• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #define pr_fmt(fmt)	"GICv3: " fmt
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpu_pm.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/irqdomain.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/percpu.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 
22 #include <linux/irqchip.h>
23 #include <linux/irqchip/arm-gic-common.h>
24 #include <linux/irqchip/arm-gic-v3.h>
25 #include <linux/irqchip/irq-partition-percpu.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/exception.h>
29 #include <asm/smp_plat.h>
30 #include <asm/virt.h>
31 
32 #include "irq-gic-common.h"
33 
34 #define GICD_INT_NMI_PRI	(GICD_INT_DEF_PRI & ~0x80)
35 
36 #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996	(1ULL << 0)
37 #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539	(1ULL << 1)
38 #define FLAGS_WORKAROUND_MTK_GICR_SAVE		(1ULL << 2)
39 
40 #define GIC_IRQ_TYPE_PARTITION	(GIC_IRQ_TYPE_LPI + 1)
41 
42 struct redist_region {
43 	void __iomem		*redist_base;
44 	phys_addr_t		phys_base;
45 	bool			single_redist;
46 };
47 
48 struct gic_chip_data {
49 	struct fwnode_handle	*fwnode;
50 	void __iomem		*dist_base;
51 	struct redist_region	*redist_regions;
52 	struct rdists		rdists;
53 	struct irq_domain	*domain;
54 	u64			redist_stride;
55 	u32			nr_redist_regions;
56 	u64			flags;
57 	bool			has_rss;
58 	unsigned int		ppi_nr;
59 	struct partition_desc	**ppi_descs;
60 };
61 
62 static struct gic_chip_data gic_data __read_mostly;
63 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
64 
65 #define GIC_ID_NR	(1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
66 #define GIC_LINE_NR	min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
67 #define GIC_ESPI_NR	GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
68 
69 /*
70  * The behaviours of RPR and PMR registers differ depending on the value of
71  * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
72  * distributor and redistributors depends on whether security is enabled in the
73  * GIC.
74  *
75  * When security is enabled, non-secure priority values from the (re)distributor
76  * are presented to the GIC CPUIF as follow:
77  *     (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
78  *
79  * If SCR_EL3.FIQ == 1, the values writen to/read from PMR and RPR at non-secure
80  * EL1 are subject to a similar operation thus matching the priorities presented
81  * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
82  * these values are unchanched by the GIC.
83  *
84  * see GICv3/GICv4 Architecture Specification (IHI0069D):
85  * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
86  *   priorities.
87  * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
88  *   interrupt.
89  */
90 static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
91 
92 /*
93  * Global static key controlling whether an update to PMR allowing more
94  * interrupts requires to be propagated to the redistributor (DSB SY).
95  * And this needs to be exported for modules to be able to enable
96  * interrupts...
97  */
98 DEFINE_STATIC_KEY_FALSE(gic_pmr_sync);
99 EXPORT_SYMBOL(gic_pmr_sync);
100 
101 DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
102 EXPORT_SYMBOL(gic_nonsecure_priorities);
103 
104 /*
105  * When the Non-secure world has access to group 0 interrupts (as a
106  * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
107  * return the Distributor's view of the interrupt priority.
108  *
109  * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
110  * written by software is moved to the Non-secure range by the Distributor.
111  *
112  * If both are true (which is when gic_nonsecure_priorities gets enabled),
113  * we need to shift down the priority programmed by software to match it
114  * against the value returned by ICC_RPR_EL1.
115  */
116 #define GICD_INT_RPR_PRI(priority)					\
117 	({								\
118 		u32 __priority = (priority);				\
119 		if (static_branch_unlikely(&gic_nonsecure_priorities))	\
120 			__priority = 0x80 | (__priority >> 1);		\
121 									\
122 		__priority;						\
123 	})
124 
125 /* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
126 static refcount_t *ppi_nmi_refs;
127 
128 static struct gic_kvm_info gic_v3_kvm_info;
129 static DEFINE_PER_CPU(bool, has_rss);
130 
131 #define MPIDR_RS(mpidr)			(((mpidr) & 0xF0UL) >> 4)
132 #define gic_data_rdist()		(this_cpu_ptr(gic_data.rdists.rdist))
133 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
134 #define gic_data_rdist_sgi_base()	(gic_data_rdist_rd_base() + SZ_64K)
135 
136 /* Our default, arbitrary priority value. Linux only uses one anyway. */
137 #define DEFAULT_PMR_VALUE	0xf0
138 
139 enum gic_intid_range {
140 	SGI_RANGE,
141 	PPI_RANGE,
142 	SPI_RANGE,
143 	EPPI_RANGE,
144 	ESPI_RANGE,
145 	LPI_RANGE,
146 	__INVALID_RANGE__
147 };
148 
__get_intid_range(irq_hw_number_t hwirq)149 static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
150 {
151 	switch (hwirq) {
152 	case 0 ... 15:
153 		return SGI_RANGE;
154 	case 16 ... 31:
155 		return PPI_RANGE;
156 	case 32 ... 1019:
157 		return SPI_RANGE;
158 	case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
159 		return EPPI_RANGE;
160 	case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
161 		return ESPI_RANGE;
162 	case 8192 ... GENMASK(23, 0):
163 		return LPI_RANGE;
164 	default:
165 		return __INVALID_RANGE__;
166 	}
167 }
168 
get_intid_range(struct irq_data * d)169 static enum gic_intid_range get_intid_range(struct irq_data *d)
170 {
171 	return __get_intid_range(d->hwirq);
172 }
173 
gic_irq(struct irq_data * d)174 static inline unsigned int gic_irq(struct irq_data *d)
175 {
176 	return d->hwirq;
177 }
178 
gic_irq_in_rdist(struct irq_data * d)179 static inline bool gic_irq_in_rdist(struct irq_data *d)
180 {
181 	switch (get_intid_range(d)) {
182 	case SGI_RANGE:
183 	case PPI_RANGE:
184 	case EPPI_RANGE:
185 		return true;
186 	default:
187 		return false;
188 	}
189 }
190 
gic_dist_base(struct irq_data * d)191 static inline void __iomem *gic_dist_base(struct irq_data *d)
192 {
193 	switch (get_intid_range(d)) {
194 	case SGI_RANGE:
195 	case PPI_RANGE:
196 	case EPPI_RANGE:
197 		/* SGI+PPI -> SGI_base for this CPU */
198 		return gic_data_rdist_sgi_base();
199 
200 	case SPI_RANGE:
201 	case ESPI_RANGE:
202 		/* SPI -> dist_base */
203 		return gic_data.dist_base;
204 
205 	default:
206 		return NULL;
207 	}
208 }
209 
gic_do_wait_for_rwp(void __iomem * base,u32 bit)210 static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
211 {
212 	u32 count = 1000000;	/* 1s! */
213 
214 	while (readl_relaxed(base + GICD_CTLR) & bit) {
215 		count--;
216 		if (!count) {
217 			pr_err_ratelimited("RWP timeout, gone fishing\n");
218 			return;
219 		}
220 		cpu_relax();
221 		udelay(1);
222 	}
223 }
224 
225 /* Wait for completion of a distributor change */
gic_dist_wait_for_rwp(void)226 static void gic_dist_wait_for_rwp(void)
227 {
228 	gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP);
229 }
230 
231 /* Wait for completion of a redistributor change */
gic_redist_wait_for_rwp(void)232 static void gic_redist_wait_for_rwp(void)
233 {
234 	gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
235 }
236 
237 #ifdef CONFIG_ARM64
238 
gic_read_iar(void)239 static u64 __maybe_unused gic_read_iar(void)
240 {
241 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
242 		return gic_read_iar_cavium_thunderx();
243 	else
244 		return gic_read_iar_common();
245 }
246 #endif
247 
gic_enable_redist(bool enable)248 static void gic_enable_redist(bool enable)
249 {
250 	void __iomem *rbase;
251 	u32 count = 1000000;	/* 1s! */
252 	u32 val;
253 
254 	if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
255 		return;
256 
257 	rbase = gic_data_rdist_rd_base();
258 
259 	val = readl_relaxed(rbase + GICR_WAKER);
260 	if (enable)
261 		/* Wake up this CPU redistributor */
262 		val &= ~GICR_WAKER_ProcessorSleep;
263 	else
264 		val |= GICR_WAKER_ProcessorSleep;
265 	writel_relaxed(val, rbase + GICR_WAKER);
266 
267 	if (!enable) {		/* Check that GICR_WAKER is writeable */
268 		val = readl_relaxed(rbase + GICR_WAKER);
269 		if (!(val & GICR_WAKER_ProcessorSleep))
270 			return;	/* No PM support in this redistributor */
271 	}
272 
273 	while (--count) {
274 		val = readl_relaxed(rbase + GICR_WAKER);
275 		if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
276 			break;
277 		cpu_relax();
278 		udelay(1);
279 	}
280 	if (!count)
281 		pr_err_ratelimited("redistributor failed to %s...\n",
282 				   enable ? "wakeup" : "sleep");
283 }
284 
285 /*
286  * Routines to disable, enable, EOI and route interrupts
287  */
convert_offset_index(struct irq_data * d,u32 offset,u32 * index)288 static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
289 {
290 	switch (get_intid_range(d)) {
291 	case SGI_RANGE:
292 	case PPI_RANGE:
293 	case SPI_RANGE:
294 		*index = d->hwirq;
295 		return offset;
296 	case EPPI_RANGE:
297 		/*
298 		 * Contrary to the ESPI range, the EPPI range is contiguous
299 		 * to the PPI range in the registers, so let's adjust the
300 		 * displacement accordingly. Consistency is overrated.
