1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55 */
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
61
62 /*
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
66 */
67 struct its_collection {
68 u64 target_address;
69 u16 col_id;
70 };
71
72 /*
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
75 */
76 struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
80 u32 psz;
81 };
82
83 struct its_device;
84
85 /*
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
89 *
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
93 */
94 struct its_node {
95 raw_spinlock_t lock;
96 struct mutex dev_alloc_lock;
97 struct list_head entry;
98 void __iomem *base;
99 void __iomem *sgir_base;
100 phys_addr_t phys_base;
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
103 struct its_baser tables[GITS_BASER_NR_REGS];
104 struct its_collection *collections;
105 struct fwnode_handle *fwnode_handle;
106 u64 (*get_msi_base)(struct its_device *its_dev);
107 u64 typer;
108 u64 cbaser_save;
109 u32 ctlr_save;
110 u32 mpidr;
111 struct list_head its_device_list;
112 u64 flags;
113 unsigned long list_nr;
114 int numa_node;
115 unsigned int msi_domain_flags;
116 u32 pre_its_base; /* for Socionext Synquacer */
117 int vlpi_redist_offset;
118 };
119
120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS \
128 ({ \
129 int nvpeid = 16; \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
133 GICD_TYPER2_VID); \
134 \
135 nvpeid; \
136 })
137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143 unsigned long *lpi_map;
144 u16 *col_map;
145 irq_hw_number_t lpi_base;
146 int nr_lpis;
147 raw_spinlock_t vlpi_lock;
148 struct its_vm *vm;
149 struct its_vlpi_map *vlpi_maps;
150 int nr_vlpis;
151 };
152
153 /*
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
158 */
159 struct its_device {
160 struct list_head entry;
161 struct its_node *its;
162 struct event_lpi_map event_map;
163 void *itt;
164 u32 nr_ites;
165 u32 device_id;
166 bool shared;
167 };
168
169 static struct {
170 raw_spinlock_t lock;
171 struct its_device *dev;
172 struct its_vpe **vpes;
173 int next_victim;
174 } vpe_proxy;
175
176 struct cpu_lpi_count {
177 atomic_t managed;
178 atomic_t unmanaged;
179 };
180
181 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
182
183 static LIST_HEAD(its_nodes);
184 static DEFINE_RAW_SPINLOCK(its_lock);
185 static struct rdists *gic_rdists;
186 static struct irq_domain *its_parent;
187
188 static unsigned long its_list_map;
189 static u16 vmovp_seq_num;
190 static DEFINE_RAW_SPINLOCK(vmovp_lock);
191
192 static DEFINE_IDA(its_vpeid_ida);
193
194 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
195 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
196 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
197 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
198
199 /*
200 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
201 * always have vSGIs mapped.
202 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)203 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
204 {
205 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
206 }
207
get_its_list(struct its_vm * vm)208 static u16 get_its_list(struct its_vm *vm)
209 {
210 struct its_node *its;
211 unsigned long its_list = 0;
212
213 list_for_each_entry(its, &its_nodes, entry) {
214 if (!is_v4(its))
215 continue;
216
217 if (require_its_list_vmovp(vm, its))
218 __set_bit(its->list_nr, &its_list);
219 }
220
221 return (u16)its_list;
222 }
223
its_get_event_id(struct irq_data * d)224 static inline u32 its_get_event_id(struct irq_data *d)
225 {
226 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
227 return d->hwirq - its_dev->event_map.lpi_base;
228 }
229
dev_event_to_col(struct its_device * its_dev,u32 event)230 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
231 u32 event)
232 {
233 struct its_node *its = its_dev->its;
234
235 return its->collections + its_dev->event_map.col_map[event];
236 }
237
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)238 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
239 u32 event)
240 {
241 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
242 return NULL;
243
244 return &its_dev->event_map.vlpi_maps[event];
245 }
246
get_vlpi_map(struct irq_data * d)247 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
248 {
249 if (irqd_is_forwarded_to_vcpu(d)) {
250 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
251 u32 event = its_get_event_id(d);
252
253 return dev_event_to_vlpi_map(its_dev, event);
254 }
255
256 return NULL;
257 }
258
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)259 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
260 {
261 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
262 return vpe->col_idx;
263 }
264
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)265 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
266 {
267 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
268 }
269
270 static struct irq_chip its_vpe_irq_chip;
271
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)272 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
273 {
274 struct its_vpe *vpe = NULL;
275 int cpu;
276
277 if (d->chip == &its_vpe_irq_chip) {
278 vpe = irq_data_get_irq_chip_data(d);
279 } else {
280 struct its_vlpi_map *map = get_vlpi_map(d);
281 if (map)
282 vpe = map->vpe;
283 }
284
285 if (vpe) {
286 cpu = vpe_to_cpuid_lock(vpe, flags);
287 } else {
288 /* Physical LPIs are already locked via the irq_desc lock */
289 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
290 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
291 /* Keep GCC quiet... */
292 *flags = 0;
293 }
294
295 return cpu;
296 }
297
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)298 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
299 {
300 struct its_vpe *vpe = NULL;
301
302 if (d->chip == &its_vpe_irq_chip) {
303 vpe = irq_data_get_irq_chip_data(d);
304 } else {
305 struct its_vlpi_map *map = get_vlpi_map(d);
306 if (map)
307 vpe = map->vpe;
308 }
309
310 if (vpe)
311 vpe_to_cpuid_unlock(vpe, flags);
312 }
313
valid_col(struct its_collection * col)314 static struct its_collection *valid_col(struct its_collection *col)
315 {
316 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
317 return NULL;
318
319 return col;
320 }
321
valid_vpe(struct its_node * its,struct its_vpe * vpe)322 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
323 {
324 if (valid_col(its->collections + vpe->col_idx))
325 return vpe;
326
327 return NULL;
328 }
329
330 /*
331 * ITS command descriptors - parameters to be encoded in a command
332 * block.
333 */
334 struct its_cmd_desc {
335 union {
336 struct {
337 struct its_device *dev;
338 u32 event_id;
339 } its_inv_cmd;
340
341 struct {
342 struct its_device *dev;
343 u32 event_id;
344 } its_clear_cmd;
345
346 struct {
347 struct its_device *dev;
348 u32 event_id;
349 } its_int_cmd;
350
351 struct {
352 struct its_device *dev;
353 int valid;
354 } its_mapd_cmd;
355
356 struct {
357 struct its_collection *col;
358 int valid;
359 } its_mapc_cmd;
360
361 struct {
362 struct its_device *dev;
363 u32 phys_id;
364 u32 event_id;
365 } its_mapti_cmd;
366
367 struct {
368 struct its_device *dev;
369 struct its_collection *col;
370 u32 event_id;
371 } its_movi_cmd;
372
373 struct {
374 struct its_device *dev;
375 u32 event_id;
376 } its_discard_cmd;
377
378 struct {
379 struct its_collection *col;
380 } its_invall_cmd;
381
382 struct {
383 struct its_vpe *vpe;
384 } its_vinvall_cmd;
385
386 struct {
387 struct its_vpe *vpe;
388 struct its_collection *col;
389 bool valid;
390 } its_vmapp_cmd;
391
392 struct {
393 struct its_vpe *vpe;
394 struct its_device *dev;
395 u32 virt_id;
396 u32 event_id;
397 bool db_enabled;
398 } its_vmapti_cmd;
399
400 struct {
401 struct its_vpe *vpe;
402 struct its_device *dev;
403 u32 event_id;
404 bool db_enabled;
405 } its_vmovi_cmd;
406
407 struct {
408 struct its_vpe *vpe;
409 struct its_collection *col;
410 u16 seq_num;
411 u16 its_list;
412 } its_vmovp_cmd;
413
414 struct {
415 struct its_vpe *vpe;
416 } its_invdb_cmd;
417
418 struct {
419 struct its_vpe *vpe;
420 u8 sgi;
421 u8 priority;
422 bool enable;
423 bool group;
424 bool clear;
425 } its_vsgi_cmd;
426 };
427 };
428
429 /*
430 * The ITS command block, which is what the ITS actually parses.
431 */
432 struct its_cmd_block {
433 union {
434 u64 raw_cmd[4];
435 __le64 raw_cmd_le[4];
436 };
437 };
438
439 #define ITS_CMD_QUEUE_SZ SZ_64K
440 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
441
442 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
443 struct its_cmd_block *,
444 struct its_cmd_desc *);
445
446 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
447 struct its_cmd_block *,
448 struct its_cmd_desc *);
449
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)450 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
451 {
452 u64 mask = GENMASK_ULL(h, l);
453 *raw_cmd &= ~mask;
454 *raw_cmd |= (val << l) & mask;
455 }
456
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)457 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
458 {
459 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
460 }
461
its_encode_devid(struct its_cmd_block * cmd,u32 devid)462 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
463 {
464 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
465 }
466
its_encode_event_id(struct its_cmd_block * cmd,u32 id)467 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
468 {
469 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
470 }
471
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)472 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
473 {
474 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
475 }
476
its_encode_size(struct its_cmd_block * cmd,u8 size)477 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
478 {
479 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
480 }
481
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)482 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
483 {
484 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
485 }
486
its_encode_valid(struct its_cmd_block * cmd,int valid)487 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
488 {
489 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
490 }
491
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)492 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
493 {
494 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
495 }
496
its_encode_collection(struct its_cmd_block * cmd,u16 col)497 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
498 {
499 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
500 }
501
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)502 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
503 {
504 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
505 }
506
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)507 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
508 {
509 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
510 }
511
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)512 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
513 {
514 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
515 }
516
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)517 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
518 {
519 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
520 }
521
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)522 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
523 {
524 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
525 }
526
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)527 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
528 {
529 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
530 }
531
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)532 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
533 {
534 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
535 }
536
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)537 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
538 {
539 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
540 }
541
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)542 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
543 {
544 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
545 }
546
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)547 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
548 {
549 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
550 }
551
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)552 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
553 {
554 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
555 }
556
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)557 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
558 u32 vpe_db_lpi)
559 {
560 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
561 }
562
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)563 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
564 u32 vpe_db_lpi)
565 {
566 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
567 }
568
its_encode_db(struct its_cmd_block * cmd,bool db)569 static void its_encode_db(struct its_cmd_block *cmd, bool db)
570 {
571 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
572 }
573
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)574 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
575 {
576 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
577 }
578
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)579 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
580 {
581 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
582 }
583
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)584 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
585 {
586 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
587 }
588
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)589 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
590 {
591 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
592 }
593
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)594 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
595 {
596 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
597 }
598
its_fixup_cmd(struct its_cmd_block * cmd)599 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
600 {
601 /* Let's fixup BE commands */
602 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
603 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
604 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
605 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
606 }
607
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)608 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
609 struct its_cmd_block *cmd,
610 struct its_cmd_desc *desc)
611 {
612 unsigned long itt_addr;
613 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
614
615 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
616 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
617
618 its_encode_cmd(cmd, GITS_CMD_MAPD);
619 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
620 its_encode_size(cmd, size - 1);
621 its_encode_itt(cmd, itt_addr);
622 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
623
624 its_fixup_cmd(cmd);
625
626 return NULL;
627 }
628
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)629 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
630 struct its_cmd_block *cmd,
631 struct its_cmd_desc *desc)
632 {
633 its_encode_cmd(cmd, GITS_CMD_MAPC);
634 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
635 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
636 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
637
638 its_fixup_cmd(cmd);
639
640 return desc->its_mapc_cmd.col;
641 }
642
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)643 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
644 struct its_cmd_block *cmd,
645 struct its_cmd_desc *desc)
646 {
647 struct its_collection *col;
648
649 col = dev_event_to_col(desc->its_mapti_cmd.dev,
650 desc->its_mapti_cmd.event_id);
651
652 its_encode_cmd(cmd, GITS_CMD_MAPTI);
653 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
654 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
655 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
656 its_encode_collection(cmd, col->col_id);
657
658 its_fixup_cmd(cmd);
659
660 return valid_col(col);
661 }
662
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)663 static struct its_collection *its_build_movi_cmd(struct its_node *its,
664 struct its_cmd_block *cmd,
665 struct its_cmd_desc *desc)
666 {
667 struct its_collection *col;
668
669 col = dev_event_to_col(desc->its_movi_cmd.dev,
670 desc->its_movi_cmd.event_id);
671
672 its_encode_cmd(cmd, GITS_CMD_MOVI);
673 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
674 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
675 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
676
677 its_fixup_cmd(cmd);
678
679 return valid_col(col);
680 }
681
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)682 static struct its_collection *its_build_discard_cmd(struct its_node *its,
683 struct its_cmd_block *cmd,
684 struct its_cmd_desc *desc)
685 {
686 struct its_collection *col;
687
688 col = dev_event_to_col(desc->its_discard_cmd.dev,
689 desc->its_discard_cmd.event_id);
690
691 its_encode_cmd(cmd, GITS_CMD_DISCARD);
692 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
693 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
694
695 its_fixup_cmd(cmd);
696
697 return valid_col(col);
698 }
699
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)700 static struct its_collection *its_build_inv_cmd(struct its_node *its,
701 struct its_cmd_block *cmd,
702 struct its_cmd_desc *desc)
703 {
704 struct its_collection *col;
705
706 col = dev_event_to_col(desc->its_inv_cmd.dev,
707 desc->its_inv_cmd.event_id);
708
709 its_encode_cmd(cmd, GITS_CMD_INV);
710 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
711 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
712
713 its_fixup_cmd(cmd);
714
715 return valid_col(col);
716 }
717
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)718 static struct its_collection *its_build_int_cmd(struct its_node *its,
719 struct its_cmd_block *cmd,
720 struct its_cmd_desc *desc)
721 {
722 struct its_collection *col;
723
724 col = dev_event_to_col(desc->its_int_cmd.dev,
725 desc->its_int_cmd.event_id);
726
727 its_encode_cmd(cmd, GITS_CMD_INT);
728 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
729 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
730
731 its_fixup_cmd(cmd);
732
733 return valid_col(col);
734 }
735
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)736 static struct its_collection *its_build_clear_cmd(struct its_node *its,
737 struct its_cmd_block *cmd,
738 struct its_cmd_desc *desc)
739 {
740 struct its_collection *col;
741
742 col = dev_event_to_col(desc->its_clear_cmd.dev,
743 desc->its_clear_cmd.event_id);
744
745 its_encode_cmd(cmd, GITS_CMD_CLEAR);
746 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
747 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
748
749 its_fixup_cmd(cmd);
750
751 return valid_col(col);
752 }
753
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)754 static struct its_collection *its_build_invall_cmd(struct its_node *its,
755 struct its_cmd_block *cmd,
756 struct its_cmd_desc *desc)
757 {
758 its_encode_cmd(cmd, GITS_CMD_INVALL);
759 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
760
761 its_fixup_cmd(cmd);
762
763 return desc->its_invall_cmd.col;
764 }
765
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)766 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
767 struct its_cmd_block *cmd,
768 struct its_cmd_desc *desc)
769 {
770 its_encode_cmd(cmd, GITS_CMD_VINVALL);
771 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
772
773 its_fixup_cmd(cmd);
774
775 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
776 }
777
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)778 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
779 struct its_cmd_block *cmd,
780 struct its_cmd_desc *desc)
781 {
782 unsigned long vpt_addr, vconf_addr;
783 u64 target;
784 bool alloc;
785
786 its_encode_cmd(cmd, GITS_CMD_VMAPP);
787 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
788 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
789
790 if (!desc->its_vmapp_cmd.valid) {
791 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
792 if (is_v4_1(its)) {
793 its_encode_alloc(cmd, alloc);
794 }
795
796 goto out;
797 }
798
799 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
800 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
801
802 its_encode_target(cmd, target);
803 its_encode_vpt_addr(cmd, vpt_addr);
804 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
805
806 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
807
808 if (!is_v4_1(its))
809 goto out;
810
811 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
812
813 its_encode_alloc(cmd, alloc);
814
815 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
816 its_encode_ptz(cmd, alloc);
817 its_encode_vconf_addr(cmd, vconf_addr);
818 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
819
820 out:
821 its_fixup_cmd(cmd);
822
823 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
824 }
825
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)826 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
827 struct its_cmd_block *cmd,
828 struct its_cmd_desc *desc)
829 {
830 u32 db;
831
832 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
833 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
834 else
835 db = 1023;
836
837 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
838 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
839 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
840 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
841 its_encode_db_phys_id(cmd, db);
842 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
843
844 its_fixup_cmd(cmd);
845
846 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
847 }
848
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)849 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
850 struct its_cmd_block *cmd,
851 struct its_cmd_desc *desc)
852 {
853 u32 db;
854
855 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
856 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
857 else
858 db = 1023;
859
860 its_encode_cmd(cmd, GITS_CMD_VMOVI);
861 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
862 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
863 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
864 its_encode_db_phys_id(cmd, db);
865 its_encode_db_valid(cmd, true);
866
867 its_fixup_cmd(cmd);
868
869 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
870 }
871
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)872 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
873 struct its_cmd_block *cmd,
874 struct its_cmd_desc *desc)
875 {
876 u64 target;
877
878 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
879 its_encode_cmd(cmd, GITS_CMD_VMOVP);
880 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
881 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
882 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
883 its_encode_target(cmd, target);
884
885 if (is_v4_1(its)) {
886 its_encode_db(cmd, true);
887 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
888 }
889
890 its_fixup_cmd(cmd);
891
892 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
893 }
894
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)895 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
896 struct its_cmd_block *cmd,
897 struct its_cmd_desc *desc)
898 {
899 struct its_vlpi_map *map;
900
901 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
902 desc->its_inv_cmd.event_id);
903
904 its_encode_cmd(cmd, GITS_CMD_INV);
905 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
906 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
907
908 its_fixup_cmd(cmd);
909
910 return valid_vpe(its, map->vpe);
911 }
912
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)913 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
914 struct its_cmd_block *cmd,
915 struct its_cmd_desc *desc)
916 {
917 struct its_vlpi_map *map;
918
919 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
920 desc->its_int_cmd.event_id);
921
922 its_encode_cmd(cmd, GITS_CMD_INT);
923 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
924 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
925
926 its_fixup_cmd(cmd);
927
928 return valid_vpe(its, map->vpe);
929 }
930
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)931 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
932 struct its_cmd_block *cmd,
933 struct its_cmd_desc *desc)
934 {
935 struct its_vlpi_map *map;
936
937 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
938 desc->its_clear_cmd.event_id);
939
940 its_encode_cmd(cmd, GITS_CMD_CLEAR);
941 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
942 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
943
944 its_fixup_cmd(cmd);
945
946 return valid_vpe(its, map->vpe);
947 }
948
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)949 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
950 struct its_cmd_block *cmd,
951 struct its_cmd_desc *desc)
952 {
953 if (WARN_ON(!is_v4_1(its)))
954 return NULL;
955
956 its_encode_cmd(cmd, GITS_CMD_INVDB);
957 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
958
959 its_fixup_cmd(cmd);
960
961 return valid_vpe(its, desc->its_invdb_cmd.vpe);
962 }
963
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)964 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
965 struct its_cmd_block *cmd,
966 struct its_cmd_desc *desc)
967 {
968 if (WARN_ON(!is_v4_1(its)))
969 return NULL;
970
971 its_encode_cmd(cmd, GITS_CMD_VSGI);
972 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
973 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
974 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
975 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
976 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
977 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
978
979 its_fixup_cmd(cmd);
980
981 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
982 }
983
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)984 static u64 its_cmd_ptr_to_offset(struct its_node *its,
985 struct its_cmd_block *ptr)
986 {
987 return (ptr - its->cmd_base) * sizeof(*ptr);
988 }
989
its_queue_full(struct its_node * its)990 static int its_queue_full(struct its_node *its)
991 {
992 int widx;
993 int ridx;
994
995 widx = its->cmd_write - its->cmd_base;
996 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
997
998 /* This is incredibly unlikely to happen, unless the ITS locks up. */
999 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1000 return 1;
1001
1002 return 0;
1003 }
1004
its_allocate_entry(struct its_node * its)1005 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1006 {
1007 struct its_cmd_block *cmd;
1008 u32 count = 1000000; /* 1s! */
1009
1010 while (its_queue_full(its)) {
1011 count--;
1012 if (!count) {
1013 pr_err_ratelimited("ITS queue not draining\n");
1014 return NULL;
1015 }
1016 cpu_relax();
1017 udelay(1);
1018 }
1019
1020 cmd = its->cmd_write++;
1021
1022 /* Handle queue wrapping */
1023 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1024 its->cmd_write = its->cmd_base;
1025
1026 /* Clear command */
1027 cmd->raw_cmd[0] = 0;
1028 cmd->raw_cmd[1] = 0;
1029 cmd->raw_cmd[2] = 0;
1030 cmd->raw_cmd[3] = 0;
1031
1032 return cmd;
1033 }
1034
its_post_commands(struct its_node * its)1035 static struct its_cmd_block *its_post_commands(struct its_node *its)
1036 {
1037 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1038
1039 writel_relaxed(wr, its->base + GITS_CWRITER);
1040
1041 return its->cmd_write;
1042 }
1043
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1044 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1045 {
1046 /*
1047 * Make sure the commands written to memory are observable by
1048 * the ITS.
