• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Xilinx XADC driver
4  *
5  * Copyright 2013-2014 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  *
8  * Documentation for the parts can be found at:
9  *  - XADC hardmacro: Xilinx UG480
10  *  - ZYNQ XADC interface: Xilinx UG585
11  *  - AXI XADC interface: Xilinx PG019
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/overflow.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 #include <linux/sysfs.h>
26 
27 #include <linux/iio/buffer.h>
28 #include <linux/iio/events.h>
29 #include <linux/iio/iio.h>
30 #include <linux/iio/sysfs.h>
31 #include <linux/iio/trigger.h>
32 #include <linux/iio/trigger_consumer.h>
33 #include <linux/iio/triggered_buffer.h>
34 
35 #include "xilinx-xadc.h"
36 
37 static const unsigned int XADC_ZYNQ_UNMASK_TIMEOUT = 500;
38 
39 /* ZYNQ register definitions */
40 #define XADC_ZYNQ_REG_CFG	0x00
41 #define XADC_ZYNQ_REG_INTSTS	0x04
42 #define XADC_ZYNQ_REG_INTMSK	0x08
43 #define XADC_ZYNQ_REG_STATUS	0x0c
44 #define XADC_ZYNQ_REG_CFIFO	0x10
45 #define XADC_ZYNQ_REG_DFIFO	0x14
46 #define XADC_ZYNQ_REG_CTL		0x18
47 
48 #define XADC_ZYNQ_CFG_ENABLE		BIT(31)
49 #define XADC_ZYNQ_CFG_CFIFOTH_MASK	(0xf << 20)
50 #define XADC_ZYNQ_CFG_CFIFOTH_OFFSET	20
51 #define XADC_ZYNQ_CFG_DFIFOTH_MASK	(0xf << 16)
52 #define XADC_ZYNQ_CFG_DFIFOTH_OFFSET	16
53 #define XADC_ZYNQ_CFG_WEDGE		BIT(13)
54 #define XADC_ZYNQ_CFG_REDGE		BIT(12)
55 #define XADC_ZYNQ_CFG_TCKRATE_MASK	(0x3 << 8)
56 #define XADC_ZYNQ_CFG_TCKRATE_DIV2	(0x0 << 8)
57 #define XADC_ZYNQ_CFG_TCKRATE_DIV4	(0x1 << 8)
58 #define XADC_ZYNQ_CFG_TCKRATE_DIV8	(0x2 << 8)
59 #define XADC_ZYNQ_CFG_TCKRATE_DIV16	(0x3 << 8)
60 #define XADC_ZYNQ_CFG_IGAP_MASK		0x1f
61 #define XADC_ZYNQ_CFG_IGAP(x)		(x)
62 
63 #define XADC_ZYNQ_INT_CFIFO_LTH		BIT(9)
64 #define XADC_ZYNQ_INT_DFIFO_GTH		BIT(8)
65 #define XADC_ZYNQ_INT_ALARM_MASK	0xff
66 #define XADC_ZYNQ_INT_ALARM_OFFSET	0
67 
68 #define XADC_ZYNQ_STATUS_CFIFO_LVL_MASK	(0xf << 16)
69 #define XADC_ZYNQ_STATUS_CFIFO_LVL_OFFSET	16
70 #define XADC_ZYNQ_STATUS_DFIFO_LVL_MASK	(0xf << 12)
71 #define XADC_ZYNQ_STATUS_DFIFO_LVL_OFFSET	12
72 #define XADC_ZYNQ_STATUS_CFIFOF		BIT(11)
73 #define XADC_ZYNQ_STATUS_CFIFOE		BIT(10)
74 #define XADC_ZYNQ_STATUS_DFIFOF		BIT(9)
75 #define XADC_ZYNQ_STATUS_DFIFOE		BIT(8)
76 #define XADC_ZYNQ_STATUS_OT		BIT(7)
77 #define XADC_ZYNQ_STATUS_ALM(x)		BIT(x)
78 
79 #define XADC_ZYNQ_CTL_RESET		BIT(4)
80 
81 #define XADC_ZYNQ_CMD_NOP		0x00
82 #define XADC_ZYNQ_CMD_READ		0x01
83 #define XADC_ZYNQ_CMD_WRITE		0x02
84 
85 #define XADC_ZYNQ_CMD(cmd, addr, data) (((cmd) << 26) | ((addr) << 16) | (data))
86 
87 /* AXI register definitions */
88 #define XADC_AXI_REG_RESET		0x00
89 #define XADC_AXI_REG_STATUS		0x04
90 #define XADC_AXI_REG_ALARM_STATUS	0x08
91 #define XADC_AXI_REG_CONVST		0x0c
92 #define XADC_AXI_REG_XADC_RESET		0x10
93 #define XADC_AXI_REG_GIER		0x5c
94 #define XADC_AXI_REG_IPISR		0x60
95 #define XADC_AXI_REG_IPIER		0x68
96 #define XADC_AXI_ADC_REG_OFFSET		0x200
97 
98 #define XADC_AXI_RESET_MAGIC		0xa
99 #define XADC_AXI_GIER_ENABLE		BIT(31)
100 
101 #define XADC_AXI_INT_EOS		BIT(4)
102 #define XADC_AXI_INT_ALARM_MASK		0x3c0f
103 
104 #define XADC_FLAGS_BUFFERED BIT(0)
105 
106 /*
107  * The XADC hardware supports a samplerate of up to 1MSPS. Unfortunately it does
108  * not have a hardware FIFO. Which means an interrupt is generated for each
109  * conversion sequence. At 1MSPS sample rate the CPU in ZYNQ7000 is completely
110  * overloaded by the interrupts that it soft-lockups. For this reason the driver
111  * limits the maximum samplerate 150kSPS. At this rate the CPU is fairly busy,
112  * but still responsive.
113  */
114 #define XADC_MAX_SAMPLERATE 150000
115 
xadc_write_reg(struct xadc * xadc,unsigned int reg,uint32_t val)116 static void xadc_write_reg(struct xadc *xadc, unsigned int reg,
117 	uint32_t val)
118 {
119 	writel(val, xadc->base + reg);
120 }
121 
xadc_read_reg(struct xadc * xadc,unsigned int reg,uint32_t * val)122 static void xadc_read_reg(struct xadc *xadc, unsigned int reg,
123 	uint32_t *val)
124 {
125 	*val = readl(xadc->base + reg);
126 }
127 
128 /*
129  * The ZYNQ interface uses two asynchronous FIFOs for communication with the
130  * XADC. Reads and writes to the XADC register are performed by submitting a
131  * request to the command FIFO (CFIFO), once the request has been completed the
132  * result can be read from the data FIFO (DFIFO). The method currently used in
133  * this driver is to submit the request for a read/write operation, then go to
134  * sleep and wait for an interrupt that signals that a response is available in
135  * the data FIFO.
