• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	void __iomem		*sgir_base;
100 	phys_addr_t		phys_base;
101 	struct its_cmd_block	*cmd_base;
102 	struct its_cmd_block	*cmd_write;
103 	struct its_baser	tables[GITS_BASER_NR_REGS];
104 	struct its_collection	*collections;
105 	struct fwnode_handle	*fwnode_handle;
106 	u64			(*get_msi_base)(struct its_device *its_dev);
107 	u64			typer;
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	u32			mpidr;
111 	struct list_head	its_device_list;
112 	u64			flags;
113 	unsigned long		list_nr;
114 	int			numa_node;
115 	unsigned int		msi_domain_flags;
116 	u32			pre_its_base; /* for Socionext Synquacer */
117 	int			vlpi_redist_offset;
118 };
119 
120 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123 
124 #define ITS_ITT_ALIGN		SZ_256
125 
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS						\
128 	({								\
129 		int nvpeid = 16;					\
130 		if (gic_rdists->has_rvpeid &&				\
131 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
132 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
133 				      GICD_TYPER2_VID);			\
134 									\
135 		nvpeid;							\
136 	})
137 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
138 
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
141 
142 struct event_lpi_map {
143 	unsigned long		*lpi_map;
144 	u16			*col_map;
145 	irq_hw_number_t		lpi_base;
146 	int			nr_lpis;
147 	raw_spinlock_t		vlpi_lock;
148 	struct its_vm		*vm;
149 	struct its_vlpi_map	*vlpi_maps;
150 	int			nr_vlpis;
151 };
152 
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160 	struct list_head	entry;
161 	struct its_node		*its;
162 	struct event_lpi_map	event_map;
163 	void			*itt;
164 	u32			nr_ites;
165 	u32			device_id;
166 	bool			shared;
167 };
168 
169 static struct {
170 	raw_spinlock_t		lock;
171 	struct its_device	*dev;
172 	struct its_vpe		**vpes;
173 	int			next_victim;
174 } vpe_proxy;
175 
176 struct cpu_lpi_count {
177 	atomic_t	managed;
178 	atomic_t	unmanaged;
179 };
180 
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182 
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187 
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191 
192 static DEFINE_IDA(its_vpeid_ida);
193 
194 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
198 
199 /*
200  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201  * always have vSGIs mapped.
202  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207 
get_its_list(struct its_vm * vm)208 static u16 get_its_list(struct its_vm *vm)
209 {
210 	struct its_node *its;
211 	unsigned long its_list = 0;
212 
213 	list_for_each_entry(its, &its_nodes, entry) {
214 		if (!is_v4(its))
215 			continue;
216 
217 		if (require_its_list_vmovp(vm, its))
218 			__set_bit(its->list_nr, &its_list);
219 	}
220 
221 	return (u16)its_list;
222 }
223 
its_get_event_id(struct irq_data * d)224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 	return d->hwirq - its_dev->event_map.lpi_base;
228 }
229 
dev_event_to_col(struct its_device * its_dev,u32 event)230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 					       u32 event)
232 {
233 	struct its_node *its = its_dev->its;
234 
235 	return its->collections + its_dev->event_map.col_map[event];
236 }
237 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 					       u32 event)
240 {
241 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 		return NULL;
243 
244 	return &its_dev->event_map.vlpi_maps[event];
245 }
246 
get_vlpi_map(struct irq_data * d)247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 	if (irqd_is_forwarded_to_vcpu(d)) {
250 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 		u32 event = its_get_event_id(d);
252 
253 		return dev_event_to_vlpi_map(its_dev, event);
254 	}
255 
256 	return NULL;
257 }
258 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 	return vpe->col_idx;
263 }
264 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269 
270 static struct irq_chip its_vpe_irq_chip;
271 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)272 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
273 {
274 	struct its_vpe *vpe = NULL;
275 	int cpu;
276 
277 	if (d->chip == &its_vpe_irq_chip) {
278 		vpe = irq_data_get_irq_chip_data(d);
279 	} else {
280 		struct its_vlpi_map *map = get_vlpi_map(d);
281 		if (map)
282 			vpe = map->vpe;
283 	}
284 
285 	if (vpe) {
286 		cpu = vpe_to_cpuid_lock(vpe, flags);
287 	} else {
288 		/* Physical LPIs are already locked via the irq_desc lock */
289 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
290 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
291 		/* Keep GCC quiet... */
292 		*flags = 0;
293 	}
294 
295 	return cpu;
296 }
297 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)298 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
299 {
300 	struct its_vpe *vpe = NULL;
301 
302 	if (d->chip == &its_vpe_irq_chip) {
303 		vpe = irq_data_get_irq_chip_data(d);
304 	} else {
305 		struct its_vlpi_map *map = get_vlpi_map(d);
306 		if (map)
307 			vpe = map->vpe;
308 	}
309 
310 	if (vpe)
311 		vpe_to_cpuid_unlock(vpe, flags);
312 }
313 
valid_col(struct its_collection * col)314 static struct its_collection *valid_col(struct its_collection *col)
315 {
316 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
317 		return NULL;
318 
319 	return col;
320 }
321 
valid_vpe(struct its_node * its,struct its_vpe * vpe)322 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
323 {
324 	if (valid_col(its->collections + vpe->col_idx))
325 		return vpe;
326 
327 	return NULL;
328 }
329 
330 /*
331  * ITS command descriptors - parameters to be encoded in a command
332  * block.
333  */
334 struct its_cmd_desc {
335 	union {
336 		struct {
337 			struct its_device *dev;
338 			u32 event_id;
339 		} its_inv_cmd;
340 
341 		struct {
342 			struct its_device *dev;
343 			u32 event_id;
344 		} its_clear_cmd;
345 
346 		struct {
347 			struct its_device *dev;
348 			u32 event_id;
349 		} its_int_cmd;
350 
351 		struct {
352 			struct its_device *dev;
353 			int valid;
354 		} its_mapd_cmd;
355 
356 		struct {
357 			struct its_collection *col;
358 			int valid;
359 		} its_mapc_cmd;
360 
361 		struct {
362 			struct its_device *dev;
363 			u32 phys_id;
364 			u32 event_id;
365 		} its_mapti_cmd;
366 
367 		struct {
368 			struct its_device *dev;
369 			struct its_collection *col;
370 			u32 event_id;
371 		} its_movi_cmd;
372 
373 		struct {
374 			struct its_device *dev;
375 			u32 event_id;
376 		} its_discard_cmd;
377 
378 		struct {
379 			struct its_collection *col;
380 		} its_invall_cmd;
381 
382 		struct {
383 			struct its_vpe *vpe;
384 		} its_vinvall_cmd;
385 
386 		struct {
387 			struct its_vpe *vpe;
388 			struct its_collection *col;
389 			bool valid;
390 		} its_vmapp_cmd;
391 
392 		struct {
393 			struct its_vpe *vpe;
394 			struct its_device *dev;
395 			u32 virt_id;
396 			u32 event_id;
397 			bool db_enabled;
398 		} its_vmapti_cmd;
399 
400 		struct {
401 			struct its_vpe *vpe;
402 			struct its_device *dev;
403 			u32 event_id;
404 			bool db_enabled;
405 		} its_vmovi_cmd;
406 
407 		struct {
408 			struct its_vpe *vpe;
409 			struct its_collection *col;
410 			u16 seq_num;
411 			u16 its_list;
412 		} its_vmovp_cmd;
413 
414 		struct {
415 			struct its_vpe *vpe;
416 		} its_invdb_cmd;
417 
418 		struct {
419 			struct its_vpe *vpe;
420 			u8 sgi;
421 			u8 priority;
422 			bool enable;
423 			bool group;
424 			bool clear;
425 		} its_vsgi_cmd;
426 	};
427 };
428 
429 /*
430  * The ITS command block, which is what the ITS actually parses.
431  */
432 struct its_cmd_block {
433 	union {
434 		u64	raw_cmd[4];
435 		__le64	raw_cmd_le[4];
436 	};
437 };
438 
439 #define ITS_CMD_QUEUE_SZ		SZ_64K
440 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
441 
442 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
443 						    struct its_cmd_block *,
444 						    struct its_cmd_desc *);
445 
446 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
447 					      struct its_cmd_block *,
448 					      struct its_cmd_desc *);
449 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)450 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
451 {
452 	u64 mask = GENMASK_ULL(h, l);
453 	*raw_cmd &= ~mask;
454 	*raw_cmd |= (val << l) & mask;
455 }
456 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)457 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
458 {
459 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
460 }
461 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)462 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
463 {
464 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
465 }
466 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)467 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
468 {
469 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
470 }
471 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)472 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
473 {
474 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
475 }
476 
its_encode_size(struct its_cmd_block * cmd,u8 size)477 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
478 {
479 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
480 }
481 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)482 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
483 {
484 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
485 }
486 
its_encode_valid(struct its_cmd_block * cmd,int valid)487 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
488 {
489 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
490 }
491 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)492 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
493 {
494 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
495 }
496 
its_encode_collection(struct its_cmd_block * cmd,u16 col)497 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
498 {
499 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
500 }
501 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)502 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
503 {
504 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
505 }
506 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)507 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
508 {
509 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
510 }
511 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)512 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
513 {
514 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
515 }
516 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)517 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
518 {
519 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
520 }
521 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)522 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
523 {
524 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
525 }
526 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)527 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
528 {
529 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
530 }
531 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)532 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
533 {
534 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
535 }
536 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)537 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
538 {
539 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
540 }
541 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)542 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
543 {
544 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
545 }
546 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)547 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
548 {
549 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
550 }
551 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)552 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
553 {
554 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
555 }
556 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)557 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
558 					u32 vpe_db_lpi)
559 {
560 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
561 }
562 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)563 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
564 					u32 vpe_db_lpi)
565 {
566 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
567 }
568 
its_encode_db(struct its_cmd_block * cmd,bool db)569 static void its_encode_db(struct its_cmd_block *cmd, bool db)
570 {
571 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
572 }
573 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)574 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
575 {
576 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
577 }
578 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)579 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
580 {
581 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
582 }
583 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)584 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
585 {
586 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
587 }
588 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)589 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
590 {
591 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
592 }
593 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)594 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
595 {
596 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
597 }
598 
its_fixup_cmd(struct its_cmd_block * cmd)599 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
600 {
601 	/* Let's fixup BE commands */
602 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
603 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
604 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
605 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
606 }
607 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)608 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
609 						 struct its_cmd_block *cmd,
610 						 struct its_cmd_desc *desc)
611 {
612 	unsigned long itt_addr;
613 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
614 
615 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
616 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
617 
618 	its_encode_cmd(cmd, GITS_CMD_MAPD);
619 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
620 	its_encode_size(cmd, size - 1);
621 	its_encode_itt(cmd, itt_addr);
622 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
623 
624 	its_fixup_cmd(cmd);
625 
626 	return NULL;
627 }
628 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)629 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
630 						 struct its_cmd_block *cmd,
631 						 struct its_cmd_desc *desc)
632 {
633 	its_encode_cmd(cmd, GITS_CMD_MAPC);
634 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
635 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
636 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
637 
638 	its_fixup_cmd(cmd);
639 
640 	return desc->its_mapc_cmd.col;
641 }
642 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)643 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
644 						  struct its_cmd_block *cmd,
645 						  struct its_cmd_desc *desc)
646 {
647 	struct its_collection *col;
648 
649 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
650 			       desc->its_mapti_cmd.event_id);
651 
652 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
653 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
654 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
655 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
656 	its_encode_collection(cmd, col->col_id);
657 
658 	its_fixup_cmd(cmd);
659 
660 	return valid_col(col);
661 }
662 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)663 static struct its_collection *its_build_movi_cmd(struct its_node *its,
664 						 struct its_cmd_block *cmd,
665 						 struct its_cmd_desc *desc)
666 {
667 	struct its_collection *col;
668 
669 	col = dev_event_to_col(desc->its_movi_cmd.dev,
670 			       desc->its_movi_cmd.event_id);
671 
672 	its_encode_cmd(cmd, GITS_CMD_MOVI);
673 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
674 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
675 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
676 
677 	its_fixup_cmd(cmd);
678 
679 	return valid_col(col);
680 }
681 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)682 static struct its_collection *its_build_discard_cmd(struct its_node *its,
683 						    struct its_cmd_block *cmd,
684 						    struct its_cmd_desc *desc)
685 {
686 	struct its_collection *col;
687 
688 	col = dev_event_to_col(desc->its_discard_cmd.dev,
689 			       desc->its_discard_cmd.event_id);
690 
691 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
692 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
693 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
694 
695 	its_fixup_cmd(cmd);
696 
697 	return valid_col(col);
698 }
699 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)700 static struct its_collection *its_build_inv_cmd(struct its_node *its,
701 						struct its_cmd_block *cmd,
702 						struct its_cmd_desc *desc)
703 {
704 	struct its_collection *col;
705 
706 	col = dev_event_to_col(desc->its_inv_cmd.dev,
707 			       desc->its_inv_cmd.event_id);
708 
709 	its_encode_cmd(cmd, GITS_CMD_INV);
710 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
711 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
712 
713 	its_fixup_cmd(cmd);
714 
715 	return valid_col(col);
716 }
717 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)718 static struct its_collection *its_build_int_cmd(struct its_node *its,
719 						struct its_cmd_block *cmd,
720 						struct its_cmd_desc *desc)
721 {
722 	struct its_collection *col;
723 
724 	col = dev_event_to_col(desc->its_int_cmd.dev,
725 			       desc->its_int_cmd.event_id);
726 
727 	its_encode_cmd(cmd, GITS_CMD_INT);
728 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
729 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
730 
731 	its_fixup_cmd(cmd);
732 
733 	return valid_col(col);
734 }
735 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)736 static struct its_collection *its_build_clear_cmd(struct its_node *its,
737 						  struct its_cmd_block *cmd,
738 						  struct its_cmd_desc *desc)
739 {
740 	struct its_collection *col;
741 
742 	col = dev_event_to_col(desc->its_clear_cmd.dev,
743 			       desc->its_clear_cmd.event_id);
744 
745 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
746 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
747 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
748 
749 	its_fixup_cmd(cmd);
750 
751 	return valid_col(col);
752 }
753 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)754 static struct its_collection *its_build_invall_cmd(struct its_node *its,
755 						   struct its_cmd_block *cmd,
756 						   struct its_cmd_desc *desc)
757 {
758 	its_encode_cmd(cmd, GITS_CMD_INVALL);
759 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
760 
761 	its_fixup_cmd(cmd);
762 
763 	return desc->its_invall_cmd.col;
764 }
765 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)766 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
767 					     struct its_cmd_block *cmd,
768 					     struct its_cmd_desc *desc)
769 {
770 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
771 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
772 
773 	its_fixup_cmd(cmd);
774 
775 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
776 }
777 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)778 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
779 					   struct its_cmd_block *cmd,
780 					   struct its_cmd_desc *desc)
781 {
782 	unsigned long vpt_addr, vconf_addr;
783 	u64 target;
784 	bool alloc;
785 
786 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
787 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
788 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
789 
790 	if (!desc->its_vmapp_cmd.valid) {
791 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
792 		if (is_v4_1(its)) {
793 			its_encode_alloc(cmd, alloc);
794 		}
795 
796 		goto out;
797 	}
798 
799 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
800 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
801 
802 	its_encode_target(cmd, target);
803 	its_encode_vpt_addr(cmd, vpt_addr);
804 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
805 
806 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
807 
808 	if (!is_v4_1(its))
809 		goto out;
810 
811 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812 
813 	its_encode_alloc(cmd, alloc);
814 
815 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
816 	its_encode_ptz(cmd, alloc);
817 	its_encode_vconf_addr(cmd, vconf_addr);
818 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
819 
820 out:
821 	its_fixup_cmd(cmd);
822 
823 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
824 }
825 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)826 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
827 					    struct its_cmd_block *cmd,
828 					    struct its_cmd_desc *desc)
829 {
830 	u32 db;
831 
832 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
833 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
834 	else
835 		db = 1023;
836 
837 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
838 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
839 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
840 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
841 	its_encode_db_phys_id(cmd, db);
842 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
843 
844 	its_fixup_cmd(cmd);
845 
846 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
847 }
848 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)849 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
850 					   struct its_cmd_block *cmd,
851 					   struct its_cmd_desc *desc)
852 {
853 	u32 db;
854 
855 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
856 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
857 	else
858 		db = 1023;
859 
860 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
861 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
862 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
863 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
864 	its_encode_db_phys_id(cmd, db);
865 	its_encode_db_valid(cmd, true);
866 
867 	its_fixup_cmd(cmd);
868 
869 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
870 }
871 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)872 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
873 					   struct its_cmd_block *cmd,
874 					   struct its_cmd_desc *desc)
875 {
876 	u64 target;
877 
878 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
879 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
880 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
881 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
882 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
883 	its_encode_target(cmd, target);
884 
885 	if (is_v4_1(its)) {
886 		its_encode_db(cmd, true);
887 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
888 	}
889 
890 	its_fixup_cmd(cmd);
891 
892 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
893 }
894 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)895 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
896 					  struct its_cmd_block *cmd,
897 					  struct its_cmd_desc *desc)
898 {
899 	struct its_vlpi_map *map;
900 
901 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
902 				    desc->its_inv_cmd.event_id);
903 
904 	its_encode_cmd(cmd, GITS_CMD_INV);
905 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
906 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
907 
908 	its_fixup_cmd(cmd);
909 
910 	return valid_vpe(its, map->vpe);
911 }
912 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)913 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
914 					  struct its_cmd_block *cmd,
915 					  struct its_cmd_desc *desc)
916 {
917 	struct its_vlpi_map *map;
918 
919 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
920 				    desc->its_int_cmd.event_id);
921 
922 	its_encode_cmd(cmd, GITS_CMD_INT);
923 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
924 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
925 
926 	its_fixup_cmd(cmd);
927 
928 	return valid_vpe(its, map->vpe);
929 }
930 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)931 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
932 					    struct its_cmd_block *cmd,
933 					    struct its_cmd_desc *desc)
934 {
935 	struct its_vlpi_map *map;
936 
937 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
938 				    desc->its_clear_cmd.event_id);
939 
940 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
941 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
942 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
943 
944 	its_fixup_cmd(cmd);
945 
946 	return valid_vpe(its, map->vpe);
947 }
948 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)949 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
950 					   struct its_cmd_block *cmd,
951 					   struct its_cmd_desc *desc)
952 {
953 	if (WARN_ON(!is_v4_1(its)))
954 		return NULL;
955 
956 	its_encode_cmd(cmd, GITS_CMD_INVDB);
957 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
958 
959 	its_fixup_cmd(cmd);
960 
961 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
962 }
963 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)964 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
965 					  struct its_cmd_block *cmd,
966 					  struct its_cmd_desc *desc)
967 {
968 	if (WARN_ON(!is_v4_1(its)))
969 		return NULL;
970 
971 	its_encode_cmd(cmd, GITS_CMD_VSGI);
972 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
973 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
974 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
975 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
976 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
977 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
978 
979 	its_fixup_cmd(cmd);
980 
981 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
982 }
983 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)984 static u64 its_cmd_ptr_to_offset(struct its_node *its,
985 				 struct its_cmd_block *ptr)
986 {
987 	return (ptr - its->cmd_base) * sizeof(*ptr);
988 }
989 
its_queue_full(struct its_node * its)990 static int its_queue_full(struct its_node *its)
991 {
992 	int widx;
993 	int ridx;
994 
995 	widx = its->cmd_write - its->cmd_base;
996 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
997 
998 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
999 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1000 		return 1;
1001 
1002 	return 0;
1003 }
1004 
its_allocate_entry(struct its_node * its)1005 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1006 {
1007 	struct its_cmd_block *cmd;
1008 	u32 count = 1000000;	/* 1s! */
1009 
1010 	while (its_queue_full(its)) {
1011 		count--;
1012 		if (!count) {
1013 			pr_err_ratelimited("ITS queue not draining\n");
1014 			return NULL;
1015 		}
1016 		cpu_relax();
1017 		udelay(1);
1018 	}
1019 
1020 	cmd = its->cmd_write++;
1021 
1022 	/* Handle queue wrapping */
1023 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1024 		its->cmd_write = its->cmd_base;
1025 
1026 	/* Clear command  */
1027 	cmd->raw_cmd[0] = 0;
1028 	cmd->raw_cmd[1] = 0;
1029 	cmd->raw_cmd[2] = 0;
1030 	cmd->raw_cmd[3] = 0;
1031 
1032 	return cmd;
1033 }
1034 
its_post_commands(struct its_node * its)1035 static struct its_cmd_block *its_post_commands(struct its_node *its)
1036 {
1037 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1038 
1039 	writel_relaxed(wr, its->base + GITS_CWRITER);
1040 
1041 	return its->cmd_write;
1042 }
1043 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1044 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1045 {
1046 	/*
1047 	 * Make sure the commands written to memory are observable by
1048 	 * the ITS.
