1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/badblocks.h>
45 #include <linux/sysctl.h>
46 #include <linux/seq_file.h>
47 #include <linux/fs.h>
48 #include <linux/poll.h>
49 #include <linux/ctype.h>
50 #include <linux/string.h>
51 #include <linux/hdreg.h>
52 #include <linux/proc_fs.h>
53 #include <linux/random.h>
54 #include <linux/module.h>
55 #include <linux/reboot.h>
56 #include <linux/file.h>
57 #include <linux/compat.h>
58 #include <linux/delay.h>
59 #include <linux/raid/md_p.h>
60 #include <linux/raid/md_u.h>
61 #include <linux/raid/detect.h>
62 #include <linux/slab.h>
63 #include <linux/percpu-refcount.h>
64 #include <linux/part_stat.h>
65
66 #include <trace/events/block.h>
67 #include "md.h"
68 #include "md-bitmap.h"
69 #include "md-cluster.h"
70
71 /* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76 static LIST_HEAD(pers_list);
77 static DEFINE_SPINLOCK(pers_lock);
78
79 static struct kobj_type md_ktype;
80
81 struct md_cluster_operations *md_cluster_ops;
82 EXPORT_SYMBOL(md_cluster_ops);
83 static struct module *md_cluster_mod;
84
85 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86 static struct workqueue_struct *md_wq;
87 static struct workqueue_struct *md_misc_wq;
88 static struct workqueue_struct *md_rdev_misc_wq;
89
90 static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92 static void mddev_detach(struct mddev *mddev);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319 };
320
321 static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329 };
330
331 static int start_readonly;
332
333 /*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341 static bool create_on_open = true;
342
bio_alloc_mddev(gfp_t gfp_mask,int nr_iovecs,struct mddev * mddev)343 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
344 struct mddev *mddev)
345 {
346 if (!mddev || !bioset_initialized(&mddev->bio_set))
347 return bio_alloc(gfp_mask, nr_iovecs);
348
349 return bio_alloc_bioset(gfp_mask, nr_iovecs, &mddev->bio_set);
350 }
351 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
352
md_bio_alloc_sync(struct mddev * mddev)353 static struct bio *md_bio_alloc_sync(struct mddev *mddev)
354 {
355 if (!mddev || !bioset_initialized(&mddev->sync_set))
356 return bio_alloc(GFP_NOIO, 1);
357
358 return bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
359 }
360
361 /*
362 * We have a system wide 'event count' that is incremented
363 * on any 'interesting' event, and readers of /proc/mdstat
364 * can use 'poll' or 'select' to find out when the event
365 * count increases.
366 *
367 * Events are:
368 * start array, stop array, error, add device, remove device,
369 * start build, activate spare
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
372 static atomic_t md_event_count;
md_new_event(struct mddev * mddev)373 void md_new_event(struct mddev *mddev)
374 {
375 atomic_inc(&md_event_count);
376 wake_up(&md_event_waiters);
377 }
378 EXPORT_SYMBOL_GPL(md_new_event);
379
380 /*
381 * Enables to iterate over all existing md arrays
382 * all_mddevs_lock protects this list.
383 */
384 static LIST_HEAD(all_mddevs);
385 static DEFINE_SPINLOCK(all_mddevs_lock);
386
387 /*
388 * iterates through all used mddevs in the system.
389 * We take care to grab the all_mddevs_lock whenever navigating
390 * the list, and to always hold a refcount when unlocked.
391 * Any code which breaks out of this loop while own
392 * a reference to the current mddev and must mddev_put it.
393 */
394 #define for_each_mddev(_mddev,_tmp) \
395 \
396 for (({ spin_lock(&all_mddevs_lock); \
397 _tmp = all_mddevs.next; \
398 _mddev = NULL;}); \
399 ({ if (_tmp != &all_mddevs) \
400 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
401 spin_unlock(&all_mddevs_lock); \
402 if (_mddev) mddev_put(_mddev); \
403 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
404 _tmp != &all_mddevs;}); \
405 ({ spin_lock(&all_mddevs_lock); \
406 _tmp = _tmp->next;}) \
407 )
408
409 /* Rather than calling directly into the personality make_request function,
410 * IO requests come here first so that we can check if the device is
411 * being suspended pending a reconfiguration.
412 * We hold a refcount over the call to ->make_request. By the time that
413 * call has finished, the bio has been linked into some internal structure
414 * and so is visible to ->quiesce(), so we don't need the refcount any more.
415 */
is_suspended(struct mddev * mddev,struct bio * bio)416 static bool is_suspended(struct mddev *mddev, struct bio *bio)
417 {
418 if (mddev->suspended)
419 return true;
420 if (bio_data_dir(bio) != WRITE)
421 return false;
422 if (mddev->suspend_lo >= mddev->suspend_hi)
423 return false;
424 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
425 return false;
426 if (bio_end_sector(bio) < mddev->suspend_lo)
427 return false;
428 return true;
429 }
430
md_handle_request(struct mddev * mddev,struct bio * bio)431 void md_handle_request(struct mddev *mddev, struct bio *bio)
432 {
433 check_suspended:
434 rcu_read_lock();
435 if (is_suspended(mddev, bio)) {
436 DEFINE_WAIT(__wait);
437 for (;;) {
438 prepare_to_wait(&mddev->sb_wait, &__wait,
439 TASK_UNINTERRUPTIBLE);
440 if (!is_suspended(mddev, bio))
441 break;
442 rcu_read_unlock();
443 schedule();
444 rcu_read_lock();
445 }
446 finish_wait(&mddev->sb_wait, &__wait);
447 }
448 atomic_inc(&mddev->active_io);
449 rcu_read_unlock();
450
451 if (!mddev->pers->make_request(mddev, bio)) {
452 atomic_dec(&mddev->active_io);
453 wake_up(&mddev->sb_wait);
454 goto check_suspended;
455 }
456
457 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
458 wake_up(&mddev->sb_wait);
459 }
460 EXPORT_SYMBOL(md_handle_request);
461
md_submit_bio(struct bio * bio)462 static blk_qc_t md_submit_bio(struct bio *bio)
463 {
464 const int rw = bio_data_dir(bio);
465 struct mddev *mddev = bio->bi_disk->private_data;
466
467 if (mddev == NULL || mddev->pers == NULL) {
468 bio_io_error(bio);
469 return BLK_QC_T_NONE;
470 }
471
472 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
473 bio_io_error(bio);
474 return BLK_QC_T_NONE;
475 }
476
477 blk_queue_split(&bio);
478
479 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
480 if (bio_sectors(bio) != 0)
481 bio->bi_status = BLK_STS_IOERR;
482 bio_endio(bio);
483 return BLK_QC_T_NONE;
484 }
485
486 /* bio could be mergeable after passing to underlayer */
487 bio->bi_opf &= ~REQ_NOMERGE;
488
489 md_handle_request(mddev, bio);
490
491 return BLK_QC_T_NONE;
492 }
493
494 /* mddev_suspend makes sure no new requests are submitted
495 * to the device, and that any requests that have been submitted
496 * are completely handled.
497 * Once mddev_detach() is called and completes, the module will be
498 * completely unused.
499 */
mddev_suspend(struct mddev * mddev)500 void mddev_suspend(struct mddev *mddev)
501 {
502 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
503 lockdep_assert_held(&mddev->reconfig_mutex);
504 if (mddev->suspended++)
505 return;
506 synchronize_rcu();
507 wake_up(&mddev->sb_wait);
508 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
509 smp_mb__after_atomic();
510 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
511 mddev->pers->quiesce(mddev, 1);
512 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
513 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
514
515 del_timer_sync(&mddev->safemode_timer);
516 /* restrict memory reclaim I/O during raid array is suspend */
517 mddev->noio_flag = memalloc_noio_save();
518 }
519 EXPORT_SYMBOL_GPL(mddev_suspend);
520
mddev_resume(struct mddev * mddev)521 void mddev_resume(struct mddev *mddev)
522 {
523 /* entred the memalloc scope from mddev_suspend() */
524 memalloc_noio_restore(mddev->noio_flag);
525 lockdep_assert_held(&mddev->reconfig_mutex);
526 if (--mddev->suspended)
527 return;
528 wake_up(&mddev->sb_wait);
529 mddev->pers->quiesce(mddev, 0);
530
531 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
532 md_wakeup_thread(mddev->thread);
533 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
534 }
535 EXPORT_SYMBOL_GPL(mddev_resume);
536
537 /*
538 * Generic flush handling for md
539 */
540
md_end_flush(struct bio * bio)541 static void md_end_flush(struct bio *bio)
542 {
543 struct md_rdev *rdev = bio->bi_private;
544 struct mddev *mddev = rdev->mddev;
545
546 bio_put(bio);
547
548 rdev_dec_pending(rdev, mddev);
549
550 if (atomic_dec_and_test(&mddev->flush_pending)) {
551 /* The pre-request flush has finished */
552 queue_work(md_wq, &mddev->flush_work);
553 }
554 }
555
556 static void md_submit_flush_data(struct work_struct *ws);
557
submit_flushes(struct work_struct * ws)558 static void submit_flushes(struct work_struct *ws)
559 {
560 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
561 struct md_rdev *rdev;
562
563 mddev->start_flush = ktime_get_boottime();
564 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
565 atomic_set(&mddev->flush_pending, 1);
566 rcu_read_lock();
567 rdev_for_each_rcu(rdev, mddev)
568 if (rdev->raid_disk >= 0 &&
569 !test_bit(Faulty, &rdev->flags)) {
570 /* Take two references, one is dropped
571 * when request finishes, one after
572 * we reclaim rcu_read_lock
573 */
574 struct bio *bi;
575 atomic_inc(&rdev->nr_pending);
576 atomic_inc(&rdev->nr_pending);
577 rcu_read_unlock();
578 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
579 bi->bi_end_io = md_end_flush;
580 bi->bi_private = rdev;
581 bio_set_dev(bi, rdev->bdev);
582 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
583 atomic_inc(&mddev->flush_pending);
584 submit_bio(bi);
585 rcu_read_lock();
586 rdev_dec_pending(rdev, mddev);
587 }
588 rcu_read_unlock();
589 if (atomic_dec_and_test(&mddev->flush_pending))
590 queue_work(md_wq, &mddev->flush_work);
591 }
592
md_submit_flush_data(struct work_struct * ws)593 static void md_submit_flush_data(struct work_struct *ws)
594 {
595 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
596 struct bio *bio = mddev->flush_bio;
597
598 /*
599 * must reset flush_bio before calling into md_handle_request to avoid a
600 * deadlock, because other bios passed md_handle_request suspend check
601 * could wait for this and below md_handle_request could wait for those
602 * bios because of suspend check
603 */
604 spin_lock_irq(&mddev->lock);
605 mddev->last_flush = mddev->start_flush;
606 mddev->flush_bio = NULL;
607 spin_unlock_irq(&mddev->lock);
608 wake_up(&mddev->sb_wait);
609
610 if (bio->bi_iter.bi_size == 0) {
611 /* an empty barrier - all done */
612 bio_endio(bio);
613 } else {
614 bio->bi_opf &= ~REQ_PREFLUSH;
615 md_handle_request(mddev, bio);
616 }
617 }
618
619 /*
620 * Manages consolidation of flushes and submitting any flushes needed for
621 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
622 * being finished in another context. Returns false if the flushing is
623 * complete but still needs the I/O portion of the bio to be processed.