1049 */
1050 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1051 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1052 else
1053 dsb(ishst);
1054 }
1055
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1056 static int its_wait_for_range_completion(struct its_node *its,
1057 u64 prev_idx,
1058 struct its_cmd_block *to)
1059 {
1060 u64 rd_idx, to_idx, linear_idx;
1061 u32 count = 1000000; /* 1s! */
1062
1063 /* Linearize to_idx if the command set has wrapped around */
1064 to_idx = its_cmd_ptr_to_offset(its, to);
1065 if (to_idx < prev_idx)
1066 to_idx += ITS_CMD_QUEUE_SZ;
1067
1068 linear_idx = prev_idx;
1069
1070 while (1) {
1071 s64 delta;
1072
1073 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1074
1075 /*
1076 * Compute the read pointer progress, taking the
1077 * potential wrap-around into account.
1078 */
1079 delta = rd_idx - prev_idx;
1080 if (rd_idx < prev_idx)
1081 delta += ITS_CMD_QUEUE_SZ;
1082
1083 linear_idx += delta;
1084 if (linear_idx >= to_idx)
1085 break;
1086
1087 count--;
1088 if (!count) {
1089 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1090 to_idx, linear_idx);
1091 return -1;
1092 }
1093 prev_idx = rd_idx;
1094 cpu_relax();
1095 udelay(1);
1096 }
1097
1098 return 0;
1099 }
1100
1101 /* Warning, macro hell follows */
1102 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1103 void name(struct its_node *its, \
1104 buildtype builder, \
1105 struct its_cmd_desc *desc) \
1106 { \
1107 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1108 synctype *sync_obj; \
1109 unsigned long flags; \
1110 u64 rd_idx; \
1111 \
1112 raw_spin_lock_irqsave(&its->lock, flags); \
1113 \
1114 cmd = its_allocate_entry(its); \
1115 if (!cmd) { /* We're soooooo screewed... */ \
1116 raw_spin_unlock_irqrestore(&its->lock, flags); \
1117 return; \
1118 } \
1119 sync_obj = builder(its, cmd, desc); \
1120 its_flush_cmd(its, cmd); \
1121 \
1122 if (sync_obj) { \
1123 sync_cmd = its_allocate_entry(its); \
1124 if (!sync_cmd) \
1125 goto post; \
1126 \
1127 buildfn(its, sync_cmd, sync_obj); \
1128 its_flush_cmd(its, sync_cmd); \
1129 } \
1130 \
1131 post: \
1132 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1133 next_cmd = its_post_commands(its); \
1134 raw_spin_unlock_irqrestore(&its->lock, flags); \
1135 \
1136 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1137 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1138 }
1139
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1140 static void its_build_sync_cmd(struct its_node *its,
1141 struct its_cmd_block *sync_cmd,
1142 struct its_collection *sync_col)
1143 {
1144 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1145 its_encode_target(sync_cmd, sync_col->target_address);
1146
1147 its_fixup_cmd(sync_cmd);
1148 }
1149
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1150 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1151 struct its_collection, its_build_sync_cmd)
1152
1153 static void its_build_vsync_cmd(struct its_node *its,
1154 struct its_cmd_block *sync_cmd,
1155 struct its_vpe *sync_vpe)
1156 {
1157 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1158 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1159
1160 its_fixup_cmd(sync_cmd);
1161 }
1162
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1163 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1164 struct its_vpe, its_build_vsync_cmd)
1165
1166 static void its_send_int(struct its_device *dev, u32 event_id)
1167 {
1168 struct its_cmd_desc desc;
1169
1170 desc.its_int_cmd.dev = dev;
1171 desc.its_int_cmd.event_id = event_id;
1172
1173 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1174 }
1175
its_send_clear(struct its_device * dev,u32 event_id)1176 static void its_send_clear(struct its_device *dev, u32 event_id)
1177 {
1178 struct its_cmd_desc desc;
1179
1180 desc.its_clear_cmd.dev = dev;
1181 desc.its_clear_cmd.event_id = event_id;
1182
1183 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1184 }
1185
its_send_inv(struct its_device * dev,u32 event_id)1186 static void its_send_inv(struct its_device *dev, u32 event_id)
1187 {
1188 struct its_cmd_desc desc;
1189
1190 desc.its_inv_cmd.dev = dev;
1191 desc.its_inv_cmd.event_id = event_id;
1192
1193 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1194 }
1195
its_send_mapd(struct its_device * dev,int valid)1196 static void its_send_mapd(struct its_device *dev, int valid)
1197 {
1198 struct its_cmd_desc desc;
1199
1200 desc.its_mapd_cmd.dev = dev;
1201 desc.its_mapd_cmd.valid = !!valid;
1202
1203 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1204 }
1205
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1206 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1207 int valid)
1208 {
1209 struct its_cmd_desc desc;
1210
1211 desc.its_mapc_cmd.col = col;
1212 desc.its_mapc_cmd.valid = !!valid;
1213
1214 its_send_single_command(its, its_build_mapc_cmd, &desc);
1215 }
1216
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1217 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1218 {
1219 struct its_cmd_desc desc;
1220
1221 desc.its_mapti_cmd.dev = dev;
1222 desc.its_mapti_cmd.phys_id = irq_id;
1223 desc.its_mapti_cmd.event_id = id;
1224
1225 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1226 }
1227
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1228 static void its_send_movi(struct its_device *dev,
1229 struct its_collection *col, u32 id)
1230 {
1231 struct its_cmd_desc desc;
1232
1233 desc.its_movi_cmd.dev = dev;
1234 desc.its_movi_cmd.col = col;
1235 desc.its_movi_cmd.event_id = id;
1236
1237 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1238 }
1239
its_send_discard(struct its_device * dev,u32 id)1240 static void its_send_discard(struct its_device *dev, u32 id)
1241 {
1242 struct its_cmd_desc desc;
1243
1244 desc.its_discard_cmd.dev = dev;
1245 desc.its_discard_cmd.event_id = id;
1246
1247 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1248 }
1249
its_send_invall(struct its_node * its,struct its_collection * col)1250 static void its_send_invall(struct its_node *its, struct its_collection *col)
1251 {
1252 struct its_cmd_desc desc;
1253
1254 desc.its_invall_cmd.col = col;
1255
1256 its_send_single_command(its, its_build_invall_cmd, &desc);
1257 }
1258
its_send_vmapti(struct its_device * dev,u32 id)1259 static void its_send_vmapti(struct its_device *dev, u32 id)
1260 {
1261 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1262 struct its_cmd_desc desc;
1263
1264 desc.its_vmapti_cmd.vpe = map->vpe;
1265 desc.its_vmapti_cmd.dev = dev;
1266 desc.its_vmapti_cmd.virt_id = map->vintid;
1267 desc.its_vmapti_cmd.event_id = id;
1268 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1269
1270 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1271 }
1272
its_send_vmovi(struct its_device * dev,u32 id)1273 static void its_send_vmovi(struct its_device *dev, u32 id)
1274 {
1275 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1276 struct its_cmd_desc desc;
1277
1278 desc.its_vmovi_cmd.vpe = map->vpe;
1279 desc.its_vmovi_cmd.dev = dev;
1280 desc.its_vmovi_cmd.event_id = id;
1281 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1282
1283 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1284 }
1285
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1286 static void its_send_vmapp(struct its_node *its,
1287 struct its_vpe *vpe, bool valid)
1288 {
1289 struct its_cmd_desc desc;
1290
1291 desc.its_vmapp_cmd.vpe = vpe;
1292 desc.its_vmapp_cmd.valid = valid;
1293 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1294
1295 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1296 }
1297
its_send_vmovp(struct its_vpe * vpe)1298 static void its_send_vmovp(struct its_vpe *vpe)
1299 {
1300 struct its_cmd_desc desc = {};
1301 struct its_node *its;
1302 unsigned long flags;
1303 int col_id = vpe->col_idx;
1304
1305 desc.its_vmovp_cmd.vpe = vpe;
1306
1307 if (!its_list_map) {
1308 its = list_first_entry(&its_nodes, struct its_node, entry);
1309 desc.its_vmovp_cmd.col = &its->collections[col_id];
1310 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1311 return;
1312 }
1313
1314 /*
1315 * Yet another marvel of the architecture. If using the
1316 * its_list "feature", we need to make sure that all ITSs
1317 * receive all VMOVP commands in the same order. The only way
1318 * to guarantee this is to make vmovp a serialization point.
1319 *
1320 * Wall <-- Head.
1321 */
1322 raw_spin_lock_irqsave(&vmovp_lock, flags);
1323
1324 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1325 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1326
1327 /* Emit VMOVPs */
1328 list_for_each_entry(its, &its_nodes, entry) {
1329 if (!is_v4(its))
1330 continue;
1331
1332 if (!require_its_list_vmovp(vpe->its_vm, its))
1333 continue;
1334
1335 desc.its_vmovp_cmd.col = &its->collections[col_id];
1336 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1337 }
1338
1339 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1340 }
1341
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1342 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1343 {
1344 struct its_cmd_desc desc;
1345
1346 desc.its_vinvall_cmd.vpe = vpe;
1347 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1348 }
1349
its_send_vinv(struct its_device * dev,u32 event_id)1350 static void its_send_vinv(struct its_device *dev, u32 event_id)
1351 {
1352 struct its_cmd_desc desc;
1353
1354 /*
1355 * There is no real VINV command. This is just a normal INV,
1356 * with a VSYNC instead of a SYNC.
1357 */
1358 desc.its_inv_cmd.dev = dev;
1359 desc.its_inv_cmd.event_id = event_id;
1360
1361 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1362 }
1363
its_send_vint(struct its_device * dev,u32 event_id)1364 static void its_send_vint(struct its_device *dev, u32 event_id)
1365 {
1366 struct its_cmd_desc desc;
1367
1368 /*
1369 * There is no real VINT command. This is just a normal INT,
1370 * with a VSYNC instead of a SYNC.
1371 */
1372 desc.its_int_cmd.dev = dev;
1373 desc.its_int_cmd.event_id = event_id;
1374
1375 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1376 }
1377
its_send_vclear(struct its_device * dev,u32 event_id)1378 static void its_send_vclear(struct its_device *dev, u32 event_id)
1379 {
1380 struct its_cmd_desc desc;
1381
1382 /*
1383 * There is no real VCLEAR command. This is just a normal CLEAR,
1384 * with a VSYNC instead of a SYNC.
1385 */
1386 desc.its_clear_cmd.dev = dev;
1387 desc.its_clear_cmd.event_id = event_id;
1388
1389 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1390 }
1391
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1392 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1393 {
1394 struct its_cmd_desc desc;
1395
1396 desc.its_invdb_cmd.vpe = vpe;
1397 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1398 }
1399
1400 /*
1401 * irqchip functions - assumes MSI, mostly.
1402 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1403 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1404 {
1405 struct its_vlpi_map *map = get_vlpi_map(d);
1406 irq_hw_number_t hwirq;
1407 void *va;
1408 u8 *cfg;
1409
1410 if (map) {
1411 va = page_address(map->vm->vprop_page);
1412 hwirq = map->vintid;
1413
1414 /* Remember the updated property */
1415 map->properties &= ~clr;
1416 map->properties |= set | LPI_PROP_GROUP1;
1417 } else {
1418 va = gic_rdists->prop_table_va;
1419 hwirq = d->hwirq;
1420 }
1421
1422 cfg = va + hwirq - 8192;
1423 *cfg &= ~clr;
1424 *cfg |= set | LPI_PROP_GROUP1;
1425
1426 /*
1427 * Make the above write visible to the redistributors.
1428 * And yes, we're flushing exactly: One. Single. Byte.
1429 * Humpf...
1430 */
1431 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1432 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1433 else
1434 dsb(ishst);
1435 }
1436
wait_for_syncr(void __iomem * rdbase)1437 static void wait_for_syncr(void __iomem *rdbase)
1438 {
1439 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1440 cpu_relax();
1441 }
1442
__direct_lpi_inv(struct irq_data * d,u64 val)1443 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1444 {
1445 void __iomem *rdbase;
1446 unsigned long flags;
1447 int cpu;
1448
1449 /* Target the redistributor this LPI is currently routed to */
1450 cpu = irq_to_cpuid_lock(d, &flags);
1451 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1452
1453 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1454 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1455 wait_for_syncr(rdbase);
1456
1457 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1458 irq_to_cpuid_unlock(d, flags);
1459 }
1460
direct_lpi_inv(struct irq_data * d)1461 static void direct_lpi_inv(struct irq_data *d)
1462 {
1463 struct its_vlpi_map *map = get_vlpi_map(d);
1464 u64 val;
1465
1466 if (map) {
1467 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1468
1469 WARN_ON(!is_v4_1(its_dev->its));
1470
1471 val = GICR_INVLPIR_V;
1472 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1473 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1474 } else {
1475 val = d->hwirq;
1476 }
1477
1478 __direct_lpi_inv(d, val);
1479 }
1480
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1481 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1482 {
1483 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1484
1485 lpi_write_config(d, clr, set);
1486 if (gic_rdists->has_direct_lpi &&
1487 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1488 direct_lpi_inv(d);
1489 else if (!irqd_is_forwarded_to_vcpu(d))
1490 its_send_inv(its_dev, its_get_event_id(d));
1491 else
1492 its_send_vinv(its_dev, its_get_event_id(d));
1493 }
1494
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1495 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1496 {
1497 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1498 u32 event = its_get_event_id(d);
1499 struct its_vlpi_map *map;
1500
1501 /*
1502 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1503 * here.
1504 */
1505 if (is_v4_1(its_dev->its))
1506 return;
1507
1508 map = dev_event_to_vlpi_map(its_dev, event);
1509
1510 if (map->db_enabled == enable)
1511 return;
1512
1513 map->db_enabled = enable;
1514
1515 /*
1516 * More fun with the architecture:
1517 *
1518 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1519 * value or to 1023, depending on the enable bit. But that
1520 * would be issuing a mapping for an /existing/ DevID+EventID
1521 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1522 * to the /same/ vPE, using this opportunity to adjust the
1523 * doorbell. Mouahahahaha. We loves it, Precious.