1049 	 */
1050 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1051 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1052 	else
1053 		dsb(ishst);
1054 }
1055 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1056 static int its_wait_for_range_completion(struct its_node *its,
1057 					 u64	prev_idx,
1058 					 struct its_cmd_block *to)
1059 {
1060 	u64 rd_idx, to_idx, linear_idx;
1061 	u32 count = 1000000;	/* 1s! */
1062 
1063 	/* Linearize to_idx if the command set has wrapped around */
1064 	to_idx = its_cmd_ptr_to_offset(its, to);
1065 	if (to_idx < prev_idx)
1066 		to_idx += ITS_CMD_QUEUE_SZ;
1067 
1068 	linear_idx = prev_idx;
1069 
1070 	while (1) {
1071 		s64 delta;
1072 
1073 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1074 
1075 		/*
1076 		 * Compute the read pointer progress, taking the
1077 		 * potential wrap-around into account.
1078 		 */
1079 		delta = rd_idx - prev_idx;
1080 		if (rd_idx < prev_idx)
1081 			delta += ITS_CMD_QUEUE_SZ;
1082 
1083 		linear_idx += delta;
1084 		if (linear_idx >= to_idx)
1085 			break;
1086 
1087 		count--;
1088 		if (!count) {
1089 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1090 					   to_idx, linear_idx);
1091 			return -1;
1092 		}
1093 		prev_idx = rd_idx;
1094 		cpu_relax();
1095 		udelay(1);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /* Warning, macro hell follows */
1102 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1103 void name(struct its_node *its,						\
1104 	  buildtype builder,						\
1105 	  struct its_cmd_desc *desc)					\
1106 {									\
1107 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1108 	synctype *sync_obj;						\
1109 	unsigned long flags;						\
1110 	u64 rd_idx;							\
1111 									\
1112 	raw_spin_lock_irqsave(&its->lock, flags);			\
1113 									\
1114 	cmd = its_allocate_entry(its);					\
1115 	if (!cmd) {		/* We're soooooo screewed... */		\
1116 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1117 		return;							\
1118 	}								\
1119 	sync_obj = builder(its, cmd, desc);				\
1120 	its_flush_cmd(its, cmd);					\
1121 									\
1122 	if (sync_obj) {							\
1123 		sync_cmd = its_allocate_entry(its);			\
1124 		if (!sync_cmd)						\
1125 			goto post;					\
1126 									\
1127 		buildfn(its, sync_cmd, sync_obj);			\
1128 		its_flush_cmd(its, sync_cmd);				\
1129 	}								\
1130 									\
1131 post:									\
1132 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1133 	next_cmd = its_post_commands(its);				\
1134 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1135 									\
1136 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1137 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1138 }
1139 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1140 static void its_build_sync_cmd(struct its_node *its,
1141 			       struct its_cmd_block *sync_cmd,
1142 			       struct its_collection *sync_col)
1143 {
1144 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1145 	its_encode_target(sync_cmd, sync_col->target_address);
1146 
1147 	its_fixup_cmd(sync_cmd);
1148 }
1149 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1151 			     struct its_collection, its_build_sync_cmd)
1152 
1153 static void its_build_vsync_cmd(struct its_node *its,
1154 				struct its_cmd_block *sync_cmd,
1155 				struct its_vpe *sync_vpe)
1156 {
1157 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1158 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1159 
1160 	its_fixup_cmd(sync_cmd);
1161 }
1162 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1163 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1164 			     struct its_vpe, its_build_vsync_cmd)
1165 
1166 static void its_send_int(struct its_device *dev, u32 event_id)
1167 {
1168 	struct its_cmd_desc desc;
1169 
1170 	desc.its_int_cmd.dev = dev;
1171 	desc.its_int_cmd.event_id = event_id;
1172 
1173 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1174 }
1175 
its_send_clear(struct its_device * dev,u32 event_id)1176 static void its_send_clear(struct its_device *dev, u32 event_id)
1177 {
1178 	struct its_cmd_desc desc;
1179 
1180 	desc.its_clear_cmd.dev = dev;
1181 	desc.its_clear_cmd.event_id = event_id;
1182 
1183 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1184 }
1185 
its_send_inv(struct its_device * dev,u32 event_id)1186 static void its_send_inv(struct its_device *dev, u32 event_id)
1187 {
1188 	struct its_cmd_desc desc;
1189 
1190 	desc.its_inv_cmd.dev = dev;
1191 	desc.its_inv_cmd.event_id = event_id;
1192 
1193 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1194 }
1195 
its_send_mapd(struct its_device * dev,int valid)1196 static void its_send_mapd(struct its_device *dev, int valid)
1197 {
1198 	struct its_cmd_desc desc;
1199 
1200 	desc.its_mapd_cmd.dev = dev;
1201 	desc.its_mapd_cmd.valid = !!valid;
1202 
1203 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1204 }
1205 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1206 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1207 			  int valid)
1208 {
1209 	struct its_cmd_desc desc;
1210 
1211 	desc.its_mapc_cmd.col = col;
1212 	desc.its_mapc_cmd.valid = !!valid;
1213 
1214 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1215 }
1216 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1217 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1218 {
1219 	struct its_cmd_desc desc;
1220 
1221 	desc.its_mapti_cmd.dev = dev;
1222 	desc.its_mapti_cmd.phys_id = irq_id;
1223 	desc.its_mapti_cmd.event_id = id;
1224 
1225 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1226 }
1227 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1228 static void its_send_movi(struct its_device *dev,
1229 			  struct its_collection *col, u32 id)
1230 {
1231 	struct its_cmd_desc desc;
1232 
1233 	desc.its_movi_cmd.dev = dev;
1234 	desc.its_movi_cmd.col = col;
1235 	desc.its_movi_cmd.event_id = id;
1236 
1237 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1238 }
1239 
its_send_discard(struct its_device * dev,u32 id)1240 static void its_send_discard(struct its_device *dev, u32 id)
1241 {
1242 	struct its_cmd_desc desc;
1243 
1244 	desc.its_discard_cmd.dev = dev;
1245 	desc.its_discard_cmd.event_id = id;
1246 
1247 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1248 }
1249 
its_send_invall(struct its_node * its,struct its_collection * col)1250 static void its_send_invall(struct its_node *its, struct its_collection *col)
1251 {
1252 	struct its_cmd_desc desc;
1253 
1254 	desc.its_invall_cmd.col = col;
1255 
1256 	its_send_single_command(its, its_build_invall_cmd, &desc);
1257 }
1258 
its_send_vmapti(struct its_device * dev,u32 id)1259 static void its_send_vmapti(struct its_device *dev, u32 id)
1260 {
1261 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1262 	struct its_cmd_desc desc;
1263 
1264 	desc.its_vmapti_cmd.vpe = map->vpe;
1265 	desc.its_vmapti_cmd.dev = dev;
1266 	desc.its_vmapti_cmd.virt_id = map->vintid;
1267 	desc.its_vmapti_cmd.event_id = id;
1268 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1269 
1270 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1271 }
1272 
its_send_vmovi(struct its_device * dev,u32 id)1273 static void its_send_vmovi(struct its_device *dev, u32 id)
1274 {
1275 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1276 	struct its_cmd_desc desc;
1277 
1278 	desc.its_vmovi_cmd.vpe = map->vpe;
1279 	desc.its_vmovi_cmd.dev = dev;
1280 	desc.its_vmovi_cmd.event_id = id;
1281 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1282 
1283 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1284 }
1285 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1286 static void its_send_vmapp(struct its_node *its,
1287 			   struct its_vpe *vpe, bool valid)
1288 {
1289 	struct its_cmd_desc desc;
1290 
1291 	desc.its_vmapp_cmd.vpe = vpe;
1292 	desc.its_vmapp_cmd.valid = valid;
1293 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1294 
1295 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1296 }
1297 
its_send_vmovp(struct its_vpe * vpe)1298 static void its_send_vmovp(struct its_vpe *vpe)
1299 {
1300 	struct its_cmd_desc desc = {};
1301 	struct its_node *its;
1302 	unsigned long flags;
1303 	int col_id = vpe->col_idx;
1304 
1305 	desc.its_vmovp_cmd.vpe = vpe;
1306 
1307 	if (!its_list_map) {
1308 		its = list_first_entry(&its_nodes, struct its_node, entry);
1309 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1310 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1311 		return;
1312 	}
1313 
1314 	/*
1315 	 * Yet another marvel of the architecture. If using the
1316 	 * its_list "feature", we need to make sure that all ITSs
1317 	 * receive all VMOVP commands in the same order. The only way
1318 	 * to guarantee this is to make vmovp a serialization point.
1319 	 *
1320 	 * Wall <-- Head.
1321 	 */
1322 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1323 
1324 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1325 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1326 
1327 	/* Emit VMOVPs */
1328 	list_for_each_entry(its, &its_nodes, entry) {
1329 		if (!is_v4(its))
1330 			continue;
1331 
1332 		if (!require_its_list_vmovp(vpe->its_vm, its))
1333 			continue;
1334 
1335 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1336 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1337 	}
1338 
1339 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1340 }
1341 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1342 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1343 {
1344 	struct its_cmd_desc desc;
1345 
1346 	desc.its_vinvall_cmd.vpe = vpe;
1347 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1348 }
1349 
its_send_vinv(struct its_device * dev,u32 event_id)1350 static void its_send_vinv(struct its_device *dev, u32 event_id)
1351 {
1352 	struct its_cmd_desc desc;
1353 
1354 	/*
1355 	 * There is no real VINV command. This is just a normal INV,
1356 	 * with a VSYNC instead of a SYNC.
1357 	 */
1358 	desc.its_inv_cmd.dev = dev;
1359 	desc.its_inv_cmd.event_id = event_id;
1360 
1361 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1362 }
1363 
its_send_vint(struct its_device * dev,u32 event_id)1364 static void its_send_vint(struct its_device *dev, u32 event_id)
1365 {
1366 	struct its_cmd_desc desc;
1367 
1368 	/*
1369 	 * There is no real VINT command. This is just a normal INT,
1370 	 * with a VSYNC instead of a SYNC.
1371 	 */
1372 	desc.its_int_cmd.dev = dev;
1373 	desc.its_int_cmd.event_id = event_id;
1374 
1375 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1376 }
1377 
its_send_vclear(struct its_device * dev,u32 event_id)1378 static void its_send_vclear(struct its_device *dev, u32 event_id)
1379 {
1380 	struct its_cmd_desc desc;
1381 
1382 	/*
1383 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1384 	 * with a VSYNC instead of a SYNC.
1385 	 */
1386 	desc.its_clear_cmd.dev = dev;
1387 	desc.its_clear_cmd.event_id = event_id;
1388 
1389 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1390 }
1391 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1392 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1393 {
1394 	struct its_cmd_desc desc;
1395 
1396 	desc.its_invdb_cmd.vpe = vpe;
1397 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1398 }
1399 
1400 /*
1401  * irqchip functions - assumes MSI, mostly.
1402  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1403 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1404 {
1405 	struct its_vlpi_map *map = get_vlpi_map(d);
1406 	irq_hw_number_t hwirq;
1407 	void *va;
1408 	u8 *cfg;
1409 
1410 	if (map) {
1411 		va = page_address(map->vm->vprop_page);
1412 		hwirq = map->vintid;
1413 
1414 		/* Remember the updated property */
1415 		map->properties &= ~clr;
1416 		map->properties |= set | LPI_PROP_GROUP1;
1417 	} else {
1418 		va = gic_rdists->prop_table_va;
1419 		hwirq = d->hwirq;
1420 	}
1421 
1422 	cfg = va + hwirq - 8192;
1423 	*cfg &= ~clr;
1424 	*cfg |= set | LPI_PROP_GROUP1;
1425 
1426 	/*
1427 	 * Make the above write visible to the redistributors.
1428 	 * And yes, we're flushing exactly: One. Single. Byte.
1429 	 * Humpf...
1430 	 */
1431 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1432 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1433 	else
1434 		dsb(ishst);
1435 }
1436 
wait_for_syncr(void __iomem * rdbase)1437 static void wait_for_syncr(void __iomem *rdbase)
1438 {
1439 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1440 		cpu_relax();
1441 }
1442 
__direct_lpi_inv(struct irq_data * d,u64 val)1443 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1444 {
1445 	void __iomem *rdbase;
1446 	unsigned long flags;
1447 	int cpu;
1448 
1449 	/* Target the redistributor this LPI is currently routed to */
1450 	cpu = irq_to_cpuid_lock(d, &flags);
1451 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1452 
1453 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455 	wait_for_syncr(rdbase);
1456 
1457 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458 	irq_to_cpuid_unlock(d, flags);
1459 }
1460 
direct_lpi_inv(struct irq_data * d)1461 static void direct_lpi_inv(struct irq_data *d)
1462 {
1463 	struct its_vlpi_map *map = get_vlpi_map(d);
1464 	u64 val;
1465 
1466 	if (map) {
1467 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468 
1469 		WARN_ON(!is_v4_1(its_dev->its));
1470 
1471 		val  = GICR_INVLPIR_V;
1472 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1473 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1474 	} else {
1475 		val = d->hwirq;
1476 	}
1477 
1478 	__direct_lpi_inv(d, val);
1479 }
1480 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1481 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1482 {
1483 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484 
1485 	lpi_write_config(d, clr, set);
1486 	if (gic_rdists->has_direct_lpi &&
1487 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1488 		direct_lpi_inv(d);
1489 	else if (!irqd_is_forwarded_to_vcpu(d))
1490 		its_send_inv(its_dev, its_get_event_id(d));
1491 	else
1492 		its_send_vinv(its_dev, its_get_event_id(d));
1493 }
1494 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1495 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1496 {
1497 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1498 	u32 event = its_get_event_id(d);
1499 	struct its_vlpi_map *map;
1500 
1501 	/*
1502 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1503 	 * here.
1504 	 */
1505 	if (is_v4_1(its_dev->its))
1506 		return;
1507 
1508 	map = dev_event_to_vlpi_map(its_dev, event);
1509 
1510 	if (map->db_enabled == enable)
1511 		return;
1512 
1513 	map->db_enabled = enable;
1514 
1515 	/*
1516 	 * More fun with the architecture:
1517 	 *
1518 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1519 	 * value or to 1023, depending on the enable bit. But that
1520 	 * would be issuing a mapping for an /existing/ DevID+EventID
1521 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1522 	 * to the /same/ vPE, using this opportunity to adjust the
1523 	 * doorbell. Mouahahahaha. We loves it, Precious.
1524 	 */
1525 	its_send_vmovi(its_dev, event);
1526 }
1527 
its_mask_irq(struct irq_data * d)1528 static void its_mask_irq(struct irq_data *d)
1529 {
1530 	if (irqd_is_forwarded_to_vcpu(d))
1531 		its_vlpi_set_doorbell(d, false);
1532 
1533 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1534 }
1535 
its_unmask_irq(struct irq_data * d)1536 static void its_unmask_irq(struct irq_data *d)
1537 {
1538 	if (irqd_is_forwarded_to_vcpu(d))
1539 		its_vlpi_set_doorbell(d, true);
1540 
1541 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1542 }
1543 
its_read_lpi_count(struct irq_data * d,int cpu)1544 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1545 {
1546 	if (irqd_affinity_is_managed(d))
1547 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548 
1549 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551 
its_inc_lpi_count(struct irq_data * d,int cpu)1552 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1553 {
1554 	if (irqd_affinity_is_managed(d))
1555 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1556 	else
1557 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1558 }
1559 
its_dec_lpi_count(struct irq_data * d,int cpu)1560 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1561 {
1562 	if (irqd_affinity_is_managed(d))
1563 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1564 	else
1565 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1566 }
1567 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1568 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1569 					      const struct cpumask *cpu_mask)
1570 {
1571 	unsigned int cpu = nr_cpu_ids, tmp;
1572 	int count = S32_MAX;
1573 
1574 	for_each_cpu(tmp, cpu_mask) {
1575 		int this_count = its_read_lpi_count(d, tmp);
1576 		if (this_count < count) {
1577 			cpu = tmp;
1578 		        count = this_count;
1579 		}
1580 	}
1581 
1582 	return cpu;
1583 }
1584 
1585 /*
1586  * As suggested by Thomas Gleixner in:
1587  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1588  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1589 static int its_select_cpu(struct irq_data *d,
1590 			  const struct cpumask *aff_mask)
1591 {
1592 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1593 	cpumask_var_t tmpmask;
1594 	int cpu, node;
1595 
1596 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1597 		return -ENOMEM;
1598 
1599 	node = its_dev->its->numa_node;
1600 
1601 	if (!irqd_affinity_is_managed(d)) {
1602 		/* First try the NUMA node */
1603 		if (node != NUMA_NO_NODE) {
1604 			/*
1605 			 * Try the intersection of the affinity mask and the
1606 			 * node mask (and the online mask, just to be safe).