301 		 */
302 		*index = d->hwirq - EPPI_BASE_INTID + 32;
303 		return offset;
304 	case ESPI_RANGE:
305 		*index = d->hwirq - ESPI_BASE_INTID;
306 		switch (offset) {
307 		case GICD_ISENABLER:
308 			return GICD_ISENABLERnE;
309 		case GICD_ICENABLER:
310 			return GICD_ICENABLERnE;
311 		case GICD_ISPENDR:
312 			return GICD_ISPENDRnE;
313 		case GICD_ICPENDR:
314 			return GICD_ICPENDRnE;
315 		case GICD_ISACTIVER:
316 			return GICD_ISACTIVERnE;
317 		case GICD_ICACTIVER:
318 			return GICD_ICACTIVERnE;
319 		case GICD_IPRIORITYR:
320 			return GICD_IPRIORITYRnE;
321 		case GICD_ICFGR:
322 			return GICD_ICFGRnE;
323 		case GICD_IROUTER:
324 			return GICD_IROUTERnE;
325 		default:
326 			break;
327 		}
328 		break;
329 	default:
330 		break;
331 	}
332 
333 	WARN_ON(1);
334 	*index = d->hwirq;
335 	return offset;
336 }
337 
gic_peek_irq(struct irq_data * d,u32 offset)338 static int gic_peek_irq(struct irq_data *d, u32 offset)
339 {
340 	void __iomem *base;
341 	u32 index, mask;
342 
343 	offset = convert_offset_index(d, offset, &index);
344 	mask = 1 << (index % 32);
345 
346 	if (gic_irq_in_rdist(d))
347 		base = gic_data_rdist_sgi_base();
348 	else
349 		base = gic_data.dist_base;
350 
351 	return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
352 }
353 
gic_poke_irq(struct irq_data * d,u32 offset)354 static void gic_poke_irq(struct irq_data *d, u32 offset)
355 {
356 	void (*rwp_wait)(void);
357 	void __iomem *base;
358 	u32 index, mask;
359 
360 	offset = convert_offset_index(d, offset, &index);
361 	mask = 1 << (index % 32);
362 
363 	if (gic_irq_in_rdist(d)) {
364 		base = gic_data_rdist_sgi_base();
365 		rwp_wait = gic_redist_wait_for_rwp;
366 	} else {
367 		base = gic_data.dist_base;
368 		rwp_wait = gic_dist_wait_for_rwp;
369 	}
370 
371 	writel_relaxed(mask, base + offset + (index / 32) * 4);
372 	rwp_wait();
373 }
374 
gic_mask_irq(struct irq_data * d)375 static void gic_mask_irq(struct irq_data *d)
376 {
377 	gic_poke_irq(d, GICD_ICENABLER);
378 }
379 
gic_eoimode1_mask_irq(struct irq_data * d)380 static void gic_eoimode1_mask_irq(struct irq_data *d)
381 {
382 	gic_mask_irq(d);
383 	/*
384 	 * When masking a forwarded interrupt, make sure it is
385 	 * deactivated as well.
386 	 *
387 	 * This ensures that an interrupt that is getting
388 	 * disabled/masked will not get "stuck", because there is
389 	 * noone to deactivate it (guest is being terminated).
390 	 */
391 	if (irqd_is_forwarded_to_vcpu(d))
392 		gic_poke_irq(d, GICD_ICACTIVER);
393 }
394 
gic_unmask_irq(struct irq_data * d)395 static void gic_unmask_irq(struct irq_data *d)
396 {
397 	gic_poke_irq(d, GICD_ISENABLER);
398 }
399 
gic_supports_nmi(void)400 static inline bool gic_supports_nmi(void)
401 {
402 	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
403 	       static_branch_likely(&supports_pseudo_nmis);
404 }
405 
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)406 static int gic_irq_set_irqchip_state(struct irq_data *d,
407 				     enum irqchip_irq_state which, bool val)
408 {
409 	u32 reg;
410 
411 	if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
412 		return -EINVAL;
413 
414 	switch (which) {
415 	case IRQCHIP_STATE_PENDING:
416 		reg = val ? GICD_ISPENDR : GICD_ICPENDR;
417 		break;
418 
419 	case IRQCHIP_STATE_ACTIVE:
420 		reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
421 		break;
422 
423 	case IRQCHIP_STATE_MASKED:
424 		reg = val ? GICD_ICENABLER : GICD_ISENABLER;
425 		break;
426 
427 	default:
428 		return -EINVAL;
429 	}
430 
431 	gic_poke_irq(d, reg);
432 	return 0;
433 }
434 
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)435 static int gic_irq_get_irqchip_state(struct irq_data *d,
436 				     enum irqchip_irq_state which, bool *val)
437 {
438 	if (d->hwirq >= 8192) /* PPI/SPI only */
439 		return -EINVAL;
440 
441 	switch (which) {
442 	case IRQCHIP_STATE_PENDING:
443 		*val = gic_peek_irq(d, GICD_ISPENDR);
444 		break;
445 
446 	case IRQCHIP_STATE_ACTIVE:
447 		*val = gic_peek_irq(d, GICD_ISACTIVER);
448 		break;
449 
450 	case IRQCHIP_STATE_MASKED:
451 		*val = !gic_peek_irq(d, GICD_ISENABLER);
452 		break;
453 
454 	default:
455 		return -EINVAL;
456 	}
457 
458 	return 0;
459 }
460 
gic_irq_set_prio(struct irq_data * d,u8 prio)461 static void gic_irq_set_prio(struct irq_data *d, u8 prio)
462 {
463 	void __iomem *base = gic_dist_base(d);
464 	u32 offset, index;
465 
466 	offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
467 
468 	writeb_relaxed(prio, base + offset + index);
469 }
470 
gic_get_ppi_index(struct irq_data * d)471 static u32 gic_get_ppi_index(struct irq_data *d)
472 {
473 	switch (get_intid_range(d)) {
474 	case PPI_RANGE:
475 		return d->hwirq - 16;
476 	case EPPI_RANGE:
477 		return d->hwirq - EPPI_BASE_INTID + 16;
478 	default:
479 		unreachable();
480 	}
481 }
482 
gic_irq_nmi_setup(struct irq_data * d)483 static int gic_irq_nmi_setup(struct irq_data *d)
484 {
485 	struct irq_desc *desc = irq_to_desc(d->irq);
486 
487 	if (!gic_supports_nmi())
488 		return -EINVAL;
489 
490 	if (gic_peek_irq(d, GICD_ISENABLER)) {
491 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
492 		return -EINVAL;
493 	}
494 
495 	/*
496 	 * A secondary irq_chip should be in charge of LPI request,
497 	 * it should not be possible to get there
498 	 */
499 	if (WARN_ON(gic_irq(d) >= 8192))
500 		return -EINVAL;
501 
502 	/* desc lock should already be held */
503 	if (gic_irq_in_rdist(d)) {
504 		u32 idx = gic_get_ppi_index(d);
505 
506 		/* Setting up PPI as NMI, only switch handler for first NMI */
507 		if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
508 			refcount_set(&ppi_nmi_refs[idx], 1);
509 			desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
510 		}
511 	} else {
512 		desc->handle_irq = handle_fasteoi_nmi;
513 	}
514 
515 	gic_irq_set_prio(d, GICD_INT_NMI_PRI);
516 
517 	return 0;
518 }
519 
gic_irq_nmi_teardown(struct irq_data * d)520 static void gic_irq_nmi_teardown(struct irq_data *d)
521 {
522 	struct irq_desc *desc = irq_to_desc(d->irq);
523 
524 	if (WARN_ON(!gic_supports_nmi()))
525 		return;
526 
527 	if (gic_peek_irq(d, GICD_ISENABLER)) {
528 		pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
529 		return;
530 	}
531 
532 	/*
533 	 * A secondary irq_chip should be in charge of LPI request,
534 	 * it should not be possible to get there
535 	 */
536 	if (WARN_ON(gic_irq(d) >= 8192))
537 		return;
538 
539 	/* desc lock should already be held */
540 	if (gic_irq_in_rdist(d)) {
541 		u32 idx = gic_get_ppi_index(d);
542 
543 		/* Tearing down NMI, only switch handler for last NMI */
544 		if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
545 			desc->handle_irq = handle_percpu_devid_irq;
546 	} else {
547 		desc->handle_irq = handle_fasteoi_irq;
548 	}
549 
550 	gic_irq_set_prio(d, GICD_INT_DEF_PRI);
551 }
552 
gic_eoi_irq(struct irq_data * d)553 static void gic_eoi_irq(struct irq_data *d)
554 {
555 	gic_write_eoir(gic_irq(d));
556 }
557 
gic_eoimode1_eoi_irq(struct irq_data * d)558 static void gic_eoimode1_eoi_irq(struct irq_data *d)
559 {
560 	/*
561 	 * No need to deactivate an LPI, or an interrupt that
562 	 * is is getting forwarded to a vcpu.
563 	 */
564 	if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
565 		return;
566 	gic_write_dir(gic_irq(d));
567 }
568 
gic_set_type(struct irq_data * d,unsigned int type)569 static int gic_set_type(struct irq_data *d, unsigned int type)
570 {
571 	enum gic_intid_range range;
572 	unsigned int irq = gic_irq(d);
573 	void (*rwp_wait)(void);
574 	void __iomem *base;
575 	u32 offset, index;
576 	int ret;
577 
578 	range = get_intid_range(d);
579 
580 	/* Interrupt configuration for SGIs can't be changed */
581 	if (range == SGI_RANGE)
582 		return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
583 
584 	/* SPIs have restrictions on the supported types */
585 	if ((range == SPI_RANGE || range == ESPI_RANGE) &&
586 	    type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
587 		return -EINVAL;
588 
589 	if (gic_irq_in_rdist(d)) {
590 		base = gic_data_rdist_sgi_base();
591 		rwp_wait = gic_redist_wait_for_rwp;
592 	} else {
593 		base = gic_data.dist_base;
594 		rwp_wait = gic_dist_wait_for_rwp;
595 	}
596 
597 	offset = convert_offset_index(d, GICD_ICFGR, &index);
598 
599 	ret = gic_configure_irq(index, type, base + offset, rwp_wait);
600 	if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
601 		/* Misconfigured PPIs are usually not fatal */
602 		pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
603 		ret = 0;
604 	}
605 
606 	return ret;
607 }
608 
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)609 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
610 {
611 	if (get_intid_range(d) == SGI_RANGE)
612 		return -EINVAL;
613 
614 	if (vcpu)
615 		irqd_set_forwarded_to_vcpu(d);
616 	else
617 		irqd_clr_forwarded_to_vcpu(d);
618 	return 0;
619 }
620 
gic_mpidr_to_affinity(unsigned long mpidr)621 static u64 gic_mpidr_to_affinity(unsigned long mpidr)
622 {
623 	u64 aff;
624 
625 	aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
626 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
627 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8  |
628 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
629 
630 	return aff;
631 }
632 
gic_deactivate_unhandled(u32 irqnr)633 static void gic_deactivate_unhandled(u32 irqnr)
634 {
635 	if (static_branch_likely(&supports_deactivate_key)) {
636 		if (irqnr < 8192)
637 			gic_write_dir(irqnr);
638 	} else {
639 		gic_write_eoir(irqnr);
640 	}
641 }
642 
gic_handle_nmi(u32 irqnr,struct pt_regs * regs)643 static inline void gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
644 {
645 	bool irqs_enabled = interrupts_enabled(regs);
646 	int err;
647 
648 	if (irqs_enabled)
649 		nmi_enter();
650 
651 	if (static_branch_likely(&supports_deactivate_key))
652 		gic_write_eoir(irqnr);
653 	/*
654 	 * Leave the PSR.I bit set to prevent other NMIs to be
655 	 * received while handling this one.