624 */
md_flush_request(struct mddev * mddev,struct bio * bio)625 bool md_flush_request(struct mddev *mddev, struct bio *bio)
626 {
627 ktime_t start = ktime_get_boottime();
628 spin_lock_irq(&mddev->lock);
629 wait_event_lock_irq(mddev->sb_wait,
630 !mddev->flush_bio ||
631 ktime_after(mddev->last_flush, start),
632 mddev->lock);
633 if (!ktime_after(mddev->last_flush, start)) {
634 WARN_ON(mddev->flush_bio);
635 mddev->flush_bio = bio;
636 bio = NULL;
637 }
638 spin_unlock_irq(&mddev->lock);
639
640 if (!bio) {
641 INIT_WORK(&mddev->flush_work, submit_flushes);
642 queue_work(md_wq, &mddev->flush_work);
643 } else {
644 /* flush was performed for some other bio while we waited. */
645 if (bio->bi_iter.bi_size == 0)
646 /* an empty barrier - all done */
647 bio_endio(bio);
648 else {
649 bio->bi_opf &= ~REQ_PREFLUSH;
650 return false;
651 }
652 }
653 return true;
654 }
655 EXPORT_SYMBOL(md_flush_request);
656
mddev_get(struct mddev * mddev)657 static inline struct mddev *mddev_get(struct mddev *mddev)
658 {
659 atomic_inc(&mddev->active);
660 return mddev;
661 }
662
663 static void mddev_delayed_delete(struct work_struct *ws);
664
mddev_put(struct mddev * mddev)665 static void mddev_put(struct mddev *mddev)
666 {
667 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
668 return;
669 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
670 mddev->ctime == 0 && !mddev->hold_active) {
671 /* Array is not configured at all, and not held active,
672 * so destroy it */
673 list_del_init(&mddev->all_mddevs);
674
675 /*
676 * Call queue_work inside the spinlock so that
677 * flush_workqueue() after mddev_find will succeed in waiting
678 * for the work to be done.
679 */
680 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
681 queue_work(md_misc_wq, &mddev->del_work);
682 }
683 spin_unlock(&all_mddevs_lock);
684 }
685
686 static void md_safemode_timeout(struct timer_list *t);
687
mddev_init(struct mddev * mddev)688 void mddev_init(struct mddev *mddev)
689 {
690 kobject_init(&mddev->kobj, &md_ktype);
691 mutex_init(&mddev->open_mutex);
692 mutex_init(&mddev->reconfig_mutex);
693 mutex_init(&mddev->bitmap_info.mutex);
694 INIT_LIST_HEAD(&mddev->disks);
695 INIT_LIST_HEAD(&mddev->all_mddevs);
696 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
697 atomic_set(&mddev->active, 1);
698 atomic_set(&mddev->openers, 0);
699 atomic_set(&mddev->active_io, 0);
700 spin_lock_init(&mddev->lock);
701 atomic_set(&mddev->flush_pending, 0);
702 init_waitqueue_head(&mddev->sb_wait);
703 init_waitqueue_head(&mddev->recovery_wait);
704 mddev->reshape_position = MaxSector;
705 mddev->reshape_backwards = 0;
706 mddev->last_sync_action = "none";
707 mddev->resync_min = 0;
708 mddev->resync_max = MaxSector;
709 mddev->level = LEVEL_NONE;
710 }
711 EXPORT_SYMBOL_GPL(mddev_init);
712
mddev_find_locked(dev_t unit)713 static struct mddev *mddev_find_locked(dev_t unit)
714 {
715 struct mddev *mddev;
716
717 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
718 if (mddev->unit == unit)
719 return mddev;
720
721 return NULL;
722 }
723
mddev_find(dev_t unit)724 static struct mddev *mddev_find(dev_t unit)
725 {
726 struct mddev *mddev;
727
728 if (MAJOR(unit) != MD_MAJOR)
729 unit &= ~((1 << MdpMinorShift) - 1);
730
731 spin_lock(&all_mddevs_lock);
732 mddev = mddev_find_locked(unit);
733 if (mddev)
734 mddev_get(mddev);
735 spin_unlock(&all_mddevs_lock);
736
737 return mddev;
738 }
739
mddev_find_or_alloc(dev_t unit)740 static struct mddev *mddev_find_or_alloc(dev_t unit)
741 {
742 struct mddev *mddev, *new = NULL;
743
744 if (unit && MAJOR(unit) != MD_MAJOR)
745 unit &= ~((1<<MdpMinorShift)-1);
746
747 retry:
748 spin_lock(&all_mddevs_lock);
749
750 if (unit) {
751 mddev = mddev_find_locked(unit);
752 if (mddev) {
753 mddev_get(mddev);
754 spin_unlock(&all_mddevs_lock);
755 kfree(new);
756 return mddev;
757 }
758
759 if (new) {
760 list_add(&new->all_mddevs, &all_mddevs);
761 spin_unlock(&all_mddevs_lock);
762 new->hold_active = UNTIL_IOCTL;
763 return new;
764 }
765 } else if (new) {
766 /* find an unused unit number */
767 static int next_minor = 512;
768 int start = next_minor;
769 int is_free = 0;
770 int dev = 0;
771 while (!is_free) {
772 dev = MKDEV(MD_MAJOR, next_minor);
773 next_minor++;
774 if (next_minor > MINORMASK)
775 next_minor = 0;
776 if (next_minor == start) {
777 /* Oh dear, all in use. */
778 spin_unlock(&all_mddevs_lock);
779 kfree(new);
780 return NULL;
781 }
782
783 is_free = !mddev_find_locked(dev);
784 }
785 new->unit = dev;
786 new->md_minor = MINOR(dev);
787 new->hold_active = UNTIL_STOP;
788 list_add(&new->all_mddevs, &all_mddevs);
789 spin_unlock(&all_mddevs_lock);
790 return new;
791 }
792 spin_unlock(&all_mddevs_lock);
793
794 new = kzalloc(sizeof(*new), GFP_KERNEL);
795 if (!new)
796 return NULL;
797
798 new->unit = unit;
799 if (MAJOR(unit) == MD_MAJOR)
800 new->md_minor = MINOR(unit);
801 else
802 new->md_minor = MINOR(unit) >> MdpMinorShift;
803
804 mddev_init(new);
805
806 goto retry;
807 }
808
809 static struct attribute_group md_redundancy_group;
810
mddev_unlock(struct mddev * mddev)811 void mddev_unlock(struct mddev *mddev)
812 {
813 if (mddev->to_remove) {
814 /* These cannot be removed under reconfig_mutex as
815 * an access to the files will try to take reconfig_mutex
816 * while holding the file unremovable, which leads to
817 * a deadlock.
818 * So hold set sysfs_active while the remove in happeing,
819 * and anything else which might set ->to_remove or my
820 * otherwise change the sysfs namespace will fail with
821 * -EBUSY if sysfs_active is still set.
822 * We set sysfs_active under reconfig_mutex and elsewhere
823 * test it under the same mutex to ensure its correct value
824 * is seen.
825 */
826 struct attribute_group *to_remove = mddev->to_remove;
827 mddev->to_remove = NULL;
828 mddev->sysfs_active = 1;
829 mutex_unlock(&mddev->reconfig_mutex);
830
831 if (mddev->kobj.sd) {
832 if (to_remove != &md_redundancy_group)
833 sysfs_remove_group(&mddev->kobj, to_remove);
834 if (mddev->pers == NULL ||
835 mddev->pers->sync_request == NULL) {
836 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
837 if (mddev->sysfs_action)
838 sysfs_put(mddev->sysfs_action);
839 if (mddev->sysfs_completed)
840 sysfs_put(mddev->sysfs_completed);
841 if (mddev->sysfs_degraded)
842 sysfs_put(mddev->sysfs_degraded);
843 mddev->sysfs_action = NULL;
844 mddev->sysfs_completed = NULL;
845 mddev->sysfs_degraded = NULL;
846 }
847 }
848 mddev->sysfs_active = 0;
849 } else
850 mutex_unlock(&mddev->reconfig_mutex);
851
852 /* As we've dropped the mutex we need a spinlock to
853 * make sure the thread doesn't disappear
854 */
855 spin_lock(&pers_lock);
856 md_wakeup_thread(mddev->thread);
857 wake_up(&mddev->sb_wait);
858 spin_unlock(&pers_lock);
859 }
860 EXPORT_SYMBOL_GPL(mddev_unlock);
861
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)862 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
863 {
864 struct md_rdev *rdev;
865
866 rdev_for_each_rcu(rdev, mddev)
867 if (rdev->desc_nr == nr)
868 return rdev;
869
870 return NULL;
871 }
872 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
873
find_rdev(struct mddev * mddev,dev_t dev)874 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
875 {
876 struct md_rdev *rdev;
877
878 rdev_for_each(rdev, mddev)
879 if (rdev->bdev->bd_dev == dev)
880 return rdev;
881
882 return NULL;
883 }
884
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)885 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
886 {
887 struct md_rdev *rdev;
888
889 rdev_for_each_rcu(rdev, mddev)
890 if (rdev->bdev->bd_dev == dev)
891 return rdev;
892
893 return NULL;
894 }
895 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
896
find_pers(int level,char * clevel)897 static struct md_personality *find_pers(int level, char *clevel)
898 {
899 struct md_personality *pers;
900 list_for_each_entry(pers, &pers_list, list) {
901 if (level != LEVEL_NONE && pers->level == level)
902 return pers;
903 if (strcmp(pers->name, clevel)==0)
904 return pers;
905 }
906 return NULL;
907 }
908
909 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)910 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
911 {
912 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
913 return MD_NEW_SIZE_SECTORS(num_sectors);
914 }
915
alloc_disk_sb(struct md_rdev * rdev)916 static int alloc_disk_sb(struct md_rdev *rdev)
917 {
918 rdev->sb_page = alloc_page(GFP_KERNEL);
919 if (!rdev->sb_page)
920 return -ENOMEM;
921 return 0;
922 }
923
md_rdev_clear(struct md_rdev * rdev)924 void md_rdev_clear(struct md_rdev *rdev)
925 {
926 if (rdev->sb_page) {
927 put_page(rdev->sb_page);
928 rdev->sb_loaded = 0;
929 rdev->sb_page = NULL;
930 rdev->sb_start = 0;
931 rdev->sectors = 0;
932 }
933 if (rdev->bb_page) {
934 put_page(rdev->bb_page);
935 rdev->bb_page = NULL;
936 }
937 badblocks_exit(&rdev->badblocks);
938 }
939 EXPORT_SYMBOL_GPL(md_rdev_clear);
940
super_written(struct bio * bio)941 static void super_written(struct bio *bio)
942 {
943 struct md_rdev *rdev = bio->bi_private;
944 struct mddev *mddev = rdev->mddev;
945
946 if (bio->bi_status) {
947 pr_err("md: %s gets error=%d\n", __func__,
948 blk_status_to_errno(bio->bi_status));
949 md_error(mddev, rdev);
950 if (!test_bit(Faulty, &rdev->flags)
951 && (bio->bi_opf & MD_FAILFAST)) {
952 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
953 set_bit(LastDev, &rdev->flags);
954 }
955 } else
956 clear_bit(LastDev, &rdev->flags);
957
958 bio_put(bio);
959
960 rdev_dec_pending(rdev, mddev);
961
962 if (atomic_dec_and_test(&mddev->pending_writes))
963 wake_up(&mddev->sb_wait);
964 }
965
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)966 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
967 sector_t sector, int size, struct page *page)
968 {
969 /* write first size bytes of page to sector of rdev
970 * Increment mddev->pending_writes before returning
971 * and decrement it on completion, waking up sb_wait
972 * if zero is reached.