1607 			 */
1608 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1609 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1610 
1611 			/*
1612 			 * Ideally, we would check if the mask is empty, and
1613 			 * try again on the full node here.
1614 			 *
1615 			 * But it turns out that the way ACPI describes the
1616 			 * affinity for ITSs only deals about memory, and
1617 			 * not target CPUs, so it cannot describe a single
1618 			 * ITS placed next to two NUMA nodes.
1619 			 *
1620 			 * Instead, just fallback on the online mask. This
1621 			 * diverges from Thomas' suggestion above.
1622 			 */
1623 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1624 			if (cpu < nr_cpu_ids)
1625 				goto out;
1626 
1627 			/* If we can't cross sockets, give up */
1628 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1629 				goto out;
1630 
1631 			/* If the above failed, expand the search */
1632 		}
1633 
1634 		/* Try the intersection of the affinity and online masks */
1635 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1636 
1637 		/* If that doesn't fly, the online mask is the last resort */
1638 		if (cpumask_empty(tmpmask))
1639 			cpumask_copy(tmpmask, cpu_online_mask);
1640 
1641 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1642 	} else {
1643 		cpumask_copy(tmpmask, aff_mask);
1644 
1645 		/* If we cannot cross sockets, limit the search to that node */
1646 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1647 		    node != NUMA_NO_NODE)
1648 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1649 
1650 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1651 	}
1652 out:
1653 	free_cpumask_var(tmpmask);
1654 
1655 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1656 	return cpu;
1657 }
1658 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1659 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1660 			    bool force)
1661 {
1662 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1663 	struct its_collection *target_col;
1664 	u32 id = its_get_event_id(d);
1665 	int cpu, prev_cpu;
1666 
1667 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1668 	if (irqd_is_forwarded_to_vcpu(d))
1669 		return -EINVAL;
1670 
1671 	prev_cpu = its_dev->event_map.col_map[id];
1672 	its_dec_lpi_count(d, prev_cpu);
1673 
1674 	if (!force)
1675 		cpu = its_select_cpu(d, mask_val);
1676 	else
1677 		cpu = cpumask_pick_least_loaded(d, mask_val);
1678 
1679 	if (cpu < 0 || cpu >= nr_cpu_ids)
1680 		goto err;
1681 
1682 	/* don't set the affinity when the target cpu is same as current one */
1683 	if (cpu != prev_cpu) {
1684 		target_col = &its_dev->its->collections[cpu];
1685 		its_send_movi(its_dev, target_col, id);
1686 		its_dev->event_map.col_map[id] = cpu;
1687 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1688 	}
1689 
1690 	its_inc_lpi_count(d, cpu);
1691 
1692 	return IRQ_SET_MASK_OK_DONE;
1693 
1694 err:
1695 	its_inc_lpi_count(d, prev_cpu);
1696 	return -EINVAL;
1697 }
1698 
its_irq_get_msi_base(struct its_device * its_dev)1699 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1700 {
1701 	struct its_node *its = its_dev->its;
1702 
1703 	return its->phys_base + GITS_TRANSLATER;
1704 }
1705 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1706 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1707 {
1708 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1709 	struct its_node *its;
1710 	u64 addr;
1711 
1712 	its = its_dev->its;
1713 	addr = its->get_msi_base(its_dev);
1714 
1715 	msg->address_lo		= lower_32_bits(addr);
1716 	msg->address_hi		= upper_32_bits(addr);
1717 	msg->data		= its_get_event_id(d);
1718 
1719 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1720 }
1721 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1722 static int its_irq_set_irqchip_state(struct irq_data *d,
1723 				     enum irqchip_irq_state which,
1724 				     bool state)
1725 {
1726 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1727 	u32 event = its_get_event_id(d);
1728 
1729 	if (which != IRQCHIP_STATE_PENDING)
1730 		return -EINVAL;
1731 
1732 	if (irqd_is_forwarded_to_vcpu(d)) {
1733 		if (state)
1734 			its_send_vint(its_dev, event);
1735 		else
1736 			its_send_vclear(its_dev, event);
1737 	} else {
1738 		if (state)
1739 			its_send_int(its_dev, event);
1740 		else
1741 			its_send_clear(its_dev, event);
1742 	}
1743 
1744 	return 0;
1745 }
1746 
its_irq_retrigger(struct irq_data * d)1747 static int its_irq_retrigger(struct irq_data *d)
1748 {
1749 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1750 }
1751 
1752 /*
1753  * Two favourable cases:
1754  *
1755  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1756  *     for vSGI delivery
1757  *
1758  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1759  *     and we're better off mapping all VPEs always
1760  *
1761  * If neither (a) nor (b) is true, then we map vPEs on demand.
1762  *
1763  */
gic_requires_eager_mapping(void)1764 static bool gic_requires_eager_mapping(void)
1765 {
1766 	if (!its_list_map || gic_rdists->has_rvpeid)
1767 		return true;
1768 
1769 	return false;
1770 }
1771 
its_map_vm(struct its_node * its,struct its_vm * vm)1772 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1773 {
1774 	unsigned long flags;
1775 
1776 	if (gic_requires_eager_mapping())
1777 		return;
1778 
1779 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1780 
1781 	/*
1782 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1783 	 * them mapped now.
1784 	 */
1785 	vm->vlpi_count[its->list_nr]++;
1786 
1787 	if (vm->vlpi_count[its->list_nr] == 1) {
1788 		int i;
1789 
1790 		for (i = 0; i < vm->nr_vpes; i++) {
1791 			struct its_vpe *vpe = vm->vpes[i];
1792 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1793 
1794 			/* Map the VPE to the first possible CPU */
1795 			vpe->col_idx = cpumask_first(cpu_online_mask);
1796 			its_send_vmapp(its, vpe, true);
1797 			its_send_vinvall(its, vpe);
1798 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1799 		}
1800 	}
1801 
1802 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803 }
1804 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1805 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1806 {
1807 	unsigned long flags;
1808 
1809 	/* Not using the ITS list? Everything is always mapped. */
1810 	if (gic_requires_eager_mapping())
1811 		return;
1812 
1813 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1814 
1815 	if (!--vm->vlpi_count[its->list_nr]) {
1816 		int i;
1817 
1818 		for (i = 0; i < vm->nr_vpes; i++)
1819 			its_send_vmapp(its, vm->vpes[i], false);
1820 	}
1821 
1822 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1823 }
1824 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1825 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1826 {
1827 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1828 	u32 event = its_get_event_id(d);
1829 	int ret = 0;
1830 
1831 	if (!info->map)
1832 		return -EINVAL;
1833 
1834 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1835 
1836 	if (!its_dev->event_map.vm) {
1837 		struct its_vlpi_map *maps;
1838 
1839 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1840 			       GFP_ATOMIC);
1841 		if (!maps) {
1842 			ret = -ENOMEM;
1843 			goto out;
1844 		}
1845 
1846 		its_dev->event_map.vm = info->map->vm;
1847 		its_dev->event_map.vlpi_maps = maps;
1848 	} else if (its_dev->event_map.vm != info->map->vm) {
1849 		ret = -EINVAL;
1850 		goto out;
1851 	}
1852 
1853 	/* Get our private copy of the mapping information */
1854 	its_dev->event_map.vlpi_maps[event] = *info->map;
1855 
1856 	if (irqd_is_forwarded_to_vcpu(d)) {
1857 		/* Already mapped, move it around */
1858 		its_send_vmovi(its_dev, event);
1859 	} else {
1860 		/* Ensure all the VPEs are mapped on this ITS */
1861 		its_map_vm(its_dev->its, info->map->vm);
1862 
1863 		/*
1864 		 * Flag the interrupt as forwarded so that we can
1865 		 * start poking the virtual property table.
1866 		 */
1867 		irqd_set_forwarded_to_vcpu(d);
1868 
1869 		/* Write out the property to the prop table */
1870 		lpi_write_config(d, 0xff, info->map->properties);
1871 
1872 		/* Drop the physical mapping */
1873 		its_send_discard(its_dev, event);
1874 
1875 		/* and install the virtual one */
1876 		its_send_vmapti(its_dev, event);
1877 
1878 		/* Increment the number of VLPIs */
1879 		its_dev->event_map.nr_vlpis++;
1880 	}
1881 
1882 out:
1883 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1884 	return ret;
1885 }
1886 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1887 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1888 {
1889 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1890 	struct its_vlpi_map *map;
1891 	int ret = 0;
1892 
1893 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1894 
1895 	map = get_vlpi_map(d);
1896 
1897 	if (!its_dev->event_map.vm || !map) {
1898 		ret = -EINVAL;
1899 		goto out;
1900 	}
1901 
1902 	/* Copy our mapping information to the incoming request */
1903 	*info->map = *map;
1904 
1905 out:
1906 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1907 	return ret;
1908 }
1909 
its_vlpi_unmap(struct irq_data * d)1910 static int its_vlpi_unmap(struct irq_data *d)
1911 {
1912 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1913 	u32 event = its_get_event_id(d);
1914 	int ret = 0;
1915 
1916 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1917 
1918 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1919 		ret = -EINVAL;
1920 		goto out;
1921 	}
1922 
1923 	/* Drop the virtual mapping */
1924 	its_send_discard(its_dev, event);
1925 
1926 	/* and restore the physical one */
1927 	irqd_clr_forwarded_to_vcpu(d);
1928 	its_send_mapti(its_dev, d->hwirq, event);
1929 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1930 				    LPI_PROP_ENABLED |
1931 				    LPI_PROP_GROUP1));
1932 
1933 	/* Potentially unmap the VM from this ITS */
1934 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1935 
1936 	/*
1937 	 * Drop the refcount and make the device available again if
1938 	 * this was the last VLPI.
1939 	 */
1940 	if (!--its_dev->event_map.nr_vlpis) {
1941 		its_dev->event_map.vm = NULL;
1942 		kfree(its_dev->event_map.vlpi_maps);
1943 	}
1944 
1945 out:
1946 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1947 	return ret;
1948 }
1949 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1950 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1951 {
1952 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1953 
1954 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1955 		return -EINVAL;
1956 
1957 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1958 		lpi_update_config(d, 0xff, info->config);
1959 	else
1960 		lpi_write_config(d, 0xff, info->config);
1961 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1962 
1963 	return 0;
1964 }
1965 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1966 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1967 {
1968 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1969 	struct its_cmd_info *info = vcpu_info;
1970 
1971 	/* Need a v4 ITS */
1972 	if (!is_v4(its_dev->its))
1973 		return -EINVAL;
1974 
1975 	/* Unmap request? */
1976 	if (!info)
1977 		return its_vlpi_unmap(d);
1978 
1979 	switch (info->cmd_type) {
1980 	case MAP_VLPI:
1981 		return its_vlpi_map(d, info);
1982 
1983 	case GET_VLPI:
1984 		return its_vlpi_get(d, info);
1985 
1986 	case PROP_UPDATE_VLPI:
1987 	case PROP_UPDATE_AND_INV_VLPI:
1988 		return its_vlpi_prop_update(d, info);
1989 
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 }
1994 
1995 static struct irq_chip its_irq_chip = {
1996 	.name			= "ITS",
1997 	.irq_mask		= its_mask_irq,
1998 	.irq_unmask		= its_unmask_irq,
1999 	.irq_eoi		= irq_chip_eoi_parent,
2000 	.irq_set_affinity	= its_set_affinity,
2001 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2002 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2003 	.irq_retrigger		= its_irq_retrigger,
2004 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2005 };
2006 
2007 
2008 /*
2009  * How we allocate LPIs:
2010  *
2011  * lpi_range_list contains ranges of LPIs that are to available to
2012  * allocate from. To allocate LPIs, just pick the first range that
2013  * fits the required allocation, and reduce it by the required
2014  * amount. Once empty, remove the range from the list.
2015  *
2016  * To free a range of LPIs, add a free range to the list, sort it and
2017  * merge the result if the new range happens to be adjacent to an
2018  * already free block.
2019  *
2020  * The consequence of the above is that allocation is cost is low, but
2021  * freeing is expensive. We assumes that freeing rarely occurs.
2022  */
2023 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2024 
2025 static DEFINE_MUTEX(lpi_range_lock);
2026 static LIST_HEAD(lpi_range_list);
2027 
2028 struct lpi_range {
2029 	struct list_head	entry;
2030 	u32			base_id;
2031 	u32			span;
2032 };
2033 
mk_lpi_range(u32 base,u32 span)2034 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2035 {
2036 	struct lpi_range *range;
2037 
2038 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2039 	if (range) {
2040 		range->base_id = base;
2041 		range->span = span;
2042 	}
2043 
2044 	return range;
2045 }
2046 
alloc_lpi_range(u32 nr_lpis,u32 * base)2047 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2048 {
2049 	struct lpi_range *range, *tmp;
2050 	int err = -ENOSPC;
2051 
2052 	mutex_lock(&lpi_range_lock);
2053 
2054 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2055 		if (range->span >= nr_lpis) {
2056 			*base = range->base_id;
2057 			range->base_id += nr_lpis;
2058 			range->span -= nr_lpis;
2059 
2060 			if (range->span == 0) {
2061 				list_del(&range->entry);
2062 				kfree(range);
2063 			}
2064 
2065 			err = 0;
2066 			break;
2067 		}
2068 	}
2069 
2070 	mutex_unlock(&lpi_range_lock);
2071 
2072 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2073 	return err;
2074 }
2075 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2076 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2077 {
2078 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2079 		return;
2080 	if (a->base_id + a->span != b->base_id)
2081 		return;
2082 	b->base_id = a->base_id;
2083 	b->span += a->span;
2084 	list_del(&a->entry);
2085 	kfree(a);
2086 }
2087 
free_lpi_range(u32 base,u32 nr_lpis)2088 static int free_lpi_range(u32 base, u32 nr_lpis)
2089 {
2090 	struct lpi_range *new, *old;
2091 
2092 	new = mk_lpi_range(base, nr_lpis);
2093 	if (!new)
2094 		return -ENOMEM;
2095 
2096 	mutex_lock(&lpi_range_lock);
2097 
2098 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2099 		if (old->base_id < base)
2100 			break;
2101 	}
2102 	/*
2103 	 * old is the last element with ->base_id smaller than base,
2104 	 * so new goes right after it. If there are no elements with
2105 	 * ->base_id smaller than base, &old->entry ends up pointing
2106 	 * at the head of the list, and inserting new it the start of
2107 	 * the list is the right thing to do in that case as well.
2108 	 */
2109 	list_add(&new->entry, &old->entry);
2110 	/*
2111 	 * Now check if we can merge with the preceding and/or
2112 	 * following ranges.
2113 	 */
2114 	merge_lpi_ranges(old, new);
2115 	merge_lpi_ranges(new, list_next_entry(new, entry));
2116 
2117 	mutex_unlock(&lpi_range_lock);
2118 	return 0;
2119 }
2120 
its_lpi_init(u32 id_bits)2121 static int __init its_lpi_init(u32 id_bits)
2122 {
2123 	u32 lpis = (1UL << id_bits) - 8192;
2124 	u32 numlpis;
2125 	int err;
2126 
2127 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2128 
2129 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2130 		lpis = numlpis;
2131 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2132 			lpis);
2133 	}
2134 
2135 	/*
2136 	 * Initializing the allocator is just the same as freeing the
2137 	 * full range of LPIs.
2138 	 */
2139 	err = free_lpi_range(8192, lpis);
2140 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2141 	return err;
2142 }
2143 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2144 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2145 {
2146 	unsigned long *bitmap = NULL;
2147 	int err = 0;
2148 
2149 	do {
2150 		err = alloc_lpi_range(nr_irqs, base);
2151 		if (!err)
2152 			break;
2153 
2154 		nr_irqs /= 2;
2155 	} while (nr_irqs > 0);
2156 
2157 	if (!nr_irqs)
2158 		err = -ENOSPC;
2159 
2160 	if (err)
2161 		goto out;
2162 
2163 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2164 	if (!bitmap)
2165 		goto out;
2166 
2167 	*nr_ids = nr_irqs;
2168 
2169 out:
2170 	if (!bitmap)
2171 		*base = *nr_ids = 0;
2172 
2173 	return bitmap;
2174 }
2175 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2176 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2177 {
2178 	WARN_ON(free_lpi_range(base, nr_ids));
2179 	kfree(bitmap);
2180 }
2181 
gic_reset_prop_table(void * va)2182 static void gic_reset_prop_table(void *va)
2183 {
2184 	/* Priority 0xa0, Group-1, disabled */
2185 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2186 
2187 	/* Make sure the GIC will observe the written configuration */
2188 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2189 }
2190 
its_allocate_prop_table(gfp_t gfp_flags)2191 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2192 {
2193 	struct page *prop_page;
2194 
2195 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2196 	if (!prop_page)
2197 		return NULL;
2198 
2199 	gic_reset_prop_table(page_address(prop_page));
2200 
2201 	return prop_page;
2202 }
2203 
its_free_prop_table(struct page * prop_page)2204 static void its_free_prop_table(struct page *prop_page)
2205 {
2206 	free_pages((unsigned long)page_address(prop_page),
2207 		   get_order(LPI_PROPBASE_SZ));
2208 }
2209 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2210 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2211 {
2212 	phys_addr_t start, end, addr_end;
2213 	u64 i;
2214 
2215 	/*
2216 	 * We don't bother checking for a kdump kernel as by
2217 	 * construction, the LPI tables are out of this kernel's
2218 	 * memory map.