656 	 * PSR.I will be restored when we ERET to the
657 	 * interrupted context.
658 	 */
659 	err = handle_domain_nmi(gic_data.domain, irqnr, regs);
660 	if (err)
661 		gic_deactivate_unhandled(irqnr);
662 
663 	if (irqs_enabled)
664 		nmi_exit();
665 }
666 
do_read_iar(struct pt_regs * regs)667 static u32 do_read_iar(struct pt_regs *regs)
668 {
669 	u32 iar;
670 
671 	if (gic_supports_nmi() && unlikely(!interrupts_enabled(regs))) {
672 		u64 pmr;
673 
674 		/*
675 		 * We were in a context with IRQs disabled. However, the
676 		 * entry code has set PMR to a value that allows any
677 		 * interrupt to be acknowledged, and not just NMIs. This can
678 		 * lead to surprising effects if the NMI has been retired in
679 		 * the meantime, and that there is an IRQ pending. The IRQ
680 		 * would then be taken in NMI context, something that nobody
681 		 * wants to debug twice.
682 		 *
683 		 * Until we sort this, drop PMR again to a level that will
684 		 * actually only allow NMIs before reading IAR, and then
685 		 * restore it to what it was.
686 		 */
687 		pmr = gic_read_pmr();
688 		gic_pmr_mask_irqs();
689 		isb();
690 
691 		iar = gic_read_iar();
692 
693 		gic_write_pmr(pmr);
694 	} else {
695 		iar = gic_read_iar();
696 	}
697 
698 	return iar;
699 }
700 
gic_handle_irq(struct pt_regs * regs)701 static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
702 {
703 	u32 irqnr;
704 
705 	irqnr = do_read_iar(regs);
706 
707 	/* Check for special IDs first */
708 	if ((irqnr >= 1020 && irqnr <= 1023))
709 		return;
710 
711 	if (gic_supports_nmi() &&
712 	    unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI))) {
713 		gic_handle_nmi(irqnr, regs);
714 		return;
715 	}
716 
717 	if (gic_prio_masking_enabled()) {
718 		gic_pmr_mask_irqs();
719 		gic_arch_enable_irqs();
720 	}
721 
722 	if (static_branch_likely(&supports_deactivate_key))
723 		gic_write_eoir(irqnr);
724 	else
725 		isb();
726 
727 	if (handle_domain_irq(gic_data.domain, irqnr, regs)) {
728 		WARN_ONCE(true, "Unexpected interrupt received!\n");
729 		gic_deactivate_unhandled(irqnr);
730 	}
731 }
732 
gic_get_pribits(void)733 static u32 gic_get_pribits(void)
734 {
735 	u32 pribits;
736 
737 	pribits = gic_read_ctlr();
738 	pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
739 	pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
740 	pribits++;
741 
742 	return pribits;
743 }
744 
gic_has_group0(void)745 static bool gic_has_group0(void)
746 {
747 	u32 val;
748 	u32 old_pmr;
749 
750 	old_pmr = gic_read_pmr();
751 
752 	/*
753 	 * Let's find out if Group0 is under control of EL3 or not by
754 	 * setting the highest possible, non-zero priority in PMR.
755 	 *
756 	 * If SCR_EL3.FIQ is set, the priority gets shifted down in
757 	 * order for the CPU interface to set bit 7, and keep the
758 	 * actual priority in the non-secure range. In the process, it
759 	 * looses the least significant bit and the actual priority
760 	 * becomes 0x80. Reading it back returns 0, indicating that
761 	 * we're don't have access to Group0.
762 	 */
763 	gic_write_pmr(BIT(8 - gic_get_pribits()));
764 	val = gic_read_pmr();
765 
766 	gic_write_pmr(old_pmr);
767 
768 	return val != 0;
769 }
770 
gic_dist_init(void)771 static void __init gic_dist_init(void)
772 {
773 	unsigned int i;
774 	u64 affinity;
775 	void __iomem *base = gic_data.dist_base;
776 	u32 val;
777 
778 	/* Disable the distributor */
779 	writel_relaxed(0, base + GICD_CTLR);
780 	gic_dist_wait_for_rwp();
781 
782 	/*
783 	 * Configure SPIs as non-secure Group-1. This will only matter
784 	 * if the GIC only has a single security state. This will not
785 	 * do the right thing if the kernel is running in secure mode,
786 	 * but that's not the intended use case anyway.
787 	 */
788 	for (i = 32; i < GIC_LINE_NR; i += 32)
789 		writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
790 
791 	/* Extended SPI range, not handled by the GICv2/GICv3 common code */
792 	for (i = 0; i < GIC_ESPI_NR; i += 32) {
793 		writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
794 		writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
795 	}
796 
797 	for (i = 0; i < GIC_ESPI_NR; i += 32)
798 		writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
799 
800 	for (i = 0; i < GIC_ESPI_NR; i += 16)
801 		writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
802 
803 	for (i = 0; i < GIC_ESPI_NR; i += 4)
804 		writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
805 
806 	/* Now do the common stuff, and wait for the distributor to drain */
807 	gic_dist_config(base, GIC_LINE_NR, gic_dist_wait_for_rwp);
808 
809 	val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
810 	if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
811 		pr_info("Enabling SGIs without active state\n");
812 		val |= GICD_CTLR_nASSGIreq;
813 	}
814 
815 	/* Enable distributor with ARE, Group1 */
816 	writel_relaxed(val, base + GICD_CTLR);
817 
818 	/*
819 	 * Set all global interrupts to the boot CPU only. ARE must be
820 	 * enabled.
821 	 */
822 	affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
823 	for (i = 32; i < GIC_LINE_NR; i++)
824 		gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
825 
826 	for (i = 0; i < GIC_ESPI_NR; i++)
827 		gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
828 }
829 
gic_iterate_rdists(int (* fn)(struct redist_region *,void __iomem *))830 static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
831 {
832 	int ret = -ENODEV;
833 	int i;
834 
835 	for (i = 0; i < gic_data.nr_redist_regions; i++) {
836 		void __iomem *ptr = gic_data.redist_regions[i].redist_base;
837 		u64 typer;
838 		u32 reg;
839 
840 		reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
841 		if (reg != GIC_PIDR2_ARCH_GICv3 &&
842 		    reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
843 			pr_warn("No redistributor present @%p\n", ptr);
844 			break;
845 		}
846 
847 		do {
848 			typer = gic_read_typer(ptr + GICR_TYPER);
849 			ret = fn(gic_data.redist_regions + i, ptr);
850 			if (!ret)
851 				return 0;
852 
853 			if (gic_data.redist_regions[i].single_redist)
854 				break;
855 
856 			if (gic_data.redist_stride) {
857 				ptr += gic_data.redist_stride;
858 			} else {
859 				ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
860 				if (typer & GICR_TYPER_VLPIS)
861 					ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
862 			}
863 		} while (!(typer & GICR_TYPER_LAST));
864 	}
865 
866 	return ret ? -ENODEV : 0;
867 }
868 
__gic_populate_rdist(struct redist_region * region,void __iomem * ptr)869 static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
870 {
871 	unsigned long mpidr = cpu_logical_map(smp_processor_id());
872 	u64 typer;
873 	u32 aff;
874 
875 	/*
876 	 * Convert affinity to a 32bit value that can be matched to
877 	 * GICR_TYPER bits [63:32].