973 * If an error occurred, call md_error
974 */
975 struct bio *bio;
976 int ff = 0;
977
978 if (!page)
979 return;
980
981 if (test_bit(Faulty, &rdev->flags))
982 return;
983
984 bio = md_bio_alloc_sync(mddev);
985
986 atomic_inc(&rdev->nr_pending);
987
988 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
989 bio->bi_iter.bi_sector = sector;
990 bio_add_page(bio, page, size, 0);
991 bio->bi_private = rdev;
992 bio->bi_end_io = super_written;
993
994 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
995 test_bit(FailFast, &rdev->flags) &&
996 !test_bit(LastDev, &rdev->flags))
997 ff = MD_FAILFAST;
998 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
999
1000 atomic_inc(&mddev->pending_writes);
1001 submit_bio(bio);
1002 }
1003
md_super_wait(struct mddev * mddev)1004 int md_super_wait(struct mddev *mddev)
1005 {
1006 /* wait for all superblock writes that were scheduled to complete */
1007 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
1008 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
1009 return -EAGAIN;
1010 return 0;
1011 }
1012
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,int op,int op_flags,bool metadata_op)1013 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
1014 struct page *page, int op, int op_flags, bool metadata_op)
1015 {
1016 struct bio *bio = md_bio_alloc_sync(rdev->mddev);
1017 int ret;
1018
1019 if (metadata_op && rdev->meta_bdev)
1020 bio_set_dev(bio, rdev->meta_bdev);
1021 else
1022 bio_set_dev(bio, rdev->bdev);
1023 bio_set_op_attrs(bio, op, op_flags);
1024 if (metadata_op)
1025 bio->bi_iter.bi_sector = sector + rdev->sb_start;
1026 else if (rdev->mddev->reshape_position != MaxSector &&
1027 (rdev->mddev->reshape_backwards ==
1028 (sector >= rdev->mddev->reshape_position)))
1029 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
1030 else
1031 bio->bi_iter.bi_sector = sector + rdev->data_offset;
1032 bio_add_page(bio, page, size, 0);
1033
1034 submit_bio_wait(bio);
1035
1036 ret = !bio->bi_status;
1037 bio_put(bio);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL_GPL(sync_page_io);
1041
read_disk_sb(struct md_rdev * rdev,int size)1042 static int read_disk_sb(struct md_rdev *rdev, int size)
1043 {
1044 char b[BDEVNAME_SIZE];
1045
1046 if (rdev->sb_loaded)
1047 return 0;
1048
1049 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1050 goto fail;
1051 rdev->sb_loaded = 1;
1052 return 0;
1053
1054 fail:
1055 pr_err("md: disabled device %s, could not read superblock.\n",
1056 bdevname(rdev->bdev,b));
1057 return -EINVAL;
1058 }
1059
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1060 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1061 {
1062 return sb1->set_uuid0 == sb2->set_uuid0 &&
1063 sb1->set_uuid1 == sb2->set_uuid1 &&
1064 sb1->set_uuid2 == sb2->set_uuid2 &&
1065 sb1->set_uuid3 == sb2->set_uuid3;
1066 }
1067
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1068 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1069 {
1070 int ret;
1071 mdp_super_t *tmp1, *tmp2;
1072
1073 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1074 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1075
1076 if (!tmp1 || !tmp2) {
1077 ret = 0;
1078 goto abort;
1079 }
1080
1081 *tmp1 = *sb1;
1082 *tmp2 = *sb2;
1083
1084 /*
1085 * nr_disks is not constant
1086 */
1087 tmp1->nr_disks = 0;
1088 tmp2->nr_disks = 0;
1089
1090 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1091 abort:
1092 kfree(tmp1);
1093 kfree(tmp2);
1094 return ret;
1095 }
1096
md_csum_fold(u32 csum)1097 static u32 md_csum_fold(u32 csum)
1098 {
1099 csum = (csum & 0xffff) + (csum >> 16);
1100 return (csum & 0xffff) + (csum >> 16);
1101 }
1102
calc_sb_csum(mdp_super_t * sb)1103 static unsigned int calc_sb_csum(mdp_super_t *sb)
1104 {
1105 u64 newcsum = 0;
1106 u32 *sb32 = (u32*)sb;
1107 int i;
1108 unsigned int disk_csum, csum;
1109
1110 disk_csum = sb->sb_csum;
1111 sb->sb_csum = 0;
1112
1113 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1114 newcsum += sb32[i];
1115 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1116
1117 #ifdef CONFIG_ALPHA
1118 /* This used to use csum_partial, which was wrong for several
1119 * reasons including that different results are returned on
1120 * different architectures. It isn't critical that we get exactly
1121 * the same return value as before (we always csum_fold before
1122 * testing, and that removes any differences). However as we
1123 * know that csum_partial always returned a 16bit value on
1124 * alphas, do a fold to maximise conformity to previous behaviour.
1125 */
1126 sb->sb_csum = md_csum_fold(disk_csum);
1127 #else
1128 sb->sb_csum = disk_csum;
1129 #endif
1130 return csum;
1131 }
1132
1133 /*
1134 * Handle superblock details.
1135 * We want to be able to handle multiple superblock formats
1136 * so we have a common interface to them all, and an array of
1137 * different handlers.
1138 * We rely on user-space to write the initial superblock, and support
1139 * reading and updating of superblocks.
1140 * Interface methods are:
1141 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1142 * loads and validates a superblock on dev.
1143 * if refdev != NULL, compare superblocks on both devices
1144 * Return:
1145 * 0 - dev has a superblock that is compatible with refdev
1146 * 1 - dev has a superblock that is compatible and newer than refdev
1147 * so dev should be used as the refdev in future
1148 * -EINVAL superblock incompatible or invalid
1149 * -othererror e.g. -EIO
1150 *
1151 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1152 * Verify that dev is acceptable into mddev.
1153 * The first time, mddev->raid_disks will be 0, and data from
1154 * dev should be merged in. Subsequent calls check that dev
1155 * is new enough. Return 0 or -EINVAL
1156 *
1157 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1158 * Update the superblock for rdev with data in mddev
1159 * This does not write to disc.
1160 *
1161 */
1162
1163 struct super_type {
1164 char *name;
1165 struct module *owner;
1166 int (*load_super)(struct md_rdev *rdev,
1167 struct md_rdev *refdev,
1168 int minor_version);
1169 int (*validate_super)(struct mddev *mddev,
1170 struct md_rdev *freshest,
1171 struct md_rdev *rdev);
1172 void (*sync_super)(struct mddev *mddev,
1173 struct md_rdev *rdev);
1174 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1175 sector_t num_sectors);
1176 int (*allow_new_offset)(struct md_rdev *rdev,
1177 unsigned long long new_offset);
1178 };
1179
1180 /*
1181 * Check that the given mddev has no bitmap.
1182 *
1183 * This function is called from the run method of all personalities that do not
1184 * support bitmaps. It prints an error message and returns non-zero if mddev
1185 * has a bitmap. Otherwise, it returns 0.
1186 *
1187 */
md_check_no_bitmap(struct mddev * mddev)1188 int md_check_no_bitmap(struct mddev *mddev)
1189 {
1190 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1191 return 0;
1192 pr_warn("%s: bitmaps are not supported for %s\n",
1193 mdname(mddev), mddev->pers->name);
1194 return 1;
1195 }
1196 EXPORT_SYMBOL(md_check_no_bitmap);
1197
1198 /*
1199 * load_super for 0.90.0
1200 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1201 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1202 {
1203 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1204 mdp_super_t *sb;
1205 int ret;
1206 bool spare_disk = true;
1207
1208 /*
1209 * Calculate the position of the superblock (512byte sectors),
1210 * it's at the end of the disk.
1211 *
1212 * It also happens to be a multiple of 4Kb.
1213 */
1214 rdev->sb_start = calc_dev_sboffset(rdev);
1215
1216 ret = read_disk_sb(rdev, MD_SB_BYTES);
1217 if (ret)
1218 return ret;
1219
1220 ret = -EINVAL;
1221
1222 bdevname(rdev->bdev, b);
1223 sb = page_address(rdev->sb_page);
1224
1225 if (sb->md_magic != MD_SB_MAGIC) {
1226 pr_warn("md: invalid raid superblock magic on %s\n", b);
1227 goto abort;
1228 }
1229
1230 if (sb->major_version != 0 ||
1231 sb->minor_version < 90 ||
1232 sb->minor_version > 91) {
1233 pr_warn("Bad version number %d.%d on %s\n",
1234 sb->major_version, sb->minor_version, b);
1235 goto abort;
1236 }
1237
1238 if (sb->raid_disks <= 0)
1239 goto abort;
1240
1241 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1242 pr_warn("md: invalid superblock checksum on %s\n", b);
1243 goto abort;
1244 }
1245
1246 rdev->preferred_minor = sb->md_minor;
1247 rdev->data_offset = 0;
1248 rdev->new_data_offset = 0;
1249 rdev->sb_size = MD_SB_BYTES;
1250 rdev->badblocks.shift = -1;
1251
1252 if (sb->level == LEVEL_MULTIPATH)
1253 rdev->desc_nr = -1;
1254 else
1255 rdev->desc_nr = sb->this_disk.number;
1256
1257 /* not spare disk, or LEVEL_MULTIPATH */
1258 if (sb->level == LEVEL_MULTIPATH ||
1259 (rdev->desc_nr >= 0 &&
1260 rdev->desc_nr < MD_SB_DISKS &&
1261 sb->disks[rdev->desc_nr].state &
1262 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1263 spare_disk = false;
1264
1265 if (!refdev) {
1266 if (!spare_disk)
1267 ret = 1;
1268 else
1269 ret = 0;
1270 } else {
1271 __u64 ev1, ev2;
1272 mdp_super_t *refsb = page_address(refdev->sb_page);
1273 if (!md_uuid_equal(refsb, sb)) {
1274 pr_warn("md: %s has different UUID to %s\n",
1275 b, bdevname(refdev->bdev,b2));
1276 goto abort;
1277 }
1278 if (!md_sb_equal(refsb, sb)) {
1279 pr_warn("md: %s has same UUID but different superblock to %s\n",
1280 b, bdevname(refdev->bdev, b2));
1281 goto abort;
1282 }
1283 ev1 = md_event(sb);
1284 ev2 = md_event(refsb);
1285
1286 if (!spare_disk && ev1 > ev2)
1287 ret = 1;
1288 else
1289 ret = 0;
1290 }
1291 rdev->sectors = rdev->sb_start;
1292 /* Limit to 4TB as metadata cannot record more than that.
