
1336 				 * Add the N-1 descriptor to the list
1337 				 * of the descriptors used for this
1338 				 * transfer
1339 				 */
1340 				list_add_tail(&desc->desc_node,
1341 					      &first->descs_list);
1342 				dev_dbg(chan2dev(chan),
1343 					"%s: add desc 0x%p to descs_list 0x%p\n",
1344 					__func__, desc, first);
1345 			}
1346 		}
1347 
1348 		/*
1349 		 * If we are the last element, just see if we have the
1350 		 * same size than the previous element.
1351 		 *
1352 		 * If so, we can merge it with the previous descriptor
1353 		 * since we don't care about the stride anymore.
1354 		 */
1355 		if ((i == (sg_len - 1)) &&
1356 		    sg_dma_len(psg) == sg_dma_len(sg)) {
1357 			dev_dbg(chan2dev(chan),
1358 				"%s: desc 0x%p can be merged with desc 0x%p\n",
1359 				__func__, desc, pdesc);
1360 
1361 			/*
1362 			 * Increment the block count of the N-1
1363 			 * descriptor
1364 			 */
1365 			at_xdmac_increment_block_count(chan, pdesc);
1366 			pdesc->lld.mbr_dus = stride;
1367 
1368 			/*
1369 			 * Put back the N descriptor in the free
1370 			 * descriptor list
1371 			 */
1372 			list_add_tail(&desc->desc_node,
1373 				      &atchan->free_descs_list);
1374 		}
1375 
1376 		/* Update our descriptors */
1377 		ppdesc = pdesc;
1378 		pdesc = desc;
1379 
1380 		/* Update our scatter pointers */
1381 		ppsg = psg;
1382 		psg = sg;
1383 
1384 		len += sg_dma_len(sg);
1385 	}
1386 
1387 	first->tx_dma_desc.cookie = -EBUSY;
1388 	first->tx_dma_desc.flags = flags;
1389 	first->xfer_size = len;
1390 
1391 	return &first->tx_dma_desc;
1392 }
1393 
1394 static enum dma_status
at_xdmac_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1395 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1396 		struct dma_tx_state *txstate)
1397 {
1398 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1399 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1400 	struct at_xdmac_desc	*desc, *_desc, *iter;
1401 	struct list_head	*descs_list;
1402 	enum dma_status		ret;
1403 	int			residue, retry;
1404 	u32			cur_nda, check_nda, cur_ubc, mask, value;
1405 	u8			dwidth = 0;
1406 	unsigned long		flags;
1407 	bool			initd;
1408 
1409 	ret = dma_cookie_status(chan, cookie, txstate);
1410 	if (ret == DMA_COMPLETE)
1411 		return ret;
1412 
1413 	if (!txstate)
1414 		return ret;
1415 
1416 	spin_lock_irqsave(&atchan->lock, flags);
1417 
1418 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1419 
1420 	/*
1421 	 * If the transfer has not been started yet, don't need to compute the
1422 	 * residue, it's the transfer length.
1423 	 */
1424 	if (!desc->active_xfer) {
1425 		dma_set_residue(txstate, desc->xfer_size);
1426 		goto spin_unlock;
1427 	}
1428 
1429 	residue = desc->xfer_size;
1430 	/*
1431 	 * Flush FIFO: only relevant when the transfer is source peripheral
1432 	 * synchronized. Flush is needed before reading CUBC because data in
1433 	 * the FIFO are not reported by CUBC. Reporting a residue of the
1434 	 * transfer length while we have data in FIFO can cause issue.
1435 	 * Usecase: atmel USART has a timeout which means I have received
1436 	 * characters but there is no more character received for a while. On
1437 	 * timeout, it requests the residue. If the data are in the DMA FIFO,
1438 	 * we will return a residue of the transfer length. It means no data
1439 	 * received. If an application is waiting for these data, it will hang
1440 	 * since we won't have another USART timeout without receiving new
1441 	 * data.
1442 	 */
1443 	mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1444 	value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1445 	if ((desc->lld.mbr_cfg & mask) == value) {
1446 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1447 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1448 			cpu_relax();
1449 	}
1450 
1451 	/*
1452 	 * The easiest way to compute the residue should be to pause the DMA
1453 	 * but doing this can lead to miss some data as some devices don't
1454 	 * have FIFO.