1524 */
1525 its_send_vmovi(its_dev, event);
1526 }
1527
its_mask_irq(struct irq_data * d)1528 static void its_mask_irq(struct irq_data *d)
1529 {
1530 if (irqd_is_forwarded_to_vcpu(d))
1531 its_vlpi_set_doorbell(d, false);
1532
1533 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1534 }
1535
its_unmask_irq(struct irq_data * d)1536 static void its_unmask_irq(struct irq_data *d)
1537 {
1538 if (irqd_is_forwarded_to_vcpu(d))
1539 its_vlpi_set_doorbell(d, true);
1540
1541 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1542 }
1543
its_read_lpi_count(struct irq_data * d,int cpu)1544 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1545 {
1546 if (irqd_affinity_is_managed(d))
1547 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1548
1549 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1550 }
1551
its_inc_lpi_count(struct irq_data * d,int cpu)1552 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1553 {
1554 if (irqd_affinity_is_managed(d))
1555 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1556 else
1557 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1558 }
1559
its_dec_lpi_count(struct irq_data * d,int cpu)1560 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1561 {
1562 if (irqd_affinity_is_managed(d))
1563 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1564 else
1565 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1566 }
1567
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1568 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1569 const struct cpumask *cpu_mask)
1570 {
1571 unsigned int cpu = nr_cpu_ids, tmp;
1572 int count = S32_MAX;
1573
1574 for_each_cpu(tmp, cpu_mask) {
1575 int this_count = its_read_lpi_count(d, tmp);
1576 if (this_count < count) {
1577 cpu = tmp;
1578 count = this_count;
1579 }
1580 }
1581
1582 return cpu;
1583 }
1584
1585 /*
1586 * As suggested by Thomas Gleixner in:
1587 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1588 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1589 static int its_select_cpu(struct irq_data *d,
1590 const struct cpumask *aff_mask)
1591 {
1592 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1593 cpumask_var_t tmpmask;
1594 int cpu, node;
1595
1596 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1597 return -ENOMEM;
1598
1599 node = its_dev->its->numa_node;
1600
1601 if (!irqd_affinity_is_managed(d)) {
1602 /* First try the NUMA node */
1603 if (node != NUMA_NO_NODE) {
1604 /*
1605 * Try the intersection of the affinity mask and the
1606 * node mask (and the online mask, just to be safe).
1607 */
1608 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1609 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1610
1611 /*
1612 * Ideally, we would check if the mask is empty, and
1613 * try again on the full node here.
1614 *
1615 * But it turns out that the way ACPI describes the
1616 * affinity for ITSs only deals about memory, and
1617 * not target CPUs, so it cannot describe a single
1618 * ITS placed next to two NUMA nodes.
1619 *
1620 * Instead, just fallback on the online mask. This
1621 * diverges from Thomas' suggestion above.
1622 */
1623 cpu = cpumask_pick_least_loaded(d, tmpmask);
1624 if (cpu < nr_cpu_ids)
1625 goto out;
1626
1627 /* If we can't cross sockets, give up */
1628 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1629 goto out;
1630
1631 /* If the above failed, expand the search */
1632 }
1633
1634 /* Try the intersection of the affinity and online masks */
1635 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1636
1637 /* If that doesn't fly, the online mask is the last resort */
1638 if (cpumask_empty(tmpmask))
1639 cpumask_copy(tmpmask, cpu_online_mask);
1640
1641 cpu = cpumask_pick_least_loaded(d, tmpmask);
1642 } else {
1643 cpumask_copy(tmpmask, aff_mask);
1644
1645 /* If we cannot cross sockets, limit the search to that node */
1646 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1647 node != NUMA_NO_NODE)
1648 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1649
1650 cpu = cpumask_pick_least_loaded(d, tmpmask);
1651 }
1652 out:
1653 free_cpumask_var(tmpmask);
1654
1655 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1656 return cpu;
1657 }
1658
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1659 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1660 bool force)
1661 {
1662 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1663 struct its_collection *target_col;
1664 u32 id = its_get_event_id(d);
1665 int cpu, prev_cpu;
1666
1667 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1668 if (irqd_is_forwarded_to_vcpu(d))
1669 return -EINVAL;
1670
1671 prev_cpu = its_dev->event_map.col_map[id];
1672 its_dec_lpi_count(d, prev_cpu);
1673
1674 if (!force)
1675 cpu = its_select_cpu(d, mask_val);
1676 else
1677 cpu = cpumask_pick_least_loaded(d, mask_val);
1678
1679 if (cpu < 0 || cpu >= nr_cpu_ids)
1680 goto err;
1681
1682 /* don't set the affinity when the target cpu is same as current one */
1683 if (cpu != prev_cpu) {
1684 target_col = &its_dev->its->collections[cpu];
1685 its_send_movi(its_dev, target_col, id);
1686 its_dev->event_map.col_map[id] = cpu;
1687 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1688 }
1689
1690 its_inc_lpi_count(d, cpu);
1691
1692 return IRQ_SET_MASK_OK_DONE;
1693
1694 err:
1695 its_inc_lpi_count(d, prev_cpu);
1696 return -EINVAL;
1697 }
1698
its_irq_get_msi_base(struct its_device * its_dev)1699 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1700 {
1701 struct its_node *its = its_dev->its;
1702
1703 return its->phys_base + GITS_TRANSLATER;
1704 }
1705
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1706 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1707 {
1708 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1709 struct its_node *its;
1710 u64 addr;
1711
1712 its = its_dev->its;
1713 addr = its->get_msi_base(its_dev);
1714
1715 msg->address_lo = lower_32_bits(addr);
1716 msg->address_hi = upper_32_bits(addr);
1717 msg->data = its_get_event_id(d);
1718
1719 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1720 }
1721
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1722 static int its_irq_set_irqchip_state(struct irq_data *d,
1723 enum irqchip_irq_state which,
1724 bool state)
1725 {
1726 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1727 u32 event = its_get_event_id(d);
1728
1729 if (which != IRQCHIP_STATE_PENDING)
1730 return -EINVAL;
1731
1732 if (irqd_is_forwarded_to_vcpu(d)) {
1733 if (state)
1734 its_send_vint(its_dev, event);
1735 else
1736 its_send_vclear(its_dev, event);
1737 } else {
1738 if (state)
1739 its_send_int(its_dev, event);
1740 else
1741 its_send_clear(its_dev, event);
1742 }
1743
1744 return 0;
1745 }
1746
its_irq_retrigger(struct irq_data * d)1747 static int its_irq_retrigger(struct irq_data *d)
1748 {
1749 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1750 }
1751
1752 /*
1753 * Two favourable cases:
1754 *
1755 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1756 * for vSGI delivery
1757 *
1758 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1759 * and we're better off mapping all VPEs always
1760 *
1761 * If neither (a) nor (b) is true, then we map vPEs on demand.
1762 *
1763 */
gic_requires_eager_mapping(void)1764 static bool gic_requires_eager_mapping(void)
1765 {
1766 if (!its_list_map || gic_rdists->has_rvpeid)
1767 return true;
1768
1769 return false;
1770 }
1771
its_map_vm(struct its_node * its,struct its_vm * vm)1772 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1773 {
1774 unsigned long flags;
1775
1776 if (gic_requires_eager_mapping())
1777 return;
1778
1779 raw_spin_lock_irqsave(&vmovp_lock, flags);
1780
1781 /*
1782 * If the VM wasn't mapped yet, iterate over the vpes and get
1783 * them mapped now.
1784 */
1785 vm->vlpi_count[its->list_nr]++;
1786
1787 if (vm->vlpi_count[its->list_nr] == 1) {
1788 int i;
1789
1790 for (i = 0; i < vm->nr_vpes; i++) {
1791 struct its_vpe *vpe = vm->vpes[i];
1792 struct irq_data *d = irq_get_irq_data(vpe->irq);
1793
1794 /* Map the VPE to the first possible CPU */
1795 vpe->col_idx = cpumask_first(cpu_online_mask);
1796 its_send_vmapp(its, vpe, true);
1797 its_send_vinvall(its, vpe);
1798 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1799 }
1800 }
1801
1802 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1803 }
1804
its_unmap_vm(struct its_node * its,struct its_vm * vm)1805 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1806 {
1807 unsigned long flags;
1808
1809 /* Not using the ITS list? Everything is always mapped. */
1810 if (gic_requires_eager_mapping())
1811 return;
1812
1813 raw_spin_lock_irqsave(&vmovp_lock, flags);
1814
1815 if (!--vm->vlpi_count[its->list_nr]) {
1816 int i;
1817
1818 for (i = 0; i < vm->nr_vpes; i++)
1819 its_send_vmapp(its, vm->vpes[i], false);
1820 }
1821
1822 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1823 }
1824
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1825 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1826 {
1827 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1828 u32 event = its_get_event_id(d);
1829 int ret = 0;
1830
1831 if (!info->map)
1832 return -EINVAL;
1833
1834 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1835
1836 if (!its_dev->event_map.vm) {
1837 struct its_vlpi_map *maps;
1838
1839 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1840 GFP_ATOMIC);
1841 if (!maps) {
1842 ret = -ENOMEM;
1843 goto out;
1844 }
1845
1846 its_dev->event_map.vm = info->map->vm;
1847 its_dev->event_map.vlpi_maps = maps;
1848 } else if (its_dev->event_map.vm != info->map->vm) {
1849 ret = -EINVAL;
1850 goto out;
1851 }
1852
1853 /* Get our private copy of the mapping information */
1854 its_dev->event_map.vlpi_maps[event] = *info->map;
1855
1856 if (irqd_is_forwarded_to_vcpu(d)) {
1857 /* Already mapped, move it around */
1858 its_send_vmovi(its_dev, event);
1859 } else {
1860 /* Ensure all the VPEs are mapped on this ITS */
1861 its_map_vm(its_dev->its, info->map->vm);
1862
1863 /*
1864 * Flag the interrupt as forwarded so that we can
1865 * start poking the virtual property table.
1866 */
1867 irqd_set_forwarded_to_vcpu(d);
1868
1869 /* Write out the property to the prop table */
1870 lpi_write_config(d, 0xff, info->map->properties);
1871
1872 /* Drop the physical mapping */
1873 its_send_discard(its_dev, event);
1874
1875 /* and install the virtual one */
1876 its_send_vmapti(its_dev, event);
1877
1878 /* Increment the number of VLPIs */
1879 its_dev->event_map.nr_vlpis++;
1880 }
1881
1882 out:
1883 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1884 return ret;
1885 }
1886
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1887 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1888 {
1889 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1890 struct its_vlpi_map *map;
1891 int ret = 0;
1892
1893 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1894
1895 map = get_vlpi_map(d);
1896
1897 if (!its_dev->event_map.vm || !map) {
1898 ret = -EINVAL;
1899 goto out;
1900 }
1901
1902 /* Copy our mapping information to the incoming request */
1903 *info->map = *map;
1904
1905 out:
1906 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1907 return ret;
1908 }
1909
its_vlpi_unmap(struct irq_data * d)1910 static int its_vlpi_unmap(struct irq_data *d)
1911 {
1912 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1913 u32 event = its_get_event_id(d);
1914 int ret = 0;
1915
1916 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1917
1918 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1919 ret = -EINVAL;
1920 goto out;
1921 }
1922
1923 /* Drop the virtual mapping */
1924 its_send_discard(its_dev, event);
1925
1926 /* and restore the physical one */
1927 irqd_clr_forwarded_to_vcpu(d);
1928 its_send_mapti(its_dev, d->hwirq, event);
1929 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1930 LPI_PROP_ENABLED |
1931 LPI_PROP_GROUP1));
1932
1933 /* Potentially unmap the VM from this ITS */
1934 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1935
1936 /*
1937 * Drop the refcount and make the device available again if
1938 * this was the last VLPI.
1939 */
1940 if (!--its_dev->event_map.nr_vlpis) {
1941 its_dev->event_map.vm = NULL;
1942 kfree(its_dev->event_map.vlpi_maps);
1943 }
1944
1945 out:
1946 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1947 return ret;
1948 }
1949
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1950 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1951 {
1952 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1953
1954 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1955 return -EINVAL;
1956
1957 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1958 lpi_update_config(d, 0xff, info->config);
1959 else
1960 lpi_write_config(d, 0xff, info->config);
1961 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1962
1963 return 0;
1964 }
1965
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1966 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1967 {
1968 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1969 struct its_cmd_info *info = vcpu_info;
1970
1971 /* Need a v4 ITS */
1972 if (!is_v4(its_dev->its))
1973 return -EINVAL;
1974
1975 /* Unmap request? */
1976 if (!info)
1977 return its_vlpi_unmap(d);
1978
1979 switch (info->cmd_type) {
1980 case MAP_VLPI:
1981 return its_vlpi_map(d, info);
1982
1983 case GET_VLPI:
1984 return its_vlpi_get(d, info);
1985
1986 case PROP_UPDATE_VLPI:
1987 case PROP_UPDATE_AND_INV_VLPI:
1988 return its_vlpi_prop_update(d, info);
1989
1990 default:
1991 return -EINVAL;
1992 }
1993 }
1994
1995 static struct irq_chip its_irq_chip = {
1996 .name = "ITS",
1997 .irq_mask = its_mask_irq,
1998 .irq_unmask = its_unmask_irq,
1999 .irq_eoi = irq_chip_eoi_parent,
2000 .irq_set_affinity = its_set_affinity,
2001 .irq_compose_msi_msg = its_irq_compose_msi_msg,
2002 .irq_set_irqchip_state = its_irq_set_irqchip_state,
2003 .irq_retrigger = its_irq_retrigger,
2004 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
2005 };
2006
2007
2008 /*
2009 * How we allocate LPIs:
2010 *
2011 * lpi_range_list contains ranges of LPIs that are to available to
2012 * allocate from. To allocate LPIs, just pick the first range that
2013 * fits the required allocation, and reduce it by the required
2014 * amount. Once empty, remove the range from the list.
2015 *
2016 * To free a range of LPIs, add a free range to the list, sort it and
2017 * merge the result if the new range happens to be adjacent to an
2018 * already free block.
2019 *
2020 * The consequence of the above is that allocation is cost is low, but
2021 * freeing is expensive. We assumes that freeing rarely occurs.
2022 */
2023 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2024
2025 static DEFINE_MUTEX(lpi_range_lock);
2026 static LIST_HEAD(lpi_range_list);
2027
2028 struct lpi_range {
2029 struct list_head entry;
2030 u32 base_id;
2031 u32 span;
2032 };
2033
mk_lpi_range(u32 base,u32 span)2034 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2035 {
2036 struct lpi_range *range;
2037
2038 range = kmalloc(sizeof(*range), GFP_KERNEL);
2039 if (range) {
2040 range->base_id = base;
2041 range->span = span;
2042 }
2043
2044 return range;
2045 }
2046
alloc_lpi_range(u32 nr_lpis,u32 * base)2047 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2048 {
2049 struct lpi_range *range, *tmp;
2050 int err = -ENOSPC;
2051
2052 mutex_lock(&lpi_range_lock);
2053
2054 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2055 if (range->span >= nr_lpis) {
2056 *base = range->base_id;
2057 range->base_id += nr_lpis;
2058 range->span -= nr_lpis;
2059
2060 if (range->span == 0) {
2061 list_del(&range->entry);
2062 kfree(range);
2063 }
2064
2065 err = 0;
2066 break;
2067 }
2068 }
2069
2070 mutex_unlock(&lpi_range_lock);
2071
2072 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2073 return err;
2074 }
2075
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2076 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2077 {
2078 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2079 return;
2080 if (a->base_id + a->span != b->base_id)
2081 return;
2082 b->base_id = a->base_id;
2083 b->span += a->span;
2084 list_del(&a->entry);
2085 kfree(a);
2086 }
2087
free_lpi_range(u32 base,u32 nr_lpis)2088 static int free_lpi_range(u32 base, u32 nr_lpis)
2089 {
2090 struct lpi_range *new, *old;
2091
2092 new = mk_lpi_range(base, nr_lpis);
2093 if (!new)
2094 return -ENOMEM;
2095
2096 mutex_lock(&lpi_range_lock);
2097
2098 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2099 if (old->base_id < base)
2100 break;
2101 }
2102 /*
2103 * old is the last element with ->base_id smaller than base,
2104 * so new goes right after it. If there are no elements with
2105 * ->base_id smaller than base, &old->entry ends up pointing
2106 * at the head of the list, and inserting new it the start of
2107 * the list is the right thing to do in that case as well.
2108 */
2109 list_add(&new->entry, &old->entry);
2110 /*
2111 * Now check if we can merge with the preceding and/or
2112 * following ranges.
2113 */
2114 merge_lpi_ranges(old, new);
2115 merge_lpi_ranges(new, list_next_entry(new, entry));
2116
2117 mutex_unlock(&lpi_range_lock);
2118 return 0;
2119 }
2120
its_lpi_init(u32 id_bits)2121 static int __init its_lpi_init(u32 id_bits)
2122 {
2123 u32 lpis = (1UL << id_bits) - 8192;
2124 u32 numlpis;
2125 int err;
2126
2127 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2128
2129 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2130 lpis = numlpis;
2131 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2132 lpis);
2133 }
2134
2135 /*
2136 * Initializing the allocator is just the same as freeing the
2137 * full range of LPIs.
2138 */
2139 err = free_lpi_range(8192, lpis);
2140 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2141 return err;
2142 }
2143
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2144 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2145 {
2146 unsigned long *bitmap = NULL;
2147 int err = 0;
2148
2149 do {
2150 err = alloc_lpi_range(nr_irqs, base);
2151 if (!err)
2152 break;
2153
2154 nr_irqs /= 2;
2155 } while (nr_irqs > 0);
2156
2157 if (!nr_irqs)
2158 err = -ENOSPC;
2159
2160 if (err)
2161 goto out;
2162
2163 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2164 if (!bitmap)
2165 goto out;
2166
2167 *nr_ids = nr_irqs;
2168
2169 out:
2170 if (!bitmap)
2171 *base = *nr_ids = 0;
2172
2173 return bitmap;
2174 }
2175
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2176 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2177 {
2178 WARN_ON(free_lpi_range(base, nr_ids));
2179 kfree(bitmap);
2180 }
2181
gic_reset_prop_table(void * va)2182 static void gic_reset_prop_table(void *va)
2183 {
2184 /* Priority 0xa0, Group-1, disabled */
2185 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2186
2187 /* Make sure the GIC will observe the written configuration */
2188 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2189 }
2190
its_allocate_prop_table(gfp_t gfp_flags)2191 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2192 {
2193 struct page *prop_page;
2194
2195 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2196 if (!prop_page)
2197 return NULL;
2198
2199 gic_reset_prop_table(page_address(prop_page));
2200
2201 return prop_page;
2202 }
2203
its_free_prop_table(struct page * prop_page)2204 static void its_free_prop_table(struct page *prop_page)
2205 {
2206 free_pages((unsigned long)page_address(prop_page),
2207 get_order(LPI_PROPBASE_SZ));
2208 }
2209
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2210 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2211 {
2212 phys_addr_t start, end, addr_end;
2213 u64 i;
2214
2215 /*
2216 * We don't bother checking for a kdump kernel as by
2217 * construction, the LPI tables are out of this kernel's
2218 * memory map.