1293 * (not needed for Linear and RAID0 as metadata doesn't
1294 * record this size)
1295 */
1296 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1297 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1298
1299 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1300 /* "this cannot possibly happen" ... */
1301 ret = -EINVAL;
1302
1303 abort:
1304 return ret;
1305 }
1306
1307 /*
1308 * validate_super for 0.90.0
1309 * note: we are not using "freshest" for 0.9 superblock
1310 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1311 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1312 {
1313 mdp_disk_t *desc;
1314 mdp_super_t *sb = page_address(rdev->sb_page);
1315 __u64 ev1 = md_event(sb);
1316
1317 rdev->raid_disk = -1;
1318 clear_bit(Faulty, &rdev->flags);
1319 clear_bit(In_sync, &rdev->flags);
1320 clear_bit(Bitmap_sync, &rdev->flags);
1321 clear_bit(WriteMostly, &rdev->flags);
1322
1323 if (mddev->raid_disks == 0) {
1324 mddev->major_version = 0;
1325 mddev->minor_version = sb->minor_version;
1326 mddev->patch_version = sb->patch_version;
1327 mddev->external = 0;
1328 mddev->chunk_sectors = sb->chunk_size >> 9;
1329 mddev->ctime = sb->ctime;
1330 mddev->utime = sb->utime;
1331 mddev->level = sb->level;
1332 mddev->clevel[0] = 0;
1333 mddev->layout = sb->layout;
1334 mddev->raid_disks = sb->raid_disks;
1335 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1336 mddev->events = ev1;
1337 mddev->bitmap_info.offset = 0;
1338 mddev->bitmap_info.space = 0;
1339 /* bitmap can use 60 K after the 4K superblocks */
1340 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1341 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1342 mddev->reshape_backwards = 0;
1343
1344 if (mddev->minor_version >= 91) {
1345 mddev->reshape_position = sb->reshape_position;
1346 mddev->delta_disks = sb->delta_disks;
1347 mddev->new_level = sb->new_level;
1348 mddev->new_layout = sb->new_layout;
1349 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1350 if (mddev->delta_disks < 0)
1351 mddev->reshape_backwards = 1;
1352 } else {
1353 mddev->reshape_position = MaxSector;
1354 mddev->delta_disks = 0;
1355 mddev->new_level = mddev->level;
1356 mddev->new_layout = mddev->layout;
1357 mddev->new_chunk_sectors = mddev->chunk_sectors;
1358 }
1359 if (mddev->level == 0)
1360 mddev->layout = -1;
1361
1362 if (sb->state & (1<<MD_SB_CLEAN))
1363 mddev->recovery_cp = MaxSector;
1364 else {
1365 if (sb->events_hi == sb->cp_events_hi &&
1366 sb->events_lo == sb->cp_events_lo) {
1367 mddev->recovery_cp = sb->recovery_cp;
1368 } else
1369 mddev->recovery_cp = 0;
1370 }
1371
1372 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1373 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1374 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1375 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1376
1377 mddev->max_disks = MD_SB_DISKS;
1378
1379 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1380 mddev->bitmap_info.file == NULL) {
1381 mddev->bitmap_info.offset =
1382 mddev->bitmap_info.default_offset;
1383 mddev->bitmap_info.space =
1384 mddev->bitmap_info.default_space;
1385 }
1386
1387 } else if (mddev->pers == NULL) {
1388 /* Insist on good event counter while assembling, except
1389 * for spares (which don't need an event count) */
1390 ++ev1;
1391 if (sb->disks[rdev->desc_nr].state & (
1392 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1393 if (ev1 < mddev->events)
1394 return -EINVAL;
1395 } else if (mddev->bitmap) {
1396 /* if adding to array with a bitmap, then we can accept an
1397 * older device ... but not too old.
1398 */
1399 if (ev1 < mddev->bitmap->events_cleared)
1400 return 0;
1401 if (ev1 < mddev->events)
1402 set_bit(Bitmap_sync, &rdev->flags);
1403 } else {
1404 if (ev1 < mddev->events)
1405 /* just a hot-add of a new device, leave raid_disk at -1 */
1406 return 0;
1407 }
1408
1409 if (mddev->level != LEVEL_MULTIPATH) {
1410 desc = sb->disks + rdev->desc_nr;
1411
1412 if (desc->state & (1<<MD_DISK_FAULTY))
1413 set_bit(Faulty, &rdev->flags);
1414 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1415 desc->raid_disk < mddev->raid_disks */) {
1416 set_bit(In_sync, &rdev->flags);
1417 rdev->raid_disk = desc->raid_disk;
1418 rdev->saved_raid_disk = desc->raid_disk;
1419 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1420 /* active but not in sync implies recovery up to
1421 * reshape position. We don't know exactly where
1422 * that is, so set to zero for now */
1423 if (mddev->minor_version >= 91) {
1424 rdev->recovery_offset = 0;
1425 rdev->raid_disk = desc->raid_disk;
1426 }
1427 }
1428 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1429 set_bit(WriteMostly, &rdev->flags);
1430 if (desc->state & (1<<MD_DISK_FAILFAST))
1431 set_bit(FailFast, &rdev->flags);
1432 } else /* MULTIPATH are always insync */
1433 set_bit(In_sync, &rdev->flags);
1434 return 0;
1435 }
1436
1437 /*
1438 * sync_super for 0.90.0
1439 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1440 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1441 {
1442 mdp_super_t *sb;
1443 struct md_rdev *rdev2;
1444 int next_spare = mddev->raid_disks;
1445
1446 /* make rdev->sb match mddev data..
1447 *
1448 * 1/ zero out disks
1449 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1450 * 3/ any empty disks < next_spare become removed
1451 *
1452 * disks[0] gets initialised to REMOVED because
1453 * we cannot be sure from other fields if it has
1454 * been initialised or not.
1455 */
1456 int i;
1457 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1458
1459 rdev->sb_size = MD_SB_BYTES;
1460
1461 sb = page_address(rdev->sb_page);
1462
1463 memset(sb, 0, sizeof(*sb));
1464
1465 sb->md_magic = MD_SB_MAGIC;
1466 sb->major_version = mddev->major_version;
1467 sb->patch_version = mddev->patch_version;
1468 sb->gvalid_words = 0; /* ignored */
1469 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1470 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1471 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1472 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1473
1474 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1475 sb->level = mddev->level;
1476 sb->size = mddev->dev_sectors / 2;
1477 sb->raid_disks = mddev->raid_disks;
1478 sb->md_minor = mddev->md_minor;
1479 sb->not_persistent = 0;
1480 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1481 sb->state = 0;
1482 sb->events_hi = (mddev->events>>32);
1483 sb->events_lo = (u32)mddev->events;
1484
1485 if (mddev->reshape_position == MaxSector)
1486 sb->minor_version = 90;
1487 else {
1488 sb->minor_version = 91;
1489 sb->reshape_position = mddev->reshape_position;
1490 sb->new_level = mddev->new_level;
1491 sb->delta_disks = mddev->delta_disks;
1492 sb->new_layout = mddev->new_layout;
1493 sb->new_chunk = mddev->new_chunk_sectors << 9;
1494 }
1495 mddev->minor_version = sb->minor_version;
1496 if (mddev->in_sync)
1497 {
1498 sb->recovery_cp = mddev->recovery_cp;
1499 sb->cp_events_hi = (mddev->events>>32);
1500 sb->cp_events_lo = (u32)mddev->events;
1501 if (mddev->recovery_cp == MaxSector)
1502 sb->state = (1<< MD_SB_CLEAN);
1503 } else
1504 sb->recovery_cp = 0;
1505
1506 sb->layout = mddev->layout;
1507 sb->chunk_size = mddev->chunk_sectors << 9;
1508
1509 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1510 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1511
1512 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1513 rdev_for_each(rdev2, mddev) {
1514 mdp_disk_t *d;
1515 int desc_nr;
1516 int is_active = test_bit(In_sync, &rdev2->flags);
1517
1518 if (rdev2->raid_disk >= 0 &&
1519 sb->minor_version >= 91)
1520 /* we have nowhere to store the recovery_offset,
1521 * but if it is not below the reshape_position,
1522 * we can piggy-back on that.
1523 */
1524 is_active = 1;
1525 if (rdev2->raid_disk < 0 ||
1526 test_bit(Faulty, &rdev2->flags))
1527 is_active = 0;
1528 if (is_active)
1529 desc_nr = rdev2->raid_disk;
1530 else
1531 desc_nr = next_spare++;
1532 rdev2->desc_nr = desc_nr;
1533 d = &sb->disks[rdev2->desc_nr];
1534 nr_disks++;
1535 d->number = rdev2->desc_nr;
1536 d->major = MAJOR(rdev2->bdev->bd_dev);
1537 d->minor = MINOR(rdev2->bdev->bd_dev);
1538 if (is_active)
1539 d->raid_disk = rdev2->raid_disk;
1540 else
1541 d->raid_disk = rdev2->desc_nr; /* compatibility */
1542 if (test_bit(Faulty, &rdev2->flags))
1543 d->state = (1<<MD_DISK_FAULTY);
1544 else if (is_active) {
1545 d->state = (1<<MD_DISK_ACTIVE);
1546 if (test_bit(In_sync, &rdev2->flags))
1547 d->state |= (1<<MD_DISK_SYNC);
1548 active++;
1549 working++;
1550 } else {
1551 d->state = 0;
1552 spare++;
1553 working++;
1554 }
1555 if (test_bit(WriteMostly, &rdev2->flags))
1556 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1557 if (test_bit(FailFast, &rdev2->flags))
1558 d->state |= (1<<MD_DISK_FAILFAST);
1559 }
1560 /* now set the "removed" and "faulty" bits on any missing devices */
1561 for (i=0 ; i < mddev->raid_disks ; i++) {
1562 mdp_disk_t *d = &sb->disks[i];
1563 if (d->state == 0 && d->number == 0) {
1564 d->number = i;
1565 d->raid_disk = i;
1566 d->state = (1<<MD_DISK_REMOVED);
1567 d->state |= (1<<MD_DISK_FAULTY);
1568 failed++;
1569 }
1570 }
1571 sb->nr_disks = nr_disks;
1572 sb->active_disks = active;
1573 sb->working_disks = working;
1574 sb->failed_disks = failed;
1575 sb->spare_disks = spare;
1576
1577 sb->this_disk = sb->disks[rdev->desc_nr];
1578 sb->sb_csum = calc_sb_csum(sb);
1579 }
1580
1581 /*
1582 * rdev_size_change for 0.90.0
1583 */
1584 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1585 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1586 {
1587 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1588 return 0; /* component must fit device */
1589 if (rdev->mddev->bitmap_info.offset)
1590 return 0; /* can't move bitmap */
1591 rdev->sb_start = calc_dev_sboffset(rdev);
1592 if (!num_sectors || num_sectors > rdev->sb_start)
1593 num_sectors = rdev->sb_start;
1594 /* Limit to 4TB as metadata cannot record more than that.