1455 	 * We need to read several registers because:
1456 	 * - DMA is running therefore a descriptor change is possible while
1457 	 * reading these registers
1458 	 * - When the block transfer is done, the value of the CUBC register
1459 	 * is set to its initial value until the fetch of the next descriptor.
1460 	 * This value will corrupt the residue calculation so we have to skip
1461 	 * it.
1462 	 *
1463 	 * INITD --------                    ------------
1464 	 *              |____________________|
1465 	 *       _______________________  _______________
1466 	 * NDA       @desc2             \/   @desc3
1467 	 *       _______________________/\_______________
1468 	 *       __________  ___________  _______________
1469 	 * CUBC       0    \/ MAX desc1 \/  MAX desc2
1470 	 *       __________/\___________/\_______________
1471 	 *
1472 	 * Since descriptors are aligned on 64 bits, we can assume that
1473 	 * the update of NDA and CUBC is atomic.
1474 	 * Memory barriers are used to ensure the read order of the registers.
1475 	 * A max number of retries is set because unlikely it could never ends.
1476 	 */
1477 	for (retry = 0; retry < AT_XDMAC_RESIDUE_MAX_RETRIES; retry++) {
1478 		check_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1479 		rmb();
1480 		cur_ubc = at_xdmac_chan_read(atchan, AT_XDMAC_CUBC);
1481 		rmb();
1482 		initd = !!(at_xdmac_chan_read(atchan, AT_XDMAC_CC) & AT_XDMAC_CC_INITD);
1483 		rmb();
1484 		cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1485 		rmb();
1486 
1487 		if ((check_nda == cur_nda) && initd)
1488 			break;
1489 	}
1490 
1491 	if (unlikely(retry >= AT_XDMAC_RESIDUE_MAX_RETRIES)) {
1492 		ret = DMA_ERROR;
1493 		goto spin_unlock;
1494 	}
1495 
1496 	/*
1497 	 * Flush FIFO: only relevant when the transfer is source peripheral
1498 	 * synchronized. Another flush is needed here because CUBC is updated
1499 	 * when the controller sends the data write command. It can lead to
1500 	 * report data that are not written in the memory or the device. The
1501 	 * FIFO flush ensures that data are really written.
1502 	 */
1503 	if ((desc->lld.mbr_cfg & mask) == value) {
1504 		at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1505 		while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1506 			cpu_relax();
1507 	}
1508 
1509 	/*
1510 	 * Remove size of all microblocks already transferred and the current
1511 	 * one. Then add the remaining size to transfer of the current
1512 	 * microblock.
1513 	 */
1514 	descs_list = &desc->descs_list;
1515 	list_for_each_entry_safe(iter, _desc, descs_list, desc_node) {
1516 		dwidth = at_xdmac_get_dwidth(iter->lld.mbr_cfg);
1517 		residue -= (iter->lld.mbr_ubc & 0xffffff) << dwidth;
1518 		if ((iter->lld.mbr_nda & 0xfffffffc) == cur_nda) {
1519 			desc = iter;
1520 			break;
1521 		}
1522 	}
1523 	residue += cur_ubc << dwidth;
1524 
1525 	dma_set_residue(txstate, residue);
1526 
1527 	dev_dbg(chan2dev(chan),
1528 		 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1529 		 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1530 
1531 spin_unlock:
1532 	spin_unlock_irqrestore(&atchan->lock, flags);
1533 	return ret;
1534 }
1535 
at_xdmac_advance_work(struct at_xdmac_chan * atchan)1536 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1537 {
1538 	struct at_xdmac_desc	*desc;
1539 
1540 	/*
1541 	 * If channel is enabled, do nothing, advance_work will be triggered
1542 	 * after the interruption.