2219 	 */
2220 	if (is_kdump_kernel())
2221 		return true;
2222 
2223 	addr_end = addr + size - 1;
2224 
2225 	for_each_reserved_mem_range(i, &start, &end) {
2226 		if (addr >= start && addr_end <= end)
2227 			return true;
2228 	}
2229 
2230 	/* Not found, not a good sign... */
2231 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2232 		&addr, &addr_end);
2233 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2234 	return false;
2235 }
2236 
gic_reserve_range(phys_addr_t addr,unsigned long size)2237 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2238 {
2239 	if (efi_enabled(EFI_CONFIG_TABLES))
2240 		return efi_mem_reserve_persistent(addr, size);
2241 
2242 	return 0;
2243 }
2244 
its_setup_lpi_prop_table(void)2245 static int __init its_setup_lpi_prop_table(void)
2246 {
2247 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2248 		u64 val;
2249 
2250 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2251 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2252 
2253 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2254 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2255 						     LPI_PROPBASE_SZ,
2256 						     MEMREMAP_WB);
2257 		gic_reset_prop_table(gic_rdists->prop_table_va);
2258 	} else {
2259 		struct page *page;
2260 
2261 		lpi_id_bits = min_t(u32,
2262 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2263 				    ITS_MAX_LPI_NRBITS);
2264 		page = its_allocate_prop_table(GFP_NOWAIT);
2265 		if (!page) {
2266 			pr_err("Failed to allocate PROPBASE\n");
2267 			return -ENOMEM;
2268 		}
2269 
2270 		gic_rdists->prop_table_pa = page_to_phys(page);
2271 		gic_rdists->prop_table_va = page_address(page);
2272 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2273 					  LPI_PROPBASE_SZ));
2274 	}
2275 
2276 	pr_info("GICv3: using LPI property table @%pa\n",
2277 		&gic_rdists->prop_table_pa);
2278 
2279 	return its_lpi_init(lpi_id_bits);
2280 }
2281 
2282 static const char *its_base_type_string[] = {
2283 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2284 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2285 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2286 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2287 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2288 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2289 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2290 };
2291 
its_read_baser(struct its_node * its,struct its_baser * baser)2292 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2293 {
2294 	u32 idx = baser - its->tables;
2295 
2296 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2297 }
2298 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2299 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2300 			    u64 val)
2301 {
2302 	u32 idx = baser - its->tables;
2303 
2304 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2305 	baser->val = its_read_baser(its, baser);
2306 }
2307 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2308 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2309 			   u64 cache, u64 shr, u32 order, bool indirect)
2310 {
2311 	u64 val = its_read_baser(its, baser);
2312 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2313 	u64 type = GITS_BASER_TYPE(val);
2314 	u64 baser_phys, tmp;
2315 	u32 alloc_pages, psz;
2316 	struct page *page;
2317 	void *base;
2318 
2319 	psz = baser->psz;
2320 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2321 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2322 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2323 			&its->phys_base, its_base_type_string[type],
2324 			alloc_pages, GITS_BASER_PAGES_MAX);
2325 		alloc_pages = GITS_BASER_PAGES_MAX;
2326 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2327 	}
2328 
2329 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2330 	if (!page)
2331 		return -ENOMEM;
2332 
2333 	base = (void *)page_address(page);
2334 	baser_phys = virt_to_phys(base);
2335 
2336 	/* Check if the physical address of the memory is above 48bits */
2337 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2338 
2339 		/* 52bit PA is supported only when PageSize=64K */
2340 		if (psz != SZ_64K) {
2341 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2342 			free_pages((unsigned long)base, order);
2343 			return -ENXIO;
2344 		}
2345 
2346 		/* Convert 52bit PA to 48bit field */
2347 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2348 	}
2349 
2350 retry_baser:
2351 	val = (baser_phys					 |
2352 		(type << GITS_BASER_TYPE_SHIFT)			 |
2353 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2354 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2355 		cache						 |
2356 		shr						 |
2357 		GITS_BASER_VALID);
2358 
2359 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2360 
2361 	switch (psz) {
2362 	case SZ_4K:
2363 		val |= GITS_BASER_PAGE_SIZE_4K;
2364 		break;
2365 	case SZ_16K:
2366 		val |= GITS_BASER_PAGE_SIZE_16K;
2367 		break;
2368 	case SZ_64K:
2369 		val |= GITS_BASER_PAGE_SIZE_64K;
2370 		break;
2371 	}
2372 
2373 	its_write_baser(its, baser, val);
2374 	tmp = baser->val;
2375 
2376 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2377 		/*
2378 		 * Shareability didn't stick. Just use
2379 		 * whatever the read reported, which is likely
2380 		 * to be the only thing this redistributor
2381 		 * supports. If that's zero, make it
2382 		 * non-cacheable as well.
2383 		 */
2384 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2385 		if (!shr) {
2386 			cache = GITS_BASER_nC;
2387 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2388 		}
2389 		goto retry_baser;
2390 	}
2391 
2392 	if (val != tmp) {
2393 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2394 		       &its->phys_base, its_base_type_string[type],
2395 		       val, tmp);
2396 		free_pages((unsigned long)base, order);
2397 		return -ENXIO;
2398 	}
2399 
2400 	baser->order = order;
2401 	baser->base = base;
2402 	baser->psz = psz;
2403 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2404 
2405 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2406 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2407 		its_base_type_string[type],
2408 		(unsigned long)virt_to_phys(base),
2409 		indirect ? "indirect" : "flat", (int)esz,
2410 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2411 
2412 	return 0;
2413 }
2414 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2415 static bool its_parse_indirect_baser(struct its_node *its,
2416 				     struct its_baser *baser,
2417 				     u32 *order, u32 ids)
2418 {
2419 	u64 tmp = its_read_baser(its, baser);
2420 	u64 type = GITS_BASER_TYPE(tmp);
2421 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2422 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2423 	u32 new_order = *order;
2424 	u32 psz = baser->psz;
2425 	bool indirect = false;
2426 
2427 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2428 	if ((esz << ids) > (psz * 2)) {
2429 		/*
2430 		 * Find out whether hw supports a single or two-level table by
2431 		 * table by reading bit at offset '62' after writing '1' to it.
2432 		 */
2433 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2434 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2435 
2436 		if (indirect) {
2437 			/*
2438 			 * The size of the lvl2 table is equal to ITS page size
2439 			 * which is 'psz'. For computing lvl1 table size,
2440 			 * subtract ID bits that sparse lvl2 table from 'ids'
2441 			 * which is reported by ITS hardware times lvl1 table
2442 			 * entry size.
2443 			 */
2444 			ids -= ilog2(psz / (int)esz);
2445 			esz = GITS_LVL1_ENTRY_SIZE;
2446 		}
2447 	}
2448 
2449 	/*
2450 	 * Allocate as many entries as required to fit the
2451 	 * range of device IDs that the ITS can grok... The ID
2452 	 * space being incredibly sparse, this results in a
2453 	 * massive waste of memory if two-level device table
2454 	 * feature is not supported by hardware.
2455 	 */
2456 	new_order = max_t(u32, get_order(esz << ids), new_order);
2457 	if (new_order >= MAX_ORDER) {
2458 		new_order = MAX_ORDER - 1;
2459 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2460 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2461 			&its->phys_base, its_base_type_string[type],
2462 			device_ids(its), ids);
2463 	}
2464 
2465 	*order = new_order;
2466 
2467 	return indirect;
2468 }
2469 
compute_common_aff(u64 val)2470 static u32 compute_common_aff(u64 val)
2471 {
2472 	u32 aff, clpiaff;
2473 
2474 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2475 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2476 
2477 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2478 }
2479 
compute_its_aff(struct its_node * its)2480 static u32 compute_its_aff(struct its_node *its)
2481 {
2482 	u64 val;
2483 	u32 svpet;
2484 
2485 	/*
2486 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2487 	 * the resulting affinity. We then use that to see if this match
2488 	 * our own affinity.
2489 	 */
2490 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2491 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2492 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2493 	return compute_common_aff(val);
2494 }
2495 
find_sibling_its(struct its_node * cur_its)2496 static struct its_node *find_sibling_its(struct its_node *cur_its)
2497 {
2498 	struct its_node *its;
2499 	u32 aff;
2500 
2501 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2502 		return NULL;
2503 
2504 	aff = compute_its_aff(cur_its);
2505 
2506 	list_for_each_entry(its, &its_nodes, entry) {
2507 		u64 baser;
2508 
2509 		if (!is_v4_1(its) || its == cur_its)
2510 			continue;
2511 
2512 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2513 			continue;
2514 
2515 		if (aff != compute_its_aff(its))
2516 			continue;
2517 
2518 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2519 		baser = its->tables[2].val;
2520 		if (!(baser & GITS_BASER_VALID))
2521 			continue;
2522 
2523 		return its;
2524 	}
2525 
2526 	return NULL;
2527 }
2528 
its_free_tables(struct its_node * its)2529 static void its_free_tables(struct its_node *its)
2530 {
2531 	int i;
2532 
2533 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2534 		if (its->tables[i].base) {
2535 			free_pages((unsigned long)its->tables[i].base,
2536 				   its->tables[i].order);
2537 			its->tables[i].base = NULL;
2538 		}
2539 	}
2540 }
2541 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2542 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2543 {
2544 	u64 psz = SZ_64K;
2545 
2546 	while (psz) {
2547 		u64 val, gpsz;
2548 
2549 		val = its_read_baser(its, baser);
2550 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2551 
2552 		switch (psz) {
2553 		case SZ_64K:
2554 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2555 			break;
2556 		case SZ_16K:
2557 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2558 			break;
2559 		case SZ_4K:
2560 		default:
2561 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2562 			break;
2563 		}
2564 
2565 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2566 
2567 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2568 		its_write_baser(its, baser, val);
2569 
2570 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2571 			break;
2572 
2573 		switch (psz) {
2574 		case SZ_64K:
2575 			psz = SZ_16K;
2576 			break;
2577 		case SZ_16K:
2578 			psz = SZ_4K;
2579 			break;
2580 		case SZ_4K:
2581 		default:
2582 			return -1;
2583 		}
2584 	}
2585 
2586 	baser->psz = psz;
2587 	return 0;
2588 }
2589 
its_alloc_tables(struct its_node * its)2590 static int its_alloc_tables(struct its_node *its)
2591 {
2592 	u64 shr = GITS_BASER_InnerShareable;
2593 	u64 cache = GITS_BASER_RaWaWb;
2594 	int err, i;
2595 
2596 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2597 		/* erratum 24313: ignore memory access type */
2598 		cache = GITS_BASER_nCnB;
2599 
2600 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2601 		struct its_baser *baser = its->tables + i;
2602 		u64 val = its_read_baser(its, baser);
2603 		u64 type = GITS_BASER_TYPE(val);
2604 		bool indirect = false;
2605 		u32 order;
2606 
2607 		if (type == GITS_BASER_TYPE_NONE)
2608 			continue;
2609 
2610 		if (its_probe_baser_psz(its, baser)) {
2611 			its_free_tables(its);
2612 			return -ENXIO;
2613 		}
2614 
2615 		order = get_order(baser->psz);
2616 
2617 		switch (type) {
2618 		case GITS_BASER_TYPE_DEVICE:
2619 			indirect = its_parse_indirect_baser(its, baser, &order,
2620 							    device_ids(its));
2621 			break;
2622 
2623 		case GITS_BASER_TYPE_VCPU:
2624 			if (is_v4_1(its)) {
2625 				struct its_node *sibling;
2626 
2627 				WARN_ON(i != 2);
2628 				if ((sibling = find_sibling_its(its))) {
2629 					*baser = sibling->tables[2];
2630 					its_write_baser(its, baser, baser->val);
2631 					continue;
2632 				}
2633 			}
2634 
2635 			indirect = its_parse_indirect_baser(its, baser, &order,
2636 							    ITS_MAX_VPEID_BITS);
2637 			break;
2638 		}
2639 
2640 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2641 		if (err < 0) {
2642 			its_free_tables(its);
2643 			return err;
2644 		}
2645 
2646 		/* Update settings which will be used for next BASERn */
2647 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2648 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
inherit_vpe_l1_table_from_its(void)2654 static u64 inherit_vpe_l1_table_from_its(void)
2655 {
2656 	struct its_node *its;
2657 	u64 val;
2658 	u32 aff;
2659 
2660 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2661 	aff = compute_common_aff(val);
2662 
2663 	list_for_each_entry(its, &its_nodes, entry) {
2664 		u64 baser, addr;
2665 
2666 		if (!is_v4_1(its))
2667 			continue;
2668 
2669 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2670 			continue;
2671 
2672 		if (aff != compute_its_aff(its))
2673 			continue;
2674 
2675 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2676 		baser = its->tables[2].val;
2677 		if (!(baser & GITS_BASER_VALID))
2678 			continue;
2679 
2680 		/* We have a winner! */
2681 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2682 
2683 		val  = GICR_VPROPBASER_4_1_VALID;
2684 		if (baser & GITS_BASER_INDIRECT)
2685 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2686 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2687 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2688 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2689 		case GIC_PAGE_SIZE_64K:
2690 			addr = GITS_BASER_ADDR_48_to_52(baser);
2691 			break;
2692 		default:
2693 			addr = baser & GENMASK_ULL(47, 12);
2694 			break;
2695 		}
2696 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2697 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2698 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2699 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2700 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2701 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2702 
2703 		return val;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2709 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2710 {
2711 	u32 aff;
2712 	u64 val;
2713 	int cpu;
2714 
2715 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2716 	aff = compute_common_aff(val);
2717 
2718 	for_each_possible_cpu(cpu) {
2719 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2720 
2721 		if (!base || cpu == smp_processor_id())
2722 			continue;
2723 
2724 		val = gic_read_typer(base + GICR_TYPER);
2725 		if (aff != compute_common_aff(val))
2726 			continue;
2727 
2728 		/*
2729 		 * At this point, we have a victim. This particular CPU
2730 		 * has already booted, and has an affinity that matches
2731 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2732 		 * Make sure we don't write the Z bit in that case.
2733 		 */
2734 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2735 		val &= ~GICR_VPROPBASER_4_1_Z;
2736 
2737 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2738 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2739 
2740 		return val;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
allocate_vpe_l2_table(int cpu,u32 id)2746 static bool allocate_vpe_l2_table(int cpu, u32 id)
2747 {
2748 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2749 	unsigned int psz, esz, idx, npg, gpsz;
2750 	u64 val;
2751 	struct page *page;
2752 	__le64 *table;
2753 
2754 	if (!gic_rdists->has_rvpeid)
2755 		return true;
2756 
2757 	/* Skip non-present CPUs */
2758 	if (!base)
2759 		return true;
2760 
2761 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2762 
2763 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2764 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2765 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2766 
2767 	switch (gpsz) {
2768 	default:
2769 		WARN_ON(1);
2770 		fallthrough;
2771 	case GIC_PAGE_SIZE_4K:
2772 		psz = SZ_4K;
2773 		break;
2774 	case GIC_PAGE_SIZE_16K:
2775 		psz = SZ_16K;
2776 		break;
2777 	case GIC_PAGE_SIZE_64K:
2778 		psz = SZ_64K;
2779 		break;
2780 	}
2781 
2782 	/* Don't allow vpe_id that exceeds single, flat table limit */
2783 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2784 		return (id < (npg * psz / (esz * SZ_8)));
2785 
2786 	/* Compute 1st level table index & check if that exceeds table limit */
2787 	idx = id >> ilog2(psz / (esz * SZ_8));
2788 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2789 		return false;
2790 
2791 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2792 
2793 	/* Allocate memory for 2nd level table */
2794 	if (!table[idx]) {
2795 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2796 		if (!page)
2797 			return false;
2798 
2799 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2800 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2801 			gic_flush_dcache_to_poc(page_address(page), psz);
2802 
2803 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2804 
2805 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2806 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2807 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2808 
2809 		/* Ensure updated table contents are visible to RD hardware */
2810 		dsb(sy);
2811 	}
2812 
2813 	return true;
2814 }
2815 
allocate_vpe_l1_table(void)2816 static int allocate_vpe_l1_table(void)
2817 {
2818 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2819 	u64 val, gpsz, npg, pa;
2820 	unsigned int psz = SZ_64K;
2821 	unsigned int np, epp, esz;
2822 	struct page *page;
2823 
2824 	if (!gic_rdists->has_rvpeid)
2825 		return 0;
2826 
2827 	/*
2828 	 * if VPENDBASER.Valid is set, disable any previously programmed
2829 	 * VPE by setting PendingLast while clearing Valid. This has the
2830 	 * effect of making sure no doorbell will be generated and we can
2831 	 * then safely clear VPROPBASER.Valid.
2832 	 */
2833 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2834 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2835 				      vlpi_base + GICR_VPENDBASER);
2836 
2837 	/*
2838 	 * If we can inherit the configuration from another RD, let's do
2839 	 * so. Otherwise, we have to go through the allocation process. We
2840 	 * assume that all RDs have the exact same requirements, as
2841 	 * nothing will work otherwise.
2842 	 */
2843 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2844 	if (val & GICR_VPROPBASER_4_1_VALID)
2845 		goto out;
2846 
2847 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2848 	if (!gic_data_rdist()->vpe_table_mask)
2849 		return -ENOMEM;
2850 
2851 	val = inherit_vpe_l1_table_from_its();
2852 	if (val & GICR_VPROPBASER_4_1_VALID)
2853 		goto out;
2854 
2855 	/* First probe the page size */
2856 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2857 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2858 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2859 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2860 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2861 
2862 	switch (gpsz) {
2863 	default:
2864 		gpsz = GIC_PAGE_SIZE_4K;
2865 		fallthrough;
2866 	case GIC_PAGE_SIZE_4K:
2867 		psz = SZ_4K;
2868 		break;
2869 	case GIC_PAGE_SIZE_16K:
2870 		psz = SZ_16K;
2871 		break;
2872 	case GIC_PAGE_SIZE_64K:
2873 		psz = SZ_64K;
2874 		break;
2875 	}
2876 
2877 	/*
2878 	 * Start populating the register from scratch, including RO fields
2879 	 * (which we want to print in debug cases...)
2880 	 */
2881 	val = 0;
2882 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2883 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2884 
2885 	/* How many entries per GIC page? */
2886 	esz++;
2887 	epp = psz / (esz * SZ_8);
2888 
2889 	/*
2890 	 * If we need more than just a single L1 page, flag the table
2891 	 * as indirect and compute the number of required L1 pages.