136  */
137 
xadc_zynq_write_fifo(struct xadc * xadc,uint32_t * cmd,unsigned int n)138 static void xadc_zynq_write_fifo(struct xadc *xadc, uint32_t *cmd,
139 	unsigned int n)
140 {
141 	unsigned int i;
142 
143 	for (i = 0; i < n; i++)
144 		xadc_write_reg(xadc, XADC_ZYNQ_REG_CFIFO, cmd[i]);
145 }
146 
xadc_zynq_drain_fifo(struct xadc * xadc)147 static void xadc_zynq_drain_fifo(struct xadc *xadc)
148 {
149 	uint32_t status, tmp;
150 
151 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
152 
153 	while (!(status & XADC_ZYNQ_STATUS_DFIFOE)) {
154 		xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
155 		xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &status);
156 	}
157 }
158 
xadc_zynq_update_intmsk(struct xadc * xadc,unsigned int mask,unsigned int val)159 static void xadc_zynq_update_intmsk(struct xadc *xadc, unsigned int mask,
160 	unsigned int val)
161 {
162 	xadc->zynq_intmask &= ~mask;
163 	xadc->zynq_intmask |= val;
164 
165 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK,
166 		xadc->zynq_intmask | xadc->zynq_masked_alarm);
167 }
168 
xadc_zynq_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)169 static int xadc_zynq_write_adc_reg(struct xadc *xadc, unsigned int reg,
170 	uint16_t val)
171 {
172 	uint32_t cmd[1];
173 	uint32_t tmp;
174 	int ret;
175 
176 	spin_lock_irq(&xadc->lock);
177 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
178 			XADC_ZYNQ_INT_DFIFO_GTH);
179 
180 	reinit_completion(&xadc->completion);
181 
182 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_WRITE, reg, val);
183 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
184 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
185 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
186 	tmp |= 0 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
187 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
188 
189 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
190 	spin_unlock_irq(&xadc->lock);
191 
192 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
193 	if (ret == 0)
194 		ret = -EIO;
195 	else
196 		ret = 0;
197 
198 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &tmp);
199 
200 	return ret;
201 }
202 
xadc_zynq_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)203 static int xadc_zynq_read_adc_reg(struct xadc *xadc, unsigned int reg,
204 	uint16_t *val)
205 {
206 	uint32_t cmd[2];
207 	uint32_t resp, tmp;
208 	int ret;
209 
210 	cmd[0] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_READ, reg, 0);
211 	cmd[1] = XADC_ZYNQ_CMD(XADC_ZYNQ_CMD_NOP, 0, 0);
212 
213 	spin_lock_irq(&xadc->lock);
214 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
215 			XADC_ZYNQ_INT_DFIFO_GTH);
216 	xadc_zynq_drain_fifo(xadc);
217 	reinit_completion(&xadc->completion);
218 
219 	xadc_zynq_write_fifo(xadc, cmd, ARRAY_SIZE(cmd));
220 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &tmp);
221 	tmp &= ~XADC_ZYNQ_CFG_DFIFOTH_MASK;
222 	tmp |= 1 << XADC_ZYNQ_CFG_DFIFOTH_OFFSET;
223 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, tmp);
224 
225 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH, 0);
226 	spin_unlock_irq(&xadc->lock);
227 	ret = wait_for_completion_interruptible_timeout(&xadc->completion, HZ);
228 	if (ret == 0)
229 		ret = -EIO;
230 	if (ret < 0)
231 		return ret;
232 
233 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
234 	xadc_read_reg(xadc, XADC_ZYNQ_REG_DFIFO, &resp);
235 
236 	*val = resp & 0xffff;
237 
238 	return 0;
239 }
240 
xadc_zynq_transform_alarm(unsigned int alarm)241 static unsigned int xadc_zynq_transform_alarm(unsigned int alarm)
242 {
243 	return ((alarm & 0x80) >> 4) |
244 		((alarm & 0x78) << 1) |
245 		(alarm & 0x07);
246 }
247 
248 /*
249  * The ZYNQ threshold interrupts are level sensitive. Since we can't make the
250  * threshold condition go way from within the interrupt handler, this means as
251  * soon as a threshold condition is present we would enter the interrupt handler
252  * again and again. To work around this we mask all active thresholds interrupts
253  * in the interrupt handler and start a timer. In this timer we poll the
254  * interrupt status and only if the interrupt is inactive we unmask it again.
255  */
xadc_zynq_unmask_worker(struct work_struct * work)256 static void xadc_zynq_unmask_worker(struct work_struct *work)
257 {
258 	struct xadc *xadc = container_of(work, struct xadc, zynq_unmask_work.work);
259 	unsigned int misc_sts, unmask;
260 
261 	xadc_read_reg(xadc, XADC_ZYNQ_REG_STATUS, &misc_sts);
262 
263 	misc_sts &= XADC_ZYNQ_INT_ALARM_MASK;
264 
265 	spin_lock_irq(&xadc->lock);
266 
267 	/* Clear those bits which are not active anymore */
268 	unmask = (xadc->zynq_masked_alarm ^ misc_sts) & xadc->zynq_masked_alarm;
269 	xadc->zynq_masked_alarm &= misc_sts;
270 
271 	/* Also clear those which are masked out anyway */
272 	xadc->zynq_masked_alarm &= ~xadc->zynq_intmask;
273 
274 	/* Clear the interrupts before we unmask them */
275 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, unmask);
276 
277 	xadc_zynq_update_intmsk(xadc, 0, 0);
278 
279 	spin_unlock_irq(&xadc->lock);
280 
281 	/* if still pending some alarm re-trigger the timer */
282 	if (xadc->zynq_masked_alarm) {
283 		schedule_delayed_work(&xadc->zynq_unmask_work,
284 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
285 	}
286 
287 }
288 
xadc_zynq_interrupt_handler(int irq,void * devid)289 static irqreturn_t xadc_zynq_interrupt_handler(int irq, void *devid)
290 {
291 	struct iio_dev *indio_dev = devid;
292 	struct xadc *xadc = iio_priv(indio_dev);
293 	uint32_t status;
294 
295 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
296 
297 	status &= ~(xadc->zynq_intmask | xadc->zynq_masked_alarm);
298 
299 	if (!status)
300 		return IRQ_NONE;
301 
302 	spin_lock(&xadc->lock);
303 
304 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status);
305 
306 	if (status & XADC_ZYNQ_INT_DFIFO_GTH) {
307 		xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_DFIFO_GTH,
308 			XADC_ZYNQ_INT_DFIFO_GTH);
309 		complete(&xadc->completion);
310 	}
311 
312 	status &= XADC_ZYNQ_INT_ALARM_MASK;
313 	if (status) {
314 		xadc->zynq_masked_alarm |= status;
315 		/*
316 		 * mask the current event interrupt,
317 		 * unmask it when the interrupt is no more active.