1543 	 */
1544 	if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1545 		desc = list_first_entry(&atchan->xfers_list,
1546 					struct at_xdmac_desc,
1547 					xfer_node);
1548 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1549 		if (!desc->active_xfer)
1550 			at_xdmac_start_xfer(atchan, desc);
1551 	}
1552 }
1553 
at_xdmac_handle_cyclic(struct at_xdmac_chan * atchan)1554 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1555 {
1556 	struct at_xdmac_desc		*desc;
1557 	struct dma_async_tx_descriptor	*txd;
1558 
1559 	spin_lock_irq(&atchan->lock);
1560 	if (list_empty(&atchan->xfers_list)) {
1561 		spin_unlock_irq(&atchan->lock);
1562 		return;
1563 	}
1564 	desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc,
1565 				xfer_node);
1566 	spin_unlock_irq(&atchan->lock);
1567 	txd = &desc->tx_dma_desc;
1568 	if (txd->flags & DMA_PREP_INTERRUPT)
1569 		dmaengine_desc_get_callback_invoke(txd, NULL);
1570 }
1571 
at_xdmac_handle_error(struct at_xdmac_chan * atchan)1572 static void at_xdmac_handle_error(struct at_xdmac_chan *atchan)
1573 {
1574 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1575 	struct at_xdmac_desc	*bad_desc;
1576 
1577 	/*
1578 	 * The descriptor currently at the head of the active list is
1579 	 * broken. Since we don't have any way to report errors, we'll
1580 	 * just have to scream loudly and try to continue with other
1581 	 * descriptors queued (if any).
1582 	 */
1583 	if (atchan->irq_status & AT_XDMAC_CIS_RBEIS)
1584 		dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1585 	if (atchan->irq_status & AT_XDMAC_CIS_WBEIS)
1586 		dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1587 	if (atchan->irq_status & AT_XDMAC_CIS_ROIS)
1588 		dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1589 
1590 	spin_lock_irq(&atchan->lock);
1591 
1592 	/* Channel must be disabled first as it's not done automatically */
1593 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1594 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1595 		cpu_relax();
1596 
1597 	bad_desc = list_first_entry(&atchan->xfers_list,
1598 				    struct at_xdmac_desc,
1599 				    xfer_node);
1600 
1601 	spin_unlock_irq(&atchan->lock);
1602 
1603 	/* Print bad descriptor's details if needed */
1604 	dev_dbg(chan2dev(&atchan->chan),
1605 		"%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
1606 		__func__, &bad_desc->lld.mbr_sa, &bad_desc->lld.mbr_da,
1607 		bad_desc->lld.mbr_ubc);
1608 
1609 	/* Then continue with usual descriptor management */
1610 }
1611 
at_xdmac_tasklet(struct tasklet_struct * t)1612 static void at_xdmac_tasklet(struct tasklet_struct *t)
1613 {
1614 	struct at_xdmac_chan	*atchan = from_tasklet(atchan, t, tasklet);
1615 	struct at_xdmac_desc	*desc;
1616 	u32			error_mask;
1617 
1618 	dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08x\n",
1619 		__func__, atchan->irq_status);
1620 
1621 	error_mask = AT_XDMAC_CIS_RBEIS
1622 		     | AT_XDMAC_CIS_WBEIS
1623 		     | AT_XDMAC_CIS_ROIS;
1624 
1625 	if (at_xdmac_chan_is_cyclic(atchan)) {
1626 		at_xdmac_handle_cyclic(atchan);
1627 	} else if ((atchan->irq_status & AT_XDMAC_CIS_LIS)
1628 		   || (atchan->irq_status & error_mask)) {
1629 		struct dma_async_tx_descriptor  *txd;
1630 
1631 		if (atchan->irq_status & error_mask)
1632 			at_xdmac_handle_error(atchan);
1633 
1634 		spin_lock_irq(&atchan->lock);
1635 		desc = list_first_entry(&atchan->xfers_list,
1636 					struct at_xdmac_desc,
1637 					xfer_node);
1638 		dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1639 		if (!desc->active_xfer) {
1640 			dev_err(chan2dev(&atchan->chan), "Xfer not active: exiting");
1641 			spin_unlock_irq(&atchan->lock);
1642 			return;
1643 		}
1644 
1645 		txd = &desc->tx_dma_desc;
1646 		dma_cookie_complete(txd);
1647 		/* Remove the transfer from the transfer list. */
1648 		list_del(&desc->xfer_node);
1649 		spin_unlock_irq(&atchan->lock);
1650 
1651 		if (txd->flags & DMA_PREP_INTERRUPT)
1652 			dmaengine_desc_get_callback_invoke(txd, NULL);
1653 
1654 		dma_run_dependencies(txd);
1655 
1656 		spin_lock_irq(&atchan->lock);
1657 		/* Move the xfer descriptors into the free descriptors list. */
1658 		list_splice_tail_init(&desc->descs_list,
1659 				      &atchan->free_descs_list);
1660 		at_xdmac_advance_work(atchan);