2219 */
2220 if (is_kdump_kernel())
2221 return true;
2222
2223 addr_end = addr + size - 1;
2224
2225 for_each_reserved_mem_range(i, &start, &end) {
2226 if (addr >= start && addr_end <= end)
2227 return true;
2228 }
2229
2230 /* Not found, not a good sign... */
2231 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2232 &addr, &addr_end);
2233 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2234 return false;
2235 }
2236
gic_reserve_range(phys_addr_t addr,unsigned long size)2237 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2238 {
2239 if (efi_enabled(EFI_CONFIG_TABLES))
2240 return efi_mem_reserve_persistent(addr, size);
2241
2242 return 0;
2243 }
2244
its_setup_lpi_prop_table(void)2245 static int __init its_setup_lpi_prop_table(void)
2246 {
2247 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2248 u64 val;
2249
2250 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2251 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2252
2253 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2254 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2255 LPI_PROPBASE_SZ,
2256 MEMREMAP_WB);
2257 gic_reset_prop_table(gic_rdists->prop_table_va);
2258 } else {
2259 struct page *page;
2260
2261 lpi_id_bits = min_t(u32,
2262 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2263 ITS_MAX_LPI_NRBITS);
2264 page = its_allocate_prop_table(GFP_NOWAIT);
2265 if (!page) {
2266 pr_err("Failed to allocate PROPBASE\n");
2267 return -ENOMEM;
2268 }
2269
2270 gic_rdists->prop_table_pa = page_to_phys(page);
2271 gic_rdists->prop_table_va = page_address(page);
2272 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2273 LPI_PROPBASE_SZ));
2274 }
2275
2276 pr_info("GICv3: using LPI property table @%pa\n",
2277 &gic_rdists->prop_table_pa);
2278
2279 return its_lpi_init(lpi_id_bits);
2280 }
2281
2282 static const char *its_base_type_string[] = {
2283 [GITS_BASER_TYPE_DEVICE] = "Devices",
2284 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2285 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2286 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2287 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2288 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2289 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2290 };
2291
its_read_baser(struct its_node * its,struct its_baser * baser)2292 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2293 {
2294 u32 idx = baser - its->tables;
2295
2296 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2297 }
2298
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2299 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2300 u64 val)
2301 {
2302 u32 idx = baser - its->tables;
2303
2304 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2305 baser->val = its_read_baser(its, baser);
2306 }
2307
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2308 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2309 u64 cache, u64 shr, u32 order, bool indirect)
2310 {
2311 u64 val = its_read_baser(its, baser);
2312 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2313 u64 type = GITS_BASER_TYPE(val);
2314 u64 baser_phys, tmp;
2315 u32 alloc_pages, psz;
2316 struct page *page;
2317 void *base;
2318
2319 psz = baser->psz;
2320 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2321 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2322 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2323 &its->phys_base, its_base_type_string[type],
2324 alloc_pages, GITS_BASER_PAGES_MAX);
2325 alloc_pages = GITS_BASER_PAGES_MAX;
2326 order = get_order(GITS_BASER_PAGES_MAX * psz);
2327 }
2328
2329 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2330 if (!page)
2331 return -ENOMEM;
2332
2333 base = (void *)page_address(page);
2334 baser_phys = virt_to_phys(base);
2335
2336 /* Check if the physical address of the memory is above 48bits */
2337 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2338
2339 /* 52bit PA is supported only when PageSize=64K */
2340 if (psz != SZ_64K) {
2341 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2342 free_pages((unsigned long)base, order);
2343 return -ENXIO;
2344 }
2345
2346 /* Convert 52bit PA to 48bit field */
2347 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2348 }
2349
2350 retry_baser:
2351 val = (baser_phys |
2352 (type << GITS_BASER_TYPE_SHIFT) |
2353 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2354 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2355 cache |
2356 shr |
2357 GITS_BASER_VALID);
2358
2359 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2360
2361 switch (psz) {
2362 case SZ_4K:
2363 val |= GITS_BASER_PAGE_SIZE_4K;
2364 break;
2365 case SZ_16K:
2366 val |= GITS_BASER_PAGE_SIZE_16K;
2367 break;
2368 case SZ_64K:
2369 val |= GITS_BASER_PAGE_SIZE_64K;
2370 break;
2371 }
2372
2373 its_write_baser(its, baser, val);
2374 tmp = baser->val;
2375
2376 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2377 /*
2378 * Shareability didn't stick. Just use
2379 * whatever the read reported, which is likely
2380 * to be the only thing this redistributor
2381 * supports. If that's zero, make it
2382 * non-cacheable as well.
2383 */
2384 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2385 if (!shr) {
2386 cache = GITS_BASER_nC;
2387 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2388 }
2389 goto retry_baser;
2390 }
2391
2392 if (val != tmp) {
2393 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2394 &its->phys_base, its_base_type_string[type],
2395 val, tmp);
2396 free_pages((unsigned long)base, order);
2397 return -ENXIO;
2398 }
2399
2400 baser->order = order;
2401 baser->base = base;
2402 baser->psz = psz;
2403 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2404
2405 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2406 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2407 its_base_type_string[type],
2408 (unsigned long)virt_to_phys(base),
2409 indirect ? "indirect" : "flat", (int)esz,
2410 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2411
2412 return 0;
2413 }
2414
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2415 static bool its_parse_indirect_baser(struct its_node *its,
2416 struct its_baser *baser,
2417 u32 *order, u32 ids)
2418 {
2419 u64 tmp = its_read_baser(its, baser);
2420 u64 type = GITS_BASER_TYPE(tmp);
2421 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2422 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2423 u32 new_order = *order;
2424 u32 psz = baser->psz;
2425 bool indirect = false;
2426
2427 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2428 if ((esz << ids) > (psz * 2)) {
2429 /*
2430 * Find out whether hw supports a single or two-level table by
2431 * table by reading bit at offset '62' after writing '1' to it.
2432 */
2433 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2434 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2435
2436 if (indirect) {
2437 /*
2438 * The size of the lvl2 table is equal to ITS page size
2439 * which is 'psz'. For computing lvl1 table size,
2440 * subtract ID bits that sparse lvl2 table from 'ids'
2441 * which is reported by ITS hardware times lvl1 table
2442 * entry size.
2443 */
2444 ids -= ilog2(psz / (int)esz);
2445 esz = GITS_LVL1_ENTRY_SIZE;
2446 }
2447 }
2448
2449 /*
2450 * Allocate as many entries as required to fit the
2451 * range of device IDs that the ITS can grok... The ID
2452 * space being incredibly sparse, this results in a
2453 * massive waste of memory if two-level device table
2454 * feature is not supported by hardware.
2455 */
2456 new_order = max_t(u32, get_order(esz << ids), new_order);
2457 if (new_order >= MAX_ORDER) {
2458 new_order = MAX_ORDER - 1;
2459 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2460 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2461 &its->phys_base, its_base_type_string[type],
2462 device_ids(its), ids);
2463 }
2464
2465 *order = new_order;
2466
2467 return indirect;
2468 }
2469
compute_common_aff(u64 val)2470 static u32 compute_common_aff(u64 val)
2471 {
2472 u32 aff, clpiaff;
2473
2474 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2475 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2476
2477 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2478 }
2479
compute_its_aff(struct its_node * its)2480 static u32 compute_its_aff(struct its_node *its)
2481 {
2482 u64 val;
2483 u32 svpet;
2484
2485 /*
2486 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2487 * the resulting affinity. We then use that to see if this match
2488 * our own affinity.
2489 */
2490 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2491 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2492 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2493 return compute_common_aff(val);
2494 }
2495
find_sibling_its(struct its_node * cur_its)2496 static struct its_node *find_sibling_its(struct its_node *cur_its)
2497 {
2498 struct its_node *its;
2499 u32 aff;
2500
2501 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2502 return NULL;
2503
2504 aff = compute_its_aff(cur_its);
2505
2506 list_for_each_entry(its, &its_nodes, entry) {
2507 u64 baser;
2508
2509 if (!is_v4_1(its) || its == cur_its)
2510 continue;
2511
2512 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2513 continue;
2514
2515 if (aff != compute_its_aff(its))
2516 continue;
2517
2518 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2519 baser = its->tables[2].val;
2520 if (!(baser & GITS_BASER_VALID))
2521 continue;
2522
2523 return its;
2524 }
2525
2526 return NULL;
2527 }
2528
its_free_tables(struct its_node * its)2529 static void its_free_tables(struct its_node *its)
2530 {
2531 int i;
2532
2533 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2534 if (its->tables[i].base) {
2535 free_pages((unsigned long)its->tables[i].base,
2536 its->tables[i].order);
2537 its->tables[i].base = NULL;
2538 }
2539 }
2540 }
2541
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2542 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2543 {
2544 u64 psz = SZ_64K;
2545
2546 while (psz) {
2547 u64 val, gpsz;
2548
2549 val = its_read_baser(its, baser);
2550 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2551
2552 switch (psz) {
2553 case SZ_64K:
2554 gpsz = GITS_BASER_PAGE_SIZE_64K;
2555 break;
2556 case SZ_16K:
2557 gpsz = GITS_BASER_PAGE_SIZE_16K;
2558 break;
2559 case SZ_4K:
2560 default:
2561 gpsz = GITS_BASER_PAGE_SIZE_4K;
2562 break;
2563 }
2564
2565 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2566
2567 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2568 its_write_baser(its, baser, val);
2569
2570 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2571 break;
2572
2573 switch (psz) {
2574 case SZ_64K:
2575 psz = SZ_16K;
2576 break;
2577 case SZ_16K:
2578 psz = SZ_4K;
2579 break;
2580 case SZ_4K:
2581 default:
2582 return -1;
2583 }
2584 }
2585
2586 baser->psz = psz;
2587 return 0;
2588 }
2589
its_alloc_tables(struct its_node * its)2590 static int its_alloc_tables(struct its_node *its)
2591 {
2592 u64 shr = GITS_BASER_InnerShareable;
2593 u64 cache = GITS_BASER_RaWaWb;
2594 int err, i;
2595
2596 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2597 /* erratum 24313: ignore memory access type */
2598 cache = GITS_BASER_nCnB;
2599
2600 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2601 struct its_baser *baser = its->tables + i;
2602 u64 val = its_read_baser(its, baser);
2603 u64 type = GITS_BASER_TYPE(val);
2604 bool indirect = false;
2605 u32 order;
2606
2607 if (type == GITS_BASER_TYPE_NONE)
2608 continue;
2609
2610 if (its_probe_baser_psz(its, baser)) {
2611 its_free_tables(its);
2612 return -ENXIO;
2613 }
2614
2615 order = get_order(baser->psz);
2616
2617 switch (type) {
2618 case GITS_BASER_TYPE_DEVICE:
2619 indirect = its_parse_indirect_baser(its, baser, &order,
2620 device_ids(its));
2621 break;
2622
2623 case GITS_BASER_TYPE_VCPU:
2624 if (is_v4_1(its)) {
2625 struct its_node *sibling;
2626
2627 WARN_ON(i != 2);
2628 if ((sibling = find_sibling_its(its))) {
2629 *baser = sibling->tables[2];
2630 its_write_baser(its, baser, baser->val);
2631 continue;
2632 }
2633 }
2634
2635 indirect = its_parse_indirect_baser(its, baser, &order,
2636 ITS_MAX_VPEID_BITS);
2637 break;
2638 }
2639
2640 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2641 if (err < 0) {
2642 its_free_tables(its);
2643 return err;
2644 }
2645
2646 /* Update settings which will be used for next BASERn */
2647 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2648 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2649 }
2650
2651 return 0;
2652 }
2653
inherit_vpe_l1_table_from_its(void)2654 static u64 inherit_vpe_l1_table_from_its(void)
2655 {
2656 struct its_node *its;
2657 u64 val;
2658 u32 aff;
2659
2660 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2661 aff = compute_common_aff(val);
2662
2663 list_for_each_entry(its, &its_nodes, entry) {
2664 u64 baser, addr;
2665
2666 if (!is_v4_1(its))
2667 continue;
2668
2669 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2670 continue;
2671
2672 if (aff != compute_its_aff(its))
2673 continue;
2674
2675 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2676 baser = its->tables[2].val;
2677 if (!(baser & GITS_BASER_VALID))
2678 continue;
2679
2680 /* We have a winner! */
2681 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2682
2683 val = GICR_VPROPBASER_4_1_VALID;
2684 if (baser & GITS_BASER_INDIRECT)
2685 val |= GICR_VPROPBASER_4_1_INDIRECT;
2686 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2687 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2688 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2689 case GIC_PAGE_SIZE_64K:
2690 addr = GITS_BASER_ADDR_48_to_52(baser);
2691 break;
2692 default:
2693 addr = baser & GENMASK_ULL(47, 12);
2694 break;
2695 }
2696 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2697 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2698 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2699 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2700 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2701 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2702
2703 return val;
2704 }
2705
2706 return 0;
2707 }
2708
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2709 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2710 {
2711 u32 aff;
2712 u64 val;
2713 int cpu;
2714
2715 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2716 aff = compute_common_aff(val);
2717
2718 for_each_possible_cpu(cpu) {
2719 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2720
2721 if (!base || cpu == smp_processor_id())
2722 continue;
2723
2724 val = gic_read_typer(base + GICR_TYPER);
2725 if (aff != compute_common_aff(val))
2726 continue;
2727
2728 /*
2729 * At this point, we have a victim. This particular CPU
2730 * has already booted, and has an affinity that matches
2731 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2732 * Make sure we don't write the Z bit in that case.
2733 */
2734 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2735 val &= ~GICR_VPROPBASER_4_1_Z;
2736
2737 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2738 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2739
2740 return val;
2741 }
2742
2743 return 0;
2744 }
2745
allocate_vpe_l2_table(int cpu,u32 id)2746 static bool allocate_vpe_l2_table(int cpu, u32 id)
2747 {
2748 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2749 unsigned int psz, esz, idx, npg, gpsz;
2750 u64 val;
2751 struct page *page;
2752 __le64 *table;
2753
2754 if (!gic_rdists->has_rvpeid)
2755 return true;
2756
2757 /* Skip non-present CPUs */
2758 if (!base)
2759 return true;
2760
2761 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2762
2763 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2764 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2765 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2766
2767 switch (gpsz) {
2768 default:
2769 WARN_ON(1);
2770 fallthrough;
2771 case GIC_PAGE_SIZE_4K:
2772 psz = SZ_4K;
2773 break;
2774 case GIC_PAGE_SIZE_16K:
2775 psz = SZ_16K;
2776 break;
2777 case GIC_PAGE_SIZE_64K:
2778 psz = SZ_64K;
2779 break;
2780 }
2781
2782 /* Don't allow vpe_id that exceeds single, flat table limit */
2783 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2784 return (id < (npg * psz / (esz * SZ_8)));
2785
2786 /* Compute 1st level table index & check if that exceeds table limit */
2787 idx = id >> ilog2(psz / (esz * SZ_8));
2788 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2789 return false;
2790
2791 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2792
2793 /* Allocate memory for 2nd level table */
2794 if (!table[idx]) {
2795 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2796 if (!page)
2797 return false;
2798
2799 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2800 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2801 gic_flush_dcache_to_poc(page_address(page), psz);
2802
2803 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2804
2805 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2806 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2807 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2808
2809 /* Ensure updated table contents are visible to RD hardware */
2810 dsb(sy);
2811 }
2812
2813 return true;
2814 }
2815
allocate_vpe_l1_table(void)2816 static int allocate_vpe_l1_table(void)
2817 {
2818 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2819 u64 val, gpsz, npg, pa;
2820 unsigned int psz = SZ_64K;
2821 unsigned int np, epp, esz;
2822 struct page *page;
2823
2824 if (!gic_rdists->has_rvpeid)
2825 return 0;
2826
2827 /*
2828 * if VPENDBASER.Valid is set, disable any previously programmed
2829 * VPE by setting PendingLast while clearing Valid. This has the
2830 * effect of making sure no doorbell will be generated and we can
2831 * then safely clear VPROPBASER.Valid.
2832 */
2833 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2834 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2835 vlpi_base + GICR_VPENDBASER);
2836
2837 /*
2838 * If we can inherit the configuration from another RD, let's do
2839 * so. Otherwise, we have to go through the allocation process. We
2840 * assume that all RDs have the exact same requirements, as
2841 * nothing will work otherwise.
2842 */
2843 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2844 if (val & GICR_VPROPBASER_4_1_VALID)
2845 goto out;
2846
2847 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2848 if (!gic_data_rdist()->vpe_table_mask)
2849 return -ENOMEM;
2850
2851 val = inherit_vpe_l1_table_from_its();
2852 if (val & GICR_VPROPBASER_4_1_VALID)
2853 goto out;
2854
2855 /* First probe the page size */
2856 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2857 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2858 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2859 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2860 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2861
2862 switch (gpsz) {
2863 default:
2864 gpsz = GIC_PAGE_SIZE_4K;
2865 fallthrough;
2866 case GIC_PAGE_SIZE_4K:
2867 psz = SZ_4K;
2868 break;
2869 case GIC_PAGE_SIZE_16K:
2870 psz = SZ_16K;
2871 break;
2872 case GIC_PAGE_SIZE_64K:
2873 psz = SZ_64K;
2874 break;
2875 }
2876
2877 /*
2878 * Start populating the register from scratch, including RO fields
2879 * (which we want to print in debug cases...)
2880 */
2881 val = 0;
2882 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2883 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2884
2885 /* How many entries per GIC page? */
2886 esz++;
2887 epp = psz / (esz * SZ_8);
2888
2889 /*
2890 * If we need more than just a single L1 page, flag the table
2891 * as indirect and compute the number of required L1 pages.