318 		 */
319 		xadc_zynq_update_intmsk(xadc, 0, 0);
320 
321 		xadc_handle_events(indio_dev,
322 				xadc_zynq_transform_alarm(status));
323 
324 		/* unmask the required interrupts in timer. */
325 		schedule_delayed_work(&xadc->zynq_unmask_work,
326 				msecs_to_jiffies(XADC_ZYNQ_UNMASK_TIMEOUT));
327 	}
328 	spin_unlock(&xadc->lock);
329 
330 	return IRQ_HANDLED;
331 }
332 
333 #define XADC_ZYNQ_TCK_RATE_MAX 50000000
334 #define XADC_ZYNQ_IGAP_DEFAULT 20
335 #define XADC_ZYNQ_PCAP_RATE_MAX 200000000
336 
xadc_zynq_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)337 static int xadc_zynq_setup(struct platform_device *pdev,
338 	struct iio_dev *indio_dev, int irq)
339 {
340 	struct xadc *xadc = iio_priv(indio_dev);
341 	unsigned long pcap_rate;
342 	unsigned int tck_div;
343 	unsigned int div;
344 	unsigned int igap;
345 	unsigned int tck_rate;
346 	int ret;
347 
348 	/* TODO: Figure out how to make igap and tck_rate configurable */
349 	igap = XADC_ZYNQ_IGAP_DEFAULT;
350 	tck_rate = XADC_ZYNQ_TCK_RATE_MAX;
351 
352 	xadc->zynq_intmask = ~0;
353 
354 	pcap_rate = clk_get_rate(xadc->clk);
355 	if (!pcap_rate)
356 		return -EINVAL;
357 
358 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
359 		ret = clk_set_rate(xadc->clk,
360 				   (unsigned long)XADC_ZYNQ_PCAP_RATE_MAX);
361 		if (ret)
362 			return ret;
363 	}
364 
365 	if (tck_rate > pcap_rate / 2) {
366 		div = 2;
367 	} else {
368 		div = pcap_rate / tck_rate;
369 		if (pcap_rate / div > XADC_ZYNQ_TCK_RATE_MAX)
370 			div++;
371 	}
372 
373 	if (div <= 3)
374 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV2;
375 	else if (div <= 7)
376 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV4;
377 	else if (div <= 15)
378 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV8;
379 	else
380 		tck_div = XADC_ZYNQ_CFG_TCKRATE_DIV16;
381 
382 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, XADC_ZYNQ_CTL_RESET);
383 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CTL, 0);
384 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, ~0);
385 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTMSK, xadc->zynq_intmask);
386 	xadc_write_reg(xadc, XADC_ZYNQ_REG_CFG, XADC_ZYNQ_CFG_ENABLE |
387 			XADC_ZYNQ_CFG_REDGE | XADC_ZYNQ_CFG_WEDGE |
388 			tck_div | XADC_ZYNQ_CFG_IGAP(igap));
389 
390 	if (pcap_rate > XADC_ZYNQ_PCAP_RATE_MAX) {
391 		ret = clk_set_rate(xadc->clk, pcap_rate);
392 		if (ret)
393 			return ret;
394 	}
395 
396 	return 0;
397 }
398 
xadc_zynq_get_dclk_rate(struct xadc * xadc)399 static unsigned long xadc_zynq_get_dclk_rate(struct xadc *xadc)
400 {
401 	unsigned int div;
402 	uint32_t val;
403 
404 	xadc_read_reg(xadc, XADC_ZYNQ_REG_CFG, &val);
405 
406 	switch (val & XADC_ZYNQ_CFG_TCKRATE_MASK) {
407 	case XADC_ZYNQ_CFG_TCKRATE_DIV4:
408 		div = 4;
409 		break;
410 	case XADC_ZYNQ_CFG_TCKRATE_DIV8:
411 		div = 8;
412 		break;
413 	case XADC_ZYNQ_CFG_TCKRATE_DIV16:
414 		div = 16;
415 		break;
416 	default:
417 		div = 2;
418 		break;
419 	}
420 
421 	return clk_get_rate(xadc->clk) / div;
422 }
423 
xadc_zynq_update_alarm(struct xadc * xadc,unsigned int alarm)424 static void xadc_zynq_update_alarm(struct xadc *xadc, unsigned int alarm)
425 {
426 	unsigned long flags;
427 	uint32_t status;
428 
429 	/* Move OT to bit 7 */
430 	alarm = ((alarm & 0x08) << 4) | ((alarm & 0xf0) >> 1) | (alarm & 0x07);
431 
432 	spin_lock_irqsave(&xadc->lock, flags);
433 
434 	/* Clear previous interrupts if any. */
435 	xadc_read_reg(xadc, XADC_ZYNQ_REG_INTSTS, &status);
436 	xadc_write_reg(xadc, XADC_ZYNQ_REG_INTSTS, status & alarm);
437 
438 	xadc_zynq_update_intmsk(xadc, XADC_ZYNQ_INT_ALARM_MASK,
439 		~alarm & XADC_ZYNQ_INT_ALARM_MASK);
440 
441 	spin_unlock_irqrestore(&xadc->lock, flags);
442 }
443 
444 static const struct xadc_ops xadc_zynq_ops = {
445 	.read = xadc_zynq_read_adc_reg,
446 	.write = xadc_zynq_write_adc_reg,
447 	.setup = xadc_zynq_setup,
448 	.get_dclk_rate = xadc_zynq_get_dclk_rate,
449 	.interrupt_handler = xadc_zynq_interrupt_handler,
450 	.update_alarm = xadc_zynq_update_alarm,
451 };
452 
xadc_axi_read_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t * val)453 static int xadc_axi_read_adc_reg(struct xadc *xadc, unsigned int reg,
454 	uint16_t *val)
455 {
456 	uint32_t val32;
457 
458 	xadc_read_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, &val32);
459 	*val = val32 & 0xffff;
460 
461 	return 0;
462 }
463 
xadc_axi_write_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t val)464 static int xadc_axi_write_adc_reg(struct xadc *xadc, unsigned int reg,
465 	uint16_t val)
466 {
467 	xadc_write_reg(xadc, XADC_AXI_ADC_REG_OFFSET + reg * 4, val);
468 
469 	return 0;
470 }
471 
xadc_axi_setup(struct platform_device * pdev,struct iio_dev * indio_dev,int irq)472 static int xadc_axi_setup(struct platform_device *pdev,
473 	struct iio_dev *indio_dev, int irq)
474 {
475 	struct xadc *xadc = iio_priv(indio_dev);
476 
477 	xadc_write_reg(xadc, XADC_AXI_REG_RESET, XADC_AXI_RESET_MAGIC);
478 	xadc_write_reg(xadc, XADC_AXI_REG_GIER, XADC_AXI_GIER_ENABLE);
479 
480 	return 0;
481 }
482 
xadc_axi_interrupt_handler(int irq,void * devid)483 static irqreturn_t xadc_axi_interrupt_handler(int irq, void *devid)
484 {
485 	struct iio_dev *indio_dev = devid;
486 	struct xadc *xadc = iio_priv(indio_dev);
487 	uint32_t status, mask;
488 	unsigned int events;
489 
490 	xadc_read_reg(xadc, XADC_AXI_REG_IPISR, &status);
491 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &mask);
492 	status &= mask;
493 
494 	if (!status)
495 		return IRQ_NONE;
496 
497 	if ((status & XADC_AXI_INT_EOS) && xadc->trigger)
498 		iio_trigger_poll(xadc->trigger);
499 
500 	if (status & XADC_AXI_INT_ALARM_MASK) {
501 		/*
502 		 * The order of the bits in the AXI-XADC status register does
503 		 * not match the order of the bits in the XADC alarm enable
504 		 * register. xadc_handle_events() expects the events to be in
505 		 * the same order as the XADC alarm enable register.