878 	 */
879 	aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
880 	       MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
881 	       MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
882 	       MPIDR_AFFINITY_LEVEL(mpidr, 0));
883 
884 	typer = gic_read_typer(ptr + GICR_TYPER);
885 	if ((typer >> 32) == aff) {
886 		u64 offset = ptr - region->redist_base;
887 		raw_spin_lock_init(&gic_data_rdist()->rd_lock);
888 		gic_data_rdist_rd_base() = ptr;
889 		gic_data_rdist()->phys_base = region->phys_base + offset;
890 
891 		pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
892 			smp_processor_id(), mpidr,
893 			(int)(region - gic_data.redist_regions),
894 			&gic_data_rdist()->phys_base);
895 		return 0;
896 	}
897 
898 	/* Try next one */
899 	return 1;
900 }
901 
gic_populate_rdist(void)902 static int gic_populate_rdist(void)
903 {
904 	if (gic_iterate_rdists(__gic_populate_rdist) == 0)
905 		return 0;
906 
907 	/* We couldn't even deal with ourselves... */
908 	WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
909 	     smp_processor_id(),
910 	     (unsigned long)cpu_logical_map(smp_processor_id()));
911 	return -ENODEV;
912 }
913 
__gic_update_rdist_properties(struct redist_region * region,void __iomem * ptr)914 static int __gic_update_rdist_properties(struct redist_region *region,
915 					 void __iomem *ptr)
916 {
917 	u64 typer = gic_read_typer(ptr + GICR_TYPER);
918 
919 	/* Boot-time cleanip */
920 	if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
921 		u64 val;
922 
923 		/* Deactivate any present vPE */
924 		val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
925 		if (val & GICR_VPENDBASER_Valid)
926 			gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
927 					      ptr + SZ_128K + GICR_VPENDBASER);
928 
929 		/* Mark the VPE table as invalid */
930 		val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
931 		val &= ~GICR_VPROPBASER_4_1_VALID;
932 		gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
933 	}
934 
935 	gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
936 
937 	/* RVPEID implies some form of DirectLPI, no matter what the doc says... :-/ */
938 	gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
939 	gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
940 					   gic_data.rdists.has_rvpeid);
941 	gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
942 
943 	/* Detect non-sensical configurations */
944 	if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
945 		gic_data.rdists.has_direct_lpi = false;
946 		gic_data.rdists.has_vlpis = false;
947 		gic_data.rdists.has_rvpeid = false;
948 	}
949 
950 	gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
951 
952 	return 1;
953 }
954 
gic_update_rdist_properties(void)955 static void gic_update_rdist_properties(void)
956 {
957 	gic_data.ppi_nr = UINT_MAX;
958 	gic_iterate_rdists(__gic_update_rdist_properties);
959 	if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
960 		gic_data.ppi_nr = 0;
961 	pr_info("%d PPIs implemented\n", gic_data.ppi_nr);
962 	if (gic_data.rdists.has_vlpis)
963 		pr_info("GICv4 features: %s%s%s\n",
964 			gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
965 			gic_data.rdists.has_rvpeid ? "RVPEID " : "",
966 			gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
967 }
968 
969 /* Check whether it's single security state view */
gic_dist_security_disabled(void)970 static inline bool gic_dist_security_disabled(void)
971 {
972 	return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
973 }
974 
gic_cpu_sys_reg_init(void)975 static void gic_cpu_sys_reg_init(void)
976 {
977 	int i, cpu = smp_processor_id();
978 	u64 mpidr = cpu_logical_map(cpu);
979 	u64 need_rss = MPIDR_RS(mpidr);
980 	bool group0;
981 	u32 pribits;
982 
983 	/*
984 	 * Need to check that the SRE bit has actually been set. If
985 	 * not, it means that SRE is disabled at EL2. We're going to
986 	 * die painfully, and there is nothing we can do about it.
987 	 *
988 	 * Kindly inform the luser.
989 	 */
990 	if (!gic_enable_sre())
991 		pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
992 
993 	pribits = gic_get_pribits();
994 
995 	group0 = gic_has_group0();
996 
997 	/* Set priority mask register */
998 	if (!gic_prio_masking_enabled()) {
999 		write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1000 	} else if (gic_supports_nmi()) {
1001 		/*
1002 		 * Mismatch configuration with boot CPU, the system is likely
1003 		 * to die as interrupt masking will not work properly on all
1004 		 * CPUs
1005 		 *
1006 		 * The boot CPU calls this function before enabling NMI support,
1007 		 * and as a result we'll never see this warning in the boot path
1008 		 * for that CPU.
1009 		 */
1010 		if (static_branch_unlikely(&gic_nonsecure_priorities))
1011 			WARN_ON(!group0 || gic_dist_security_disabled());
1012 		else
1013 			WARN_ON(group0 && !gic_dist_security_disabled());
1014 	}
1015 
1016 	/*
1017 	 * Some firmwares hand over to the kernel with the BPR changed from
1018 	 * its reset value (and with a value large enough to prevent
1019 	 * any pre-emptive interrupts from working at all). Writing a zero
1020 	 * to BPR restores is reset value.
1021 	 */
1022 	gic_write_bpr1(0);
1023 
1024 	if (static_branch_likely(&supports_deactivate_key)) {
1025 		/* EOI drops priority only (mode 1) */
1026 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1027 	} else {
1028 		/* EOI deactivates interrupt too (mode 0) */
1029 		gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1030 	}
1031 
1032 	/* Always whack Group0 before Group1 */
1033 	if (group0) {
1034 		switch(pribits) {
1035 		case 8:
1036 		case 7:
1037 			write_gicreg(0, ICC_AP0R3_EL1);
1038 			write_gicreg(0, ICC_AP0R2_EL1);
1039 			fallthrough;
1040 		case 6:
1041 			write_gicreg(0, ICC_AP0R1_EL1);
1042 			fallthrough;
1043 		case 5:
1044 		case 4:
1045 			write_gicreg(0, ICC_AP0R0_EL1);
1046 		}
1047 
1048 		isb();
1049 	}
1050 
1051 	switch(pribits) {
1052 	case 8:
1053 	case 7:
1054 		write_gicreg(0, ICC_AP1R3_EL1);
1055 		write_gicreg(0, ICC_AP1R2_EL1);
1056 		fallthrough;
1057 	case 6:
1058 		write_gicreg(0, ICC_AP1R1_EL1);
1059 		fallthrough;
1060 	case 5:
1061 	case 4:
1062 		write_gicreg(0, ICC_AP1R0_EL1);
1063 	}
1064 
1065 	isb();
1066 
1067 	/* ... and let's hit the road... */
1068 	gic_write_grpen1(1);
1069 
1070 	/* Keep the RSS capability status in per_cpu variable */
1071 	per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1072 
1073 	/* Check all the CPUs have capable of sending SGIs to other CPUs */
1074 	for_each_online_cpu(i) {
1075 		bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1076 
1077 		need_rss |= MPIDR_RS(cpu_logical_map(i));
1078 		if (need_rss && (!have_rss))
1079 			pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1080 				cpu, (unsigned long)mpidr,
1081 				i, (unsigned long)cpu_logical_map(i));
1082 	}
1083 
1084 	/**
1085 	 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1086 	 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1087 	 * UNPREDICTABLE choice of :
1088 	 *   - The write is ignored.
1089 	 *   - The RS field is treated as 0.
1090 	 */
1091 	if (need_rss && (!gic_data.has_rss))
1092 		pr_crit_once("RSS is required but GICD doesn't support it\n");
1093 }
1094 
1095 static bool gicv3_nolpi;
1096 
gicv3_nolpi_cfg(char * buf)1097 static int __init gicv3_nolpi_cfg(char *buf)
1098 {
1099 	return strtobool(buf, &gicv3_nolpi);
1100 }
1101 early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1102 
gic_dist_supports_lpis(void)1103 static int gic_dist_supports_lpis(void)
1104 {
1105 	return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1106 		!!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1107 		!gicv3_nolpi);
1108 }
1109 
gic_cpu_init(void)1110 static void gic_cpu_init(void)
1111 {
1112 	void __iomem *rbase;
1113 	int i;
1114 
1115 	/* Register ourselves with the rest of the world */
1116 	if (gic_populate_rdist())
1117 		return;
1118 
1119 	gic_enable_redist(true);
1120 
1121 	WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1122 	     !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1123 	     "Distributor has extended ranges, but CPU%d doesn't\n",
1124 	     smp_processor_id());
1125 
1126 	rbase = gic_data_rdist_sgi_base();
1127 
1128 	/* Configure SGIs/PPIs as non-secure Group-1 */
1129 	for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1130 		writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1131 
1132 	gic_cpu_config(rbase, gic_data.ppi_nr + 16, gic_redist_wait_for_rwp);
1133 
1134 	/* initialise system registers */
1135 	gic_cpu_sys_reg_init();
1136 }
1137 
1138 #ifdef CONFIG_SMP
1139 
1140 #define MPIDR_TO_SGI_RS(mpidr)	(MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1141 #define MPIDR_TO_SGI_CLUSTER_ID(mpidr)	((mpidr) & ~0xFUL)
1142 
gic_starting_cpu(unsigned int cpu)1143 static int gic_starting_cpu(unsigned int cpu)
1144 {
1145 	gic_cpu_init();
1146 
1147 	if (gic_dist_supports_lpis())
1148 		its_cpu_init();
1149 
1150 	return 0;
1151 }
1152 
gic_compute_target_list(int * base_cpu,const struct cpumask * mask,unsigned long cluster_id)1153 static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1154 				   unsigned long cluster_id)
1155 {
1156 	int next_cpu, cpu = *base_cpu;
1157 	unsigned long mpidr = cpu_logical_map(cpu);
1158 	u16 tlist = 0;
1159 
1160 	while (cpu < nr_cpu_ids) {
1161 		tlist |= 1 << (mpidr & 0xf);
1162 
1163 		next_cpu = cpumask_next(cpu, mask);
1164 		if (next_cpu >= nr_cpu_ids)
1165 			goto out;
1166 		cpu = next_cpu;
1167 
1168 		mpidr = cpu_logical_map(cpu);
1169 
1170 		if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1171 			cpu--;
1172 			goto out;
1173 		}
1174 	}
1175 out:
1176 	*base_cpu = cpu;
1177 	return tlist;
1178 }
1179 
1180 #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1181 	(MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1182 		<< ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1183 
gic_send_sgi(u64 cluster_id,u16 tlist,unsigned int irq)1184 static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1185 {
1186 	u64 val;
1187 
1188 	val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3)	|
1189 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 2)	|
1190 	       irq << ICC_SGI1R_SGI_ID_SHIFT		|
1191 	       MPIDR_TO_SGI_AFFINITY(cluster_id, 1)	|
1192 	       MPIDR_TO_SGI_RS(cluster_id)		|
1193 	       tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1194 
1195 	pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1196 	gic_write_sgi1r(val);
1197 }
1198 
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)1199 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1200 {
1201 	int cpu;
1202 
1203 	if (WARN_ON(d->hwirq >= 16))
1204 		return;
1205 
1206 	/*
1207 	 * Ensure that stores to Normal memory are visible to the
1208 	 * other CPUs before issuing the IPI.