2892 	 */
2893 	if (epp < ITS_MAX_VPEID) {
2894 		int nl2;
2895 
2896 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2897 
2898 		/* Number of L2 pages required to cover the VPEID space */
2899 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2900 
2901 		/* Number of L1 pages to point to the L2 pages */
2902 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2903 	} else {
2904 		npg = 1;
2905 	}
2906 
2907 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2908 
2909 	/* Right, that's the number of CPU pages we need for L1 */
2910 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2911 
2912 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2913 		 np, npg, psz, epp, esz);
2914 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2915 	if (!page)
2916 		return -ENOMEM;
2917 
2918 	gic_data_rdist()->vpe_l1_base = page_address(page);
2919 	pa = virt_to_phys(page_address(page));
2920 	WARN_ON(!IS_ALIGNED(pa, psz));
2921 
2922 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2923 	val |= GICR_VPROPBASER_RaWb;
2924 	val |= GICR_VPROPBASER_InnerShareable;
2925 	val |= GICR_VPROPBASER_4_1_Z;
2926 	val |= GICR_VPROPBASER_4_1_VALID;
2927 
2928 out:
2929 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2931 
2932 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933 		 smp_processor_id(), val,
2934 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2935 
2936 	return 0;
2937 }
2938 
its_alloc_collections(struct its_node * its)2939 static int its_alloc_collections(struct its_node *its)
2940 {
2941 	int i;
2942 
2943 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2944 				   GFP_KERNEL);
2945 	if (!its->collections)
2946 		return -ENOMEM;
2947 
2948 	for (i = 0; i < nr_cpu_ids; i++)
2949 		its->collections[i].target_address = ~0ULL;
2950 
2951 	return 0;
2952 }
2953 
its_allocate_pending_table(gfp_t gfp_flags)2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2955 {
2956 	struct page *pend_page;
2957 
2958 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959 				get_order(LPI_PENDBASE_SZ));
2960 	if (!pend_page)
2961 		return NULL;
2962 
2963 	/* Make sure the GIC will observe the zero-ed page */
2964 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2965 
2966 	return pend_page;
2967 }
2968 
its_free_pending_table(struct page * pt)2969 static void its_free_pending_table(struct page *pt)
2970 {
2971 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2972 }
2973 
2974 /*
2975  * Booting with kdump and LPIs enabled is generally fine. Any other
2976  * case is wrong in the absence of firmware/EFI support.
2977  */
enabled_lpis_allowed(void)2978 static bool enabled_lpis_allowed(void)
2979 {
2980 	phys_addr_t addr;
2981 	u64 val;
2982 
2983 	/* Check whether the property table is in a reserved region */
2984 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985 	addr = val & GENMASK_ULL(51, 12);
2986 
2987 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2988 }
2989 
allocate_lpi_tables(void)2990 static int __init allocate_lpi_tables(void)
2991 {
2992 	u64 val;
2993 	int err, cpu;
2994 
2995 	/*
2996 	 * If LPIs are enabled while we run this from the boot CPU,
2997 	 * flag the RD tables as pre-allocated if the stars do align.
2998 	 */
2999 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003 		pr_info("GICv3: Using preallocated redistributor tables\n");
3004 	}
3005 
3006 	err = its_setup_lpi_prop_table();
3007 	if (err)
3008 		return err;
3009 
3010 	/*
3011 	 * We allocate all the pending tables anyway, as we may have a
3012 	 * mix of RDs that have had LPIs enabled, and some that
3013 	 * don't. We'll free the unused ones as each CPU comes online.
3014 	 */
3015 	for_each_possible_cpu(cpu) {
3016 		struct page *pend_page;
3017 
3018 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3019 		if (!pend_page) {
3020 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3021 			return -ENOMEM;
3022 		}
3023 
3024 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3025 	}
3026 
3027 	return 0;
3028 }
3029 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3030 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3031 {
3032 	u32 count = 1000000;	/* 1s! */
3033 	bool clean;
3034 	u64 val;
3035 
3036 	val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3037 	val &= ~GICR_VPENDBASER_Valid;
3038 	val &= ~clr;
3039 	val |= set;
3040 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3041 
3042 	do {
3043 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3044 		clean = !(val & GICR_VPENDBASER_Dirty);
3045 		if (!clean) {
3046 			count--;
3047 			cpu_relax();
3048 			udelay(1);
3049 		}
3050 	} while (!clean && count);
3051 
3052 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3053 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3054 		val |= GICR_VPENDBASER_PendingLast;
3055 	}
3056 
3057 	return val;
3058 }
3059 
its_cpu_init_lpis(void)3060 static void its_cpu_init_lpis(void)
3061 {
3062 	void __iomem *rbase = gic_data_rdist_rd_base();
3063 	struct page *pend_page;
3064 	phys_addr_t paddr;
3065 	u64 val, tmp;
3066 
3067 	if (gic_data_rdist()->lpi_enabled)
3068 		return;
3069 
3070 	val = readl_relaxed(rbase + GICR_CTLR);
3071 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3072 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3073 		/*
3074 		 * Check that we get the same property table on all
3075 		 * RDs. If we don't, this is hopeless.
3076 		 */
3077 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3078 		paddr &= GENMASK_ULL(51, 12);
3079 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3080 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3081 
3082 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3083 		paddr &= GENMASK_ULL(51, 16);
3084 
3085 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3086 		its_free_pending_table(gic_data_rdist()->pend_page);
3087 		gic_data_rdist()->pend_page = NULL;
3088 
3089 		goto out;
3090 	}
3091 
3092 	pend_page = gic_data_rdist()->pend_page;
3093 	paddr = page_to_phys(pend_page);
3094 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3095 
3096 	/* set PROPBASE */
3097 	val = (gic_rdists->prop_table_pa |
3098 	       GICR_PROPBASER_InnerShareable |
3099 	       GICR_PROPBASER_RaWaWb |
3100 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3101 
3102 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3103 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104 
3105 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3106 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3107 			/*
3108 			 * The HW reports non-shareable, we must
3109 			 * remove the cacheability attributes as
3110 			 * well.
3111 			 */
3112 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3113 				 GICR_PROPBASER_CACHEABILITY_MASK);
3114 			val |= GICR_PROPBASER_nC;
3115 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3116 		}
3117 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3118 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3119 	}
3120 
3121 	/* set PENDBASE */
3122 	val = (page_to_phys(pend_page) |
3123 	       GICR_PENDBASER_InnerShareable |
3124 	       GICR_PENDBASER_RaWaWb);
3125 
3126 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3127 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3128 
3129 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3130 		/*
3131 		 * The HW reports non-shareable, we must remove the
3132 		 * cacheability attributes as well.
3133 		 */
3134 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3135 			 GICR_PENDBASER_CACHEABILITY_MASK);
3136 		val |= GICR_PENDBASER_nC;
3137 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138 	}
3139 
3140 	/* Enable LPIs */
3141 	val = readl_relaxed(rbase + GICR_CTLR);
3142 	val |= GICR_CTLR_ENABLE_LPIS;
3143 	writel_relaxed(val, rbase + GICR_CTLR);
3144 
3145 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3146 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3147 
3148 		/*
3149 		 * It's possible for CPU to receive VLPIs before it is
3150 		 * scheduled as a vPE, especially for the first CPU, and the
3151 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3152 		 * as out of range and dropped by GIC.
3153 		 * So we initialize IDbits to known value to avoid VLPI drop.
3154 		 */
3155 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3156 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3157 			smp_processor_id(), val);
3158 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3159 
3160 		/*
3161 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3162 		 * ancient programming gets left in and has possibility of
3163 		 * corrupting memory.
3164 		 */
3165 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3166 	}
3167 
3168 	if (allocate_vpe_l1_table()) {
3169 		/*
3170 		 * If the allocation has failed, we're in massive trouble.
3171 		 * Disable direct injection, and pray that no VM was
3172 		 * already running...
3173 		 */
3174 		gic_rdists->has_rvpeid = false;
3175 		gic_rdists->has_vlpis = false;
3176 	}
3177 
3178 	/* Make sure the GIC has seen the above */
3179 	dsb(sy);
3180 out:
3181 	gic_data_rdist()->lpi_enabled = true;
3182 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3183 		smp_processor_id(),
3184 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3185 		&paddr);
3186 }
3187 
its_cpu_init_collection(struct its_node * its)3188 static void its_cpu_init_collection(struct its_node *its)
3189 {
3190 	int cpu = smp_processor_id();
3191 	u64 target;
3192 
3193 	/* avoid cross node collections and its mapping */
3194 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3195 		struct device_node *cpu_node;
3196 
3197 		cpu_node = of_get_cpu_node(cpu, NULL);
3198 		if (its->numa_node != NUMA_NO_NODE &&
3199 			its->numa_node != of_node_to_nid(cpu_node))
3200 			return;
3201 	}
3202 
3203 	/*
3204 	 * We now have to bind each collection to its target
3205 	 * redistributor.
3206 	 */
3207 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3208 		/*
3209 		 * This ITS wants the physical address of the
3210 		 * redistributor.
3211 		 */
3212 		target = gic_data_rdist()->phys_base;
3213 	} else {
3214 		/* This ITS wants a linear CPU number. */
3215 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3216 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3217 	}
3218 
3219 	/* Perform collection mapping */
3220 	its->collections[cpu].target_address = target;
3221 	its->collections[cpu].col_id = cpu;
3222 
3223 	its_send_mapc(its, &its->collections[cpu], 1);
3224 	its_send_invall(its, &its->collections[cpu]);
3225 }
3226 
its_cpu_init_collections(void)3227 static void its_cpu_init_collections(void)
3228 {
3229 	struct its_node *its;
3230 
3231 	raw_spin_lock(&its_lock);
3232 
3233 	list_for_each_entry(its, &its_nodes, entry)
3234 		its_cpu_init_collection(its);
3235 
3236 	raw_spin_unlock(&its_lock);
3237 }
3238 
its_find_device(struct its_node * its,u32 dev_id)3239 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3240 {
3241 	struct its_device *its_dev = NULL, *tmp;
3242 	unsigned long flags;
3243 
3244 	raw_spin_lock_irqsave(&its->lock, flags);
3245 
3246 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3247 		if (tmp->device_id == dev_id) {
3248 			its_dev = tmp;
3249 			break;
3250 		}
3251 	}
3252 
3253 	raw_spin_unlock_irqrestore(&its->lock, flags);
3254 
3255 	return its_dev;
3256 }
3257 
its_get_baser(struct its_node * its,u32 type)3258 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3259 {
3260 	int i;
3261 
3262 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3263 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3264 			return &its->tables[i];
3265 	}
3266 
3267 	return NULL;
3268 }
3269 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3270 static bool its_alloc_table_entry(struct its_node *its,
3271 				  struct its_baser *baser, u32 id)
3272 {
3273 	struct page *page;
3274 	u32 esz, idx;
3275 	__le64 *table;
3276 
3277 	/* Don't allow device id that exceeds single, flat table limit */
3278 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3279 	if (!(baser->val & GITS_BASER_INDIRECT))
3280 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3281 
3282 	/* Compute 1st level table index & check if that exceeds table limit */
3283 	idx = id >> ilog2(baser->psz / esz);
3284 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3285 		return false;
3286 
3287 	table = baser->base;
3288 
3289 	/* Allocate memory for 2nd level table */
3290 	if (!table[idx]) {
3291 		page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3292 					get_order(baser->psz));
3293 		if (!page)
3294 			return false;
3295 
3296 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3297 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3298 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3299 
3300 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3301 
3302 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3303 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3304 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3305 
3306 		/* Ensure updated table contents are visible to ITS hardware */
3307 		dsb(sy);
3308 	}
3309 
3310 	return true;
3311 }
3312 
its_alloc_device_table(struct its_node * its,u32 dev_id)3313 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3314 {
3315 	struct its_baser *baser;
3316 
3317 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3318 
3319 	/* Don't allow device id that exceeds ITS hardware limit */
3320 	if (!baser)
3321 		return (ilog2(dev_id) < device_ids(its));
3322 
3323 	return its_alloc_table_entry(its, baser, dev_id);
3324 }
3325 
its_alloc_vpe_table(u32 vpe_id)3326 static bool its_alloc_vpe_table(u32 vpe_id)
3327 {
3328 	struct its_node *its;
3329 	int cpu;
3330 
3331 	/*
3332 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3333 	 * could try and only do it on ITSs corresponding to devices
3334 	 * that have interrupts targeted at this VPE, but the
3335 	 * complexity becomes crazy (and you have tons of memory
3336 	 * anyway, right?).
3337 	 */
3338 	list_for_each_entry(its, &its_nodes, entry) {
3339 		struct its_baser *baser;
3340 
3341 		if (!is_v4(its))
3342 			continue;
3343 
3344 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3345 		if (!baser)
3346 			return false;
3347 
3348 		if (!its_alloc_table_entry(its, baser, vpe_id))
3349 			return false;
3350 	}
3351 
3352 	/* Non v4.1? No need to iterate RDs and go back early. */
3353 	if (!gic_rdists->has_rvpeid)
3354 		return true;
3355 
3356 	/*
3357 	 * Make sure the L2 tables are allocated for all copies of
3358 	 * the L1 table on *all* v4.1 RDs.
3359 	 */
3360 	for_each_possible_cpu(cpu) {
3361 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3362 			return false;
3363 	}
3364 
3365 	return true;
3366 }
3367 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3368 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3369 					    int nvecs, bool alloc_lpis)
3370 {
3371 	struct its_device *dev;
3372 	unsigned long *lpi_map = NULL;
3373 	unsigned long flags;
3374 	u16 *col_map = NULL;
3375 	void *itt;
3376 	int lpi_base;
3377 	int nr_lpis;
3378 	int nr_ites;
3379 	int sz;
3380 
3381 	if (!its_alloc_device_table(its, dev_id))
3382 		return NULL;
3383 
3384 	if (WARN_ON(!is_power_of_2(nvecs)))
3385 		nvecs = roundup_pow_of_two(nvecs);
3386 
3387 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3388 	/*
3389 	 * Even if the device wants a single LPI, the ITT must be
3390 	 * sized as a power of two (and you need at least one bit...).
3391 	 */
3392 	nr_ites = max(2, nvecs);
3393 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3394 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3395 	itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3396 	if (alloc_lpis) {
3397 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3398 		if (lpi_map)
3399 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3400 					  GFP_KERNEL);
3401 	} else {
3402 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3403 		nr_lpis = 0;
3404 		lpi_base = 0;
3405 	}
3406 
3407 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3408 		kfree(dev);
3409 		kfree(itt);
3410 		kfree(lpi_map);
3411 		kfree(col_map);
3412 		return NULL;
3413 	}
3414 
3415 	gic_flush_dcache_to_poc(itt, sz);
3416 
3417 	dev->its = its;
3418 	dev->itt = itt;
3419 	dev->nr_ites = nr_ites;
3420 	dev->event_map.lpi_map = lpi_map;
3421 	dev->event_map.col_map = col_map;
3422 	dev->event_map.lpi_base = lpi_base;
3423 	dev->event_map.nr_lpis = nr_lpis;
3424 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3425 	dev->device_id = dev_id;
3426 	INIT_LIST_HEAD(&dev->entry);
3427 
3428 	raw_spin_lock_irqsave(&its->lock, flags);
3429 	list_add(&dev->entry, &its->its_device_list);
3430 	raw_spin_unlock_irqrestore(&its->lock, flags);
3431 
3432 	/* Map device to its ITT */
3433 	its_send_mapd(dev, 1);
3434 
3435 	return dev;
3436 }
3437 
its_free_device(struct its_device * its_dev)3438 static void its_free_device(struct its_device *its_dev)
3439 {
3440 	unsigned long flags;
3441 
3442 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3443 	list_del(&its_dev->entry);
3444 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3445 	kfree(its_dev->event_map.col_map);
3446 	kfree(its_dev->itt);
3447 	kfree(its_dev);
3448 }
3449 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3450 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3451 {
3452 	int idx;
3453 
3454 	/* Find a free LPI region in lpi_map and allocate them. */
3455 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3456 				      dev->event_map.nr_lpis,
3457 				      get_count_order(nvecs));
3458 	if (idx < 0)
3459 		return -ENOSPC;
3460 
3461 	*hwirq = dev->event_map.lpi_base + idx;
3462 
3463 	return 0;
3464 }
3465 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3466 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3467 			   int nvec, msi_alloc_info_t *info)
3468 {
3469 	struct its_node *its;
3470 	struct its_device *its_dev;
3471 	struct msi_domain_info *msi_info;
3472 	u32 dev_id;
3473 	int err = 0;
3474 
3475 	/*
3476 	 * We ignore "dev" entirely, and rely on the dev_id that has
3477 	 * been passed via the scratchpad. This limits this domain's
3478 	 * usefulness to upper layers that definitely know that they
3479 	 * are built on top of the ITS.
3480 	 */
3481 	dev_id = info->scratchpad[0].ul;
3482 
3483 	msi_info = msi_get_domain_info(domain);
3484 	its = msi_info->data;
3485 
3486 	if (!gic_rdists->has_direct_lpi &&
3487 	    vpe_proxy.dev &&
3488 	    vpe_proxy.dev->its == its &&
3489 	    dev_id == vpe_proxy.dev->device_id) {
3490 		/* Bad luck. Get yourself a better implementation */
3491 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3492 			  dev_id);
3493 		return -EINVAL;
3494 	}
3495 
3496 	mutex_lock(&its->dev_alloc_lock);
3497 	its_dev = its_find_device(its, dev_id);
3498 	if (its_dev) {
3499 		/*
3500 		 * We already have seen this ID, probably through
3501 		 * another alias (PCI bridge of some sort). No need to
3502 		 * create the device.