2892 */
2893 if (epp < ITS_MAX_VPEID) {
2894 int nl2;
2895
2896 val |= GICR_VPROPBASER_4_1_INDIRECT;
2897
2898 /* Number of L2 pages required to cover the VPEID space */
2899 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2900
2901 /* Number of L1 pages to point to the L2 pages */
2902 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2903 } else {
2904 npg = 1;
2905 }
2906
2907 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2908
2909 /* Right, that's the number of CPU pages we need for L1 */
2910 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2911
2912 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2913 np, npg, psz, epp, esz);
2914 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2915 if (!page)
2916 return -ENOMEM;
2917
2918 gic_data_rdist()->vpe_l1_base = page_address(page);
2919 pa = virt_to_phys(page_address(page));
2920 WARN_ON(!IS_ALIGNED(pa, psz));
2921
2922 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2923 val |= GICR_VPROPBASER_RaWb;
2924 val |= GICR_VPROPBASER_InnerShareable;
2925 val |= GICR_VPROPBASER_4_1_Z;
2926 val |= GICR_VPROPBASER_4_1_VALID;
2927
2928 out:
2929 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2930 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2931
2932 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2933 smp_processor_id(), val,
2934 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2935
2936 return 0;
2937 }
2938
its_alloc_collections(struct its_node * its)2939 static int its_alloc_collections(struct its_node *its)
2940 {
2941 int i;
2942
2943 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2944 GFP_KERNEL);
2945 if (!its->collections)
2946 return -ENOMEM;
2947
2948 for (i = 0; i < nr_cpu_ids; i++)
2949 its->collections[i].target_address = ~0ULL;
2950
2951 return 0;
2952 }
2953
its_allocate_pending_table(gfp_t gfp_flags)2954 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2955 {
2956 struct page *pend_page;
2957
2958 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2959 get_order(LPI_PENDBASE_SZ));
2960 if (!pend_page)
2961 return NULL;
2962
2963 /* Make sure the GIC will observe the zero-ed page */
2964 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2965
2966 return pend_page;
2967 }
2968
its_free_pending_table(struct page * pt)2969 static void its_free_pending_table(struct page *pt)
2970 {
2971 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2972 }
2973
2974 /*
2975 * Booting with kdump and LPIs enabled is generally fine. Any other
2976 * case is wrong in the absence of firmware/EFI support.
2977 */
enabled_lpis_allowed(void)2978 static bool enabled_lpis_allowed(void)
2979 {
2980 phys_addr_t addr;
2981 u64 val;
2982
2983 /* Check whether the property table is in a reserved region */
2984 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2985 addr = val & GENMASK_ULL(51, 12);
2986
2987 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2988 }
2989
allocate_lpi_tables(void)2990 static int __init allocate_lpi_tables(void)
2991 {
2992 u64 val;
2993 int err, cpu;
2994
2995 /*
2996 * If LPIs are enabled while we run this from the boot CPU,
2997 * flag the RD tables as pre-allocated if the stars do align.
2998 */
2999 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3000 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3001 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3002 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3003 pr_info("GICv3: Using preallocated redistributor tables\n");
3004 }
3005
3006 err = its_setup_lpi_prop_table();
3007 if (err)
3008 return err;
3009
3010 /*
3011 * We allocate all the pending tables anyway, as we may have a
3012 * mix of RDs that have had LPIs enabled, and some that
3013 * don't. We'll free the unused ones as each CPU comes online.
3014 */
3015 for_each_possible_cpu(cpu) {
3016 struct page *pend_page;
3017
3018 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3019 if (!pend_page) {
3020 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3021 return -ENOMEM;
3022 }
3023
3024 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3025 }
3026
3027 return 0;
3028 }
3029
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3030 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3031 {
3032 u32 count = 1000000; /* 1s! */
3033 bool clean;
3034 u64 val;
3035
3036 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3037 val &= ~GICR_VPENDBASER_Valid;
3038 val &= ~clr;
3039 val |= set;
3040 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3041
3042 do {
3043 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3044 clean = !(val & GICR_VPENDBASER_Dirty);
3045 if (!clean) {
3046 count--;
3047 cpu_relax();
3048 udelay(1);
3049 }
3050 } while (!clean && count);
3051
3052 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3053 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3054 val |= GICR_VPENDBASER_PendingLast;
3055 }
3056
3057 return val;
3058 }
3059
its_cpu_init_lpis(void)3060 static void its_cpu_init_lpis(void)
3061 {
3062 void __iomem *rbase = gic_data_rdist_rd_base();
3063 struct page *pend_page;
3064 phys_addr_t paddr;
3065 u64 val, tmp;
3066
3067 if (gic_data_rdist()->lpi_enabled)
3068 return;
3069
3070 val = readl_relaxed(rbase + GICR_CTLR);
3071 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3072 (val & GICR_CTLR_ENABLE_LPIS)) {
3073 /*
3074 * Check that we get the same property table on all
3075 * RDs. If we don't, this is hopeless.
3076 */
3077 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3078 paddr &= GENMASK_ULL(51, 12);
3079 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3080 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3081
3082 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3083 paddr &= GENMASK_ULL(51, 16);
3084
3085 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3086 its_free_pending_table(gic_data_rdist()->pend_page);
3087 gic_data_rdist()->pend_page = NULL;
3088
3089 goto out;
3090 }
3091
3092 pend_page = gic_data_rdist()->pend_page;
3093 paddr = page_to_phys(pend_page);
3094 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3095
3096 /* set PROPBASE */
3097 val = (gic_rdists->prop_table_pa |
3098 GICR_PROPBASER_InnerShareable |
3099 GICR_PROPBASER_RaWaWb |
3100 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3101
3102 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3103 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3104
3105 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3106 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3107 /*
3108 * The HW reports non-shareable, we must
3109 * remove the cacheability attributes as
3110 * well.
3111 */
3112 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3113 GICR_PROPBASER_CACHEABILITY_MASK);
3114 val |= GICR_PROPBASER_nC;
3115 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3116 }
3117 pr_info_once("GIC: using cache flushing for LPI property table\n");
3118 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3119 }
3120
3121 /* set PENDBASE */
3122 val = (page_to_phys(pend_page) |
3123 GICR_PENDBASER_InnerShareable |
3124 GICR_PENDBASER_RaWaWb);
3125
3126 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3127 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3128
3129 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3130 /*
3131 * The HW reports non-shareable, we must remove the
3132 * cacheability attributes as well.
3133 */
3134 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3135 GICR_PENDBASER_CACHEABILITY_MASK);
3136 val |= GICR_PENDBASER_nC;
3137 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3138 }
3139
3140 /* Enable LPIs */
3141 val = readl_relaxed(rbase + GICR_CTLR);
3142 val |= GICR_CTLR_ENABLE_LPIS;
3143 writel_relaxed(val, rbase + GICR_CTLR);
3144
3145 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3146 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3147
3148 /*
3149 * It's possible for CPU to receive VLPIs before it is
3150 * scheduled as a vPE, especially for the first CPU, and the
3151 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3152 * as out of range and dropped by GIC.
3153 * So we initialize IDbits to known value to avoid VLPI drop.
3154 */
3155 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3156 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3157 smp_processor_id(), val);
3158 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3159
3160 /*
3161 * Also clear Valid bit of GICR_VPENDBASER, in case some
3162 * ancient programming gets left in and has possibility of
3163 * corrupting memory.
3164 */
3165 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3166 }
3167
3168 if (allocate_vpe_l1_table()) {
3169 /*
3170 * If the allocation has failed, we're in massive trouble.
3171 * Disable direct injection, and pray that no VM was
3172 * already running...
3173 */
3174 gic_rdists->has_rvpeid = false;
3175 gic_rdists->has_vlpis = false;
3176 }
3177
3178 /* Make sure the GIC has seen the above */
3179 dsb(sy);
3180 out:
3181 gic_data_rdist()->lpi_enabled = true;
3182 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3183 smp_processor_id(),
3184 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3185 &paddr);
3186 }
3187
its_cpu_init_collection(struct its_node * its)3188 static void its_cpu_init_collection(struct its_node *its)
3189 {
3190 int cpu = smp_processor_id();
3191 u64 target;
3192
3193 /* avoid cross node collections and its mapping */
3194 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3195 struct device_node *cpu_node;
3196
3197 cpu_node = of_get_cpu_node(cpu, NULL);
3198 if (its->numa_node != NUMA_NO_NODE &&
3199 its->numa_node != of_node_to_nid(cpu_node))
3200 return;
3201 }
3202
3203 /*
3204 * We now have to bind each collection to its target
3205 * redistributor.
3206 */
3207 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3208 /*
3209 * This ITS wants the physical address of the
3210 * redistributor.
3211 */
3212 target = gic_data_rdist()->phys_base;
3213 } else {
3214 /* This ITS wants a linear CPU number. */
3215 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3216 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3217 }
3218
3219 /* Perform collection mapping */
3220 its->collections[cpu].target_address = target;
3221 its->collections[cpu].col_id = cpu;
3222
3223 its_send_mapc(its, &its->collections[cpu], 1);
3224 its_send_invall(its, &its->collections[cpu]);
3225 }
3226
its_cpu_init_collections(void)3227 static void its_cpu_init_collections(void)
3228 {
3229 struct its_node *its;
3230
3231 raw_spin_lock(&its_lock);
3232
3233 list_for_each_entry(its, &its_nodes, entry)
3234 its_cpu_init_collection(its);
3235
3236 raw_spin_unlock(&its_lock);
3237 }
3238
its_find_device(struct its_node * its,u32 dev_id)3239 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3240 {
3241 struct its_device *its_dev = NULL, *tmp;
3242 unsigned long flags;
3243
3244 raw_spin_lock_irqsave(&its->lock, flags);
3245
3246 list_for_each_entry(tmp, &its->its_device_list, entry) {
3247 if (tmp->device_id == dev_id) {
3248 its_dev = tmp;
3249 break;
3250 }
3251 }
3252
3253 raw_spin_unlock_irqrestore(&its->lock, flags);
3254
3255 return its_dev;
3256 }
3257
its_get_baser(struct its_node * its,u32 type)3258 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3259 {
3260 int i;
3261
3262 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3263 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3264 return &its->tables[i];
3265 }
3266
3267 return NULL;
3268 }
3269
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3270 static bool its_alloc_table_entry(struct its_node *its,
3271 struct its_baser *baser, u32 id)
3272 {
3273 struct page *page;
3274 u32 esz, idx;
3275 __le64 *table;
3276
3277 /* Don't allow device id that exceeds single, flat table limit */
3278 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3279 if (!(baser->val & GITS_BASER_INDIRECT))
3280 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3281
3282 /* Compute 1st level table index & check if that exceeds table limit */
3283 idx = id >> ilog2(baser->psz / esz);
3284 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3285 return false;
3286
3287 table = baser->base;
3288
3289 /* Allocate memory for 2nd level table */
3290 if (!table[idx]) {
3291 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3292 get_order(baser->psz));
3293 if (!page)
3294 return false;
3295
3296 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3297 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3298 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3299
3300 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3301
3302 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3303 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3304 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3305
3306 /* Ensure updated table contents are visible to ITS hardware */
3307 dsb(sy);
3308 }
3309
3310 return true;
3311 }
3312
its_alloc_device_table(struct its_node * its,u32 dev_id)3313 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3314 {
3315 struct its_baser *baser;
3316
3317 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3318
3319 /* Don't allow device id that exceeds ITS hardware limit */
3320 if (!baser)
3321 return (ilog2(dev_id) < device_ids(its));
3322
3323 return its_alloc_table_entry(its, baser, dev_id);
3324 }
3325
its_alloc_vpe_table(u32 vpe_id)3326 static bool its_alloc_vpe_table(u32 vpe_id)
3327 {
3328 struct its_node *its;
3329 int cpu;
3330
3331 /*
3332 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3333 * could try and only do it on ITSs corresponding to devices
3334 * that have interrupts targeted at this VPE, but the
3335 * complexity becomes crazy (and you have tons of memory
3336 * anyway, right?).
3337 */
3338 list_for_each_entry(its, &its_nodes, entry) {
3339 struct its_baser *baser;
3340
3341 if (!is_v4(its))
3342 continue;
3343
3344 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3345 if (!baser)
3346 return false;
3347
3348 if (!its_alloc_table_entry(its, baser, vpe_id))
3349 return false;
3350 }
3351
3352 /* Non v4.1? No need to iterate RDs and go back early. */
3353 if (!gic_rdists->has_rvpeid)
3354 return true;
3355
3356 /*
3357 * Make sure the L2 tables are allocated for all copies of
3358 * the L1 table on *all* v4.1 RDs.
3359 */
3360 for_each_possible_cpu(cpu) {
3361 if (!allocate_vpe_l2_table(cpu, vpe_id))
3362 return false;
3363 }
3364
3365 return true;
3366 }
3367
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3368 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3369 int nvecs, bool alloc_lpis)
3370 {
3371 struct its_device *dev;
3372 unsigned long *lpi_map = NULL;
3373 unsigned long flags;
3374 u16 *col_map = NULL;
3375 void *itt;
3376 int lpi_base;
3377 int nr_lpis;
3378 int nr_ites;
3379 int sz;
3380
3381 if (!its_alloc_device_table(its, dev_id))
3382 return NULL;
3383
3384 if (WARN_ON(!is_power_of_2(nvecs)))
3385 nvecs = roundup_pow_of_two(nvecs);
3386
3387 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3388 /*
3389 * Even if the device wants a single LPI, the ITT must be
3390 * sized as a power of two (and you need at least one bit...).
3391 */
3392 nr_ites = max(2, nvecs);
3393 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3394 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3395 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
3396 if (alloc_lpis) {
3397 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3398 if (lpi_map)
3399 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3400 GFP_KERNEL);
3401 } else {
3402 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3403 nr_lpis = 0;
3404 lpi_base = 0;
3405 }
3406
3407 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3408 kfree(dev);
3409 kfree(itt);
3410 kfree(lpi_map);
3411 kfree(col_map);
3412 return NULL;
3413 }
3414
3415 gic_flush_dcache_to_poc(itt, sz);
3416
3417 dev->its = its;
3418 dev->itt = itt;
3419 dev->nr_ites = nr_ites;
3420 dev->event_map.lpi_map = lpi_map;
3421 dev->event_map.col_map = col_map;
3422 dev->event_map.lpi_base = lpi_base;
3423 dev->event_map.nr_lpis = nr_lpis;
3424 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3425 dev->device_id = dev_id;
3426 INIT_LIST_HEAD(&dev->entry);
3427
3428 raw_spin_lock_irqsave(&its->lock, flags);
3429 list_add(&dev->entry, &its->its_device_list);
3430 raw_spin_unlock_irqrestore(&its->lock, flags);
3431
3432 /* Map device to its ITT */
3433 its_send_mapd(dev, 1);
3434
3435 return dev;
3436 }
3437
its_free_device(struct its_device * its_dev)3438 static void its_free_device(struct its_device *its_dev)
3439 {
3440 unsigned long flags;
3441
3442 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3443 list_del(&its_dev->entry);
3444 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3445 kfree(its_dev->event_map.col_map);
3446 kfree(its_dev->itt);
3447 kfree(its_dev);
3448 }
3449
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3450 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3451 {
3452 int idx;
3453
3454 /* Find a free LPI region in lpi_map and allocate them. */
3455 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3456 dev->event_map.nr_lpis,
3457 get_count_order(nvecs));
3458 if (idx < 0)
3459 return -ENOSPC;
3460
3461 *hwirq = dev->event_map.lpi_base + idx;
3462
3463 return 0;
3464 }
3465
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3466 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3467 int nvec, msi_alloc_info_t *info)
3468 {
3469 struct its_node *its;
3470 struct its_device *its_dev;
3471 struct msi_domain_info *msi_info;
3472 u32 dev_id;
3473 int err = 0;
3474
3475 /*
3476 * We ignore "dev" entirely, and rely on the dev_id that has
3477 * been passed via the scratchpad. This limits this domain's
3478 * usefulness to upper layers that definitely know that they
3479 * are built on top of the ITS.
3480 */
3481 dev_id = info->scratchpad[0].ul;
3482
3483 msi_info = msi_get_domain_info(domain);
3484 its = msi_info->data;
3485
3486 if (!gic_rdists->has_direct_lpi &&
3487 vpe_proxy.dev &&
3488 vpe_proxy.dev->its == its &&
3489 dev_id == vpe_proxy.dev->device_id) {
3490 /* Bad luck. Get yourself a better implementation */
3491 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3492 dev_id);
3493 return -EINVAL;
3494 }
3495
3496 mutex_lock(&its->dev_alloc_lock);
3497 its_dev = its_find_device(its, dev_id);
3498 if (its_dev) {
3499 /*
3500 * We already have seen this ID, probably through
3501 * another alias (PCI bridge of some sort). No need to
3502 * create the device.