1661 		spin_unlock_irq(&atchan->lock);
1662 	}
1663 }
1664 
at_xdmac_interrupt(int irq,void * dev_id)1665 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1666 {
1667 	struct at_xdmac		*atxdmac = (struct at_xdmac *)dev_id;
1668 	struct at_xdmac_chan	*atchan;
1669 	u32			imr, status, pending;
1670 	u32			chan_imr, chan_status;
1671 	int			i, ret = IRQ_NONE;
1672 
1673 	do {
1674 		imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1675 		status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1676 		pending = status & imr;
1677 
1678 		dev_vdbg(atxdmac->dma.dev,
1679 			 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1680 			 __func__, status, imr, pending);
1681 
1682 		if (!pending)
1683 			break;
1684 
1685 		/* We have to find which channel has generated the interrupt. */
1686 		for (i = 0; i < atxdmac->dma.chancnt; i++) {
1687 			if (!((1 << i) & pending))
1688 				continue;
1689 
1690 			atchan = &atxdmac->chan[i];
1691 			chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1692 			chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1693 			atchan->irq_status = chan_status & chan_imr;
1694 			dev_vdbg(atxdmac->dma.dev,
1695 				 "%s: chan%d: imr=0x%x, status=0x%x\n",
1696 				 __func__, i, chan_imr, chan_status);
1697 			dev_vdbg(chan2dev(&atchan->chan),
1698 				 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1699 				 __func__,
1700 				 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1701 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1702 				 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1703 				 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1704 				 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1705 				 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1706 
1707 			if (atchan->irq_status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1708 				at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1709 
1710 			tasklet_schedule(&atchan->tasklet);
1711 			ret = IRQ_HANDLED;
1712 		}
1713 
1714 	} while (pending);
1715 
1716 	return ret;
1717 }
1718 
at_xdmac_issue_pending(struct dma_chan * chan)1719 static void at_xdmac_issue_pending(struct dma_chan *chan)
1720 {
1721 	struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1722 	unsigned long flags;
1723 
1724 	dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1725 
1726 	spin_lock_irqsave(&atchan->lock, flags);
1727 	at_xdmac_advance_work(atchan);
1728 	spin_unlock_irqrestore(&atchan->lock, flags);
1729 
1730 	return;
1731 }
1732 
at_xdmac_device_config(struct dma_chan * chan,struct dma_slave_config * config)1733 static int at_xdmac_device_config(struct dma_chan *chan,
1734 				  struct dma_slave_config *config)
1735 {
1736 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1737 	int ret;
1738 	unsigned long		flags;
1739 
1740 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1741 
1742 	spin_lock_irqsave(&atchan->lock, flags);
1743 	ret = at_xdmac_set_slave_config(chan, config);
1744 	spin_unlock_irqrestore(&atchan->lock, flags);
1745 
1746 	return ret;
1747 }
1748 
at_xdmac_device_pause(struct dma_chan * chan)1749 static int at_xdmac_device_pause(struct dma_chan *chan)
1750 {
1751 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1752 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1753 	unsigned long		flags;
1754 
1755 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1756 
1757 	if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1758 		return 0;
1759 
1760 	spin_lock_irqsave(&atchan->lock, flags);
1761 	at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1762 	while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1763 	       & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1764 		cpu_relax();
1765 	spin_unlock_irqrestore(&atchan->lock, flags);
1766 
1767 	return 0;
1768 }
1769 
at_xdmac_device_resume(struct dma_chan * chan)1770 static int at_xdmac_device_resume(struct dma_chan *chan)
1771 {
1772 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1773 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1774 	unsigned long		flags;
1775 
1776 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1777 
1778 	spin_lock_irqsave(&atchan->lock, flags);
1779 	if (!at_xdmac_chan_is_paused(atchan)) {
1780 		spin_unlock_irqrestore(&atchan->lock, flags);