506 		 */
507 		events = (status & 0x000e) >> 1;
508 		events |= (status & 0x0001) << 3;
509 		events |= (status & 0x3c00) >> 6;
510 		xadc_handle_events(indio_dev, events);
511 	}
512 
513 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, status);
514 
515 	return IRQ_HANDLED;
516 }
517 
xadc_axi_update_alarm(struct xadc * xadc,unsigned int alarm)518 static void xadc_axi_update_alarm(struct xadc *xadc, unsigned int alarm)
519 {
520 	uint32_t val;
521 	unsigned long flags;
522 
523 	/*
524 	 * The order of the bits in the AXI-XADC status register does not match
525 	 * the order of the bits in the XADC alarm enable register. We get
526 	 * passed the alarm mask in the same order as in the XADC alarm enable
527 	 * register.
528 	 */
529 	alarm = ((alarm & 0x07) << 1) | ((alarm & 0x08) >> 3) |
530 			((alarm & 0xf0) << 6);
531 
532 	spin_lock_irqsave(&xadc->lock, flags);
533 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
534 	val &= ~XADC_AXI_INT_ALARM_MASK;
535 	val |= alarm;
536 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
537 	spin_unlock_irqrestore(&xadc->lock, flags);
538 }
539 
xadc_axi_get_dclk(struct xadc * xadc)540 static unsigned long xadc_axi_get_dclk(struct xadc *xadc)
541 {
542 	return clk_get_rate(xadc->clk);
543 }
544 
545 static const struct xadc_ops xadc_axi_ops = {
546 	.read = xadc_axi_read_adc_reg,
547 	.write = xadc_axi_write_adc_reg,
548 	.setup = xadc_axi_setup,
549 	.get_dclk_rate = xadc_axi_get_dclk,
550 	.update_alarm = xadc_axi_update_alarm,
551 	.interrupt_handler = xadc_axi_interrupt_handler,
552 	.flags = XADC_FLAGS_BUFFERED,
553 };
554 
_xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)555 static int _xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
556 	uint16_t mask, uint16_t val)
557 {
558 	uint16_t tmp;
559 	int ret;
560 
561 	ret = _xadc_read_adc_reg(xadc, reg, &tmp);
562 	if (ret)
563 		return ret;
564 
565 	return _xadc_write_adc_reg(xadc, reg, (tmp & ~mask) | val);
566 }
567 
xadc_update_adc_reg(struct xadc * xadc,unsigned int reg,uint16_t mask,uint16_t val)568 static int xadc_update_adc_reg(struct xadc *xadc, unsigned int reg,
569 	uint16_t mask, uint16_t val)
570 {
571 	int ret;
572 
573 	mutex_lock(&xadc->mutex);
574 	ret = _xadc_update_adc_reg(xadc, reg, mask, val);
575 	mutex_unlock(&xadc->mutex);
576 
577 	return ret;
578 }
579 
xadc_get_dclk_rate(struct xadc * xadc)580 static unsigned long xadc_get_dclk_rate(struct xadc *xadc)
581 {
582 	return xadc->ops->get_dclk_rate(xadc);
583 }
584 
xadc_update_scan_mode(struct iio_dev * indio_dev,const unsigned long * mask)585 static int xadc_update_scan_mode(struct iio_dev *indio_dev,
586 	const unsigned long *mask)
587 {
588 	struct xadc *xadc = iio_priv(indio_dev);
589 	size_t new_size, n;
590 	void *data;
591 
592 	n = bitmap_weight(mask, indio_dev->masklength);
593 
594 	if (check_mul_overflow(n, sizeof(*xadc->data), &new_size))
595 		return -ENOMEM;
596 
597 	data = devm_krealloc(indio_dev->dev.parent, xadc->data,
598 			     new_size, GFP_KERNEL);
599 	if (!data)
600 		return -ENOMEM;
601 
602 	memset(data, 0, new_size);
603 	xadc->data = data;
604 
605 	return 0;
606 }
607 
xadc_scan_index_to_channel(unsigned int scan_index)608 static unsigned int xadc_scan_index_to_channel(unsigned int scan_index)
609 {
610 	switch (scan_index) {
611 	case 5:
612 		return XADC_REG_VCCPINT;
613 	case 6:
614 		return XADC_REG_VCCPAUX;
615 	case 7:
616 		return XADC_REG_VCCO_DDR;
617 	case 8:
618 		return XADC_REG_TEMP;
619 	case 9:
620 		return XADC_REG_VCCINT;
621 	case 10:
622 		return XADC_REG_VCCAUX;
623 	case 11:
624 		return XADC_REG_VPVN;
625 	case 12:
626 		return XADC_REG_VREFP;
627 	case 13:
628 		return XADC_REG_VREFN;
629 	case 14:
630 		return XADC_REG_VCCBRAM;
631 	default:
632 		return XADC_REG_VAUX(scan_index - 16);
633 	}
634 }
635 
xadc_trigger_handler(int irq,void * p)636 static irqreturn_t xadc_trigger_handler(int irq, void *p)
637 {
638 	struct iio_poll_func *pf = p;
639 	struct iio_dev *indio_dev = pf->indio_dev;
640 	struct xadc *xadc = iio_priv(indio_dev);
641 	unsigned int chan;
642 	int i, j;
643 
644 	if (!xadc->data)
645 		goto out;
646 
647 	j = 0;
648 	for_each_set_bit(i, indio_dev->active_scan_mask,
649 		indio_dev->masklength) {
650 		chan = xadc_scan_index_to_channel(i);
651 		xadc_read_adc_reg(xadc, chan, &xadc->data[j]);
652 		j++;
653 	}
654 
655 	iio_push_to_buffers(indio_dev, xadc->data);
656 
657 out:
658 	iio_trigger_notify_done(indio_dev->trig);
659 
660 	return IRQ_HANDLED;
661 }
662 
xadc_trigger_set_state(struct iio_trigger * trigger,bool state)663 static int xadc_trigger_set_state(struct iio_trigger *trigger, bool state)
664 {