1209 	 */
1210 	wmb();
1211 
1212 	for_each_cpu(cpu, mask) {
1213 		u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1214 		u16 tlist;
1215 
1216 		tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1217 		gic_send_sgi(cluster_id, tlist, d->hwirq);
1218 	}
1219 
1220 	/* Force the above writes to ICC_SGI1R_EL1 to be executed */
1221 	isb();
1222 }
1223 
gic_smp_init(void)1224 static void __init gic_smp_init(void)
1225 {
1226 	struct irq_fwspec sgi_fwspec = {
1227 		.fwnode		= gic_data.fwnode,
1228 		.param_count	= 1,
1229 	};
1230 	int base_sgi;
1231 
1232 	cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1233 				  "irqchip/arm/gicv3:starting",
1234 				  gic_starting_cpu, NULL);
1235 
1236 	/* Register all 8 non-secure SGIs */
1237 	base_sgi = __irq_domain_alloc_irqs(gic_data.domain, -1, 8,
1238 					   NUMA_NO_NODE, &sgi_fwspec,
1239 					   false, NULL);
1240 	if (WARN_ON(base_sgi <= 0))
1241 		return;
1242 
1243 	set_smp_ipi_range(base_sgi, 8);
1244 }
1245 
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1246 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1247 			    bool force)
1248 {
1249 	unsigned int cpu;
1250 	u32 offset, index;
1251 	void __iomem *reg;
1252 	int enabled;
1253 	u64 val;
1254 
1255 	if (force)
1256 		cpu = cpumask_first(mask_val);
1257 	else
1258 		cpu = cpumask_any_and(mask_val, cpu_online_mask);
1259 
1260 	if (cpu >= nr_cpu_ids)
1261 		return -EINVAL;
1262 
1263 	if (gic_irq_in_rdist(d))
1264 		return -EINVAL;
1265 
1266 	/* If interrupt was enabled, disable it first */
1267 	enabled = gic_peek_irq(d, GICD_ISENABLER);
1268 	if (enabled)
1269 		gic_mask_irq(d);
1270 
1271 	offset = convert_offset_index(d, GICD_IROUTER, &index);
1272 	reg = gic_dist_base(d) + offset + (index * 8);
1273 	val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1274 
1275 	gic_write_irouter(val, reg);
1276 
1277 	/*
1278 	 * If the interrupt was enabled, enabled it again. Otherwise,
1279 	 * just wait for the distributor to have digested our changes.
1280 	 */
1281 	if (enabled)
1282 		gic_unmask_irq(d);
1283 	else
1284 		gic_dist_wait_for_rwp();
1285 
1286 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
1287 
1288 	return IRQ_SET_MASK_OK_DONE;
1289 }
1290 #else
1291 #define gic_set_affinity	NULL
1292 #define gic_ipi_send_mask	NULL
1293 #define gic_smp_init()		do { } while(0)
1294 #endif
1295 
gic_retrigger(struct irq_data * data)1296 static int gic_retrigger(struct irq_data *data)
1297 {
1298 	return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
1299 }
1300 
1301 #ifdef CONFIG_CPU_PM
gic_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1302 static int gic_cpu_pm_notifier(struct notifier_block *self,
1303 			       unsigned long cmd, void *v)
1304 {
1305 	if (cmd == CPU_PM_EXIT) {
1306 		if (gic_dist_security_disabled())
1307 			gic_enable_redist(true);
1308 		gic_cpu_sys_reg_init();
1309 	} else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1310 		gic_write_grpen1(0);
1311 		gic_enable_redist(false);
1312 	}
1313 	return NOTIFY_OK;
1314 }
1315 
1316 static struct notifier_block gic_cpu_pm_notifier_block = {
1317 	.notifier_call = gic_cpu_pm_notifier,
1318 };
1319 
gic_cpu_pm_init(void)1320 static void gic_cpu_pm_init(void)
1321 {
1322 	cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1323 }
1324 
1325 #else
gic_cpu_pm_init(void)1326 static inline void gic_cpu_pm_init(void) { }
1327 #endif /* CONFIG_CPU_PM */
1328 
1329 static struct irq_chip gic_chip = {
1330 	.name			= "GICv3",
1331 	.irq_mask		= gic_mask_irq,
1332 	.irq_unmask		= gic_unmask_irq,
1333 	.irq_eoi		= gic_eoi_irq,
1334 	.irq_set_type		= gic_set_type,
1335 	.irq_set_affinity	= gic_set_affinity,
1336 	.irq_retrigger          = gic_retrigger,
1337 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1338 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1339 	.irq_nmi_setup		= gic_irq_nmi_setup,
1340 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1341 	.ipi_send_mask		= gic_ipi_send_mask,
1342 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1343 				  IRQCHIP_SKIP_SET_WAKE |
1344 				  IRQCHIP_MASK_ON_SUSPEND,
1345 };
1346 
1347 static struct irq_chip gic_eoimode1_chip = {
1348 	.name			= "GICv3",
1349 	.irq_mask		= gic_eoimode1_mask_irq,
1350 	.irq_unmask		= gic_unmask_irq,
1351 	.irq_eoi		= gic_eoimode1_eoi_irq,
1352 	.irq_set_type		= gic_set_type,
1353 	.irq_set_affinity	= gic_set_affinity,
1354 	.irq_retrigger          = gic_retrigger,
1355 	.irq_get_irqchip_state	= gic_irq_get_irqchip_state,
1356 	.irq_set_irqchip_state	= gic_irq_set_irqchip_state,
1357 	.irq_set_vcpu_affinity	= gic_irq_set_vcpu_affinity,
1358 	.irq_nmi_setup		= gic_irq_nmi_setup,
1359 	.irq_nmi_teardown	= gic_irq_nmi_teardown,
1360 	.ipi_send_mask		= gic_ipi_send_mask,
1361 	.flags			= IRQCHIP_SET_TYPE_MASKED |
1362 				  IRQCHIP_SKIP_SET_WAKE |
1363 				  IRQCHIP_MASK_ON_SUSPEND,
1364 };
1365 
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1366 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1367 			      irq_hw_number_t hw)
1368 {
1369 	struct irq_chip *chip = &gic_chip;
1370 	struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1371 
1372 	if (static_branch_likely(&supports_deactivate_key))
1373 		chip = &gic_eoimode1_chip;
1374 
1375 	switch (__get_intid_range(hw)) {
1376 	case SGI_RANGE:
1377 		irq_set_percpu_devid(irq);
1378 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1379 				    handle_percpu_devid_fasteoi_ipi,
1380 				    NULL, NULL);
1381 		break;
1382 
1383 	case PPI_RANGE:
1384 	case EPPI_RANGE:
1385 		irq_set_percpu_devid(irq);
1386 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1387 				    handle_percpu_devid_irq, NULL, NULL);
1388 		break;
1389 
1390 	case SPI_RANGE:
1391 	case ESPI_RANGE:
1392 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1393 				    handle_fasteoi_irq, NULL, NULL);
1394 		irq_set_probe(irq);
1395 		irqd_set_single_target(irqd);
1396 		break;
1397 
1398 	case LPI_RANGE:
1399 		if (!gic_dist_supports_lpis())
1400 			return -EPERM;
1401 		irq_domain_set_info(d, irq, hw, chip, d->host_data,
1402 				    handle_fasteoi_irq, NULL, NULL);
1403 		break;
1404 
1405 	default:
1406 		return -EPERM;
1407 	}
1408 
1409 	/* Prevents SW retriggers which mess up the ACK/EOI ordering */
1410 	irqd_set_handle_enforce_irqctx(irqd);
1411 	return 0;
1412 }
1413 
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1414 static int gic_irq_domain_translate(struct irq_domain *d,
1415 				    struct irq_fwspec *fwspec,
1416 				    unsigned long *hwirq,
1417 				    unsigned int *type)
1418 {
1419 	if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1420 		*hwirq = fwspec->param[0];
1421 		*type = IRQ_TYPE_EDGE_RISING;
1422 		return 0;
1423 	}
1424 
1425 	if (is_of_node(fwspec->fwnode)) {
1426 		if (fwspec->param_count < 3)
1427 			return -EINVAL;
1428 
1429 		switch (fwspec->param[0]) {
1430 		case 0:			/* SPI */
1431 			*hwirq = fwspec->param[1] + 32;
1432 			break;
1433 		case 1:			/* PPI */
1434 			*hwirq = fwspec->param[1] + 16;
1435 			break;
1436 		case 2:			/* ESPI */
1437 			*hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1438 			break;
1439 		case 3:			/* EPPI */
1440 			*hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1441 			break;
1442 		case GIC_IRQ_TYPE_LPI:	/* LPI */
1443 			*hwirq = fwspec->param[1];
1444 			break;
1445 		case GIC_IRQ_TYPE_PARTITION:
1446 			*hwirq = fwspec->param[1];
1447 			if (fwspec->param[1] >= 16)
1448 				*hwirq += EPPI_BASE_INTID - 16;
1449 			else
1450 				*hwirq += 16;
1451 			break;
1452 		default:
1453 			return -EINVAL;
1454 		}
1455 
1456 		*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1457 
1458 		/*
1459 		 * Make it clear that broken DTs are... broken.
1460 		 * Partitioned PPIs are an unfortunate exception.