1595 * 4TB == 2^32 KB, or 2*2^32 sectors.
1596 */
1597 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1598 num_sectors = (sector_t)(2ULL << 32) - 2;
1599 do {
1600 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1601 rdev->sb_page);
1602 } while (md_super_wait(rdev->mddev) < 0);
1603 return num_sectors;
1604 }
1605
1606 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1607 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1608 {
1609 /* non-zero offset changes not possible with v0.90 */
1610 return new_offset == 0;
1611 }
1612
1613 /*
1614 * version 1 superblock
1615 */
1616
calc_sb_1_csum(struct mdp_superblock_1 * sb)1617 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1618 {
1619 __le32 disk_csum;
1620 u32 csum;
1621 unsigned long long newcsum;
1622 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1623 __le32 *isuper = (__le32*)sb;
1624
1625 disk_csum = sb->sb_csum;
1626 sb->sb_csum = 0;
1627 newcsum = 0;
1628 for (; size >= 4; size -= 4)
1629 newcsum += le32_to_cpu(*isuper++);
1630
1631 if (size == 2)
1632 newcsum += le16_to_cpu(*(__le16*) isuper);
1633
1634 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1635 sb->sb_csum = disk_csum;
1636 return cpu_to_le32(csum);
1637 }
1638
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1639 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1640 {
1641 struct mdp_superblock_1 *sb;
1642 int ret;
1643 sector_t sb_start;
1644 sector_t sectors;
1645 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1646 int bmask;
1647 bool spare_disk = true;
1648
1649 /*
1650 * Calculate the position of the superblock in 512byte sectors.
1651 * It is always aligned to a 4K boundary and
1652 * depeding on minor_version, it can be:
1653 * 0: At least 8K, but less than 12K, from end of device
1654 * 1: At start of device
1655 * 2: 4K from start of device.
1656 */
1657 switch(minor_version) {
1658 case 0:
1659 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1660 sb_start -= 8*2;
1661 sb_start &= ~(sector_t)(4*2-1);
1662 break;
1663 case 1:
1664 sb_start = 0;
1665 break;
1666 case 2:
1667 sb_start = 8;
1668 break;
1669 default:
1670 return -EINVAL;
1671 }
1672 rdev->sb_start = sb_start;
1673
1674 /* superblock is rarely larger than 1K, but it can be larger,
1675 * and it is safe to read 4k, so we do that
1676 */
1677 ret = read_disk_sb(rdev, 4096);
1678 if (ret) return ret;
1679
1680 sb = page_address(rdev->sb_page);
1681
1682 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1683 sb->major_version != cpu_to_le32(1) ||
1684 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1685 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1686 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1687 return -EINVAL;
1688
1689 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1690 pr_warn("md: invalid superblock checksum on %s\n",
1691 bdevname(rdev->bdev,b));
1692 return -EINVAL;
1693 }
1694 if (le64_to_cpu(sb->data_size) < 10) {
1695 pr_warn("md: data_size too small on %s\n",
1696 bdevname(rdev->bdev,b));
1697 return -EINVAL;
1698 }
1699 if (sb->pad0 ||
1700 sb->pad3[0] ||
1701 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1702 /* Some padding is non-zero, might be a new feature */
1703 return -EINVAL;
1704
1705 rdev->preferred_minor = 0xffff;
1706 rdev->data_offset = le64_to_cpu(sb->data_offset);
1707 rdev->new_data_offset = rdev->data_offset;
1708 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1709 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1710 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1711 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1712
1713 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1714 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1715 if (rdev->sb_size & bmask)
1716 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1717
1718 if (minor_version
1719 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1720 return -EINVAL;
1721 if (minor_version
1722 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1723 return -EINVAL;
1724
1725 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1726 rdev->desc_nr = -1;
1727 else
1728 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1729
1730 if (!rdev->bb_page) {
1731 rdev->bb_page = alloc_page(GFP_KERNEL);
1732 if (!rdev->bb_page)
1733 return -ENOMEM;
1734 }
1735 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1736 rdev->badblocks.count == 0) {
1737 /* need to load the bad block list.
1738 * Currently we limit it to one page.
1739 */
1740 s32 offset;
1741 sector_t bb_sector;
1742 __le64 *bbp;
1743 int i;
1744 int sectors = le16_to_cpu(sb->bblog_size);
1745 if (sectors > (PAGE_SIZE / 512))
1746 return -EINVAL;
1747 offset = le32_to_cpu(sb->bblog_offset);
1748 if (offset == 0)
1749 return -EINVAL;
1750 bb_sector = (long long)offset;
1751 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1752 rdev->bb_page, REQ_OP_READ, 0, true))
1753 return -EIO;
1754 bbp = (__le64 *)page_address(rdev->bb_page);
1755 rdev->badblocks.shift = sb->bblog_shift;
1756 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1757 u64 bb = le64_to_cpu(*bbp);
1758 int count = bb & (0x3ff);
1759 u64 sector = bb >> 10;
1760 sector <<= sb->bblog_shift;
1761 count <<= sb->bblog_shift;
1762 if (bb + 1 == 0)
1763 break;
1764 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1765 return -EINVAL;
1766 }
1767 } else if (sb->bblog_offset != 0)
1768 rdev->badblocks.shift = 0;
1769
1770 if ((le32_to_cpu(sb->feature_map) &
1771 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1772 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1773 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1774 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1775 }
1776
1777 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1778 sb->level != 0)
1779 return -EINVAL;
1780
1781 /* not spare disk, or LEVEL_MULTIPATH */
1782 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1783 (rdev->desc_nr >= 0 &&
1784 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1785 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1786 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1787 spare_disk = false;
1788
1789 if (!refdev) {
1790 if (!spare_disk)
1791 ret = 1;
1792 else
1793 ret = 0;
1794 } else {
1795 __u64 ev1, ev2;
1796 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1797
1798 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1799 sb->level != refsb->level ||
1800 sb->layout != refsb->layout ||
1801 sb->chunksize != refsb->chunksize) {
1802 pr_warn("md: %s has strangely different superblock to %s\n",
1803 bdevname(rdev->bdev,b),
1804 bdevname(refdev->bdev,b2));
1805 return -EINVAL;
1806 }
1807 ev1 = le64_to_cpu(sb->events);
1808 ev2 = le64_to_cpu(refsb->events);
1809
1810 if (!spare_disk && ev1 > ev2)
1811 ret = 1;
1812 else
1813 ret = 0;
1814 }
1815 if (minor_version) {
1816 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1817 sectors -= rdev->data_offset;
1818 } else
1819 sectors = rdev->sb_start;
1820 if (sectors < le64_to_cpu(sb->data_size))
1821 return -EINVAL;
1822 rdev->sectors = le64_to_cpu(sb->data_size);
1823 return ret;
1824 }
1825
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1826 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1827 {
1828 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1829 __u64 ev1 = le64_to_cpu(sb->events);
1830
1831 rdev->raid_disk = -1;
1832 clear_bit(Faulty, &rdev->flags);
1833 clear_bit(In_sync, &rdev->flags);
1834 clear_bit(Bitmap_sync, &rdev->flags);
1835 clear_bit(WriteMostly, &rdev->flags);
1836
1837 if (mddev->raid_disks == 0) {
1838 mddev->major_version = 1;
1839 mddev->patch_version = 0;
1840 mddev->external = 0;
1841 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1842 mddev->ctime = le64_to_cpu(sb->ctime);
1843 mddev->utime = le64_to_cpu(sb->utime);
1844 mddev->level = le32_to_cpu(sb->level);
1845 mddev->clevel[0] = 0;
1846 mddev->layout = le32_to_cpu(sb->layout);
1847 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1848 mddev->dev_sectors = le64_to_cpu(sb->size);
1849 mddev->events = ev1;
1850 mddev->bitmap_info.offset = 0;
1851 mddev->bitmap_info.space = 0;
1852 /* Default location for bitmap is 1K after superblock
1853 * using 3K - total of 4K
1854 */
1855 mddev->bitmap_info.default_offset = 1024 >> 9;
1856 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1857 mddev->reshape_backwards = 0;
1858
1859 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1860 memcpy(mddev->uuid, sb->set_uuid, 16);
1861
1862 mddev->max_disks = (4096-256)/2;
1863
1864 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1865 mddev->bitmap_info.file == NULL) {
1866 mddev->bitmap_info.offset =
1867 (__s32)le32_to_cpu(sb->bitmap_offset);
1868 /* Metadata doesn't record how much space is available.
1869 * For 1.0, we assume we can use up to the superblock
1870 * if before, else to 4K beyond superblock.
1871 * For others, assume no change is possible.
1872 */
1873 if (mddev->minor_version > 0)
1874 mddev->bitmap_info.space = 0;
1875 else if (mddev->bitmap_info.offset > 0)
1876 mddev->bitmap_info.space =
1877 8 - mddev->bitmap_info.offset;
1878 else
1879 mddev->bitmap_info.space =
1880 -mddev->bitmap_info.offset;
1881 }
1882
1883 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1884 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1885 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1886 mddev->new_level = le32_to_cpu(sb->new_level);
1887 mddev->new_layout = le32_to_cpu(sb->new_layout);
1888 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1889 if (mddev->delta_disks < 0 ||
1890 (mddev->delta_disks == 0 &&
1891 (le32_to_cpu(sb->feature_map)
1892 & MD_FEATURE_RESHAPE_BACKWARDS)))
1893 mddev->reshape_backwards = 1;
1894 } else {
1895 mddev->reshape_position = MaxSector;
1896 mddev->delta_disks = 0;
1897 mddev->new_level = mddev->level;
1898 mddev->new_layout = mddev->layout;
1899 mddev->new_chunk_sectors = mddev->chunk_sectors;
1900 }
1901
1902 if (mddev->level == 0 &&
1903 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1904 mddev->layout = -1;
1905
1906 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1907 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1908
1909 if (le32_to_cpu(sb->feature_map) &
1910 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1911 if (le32_to_cpu(sb->feature_map) &
1912 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1913 return -EINVAL;
1914 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1915 (le32_to_cpu(sb->feature_map) &
1916 MD_FEATURE_MULTIPLE_PPLS))
1917 return -EINVAL;
1918 set_bit(MD_HAS_PPL, &mddev->flags);
1919 }
1920 } else if (mddev->pers == NULL) {
1921 /* Insist of good event counter while assembling, except for
1922 * spares (which don't need an event count).