665 	struct xadc *xadc = iio_trigger_get_drvdata(trigger);
666 	unsigned long flags;
667 	unsigned int convst;
668 	unsigned int val;
669 	int ret = 0;
670 
671 	mutex_lock(&xadc->mutex);
672 
673 	if (state) {
674 		/* Only one of the two triggers can be active at a time. */
675 		if (xadc->trigger != NULL) {
676 			ret = -EBUSY;
677 			goto err_out;
678 		} else {
679 			xadc->trigger = trigger;
680 			if (trigger == xadc->convst_trigger)
681 				convst = XADC_CONF0_EC;
682 			else
683 				convst = 0;
684 		}
685 		ret = _xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF0_EC,
686 					convst);
687 		if (ret)
688 			goto err_out;
689 	} else {
690 		xadc->trigger = NULL;
691 	}
692 
693 	spin_lock_irqsave(&xadc->lock, flags);
694 	xadc_read_reg(xadc, XADC_AXI_REG_IPIER, &val);
695 	xadc_write_reg(xadc, XADC_AXI_REG_IPISR, XADC_AXI_INT_EOS);
696 	if (state)
697 		val |= XADC_AXI_INT_EOS;
698 	else
699 		val &= ~XADC_AXI_INT_EOS;
700 	xadc_write_reg(xadc, XADC_AXI_REG_IPIER, val);
701 	spin_unlock_irqrestore(&xadc->lock, flags);
702 
703 err_out:
704 	mutex_unlock(&xadc->mutex);
705 
706 	return ret;
707 }
708 
709 static const struct iio_trigger_ops xadc_trigger_ops = {
710 	.set_trigger_state = &xadc_trigger_set_state,
711 };
712 
xadc_alloc_trigger(struct iio_dev * indio_dev,const char * name)713 static struct iio_trigger *xadc_alloc_trigger(struct iio_dev *indio_dev,
714 	const char *name)
715 {
716 	struct device *dev = indio_dev->dev.parent;
717 	struct iio_trigger *trig;
718 	int ret;
719 
720 	trig = devm_iio_trigger_alloc(dev, "%s%d-%s", indio_dev->name,
721 				      indio_dev->id, name);
722 	if (trig == NULL)
723 		return ERR_PTR(-ENOMEM);
724 
725 	trig->dev.parent = indio_dev->dev.parent;
726 	trig->ops = &xadc_trigger_ops;
727 	iio_trigger_set_drvdata(trig, iio_priv(indio_dev));
728 
729 	ret = devm_iio_trigger_register(dev, trig);
730 	if (ret)
731 		return ERR_PTR(ret);
732 
733 	return trig;
734 }
735 
xadc_power_adc_b(struct xadc * xadc,unsigned int seq_mode)736 static int xadc_power_adc_b(struct xadc *xadc, unsigned int seq_mode)
737 {
738 	uint16_t val;
739 
740 	/* Powerdown the ADC-B when it is not needed. */
741 	switch (seq_mode) {
742 	case XADC_CONF1_SEQ_SIMULTANEOUS:
743 	case XADC_CONF1_SEQ_INDEPENDENT:
744 		val = 0;
745 		break;
746 	default:
747 		val = XADC_CONF2_PD_ADC_B;
748 		break;
749 	}
750 
751 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_PD_MASK,
752 		val);
753 }
754 
xadc_get_seq_mode(struct xadc * xadc,unsigned long scan_mode)755 static int xadc_get_seq_mode(struct xadc *xadc, unsigned long scan_mode)
756 {
757 	unsigned int aux_scan_mode = scan_mode >> 16;
758 
759 	if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_DUAL)
760 		return XADC_CONF1_SEQ_SIMULTANEOUS;
761 
762 	if ((aux_scan_mode & 0xff00) == 0 ||
763 		(aux_scan_mode & 0x00ff) == 0)
764 		return XADC_CONF1_SEQ_CONTINUOUS;
765 
766 	return XADC_CONF1_SEQ_SIMULTANEOUS;
767 }
768 
xadc_postdisable(struct iio_dev * indio_dev)769 static int xadc_postdisable(struct iio_dev *indio_dev)
770 {
771 	struct xadc *xadc = iio_priv(indio_dev);
772 	unsigned long scan_mask;
773 	int ret;
774 	int i;
775 
776 	scan_mask = 1; /* Run calibration as part of the sequence */
777 	for (i = 0; i < indio_dev->num_channels; i++)
778 		scan_mask |= BIT(indio_dev->channels[i].scan_index);
779 
780 	/* Enable all channels and calibration */
781 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
782 	if (ret)
783 		return ret;
784 
785 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
786 	if (ret)
787 		return ret;
788 
789 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
790 		XADC_CONF1_SEQ_CONTINUOUS);
791 	if (ret)
792 		return ret;
793 
794 	return xadc_power_adc_b(xadc, XADC_CONF1_SEQ_CONTINUOUS);
795 }
796 
xadc_preenable(struct iio_dev * indio_dev)797 static int xadc_preenable(struct iio_dev *indio_dev)
798 {
799 	struct xadc *xadc = iio_priv(indio_dev);
800 	unsigned long scan_mask;
801 	int seq_mode;
802 	int ret;
803 
804 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
805 		XADC_CONF1_SEQ_DEFAULT);
806 	if (ret)
807 		goto err;
808 
809 	scan_mask = *indio_dev->active_scan_mask;
810 	seq_mode = xadc_get_seq_mode(xadc, scan_mask);
811 
812 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(0), scan_mask & 0xffff);
813 	if (ret)
814 		goto err;
815 
816 	/*
817 	 * In simultaneous mode the upper and lower aux channels are samples at
818 	 * the same time. In this mode the upper 8 bits in the sequencer
819 	 * register are don't care and the lower 8 bits control two channels
820 	 * each. As such we must set the bit if either the channel in the lower
821 	 * group or the upper group is enabled.