1461 		 */
1462 		WARN_ON(*type == IRQ_TYPE_NONE &&
1463 			fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1464 		return 0;
1465 	}
1466 
1467 	if (is_fwnode_irqchip(fwspec->fwnode)) {
1468 		if(fwspec->param_count != 2)
1469 			return -EINVAL;
1470 
1471 		if (fwspec->param[0] < 16) {
1472 			pr_err(FW_BUG "Illegal GSI%d translation request\n",
1473 			       fwspec->param[0]);
1474 			return -EINVAL;
1475 		}
1476 
1477 		*hwirq = fwspec->param[0];
1478 		*type = fwspec->param[1];
1479 
1480 		WARN_ON(*type == IRQ_TYPE_NONE);
1481 		return 0;
1482 	}
1483 
1484 	return -EINVAL;
1485 }
1486 
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1487 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1488 				unsigned int nr_irqs, void *arg)
1489 {
1490 	int i, ret;
1491 	irq_hw_number_t hwirq;
1492 	unsigned int type = IRQ_TYPE_NONE;
1493 	struct irq_fwspec *fwspec = arg;
1494 
1495 	ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1496 	if (ret)
1497 		return ret;
1498 
1499 	for (i = 0; i < nr_irqs; i++) {
1500 		ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1501 		if (ret)
1502 			return ret;
1503 	}
1504 
1505 	return 0;
1506 }
1507 
gic_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)1508 static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1509 				unsigned int nr_irqs)
1510 {
1511 	int i;
1512 
1513 	for (i = 0; i < nr_irqs; i++) {
1514 		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1515 		irq_set_handler(virq + i, NULL);
1516 		irq_domain_reset_irq_data(d);
1517 	}
1518 }
1519 
gic_irq_domain_select(struct irq_domain * d,struct irq_fwspec * fwspec,enum irq_domain_bus_token bus_token)1520 static int gic_irq_domain_select(struct irq_domain *d,
1521 				 struct irq_fwspec *fwspec,
1522 				 enum irq_domain_bus_token bus_token)
1523 {
1524 	/* Not for us */
1525         if (fwspec->fwnode != d->fwnode)
1526 		return 0;
1527 
1528 	/* If this is not DT, then we have a single domain */
1529 	if (!is_of_node(fwspec->fwnode))
1530 		return 1;
1531 
1532 	/*
1533 	 * If this is a PPI and we have a 4th (non-null) parameter,
1534 	 * then we need to match the partition domain.
1535 	 */
1536 	if (fwspec->param_count >= 4 &&
1537 	    fwspec->param[0] == 1 && fwspec->param[3] != 0 &&
1538 	    gic_data.ppi_descs)
1539 		return d == partition_get_domain(gic_data.ppi_descs[fwspec->param[1]]);
1540 
1541 	return d == gic_data.domain;
1542 }
1543 
1544 static const struct irq_domain_ops gic_irq_domain_ops = {
1545 	.translate = gic_irq_domain_translate,
1546 	.alloc = gic_irq_domain_alloc,
1547 	.free = gic_irq_domain_free,
1548 	.select = gic_irq_domain_select,
1549 };
1550 
partition_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1551 static int partition_domain_translate(struct irq_domain *d,
1552 				      struct irq_fwspec *fwspec,
1553 				      unsigned long *hwirq,
1554 				      unsigned int *type)
1555 {
1556 	struct device_node *np;
1557 	int ret;
1558 
1559 	if (!gic_data.ppi_descs)
1560 		return -ENOMEM;
1561 
1562 	np = of_find_node_by_phandle(fwspec->param[3]);
1563 	if (WARN_ON(!np))
1564 		return -EINVAL;
1565 
1566 	ret = partition_translate_id(gic_data.ppi_descs[fwspec->param[1]],
1567 				     of_node_to_fwnode(np));
1568 	if (ret < 0)
1569 		return ret;
1570 
1571 	*hwirq = ret;
1572 	*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1573 
1574 	return 0;
1575 }
1576 
1577 static const struct irq_domain_ops partition_domain_ops = {
1578 	.translate = partition_domain_translate,
1579 	.select = gic_irq_domain_select,
1580 };
1581 
gic_enable_quirk_msm8996(void * data)1582 static bool gic_enable_quirk_msm8996(void *data)
1583 {
1584 	struct gic_chip_data *d = data;
1585 
1586 	d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1587 
1588 	return true;
1589 }
1590 
gic_enable_quirk_mtk_gicr(void * data)1591 static bool gic_enable_quirk_mtk_gicr(void *data)
1592 {
1593 	struct gic_chip_data *d = data;
1594 
1595 	d->flags |= FLAGS_WORKAROUND_MTK_GICR_SAVE;
1596 
1597 	return true;
1598 }
1599 
gic_enable_quirk_cavium_38539(void * data)1600 static bool gic_enable_quirk_cavium_38539(void *data)
1601 {
1602 	struct gic_chip_data *d = data;
1603 
1604 	d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1605 
1606 	return true;
1607 }
1608 
gic_enable_quirk_hip06_07(void * data)1609 static bool gic_enable_quirk_hip06_07(void *data)
1610 {
1611 	struct gic_chip_data *d = data;
1612 
1613 	/*
1614 	 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1615 	 * not being an actual ARM implementation). The saving grace is
1616 	 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1617 	 * HIP07 doesn't even have a proper IIDR, and still pretends to
1618 	 * have ESPI. In both cases, put them right.
1619 	 */
1620 	if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1621 		/* Zero both ESPI and the RES0 field next to it... */
1622 		d->rdists.gicd_typer &= ~GENMASK(9, 8);
1623 		return true;
1624 	}
1625 
1626 	return false;
1627 }
1628 
1629 static const struct gic_quirk gic_quirks[] = {
1630 	{
1631 		.desc	= "GICv3: Qualcomm MSM8996 broken firmware",
1632 		.compatible = "qcom,msm8996-gic-v3",
1633 		.init	= gic_enable_quirk_msm8996,
1634 	},
1635 	{
1636 		.desc	= "GICv3: Mediatek Chromebook GICR save problem",
1637 		.property = "mediatek,broken-save-restore-fw",
1638 		.init	= gic_enable_quirk_mtk_gicr,
1639 	},
1640 	{
1641 		.desc	= "GICv3: HIP06 erratum 161010803",
1642 		.iidr	= 0x0204043b,
1643 		.mask	= 0xffffffff,
1644 		.init	= gic_enable_quirk_hip06_07,
1645 	},
1646 	{
1647 		.desc	= "GICv3: HIP07 erratum 161010803",
1648 		.iidr	= 0x00000000,
1649 		.mask	= 0xffffffff,
1650 		.init	= gic_enable_quirk_hip06_07,
1651 	},
1652 	{
1653 		/*
1654 		 * Reserved register accesses generate a Synchronous
1655 		 * External Abort. This erratum applies to:
1656 		 * - ThunderX: CN88xx
1657 		 * - OCTEON TX: CN83xx, CN81xx
1658 		 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1659 		 */
1660 		.desc	= "GICv3: Cavium erratum 38539",
1661 		.iidr	= 0xa000034c,
1662 		.mask	= 0xe8f00fff,
1663 		.init	= gic_enable_quirk_cavium_38539,
1664 	},
1665 	{
1666 	}
1667 };
1668 
gic_enable_nmi_support(void)1669 static void gic_enable_nmi_support(void)
1670 {
1671 	int i;
1672 
1673 	if (!gic_prio_masking_enabled())
1674 		return;
1675 
1676 	if (gic_data.flags & FLAGS_WORKAROUND_MTK_GICR_SAVE) {
1677 		pr_warn("Skipping NMI enable due to firmware issues\n");
1678 		return;
1679 	}
1680 
1681 	ppi_nmi_refs = kcalloc(gic_data.ppi_nr, sizeof(*ppi_nmi_refs), GFP_KERNEL);
1682 	if (!ppi_nmi_refs)
1683 		return;
1684 
1685 	for (i = 0; i < gic_data.ppi_nr; i++)
1686 		refcount_set(&ppi_nmi_refs[i], 0);
1687 
1688 	/*
1689 	 * Linux itself doesn't use 1:N distribution, so has no need to
1690 	 * set PMHE. The only reason to have it set is if EL3 requires it
1691 	 * (and we can't change it).
1692 	 */
1693 	if (gic_read_ctlr() & ICC_CTLR_EL1_PMHE_MASK)
1694 		static_branch_enable(&gic_pmr_sync);
1695 
1696 	pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1697 		static_branch_unlikely(&gic_pmr_sync) ? "forced" : "relaxed");
1698 
1699 	/*
1700 	 * How priority values are used by the GIC depends on two things:
1701 	 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1702 	 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1703 	 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1704 	 * the ICC_PMR_EL1 register and the priority that software assigns to
1705 	 * interrupts:
1706 	 *
1707 	 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1708 	 * -----------------------------------------------------------
1709 	 *      1       |      -      |  unchanged  |    unchanged
1710 	 * -----------------------------------------------------------
1711 	 *      0       |      1      |  non-secure |    non-secure
1712 	 * -----------------------------------------------------------
1713 	 *      0       |      0      |  unchanged  |    non-secure
1714 	 *
1715 	 * where non-secure means that the value is right-shifted by one and the
1716 	 * MSB bit set, to make it fit in the non-secure priority range.
1717 	 *
1718 	 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1719 	 * are both either modified or unchanged, we can use the same set of
1720 	 * priorities.
1721 	 *
1722 	 * In the last case, where only the interrupt priorities are modified to
1723 	 * be in the non-secure range, we use a different PMR value to mask IRQs
1724 	 * and the rest of the values that we use remain unchanged.
1725 	 */
1726 	if (gic_has_group0() && !gic_dist_security_disabled())
1727 		static_branch_enable(&gic_nonsecure_priorities);
1728 
1729 	static_branch_enable(&supports_pseudo_nmis);
1730 
1731 	if (static_branch_likely(&supports_deactivate_key))
1732 		gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1733 	else
1734 		gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1735 }
1736 
gic_init_bases(void __iomem * dist_base,struct redist_region * rdist_regs,u32 nr_redist_regions,u64 redist_stride,struct fwnode_handle * handle)1737 static int __init gic_init_bases(void __iomem *dist_base,
1738 				 struct redist_region *rdist_regs,
1739 				 u32 nr_redist_regions,
1740 				 u64 redist_stride,
1741 				 struct fwnode_handle *handle)
1742 {
1743 	u32 typer;
1744 	int err;
1745 
1746 	if (!is_hyp_mode_available())
1747 		static_branch_disable(&supports_deactivate_key);
1748 
1749 	if (static_branch_likely(&supports_deactivate_key))
1750 		pr_info("GIC: Using split EOI/Deactivate mode\n");
1751 
1752 	gic_data.fwnode = handle;
1753 	gic_data.dist_base = dist_base;
1754 	gic_data.redist_regions = rdist_regs;
1755 	gic_data.nr_redist_regions = nr_redist_regions;
1756 	gic_data.redist_stride = redist_stride;
1757 
1758 	/*
1759 	 * Find out how many interrupts are supported.