1923 * Similar to mdadm, we allow event counter difference of 1
1924 * from the freshest device.
1925 */
1926 if (rdev->desc_nr >= 0 &&
1927 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1928 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1929 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1930 if (ev1 + 1 < mddev->events)
1931 return -EINVAL;
1932 } else if (mddev->bitmap) {
1933 /* If adding to array with a bitmap, then we can accept an
1934 * older device, but not too old.
1935 */
1936 if (ev1 < mddev->bitmap->events_cleared)
1937 return 0;
1938 if (ev1 < mddev->events)
1939 set_bit(Bitmap_sync, &rdev->flags);
1940 } else {
1941 if (ev1 < mddev->events)
1942 /* just a hot-add of a new device, leave raid_disk at -1 */
1943 return 0;
1944 }
1945 if (mddev->level != LEVEL_MULTIPATH) {
1946 int role;
1947 if (rdev->desc_nr < 0 ||
1948 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1949 role = MD_DISK_ROLE_SPARE;
1950 rdev->desc_nr = -1;
1951 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1952 /*
1953 * If we are assembling, and our event counter is smaller than the
1954 * highest event counter, we cannot trust our superblock about the role.
1955 * It could happen that our rdev was marked as Faulty, and all other
1956 * superblocks were updated with +1 event counter.
1957 * Then, before the next superblock update, which typically happens when
1958 * remove_and_add_spares() removes the device from the array, there was
1959 * a crash or reboot.
1960 * If we allow current rdev without consulting the freshest superblock,
1961 * we could cause data corruption.
1962 * Note that in this case our event counter is smaller by 1 than the
1963 * highest, otherwise, this rdev would not be allowed into array;
1964 * both kernel and mdadm allow event counter difference of 1.
1965 */
1966 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1967 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1968
1969 if (rdev->desc_nr >= freshest_max_dev) {
1970 /* this is unexpected, better not proceed */
1971 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1972 mdname(mddev), rdev->bdev, rdev->desc_nr,
1973 freshest->bdev, freshest_max_dev);
1974 return -EUCLEAN;
1975 }
1976
1977 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1978 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1979 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1980 } else {
1981 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1982 }
1983 switch(role) {
1984 case MD_DISK_ROLE_SPARE: /* spare */
1985 break;
1986 case MD_DISK_ROLE_FAULTY: /* faulty */
1987 set_bit(Faulty, &rdev->flags);
1988 break;
1989 case MD_DISK_ROLE_JOURNAL: /* journal device */
1990 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1991 /* journal device without journal feature */
1992 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1993 return -EINVAL;
1994 }
1995 set_bit(Journal, &rdev->flags);
1996 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1997 rdev->raid_disk = 0;
1998 break;
1999 default:
2000 rdev->saved_raid_disk = role;
2001 if ((le32_to_cpu(sb->feature_map) &
2002 MD_FEATURE_RECOVERY_OFFSET)) {
2003 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
2004 if (!(le32_to_cpu(sb->feature_map) &
2005 MD_FEATURE_RECOVERY_BITMAP))
2006 rdev->saved_raid_disk = -1;
2007 } else {
2008 /*
2009 * If the array is FROZEN, then the device can't
2010 * be in_sync with rest of array.
2011 */
2012 if (!test_bit(MD_RECOVERY_FROZEN,
2013 &mddev->recovery))
2014 set_bit(In_sync, &rdev->flags);
2015 }
2016 rdev->raid_disk = role;
2017 break;
2018 }
2019 if (sb->devflags & WriteMostly1)
2020 set_bit(WriteMostly, &rdev->flags);
2021 if (sb->devflags & FailFast1)
2022 set_bit(FailFast, &rdev->flags);
2023 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
2024 set_bit(Replacement, &rdev->flags);
2025 } else /* MULTIPATH are always insync */
2026 set_bit(In_sync, &rdev->flags);
2027
2028 return 0;
2029 }
2030
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2031 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2032 {
2033 struct mdp_superblock_1 *sb;
2034 struct md_rdev *rdev2;
2035 int max_dev, i;
2036 /* make rdev->sb match mddev and rdev data. */
2037
2038 sb = page_address(rdev->sb_page);
2039
2040 sb->feature_map = 0;
2041 sb->pad0 = 0;
2042 sb->recovery_offset = cpu_to_le64(0);
2043 memset(sb->pad3, 0, sizeof(sb->pad3));
2044
2045 sb->utime = cpu_to_le64((__u64)mddev->utime);
2046 sb->events = cpu_to_le64(mddev->events);
2047 if (mddev->in_sync)
2048 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2049 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2050 sb->resync_offset = cpu_to_le64(MaxSector);
2051 else
2052 sb->resync_offset = cpu_to_le64(0);
2053
2054 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2055
2056 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2057 sb->size = cpu_to_le64(mddev->dev_sectors);
2058 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2059 sb->level = cpu_to_le32(mddev->level);
2060 sb->layout = cpu_to_le32(mddev->layout);
2061 if (test_bit(FailFast, &rdev->flags))
2062 sb->devflags |= FailFast1;
2063 else
2064 sb->devflags &= ~FailFast1;
2065
2066 if (test_bit(WriteMostly, &rdev->flags))
2067 sb->devflags |= WriteMostly1;
2068 else
2069 sb->devflags &= ~WriteMostly1;
2070 sb->data_offset = cpu_to_le64(rdev->data_offset);
2071 sb->data_size = cpu_to_le64(rdev->sectors);
2072
2073 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2074 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2075 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2076 }
2077
2078 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2079 !test_bit(In_sync, &rdev->flags)) {
2080 sb->feature_map |=
2081 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2082 sb->recovery_offset =
2083 cpu_to_le64(rdev->recovery_offset);
2084 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2085 sb->feature_map |=
2086 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2087 }
2088 /* Note: recovery_offset and journal_tail share space */
2089 if (test_bit(Journal, &rdev->flags))
2090 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2091 if (test_bit(Replacement, &rdev->flags))
2092 sb->feature_map |=
2093 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2094
2095 if (mddev->reshape_position != MaxSector) {
2096 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2097 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2098 sb->new_layout = cpu_to_le32(mddev->new_layout);
2099 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2100 sb->new_level = cpu_to_le32(mddev->new_level);
2101 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2102 if (mddev->delta_disks == 0 &&
2103 mddev->reshape_backwards)
2104 sb->feature_map
2105 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2106 if (rdev->new_data_offset != rdev->data_offset) {
2107 sb->feature_map
2108 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2109 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2110 - rdev->data_offset));
2111 }
2112 }
2113
2114 if (mddev_is_clustered(mddev))
2115 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2116
2117 if (rdev->badblocks.count == 0)
2118 /* Nothing to do for bad blocks*/ ;
2119 else if (sb->bblog_offset == 0)
2120 /* Cannot record bad blocks on this device */
2121 md_error(mddev, rdev);
2122 else {
2123 struct badblocks *bb = &rdev->badblocks;
2124 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2125 u64 *p = bb->page;
2126 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2127 if (bb->changed) {
2128 unsigned seq;
2129
2130 retry:
2131 seq = read_seqbegin(&bb->lock);
2132
2133 memset(bbp, 0xff, PAGE_SIZE);
2134
2135 for (i = 0 ; i < bb->count ; i++) {
2136 u64 internal_bb = p[i];
2137 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2138 | BB_LEN(internal_bb));
2139 bbp[i] = cpu_to_le64(store_bb);
2140 }
2141 bb->changed = 0;
2142 if (read_seqretry(&bb->lock, seq))
2143 goto retry;
2144
2145 bb->sector = (rdev->sb_start +
2146 (int)le32_to_cpu(sb->bblog_offset));
2147 bb->size = le16_to_cpu(sb->bblog_size);
2148 }
2149 }
2150
2151 max_dev = 0;
2152 rdev_for_each(rdev2, mddev)
2153 if (rdev2->desc_nr+1 > max_dev)
2154 max_dev = rdev2->desc_nr+1;
2155
2156 if (max_dev > le32_to_cpu(sb->max_dev)) {
2157 int bmask;
2158 sb->max_dev = cpu_to_le32(max_dev);
2159 rdev->sb_size = max_dev * 2 + 256;
2160 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2161 if (rdev->sb_size & bmask)
2162 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2163 } else
2164 max_dev = le32_to_cpu(sb->max_dev);
2165
2166 for (i=0; i<max_dev;i++)
2167 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2168
2169 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2170 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2171
2172 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2173 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2174 sb->feature_map |=
2175 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2176 else
2177 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2178 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2179 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2180 }
2181
2182 rdev_for_each(rdev2, mddev) {
2183 i = rdev2->desc_nr;
2184 if (test_bit(Faulty, &rdev2->flags))
2185 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2186 else if (test_bit(In_sync, &rdev2->flags))
2187 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2188 else if (test_bit(Journal, &rdev2->flags))
2189 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2190 else if (rdev2->raid_disk >= 0)
2191 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2192 else
2193 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2194 }
2195
2196 sb->sb_csum = calc_sb_1_csum(sb);
2197 }
2198
super_1_choose_bm_space(sector_t dev_size)2199 static sector_t super_1_choose_bm_space(sector_t dev_size)
2200 {
2201 sector_t bm_space;
2202
2203 /* if the device is bigger than 8Gig, save 64k for bitmap
2204 * usage, if bigger than 200Gig, save 128k
2205 */
2206 if (dev_size < 64*2)
2207 bm_space = 0;
2208 else if (dev_size - 64*2 >= 200*1024*1024*2)
2209 bm_space = 128*2;
2210 else if (dev_size - 4*2 > 8*1024*1024*2)
2211 bm_space = 64*2;
2212 else
2213 bm_space = 4*2;
2214 return bm_space;
2215 }
2216
2217 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2218 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2219 {
2220 struct mdp_superblock_1 *sb;
2221 sector_t max_sectors;
2222 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2223 return 0; /* component must fit device */
2224 if (rdev->data_offset != rdev->new_data_offset)
2225 return 0; /* too confusing */