3503 		 */
3504 		its_dev->shared = true;
3505 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3506 		goto out;
3507 	}
3508 
3509 	its_dev = its_create_device(its, dev_id, nvec, true);
3510 	if (!its_dev) {
3511 		err = -ENOMEM;
3512 		goto out;
3513 	}
3514 
3515 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3516 out:
3517 	mutex_unlock(&its->dev_alloc_lock);
3518 	info->scratchpad[0].ptr = its_dev;
3519 	return err;
3520 }
3521 
3522 static struct msi_domain_ops its_msi_domain_ops = {
3523 	.msi_prepare	= its_msi_prepare,
3524 };
3525 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3526 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3527 				    unsigned int virq,
3528 				    irq_hw_number_t hwirq)
3529 {
3530 	struct irq_fwspec fwspec;
3531 
3532 	if (irq_domain_get_of_node(domain->parent)) {
3533 		fwspec.fwnode = domain->parent->fwnode;
3534 		fwspec.param_count = 3;
3535 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3536 		fwspec.param[1] = hwirq;
3537 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3538 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3539 		fwspec.fwnode = domain->parent->fwnode;
3540 		fwspec.param_count = 2;
3541 		fwspec.param[0] = hwirq;
3542 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3543 	} else {
3544 		return -EINVAL;
3545 	}
3546 
3547 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3548 }
3549 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3550 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3551 				unsigned int nr_irqs, void *args)
3552 {
3553 	msi_alloc_info_t *info = args;
3554 	struct its_device *its_dev = info->scratchpad[0].ptr;
3555 	struct its_node *its = its_dev->its;
3556 	struct irq_data *irqd;
3557 	irq_hw_number_t hwirq;
3558 	int err;
3559 	int i;
3560 
3561 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3562 	if (err)
3563 		return err;
3564 
3565 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3566 	if (err)
3567 		return err;
3568 
3569 	for (i = 0; i < nr_irqs; i++) {
3570 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3571 		if (err)
3572 			return err;
3573 
3574 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3575 					      hwirq + i, &its_irq_chip, its_dev);
3576 		irqd = irq_get_irq_data(virq + i);
3577 		irqd_set_single_target(irqd);
3578 		irqd_set_affinity_on_activate(irqd);
3579 		pr_debug("ID:%d pID:%d vID:%d\n",
3580 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3581 			 (int)(hwirq + i), virq + i);
3582 	}
3583 
3584 	return 0;
3585 }
3586 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3587 static int its_irq_domain_activate(struct irq_domain *domain,
3588 				   struct irq_data *d, bool reserve)
3589 {
3590 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3591 	u32 event = its_get_event_id(d);
3592 	int cpu;
3593 
3594 	cpu = its_select_cpu(d, cpu_online_mask);
3595 	if (cpu < 0 || cpu >= nr_cpu_ids)
3596 		return -EINVAL;
3597 
3598 	its_inc_lpi_count(d, cpu);
3599 	its_dev->event_map.col_map[event] = cpu;
3600 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3601 
3602 	/* Map the GIC IRQ and event to the device */
3603 	its_send_mapti(its_dev, d->hwirq, event);
3604 	return 0;
3605 }
3606 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3607 static void its_irq_domain_deactivate(struct irq_domain *domain,
3608 				      struct irq_data *d)
3609 {
3610 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3611 	u32 event = its_get_event_id(d);
3612 
3613 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3614 	/* Stop the delivery of interrupts */
3615 	its_send_discard(its_dev, event);
3616 }
3617 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3618 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3619 				unsigned int nr_irqs)
3620 {
3621 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3622 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3623 	struct its_node *its = its_dev->its;
3624 	int i;
3625 
3626 	bitmap_release_region(its_dev->event_map.lpi_map,
3627 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3628 			      get_count_order(nr_irqs));
3629 
3630 	for (i = 0; i < nr_irqs; i++) {
3631 		struct irq_data *data = irq_domain_get_irq_data(domain,
3632 								virq + i);
3633 		/* Nuke the entry in the domain */
3634 		irq_domain_reset_irq_data(data);
3635 	}
3636 
3637 	mutex_lock(&its->dev_alloc_lock);
3638 
3639 	/*
3640 	 * If all interrupts have been freed, start mopping the
3641 	 * floor. This is conditioned on the device not being shared.
3642 	 */
3643 	if (!its_dev->shared &&
3644 	    bitmap_empty(its_dev->event_map.lpi_map,
3645 			 its_dev->event_map.nr_lpis)) {
3646 		its_lpi_free(its_dev->event_map.lpi_map,
3647 			     its_dev->event_map.lpi_base,
3648 			     its_dev->event_map.nr_lpis);
3649 
3650 		/* Unmap device/itt */
3651 		its_send_mapd(its_dev, 0);
3652 		its_free_device(its_dev);
3653 	}
3654 
3655 	mutex_unlock(&its->dev_alloc_lock);
3656 
3657 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3658 }
3659 
3660 static const struct irq_domain_ops its_domain_ops = {
3661 	.alloc			= its_irq_domain_alloc,
3662 	.free			= its_irq_domain_free,
3663 	.activate		= its_irq_domain_activate,
3664 	.deactivate		= its_irq_domain_deactivate,
3665 };
3666 
3667 /*
3668  * This is insane.
3669  *
3670  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3671  * likely), the only way to perform an invalidate is to use a fake
3672  * device to issue an INV command, implying that the LPI has first
3673  * been mapped to some event on that device. Since this is not exactly
3674  * cheap, we try to keep that mapping around as long as possible, and
3675  * only issue an UNMAP if we're short on available slots.
3676  *
3677  * Broken by design(tm).
3678  *
3679  * GICv4.1, on the other hand, mandates that we're able to invalidate
3680  * by writing to a MMIO register. It doesn't implement the whole of
3681  * DirectLPI, but that's good enough. And most of the time, we don't
3682  * even have to invalidate anything, as the redistributor can be told
3683  * whether to generate a doorbell or not (we thus leave it enabled,
3684  * always).
3685  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3686 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3687 {
3688 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3689 	if (gic_rdists->has_rvpeid)
3690 		return;
3691 
3692 	/* Already unmapped? */
3693 	if (vpe->vpe_proxy_event == -1)
3694 		return;
3695 
3696 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3697 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3698 
3699 	/*
3700 	 * We don't track empty slots at all, so let's move the
3701 	 * next_victim pointer if we can quickly reuse that slot
3702 	 * instead of nuking an existing entry. Not clear that this is
3703 	 * always a win though, and this might just generate a ripple
3704 	 * effect... Let's just hope VPEs don't migrate too often.
3705 	 */
3706 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3707 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3708 
3709 	vpe->vpe_proxy_event = -1;
3710 }
3711 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3712 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3713 {
3714 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3715 	if (gic_rdists->has_rvpeid)
3716 		return;
3717 
3718 	if (!gic_rdists->has_direct_lpi) {
3719 		unsigned long flags;
3720 
3721 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3722 		its_vpe_db_proxy_unmap_locked(vpe);
3723 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3724 	}
3725 }
3726 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3728 {
3729 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 	if (gic_rdists->has_rvpeid)
3731 		return;
3732 
3733 	/* Already mapped? */
3734 	if (vpe->vpe_proxy_event != -1)
3735 		return;
3736 
3737 	/* This slot was already allocated. Kick the other VPE out. */
3738 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3739 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3740 
3741 	/* Map the new VPE instead */
3742 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3743 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3744 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3745 
3746 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3747 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3748 }
3749 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3750 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3751 {
3752 	unsigned long flags;
3753 	struct its_collection *target_col;
3754 
3755 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 	if (gic_rdists->has_rvpeid)
3757 		return;
3758 
3759 	if (gic_rdists->has_direct_lpi) {
3760 		void __iomem *rdbase;
3761 
3762 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3763 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3764 		wait_for_syncr(rdbase);
3765 
3766 		return;
3767 	}
3768 
3769 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3770 
3771 	its_vpe_db_proxy_map_locked(vpe);
3772 
3773 	target_col = &vpe_proxy.dev->its->collections[to];
3774 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3775 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3776 
3777 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3778 }
3779 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3780 static int its_vpe_set_affinity(struct irq_data *d,
3781 				const struct cpumask *mask_val,
3782 				bool force)
3783 {
3784 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3785 	struct cpumask common, *table_mask;
3786 	unsigned long flags;
3787 	int from, cpu;
3788 
3789 	/*
3790 	 * Check if we're racing against a VPE being destroyed, for
3791 	 * which we don't want to allow a VMOVP.
3792 	 */
3793 	if (!atomic_read(&vpe->vmapp_count)) {
3794 		if (gic_requires_eager_mapping())
3795 			return -EINVAL;
3796 
3797 		/*
3798 		 * If we lazily map the VPEs, this isn't an error and
3799 		 * we can exit cleanly.
3800 		 */
3801 		cpu = cpumask_first(mask_val);
3802 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3803 		return IRQ_SET_MASK_OK_DONE;
3804 	}
3805 
3806 	/*
3807 	 * Changing affinity is mega expensive, so let's be as lazy as
3808 	 * we can and only do it if we really have to. Also, if mapped
3809 	 * into the proxy device, we need to move the doorbell
3810 	 * interrupt to its new location.
3811 	 *
3812 	 * Another thing is that changing the affinity of a vPE affects
3813 	 * *other interrupts* such as all the vLPIs that are routed to
3814 	 * this vPE. This means that the irq_desc lock is not enough to
3815 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3816 	 * during the update, hence the lock below which must also be
3817 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3818 	 */
3819 	from = vpe_to_cpuid_lock(vpe, &flags);
3820 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3821 
3822 	/*
3823 	 * If we are offered another CPU in the same GICv4.1 ITS
3824 	 * affinity, pick this one. Otherwise, any CPU will do.
3825 	 */
3826 	if (table_mask && cpumask_and(&common, mask_val, table_mask))
3827 		cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3828 	else
3829 		cpu = cpumask_first(mask_val);
3830 
3831 	if (from == cpu)
3832 		goto out;
3833 
3834 	vpe->col_idx = cpu;
3835 
3836 	its_send_vmovp(vpe);
3837 	its_vpe_db_proxy_move(vpe, from, cpu);
3838 
3839 out:
3840 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3841 	vpe_to_cpuid_unlock(vpe, flags);
3842 
3843 	return IRQ_SET_MASK_OK_DONE;
3844 }
3845 
its_wait_vpt_parse_complete(void)3846 static void its_wait_vpt_parse_complete(void)
3847 {
3848 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3849 	u64 val;
3850 
3851 	if (!gic_rdists->has_vpend_valid_dirty)
3852 		return;
3853 
3854 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3855 						       val,
3856 						       !(val & GICR_VPENDBASER_Dirty),
3857 						       10, 500));
3858 }
3859 
its_vpe_schedule(struct its_vpe * vpe)3860 static void its_vpe_schedule(struct its_vpe *vpe)
3861 {
3862 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 	u64 val;
3864 
3865 	/* Schedule the VPE */
3866 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3867 		GENMASK_ULL(51, 12);
3868 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3869 	val |= GICR_VPROPBASER_RaWb;
3870 	val |= GICR_VPROPBASER_InnerShareable;
3871 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3872 
3873 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3874 		GENMASK_ULL(51, 16);
3875 	val |= GICR_VPENDBASER_RaWaWb;
3876 	val |= GICR_VPENDBASER_InnerShareable;
3877 	/*
3878 	 * There is no good way of finding out if the pending table is
3879 	 * empty as we can race against the doorbell interrupt very
3880 	 * easily. So in the end, vpe->pending_last is only an
3881 	 * indication that the vcpu has something pending, not one
3882 	 * that the pending table is empty. A good implementation
3883 	 * would be able to read its coarse map pretty quickly anyway,
3884 	 * making this a tolerable issue.
3885 	 */
3886 	val |= GICR_VPENDBASER_PendingLast;
3887 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3888 	val |= GICR_VPENDBASER_Valid;
3889 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3890 
3891 	its_wait_vpt_parse_complete();
3892 }
3893 
its_vpe_deschedule(struct its_vpe * vpe)3894 static void its_vpe_deschedule(struct its_vpe *vpe)
3895 {
3896 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3897 	u64 val;
3898 
3899 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3900 
3901 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3902 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3903 }
3904 
its_vpe_invall(struct its_vpe * vpe)3905 static void its_vpe_invall(struct its_vpe *vpe)
3906 {
3907 	struct its_node *its;
3908 
3909 	list_for_each_entry(its, &its_nodes, entry) {
3910 		if (!is_v4(its))
3911 			continue;
3912 
3913 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3914 			continue;
3915 
3916 		/*
3917 		 * Sending a VINVALL to a single ITS is enough, as all
3918 		 * we need is to reach the redistributors.
3919 		 */
3920 		its_send_vinvall(its, vpe);
3921 		return;
3922 	}
3923 }
3924 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3925 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3926 {
3927 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3928 	struct its_cmd_info *info = vcpu_info;
3929 
3930 	switch (info->cmd_type) {
3931 	case SCHEDULE_VPE:
3932 		its_vpe_schedule(vpe);
3933 		return 0;
3934 
3935 	case DESCHEDULE_VPE:
3936 		its_vpe_deschedule(vpe);
3937 		return 0;
3938 
3939 	case INVALL_VPE:
3940 		its_vpe_invall(vpe);
3941 		return 0;
3942 
3943 	default:
3944 		return -EINVAL;
3945 	}
3946 }
3947 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3948 static void its_vpe_send_cmd(struct its_vpe *vpe,
3949 			     void (*cmd)(struct its_device *, u32))
3950 {
3951 	unsigned long flags;
3952 
3953 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3954 
3955 	its_vpe_db_proxy_map_locked(vpe);
3956 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3957 
3958 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3959 }
3960 
its_vpe_send_inv(struct irq_data * d)3961 static void its_vpe_send_inv(struct irq_data *d)
3962 {
3963 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3964 
3965 	if (gic_rdists->has_direct_lpi)
3966 		__direct_lpi_inv(d, d->parent_data->hwirq);
3967 	else
3968 		its_vpe_send_cmd(vpe, its_send_inv);
3969 }
3970 
its_vpe_mask_irq(struct irq_data * d)3971 static void its_vpe_mask_irq(struct irq_data *d)
3972 {
3973 	/*
3974 	 * We need to unmask the LPI, which is described by the parent
3975 	 * irq_data. Instead of calling into the parent (which won't
3976 	 * exactly do the right thing, let's simply use the
3977 	 * parent_data pointer. Yes, I'm naughty.
3978 	 */
3979 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3980 	its_vpe_send_inv(d);
3981 }
3982 
its_vpe_unmask_irq(struct irq_data * d)3983 static void its_vpe_unmask_irq(struct irq_data *d)
3984 {
3985 	/* Same hack as above... */
3986 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3987 	its_vpe_send_inv(d);
3988 }
3989 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3990 static int its_vpe_set_irqchip_state(struct irq_data *d,
3991 				     enum irqchip_irq_state which,
3992 				     bool state)
3993 {
3994 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3995 
3996 	if (which != IRQCHIP_STATE_PENDING)
3997 		return -EINVAL;
3998 
3999 	if (gic_rdists->has_direct_lpi) {
4000 		void __iomem *rdbase;
4001 
4002 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4003 		if (state) {
4004 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4005 		} else {
4006 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4007 			wait_for_syncr(rdbase);
4008 		}
4009 	} else {
4010 		if (state)
4011 			its_vpe_send_cmd(vpe, its_send_int);
4012 		else
4013 			its_vpe_send_cmd(vpe, its_send_clear);
4014 	}
4015 
4016 	return 0;
4017 }
4018 
its_vpe_retrigger(struct irq_data * d)4019 static int its_vpe_retrigger(struct irq_data *d)
4020 {
4021 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4022 }
4023 
4024 static struct irq_chip its_vpe_irq_chip = {
4025 	.name			= "GICv4-vpe",
4026 	.irq_mask		= its_vpe_mask_irq,
4027 	.irq_unmask		= its_vpe_unmask_irq,
4028 	.irq_eoi		= irq_chip_eoi_parent,
4029 	.irq_set_affinity	= its_vpe_set_affinity,
4030 	.irq_retrigger		= its_vpe_retrigger,
4031 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4032 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4033 };
4034 
find_4_1_its(void)4035 static struct its_node *find_4_1_its(void)
4036 {
4037 	static struct its_node *its = NULL;
4038 
4039 	if (!its) {
4040 		list_for_each_entry(its, &its_nodes, entry) {
4041 			if (is_v4_1(its))
4042 				return its;
4043 		}
4044 
4045 		/* Oops? */
4046 		its = NULL;
4047 	}
4048 
4049 	return its;
4050 }
4051 
its_vpe_4_1_send_inv(struct irq_data * d)4052 static void its_vpe_4_1_send_inv(struct irq_data *d)
4053 {
4054 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4055 	struct its_node *its;
4056 
4057 	/*
4058 	 * GICv4.1 wants doorbells to be invalidated using the
4059 	 * INVDB command in order to be broadcast to all RDs. Send
4060 	 * it to the first valid ITS, and let the HW do its magic.
4061 	 */
4062 	its = find_4_1_its();
4063 	if (its)
4064 		its_send_invdb(its, vpe);
4065 }
4066 
its_vpe_4_1_mask_irq(struct irq_data * d)4067 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4068 {
4069 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4070 	its_vpe_4_1_send_inv(d);
4071 }
4072 
its_vpe_4_1_unmask_irq(struct irq_data * d)4073 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4074 {
4075 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4076 	its_vpe_4_1_send_inv(d);
4077 }
4078 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4079 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4080 				 struct its_cmd_info *info)
4081 {
4082 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4083 	u64 val = 0;
4084 
4085 	/* Schedule the VPE */
4086 	val |= GICR_VPENDBASER_Valid;
4087 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4088 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4089 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4090 
4091 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4092 
4093 	its_wait_vpt_parse_complete();
4094 }
4095 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4096 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4097 				   struct its_cmd_info *info)
4098 {
4099 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4100 	u64 val;
4101 
4102 	if (info->req_db) {
4103 		unsigned long flags;
4104 
4105 		/*
4106 		 * vPE is going to block: make the vPE non-resident with
4107 		 * PendingLast clear and DB set. The GIC guarantees that if
4108 		 * we read-back PendingLast clear, then a doorbell will be
4109 		 * delivered when an interrupt comes.
4110 		 *
4111 		 * Note the locking to deal with the concurrent update of
4112 		 * pending_last from the doorbell interrupt handler that can
4113 		 * run concurrently.
4114 		 */
4115 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4116 		val = its_clear_vpend_valid(vlpi_base,
4117 					    GICR_VPENDBASER_PendingLast,
4118 					    GICR_VPENDBASER_4_1_DB);
4119 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4120 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4121 	} else {
4122 		/*
4123 		 * We're not blocking, so just make the vPE non-resident
4124 		 * with PendingLast set, indicating that we'll be back.