3503 */
3504 its_dev->shared = true;
3505 pr_debug("Reusing ITT for devID %x\n", dev_id);
3506 goto out;
3507 }
3508
3509 its_dev = its_create_device(its, dev_id, nvec, true);
3510 if (!its_dev) {
3511 err = -ENOMEM;
3512 goto out;
3513 }
3514
3515 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3516 out:
3517 mutex_unlock(&its->dev_alloc_lock);
3518 info->scratchpad[0].ptr = its_dev;
3519 return err;
3520 }
3521
3522 static struct msi_domain_ops its_msi_domain_ops = {
3523 .msi_prepare = its_msi_prepare,
3524 };
3525
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3526 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3527 unsigned int virq,
3528 irq_hw_number_t hwirq)
3529 {
3530 struct irq_fwspec fwspec;
3531
3532 if (irq_domain_get_of_node(domain->parent)) {
3533 fwspec.fwnode = domain->parent->fwnode;
3534 fwspec.param_count = 3;
3535 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3536 fwspec.param[1] = hwirq;
3537 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3538 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3539 fwspec.fwnode = domain->parent->fwnode;
3540 fwspec.param_count = 2;
3541 fwspec.param[0] = hwirq;
3542 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3543 } else {
3544 return -EINVAL;
3545 }
3546
3547 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3548 }
3549
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3550 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3551 unsigned int nr_irqs, void *args)
3552 {
3553 msi_alloc_info_t *info = args;
3554 struct its_device *its_dev = info->scratchpad[0].ptr;
3555 struct its_node *its = its_dev->its;
3556 struct irq_data *irqd;
3557 irq_hw_number_t hwirq;
3558 int err;
3559 int i;
3560
3561 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3562 if (err)
3563 return err;
3564
3565 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3566 if (err)
3567 return err;
3568
3569 for (i = 0; i < nr_irqs; i++) {
3570 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3571 if (err)
3572 return err;
3573
3574 irq_domain_set_hwirq_and_chip(domain, virq + i,
3575 hwirq + i, &its_irq_chip, its_dev);
3576 irqd = irq_get_irq_data(virq + i);
3577 irqd_set_single_target(irqd);
3578 irqd_set_affinity_on_activate(irqd);
3579 pr_debug("ID:%d pID:%d vID:%d\n",
3580 (int)(hwirq + i - its_dev->event_map.lpi_base),
3581 (int)(hwirq + i), virq + i);
3582 }
3583
3584 return 0;
3585 }
3586
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3587 static int its_irq_domain_activate(struct irq_domain *domain,
3588 struct irq_data *d, bool reserve)
3589 {
3590 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3591 u32 event = its_get_event_id(d);
3592 int cpu;
3593
3594 cpu = its_select_cpu(d, cpu_online_mask);
3595 if (cpu < 0 || cpu >= nr_cpu_ids)
3596 return -EINVAL;
3597
3598 its_inc_lpi_count(d, cpu);
3599 its_dev->event_map.col_map[event] = cpu;
3600 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3601
3602 /* Map the GIC IRQ and event to the device */
3603 its_send_mapti(its_dev, d->hwirq, event);
3604 return 0;
3605 }
3606
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3607 static void its_irq_domain_deactivate(struct irq_domain *domain,
3608 struct irq_data *d)
3609 {
3610 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3611 u32 event = its_get_event_id(d);
3612
3613 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3614 /* Stop the delivery of interrupts */
3615 its_send_discard(its_dev, event);
3616 }
3617
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3618 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3619 unsigned int nr_irqs)
3620 {
3621 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3622 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3623 struct its_node *its = its_dev->its;
3624 int i;
3625
3626 bitmap_release_region(its_dev->event_map.lpi_map,
3627 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3628 get_count_order(nr_irqs));
3629
3630 for (i = 0; i < nr_irqs; i++) {
3631 struct irq_data *data = irq_domain_get_irq_data(domain,
3632 virq + i);
3633 /* Nuke the entry in the domain */
3634 irq_domain_reset_irq_data(data);
3635 }
3636
3637 mutex_lock(&its->dev_alloc_lock);
3638
3639 /*
3640 * If all interrupts have been freed, start mopping the
3641 * floor. This is conditioned on the device not being shared.
3642 */
3643 if (!its_dev->shared &&
3644 bitmap_empty(its_dev->event_map.lpi_map,
3645 its_dev->event_map.nr_lpis)) {
3646 its_lpi_free(its_dev->event_map.lpi_map,
3647 its_dev->event_map.lpi_base,
3648 its_dev->event_map.nr_lpis);
3649
3650 /* Unmap device/itt */
3651 its_send_mapd(its_dev, 0);
3652 its_free_device(its_dev);
3653 }
3654
3655 mutex_unlock(&its->dev_alloc_lock);
3656
3657 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3658 }
3659
3660 static const struct irq_domain_ops its_domain_ops = {
3661 .alloc = its_irq_domain_alloc,
3662 .free = its_irq_domain_free,
3663 .activate = its_irq_domain_activate,
3664 .deactivate = its_irq_domain_deactivate,
3665 };
3666
3667 /*
3668 * This is insane.
3669 *
3670 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3671 * likely), the only way to perform an invalidate is to use a fake
3672 * device to issue an INV command, implying that the LPI has first
3673 * been mapped to some event on that device. Since this is not exactly
3674 * cheap, we try to keep that mapping around as long as possible, and
3675 * only issue an UNMAP if we're short on available slots.
3676 *
3677 * Broken by design(tm).
3678 *
3679 * GICv4.1, on the other hand, mandates that we're able to invalidate
3680 * by writing to a MMIO register. It doesn't implement the whole of
3681 * DirectLPI, but that's good enough. And most of the time, we don't
3682 * even have to invalidate anything, as the redistributor can be told
3683 * whether to generate a doorbell or not (we thus leave it enabled,
3684 * always).
3685 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3686 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3687 {
3688 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3689 if (gic_rdists->has_rvpeid)
3690 return;
3691
3692 /* Already unmapped? */
3693 if (vpe->vpe_proxy_event == -1)
3694 return;
3695
3696 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3697 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3698
3699 /*
3700 * We don't track empty slots at all, so let's move the
3701 * next_victim pointer if we can quickly reuse that slot
3702 * instead of nuking an existing entry. Not clear that this is
3703 * always a win though, and this might just generate a ripple
3704 * effect... Let's just hope VPEs don't migrate too often.
3705 */
3706 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3707 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3708
3709 vpe->vpe_proxy_event = -1;
3710 }
3711
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3712 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3713 {
3714 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3715 if (gic_rdists->has_rvpeid)
3716 return;
3717
3718 if (!gic_rdists->has_direct_lpi) {
3719 unsigned long flags;
3720
3721 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3722 its_vpe_db_proxy_unmap_locked(vpe);
3723 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3724 }
3725 }
3726
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3728 {
3729 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 if (gic_rdists->has_rvpeid)
3731 return;
3732
3733 /* Already mapped? */
3734 if (vpe->vpe_proxy_event != -1)
3735 return;
3736
3737 /* This slot was already allocated. Kick the other VPE out. */
3738 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3739 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3740
3741 /* Map the new VPE instead */
3742 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3743 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3744 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3745
3746 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3747 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3748 }
3749
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3750 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3751 {
3752 unsigned long flags;
3753 struct its_collection *target_col;
3754
3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 if (gic_rdists->has_rvpeid)
3757 return;
3758
3759 if (gic_rdists->has_direct_lpi) {
3760 void __iomem *rdbase;
3761
3762 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3763 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3764 wait_for_syncr(rdbase);
3765
3766 return;
3767 }
3768
3769 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3770
3771 its_vpe_db_proxy_map_locked(vpe);
3772
3773 target_col = &vpe_proxy.dev->its->collections[to];
3774 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3775 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3776
3777 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3778 }
3779
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3780 static int its_vpe_set_affinity(struct irq_data *d,
3781 const struct cpumask *mask_val,
3782 bool force)
3783 {
3784 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3785 struct cpumask common, *table_mask;
3786 unsigned long flags;
3787 int from, cpu;
3788
3789 /*
3790 * Check if we're racing against a VPE being destroyed, for
3791 * which we don't want to allow a VMOVP.
3792 */
3793 if (!atomic_read(&vpe->vmapp_count)) {
3794 if (gic_requires_eager_mapping())
3795 return -EINVAL;
3796
3797 /*
3798 * If we lazily map the VPEs, this isn't an error and
3799 * we can exit cleanly.
3800 */
3801 cpu = cpumask_first(mask_val);
3802 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3803 return IRQ_SET_MASK_OK_DONE;
3804 }
3805
3806 /*
3807 * Changing affinity is mega expensive, so let's be as lazy as
3808 * we can and only do it if we really have to. Also, if mapped
3809 * into the proxy device, we need to move the doorbell
3810 * interrupt to its new location.
3811 *
3812 * Another thing is that changing the affinity of a vPE affects
3813 * *other interrupts* such as all the vLPIs that are routed to
3814 * this vPE. This means that the irq_desc lock is not enough to
3815 * protect us, and that we must ensure nobody samples vpe->col_idx
3816 * during the update, hence the lock below which must also be
3817 * taken on any vLPI handling path that evaluates vpe->col_idx.
3818 */
3819 from = vpe_to_cpuid_lock(vpe, &flags);
3820 table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3821
3822 /*
3823 * If we are offered another CPU in the same GICv4.1 ITS
3824 * affinity, pick this one. Otherwise, any CPU will do.
3825 */
3826 if (table_mask && cpumask_and(&common, mask_val, table_mask))
3827 cpu = cpumask_test_cpu(from, &common) ? from : cpumask_first(&common);
3828 else
3829 cpu = cpumask_first(mask_val);
3830
3831 if (from == cpu)
3832 goto out;
3833
3834 vpe->col_idx = cpu;
3835
3836 its_send_vmovp(vpe);
3837 its_vpe_db_proxy_move(vpe, from, cpu);
3838
3839 out:
3840 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3841 vpe_to_cpuid_unlock(vpe, flags);
3842
3843 return IRQ_SET_MASK_OK_DONE;
3844 }
3845
its_wait_vpt_parse_complete(void)3846 static void its_wait_vpt_parse_complete(void)
3847 {
3848 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3849 u64 val;
3850
3851 if (!gic_rdists->has_vpend_valid_dirty)
3852 return;
3853
3854 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3855 val,
3856 !(val & GICR_VPENDBASER_Dirty),
3857 10, 500));
3858 }
3859
its_vpe_schedule(struct its_vpe * vpe)3860 static void its_vpe_schedule(struct its_vpe *vpe)
3861 {
3862 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3863 u64 val;
3864
3865 /* Schedule the VPE */
3866 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3867 GENMASK_ULL(51, 12);
3868 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3869 val |= GICR_VPROPBASER_RaWb;
3870 val |= GICR_VPROPBASER_InnerShareable;
3871 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3872
3873 val = virt_to_phys(page_address(vpe->vpt_page)) &
3874 GENMASK_ULL(51, 16);
3875 val |= GICR_VPENDBASER_RaWaWb;
3876 val |= GICR_VPENDBASER_InnerShareable;
3877 /*
3878 * There is no good way of finding out if the pending table is
3879 * empty as we can race against the doorbell interrupt very
3880 * easily. So in the end, vpe->pending_last is only an
3881 * indication that the vcpu has something pending, not one
3882 * that the pending table is empty. A good implementation
3883 * would be able to read its coarse map pretty quickly anyway,
3884 * making this a tolerable issue.
3885 */
3886 val |= GICR_VPENDBASER_PendingLast;
3887 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3888 val |= GICR_VPENDBASER_Valid;
3889 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3890
3891 its_wait_vpt_parse_complete();
3892 }
3893
its_vpe_deschedule(struct its_vpe * vpe)3894 static void its_vpe_deschedule(struct its_vpe *vpe)
3895 {
3896 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3897 u64 val;
3898
3899 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3900
3901 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3902 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3903 }
3904
its_vpe_invall(struct its_vpe * vpe)3905 static void its_vpe_invall(struct its_vpe *vpe)
3906 {
3907 struct its_node *its;
3908
3909 list_for_each_entry(its, &its_nodes, entry) {
3910 if (!is_v4(its))
3911 continue;
3912
3913 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3914 continue;
3915
3916 /*
3917 * Sending a VINVALL to a single ITS is enough, as all
3918 * we need is to reach the redistributors.
3919 */
3920 its_send_vinvall(its, vpe);
3921 return;
3922 }
3923 }
3924
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3925 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3926 {
3927 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3928 struct its_cmd_info *info = vcpu_info;
3929
3930 switch (info->cmd_type) {
3931 case SCHEDULE_VPE:
3932 its_vpe_schedule(vpe);
3933 return 0;
3934
3935 case DESCHEDULE_VPE:
3936 its_vpe_deschedule(vpe);
3937 return 0;
3938
3939 case INVALL_VPE:
3940 its_vpe_invall(vpe);
3941 return 0;
3942
3943 default:
3944 return -EINVAL;
3945 }
3946 }
3947
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3948 static void its_vpe_send_cmd(struct its_vpe *vpe,
3949 void (*cmd)(struct its_device *, u32))
3950 {
3951 unsigned long flags;
3952
3953 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3954
3955 its_vpe_db_proxy_map_locked(vpe);
3956 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3957
3958 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3959 }
3960
its_vpe_send_inv(struct irq_data * d)3961 static void its_vpe_send_inv(struct irq_data *d)
3962 {
3963 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3964
3965 if (gic_rdists->has_direct_lpi)
3966 __direct_lpi_inv(d, d->parent_data->hwirq);
3967 else
3968 its_vpe_send_cmd(vpe, its_send_inv);
3969 }
3970
its_vpe_mask_irq(struct irq_data * d)3971 static void its_vpe_mask_irq(struct irq_data *d)
3972 {
3973 /*
3974 * We need to unmask the LPI, which is described by the parent
3975 * irq_data. Instead of calling into the parent (which won't
3976 * exactly do the right thing, let's simply use the
3977 * parent_data pointer. Yes, I'm naughty.
3978 */
3979 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3980 its_vpe_send_inv(d);
3981 }
3982
its_vpe_unmask_irq(struct irq_data * d)3983 static void its_vpe_unmask_irq(struct irq_data *d)
3984 {
3985 /* Same hack as above... */
3986 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3987 its_vpe_send_inv(d);
3988 }
3989
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)3990 static int its_vpe_set_irqchip_state(struct irq_data *d,
3991 enum irqchip_irq_state which,
3992 bool state)
3993 {
3994 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3995
3996 if (which != IRQCHIP_STATE_PENDING)
3997 return -EINVAL;
3998
3999 if (gic_rdists->has_direct_lpi) {
4000 void __iomem *rdbase;
4001
4002 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4003 if (state) {
4004 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4005 } else {
4006 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4007 wait_for_syncr(rdbase);
4008 }
4009 } else {
4010 if (state)
4011 its_vpe_send_cmd(vpe, its_send_int);
4012 else
4013 its_vpe_send_cmd(vpe, its_send_clear);
4014 }
4015
4016 return 0;
4017 }
4018
its_vpe_retrigger(struct irq_data * d)4019 static int its_vpe_retrigger(struct irq_data *d)
4020 {
4021 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4022 }
4023
4024 static struct irq_chip its_vpe_irq_chip = {
4025 .name = "GICv4-vpe",
4026 .irq_mask = its_vpe_mask_irq,
4027 .irq_unmask = its_vpe_unmask_irq,
4028 .irq_eoi = irq_chip_eoi_parent,
4029 .irq_set_affinity = its_vpe_set_affinity,
4030 .irq_retrigger = its_vpe_retrigger,
4031 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4032 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4033 };
4034
find_4_1_its(void)4035 static struct its_node *find_4_1_its(void)
4036 {
4037 static struct its_node *its = NULL;
4038
4039 if (!its) {
4040 list_for_each_entry(its, &its_nodes, entry) {
4041 if (is_v4_1(its))
4042 return its;
4043 }
4044
4045 /* Oops? */
4046 its = NULL;
4047 }
4048
4049 return its;
4050 }
4051
its_vpe_4_1_send_inv(struct irq_data * d)4052 static void its_vpe_4_1_send_inv(struct irq_data *d)
4053 {
4054 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4055 struct its_node *its;
4056
4057 /*
4058 * GICv4.1 wants doorbells to be invalidated using the
4059 * INVDB command in order to be broadcast to all RDs. Send
4060 * it to the first valid ITS, and let the HW do its magic.
4061 */
4062 its = find_4_1_its();
4063 if (its)
4064 its_send_invdb(its, vpe);
4065 }
4066
its_vpe_4_1_mask_irq(struct irq_data * d)4067 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4068 {
4069 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4070 its_vpe_4_1_send_inv(d);
4071 }
4072
its_vpe_4_1_unmask_irq(struct irq_data * d)4073 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4074 {
4075 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4076 its_vpe_4_1_send_inv(d);
4077 }
4078
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4079 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4080 struct its_cmd_info *info)
4081 {
4082 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4083 u64 val = 0;
4084
4085 /* Schedule the VPE */
4086 val |= GICR_VPENDBASER_Valid;
4087 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4088 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4089 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4090
4091 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4092
4093 its_wait_vpt_parse_complete();
4094 }
4095
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4096 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4097 struct its_cmd_info *info)
4098 {
4099 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4100 u64 val;
4101
4102 if (info->req_db) {
4103 unsigned long flags;
4104
4105 /*
4106 * vPE is going to block: make the vPE non-resident with
4107 * PendingLast clear and DB set. The GIC guarantees that if
4108 * we read-back PendingLast clear, then a doorbell will be
4109 * delivered when an interrupt comes.
4110 *
4111 * Note the locking to deal with the concurrent update of
4112 * pending_last from the doorbell interrupt handler that can
4113 * run concurrently.
4114 */
4115 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4116 val = its_clear_vpend_valid(vlpi_base,
4117 GICR_VPENDBASER_PendingLast,
4118 GICR_VPENDBASER_4_1_DB);
4119 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4120 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4121 } else {
4122 /*
4123 * We're not blocking, so just make the vPE non-resident
4124 * with PendingLast set, indicating that we'll be back.
4125 */
4126 val = its_clear_vpend_valid(vlpi_base,
4127 0,
4128 GICR_VPENDBASER_PendingLast);
4129 vpe->pending_last = true;
4130 }
4131 }
4132
its_vpe_4_1_invall(struct its_vpe * vpe)4133 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4134 {
4135 void __iomem *rdbase;
4136 unsigned long flags;
4137 u64 val;
4138 int cpu;
4139
4140 val = GICR_INVALLR_V;
4141 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4142
4143 /* Target the redistributor this vPE is currently known on */
4144 cpu = vpe_to_cpuid_lock(vpe, &flags);
4145 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4146 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4147 gic_write_lpir(val, rdbase + GICR_INVALLR);
4148
4149 wait_for_syncr(rdbase);
4150 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4151 vpe_to_cpuid_unlock(vpe, flags);
4152 }
4153
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4154 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4155 {
4156 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4157 struct its_cmd_info *info = vcpu_info;
4158
4159 switch (info->cmd_type) {
4160 case SCHEDULE_VPE:
4161 its_vpe_4_1_schedule(vpe, info);
4162 return 0;
4163
4164 case DESCHEDULE_VPE:
4165 its_vpe_4_1_deschedule(vpe, info);
4166 return 0;
4167
4168 case INVALL_VPE:
4169 its_vpe_4_1_invall(vpe);
4170 return 0;
4171
4172 default:
4173 return -EINVAL;
4174 }
4175 }
4176
4177 static struct irq_chip its_vpe_4_1_irq_chip = {
4178 .name = "GICv4.1-vpe",
4179 .irq_mask = its_vpe_4_1_mask_irq,
4180 .irq_unmask = its_vpe_4_1_unmask_irq,
4181 .irq_eoi = irq_chip_eoi_parent,
4182 .irq_set_affinity = its_vpe_set_affinity,
4183 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4184 };
4185
its_configure_sgi(struct irq_data * d,bool clear)4186 static void its_configure_sgi(struct irq_data *d, bool clear)
4187 {
4188 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4189 struct its_cmd_desc desc;
4190
4191 desc.its_vsgi_cmd.vpe = vpe;
4192 desc.its_vsgi_cmd.sgi = d->hwirq;
4193 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4194 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4195 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4196 desc.its_vsgi_cmd.clear = clear;
4197
4198 /*
4199 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4200 * destination VPE is mapped there. Since we map them eagerly at
4201 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4202 */
4203 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4204 }
4205
its_sgi_mask_irq(struct irq_data * d)4206 static void its_sgi_mask_irq(struct irq_data *d)
4207 {
4208 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4209
4210 vpe->sgi_config[d->hwirq].enabled = false;
4211 its_configure_sgi(d, false);
4212 }
4213
its_sgi_unmask_irq(struct irq_data * d)4214 static void its_sgi_unmask_irq(struct irq_data *d)
4215 {
4216 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4217
4218 vpe->sgi_config[d->hwirq].enabled = true;
4219 its_configure_sgi(d, false);
4220 }
4221
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4222 static int its_sgi_set_affinity(struct irq_data *d,
4223 const struct cpumask *mask_val,
4224 bool force)
4225 {
4226 /*
4227 * There is no notion of affinity for virtual SGIs, at least
4228 * not on the host (since they can only be targeting a vPE).