2226 if (rdev->sb_start < rdev->data_offset) {
2227 /* minor versions 1 and 2; superblock before data */
2228 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2229 max_sectors -= rdev->data_offset;
2230 if (!num_sectors || num_sectors > max_sectors)
2231 num_sectors = max_sectors;
2232 } else if (rdev->mddev->bitmap_info.offset) {
2233 /* minor version 0 with bitmap we can't move */
2234 return 0;
2235 } else {
2236 /* minor version 0; superblock after data */
2237 sector_t sb_start, bm_space;
2238 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2239
2240 /* 8K is for superblock */
2241 sb_start = dev_size - 8*2;
2242 sb_start &= ~(sector_t)(4*2 - 1);
2243
2244 bm_space = super_1_choose_bm_space(dev_size);
2245
2246 /* Space that can be used to store date needs to decrease
2247 * superblock bitmap space and bad block space(4K)
2248 */
2249 max_sectors = sb_start - bm_space - 4*2;
2250
2251 if (!num_sectors || num_sectors > max_sectors)
2252 num_sectors = max_sectors;
2253 rdev->sb_start = sb_start;
2254 }
2255 sb = page_address(rdev->sb_page);
2256 sb->data_size = cpu_to_le64(num_sectors);
2257 sb->super_offset = cpu_to_le64(rdev->sb_start);
2258 sb->sb_csum = calc_sb_1_csum(sb);
2259 do {
2260 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2261 rdev->sb_page);
2262 } while (md_super_wait(rdev->mddev) < 0);
2263 return num_sectors;
2264
2265 }
2266
2267 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2268 super_1_allow_new_offset(struct md_rdev *rdev,
2269 unsigned long long new_offset)
2270 {
2271 /* All necessary checks on new >= old have been done */
2272 struct bitmap *bitmap;
2273 if (new_offset >= rdev->data_offset)
2274 return 1;
2275
2276 /* with 1.0 metadata, there is no metadata to tread on
2277 * so we can always move back */
2278 if (rdev->mddev->minor_version == 0)
2279 return 1;
2280
2281 /* otherwise we must be sure not to step on
2282 * any metadata, so stay:
2283 * 36K beyond start of superblock
2284 * beyond end of badblocks
2285 * beyond write-intent bitmap
2286 */
2287 if (rdev->sb_start + (32+4)*2 > new_offset)
2288 return 0;
2289 bitmap = rdev->mddev->bitmap;
2290 if (bitmap && !rdev->mddev->bitmap_info.file &&
2291 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2292 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2293 return 0;
2294 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2295 return 0;
2296
2297 return 1;
2298 }
2299
2300 static struct super_type super_types[] = {
2301 [0] = {
2302 .name = "0.90.0",
2303 .owner = THIS_MODULE,
2304 .load_super = super_90_load,
2305 .validate_super = super_90_validate,
2306 .sync_super = super_90_sync,
2307 .rdev_size_change = super_90_rdev_size_change,
2308 .allow_new_offset = super_90_allow_new_offset,
2309 },
2310 [1] = {
2311 .name = "md-1",
2312 .owner = THIS_MODULE,
2313 .load_super = super_1_load,
2314 .validate_super = super_1_validate,
2315 .sync_super = super_1_sync,
2316 .rdev_size_change = super_1_rdev_size_change,
2317 .allow_new_offset = super_1_allow_new_offset,
2318 },
2319 };
2320
sync_super(struct mddev * mddev,struct md_rdev * rdev)2321 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2322 {
2323 if (mddev->sync_super) {
2324 mddev->sync_super(mddev, rdev);
2325 return;
2326 }
2327
2328 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2329
2330 super_types[mddev->major_version].sync_super(mddev, rdev);
2331 }
2332
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2333 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2334 {
2335 struct md_rdev *rdev, *rdev2;
2336
2337 rcu_read_lock();
2338 rdev_for_each_rcu(rdev, mddev1) {
2339 if (test_bit(Faulty, &rdev->flags) ||
2340 test_bit(Journal, &rdev->flags) ||
2341 rdev->raid_disk == -1)
2342 continue;
2343 rdev_for_each_rcu(rdev2, mddev2) {
2344 if (test_bit(Faulty, &rdev2->flags) ||
2345 test_bit(Journal, &rdev2->flags) ||
2346 rdev2->raid_disk == -1)
2347 continue;
2348 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2349 rcu_read_unlock();
2350 return 1;
2351 }
2352 }
2353 }
2354 rcu_read_unlock();
2355 return 0;
2356 }
2357
2358 static LIST_HEAD(pending_raid_disks);
2359
2360 /*
2361 * Try to register data integrity profile for an mddev
2362 *
2363 * This is called when an array is started and after a disk has been kicked
2364 * from the array. It only succeeds if all working and active component devices
2365 * are integrity capable with matching profiles.
2366 */
md_integrity_register(struct mddev * mddev)2367 int md_integrity_register(struct mddev *mddev)
2368 {
2369 struct md_rdev *rdev, *reference = NULL;
2370
2371 if (list_empty(&mddev->disks))
2372 return 0; /* nothing to do */
2373 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2374 return 0; /* shouldn't register, or already is */
2375 rdev_for_each(rdev, mddev) {
2376 /* skip spares and non-functional disks */
2377 if (test_bit(Faulty, &rdev->flags))
2378 continue;
2379 if (rdev->raid_disk < 0)
2380 continue;
2381 if (!reference) {
2382 /* Use the first rdev as the reference */
2383 reference = rdev;
2384 continue;
2385 }
2386 /* does this rdev's profile match the reference profile? */
2387 if (blk_integrity_compare(reference->bdev->bd_disk,
2388 rdev->bdev->bd_disk) < 0)
2389 return -EINVAL;
2390 }
2391 if (!reference || !bdev_get_integrity(reference->bdev))
2392 return 0;
2393 /*
2394 * All component devices are integrity capable and have matching
2395 * profiles, register the common profile for the md device.
2396 */
2397 blk_integrity_register(mddev->gendisk,
2398 bdev_get_integrity(reference->bdev));
2399
2400 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2401 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE)) {
2402 pr_err("md: failed to create integrity pool for %s\n",
2403 mdname(mddev));
2404 return -EINVAL;
2405 }
2406 return 0;
2407 }
2408 EXPORT_SYMBOL(md_integrity_register);
2409
2410 /*
2411 * Attempt to add an rdev, but only if it is consistent with the current
2412 * integrity profile
2413 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2414 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2415 {
2416 struct blk_integrity *bi_mddev;
2417 char name[BDEVNAME_SIZE];
2418
2419 if (!mddev->gendisk)
2420 return 0;
2421
2422 bi_mddev = blk_get_integrity(mddev->gendisk);
2423
2424 if (!bi_mddev) /* nothing to do */
2425 return 0;
2426
2427 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2428 pr_err("%s: incompatible integrity profile for %s\n",
2429 mdname(mddev), bdevname(rdev->bdev, name));
2430 return -ENXIO;
2431 }
2432
2433 return 0;
2434 }
2435 EXPORT_SYMBOL(md_integrity_add_rdev);
2436
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2437 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2438 {
2439 char b[BDEVNAME_SIZE];
2440 struct kobject *ko;
2441 int err;
2442
2443 /* prevent duplicates */
2444 if (find_rdev(mddev, rdev->bdev->bd_dev))
2445 return -EEXIST;
2446
2447 if ((bdev_read_only(rdev->bdev) || bdev_read_only(rdev->meta_bdev)) &&
2448 mddev->pers)
2449 return -EROFS;
2450
2451 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2452 if (!test_bit(Journal, &rdev->flags) &&
2453 rdev->sectors &&
2454 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2455 if (mddev->pers) {
2456 /* Cannot change size, so fail
2457 * If mddev->level <= 0, then we don't care
2458 * about aligning sizes (e.g. linear)
2459 */
2460 if (mddev->level > 0)
2461 return -ENOSPC;
2462 } else
2463 mddev->dev_sectors = rdev->sectors;
2464 }
2465
2466 /* Verify rdev->desc_nr is unique.
2467 * If it is -1, assign a free number, else
2468 * check number is not in use
2469 */
2470 rcu_read_lock();
2471 if (rdev->desc_nr < 0) {
2472 int choice = 0;
2473 if (mddev->pers)
2474 choice = mddev->raid_disks;
2475 while (md_find_rdev_nr_rcu(mddev, choice))
2476 choice++;
2477 rdev->desc_nr = choice;
2478 } else {
2479 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2480 rcu_read_unlock();
2481 return -EBUSY;
2482 }
2483 }
2484 rcu_read_unlock();
2485 if (!test_bit(Journal, &rdev->flags) &&
2486 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2487 pr_warn("md: %s: array is limited to %d devices\n",
2488 mdname(mddev), mddev->max_disks);
2489 return -EBUSY;
2490 }
2491 bdevname(rdev->bdev,b);
2492 strreplace(b, '/', '!');
2493
2494 rdev->mddev = mddev;
2495 pr_debug("md: bind<%s>\n", b);
2496
2497 if (mddev->raid_disks)
2498 mddev_create_serial_pool(mddev, rdev, false);
2499
2500 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2501 goto fail;
2502
2503 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2504 /* failure here is OK */
2505 err = sysfs_create_link(&rdev->kobj, ko, "block");
2506 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2507 rdev->sysfs_unack_badblocks =
2508 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2509 rdev->sysfs_badblocks =
2510 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2511
2512 list_add_rcu(&rdev->same_set, &mddev->disks);
2513 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2514
2515 /* May as well allow recovery to be retried once */
2516 mddev->recovery_disabled++;
2517
2518 return 0;
2519
2520 fail:
2521 pr_warn("md: failed to register dev-%s for %s\n",
2522 b, mdname(mddev));
2523 mddev_destroy_serial_pool(mddev, rdev, false);
2524 return err;
2525 }
2526
rdev_delayed_delete(struct work_struct * ws)2527 static void rdev_delayed_delete(struct work_struct *ws)
2528 {
2529 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2530 kobject_del(&rdev->kobj);
2531 kobject_put(&rdev->kobj);
2532 }
2533
unbind_rdev_from_array(struct md_rdev * rdev)2534 static void unbind_rdev_from_array(struct md_rdev *rdev)
2535 {
2536 char b[BDEVNAME_SIZE];
2537
2538 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2539 list_del_rcu(&rdev->same_set);
2540 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2541 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2542 rdev->mddev = NULL;
2543 sysfs_remove_link(&rdev->kobj, "block");
2544 sysfs_put(rdev->sysfs_state);
2545 sysfs_put(rdev->sysfs_unack_badblocks);
2546 sysfs_put(rdev->sysfs_badblocks);
2547 rdev->sysfs_state = NULL;
2548 rdev->sysfs_unack_badblocks = NULL;
2549 rdev->sysfs_badblocks = NULL;
2550 rdev->badblocks.count = 0;
2551 /* We need to delay this, otherwise we can deadlock when
2552 * writing to 'remove' to "dev/state". We also need
2553 * to delay it due to rcu usage.
2554 */
2555 synchronize_rcu();
2556 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2557 kobject_get(&rdev->kobj);
2558 queue_work(md_rdev_misc_wq, &rdev->del_work);
2559 }
2560
2561 /*
2562 * prevent the device from being mounted, repartitioned or
2563 * otherwise reused by a RAID array (or any other kernel
2564 * subsystem), by bd_claiming the device.