1781 		return 0;
1782 	}
1783 
1784 	at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1785 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1786 	spin_unlock_irqrestore(&atchan->lock, flags);
1787 
1788 	return 0;
1789 }
1790 
at_xdmac_device_terminate_all(struct dma_chan * chan)1791 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1792 {
1793 	struct at_xdmac_desc	*desc, *_desc;
1794 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1795 	struct at_xdmac		*atxdmac = to_at_xdmac(atchan->chan.device);
1796 	unsigned long		flags;
1797 
1798 	dev_dbg(chan2dev(chan), "%s\n", __func__);
1799 
1800 	spin_lock_irqsave(&atchan->lock, flags);
1801 	at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1802 	while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1803 		cpu_relax();
1804 
1805 	/* Cancel all pending transfers. */
1806 	list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node) {
1807 		list_del(&desc->xfer_node);
1808 		list_splice_tail_init(&desc->descs_list,
1809 				      &atchan->free_descs_list);
1810 	}
1811 
1812 	clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1813 	clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1814 	spin_unlock_irqrestore(&atchan->lock, flags);
1815 
1816 	return 0;
1817 }
1818 
at_xdmac_alloc_chan_resources(struct dma_chan * chan)1819 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1820 {
1821 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1822 	struct at_xdmac_desc	*desc;
1823 	int			i;
1824 
1825 	if (at_xdmac_chan_is_enabled(atchan)) {
1826 		dev_err(chan2dev(chan),
1827 			"can't allocate channel resources (channel enabled)\n");
1828 		return -EIO;
1829 	}
1830 
1831 	if (!list_empty(&atchan->free_descs_list)) {
1832 		dev_err(chan2dev(chan),
1833 			"can't allocate channel resources (channel not free from a previous use)\n");
1834 		return -EIO;
1835 	}
1836 
1837 	for (i = 0; i < init_nr_desc_per_channel; i++) {
1838 		desc = at_xdmac_alloc_desc(chan, GFP_KERNEL);
1839 		if (!desc) {
1840 			if (i == 0) {
1841 				dev_warn(chan2dev(chan),
1842 					 "can't allocate any descriptors\n");
1843 				return -EIO;
1844 			}
1845 			dev_warn(chan2dev(chan),
1846 				"only %d descriptors have been allocated\n", i);
1847 			break;
1848 		}
1849 		list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1850 	}
1851 
1852 	dma_cookie_init(chan);
1853 
1854 	dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1855 
1856 	return i;
1857 }
1858 
at_xdmac_free_chan_resources(struct dma_chan * chan)1859 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1860 {
1861 	struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1862 	struct at_xdmac		*atxdmac = to_at_xdmac(chan->device);
1863 	struct at_xdmac_desc	*desc, *_desc;
1864 
1865 	list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1866 		dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1867 		list_del(&desc->desc_node);
1868 		dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1869 	}
1870 
1871 	return;
1872 }
1873 
1874 #ifdef CONFIG_PM
atmel_xdmac_prepare(struct device * dev)1875 static int atmel_xdmac_prepare(struct device *dev)
1876 {
1877 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1878 	struct dma_chan		*chan, *_chan;
1879 
1880 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1881 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1882 
1883 		/* Wait for transfer completion, except in cyclic case. */
1884 		if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1885 			return -EAGAIN;
1886 	}
1887 	return 0;
1888 }
1889 #else
1890 #	define atmel_xdmac_prepare NULL
1891 #endif
1892 
1893 #ifdef CONFIG_PM_SLEEP
atmel_xdmac_suspend(struct device * dev)1894 static int atmel_xdmac_suspend(struct device *dev)
1895 {
1896 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1897 	struct dma_chan		*chan, *_chan;
1898 
1899 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1900 		struct at_xdmac_chan	*atchan = to_at_xdmac_chan(chan);
1901 
1902 		atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1903 		if (at_xdmac_chan_is_cyclic(atchan)) {
1904 			if (!at_xdmac_chan_is_paused(atchan))
1905 				at_xdmac_device_pause(chan);
1906 			atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1907 			atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1908 			atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1909 		}