822 	 */
823 	if (seq_mode == XADC_CONF1_SEQ_SIMULTANEOUS)
824 		scan_mask = ((scan_mask >> 8) | scan_mask) & 0xff0000;
825 
826 	ret = xadc_write_adc_reg(xadc, XADC_REG_SEQ(1), scan_mask >> 16);
827 	if (ret)
828 		goto err;
829 
830 	ret = xadc_power_adc_b(xadc, seq_mode);
831 	if (ret)
832 		goto err;
833 
834 	ret = xadc_update_adc_reg(xadc, XADC_REG_CONF1, XADC_CONF1_SEQ_MASK,
835 		seq_mode);
836 	if (ret)
837 		goto err;
838 
839 	return 0;
840 err:
841 	xadc_postdisable(indio_dev);
842 	return ret;
843 }
844 
845 static const struct iio_buffer_setup_ops xadc_buffer_ops = {
846 	.preenable = &xadc_preenable,
847 	.postdisable = &xadc_postdisable,
848 };
849 
xadc_read_samplerate(struct xadc * xadc)850 static int xadc_read_samplerate(struct xadc *xadc)
851 {
852 	unsigned int div;
853 	uint16_t val16;
854 	int ret;
855 
856 	ret = xadc_read_adc_reg(xadc, XADC_REG_CONF2, &val16);
857 	if (ret)
858 		return ret;
859 
860 	div = (val16 & XADC_CONF2_DIV_MASK) >> XADC_CONF2_DIV_OFFSET;
861 	if (div < 2)
862 		div = 2;
863 
864 	return xadc_get_dclk_rate(xadc) / div / 26;
865 }
866 
xadc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long info)867 static int xadc_read_raw(struct iio_dev *indio_dev,
868 	struct iio_chan_spec const *chan, int *val, int *val2, long info)
869 {
870 	struct xadc *xadc = iio_priv(indio_dev);
871 	uint16_t val16;
872 	int ret;
873 
874 	switch (info) {
875 	case IIO_CHAN_INFO_RAW:
876 		if (iio_buffer_enabled(indio_dev))
877 			return -EBUSY;
878 		ret = xadc_read_adc_reg(xadc, chan->address, &val16);
879 		if (ret < 0)
880 			return ret;
881 
882 		val16 >>= 4;
883 		if (chan->scan_type.sign == 'u')
884 			*val = val16;
885 		else
886 			*val = sign_extend32(val16, 11);
887 
888 		return IIO_VAL_INT;
889 	case IIO_CHAN_INFO_SCALE:
890 		switch (chan->type) {
891 		case IIO_VOLTAGE:
892 			/* V = (val * 3.0) / 4096 */
893 			switch (chan->address) {
894 			case XADC_REG_VCCINT:
895 			case XADC_REG_VCCAUX:
896 			case XADC_REG_VREFP:
897 			case XADC_REG_VREFN:
898 			case XADC_REG_VCCBRAM:
899 			case XADC_REG_VCCPINT:
900 			case XADC_REG_VCCPAUX:
901 			case XADC_REG_VCCO_DDR:
902 				*val = 3000;
903 				break;
904 			default:
905 				*val = 1000;
906 				break;
907 			}
908 			*val2 = 12;
909 			return IIO_VAL_FRACTIONAL_LOG2;
910 		case IIO_TEMP:
911 			/* Temp in C = (val * 503.975) / 4096 - 273.15 */
912 			*val = 503975;
913 			*val2 = 12;
914 			return IIO_VAL_FRACTIONAL_LOG2;
915 		default:
916 			return -EINVAL;
917 		}
918 	case IIO_CHAN_INFO_OFFSET:
919 		/* Only the temperature channel has an offset */
920 		*val = -((273150 << 12) / 503975);
921 		return IIO_VAL_INT;
922 	case IIO_CHAN_INFO_SAMP_FREQ:
923 		ret = xadc_read_samplerate(xadc);
924 		if (ret < 0)
925 			return ret;
926 
927 		*val = ret;
928 		return IIO_VAL_INT;
929 	default:
930 		return -EINVAL;
931 	}
932 }
933 
xadc_write_samplerate(struct xadc * xadc,int val)934 static int xadc_write_samplerate(struct xadc *xadc, int val)
935 {
936 	unsigned long clk_rate = xadc_get_dclk_rate(xadc);
937 	unsigned int div;
938 
939 	if (!clk_rate)
940 		return -EINVAL;
941 
942 	if (val <= 0)
943 		return -EINVAL;
944 
945 	/* Max. 150 kSPS */
946 	if (val > XADC_MAX_SAMPLERATE)
947 		val = XADC_MAX_SAMPLERATE;
948 
949 	val *= 26;
950 
951 	/* Min 1MHz */
952 	if (val < 1000000)
953 		val = 1000000;
954 
955 	/*
956 	 * We want to round down, but only if we do not exceed the 150 kSPS
957 	 * limit.
958 	 */
959 	div = clk_rate / val;
960 	if (clk_rate / div / 26 > XADC_MAX_SAMPLERATE)
961 		div++;
962 	if (div < 2)
963 		div = 2;
964 	else if (div > 0xff)
965 		div = 0xff;
966 
967 	return xadc_update_adc_reg(xadc, XADC_REG_CONF2, XADC_CONF2_DIV_MASK,
968 		div << XADC_CONF2_DIV_OFFSET);
969 }
970 
xadc_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long info)971 static int xadc_write_raw(struct iio_dev *indio_dev,
972 	struct iio_chan_spec const *chan, int val, int val2, long info)
973 {
974 	struct xadc *xadc = iio_priv(indio_dev);
975 
976 	if (info != IIO_CHAN_INFO_SAMP_FREQ)
977 		return -EINVAL;
978 
979 	return xadc_write_samplerate(xadc, val);
980 }
981 
982 static const struct iio_event_spec xadc_temp_events[] = {
983 	{
984 		.type = IIO_EV_TYPE_THRESH,
985 		.dir = IIO_EV_DIR_RISING,
986 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
987 				BIT(IIO_EV_INFO_VALUE) |
988 				BIT(IIO_EV_INFO_HYSTERESIS),
989 	},
990 };
991 
992 /* Separate values for upper and lower thresholds, but only a shared enabled */
993 static const struct iio_event_spec xadc_voltage_events[] = {
994 	{
995 		.type = IIO_EV_TYPE_THRESH,
996 		.dir = IIO_EV_DIR_RISING,
997 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
998 	}, {
999 		.type = IIO_EV_TYPE_THRESH,
1000 		.dir = IIO_EV_DIR_FALLING,
1001 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
1002 	}, {
1003 		.type = IIO_EV_TYPE_THRESH,
1004 		.dir = IIO_EV_DIR_EITHER,
1005 		.mask_separate = BIT(IIO_EV_INFO_ENABLE),
1006 	},
1007 };
1008 
1009 #define XADC_CHAN_TEMP(_chan, _scan_index, _addr) { \
1010 	.type = IIO_TEMP, \
1011 	.indexed = 1, \
1012 	.channel = (_chan), \
1013 	.address = (_addr), \
1014 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1015 		BIT(IIO_CHAN_INFO_SCALE) | \
1016 		BIT(IIO_CHAN_INFO_OFFSET), \
1017 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1018 	.event_spec = xadc_temp_events, \
1019 	.num_event_specs = ARRAY_SIZE(xadc_temp_events), \
1020 	.scan_index = (_scan_index), \
1021 	.scan_type = { \
1022 		.sign = 'u', \
1023 		.realbits = 12, \