4229 * Tell the kernel we've done whatever it asked for.
4230 */
4231 irq_data_update_effective_affinity(d, mask_val);
4232 return IRQ_SET_MASK_OK;
4233 }
4234
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4235 static int its_sgi_set_irqchip_state(struct irq_data *d,
4236 enum irqchip_irq_state which,
4237 bool state)
4238 {
4239 if (which != IRQCHIP_STATE_PENDING)
4240 return -EINVAL;
4241
4242 if (state) {
4243 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4244 struct its_node *its = find_4_1_its();
4245 u64 val;
4246
4247 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4248 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4249 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4250 } else {
4251 its_configure_sgi(d, true);
4252 }
4253
4254 return 0;
4255 }
4256
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4257 static int its_sgi_get_irqchip_state(struct irq_data *d,
4258 enum irqchip_irq_state which, bool *val)
4259 {
4260 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4261 void __iomem *base;
4262 unsigned long flags;
4263 u32 count = 1000000; /* 1s! */
4264 u32 status;
4265 int cpu;
4266
4267 if (which != IRQCHIP_STATE_PENDING)
4268 return -EINVAL;
4269
4270 /*
4271 * Locking galore! We can race against two different events:
4272 *
4273 * - Concurrent vPE affinity change: we must make sure it cannot
4274 * happen, or we'll talk to the wrong redistributor. This is
4275 * identical to what happens with vLPIs.
4276 *
4277 * - Concurrent VSGIPENDR access: As it involves accessing two
4278 * MMIO registers, this must be made atomic one way or another.
4279 */
4280 cpu = vpe_to_cpuid_lock(vpe, &flags);
4281 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4282 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4283 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4284 do {
4285 status = readl_relaxed(base + GICR_VSGIPENDR);
4286 if (!(status & GICR_VSGIPENDR_BUSY))
4287 goto out;
4288
4289 count--;
4290 if (!count) {
4291 pr_err_ratelimited("Unable to get SGI status\n");
4292 goto out;
4293 }
4294 cpu_relax();
4295 udelay(1);
4296 } while (count);
4297
4298 out:
4299 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4300 vpe_to_cpuid_unlock(vpe, flags);
4301
4302 if (!count)
4303 return -ENXIO;
4304
4305 *val = !!(status & (1 << d->hwirq));
4306
4307 return 0;
4308 }
4309
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4310 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4311 {
4312 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4313 struct its_cmd_info *info = vcpu_info;
4314
4315 switch (info->cmd_type) {
4316 case PROP_UPDATE_VSGI:
4317 vpe->sgi_config[d->hwirq].priority = info->priority;
4318 vpe->sgi_config[d->hwirq].group = info->group;
4319 its_configure_sgi(d, false);
4320 return 0;
4321
4322 default:
4323 return -EINVAL;
4324 }
4325 }
4326
4327 static struct irq_chip its_sgi_irq_chip = {
4328 .name = "GICv4.1-sgi",
4329 .irq_mask = its_sgi_mask_irq,
4330 .irq_unmask = its_sgi_unmask_irq,
4331 .irq_set_affinity = its_sgi_set_affinity,
4332 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4333 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4334 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4335 };
4336
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4337 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4338 unsigned int virq, unsigned int nr_irqs,
4339 void *args)
4340 {
4341 struct its_vpe *vpe = args;
4342 int i;
4343
4344 /* Yes, we do want 16 SGIs */
4345 WARN_ON(nr_irqs != 16);
4346
4347 for (i = 0; i < 16; i++) {
4348 vpe->sgi_config[i].priority = 0;
4349 vpe->sgi_config[i].enabled = false;
4350 vpe->sgi_config[i].group = false;
4351
4352 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4353 &its_sgi_irq_chip, vpe);
4354 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4355 }
4356
4357 return 0;
4358 }
4359
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4360 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4361 unsigned int virq,
4362 unsigned int nr_irqs)
4363 {
4364 /* Nothing to do */
4365 }
4366
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4367 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4368 struct irq_data *d, bool reserve)
4369 {
4370 /* Write out the initial SGI configuration */
4371 its_configure_sgi(d, false);
4372 return 0;
4373 }
4374
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4375 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4376 struct irq_data *d)
4377 {
4378 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4379
4380 /*
4381 * The VSGI command is awkward:
4382 *
4383 * - To change the configuration, CLEAR must be set to false,
4384 * leaving the pending bit unchanged.
4385 * - To clear the pending bit, CLEAR must be set to true, leaving
4386 * the configuration unchanged.
4387 *
4388 * You just can't do both at once, hence the two commands below.
4389 */
4390 vpe->sgi_config[d->hwirq].enabled = false;
4391 its_configure_sgi(d, false);
4392 its_configure_sgi(d, true);
4393 }
4394
4395 static const struct irq_domain_ops its_sgi_domain_ops = {
4396 .alloc = its_sgi_irq_domain_alloc,
4397 .free = its_sgi_irq_domain_free,
4398 .activate = its_sgi_irq_domain_activate,
4399 .deactivate = its_sgi_irq_domain_deactivate,
4400 };
4401
its_vpe_id_alloc(void)4402 static int its_vpe_id_alloc(void)
4403 {
4404 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4405 }
4406
its_vpe_id_free(u16 id)4407 static void its_vpe_id_free(u16 id)
4408 {
4409 ida_simple_remove(&its_vpeid_ida, id);
4410 }
4411
its_vpe_init(struct its_vpe * vpe)4412 static int its_vpe_init(struct its_vpe *vpe)
4413 {
4414 struct page *vpt_page;
4415 int vpe_id;
4416
4417 /* Allocate vpe_id */
4418 vpe_id = its_vpe_id_alloc();
4419 if (vpe_id < 0)
4420 return vpe_id;
4421
4422 /* Allocate VPT */
4423 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4424 if (!vpt_page) {
4425 its_vpe_id_free(vpe_id);
4426 return -ENOMEM;
4427 }
4428
4429 if (!its_alloc_vpe_table(vpe_id)) {
4430 its_vpe_id_free(vpe_id);
4431 its_free_pending_table(vpt_page);
4432 return -ENOMEM;
4433 }
4434
4435 raw_spin_lock_init(&vpe->vpe_lock);
4436 vpe->vpe_id = vpe_id;
4437 vpe->vpt_page = vpt_page;
4438 atomic_set(&vpe->vmapp_count, 0);
4439 if (!gic_rdists->has_rvpeid)
4440 vpe->vpe_proxy_event = -1;
4441
4442 return 0;
4443 }
4444
its_vpe_teardown(struct its_vpe * vpe)4445 static void its_vpe_teardown(struct its_vpe *vpe)
4446 {
4447 its_vpe_db_proxy_unmap(vpe);
4448 its_vpe_id_free(vpe->vpe_id);
4449 its_free_pending_table(vpe->vpt_page);
4450 }
4451
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4452 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4453 unsigned int virq,
4454 unsigned int nr_irqs)
4455 {
4456 struct its_vm *vm = domain->host_data;
4457 int i;
4458
4459 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4460
4461 for (i = 0; i < nr_irqs; i++) {
4462 struct irq_data *data = irq_domain_get_irq_data(domain,
4463 virq + i);
4464 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4465
4466 BUG_ON(vm != vpe->its_vm);
4467
4468 clear_bit(data->hwirq, vm->db_bitmap);
4469 its_vpe_teardown(vpe);
4470 irq_domain_reset_irq_data(data);
4471 }
4472
4473 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4474 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4475 its_free_prop_table(vm->vprop_page);
4476 }
4477 }
4478
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4479 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4480 unsigned int nr_irqs, void *args)
4481 {
4482 struct irq_chip *irqchip = &its_vpe_irq_chip;
4483 struct its_vm *vm = args;
4484 unsigned long *bitmap;
4485 struct page *vprop_page;
4486 int base, nr_ids, i, err = 0;
4487
4488 BUG_ON(!vm);
4489
4490 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4491 if (!bitmap)
4492 return -ENOMEM;
4493
4494 if (nr_ids < nr_irqs) {
4495 its_lpi_free(bitmap, base, nr_ids);
4496 return -ENOMEM;
4497 }
4498
4499 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4500 if (!vprop_page) {
4501 its_lpi_free(bitmap, base, nr_ids);
4502 return -ENOMEM;
4503 }
4504
4505 vm->db_bitmap = bitmap;
4506 vm->db_lpi_base = base;
4507 vm->nr_db_lpis = nr_ids;
4508 vm->vprop_page = vprop_page;
4509
4510 if (gic_rdists->has_rvpeid)
4511 irqchip = &its_vpe_4_1_irq_chip;
4512
4513 for (i = 0; i < nr_irqs; i++) {
4514 vm->vpes[i]->vpe_db_lpi = base + i;
4515 err = its_vpe_init(vm->vpes[i]);
4516 if (err)
4517 break;
4518 err = its_irq_gic_domain_alloc(domain, virq + i,
4519 vm->vpes[i]->vpe_db_lpi);
4520 if (err)
4521 break;
4522 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4523 irqchip, vm->vpes[i]);
4524 set_bit(i, bitmap);
4525 }
4526
4527 if (err)
4528 its_vpe_irq_domain_free(domain, virq, i);
4529
4530 return err;
4531 }
4532
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4533 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4534 struct irq_data *d, bool reserve)
4535 {
4536 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4537 struct its_node *its;
4538
4539 /*
4540 * If we use the list map, we issue VMAPP on demand... Unless
4541 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4542 * so that VSGIs can work.
4543 */
4544 if (!gic_requires_eager_mapping())
4545 return 0;
4546
4547 /* Map the VPE to the first possible CPU */
4548 vpe->col_idx = cpumask_first(cpu_online_mask);
4549
4550 list_for_each_entry(its, &its_nodes, entry) {
4551 if (!is_v4(its))
4552 continue;
4553
4554 its_send_vmapp(its, vpe, true);
4555 its_send_vinvall(its, vpe);
4556 }
4557
4558 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4559
4560 return 0;
4561 }
4562
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4563 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4564 struct irq_data *d)
4565 {
4566 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4567 struct its_node *its;
4568
4569 /*
4570 * If we use the list map on GICv4.0, we unmap the VPE once no
4571 * VLPIs are associated with the VM.
4572 */
4573 if (!gic_requires_eager_mapping())
4574 return;
4575
4576 list_for_each_entry(its, &its_nodes, entry) {
4577 if (!is_v4(its))
4578 continue;
4579
4580 its_send_vmapp(its, vpe, false);
4581 }
4582 }
4583
4584 static const struct irq_domain_ops its_vpe_domain_ops = {
4585 .alloc = its_vpe_irq_domain_alloc,
4586 .free = its_vpe_irq_domain_free,
4587 .activate = its_vpe_irq_domain_activate,
4588 .deactivate = its_vpe_irq_domain_deactivate,
4589 };
4590
its_force_quiescent(void __iomem * base)4591 static int its_force_quiescent(void __iomem *base)
4592 {
4593 u32 count = 1000000; /* 1s */
4594 u32 val;
4595
4596 val = readl_relaxed(base + GITS_CTLR);
4597 /*
4598 * GIC architecture specification requires the ITS to be both
4599 * disabled and quiescent for writes to GITS_BASER<n> or
4600 * GITS_CBASER to not have UNPREDICTABLE results.
4601 */
4602 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4603 return 0;
4604
4605 /* Disable the generation of all interrupts to this ITS */
4606 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4607 writel_relaxed(val, base + GITS_CTLR);
4608
4609 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4610 while (1) {
4611 val = readl_relaxed(base + GITS_CTLR);
4612 if (val & GITS_CTLR_QUIESCENT)
4613 return 0;
4614
4615 count--;
4616 if (!count)
4617 return -EBUSY;
4618
4619 cpu_relax();
4620 udelay(1);
4621 }
4622 }
4623
its_enable_quirk_cavium_22375(void * data)4624 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4625 {
4626 struct its_node *its = data;
4627
4628 /* erratum 22375: only alloc 8MB table size (20 bits) */
4629 its->typer &= ~GITS_TYPER_DEVBITS;
4630 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4631 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4632
4633 return true;
4634 }
4635
its_enable_quirk_cavium_23144(void * data)4636 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4637 {
4638 struct its_node *its = data;
4639
4640 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4641
4642 return true;
4643 }
4644
its_enable_quirk_qdf2400_e0065(void * data)4645 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4646 {
4647 struct its_node *its = data;
4648
4649 /* On QDF2400, the size of the ITE is 16Bytes */
4650 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4651 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4652
4653 return true;
4654 }
4655
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4656 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4657 {
4658 struct its_node *its = its_dev->its;
4659
4660 /*
4661 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4662 * which maps 32-bit writes targeted at a separate window of
4663 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4664 * with device ID taken from bits [device_id_bits + 1:2] of
4665 * the window offset.
4666 */
4667 return its->pre_its_base + (its_dev->device_id << 2);
4668 }
4669
its_enable_quirk_socionext_synquacer(void * data)4670 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4671 {
4672 struct its_node *its = data;
4673 u32 pre_its_window[2];
4674 u32 ids;
4675
4676 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4677 "socionext,synquacer-pre-its",
4678 pre_its_window,
4679 ARRAY_SIZE(pre_its_window))) {
4680
4681 its->pre_its_base = pre_its_window[0];
4682 its->get_msi_base = its_irq_get_msi_base_pre_its;
4683
4684 ids = ilog2(pre_its_window[1]) - 2;
4685 if (device_ids(its) > ids) {
4686 its->typer &= ~GITS_TYPER_DEVBITS;
4687 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4688 }
4689
4690 /* the pre-ITS breaks isolation, so disable MSI remapping */
4691 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4692 return true;
4693 }
4694 return false;
4695 }
4696
its_enable_quirk_hip07_161600802(void * data)4697 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4698 {
4699 struct its_node *its = data;
4700
4701 /*
4702 * Hip07 insists on using the wrong address for the VLPI
4703 * page. Trick it into doing the right thing...
4704 */
4705 its->vlpi_redist_offset = SZ_128K;
4706 return true;
4707 }
4708
4709 static const struct gic_quirk its_quirks[] = {
4710 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4711 {
4712 .desc = "ITS: Cavium errata 22375, 24313",
4713 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4714 .mask = 0xffff0fff,
4715 .init = its_enable_quirk_cavium_22375,
4716 },
4717 #endif
4718 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4719 {
4720 .desc = "ITS: Cavium erratum 23144",
4721 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4722 .mask = 0xffff0fff,
4723 .init = its_enable_quirk_cavium_23144,
4724 },
4725 #endif
4726 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4727 {
4728 .desc = "ITS: QDF2400 erratum 0065",
4729 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4730 .mask = 0xffffffff,
4731 .init = its_enable_quirk_qdf2400_e0065,
4732 },
4733 #endif
4734 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4735 {
4736 /*
4737 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4738 * implementation, but with a 'pre-ITS' added that requires
4739 * special handling in software.
4740 */
4741 .desc = "ITS: Socionext Synquacer pre-ITS",
4742 .iidr = 0x0001143b,
4743 .mask = 0xffffffff,
4744 .init = its_enable_quirk_socionext_synquacer,
4745 },
4746 #endif
4747 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4748 {
4749 .desc = "ITS: Hip07 erratum 161600802",
4750 .iidr = 0x00000004,
4751 .mask = 0xffffffff,
4752 .init = its_enable_quirk_hip07_161600802,
4753 },
4754 #endif
4755 {
4756 }
4757 };
4758
its_enable_quirks(struct its_node * its)4759 static void its_enable_quirks(struct its_node *its)
4760 {
4761 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4762
4763 gic_enable_quirks(iidr, its_quirks, its);
4764 }
4765
its_save_disable(void)4766 static int its_save_disable(void)
4767 {
4768 struct its_node *its;
4769 int err = 0;
4770
4771 raw_spin_lock(&its_lock);
4772 list_for_each_entry(its, &its_nodes, entry) {
4773 void __iomem *base;
4774
4775 base = its->base;
4776 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4777 err = its_force_quiescent(base);
4778 if (err) {
4779 pr_err("ITS@%pa: failed to quiesce: %d\n",
4780 &its->phys_base, err);
4781 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4782 goto err;
4783 }
4784
4785 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4786 }
4787
4788 err:
4789 if (err) {
4790 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4791 void __iomem *base;
4792
4793 base = its->base;
4794 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4795 }
4796 }
4797 raw_spin_unlock(&its_lock);
4798
4799 return err;
4800 }
4801
its_restore_enable(void)4802 static void its_restore_enable(void)
4803 {
4804 struct its_node *its;
4805 int ret;
4806
4807 raw_spin_lock(&its_lock);
4808 list_for_each_entry(its, &its_nodes, entry) {
4809 void __iomem *base;
4810 int i;
4811
4812 base = its->base;
4813
4814 /*
4815 * Make sure that the ITS is disabled. If it fails to quiesce,
4816 * don't restore it since writing to CBASER or BASER<n>
4817 * registers is undefined according to the GIC v3 ITS
4818 * Specification.