1910 	}
1911 	atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1912 	atxdmac->save_gs = at_xdmac_read(atxdmac, AT_XDMAC_GS);
1913 
1914 	at_xdmac_off(atxdmac);
1915 	clk_disable_unprepare(atxdmac->clk);
1916 	return 0;
1917 }
1918 
atmel_xdmac_resume(struct device * dev)1919 static int atmel_xdmac_resume(struct device *dev)
1920 {
1921 	struct at_xdmac		*atxdmac = dev_get_drvdata(dev);
1922 	struct at_xdmac_chan	*atchan;
1923 	struct dma_chan		*chan, *_chan;
1924 	int			i;
1925 	int ret;
1926 
1927 	ret = clk_prepare_enable(atxdmac->clk);
1928 	if (ret)
1929 		return ret;
1930 
1931 	/* Clear pending interrupts. */
1932 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
1933 		atchan = &atxdmac->chan[i];
1934 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1935 			cpu_relax();
1936 	}
1937 
1938 	at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1939 	list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1940 		atchan = to_at_xdmac_chan(chan);
1941 		at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1942 		if (at_xdmac_chan_is_cyclic(atchan)) {
1943 			if (at_xdmac_chan_is_paused(atchan))
1944 				at_xdmac_device_resume(chan);
1945 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1946 			at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1947 			at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1948 			wmb();
1949 			if (atxdmac->save_gs & atchan->mask)
1950 				at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1951 		}
1952 	}
1953 	return 0;
1954 }
1955 #endif /* CONFIG_PM_SLEEP */
1956 
at_xdmac_probe(struct platform_device * pdev)1957 static int at_xdmac_probe(struct platform_device *pdev)
1958 {
1959 	struct at_xdmac	*atxdmac;
1960 	int		irq, size, nr_channels, i, ret;
1961 	void __iomem	*base;
1962 	u32		reg;
1963 
1964 	irq = platform_get_irq(pdev, 0);
1965 	if (irq < 0)
1966 		return irq;
1967 
1968 	base = devm_platform_ioremap_resource(pdev, 0);
1969 	if (IS_ERR(base))
1970 		return PTR_ERR(base);
1971 
1972 	/*
1973 	 * Read number of xdmac channels, read helper function can't be used
1974 	 * since atxdmac is not yet allocated and we need to know the number
1975 	 * of channels to do the allocation.
1976 	 */
1977 	reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1978 	nr_channels = AT_XDMAC_NB_CH(reg);
1979 	if (nr_channels > AT_XDMAC_MAX_CHAN) {
1980 		dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1981 			nr_channels);
1982 		return -EINVAL;
1983 	}
1984 
1985 	size = sizeof(*atxdmac);
1986 	size += nr_channels * sizeof(struct at_xdmac_chan);
1987 	atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1988 	if (!atxdmac) {
1989 		dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1990 		return -ENOMEM;
1991 	}
1992 
1993 	atxdmac->regs = base;
1994 	atxdmac->irq = irq;
1995 
1996 	atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1997 	if (IS_ERR(atxdmac->clk)) {
1998 		dev_err(&pdev->dev, "can't get dma_clk\n");
1999 		return PTR_ERR(atxdmac->clk);
2000 	}
2001 
2002 	/* Do not use dev res to prevent races with tasklet */
2003 	ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
2004 	if (ret) {
2005 		dev_err(&pdev->dev, "can't request irq\n");
2006 		return ret;
2007 	}
2008 
2009 	ret = clk_prepare_enable(atxdmac->clk);
2010 	if (ret) {
2011 		dev_err(&pdev->dev, "can't prepare or enable clock\n");
2012 		goto err_free_irq;
2013 	}
2014 
2015 	atxdmac->at_xdmac_desc_pool =
2016 		dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
2017 				sizeof(struct at_xdmac_desc), 4, 0);
2018 	if (!atxdmac->at_xdmac_desc_pool) {
2019 		dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
2020 		ret = -ENOMEM;
2021 		goto err_clk_disable;
2022 	}
2023 
2024 	dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
2025 	dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
2026 	dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
2027 	dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
2028 	dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
2029 	dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
2030 	/*
2031 	 * Without DMA_PRIVATE the driver is not able to allocate more than
2032 	 * one channel, second allocation fails in private_candidate.