1024 		.storagebits = 16, \
1025 		.shift = 4, \
1026 		.endianness = IIO_CPU, \
1027 	}, \
1028 }
1029 
1030 #define XADC_CHAN_VOLTAGE(_chan, _scan_index, _addr, _ext, _alarm) { \
1031 	.type = IIO_VOLTAGE, \
1032 	.indexed = 1, \
1033 	.channel = (_chan), \
1034 	.address = (_addr), \
1035 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
1036 		BIT(IIO_CHAN_INFO_SCALE), \
1037 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \
1038 	.event_spec = (_alarm) ? xadc_voltage_events : NULL, \
1039 	.num_event_specs = (_alarm) ? ARRAY_SIZE(xadc_voltage_events) : 0, \
1040 	.scan_index = (_scan_index), \
1041 	.scan_type = { \
1042 		.sign = ((_addr) == XADC_REG_VREFN) ? 's' : 'u', \
1043 		.realbits = 12, \
1044 		.storagebits = 16, \
1045 		.shift = 4, \
1046 		.endianness = IIO_CPU, \
1047 	}, \
1048 	.extend_name = _ext, \
1049 }
1050 
1051 static const struct iio_chan_spec xadc_channels[] = {
1052 	XADC_CHAN_TEMP(0, 8, XADC_REG_TEMP),
1053 	XADC_CHAN_VOLTAGE(0, 9, XADC_REG_VCCINT, "vccint", true),
1054 	XADC_CHAN_VOLTAGE(1, 10, XADC_REG_VCCAUX, "vccaux", true),
1055 	XADC_CHAN_VOLTAGE(2, 14, XADC_REG_VCCBRAM, "vccbram", true),
1056 	XADC_CHAN_VOLTAGE(3, 5, XADC_REG_VCCPINT, "vccpint", true),
1057 	XADC_CHAN_VOLTAGE(4, 6, XADC_REG_VCCPAUX, "vccpaux", true),
1058 	XADC_CHAN_VOLTAGE(5, 7, XADC_REG_VCCO_DDR, "vccoddr", true),
1059 	XADC_CHAN_VOLTAGE(6, 12, XADC_REG_VREFP, "vrefp", false),
1060 	XADC_CHAN_VOLTAGE(7, 13, XADC_REG_VREFN, "vrefn", false),
1061 	XADC_CHAN_VOLTAGE(8, 11, XADC_REG_VPVN, NULL, false),
1062 	XADC_CHAN_VOLTAGE(9, 16, XADC_REG_VAUX(0), NULL, false),
1063 	XADC_CHAN_VOLTAGE(10, 17, XADC_REG_VAUX(1), NULL, false),
1064 	XADC_CHAN_VOLTAGE(11, 18, XADC_REG_VAUX(2), NULL, false),
1065 	XADC_CHAN_VOLTAGE(12, 19, XADC_REG_VAUX(3), NULL, false),
1066 	XADC_CHAN_VOLTAGE(13, 20, XADC_REG_VAUX(4), NULL, false),
1067 	XADC_CHAN_VOLTAGE(14, 21, XADC_REG_VAUX(5), NULL, false),
1068 	XADC_CHAN_VOLTAGE(15, 22, XADC_REG_VAUX(6), NULL, false),
1069 	XADC_CHAN_VOLTAGE(16, 23, XADC_REG_VAUX(7), NULL, false),
1070 	XADC_CHAN_VOLTAGE(17, 24, XADC_REG_VAUX(8), NULL, false),
1071 	XADC_CHAN_VOLTAGE(18, 25, XADC_REG_VAUX(9), NULL, false),
1072 	XADC_CHAN_VOLTAGE(19, 26, XADC_REG_VAUX(10), NULL, false),
1073 	XADC_CHAN_VOLTAGE(20, 27, XADC_REG_VAUX(11), NULL, false),
1074 	XADC_CHAN_VOLTAGE(21, 28, XADC_REG_VAUX(12), NULL, false),
1075 	XADC_CHAN_VOLTAGE(22, 29, XADC_REG_VAUX(13), NULL, false),
1076 	XADC_CHAN_VOLTAGE(23, 30, XADC_REG_VAUX(14), NULL, false),
1077 	XADC_CHAN_VOLTAGE(24, 31, XADC_REG_VAUX(15), NULL, false),
1078 };
1079 
1080 static const struct iio_info xadc_info = {
1081 	.read_raw = &xadc_read_raw,
1082 	.write_raw = &xadc_write_raw,
1083 	.read_event_config = &xadc_read_event_config,
1084 	.write_event_config = &xadc_write_event_config,
1085 	.read_event_value = &xadc_read_event_value,
1086 	.write_event_value = &xadc_write_event_value,
1087 	.update_scan_mode = &xadc_update_scan_mode,
1088 };
1089 
1090 static const struct of_device_id xadc_of_match_table[] = {
1091 	{ .compatible = "xlnx,zynq-xadc-1.00.a", (void *)&xadc_zynq_ops },
1092 	{ .compatible = "xlnx,axi-xadc-1.00.a", (void *)&xadc_axi_ops },
1093 	{ },
1094 };
1095 MODULE_DEVICE_TABLE(of, xadc_of_match_table);
1096 
xadc_parse_dt(struct iio_dev * indio_dev,struct device_node * np,unsigned int * conf)1097 static int xadc_parse_dt(struct iio_dev *indio_dev, struct device_node *np,
1098 	unsigned int *conf)
1099 {
1100 	struct device *dev = indio_dev->dev.parent;
1101 	struct xadc *xadc = iio_priv(indio_dev);
1102 	struct iio_chan_spec *channels, *chan;
1103 	struct device_node *chan_node, *child;
1104 	unsigned int num_channels;
1105 	const char *external_mux;
1106 	u32 ext_mux_chan;
1107 	u32 reg;
1108 	int ret;
1109 
1110 	*conf = 0;
1111 
1112 	ret = of_property_read_string(np, "xlnx,external-mux", &external_mux);
1113 	if (ret < 0 || strcasecmp(external_mux, "none") == 0)
1114 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_NONE;
1115 	else if (strcasecmp(external_mux, "single") == 0)
1116 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_SINGLE;
1117 	else if (strcasecmp(external_mux, "dual") == 0)
1118 		xadc->external_mux_mode = XADC_EXTERNAL_MUX_DUAL;
1119 	else
1120 		return -EINVAL;
1121 
1122 	if (xadc->external_mux_mode != XADC_EXTERNAL_MUX_NONE) {
1123 		ret = of_property_read_u32(np, "xlnx,external-mux-channel",
1124 					&ext_mux_chan);
1125 		if (ret < 0)
1126 			return ret;
1127 
1128 		if (xadc->external_mux_mode == XADC_EXTERNAL_MUX_SINGLE) {
1129 			if (ext_mux_chan == 0)
1130 				ext_mux_chan = XADC_REG_VPVN;
1131 			else if (ext_mux_chan <= 16)
1132 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1133 			else
1134 				return -EINVAL;
1135 		} else {
1136 			if (ext_mux_chan > 0 && ext_mux_chan <= 8)
1137 				ext_mux_chan = XADC_REG_VAUX(ext_mux_chan - 1);
1138 			else
1139 				return -EINVAL;
1140 		}
1141 
1142 		*conf |= XADC_CONF0_MUX | XADC_CONF0_CHAN(ext_mux_chan);
1143 	}
1144 
1145 	channels = devm_kmemdup(dev, xadc_channels,
1146 				sizeof(xadc_channels), GFP_KERNEL);
1147 	if (!channels)
1148 		return -ENOMEM;
1149 
1150 	num_channels = 9;
1151 	chan = &channels[9];
1152 
1153 	chan_node = of_get_child_by_name(np, "xlnx,channels");
1154 	if (chan_node) {
1155 		for_each_child_of_node(chan_node, child) {
1156 			if (num_channels >= ARRAY_SIZE(xadc_channels)) {
1157 				of_node_put(child);
1158 				break;
1159 			}
1160 
1161 			ret = of_property_read_u32(child, "reg", &reg);
1162 			if (ret || reg > 16)