4125 		 */
4126 		val = its_clear_vpend_valid(vlpi_base,
4127 					    0,
4128 					    GICR_VPENDBASER_PendingLast);
4129 		vpe->pending_last = true;
4130 	}
4131 }
4132 
its_vpe_4_1_invall(struct its_vpe * vpe)4133 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4134 {
4135 	void __iomem *rdbase;
4136 	unsigned long flags;
4137 	u64 val;
4138 	int cpu;
4139 
4140 	val  = GICR_INVALLR_V;
4141 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4142 
4143 	/* Target the redistributor this vPE is currently known on */
4144 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4145 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4146 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4147 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4148 
4149 	wait_for_syncr(rdbase);
4150 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4151 	vpe_to_cpuid_unlock(vpe, flags);
4152 }
4153 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4154 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4155 {
4156 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4157 	struct its_cmd_info *info = vcpu_info;
4158 
4159 	switch (info->cmd_type) {
4160 	case SCHEDULE_VPE:
4161 		its_vpe_4_1_schedule(vpe, info);
4162 		return 0;
4163 
4164 	case DESCHEDULE_VPE:
4165 		its_vpe_4_1_deschedule(vpe, info);
4166 		return 0;
4167 
4168 	case INVALL_VPE:
4169 		its_vpe_4_1_invall(vpe);
4170 		return 0;
4171 
4172 	default:
4173 		return -EINVAL;
4174 	}
4175 }
4176 
4177 static struct irq_chip its_vpe_4_1_irq_chip = {
4178 	.name			= "GICv4.1-vpe",
4179 	.irq_mask		= its_vpe_4_1_mask_irq,
4180 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4181 	.irq_eoi		= irq_chip_eoi_parent,
4182 	.irq_set_affinity	= its_vpe_set_affinity,
4183 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4184 };
4185 
its_configure_sgi(struct irq_data * d,bool clear)4186 static void its_configure_sgi(struct irq_data *d, bool clear)
4187 {
4188 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4189 	struct its_cmd_desc desc;
4190 
4191 	desc.its_vsgi_cmd.vpe = vpe;
4192 	desc.its_vsgi_cmd.sgi = d->hwirq;
4193 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4194 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4195 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4196 	desc.its_vsgi_cmd.clear = clear;
4197 
4198 	/*
4199 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4200 	 * destination VPE is mapped there. Since we map them eagerly at
4201 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4202 	 */
4203 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4204 }
4205 
its_sgi_mask_irq(struct irq_data * d)4206 static void its_sgi_mask_irq(struct irq_data *d)
4207 {
4208 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209 
4210 	vpe->sgi_config[d->hwirq].enabled = false;
4211 	its_configure_sgi(d, false);
4212 }
4213 
its_sgi_unmask_irq(struct irq_data * d)4214 static void its_sgi_unmask_irq(struct irq_data *d)
4215 {
4216 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217 
4218 	vpe->sgi_config[d->hwirq].enabled = true;
4219 	its_configure_sgi(d, false);
4220 }
4221 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4222 static int its_sgi_set_affinity(struct irq_data *d,
4223 				const struct cpumask *mask_val,
4224 				bool force)
4225 {
4226 	/*
4227 	 * There is no notion of affinity for virtual SGIs, at least
4228 	 * not on the host (since they can only be targeting a vPE).
4229 	 * Tell the kernel we've done whatever it asked for.
4230 	 */
4231 	irq_data_update_effective_affinity(d, mask_val);
4232 	return IRQ_SET_MASK_OK;
4233 }
4234 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4235 static int its_sgi_set_irqchip_state(struct irq_data *d,
4236 				     enum irqchip_irq_state which,
4237 				     bool state)
4238 {
4239 	if (which != IRQCHIP_STATE_PENDING)
4240 		return -EINVAL;
4241 
4242 	if (state) {
4243 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 		struct its_node *its = find_4_1_its();
4245 		u64 val;
4246 
4247 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4248 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4249 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4250 	} else {
4251 		its_configure_sgi(d, true);
4252 	}
4253 
4254 	return 0;
4255 }
4256 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4257 static int its_sgi_get_irqchip_state(struct irq_data *d,
4258 				     enum irqchip_irq_state which, bool *val)
4259 {
4260 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4261 	void __iomem *base;
4262 	unsigned long flags;
4263 	u32 count = 1000000;	/* 1s! */
4264 	u32 status;
4265 	int cpu;
4266 
4267 	if (which != IRQCHIP_STATE_PENDING)
4268 		return -EINVAL;
4269 
4270 	/*
4271 	 * Locking galore! We can race against two different events:
4272 	 *
4273 	 * - Concurrent vPE affinity change: we must make sure it cannot
4274 	 *   happen, or we'll talk to the wrong redistributor. This is
4275 	 *   identical to what happens with vLPIs.
4276 	 *
4277 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4278 	 *   MMIO registers, this must be made atomic one way or another.
4279 	 */
4280 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4281 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4282 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4283 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4284 	do {
4285 		status = readl_relaxed(base + GICR_VSGIPENDR);
4286 		if (!(status & GICR_VSGIPENDR_BUSY))
4287 			goto out;
4288 
4289 		count--;
4290 		if (!count) {
4291 			pr_err_ratelimited("Unable to get SGI status\n");
4292 			goto out;
4293 		}
4294 		cpu_relax();
4295 		udelay(1);
4296 	} while (count);
4297 
4298 out:
4299 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 	vpe_to_cpuid_unlock(vpe, flags);
4301 
4302 	if (!count)
4303 		return -ENXIO;
4304 
4305 	*val = !!(status & (1 << d->hwirq));
4306 
4307 	return 0;
4308 }
4309 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4310 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4311 {
4312 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4313 	struct its_cmd_info *info = vcpu_info;
4314 
4315 	switch (info->cmd_type) {
4316 	case PROP_UPDATE_VSGI:
4317 		vpe->sgi_config[d->hwirq].priority = info->priority;
4318 		vpe->sgi_config[d->hwirq].group = info->group;
4319 		its_configure_sgi(d, false);
4320 		return 0;
4321 
4322 	default:
4323 		return -EINVAL;
4324 	}
4325 }
4326 
4327 static struct irq_chip its_sgi_irq_chip = {
4328 	.name			= "GICv4.1-sgi",
4329 	.irq_mask		= its_sgi_mask_irq,
4330 	.irq_unmask		= its_sgi_unmask_irq,
4331 	.irq_set_affinity	= its_sgi_set_affinity,
4332 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4333 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4334 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4335 };
4336 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4337 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4338 				    unsigned int virq, unsigned int nr_irqs,
4339 				    void *args)
4340 {
4341 	struct its_vpe *vpe = args;
4342 	int i;
4343 
4344 	/* Yes, we do want 16 SGIs */
4345 	WARN_ON(nr_irqs != 16);
4346 
4347 	for (i = 0; i < 16; i++) {
4348 		vpe->sgi_config[i].priority = 0;
4349 		vpe->sgi_config[i].enabled = false;
4350 		vpe->sgi_config[i].group = false;
4351 
4352 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4353 					      &its_sgi_irq_chip, vpe);
4354 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4355 	}
4356 
4357 	return 0;
4358 }
4359 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4360 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4361 				    unsigned int virq,
4362 				    unsigned int nr_irqs)
4363 {
4364 	/* Nothing to do */
4365 }
4366 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4367 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4368 				       struct irq_data *d, bool reserve)
4369 {
4370 	/* Write out the initial SGI configuration */
4371 	its_configure_sgi(d, false);
4372 	return 0;
4373 }
4374 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4375 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4376 					  struct irq_data *d)
4377 {
4378 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4379 
4380 	/*
4381 	 * The VSGI command is awkward:
4382 	 *
4383 	 * - To change the configuration, CLEAR must be set to false,
4384 	 *   leaving the pending bit unchanged.
4385 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4386 	 *   the configuration unchanged.
4387 	 *
4388 	 * You just can't do both at once, hence the two commands below.
4389 	 */
4390 	vpe->sgi_config[d->hwirq].enabled = false;
4391 	its_configure_sgi(d, false);
4392 	its_configure_sgi(d, true);
4393 }
4394 
4395 static const struct irq_domain_ops its_sgi_domain_ops = {
4396 	.alloc		= its_sgi_irq_domain_alloc,
4397 	.free		= its_sgi_irq_domain_free,
4398 	.activate	= its_sgi_irq_domain_activate,
4399 	.deactivate	= its_sgi_irq_domain_deactivate,
4400 };
4401 
its_vpe_id_alloc(void)4402 static int its_vpe_id_alloc(void)
4403 {
4404 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4405 }
4406 
its_vpe_id_free(u16 id)4407 static void its_vpe_id_free(u16 id)
4408 {
4409 	ida_simple_remove(&its_vpeid_ida, id);
4410 }
4411 
its_vpe_init(struct its_vpe * vpe)4412 static int its_vpe_init(struct its_vpe *vpe)
4413 {
4414 	struct page *vpt_page;
4415 	int vpe_id;
4416 
4417 	/* Allocate vpe_id */
4418 	vpe_id = its_vpe_id_alloc();
4419 	if (vpe_id < 0)
4420 		return vpe_id;
4421 
4422 	/* Allocate VPT */
4423 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4424 	if (!vpt_page) {
4425 		its_vpe_id_free(vpe_id);
4426 		return -ENOMEM;
4427 	}
4428 
4429 	if (!its_alloc_vpe_table(vpe_id)) {
4430 		its_vpe_id_free(vpe_id);
4431 		its_free_pending_table(vpt_page);
4432 		return -ENOMEM;
4433 	}
4434 
4435 	raw_spin_lock_init(&vpe->vpe_lock);
4436 	vpe->vpe_id = vpe_id;
4437 	vpe->vpt_page = vpt_page;
4438 	atomic_set(&vpe->vmapp_count, 0);
4439 	if (!gic_rdists->has_rvpeid)
4440 		vpe->vpe_proxy_event = -1;
4441 
4442 	return 0;
4443 }
4444 
its_vpe_teardown(struct its_vpe * vpe)4445 static void its_vpe_teardown(struct its_vpe *vpe)
4446 {
4447 	its_vpe_db_proxy_unmap(vpe);
4448 	its_vpe_id_free(vpe->vpe_id);
4449 	its_free_pending_table(vpe->vpt_page);
4450 }
4451 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4452 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4453 				    unsigned int virq,
4454 				    unsigned int nr_irqs)
4455 {
4456 	struct its_vm *vm = domain->host_data;
4457 	int i;
4458 
4459 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4460 
4461 	for (i = 0; i < nr_irqs; i++) {
4462 		struct irq_data *data = irq_domain_get_irq_data(domain,
4463 								virq + i);
4464 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4465 
4466 		BUG_ON(vm != vpe->its_vm);
4467 
4468 		clear_bit(data->hwirq, vm->db_bitmap);
4469 		its_vpe_teardown(vpe);
4470 		irq_domain_reset_irq_data(data);
4471 	}
4472 
4473 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4474 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4475 		its_free_prop_table(vm->vprop_page);
4476 	}
4477 }
4478 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4479 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4480 				    unsigned int nr_irqs, void *args)
4481 {
4482 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4483 	struct its_vm *vm = args;
4484 	unsigned long *bitmap;
4485 	struct page *vprop_page;
4486 	int base, nr_ids, i, err = 0;
4487 
4488 	BUG_ON(!vm);
4489 
4490 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4491 	if (!bitmap)
4492 		return -ENOMEM;
4493 
4494 	if (nr_ids < nr_irqs) {
4495 		its_lpi_free(bitmap, base, nr_ids);
4496 		return -ENOMEM;
4497 	}
4498 
4499 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4500 	if (!vprop_page) {
4501 		its_lpi_free(bitmap, base, nr_ids);
4502 		return -ENOMEM;
4503 	}
4504 
4505 	vm->db_bitmap = bitmap;
4506 	vm->db_lpi_base = base;
4507 	vm->nr_db_lpis = nr_ids;
4508 	vm->vprop_page = vprop_page;
4509 
4510 	if (gic_rdists->has_rvpeid)
4511 		irqchip = &its_vpe_4_1_irq_chip;
4512 
4513 	for (i = 0; i < nr_irqs; i++) {
4514 		vm->vpes[i]->vpe_db_lpi = base + i;
4515 		err = its_vpe_init(vm->vpes[i]);
4516 		if (err)
4517 			break;
4518 		err = its_irq_gic_domain_alloc(domain, virq + i,
4519 					       vm->vpes[i]->vpe_db_lpi);
4520 		if (err)
4521 			break;
4522 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4523 					      irqchip, vm->vpes[i]);
4524 		set_bit(i, bitmap);
4525 	}
4526 
4527 	if (err)
4528 		its_vpe_irq_domain_free(domain, virq, i);
4529 
4530 	return err;
4531 }
4532 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4533 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4534 				       struct irq_data *d, bool reserve)
4535 {
4536 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4537 	struct its_node *its;
4538 
4539 	/*
4540 	 * If we use the list map, we issue VMAPP on demand... Unless
4541 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4542 	 * so that VSGIs can work.
4543 	 */
4544 	if (!gic_requires_eager_mapping())
4545 		return 0;
4546 
4547 	/* Map the VPE to the first possible CPU */
4548 	vpe->col_idx = cpumask_first(cpu_online_mask);
4549 
4550 	list_for_each_entry(its, &its_nodes, entry) {
4551 		if (!is_v4(its))
4552 			continue;
4553 
4554 		its_send_vmapp(its, vpe, true);
4555 		its_send_vinvall(its, vpe);
4556 	}
4557 
4558 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4559 
4560 	return 0;
4561 }
4562 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4563 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4564 					  struct irq_data *d)
4565 {
4566 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4567 	struct its_node *its;
4568 
4569 	/*
4570 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4571 	 * VLPIs are associated with the VM.
4572 	 */
4573 	if (!gic_requires_eager_mapping())
4574 		return;
4575 
4576 	list_for_each_entry(its, &its_nodes, entry) {
4577 		if (!is_v4(its))
4578 			continue;
4579 
4580 		its_send_vmapp(its, vpe, false);
4581 	}
4582 }
4583 
4584 static const struct irq_domain_ops its_vpe_domain_ops = {
4585 	.alloc			= its_vpe_irq_domain_alloc,
4586 	.free			= its_vpe_irq_domain_free,
4587 	.activate		= its_vpe_irq_domain_activate,
4588 	.deactivate		= its_vpe_irq_domain_deactivate,
4589 };
4590 
its_force_quiescent(void __iomem * base)4591 static int its_force_quiescent(void __iomem *base)
4592 {
4593 	u32 count = 1000000;	/* 1s */
4594 	u32 val;
4595 
4596 	val = readl_relaxed(base + GITS_CTLR);
4597 	/*
4598 	 * GIC architecture specification requires the ITS to be both
4599 	 * disabled and quiescent for writes to GITS_BASER<n> or
4600 	 * GITS_CBASER to not have UNPREDICTABLE results.
4601 	 */
4602 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4603 		return 0;
4604 
4605 	/* Disable the generation of all interrupts to this ITS */
4606 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4607 	writel_relaxed(val, base + GITS_CTLR);
4608 
4609 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4610 	while (1) {
4611 		val = readl_relaxed(base + GITS_CTLR);
4612 		if (val & GITS_CTLR_QUIESCENT)
4613 			return 0;
4614 
4615 		count--;
4616 		if (!count)
4617 			return -EBUSY;
4618 
4619 		cpu_relax();
4620 		udelay(1);
4621 	}
4622 }
4623 
its_enable_quirk_cavium_22375(void * data)4624 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4625 {
4626 	struct its_node *its = data;
4627 
4628 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4629 	its->typer &= ~GITS_TYPER_DEVBITS;
4630 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4631 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4632 
4633 	return true;
4634 }
4635 
its_enable_quirk_cavium_23144(void * data)4636 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4637 {
4638 	struct its_node *its = data;
4639 
4640 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4641 
4642 	return true;
4643 }
4644 
its_enable_quirk_qdf2400_e0065(void * data)4645 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4646 {
4647 	struct its_node *its = data;
4648 
4649 	/* On QDF2400, the size of the ITE is 16Bytes */
4650 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4651 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4652 
4653 	return true;
4654 }
4655 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4656 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4657 {
4658 	struct its_node *its = its_dev->its;
4659 
4660 	/*
4661 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4662 	 * which maps 32-bit writes targeted at a separate window of
4663 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4664 	 * with device ID taken from bits [device_id_bits + 1:2] of
4665 	 * the window offset.
4666 	 */
4667 	return its->pre_its_base + (its_dev->device_id << 2);
4668 }
4669 
its_enable_quirk_socionext_synquacer(void * data)4670 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4671 {
4672 	struct its_node *its = data;
4673 	u32 pre_its_window[2];
4674 	u32 ids;
4675 
4676 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4677 					   "socionext,synquacer-pre-its",
4678 					   pre_its_window,
4679 					   ARRAY_SIZE(pre_its_window))) {
4680 
4681 		its->pre_its_base = pre_its_window[0];
4682 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4683 
4684 		ids = ilog2(pre_its_window[1]) - 2;
4685 		if (device_ids(its) > ids) {
4686 			its->typer &= ~GITS_TYPER_DEVBITS;
4687 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4688 		}
4689 
4690 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4691 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4692 		return true;
4693 	}
4694 	return false;
4695 }
4696 
its_enable_quirk_hip07_161600802(void * data)4697 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4698 {
4699 	struct its_node *its = data;
4700 
4701 	/*
4702 	 * Hip07 insists on using the wrong address for the VLPI
4703 	 * page. Trick it into doing the right thing...
4704 	 */
4705 	its->vlpi_redist_offset = SZ_128K;
4706 	return true;
4707 }
4708 
4709 static const struct gic_quirk its_quirks[] = {
4710 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4711 	{
4712 		.desc	= "ITS: Cavium errata 22375, 24313",
4713 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4714 		.mask	= 0xffff0fff,
4715 		.init	= its_enable_quirk_cavium_22375,
4716 	},
4717 #endif
4718 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4719 	{
4720 		.desc	= "ITS: Cavium erratum 23144",
4721 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4722 		.mask	= 0xffff0fff,
4723 		.init	= its_enable_quirk_cavium_23144,
4724 	},
4725 #endif
4726 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4727 	{
4728 		.desc	= "ITS: QDF2400 erratum 0065",
4729 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4730 		.mask	= 0xffffffff,
4731 		.init	= its_enable_quirk_qdf2400_e0065,
4732 	},
4733 #endif
4734 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4735 	{
4736 		/*
4737 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4738 		 * implementation, but with a 'pre-ITS' added that requires
4739 		 * special handling in software.
4740 		 */
4741 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4742 		.iidr	= 0x0001143b,
4743 		.mask	= 0xffffffff,
4744 		.init	= its_enable_quirk_socionext_synquacer,
4745 	},
4746 #endif
4747 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4748 	{
4749 		.desc	= "ITS: Hip07 erratum 161600802",
4750 		.iidr	= 0x00000004,
4751 		.mask	= 0xffffffff,
4752 		.init	= its_enable_quirk_hip07_161600802,
4753 	},
4754 #endif
4755 	{
4756 	}
4757 };
4758 
its_enable_quirks(struct its_node * its)4759 static void its_enable_quirks(struct its_node *its)
4760 {
4761 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4762 
4763 	gic_enable_quirks(iidr, its_quirks, its);
4764 }
4765 
its_save_disable(void)4766 static int its_save_disable(void)
4767 {
4768 	struct its_node *its;
4769 	int err = 0;
4770 
4771 	raw_spin_lock(&its_lock);
4772 	list_for_each_entry(its, &its_nodes, entry) {
4773 		void __iomem *base;
4774 
4775 		base = its->base;
4776 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4777 		err = its_force_quiescent(base);
4778 		if (err) {
4779 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4780 			       &its->phys_base, err);
4781 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4782 			goto err;
4783 		}
4784 
4785 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4786 	}
4787 
4788 err:
4789 	if (err) {
4790 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4791 			void __iomem *base;
4792 
4793 			base = its->base;
4794 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4795 		}
4796 	}
4797 	raw_spin_unlock(&its_lock);
4798 
4799 	return err;
4800 }
4801 
its_restore_enable(void)4802 static void its_restore_enable(void)
4803 {
4804 	struct its_node *its;
4805 	int ret;
4806 
4807 	raw_spin_lock(&its_lock);
4808 	list_for_each_entry(its, &its_nodes, entry) {
4809 		void __iomem *base;
4810 		int i;
4811 
4812 		base = its->base;
4813 
4814 		/*
4815 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4816 		 * don't restore it since writing to CBASER or BASER<n>
4817 		 * registers is undefined according to the GIC v3 ITS
4818 		 * Specification.