2033 	 */
2034 	dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
2035 	atxdmac->dma.dev				= &pdev->dev;
2036 	atxdmac->dma.device_alloc_chan_resources	= at_xdmac_alloc_chan_resources;
2037 	atxdmac->dma.device_free_chan_resources		= at_xdmac_free_chan_resources;
2038 	atxdmac->dma.device_tx_status			= at_xdmac_tx_status;
2039 	atxdmac->dma.device_issue_pending		= at_xdmac_issue_pending;
2040 	atxdmac->dma.device_prep_dma_cyclic		= at_xdmac_prep_dma_cyclic;
2041 	atxdmac->dma.device_prep_interleaved_dma	= at_xdmac_prep_interleaved;
2042 	atxdmac->dma.device_prep_dma_memcpy		= at_xdmac_prep_dma_memcpy;
2043 	atxdmac->dma.device_prep_dma_memset		= at_xdmac_prep_dma_memset;
2044 	atxdmac->dma.device_prep_dma_memset_sg		= at_xdmac_prep_dma_memset_sg;
2045 	atxdmac->dma.device_prep_slave_sg		= at_xdmac_prep_slave_sg;
2046 	atxdmac->dma.device_config			= at_xdmac_device_config;
2047 	atxdmac->dma.device_pause			= at_xdmac_device_pause;
2048 	atxdmac->dma.device_resume			= at_xdmac_device_resume;
2049 	atxdmac->dma.device_terminate_all		= at_xdmac_device_terminate_all;
2050 	atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2051 	atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
2052 	atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2053 	atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2054 
2055 	/* Disable all chans and interrupts. */
2056 	at_xdmac_off(atxdmac);
2057 
2058 	/* Init channels. */
2059 	INIT_LIST_HEAD(&atxdmac->dma.channels);
2060 	for (i = 0; i < nr_channels; i++) {
2061 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2062 
2063 		atchan->chan.device = &atxdmac->dma;
2064 		list_add_tail(&atchan->chan.device_node,
2065 			      &atxdmac->dma.channels);
2066 
2067 		atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
2068 		atchan->mask = 1 << i;
2069 
2070 		spin_lock_init(&atchan->lock);
2071 		INIT_LIST_HEAD(&atchan->xfers_list);
2072 		INIT_LIST_HEAD(&atchan->free_descs_list);
2073 		tasklet_setup(&atchan->tasklet, at_xdmac_tasklet);
2074 
2075 		/* Clear pending interrupts. */
2076 		while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
2077 			cpu_relax();
2078 	}
2079 	platform_set_drvdata(pdev, atxdmac);
2080 
2081 	ret = dma_async_device_register(&atxdmac->dma);
2082 	if (ret) {
2083 		dev_err(&pdev->dev, "fail to register DMA engine device\n");
2084 		goto err_clk_disable;
2085 	}
2086 
2087 	ret = of_dma_controller_register(pdev->dev.of_node,
2088 					 at_xdmac_xlate, atxdmac);
2089 	if (ret) {
2090 		dev_err(&pdev->dev, "could not register of dma controller\n");
2091 		goto err_dma_unregister;
2092 	}
2093 
2094 	dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
2095 		 nr_channels, atxdmac->regs);
2096 
2097 	return 0;
2098 
2099 err_dma_unregister:
2100 	dma_async_device_unregister(&atxdmac->dma);
2101 err_clk_disable:
2102 	clk_disable_unprepare(atxdmac->clk);
2103 err_free_irq:
2104 	free_irq(atxdmac->irq, atxdmac);
2105 	return ret;
2106 }
2107 
at_xdmac_remove(struct platform_device * pdev)2108 static int at_xdmac_remove(struct platform_device *pdev)
2109 {
2110 	struct at_xdmac	*atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
2111 	int		i;
2112 
2113 	at_xdmac_off(atxdmac);
2114 	of_dma_controller_free(pdev->dev.of_node);
2115 	dma_async_device_unregister(&atxdmac->dma);
2116 	clk_disable_unprepare(atxdmac->clk);
2117 
2118 	free_irq(atxdmac->irq, atxdmac);
2119 
2120 	for (i = 0; i < atxdmac->dma.chancnt; i++) {
2121 		struct at_xdmac_chan *atchan = &atxdmac->chan[i];
2122 
2123 		tasklet_kill(&atchan->tasklet);
2124 		at_xdmac_free_chan_resources(&atchan->chan);
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2131 	.prepare	= atmel_xdmac_prepare,
2132 	SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2133 };
2134 
2135 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2136 	{
2137 		.compatible = "atmel,sama5d4-dma",
2138 	}, {
2139 		/* sentinel */
2140 	}
2141 };
2142 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2143 
2144 static struct platform_driver at_xdmac_driver = {
2145 	.probe		= at_xdmac_probe,
2146 	.remove		= at_xdmac_remove,
2147 	.driver = {
2148 		.name		= "at_xdmac",
2149 		.of_match_table	= of_match_ptr(atmel_xdmac_dt_ids),
2150 		.pm		= &atmel_xdmac_dev_pm_ops,
2151 	}
2152 };
2153 
at_xdmac_init(void)2154 static int __init at_xdmac_init(void)
2155 {
2156 	return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2157 }
2158 subsys_initcall(at_xdmac_init);
2159 
2160 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2161 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2162 MODULE_LICENSE("GPL");
2163