1163 				continue;
1164 
1165 			if (of_property_read_bool(child, "xlnx,bipolar"))
1166 				chan->scan_type.sign = 's';
1167 
1168 			if (reg == 0) {
1169 				chan->scan_index = 11;
1170 				chan->address = XADC_REG_VPVN;
1171 			} else {
1172 				chan->scan_index = 15 + reg;
1173 				chan->address = XADC_REG_VAUX(reg - 1);
1174 			}
1175 			num_channels++;
1176 			chan++;
1177 		}
1178 	}
1179 	of_node_put(chan_node);
1180 
1181 	indio_dev->num_channels = num_channels;
1182 	indio_dev->channels = devm_krealloc(dev, channels,
1183 					    sizeof(*channels) * num_channels,
1184 					    GFP_KERNEL);
1185 	/* If we can't resize the channels array, just use the original */
1186 	if (!indio_dev->channels)
1187 		indio_dev->channels = channels;
1188 
1189 	return 0;
1190 }
1191 
xadc_clk_disable_unprepare(void * data)1192 static void xadc_clk_disable_unprepare(void *data)
1193 {
1194 	struct clk *clk = data;
1195 
1196 	clk_disable_unprepare(clk);
1197 }
1198 
xadc_cancel_delayed_work(void * data)1199 static void xadc_cancel_delayed_work(void *data)
1200 {
1201 	struct delayed_work *work = data;
1202 
1203 	cancel_delayed_work_sync(work);
1204 }
1205 
xadc_probe(struct platform_device * pdev)1206 static int xadc_probe(struct platform_device *pdev)
1207 {
1208 	struct device *dev = &pdev->dev;
1209 	const struct of_device_id *id;
1210 	struct iio_dev *indio_dev;
1211 	unsigned int bipolar_mask;
1212 	unsigned int conf0;
1213 	struct xadc *xadc;
1214 	int ret;
1215 	int irq;
1216 	int i;
1217 
1218 	if (!dev->of_node)
1219 		return -ENODEV;
1220 
1221 	id = of_match_node(xadc_of_match_table, dev->of_node);
1222 	if (!id)
1223 		return -EINVAL;
1224 
1225 	irq = platform_get_irq(pdev, 0);
1226 	if (irq <= 0)
1227 		return -ENXIO;
1228 
1229 	indio_dev = devm_iio_device_alloc(dev, sizeof(*xadc));
1230 	if (!indio_dev)
1231 		return -ENOMEM;
1232 
1233 	xadc = iio_priv(indio_dev);
1234 	xadc->ops = id->data;
1235 	xadc->irq = irq;
1236 	init_completion(&xadc->completion);
1237 	mutex_init(&xadc->mutex);
1238 	spin_lock_init(&xadc->lock);
1239 	INIT_DELAYED_WORK(&xadc->zynq_unmask_work, xadc_zynq_unmask_worker);
1240 
1241 	xadc->base = devm_platform_ioremap_resource(pdev, 0);
1242 	if (IS_ERR(xadc->base))
1243 		return PTR_ERR(xadc->base);
1244 
1245 	indio_dev->name = "xadc";
1246 	indio_dev->modes = INDIO_DIRECT_MODE;
1247 	indio_dev->info = &xadc_info;
1248 
1249 	ret = xadc_parse_dt(indio_dev, dev->of_node, &conf0);
1250 	if (ret)
1251 		return ret;
1252 
1253 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1254 		ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
1255 						      &iio_pollfunc_store_time,
1256 						      &xadc_trigger_handler,
1257 						      &xadc_buffer_ops);
1258 		if (ret)
1259 			return ret;
1260 
1261 		xadc->convst_trigger = xadc_alloc_trigger(indio_dev, "convst");
1262 		if (IS_ERR(xadc->convst_trigger))
1263 			return PTR_ERR(xadc->convst_trigger);
1264 
1265 		xadc->samplerate_trigger = xadc_alloc_trigger(indio_dev,
1266 			"samplerate");
1267 		if (IS_ERR(xadc->samplerate_trigger))
1268 			return PTR_ERR(xadc->samplerate_trigger);
1269 	}
1270 
1271 	xadc->clk = devm_clk_get(dev, NULL);
1272 	if (IS_ERR(xadc->clk))
1273 		return PTR_ERR(xadc->clk);
1274 
1275 	ret = clk_prepare_enable(xadc->clk);
1276 	if (ret)
1277 		return ret;
1278 
1279 	ret = devm_add_action_or_reset(dev,
1280 				       xadc_clk_disable_unprepare, xadc->clk);
1281 	if (ret)
1282 		return ret;
1283 
1284 	/*
1285 	 * Make sure not to exceed the maximum samplerate since otherwise the
1286 	 * resulting interrupt storm will soft-lock the system.
1287 	 */
1288 	if (xadc->ops->flags & XADC_FLAGS_BUFFERED) {
1289 		ret = xadc_read_samplerate(xadc);
1290 		if (ret < 0)
1291 			return ret;
1292 
1293 		if (ret > XADC_MAX_SAMPLERATE) {
1294 			ret = xadc_write_samplerate(xadc, XADC_MAX_SAMPLERATE);
1295 			if (ret < 0)
1296 				return ret;
1297 		}
1298 	}
1299 
1300 	ret = devm_request_irq(dev, xadc->irq, xadc->ops->interrupt_handler, 0,
1301 			       dev_name(dev), indio_dev);
1302 	if (ret)
1303 		return ret;
1304 
1305 	ret = devm_add_action_or_reset(dev, xadc_cancel_delayed_work,
1306 				       &xadc->zynq_unmask_work);
1307 	if (ret)
1308 		return ret;
1309 
1310 	ret = xadc->ops->setup(pdev, indio_dev, xadc->irq);
1311 	if (ret)
1312 		return ret;
1313 
1314 	for (i = 0; i < 16; i++)
1315 		xadc_read_adc_reg(xadc, XADC_REG_THRESHOLD(i),
1316 			&xadc->threshold[i]);
1317 
1318 	ret = xadc_write_adc_reg(xadc, XADC_REG_CONF0, conf0);
1319 	if (ret)
1320 		return ret;
1321 
1322 	bipolar_mask = 0;
1323 	for (i = 0; i < indio_dev->num_channels; i++) {
1324 		if (indio_dev->channels[i].scan_type.sign == 's')
1325 			bipolar_mask |= BIT(indio_dev->channels[i].scan_index);
1326 	}
1327 
1328 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(0), bipolar_mask);
1329 	if (ret)
1330 		return ret;
1331 
1332 	ret = xadc_write_adc_reg(xadc, XADC_REG_INPUT_MODE(1),
1333 		bipolar_mask >> 16);
1334 	if (ret)
1335 		return ret;
1336 
1337 	/* Go to non-buffered mode */
1338 	xadc_postdisable(indio_dev);
1339 
1340 	return devm_iio_device_register(dev, indio_dev);
1341 }
1342 
1343 static struct platform_driver xadc_driver = {
1344 	.probe = xadc_probe,
1345 	.driver = {
1346 		.name = "xadc",
1347 		.of_match_table = xadc_of_match_table,
1348 	},
1349 };
1350 module_platform_driver(xadc_driver);
1351 
1352 MODULE_LICENSE("GPL v2");
1353 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1354 MODULE_DESCRIPTION("Xilinx XADC IIO driver");
1355