4819 		 *
4820 		 * Firmware resuming with the ITS enabled is terminally broken.
4821 		 */
4822 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4823 		ret = its_force_quiescent(base);
4824 		if (ret) {
4825 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4826 			       &its->phys_base, ret);
4827 			continue;
4828 		}
4829 
4830 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4831 
4832 		/*
4833 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4834 		 * cmd_write line up with it.
4835 		 */
4836 		its->cmd_write = its->cmd_base;
4837 		gits_write_cwriter(0, base + GITS_CWRITER);
4838 
4839 		/* Restore GITS_BASER from the value cache. */
4840 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4841 			struct its_baser *baser = &its->tables[i];
4842 
4843 			if (!(baser->val & GITS_BASER_VALID))
4844 				continue;
4845 
4846 			its_write_baser(its, baser, baser->val);
4847 		}
4848 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4849 
4850 		/*
4851 		 * Reinit the collection if it's stored in the ITS. This is
4852 		 * indicated by the col_id being less than the HCC field.
4853 		 * CID < HCC as specified in the GIC v3 Documentation.
4854 		 */
4855 		if (its->collections[smp_processor_id()].col_id <
4856 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4857 			its_cpu_init_collection(its);
4858 	}
4859 	raw_spin_unlock(&its_lock);
4860 }
4861 
4862 static struct syscore_ops its_syscore_ops = {
4863 	.suspend = its_save_disable,
4864 	.resume = its_restore_enable,
4865 };
4866 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4867 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4868 {
4869 	struct irq_domain *inner_domain;
4870 	struct msi_domain_info *info;
4871 
4872 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4873 	if (!info)
4874 		return -ENOMEM;
4875 
4876 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4877 	if (!inner_domain) {
4878 		kfree(info);
4879 		return -ENOMEM;
4880 	}
4881 
4882 	inner_domain->parent = its_parent;
4883 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4884 	inner_domain->flags |= its->msi_domain_flags;
4885 	info->ops = &its_msi_domain_ops;
4886 	info->data = its;
4887 	inner_domain->host_data = info;
4888 
4889 	return 0;
4890 }
4891 
its_init_vpe_domain(void)4892 static int its_init_vpe_domain(void)
4893 {
4894 	struct its_node *its;
4895 	u32 devid;
4896 	int entries;
4897 
4898 	if (gic_rdists->has_direct_lpi) {
4899 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4900 		return 0;
4901 	}
4902 
4903 	/* Any ITS will do, even if not v4 */
4904 	its = list_first_entry(&its_nodes, struct its_node, entry);
4905 
4906 	entries = roundup_pow_of_two(nr_cpu_ids);
4907 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4908 				 GFP_KERNEL);
4909 	if (!vpe_proxy.vpes) {
4910 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4911 		return -ENOMEM;
4912 	}
4913 
4914 	/* Use the last possible DevID */
4915 	devid = GENMASK(device_ids(its) - 1, 0);
4916 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4917 	if (!vpe_proxy.dev) {
4918 		kfree(vpe_proxy.vpes);
4919 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4920 		return -ENOMEM;
4921 	}
4922 
4923 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4924 
4925 	raw_spin_lock_init(&vpe_proxy.lock);
4926 	vpe_proxy.next_victim = 0;
4927 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4928 		devid, vpe_proxy.dev->nr_ites);
4929 
4930 	return 0;
4931 }
4932 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4933 static int __init its_compute_its_list_map(struct resource *res,
4934 					   void __iomem *its_base)
4935 {
4936 	int its_number;
4937 	u32 ctlr;
4938 
4939 	/*
4940 	 * This is assumed to be done early enough that we're
4941 	 * guaranteed to be single-threaded, hence no
4942 	 * locking. Should this change, we should address
4943 	 * this.
4944 	 */
4945 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4946 	if (its_number >= GICv4_ITS_LIST_MAX) {
4947 		pr_err("ITS@%pa: No ITSList entry available!\n",
4948 		       &res->start);
4949 		return -EINVAL;
4950 	}
4951 
4952 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4953 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4954 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4955 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4956 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4957 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4958 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4959 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4960 	}
4961 
4962 	if (test_and_set_bit(its_number, &its_list_map)) {
4963 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4964 		       &res->start, its_number);
4965 		return -EINVAL;
4966 	}
4967 
4968 	return its_number;
4969 }
4970 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)4971 static int __init its_probe_one(struct resource *res,
4972 				struct fwnode_handle *handle, int numa_node)
4973 {
4974 	struct its_node *its;
4975 	void __iomem *its_base;
4976 	u32 val, ctlr;
4977 	u64 baser, tmp, typer;
4978 	struct page *page;
4979 	int err;
4980 
4981 	its_base = ioremap(res->start, SZ_64K);
4982 	if (!its_base) {
4983 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4984 		return -ENOMEM;
4985 	}
4986 
4987 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4988 	if (val != 0x30 && val != 0x40) {
4989 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4990 		err = -ENODEV;
4991 		goto out_unmap;
4992 	}
4993 
4994 	err = its_force_quiescent(its_base);
4995 	if (err) {
4996 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4997 		goto out_unmap;
4998 	}
4999 
5000 	pr_info("ITS %pR\n", res);
5001 
5002 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5003 	if (!its) {
5004 		err = -ENOMEM;
5005 		goto out_unmap;
5006 	}
5007 
5008 	raw_spin_lock_init(&its->lock);
5009 	mutex_init(&its->dev_alloc_lock);
5010 	INIT_LIST_HEAD(&its->entry);
5011 	INIT_LIST_HEAD(&its->its_device_list);
5012 	typer = gic_read_typer(its_base + GITS_TYPER);
5013 	its->typer = typer;
5014 	its->base = its_base;
5015 	its->phys_base = res->start;
5016 	if (is_v4(its)) {
5017 		if (!(typer & GITS_TYPER_VMOVP)) {
5018 			err = its_compute_its_list_map(res, its_base);
5019 			if (err < 0)
5020 				goto out_free_its;
5021 
5022 			its->list_nr = err;
5023 
5024 			pr_info("ITS@%pa: Using ITS number %d\n",
5025 				&res->start, err);
5026 		} else {
5027 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5028 		}
5029 
5030 		if (is_v4_1(its)) {
5031 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5032 
5033 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5034 			if (!its->sgir_base) {
5035 				err = -ENOMEM;
5036 				goto out_free_its;
5037 			}
5038 
5039 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5040 
5041 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5042 				&res->start, its->mpidr, svpet);
5043 		}
5044 	}
5045 
5046 	its->numa_node = numa_node;
5047 
5048 	page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5049 				get_order(ITS_CMD_QUEUE_SZ));
5050 	if (!page) {
5051 		err = -ENOMEM;
5052 		goto out_unmap_sgir;
5053 	}
5054 	its->cmd_base = (void *)page_address(page);
5055 	its->cmd_write = its->cmd_base;
5056 	its->fwnode_handle = handle;
5057 	its->get_msi_base = its_irq_get_msi_base;
5058 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5059 
5060 	its_enable_quirks(its);
5061 
5062 	err = its_alloc_tables(its);
5063 	if (err)
5064 		goto out_free_cmd;
5065 
5066 	err = its_alloc_collections(its);
5067 	if (err)
5068 		goto out_free_tables;
5069 
5070 	baser = (virt_to_phys(its->cmd_base)	|
5071 		 GITS_CBASER_RaWaWb		|
5072 		 GITS_CBASER_InnerShareable	|
5073 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5074 		 GITS_CBASER_VALID);
5075 
5076 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5077 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5078 
5079 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5080 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5081 			/*
5082 			 * The HW reports non-shareable, we must
5083 			 * remove the cacheability attributes as
5084 			 * well.
5085 			 */
5086 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5087 				   GITS_CBASER_CACHEABILITY_MASK);
5088 			baser |= GITS_CBASER_nC;
5089 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5090 		}
5091 		pr_info("ITS: using cache flushing for cmd queue\n");
5092 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5093 	}
5094 
5095 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5096 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5097 	ctlr |= GITS_CTLR_ENABLE;
5098 	if (is_v4(its))
5099 		ctlr |= GITS_CTLR_ImDe;
5100 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5101 
5102 	err = its_init_domain(handle, its);
5103 	if (err)
5104 		goto out_free_tables;
5105 
5106 	raw_spin_lock(&its_lock);
5107 	list_add(&its->entry, &its_nodes);
5108 	raw_spin_unlock(&its_lock);
5109 
5110 	return 0;
5111 
5112 out_free_tables:
5113 	its_free_tables(its);
5114 out_free_cmd:
5115 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5116 out_unmap_sgir:
5117 	if (its->sgir_base)
5118 		iounmap(its->sgir_base);
5119 out_free_its:
5120 	kfree(its);
5121 out_unmap:
5122 	iounmap(its_base);
5123 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5124 	return err;
5125 }
5126 
gic_rdists_supports_plpis(void)5127 static bool gic_rdists_supports_plpis(void)
5128 {
5129 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5130 }
5131 
redist_disable_lpis(void)5132 static int redist_disable_lpis(void)
5133 {
5134 	void __iomem *rbase = gic_data_rdist_rd_base();
5135 	u64 timeout = USEC_PER_SEC;
5136 	u64 val;
5137 
5138 	if (!gic_rdists_supports_plpis()) {
5139 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5140 		return -ENXIO;
5141 	}
5142 
5143 	val = readl_relaxed(rbase + GICR_CTLR);
5144 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5145 		return 0;
5146 
5147 	/*
5148 	 * If coming via a CPU hotplug event, we don't need to disable
5149 	 * LPIs before trying to re-enable them. They are already
5150 	 * configured and all is well in the world.
5151 	 *
5152 	 * If running with preallocated tables, there is nothing to do.
5153 	 */
5154 	if (gic_data_rdist()->lpi_enabled ||
5155 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5156 		return 0;
5157 
5158 	/*
5159 	 * From that point on, we only try to do some damage control.
5160 	 */
5161 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5162 		smp_processor_id());
5163 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5164 
5165 	/* Disable LPIs */
5166 	val &= ~GICR_CTLR_ENABLE_LPIS;
5167 	writel_relaxed(val, rbase + GICR_CTLR);
5168 
5169 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5170 	dsb(sy);
5171 
5172 	/*
5173 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5174 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5175 	 * Error out if we time out waiting for RWP to clear.
5176 	 */
5177 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5178 		if (!timeout) {
5179 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5180 			       smp_processor_id());
5181 			return -ETIMEDOUT;
5182 		}
5183 		udelay(1);
5184 		timeout--;
5185 	}
5186 
5187 	/*
5188 	 * After it has been written to 1, it is IMPLEMENTATION
5189 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5190 	 * cleared to 0. Error out if clearing the bit failed.
5191 	 */
5192 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5193 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5194 		return -EBUSY;
5195 	}
5196 
5197 	return 0;
5198 }
5199 
its_cpu_init(void)5200 int its_cpu_init(void)
5201 {
5202 	if (!list_empty(&its_nodes)) {
5203 		int ret;
5204 
5205 		ret = redist_disable_lpis();
5206 		if (ret)
5207 			return ret;
5208 
5209 		its_cpu_init_lpis();
5210 		its_cpu_init_collections();
5211 	}
5212 
5213 	return 0;
5214 }
5215 
5216 static const struct of_device_id its_device_id[] = {
5217 	{	.compatible	= "arm,gic-v3-its",	},
5218 	{},
5219 };
5220 
its_of_probe(struct device_node * node)5221 static int __init its_of_probe(struct device_node *node)
5222 {
5223 	struct device_node *np;
5224 	struct resource res;
5225 
5226 	for (np = of_find_matching_node(node, its_device_id); np;
5227 	     np = of_find_matching_node(np, its_device_id)) {
5228 		if (!of_device_is_available(np))
5229 			continue;
5230 		if (!of_property_read_bool(np, "msi-controller")) {
5231 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5232 				np);
5233 			continue;
5234 		}
5235 
5236 		if (of_address_to_resource(np, 0, &res)) {
5237 			pr_warn("%pOF: no regs?\n", np);
5238 			continue;
5239 		}
5240 
5241 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5242 	}
5243 	return 0;
5244 }
5245 
5246 #ifdef CONFIG_ACPI
5247 
5248 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5249 
5250 #ifdef CONFIG_ACPI_NUMA
5251 struct its_srat_map {
5252 	/* numa node id */
5253 	u32	numa_node;
5254 	/* GIC ITS ID */
5255 	u32	its_id;
5256 };
5257 
5258 static struct its_srat_map *its_srat_maps __initdata;
5259 static int its_in_srat __initdata;
5260 
acpi_get_its_numa_node(u32 its_id)5261 static int __init acpi_get_its_numa_node(u32 its_id)
5262 {
5263 	int i;
5264 
5265 	for (i = 0; i < its_in_srat; i++) {
5266 		if (its_id == its_srat_maps[i].its_id)
5267 			return its_srat_maps[i].numa_node;
5268 	}
5269 	return NUMA_NO_NODE;
5270 }
5271 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5272 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5273 					  const unsigned long end)
5274 {
5275 	return 0;
5276 }
5277 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5278 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5279 			 const unsigned long end)
5280 {
5281 	int node;
5282 	struct acpi_srat_gic_its_affinity *its_affinity;
5283 
5284 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5285 	if (!its_affinity)
5286 		return -EINVAL;
5287 
5288 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5289 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5290 			its_affinity->header.length);
5291 		return -EINVAL;
5292 	}
5293 
5294 	/*
5295 	 * Note that in theory a new proximity node could be created by this
5296 	 * entry as it is an SRAT resource allocation structure.
5297 	 * We do not currently support doing so.
5298 	 */
5299 	node = pxm_to_node(its_affinity->proximity_domain);
5300 
5301 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5302 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5303 		return 0;
5304 	}
5305 
5306 	its_srat_maps[its_in_srat].numa_node = node;
5307 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5308 	its_in_srat++;
5309 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5310 		its_affinity->proximity_domain, its_affinity->its_id, node);
5311 
5312 	return 0;
5313 }
5314 
acpi_table_parse_srat_its(void)5315 static void __init acpi_table_parse_srat_its(void)
5316 {
5317 	int count;
5318 
5319 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5320 			sizeof(struct acpi_table_srat),
5321 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5322 			gic_acpi_match_srat_its, 0);
5323 	if (count <= 0)
5324 		return;
5325 
5326 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5327 				      GFP_KERNEL);
5328 	if (!its_srat_maps) {
5329 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5330 		return;
5331 	}
5332 
5333 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5334 			sizeof(struct acpi_table_srat),
5335 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5336 			gic_acpi_parse_srat_its, 0);
5337 }
5338 
5339 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5340 static void __init acpi_its_srat_maps_free(void)
5341 {
5342 	kfree(its_srat_maps);
5343 }
5344 #else
acpi_table_parse_srat_its(void)5345 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5346 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5347 static void __init acpi_its_srat_maps_free(void) { }
5348 #endif
5349 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5350 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5351 					  const unsigned long end)
5352 {
5353 	struct acpi_madt_generic_translator *its_entry;
5354 	struct fwnode_handle *dom_handle;
5355 	struct resource res;
5356 	int err;
5357 
5358 	its_entry = (struct acpi_madt_generic_translator *)header;
5359 	memset(&res, 0, sizeof(res));
5360 	res.start = its_entry->base_address;
5361 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5362 	res.flags = IORESOURCE_MEM;
5363 
5364 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5365 	if (!dom_handle) {
5366 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5367 		       &res.start);
5368 		return -ENOMEM;
5369 	}
5370 
5371 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5372 					 dom_handle);
5373 	if (err) {
5374 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5375 		       &res.start, its_entry->translation_id);
5376 		goto dom_err;
5377 	}
5378 
5379 	err = its_probe_one(&res, dom_handle,
5380 			acpi_get_its_numa_node(its_entry->translation_id));
5381 	if (!err)
5382 		return 0;
5383 
5384 	iort_deregister_domain_token(its_entry->translation_id);
5385 dom_err:
5386 	irq_domain_free_fwnode(dom_handle);
5387 	return err;
5388 }
5389 
its_acpi_probe(void)5390 static void __init its_acpi_probe(void)
5391 {
5392 	acpi_table_parse_srat_its();
5393 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5394 			      gic_acpi_parse_madt_its, 0);
5395 	acpi_its_srat_maps_free();
5396 }
5397 #else
its_acpi_probe(void)5398 static void __init its_acpi_probe(void) { }
5399 #endif
5400 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5401 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5402 		    struct irq_domain *parent_domain)
5403 {
5404 	struct device_node *of_node;
5405 	struct its_node *its;
5406 	bool has_v4 = false;
5407 	bool has_v4_1 = false;
5408 	int err;
5409 
5410 	gic_rdists = rdists;
5411 
5412 	its_parent = parent_domain;
5413 	of_node = to_of_node(handle);
5414 	if (of_node)
5415 		its_of_probe(of_node);
5416 	else
5417 		its_acpi_probe();
5418 
5419 	if (list_empty(&its_nodes)) {
5420 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5421 		return -ENXIO;
5422 	}
5423 
5424 	err = allocate_lpi_tables();
5425 	if (err)
5426 		return err;
5427 
5428 	list_for_each_entry(its, &its_nodes, entry) {
5429 		has_v4 |= is_v4(its);
5430 		has_v4_1 |= is_v4_1(its);
5431 	}
5432 
5433 	/* Don't bother with inconsistent systems */
5434 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5435 		rdists->has_rvpeid = false;
5436 
5437 	if (has_v4 & rdists->has_vlpis) {
5438 		const struct irq_domain_ops *sgi_ops;
5439 
5440 		if (has_v4_1)
5441 			sgi_ops = &its_sgi_domain_ops;
5442 		else
5443 			sgi_ops = NULL;
5444 
5445 		if (its_init_vpe_domain() ||
5446 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5447 			rdists->has_vlpis = false;
5448 			pr_err("ITS: Disabling GICv4 support\n");
5449 		}
5450 	}
5451 
5452 	register_syscore_ops(&its_syscore_ops);
5453 
5454 	return 0;
5455 }
5456