1760 	 */
1761 	typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1762 	gic_data.rdists.gicd_typer = typer;
1763 
1764 	gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1765 			  gic_quirks, &gic_data);
1766 
1767 	pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1768 	pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1769 
1770 	/*
1771 	 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1772 	 * architecture spec (which says that reserved registers are RES0).
1773 	 */
1774 	if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1775 		gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1776 
1777 	gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1778 						 &gic_data);
1779 	gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1780 	gic_data.rdists.has_rvpeid = true;
1781 	gic_data.rdists.has_vlpis = true;
1782 	gic_data.rdists.has_direct_lpi = true;
1783 	gic_data.rdists.has_vpend_valid_dirty = true;
1784 
1785 	if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1786 		err = -ENOMEM;
1787 		goto out_free;
1788 	}
1789 
1790 	irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1791 
1792 	gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1793 	pr_info("Distributor has %sRange Selector support\n",
1794 		gic_data.has_rss ? "" : "no ");
1795 
1796 	if (typer & GICD_TYPER_MBIS) {
1797 		err = mbi_init(handle, gic_data.domain);
1798 		if (err)
1799 			pr_err("Failed to initialize MBIs\n");
1800 	}
1801 
1802 	set_handle_irq(gic_handle_irq);
1803 
1804 	gic_update_rdist_properties();
1805 
1806 	gic_dist_init();
1807 	gic_cpu_init();
1808 	gic_smp_init();
1809 	gic_cpu_pm_init();
1810 
1811 	if (gic_dist_supports_lpis()) {
1812 		its_init(handle, &gic_data.rdists, gic_data.domain);
1813 		its_cpu_init();
1814 	} else {
1815 		if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1816 			gicv2m_init(handle, gic_data.domain);
1817 	}
1818 
1819 	gic_enable_nmi_support();
1820 
1821 	return 0;
1822 
1823 out_free:
1824 	if (gic_data.domain)
1825 		irq_domain_remove(gic_data.domain);
1826 	free_percpu(gic_data.rdists.rdist);
1827 	return err;
1828 }
1829 
gic_validate_dist_version(void __iomem * dist_base)1830 static int __init gic_validate_dist_version(void __iomem *dist_base)
1831 {
1832 	u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1833 
1834 	if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1835 		return -ENODEV;
1836 
1837 	return 0;
1838 }
1839 
1840 /* Create all possible partitions at boot time */
gic_populate_ppi_partitions(struct device_node * gic_node)1841 static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1842 {
1843 	struct device_node *parts_node, *child_part;
1844 	int part_idx = 0, i;
1845 	int nr_parts;
1846 	struct partition_affinity *parts;
1847 
1848 	parts_node = of_get_child_by_name(gic_node, "ppi-partitions");
1849 	if (!parts_node)
1850 		return;
1851 
1852 	gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL);
1853 	if (!gic_data.ppi_descs)
1854 		goto out_put_node;
1855 
1856 	nr_parts = of_get_child_count(parts_node);
1857 
1858 	if (!nr_parts)
1859 		goto out_put_node;
1860 
1861 	parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL);
1862 	if (WARN_ON(!parts))
1863 		goto out_put_node;
1864 
1865 	for_each_child_of_node(parts_node, child_part) {
1866 		struct partition_affinity *part;
1867 		int n;
1868 
1869 		part = &parts[part_idx];
1870 
1871 		part->partition_id = of_node_to_fwnode(child_part);
1872 
1873 		pr_info("GIC: PPI partition %pOFn[%d] { ",
1874 			child_part, part_idx);
1875 
1876 		n = of_property_count_elems_of_size(child_part, "affinity",
1877 						    sizeof(u32));
1878 		WARN_ON(n <= 0);
1879 
1880 		for (i = 0; i < n; i++) {
1881 			int err, cpu;
1882 			u32 cpu_phandle;
1883 			struct device_node *cpu_node;
1884 
1885 			err = of_property_read_u32_index(child_part, "affinity",
1886 							 i, &cpu_phandle);
1887 			if (WARN_ON(err))
1888 				continue;
1889 
1890 			cpu_node = of_find_node_by_phandle(cpu_phandle);
1891 			if (WARN_ON(!cpu_node))
1892 				continue;
1893 
1894 			cpu = of_cpu_node_to_id(cpu_node);
1895 			if (WARN_ON(cpu < 0)) {
1896 				of_node_put(cpu_node);
1897 				continue;
1898 			}
1899 
1900 			pr_cont("%pOF[%d] ", cpu_node, cpu);
1901 
1902 			cpumask_set_cpu(cpu, &part->mask);
1903 			of_node_put(cpu_node);
1904 		}
1905 
1906 		pr_cont("}\n");
1907 		part_idx++;
1908 	}
1909 
1910 	for (i = 0; i < gic_data.ppi_nr; i++) {
1911 		unsigned int irq;
1912 		struct partition_desc *desc;
1913 		struct irq_fwspec ppi_fwspec = {
1914 			.fwnode		= gic_data.fwnode,
1915 			.param_count	= 3,
1916 			.param		= {
1917 				[0]	= GIC_IRQ_TYPE_PARTITION,
1918 				[1]	= i,
1919 				[2]	= IRQ_TYPE_NONE,
1920 			},
1921 		};
1922 
1923 		irq = irq_create_fwspec_mapping(&ppi_fwspec);
1924 		if (WARN_ON(!irq))
1925 			continue;
1926 		desc = partition_create_desc(gic_data.fwnode, parts, nr_parts,
1927 					     irq, &partition_domain_ops);
1928 		if (WARN_ON(!desc))
1929 			continue;
1930 
1931 		gic_data.ppi_descs[i] = desc;
1932 	}
1933 
1934 out_put_node:
1935 	of_node_put(parts_node);
1936 }
1937 
gic_of_setup_kvm_info(struct device_node * node)1938 static void __init gic_of_setup_kvm_info(struct device_node *node)
1939 {
1940 	int ret;
1941 	struct resource r;
1942 	u32 gicv_idx;
1943 
1944 	gic_v3_kvm_info.type = GIC_V3;
1945 
1946 	gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1947 	if (!gic_v3_kvm_info.maint_irq)
1948 		return;
1949 
1950 	if (of_property_read_u32(node, "#redistributor-regions",
1951 				 &gicv_idx))
1952 		gicv_idx = 1;
1953 
1954 	gicv_idx += 3;	/* Also skip GICD, GICC, GICH */
1955 	ret = of_address_to_resource(node, gicv_idx, &r);
1956 	if (!ret)
1957 		gic_v3_kvm_info.vcpu = r;
1958 
1959 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
1960 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
1961 	gic_set_kvm_info(&gic_v3_kvm_info);
1962 }
1963 
gic_of_init(struct device_node * node,struct device_node * parent)1964 static int __init gic_of_init(struct device_node *node, struct device_node *parent)
1965 {
1966 	void __iomem *dist_base;
1967 	struct redist_region *rdist_regs;
1968 	u64 redist_stride;
1969 	u32 nr_redist_regions;
1970 	int err, i;
1971 
1972 	dist_base = of_iomap(node, 0);
1973 	if (!dist_base) {
1974 		pr_err("%pOF: unable to map gic dist registers\n", node);
1975 		return -ENXIO;
1976 	}
1977 
1978 	err = gic_validate_dist_version(dist_base);
1979 	if (err) {
1980 		pr_err("%pOF: no distributor detected, giving up\n", node);
1981 		goto out_unmap_dist;
1982 	}
1983 
1984 	if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions))
1985 		nr_redist_regions = 1;
1986 
1987 	rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs),
1988 			     GFP_KERNEL);
1989 	if (!rdist_regs) {
1990 		err = -ENOMEM;
1991 		goto out_unmap_dist;
1992 	}
1993 
1994 	for (i = 0; i < nr_redist_regions; i++) {
1995 		struct resource res;
1996 		int ret;
1997 
1998 		ret = of_address_to_resource(node, 1 + i, &res);
1999 		rdist_regs[i].redist_base = of_iomap(node, 1 + i);
2000 		if (ret || !rdist_regs[i].redist_base) {
2001 			pr_err("%pOF: couldn't map region %d\n", node, i);
2002 			err = -ENODEV;
2003 			goto out_unmap_rdist;
2004 		}
2005 		rdist_regs[i].phys_base = res.start;
2006 	}
2007 
2008 	if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2009 		redist_stride = 0;
2010 
2011 	gic_enable_of_quirks(node, gic_quirks, &gic_data);
2012 
2013 	err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
2014 			     redist_stride, &node->fwnode);
2015 	if (err)
2016 		goto out_unmap_rdist;
2017 
2018 	gic_populate_ppi_partitions(node);
2019 
2020 	if (static_branch_likely(&supports_deactivate_key))
2021 		gic_of_setup_kvm_info(node);
2022 	return 0;
2023 
2024 out_unmap_rdist:
2025 	for (i = 0; i < nr_redist_regions; i++)
2026 		if (rdist_regs[i].redist_base)
2027 			iounmap(rdist_regs[i].redist_base);
2028 	kfree(rdist_regs);
2029 out_unmap_dist:
2030 	iounmap(dist_base);
2031 	return err;
2032 }
2033 
2034 IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2035 
2036 #ifdef CONFIG_ACPI
2037 static struct
2038 {
2039 	void __iomem *dist_base;
2040 	struct redist_region *redist_regs;
2041 	u32 nr_redist_regions;
2042 	bool single_redist;
2043 	int enabled_rdists;
2044 	u32 maint_irq;
2045 	int maint_irq_mode;
2046 	phys_addr_t vcpu_base;
2047 } acpi_data __initdata;
2048 
2049 static void __init
gic_acpi_register_redist(phys_addr_t phys_base,void __iomem * redist_base)2050 gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2051 {
2052 	static int count = 0;
2053 
2054 	acpi_data.redist_regs[count].phys_base = phys_base;
2055 	acpi_data.redist_regs[count].redist_base = redist_base;
2056 	acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2057 	count++;
2058 }
2059 
2060 static int __init
gic_acpi_parse_madt_redist(union acpi_subtable_headers * header,const unsigned long end)2061 gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2062 			   const unsigned long end)
2063 {
2064 	struct acpi_madt_generic_redistributor *redist =
2065 			(struct acpi_madt_generic_redistributor *)header;
2066 	void __iomem *redist_base;
2067 
2068 	redist_base = ioremap(redist->base_address, redist->length);
2069 	if (!redist_base) {