4819 *
4820 * Firmware resuming with the ITS enabled is terminally broken.
4821 */
4822 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4823 ret = its_force_quiescent(base);
4824 if (ret) {
4825 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4826 &its->phys_base, ret);
4827 continue;
4828 }
4829
4830 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4831
4832 /*
4833 * Writing CBASER resets CREADR to 0, so make CWRITER and
4834 * cmd_write line up with it.
4835 */
4836 its->cmd_write = its->cmd_base;
4837 gits_write_cwriter(0, base + GITS_CWRITER);
4838
4839 /* Restore GITS_BASER from the value cache. */
4840 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4841 struct its_baser *baser = &its->tables[i];
4842
4843 if (!(baser->val & GITS_BASER_VALID))
4844 continue;
4845
4846 its_write_baser(its, baser, baser->val);
4847 }
4848 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4849
4850 /*
4851 * Reinit the collection if it's stored in the ITS. This is
4852 * indicated by the col_id being less than the HCC field.
4853 * CID < HCC as specified in the GIC v3 Documentation.
4854 */
4855 if (its->collections[smp_processor_id()].col_id <
4856 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4857 its_cpu_init_collection(its);
4858 }
4859 raw_spin_unlock(&its_lock);
4860 }
4861
4862 static struct syscore_ops its_syscore_ops = {
4863 .suspend = its_save_disable,
4864 .resume = its_restore_enable,
4865 };
4866
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4867 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4868 {
4869 struct irq_domain *inner_domain;
4870 struct msi_domain_info *info;
4871
4872 info = kzalloc(sizeof(*info), GFP_KERNEL);
4873 if (!info)
4874 return -ENOMEM;
4875
4876 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4877 if (!inner_domain) {
4878 kfree(info);
4879 return -ENOMEM;
4880 }
4881
4882 inner_domain->parent = its_parent;
4883 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4884 inner_domain->flags |= its->msi_domain_flags;
4885 info->ops = &its_msi_domain_ops;
4886 info->data = its;
4887 inner_domain->host_data = info;
4888
4889 return 0;
4890 }
4891
its_init_vpe_domain(void)4892 static int its_init_vpe_domain(void)
4893 {
4894 struct its_node *its;
4895 u32 devid;
4896 int entries;
4897
4898 if (gic_rdists->has_direct_lpi) {
4899 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4900 return 0;
4901 }
4902
4903 /* Any ITS will do, even if not v4 */
4904 its = list_first_entry(&its_nodes, struct its_node, entry);
4905
4906 entries = roundup_pow_of_two(nr_cpu_ids);
4907 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4908 GFP_KERNEL);
4909 if (!vpe_proxy.vpes) {
4910 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4911 return -ENOMEM;
4912 }
4913
4914 /* Use the last possible DevID */
4915 devid = GENMASK(device_ids(its) - 1, 0);
4916 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4917 if (!vpe_proxy.dev) {
4918 kfree(vpe_proxy.vpes);
4919 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4920 return -ENOMEM;
4921 }
4922
4923 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4924
4925 raw_spin_lock_init(&vpe_proxy.lock);
4926 vpe_proxy.next_victim = 0;
4927 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4928 devid, vpe_proxy.dev->nr_ites);
4929
4930 return 0;
4931 }
4932
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4933 static int __init its_compute_its_list_map(struct resource *res,
4934 void __iomem *its_base)
4935 {
4936 int its_number;
4937 u32 ctlr;
4938
4939 /*
4940 * This is assumed to be done early enough that we're
4941 * guaranteed to be single-threaded, hence no
4942 * locking. Should this change, we should address
4943 * this.
4944 */
4945 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4946 if (its_number >= GICv4_ITS_LIST_MAX) {
4947 pr_err("ITS@%pa: No ITSList entry available!\n",
4948 &res->start);
4949 return -EINVAL;
4950 }
4951
4952 ctlr = readl_relaxed(its_base + GITS_CTLR);
4953 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4954 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4955 writel_relaxed(ctlr, its_base + GITS_CTLR);
4956 ctlr = readl_relaxed(its_base + GITS_CTLR);
4957 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4958 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4959 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4960 }
4961
4962 if (test_and_set_bit(its_number, &its_list_map)) {
4963 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
4964 &res->start, its_number);
4965 return -EINVAL;
4966 }
4967
4968 return its_number;
4969 }
4970
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)4971 static int __init its_probe_one(struct resource *res,
4972 struct fwnode_handle *handle, int numa_node)
4973 {
4974 struct its_node *its;
4975 void __iomem *its_base;
4976 u32 val, ctlr;
4977 u64 baser, tmp, typer;
4978 struct page *page;
4979 int err;
4980
4981 its_base = ioremap(res->start, SZ_64K);
4982 if (!its_base) {
4983 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
4984 return -ENOMEM;
4985 }
4986
4987 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
4988 if (val != 0x30 && val != 0x40) {
4989 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
4990 err = -ENODEV;
4991 goto out_unmap;
4992 }
4993
4994 err = its_force_quiescent(its_base);
4995 if (err) {
4996 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
4997 goto out_unmap;
4998 }
4999
5000 pr_info("ITS %pR\n", res);
5001
5002 its = kzalloc(sizeof(*its), GFP_KERNEL);
5003 if (!its) {
5004 err = -ENOMEM;
5005 goto out_unmap;
5006 }
5007
5008 raw_spin_lock_init(&its->lock);
5009 mutex_init(&its->dev_alloc_lock);
5010 INIT_LIST_HEAD(&its->entry);
5011 INIT_LIST_HEAD(&its->its_device_list);
5012 typer = gic_read_typer(its_base + GITS_TYPER);
5013 its->typer = typer;
5014 its->base = its_base;
5015 its->phys_base = res->start;
5016 if (is_v4(its)) {
5017 if (!(typer & GITS_TYPER_VMOVP)) {
5018 err = its_compute_its_list_map(res, its_base);
5019 if (err < 0)
5020 goto out_free_its;
5021
5022 its->list_nr = err;
5023
5024 pr_info("ITS@%pa: Using ITS number %d\n",
5025 &res->start, err);
5026 } else {
5027 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5028 }
5029
5030 if (is_v4_1(its)) {
5031 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5032
5033 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5034 if (!its->sgir_base) {
5035 err = -ENOMEM;
5036 goto out_free_its;
5037 }
5038
5039 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5040
5041 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5042 &res->start, its->mpidr, svpet);
5043 }
5044 }
5045
5046 its->numa_node = numa_node;
5047
5048 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
5049 get_order(ITS_CMD_QUEUE_SZ));
5050 if (!page) {
5051 err = -ENOMEM;
5052 goto out_unmap_sgir;
5053 }
5054 its->cmd_base = (void *)page_address(page);
5055 its->cmd_write = its->cmd_base;
5056 its->fwnode_handle = handle;
5057 its->get_msi_base = its_irq_get_msi_base;
5058 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5059
5060 its_enable_quirks(its);
5061
5062 err = its_alloc_tables(its);
5063 if (err)
5064 goto out_free_cmd;
5065
5066 err = its_alloc_collections(its);
5067 if (err)
5068 goto out_free_tables;
5069
5070 baser = (virt_to_phys(its->cmd_base) |
5071 GITS_CBASER_RaWaWb |
5072 GITS_CBASER_InnerShareable |
5073 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5074 GITS_CBASER_VALID);
5075
5076 gits_write_cbaser(baser, its->base + GITS_CBASER);
5077 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5078
5079 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5080 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5081 /*
5082 * The HW reports non-shareable, we must
5083 * remove the cacheability attributes as
5084 * well.
5085 */
5086 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5087 GITS_CBASER_CACHEABILITY_MASK);
5088 baser |= GITS_CBASER_nC;
5089 gits_write_cbaser(baser, its->base + GITS_CBASER);
5090 }
5091 pr_info("ITS: using cache flushing for cmd queue\n");
5092 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5093 }
5094
5095 gits_write_cwriter(0, its->base + GITS_CWRITER);
5096 ctlr = readl_relaxed(its->base + GITS_CTLR);
5097 ctlr |= GITS_CTLR_ENABLE;
5098 if (is_v4(its))
5099 ctlr |= GITS_CTLR_ImDe;
5100 writel_relaxed(ctlr, its->base + GITS_CTLR);
5101
5102 err = its_init_domain(handle, its);
5103 if (err)
5104 goto out_free_tables;
5105
5106 raw_spin_lock(&its_lock);
5107 list_add(&its->entry, &its_nodes);
5108 raw_spin_unlock(&its_lock);
5109
5110 return 0;
5111
5112 out_free_tables:
5113 its_free_tables(its);
5114 out_free_cmd:
5115 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5116 out_unmap_sgir:
5117 if (its->sgir_base)
5118 iounmap(its->sgir_base);
5119 out_free_its:
5120 kfree(its);
5121 out_unmap:
5122 iounmap(its_base);
5123 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5124 return err;
5125 }
5126
gic_rdists_supports_plpis(void)5127 static bool gic_rdists_supports_plpis(void)
5128 {
5129 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5130 }
5131
redist_disable_lpis(void)5132 static int redist_disable_lpis(void)
5133 {
5134 void __iomem *rbase = gic_data_rdist_rd_base();
5135 u64 timeout = USEC_PER_SEC;
5136 u64 val;
5137
5138 if (!gic_rdists_supports_plpis()) {
5139 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5140 return -ENXIO;
5141 }
5142
5143 val = readl_relaxed(rbase + GICR_CTLR);
5144 if (!(val & GICR_CTLR_ENABLE_LPIS))
5145 return 0;
5146
5147 /*
5148 * If coming via a CPU hotplug event, we don't need to disable
5149 * LPIs before trying to re-enable them. They are already
5150 * configured and all is well in the world.
5151 *
5152 * If running with preallocated tables, there is nothing to do.
5153 */
5154 if (gic_data_rdist()->lpi_enabled ||
5155 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5156 return 0;
5157
5158 /*
5159 * From that point on, we only try to do some damage control.
5160 */
5161 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5162 smp_processor_id());
5163 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5164
5165 /* Disable LPIs */
5166 val &= ~GICR_CTLR_ENABLE_LPIS;
5167 writel_relaxed(val, rbase + GICR_CTLR);
5168
5169 /* Make sure any change to GICR_CTLR is observable by the GIC */
5170 dsb(sy);
5171
5172 /*
5173 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5174 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5175 * Error out if we time out waiting for RWP to clear.
5176 */
5177 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5178 if (!timeout) {
5179 pr_err("CPU%d: Timeout while disabling LPIs\n",
5180 smp_processor_id());
5181 return -ETIMEDOUT;
5182 }
5183 udelay(1);
5184 timeout--;
5185 }
5186
5187 /*
5188 * After it has been written to 1, it is IMPLEMENTATION
5189 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5190 * cleared to 0. Error out if clearing the bit failed.
5191 */
5192 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5193 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5194 return -EBUSY;
5195 }
5196
5197 return 0;
5198 }
5199
its_cpu_init(void)5200 int its_cpu_init(void)
5201 {
5202 if (!list_empty(&its_nodes)) {
5203 int ret;
5204
5205 ret = redist_disable_lpis();
5206 if (ret)
5207 return ret;
5208
5209 its_cpu_init_lpis();
5210 its_cpu_init_collections();
5211 }
5212
5213 return 0;
5214 }
5215
5216 static const struct of_device_id its_device_id[] = {
5217 { .compatible = "arm,gic-v3-its", },
5218 {},
5219 };
5220
its_of_probe(struct device_node * node)5221 static int __init its_of_probe(struct device_node *node)
5222 {
5223 struct device_node *np;
5224 struct resource res;
5225
5226 for (np = of_find_matching_node(node, its_device_id); np;
5227 np = of_find_matching_node(np, its_device_id)) {
5228 if (!of_device_is_available(np))
5229 continue;
5230 if (!of_property_read_bool(np, "msi-controller")) {
5231 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5232 np);
5233 continue;
5234 }
5235
5236 if (of_address_to_resource(np, 0, &res)) {
5237 pr_warn("%pOF: no regs?\n", np);
5238 continue;
5239 }
5240
5241 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5242 }
5243 return 0;
5244 }
5245
5246 #ifdef CONFIG_ACPI
5247
5248 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5249
5250 #ifdef CONFIG_ACPI_NUMA
5251 struct its_srat_map {
5252 /* numa node id */
5253 u32 numa_node;
5254 /* GIC ITS ID */
5255 u32 its_id;
5256 };
5257
5258 static struct its_srat_map *its_srat_maps __initdata;
5259 static int its_in_srat __initdata;
5260
acpi_get_its_numa_node(u32 its_id)5261 static int __init acpi_get_its_numa_node(u32 its_id)
5262 {
5263 int i;
5264
5265 for (i = 0; i < its_in_srat; i++) {
5266 if (its_id == its_srat_maps[i].its_id)
5267 return its_srat_maps[i].numa_node;
5268 }
5269 return NUMA_NO_NODE;
5270 }
5271
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5272 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5273 const unsigned long end)
5274 {
5275 return 0;
5276 }
5277
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5278 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5279 const unsigned long end)
5280 {
5281 int node;
5282 struct acpi_srat_gic_its_affinity *its_affinity;
5283
5284 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5285 if (!its_affinity)
5286 return -EINVAL;
5287
5288 if (its_affinity->header.length < sizeof(*its_affinity)) {
5289 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5290 its_affinity->header.length);
5291 return -EINVAL;
5292 }
5293
5294 /*
5295 * Note that in theory a new proximity node could be created by this
5296 * entry as it is an SRAT resource allocation structure.
5297 * We do not currently support doing so.
5298 */
5299 node = pxm_to_node(its_affinity->proximity_domain);
5300
5301 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5302 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5303 return 0;
5304 }
5305
5306 its_srat_maps[its_in_srat].numa_node = node;
5307 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5308 its_in_srat++;
5309 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5310 its_affinity->proximity_domain, its_affinity->its_id, node);
5311
5312 return 0;
5313 }
5314
acpi_table_parse_srat_its(void)5315 static void __init acpi_table_parse_srat_its(void)
5316 {
5317 int count;
5318
5319 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5320 sizeof(struct acpi_table_srat),
5321 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5322 gic_acpi_match_srat_its, 0);
5323 if (count <= 0)
5324 return;
5325
5326 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5327 GFP_KERNEL);
5328 if (!its_srat_maps) {
5329 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5330 return;
5331 }
5332
5333 acpi_table_parse_entries(ACPI_SIG_SRAT,
5334 sizeof(struct acpi_table_srat),
5335 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5336 gic_acpi_parse_srat_its, 0);
5337 }
5338
5339 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5340 static void __init acpi_its_srat_maps_free(void)
5341 {
5342 kfree(its_srat_maps);
5343 }
5344 #else
acpi_table_parse_srat_its(void)5345 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5346 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5347 static void __init acpi_its_srat_maps_free(void) { }
5348 #endif
5349
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5350 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5351 const unsigned long end)
5352 {
5353 struct acpi_madt_generic_translator *its_entry;
5354 struct fwnode_handle *dom_handle;
5355 struct resource res;
5356 int err;
5357
5358 its_entry = (struct acpi_madt_generic_translator *)header;
5359 memset(&res, 0, sizeof(res));
5360 res.start = its_entry->base_address;
5361 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5362 res.flags = IORESOURCE_MEM;
5363
5364 dom_handle = irq_domain_alloc_fwnode(&res.start);
5365 if (!dom_handle) {
5366 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5367 &res.start);
5368 return -ENOMEM;
5369 }
5370
5371 err = iort_register_domain_token(its_entry->translation_id, res.start,
5372 dom_handle);
5373 if (err) {
5374 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5375 &res.start, its_entry->translation_id);
5376 goto dom_err;
5377 }
5378
5379 err = its_probe_one(&res, dom_handle,
5380 acpi_get_its_numa_node(its_entry->translation_id));
5381 if (!err)
5382 return 0;
5383
5384 iort_deregister_domain_token(its_entry->translation_id);
5385 dom_err:
5386 irq_domain_free_fwnode(dom_handle);
5387 return err;
5388 }
5389
its_acpi_probe(void)5390 static void __init its_acpi_probe(void)
5391 {
5392 acpi_table_parse_srat_its();
5393 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5394 gic_acpi_parse_madt_its, 0);
5395 acpi_its_srat_maps_free();
5396 }
5397 #else
its_acpi_probe(void)5398 static void __init its_acpi_probe(void) { }
5399 #endif
5400
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5401 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5402 struct irq_domain *parent_domain)
5403 {
5404 struct device_node *of_node;
5405 struct its_node *its;
5406 bool has_v4 = false;
5407 bool has_v4_1 = false;
5408 int err;
5409
5410 gic_rdists = rdists;
5411
5412 its_parent = parent_domain;
5413 of_node = to_of_node(handle);
5414 if (of_node)
5415 its_of_probe(of_node);
5416 else
5417 its_acpi_probe();
5418
5419 if (list_empty(&its_nodes)) {
5420 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5421 return -ENXIO;
5422 }
5423
5424 err = allocate_lpi_tables();
5425 if (err)
5426 return err;
5427
5428 list_for_each_entry(its, &its_nodes, entry) {
5429 has_v4 |= is_v4(its);
5430 has_v4_1 |= is_v4_1(its);
5431 }
5432
5433 /* Don't bother with inconsistent systems */
5434 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5435 rdists->has_rvpeid = false;
5436
5437 if (has_v4 & rdists->has_vlpis) {
5438 const struct irq_domain_ops *sgi_ops;
5439
5440 if (has_v4_1)
5441 sgi_ops = &its_sgi_domain_ops;
5442 else
5443 sgi_ops = NULL;
5444
5445 if (its_init_vpe_domain() ||
5446 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5447 rdists->has_vlpis = false;
5448 pr_err("ITS: Disabling GICv4 support\n");
5449 }
5450 }
5451
5452 register_syscore_ops(&its_syscore_ops);
5453
5454 return 0;
5455 }
5456