2070 		pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2071 		return -ENOMEM;
2072 	}
2073 
2074 	gic_acpi_register_redist(redist->base_address, redist_base);
2075 	return 0;
2076 }
2077 
2078 static int __init
gic_acpi_parse_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2079 gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2080 			 const unsigned long end)
2081 {
2082 	struct acpi_madt_generic_interrupt *gicc =
2083 				(struct acpi_madt_generic_interrupt *)header;
2084 	u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2085 	u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2086 	void __iomem *redist_base;
2087 
2088 	/* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2089 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2090 		return 0;
2091 
2092 	redist_base = ioremap(gicc->gicr_base_address, size);
2093 	if (!redist_base)
2094 		return -ENOMEM;
2095 
2096 	gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2097 	return 0;
2098 }
2099 
gic_acpi_collect_gicr_base(void)2100 static int __init gic_acpi_collect_gicr_base(void)
2101 {
2102 	acpi_tbl_entry_handler redist_parser;
2103 	enum acpi_madt_type type;
2104 
2105 	if (acpi_data.single_redist) {
2106 		type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2107 		redist_parser = gic_acpi_parse_madt_gicc;
2108 	} else {
2109 		type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2110 		redist_parser = gic_acpi_parse_madt_redist;
2111 	}
2112 
2113 	/* Collect redistributor base addresses in GICR entries */
2114 	if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2115 		return 0;
2116 
2117 	pr_info("No valid GICR entries exist\n");
2118 	return -ENODEV;
2119 }
2120 
gic_acpi_match_gicr(union acpi_subtable_headers * header,const unsigned long end)2121 static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2122 				  const unsigned long end)
2123 {
2124 	/* Subtable presence means that redist exists, that's it */
2125 	return 0;
2126 }
2127 
gic_acpi_match_gicc(union acpi_subtable_headers * header,const unsigned long end)2128 static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2129 				      const unsigned long end)
2130 {
2131 	struct acpi_madt_generic_interrupt *gicc =
2132 				(struct acpi_madt_generic_interrupt *)header;
2133 
2134 	/*
2135 	 * If GICC is enabled and has valid gicr base address, then it means
2136 	 * GICR base is presented via GICC
2137 	 */
2138 	if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2139 		acpi_data.enabled_rdists++;
2140 		return 0;
2141 	}
2142 
2143 	/*
2144 	 * It's perfectly valid firmware can pass disabled GICC entry, driver
2145 	 * should not treat as errors, skip the entry instead of probe fail.
2146 	 */
2147 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2148 		return 0;
2149 
2150 	return -ENODEV;
2151 }
2152 
gic_acpi_count_gicr_regions(void)2153 static int __init gic_acpi_count_gicr_regions(void)
2154 {
2155 	int count;
2156 
2157 	/*
2158 	 * Count how many redistributor regions we have. It is not allowed
2159 	 * to mix redistributor description, GICR and GICC subtables have to be
2160 	 * mutually exclusive.
2161 	 */
2162 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2163 				      gic_acpi_match_gicr, 0);
2164 	if (count > 0) {
2165 		acpi_data.single_redist = false;
2166 		return count;
2167 	}
2168 
2169 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2170 				      gic_acpi_match_gicc, 0);
2171 	if (count > 0) {
2172 		acpi_data.single_redist = true;
2173 		count = acpi_data.enabled_rdists;
2174 	}
2175 
2176 	return count;
2177 }
2178 
acpi_validate_gic_table(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)2179 static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2180 					   struct acpi_probe_entry *ape)
2181 {
2182 	struct acpi_madt_generic_distributor *dist;
2183 	int count;
2184 
2185 	dist = (struct acpi_madt_generic_distributor *)header;
2186 	if (dist->version != ape->driver_data)
2187 		return false;
2188 
2189 	/* We need to do that exercise anyway, the sooner the better */
2190 	count = gic_acpi_count_gicr_regions();
2191 	if (count <= 0)
2192 		return false;
2193 
2194 	acpi_data.nr_redist_regions = count;
2195 	return true;
2196 }
2197 
gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers * header,const unsigned long end)2198 static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2199 						const unsigned long end)
2200 {
2201 	struct acpi_madt_generic_interrupt *gicc =
2202 		(struct acpi_madt_generic_interrupt *)header;
2203 	int maint_irq_mode;
2204 	static int first_madt = true;
2205 
2206 	/* Skip unusable CPUs */
2207 	if (!(gicc->flags & ACPI_MADT_ENABLED))
2208 		return 0;
2209 
2210 	maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2211 		ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2212 
2213 	if (first_madt) {
2214 		first_madt = false;
2215 
2216 		acpi_data.maint_irq = gicc->vgic_interrupt;
2217 		acpi_data.maint_irq_mode = maint_irq_mode;
2218 		acpi_data.vcpu_base = gicc->gicv_base_address;
2219 
2220 		return 0;
2221 	}
2222 
2223 	/*
2224 	 * The maintenance interrupt and GICV should be the same for every CPU
2225 	 */
2226 	if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2227 	    (acpi_data.maint_irq_mode != maint_irq_mode) ||
2228 	    (acpi_data.vcpu_base != gicc->gicv_base_address))
2229 		return -EINVAL;
2230 
2231 	return 0;
2232 }
2233 
gic_acpi_collect_virt_info(void)2234 static bool __init gic_acpi_collect_virt_info(void)
2235 {
2236 	int count;
2237 
2238 	count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2239 				      gic_acpi_parse_virt_madt_gicc, 0);
2240 
2241 	return (count > 0);
2242 }
2243 
2244 #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2245 #define ACPI_GICV2_VCTRL_MEM_SIZE	(SZ_4K)
2246 #define ACPI_GICV2_VCPU_MEM_SIZE	(SZ_8K)
2247 
gic_acpi_setup_kvm_info(void)2248 static void __init gic_acpi_setup_kvm_info(void)
2249 {
2250 	int irq;
2251 
2252 	if (!gic_acpi_collect_virt_info()) {
2253 		pr_warn("Unable to get hardware information used for virtualization\n");
2254 		return;
2255 	}
2256 
2257 	gic_v3_kvm_info.type = GIC_V3;
2258 
2259 	irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2260 				acpi_data.maint_irq_mode,
2261 				ACPI_ACTIVE_HIGH);
2262 	if (irq <= 0)
2263 		return;
2264 
2265 	gic_v3_kvm_info.maint_irq = irq;
2266 
2267 	if (acpi_data.vcpu_base) {
2268 		struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2269 
2270 		vcpu->flags = IORESOURCE_MEM;
2271 		vcpu->start = acpi_data.vcpu_base;
2272 		vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2273 	}
2274 
2275 	gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2276 	gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2277 	gic_set_kvm_info(&gic_v3_kvm_info);
2278 }
2279 
2280 static int __init
gic_acpi_init(union acpi_subtable_headers * header,const unsigned long end)2281 gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2282 {
2283 	struct acpi_madt_generic_distributor *dist;
2284 	struct fwnode_handle *domain_handle;
2285 	size_t size;
2286 	int i, err;
2287 
2288 	/* Get distributor base address */
2289 	dist = (struct acpi_madt_generic_distributor *)header;
2290 	acpi_data.dist_base = ioremap(dist->base_address,
2291 				      ACPI_GICV3_DIST_MEM_SIZE);
2292 	if (!acpi_data.dist_base) {
2293 		pr_err("Unable to map GICD registers\n");
2294 		return -ENOMEM;
2295 	}
2296 
2297 	err = gic_validate_dist_version(acpi_data.dist_base);
2298 	if (err) {
2299 		pr_err("No distributor detected at @%p, giving up\n",
2300 		       acpi_data.dist_base);
2301 		goto out_dist_unmap;
2302 	}
2303 
2304 	size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2305 	acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2306 	if (!acpi_data.redist_regs) {
2307 		err = -ENOMEM;
2308 		goto out_dist_unmap;
2309 	}
2310 
2311 	err = gic_acpi_collect_gicr_base();
2312 	if (err)
2313 		goto out_redist_unmap;
2314 
2315 	domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2316 	if (!domain_handle) {
2317 		err = -ENOMEM;
2318 		goto out_redist_unmap;
2319 	}
2320 
2321 	err = gic_init_bases(acpi_data.dist_base, acpi_data.redist_regs,
2322 			     acpi_data.nr_redist_regions, 0, domain_handle);
2323 	if (err)
2324 		goto out_fwhandle_free;
2325 
2326 	acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
2327 
2328 	if (static_branch_likely(&supports_deactivate_key))
2329 		gic_acpi_setup_kvm_info();
2330 
2331 	return 0;
2332 
2333 out_fwhandle_free:
2334 	irq_domain_free_fwnode(domain_handle);
2335 out_redist_unmap:
2336 	for (i = 0; i < acpi_data.nr_redist_regions; i++)
2337 		if (acpi_data.redist_regs[i].redist_base)
2338 			iounmap(acpi_data.redist_regs[i].redist_base);
2339 	kfree(acpi_data.redist_regs);
2340 out_dist_unmap:
2341 	iounmap(acpi_data.dist_base);
2342 	return err;
2343 }
2344 IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2345 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2346 		     gic_acpi_init);
2347 IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2348 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2349 		     gic_acpi_init);
2350 IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2351 		     acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2352 		     gic_acpi_init);
2353 #endif
2354