2565 */
lock_rdev(struct md_rdev * rdev,dev_t dev,int shared)2566 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2567 {
2568 int err = 0;
2569 struct block_device *bdev;
2570
2571 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2572 shared ? (struct md_rdev *)lock_rdev : rdev);
2573 if (IS_ERR(bdev)) {
2574 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2575 MAJOR(dev), MINOR(dev));
2576 return PTR_ERR(bdev);
2577 }
2578 rdev->bdev = bdev;
2579 return err;
2580 }
2581
unlock_rdev(struct md_rdev * rdev)2582 static void unlock_rdev(struct md_rdev *rdev)
2583 {
2584 struct block_device *bdev = rdev->bdev;
2585 rdev->bdev = NULL;
2586 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2587 }
2588
2589 void md_autodetect_dev(dev_t dev);
2590
export_rdev(struct md_rdev * rdev)2591 static void export_rdev(struct md_rdev *rdev)
2592 {
2593 char b[BDEVNAME_SIZE];
2594
2595 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2596 md_rdev_clear(rdev);
2597 #ifndef MODULE
2598 if (test_bit(AutoDetected, &rdev->flags))
2599 md_autodetect_dev(rdev->bdev->bd_dev);
2600 #endif
2601 unlock_rdev(rdev);
2602 kobject_put(&rdev->kobj);
2603 }
2604
md_kick_rdev_from_array(struct md_rdev * rdev)2605 void md_kick_rdev_from_array(struct md_rdev *rdev)
2606 {
2607 unbind_rdev_from_array(rdev);
2608 export_rdev(rdev);
2609 }
2610 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2611
export_array(struct mddev * mddev)2612 static void export_array(struct mddev *mddev)
2613 {
2614 struct md_rdev *rdev;
2615
2616 while (!list_empty(&mddev->disks)) {
2617 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2618 same_set);
2619 md_kick_rdev_from_array(rdev);
2620 }
2621 mddev->raid_disks = 0;
2622 mddev->major_version = 0;
2623 }
2624
set_in_sync(struct mddev * mddev)2625 static bool set_in_sync(struct mddev *mddev)
2626 {
2627 lockdep_assert_held(&mddev->lock);
2628 if (!mddev->in_sync) {
2629 mddev->sync_checkers++;
2630 spin_unlock(&mddev->lock);
2631 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2632 spin_lock(&mddev->lock);
2633 if (!mddev->in_sync &&
2634 percpu_ref_is_zero(&mddev->writes_pending)) {
2635 mddev->in_sync = 1;
2636 /*
2637 * Ensure ->in_sync is visible before we clear
2638 * ->sync_checkers.
2639 */
2640 smp_mb();
2641 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2642 sysfs_notify_dirent_safe(mddev->sysfs_state);
2643 }
2644 if (--mddev->sync_checkers == 0)
2645 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2646 }
2647 if (mddev->safemode == 1)
2648 mddev->safemode = 0;
2649 return mddev->in_sync;
2650 }
2651
sync_sbs(struct mddev * mddev,int nospares)2652 static void sync_sbs(struct mddev *mddev, int nospares)
2653 {
2654 /* Update each superblock (in-memory image), but
2655 * if we are allowed to, skip spares which already
2656 * have the right event counter, or have one earlier
2657 * (which would mean they aren't being marked as dirty
2658 * with the rest of the array)
2659 */
2660 struct md_rdev *rdev;
2661 rdev_for_each(rdev, mddev) {
2662 if (rdev->sb_events == mddev->events ||
2663 (nospares &&
2664 rdev->raid_disk < 0 &&
2665 rdev->sb_events+1 == mddev->events)) {
2666 /* Don't update this superblock */
2667 rdev->sb_loaded = 2;
2668 } else {
2669 sync_super(mddev, rdev);
2670 rdev->sb_loaded = 1;
2671 }
2672 }
2673 }
2674
does_sb_need_changing(struct mddev * mddev)2675 static bool does_sb_need_changing(struct mddev *mddev)
2676 {
2677 struct md_rdev *rdev = NULL, *iter;
2678 struct mdp_superblock_1 *sb;
2679 int role;
2680
2681 /* Find a good rdev */
2682 rdev_for_each(iter, mddev)
2683 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2684 rdev = iter;
2685 break;
2686 }
2687
2688 /* No good device found. */
2689 if (!rdev)
2690 return false;
2691
2692 sb = page_address(rdev->sb_page);
2693 /* Check if a device has become faulty or a spare become active */
2694 rdev_for_each(rdev, mddev) {
2695 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2696 /* Device activated? */
2697 if (role == 0xffff && rdev->raid_disk >=0 &&
2698 !test_bit(Faulty, &rdev->flags))
2699 return true;
2700 /* Device turned faulty? */
2701 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2702 return true;
2703 }
2704
2705 /* Check if any mddev parameters have changed */
2706 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2707 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2708 (mddev->layout != le32_to_cpu(sb->layout)) ||
2709 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2710 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2711 return true;
2712
2713 return false;
2714 }
2715
md_update_sb(struct mddev * mddev,int force_change)2716 void md_update_sb(struct mddev *mddev, int force_change)
2717 {
2718 struct md_rdev *rdev;
2719 int sync_req;
2720 int nospares = 0;
2721 int any_badblocks_changed = 0;
2722 int ret = -1;
2723
2724 if (mddev->ro) {
2725 if (force_change)
2726 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2727 return;
2728 }
2729
2730 repeat:
2731 if (mddev_is_clustered(mddev)) {
2732 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2733 force_change = 1;
2734 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2735 nospares = 1;
2736 ret = md_cluster_ops->metadata_update_start(mddev);
2737 /* Has someone else has updated the sb */
2738 if (!does_sb_need_changing(mddev)) {
2739 if (ret == 0)
2740 md_cluster_ops->metadata_update_cancel(mddev);
2741 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2742 BIT(MD_SB_CHANGE_DEVS) |
2743 BIT(MD_SB_CHANGE_CLEAN));
2744 return;
2745 }
2746 }
2747
2748 /*
2749 * First make sure individual recovery_offsets are correct
2750 * curr_resync_completed can only be used during recovery.
2751 * During reshape/resync it might use array-addresses rather
2752 * that device addresses.
2753 */
2754 rdev_for_each(rdev, mddev) {
2755 if (rdev->raid_disk >= 0 &&
2756 mddev->delta_disks >= 0 &&
2757 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2758 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2759 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2760 !test_bit(Journal, &rdev->flags) &&
2761 !test_bit(In_sync, &rdev->flags) &&
2762 mddev->curr_resync_completed > rdev->recovery_offset)
2763 rdev->recovery_offset = mddev->curr_resync_completed;
2764
2765 }
2766 if (!mddev->persistent) {
2767 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2768 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2769 if (!mddev->external) {
2770 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2771 rdev_for_each(rdev, mddev) {
2772 if (rdev->badblocks.changed) {
2773 rdev->badblocks.changed = 0;
2774 ack_all_badblocks(&rdev->badblocks);
2775 md_error(mddev, rdev);
2776 }
2777 clear_bit(Blocked, &rdev->flags);
2778 clear_bit(BlockedBadBlocks, &rdev->flags);
2779 wake_up(&rdev->blocked_wait);
2780 }
2781 }
2782 wake_up(&mddev->sb_wait);
2783 return;
2784 }
2785
2786 spin_lock(&mddev->lock);
2787
2788 mddev->utime = ktime_get_real_seconds();
2789
2790 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2791 force_change = 1;
2792 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2793 /* just a clean<-> dirty transition, possibly leave spares alone,
2794 * though if events isn't the right even/odd, we will have to do
2795 * spares after all
2796 */
2797 nospares = 1;
2798 if (force_change)
2799 nospares = 0;
2800 if (mddev->degraded)
2801 /* If the array is degraded, then skipping spares is both
2802 * dangerous and fairly pointless.
2803 * Dangerous because a device that was removed from the array
2804 * might have a event_count that still looks up-to-date,
2805 * so it can be re-added without a resync.
2806 * Pointless because if there are any spares to skip,
2807 * then a recovery will happen and soon that array won't
2808 * be degraded any more and the spare can go back to sleep then.
2809 */
2810 nospares = 0;
2811
2812 sync_req = mddev->in_sync;
2813
2814 /* If this is just a dirty<->clean transition, and the array is clean
2815 * and 'events' is odd, we can roll back to the previous clean state */
2816 if (nospares
2817 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2818 && mddev->can_decrease_events
2819 && mddev->events != 1) {
2820 mddev->events--;
2821 mddev->can_decrease_events = 0;
2822 } else {
2823 /* otherwise we have to go forward and ... */
2824 mddev->events ++;
2825 mddev->can_decrease_events = nospares;
2826 }
2827
2828 /*
2829 * This 64-bit counter should never wrap.
2830 * Either we are in around ~1 trillion A.C., assuming
2831 * 1 reboot per second, or we have a bug...
2832 */
2833 WARN_ON(mddev->events == 0);
2834
2835 rdev_for_each(rdev, mddev) {
2836 if (rdev->badblocks.changed)
2837 any_badblocks_changed++;
2838 if (test_bit(Faulty, &rdev->flags))
2839 set_bit(FaultRecorded, &rdev->flags);
2840 }
2841
2842 sync_sbs(mddev, nospares);
2843 spin_unlock(&mddev->lock);
2844
2845 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2846 mdname(mddev), mddev->in_sync);
2847
2848 if (mddev->queue)
2849 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2850 rewrite:
2851 md_bitmap_update_sb(mddev->bitmap);
2852 rdev_for_each(rdev, mddev) {
2853 char b[BDEVNAME_SIZE];
2854
2855 if (rdev->sb_loaded != 1)
2856 continue; /* no noise on spare devices */
2857
2858 if (!test_bit(Faulty, &rdev->flags)) {
2859 md_super_write(mddev,rdev,
2860 rdev->sb_start, rdev->sb_size,
2861 rdev->sb_page);
2862 pr_debug("md: (write) %s's sb offset: %llu\n",
2863 bdevname(rdev->bdev, b),
2864 (unsigned long long)rdev->sb_start);
2865 rdev->sb_events = mddev->events;
2866 if (rdev->badblocks.size) {
2867 md_super_write(mddev, rdev,
2868 rdev->badblocks.sector,
2869 rdev->badblocks.size << 9,
2870 rdev->bb_page);
2871 rdev->badblocks.size = 0;
2872 }
2873
2874 } else
2875 pr_debug("md: %s (skipping faulty)\n",
2876 bdevname(rdev->bdev, b));
2877
2878 if (mddev->level == LEVEL_MULTIPATH)
2879 /* only need to write one superblock... */
2880 break;
2881 }
2882 if (md_super_wait(mddev) < 0)
2883 goto rewrite;
2884 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2885
2886 if (mddev_is_clustered(mddev) && ret == 0)
2887 md_cluster_ops->metadata_update_finish(mddev);
2888
2889 if (mddev->in_sync != sync_req ||
2890 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2891 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2892 /* have to write it out again */
2893 goto repeat;
2894 wake_up(&mddev->sb_wait);
2895 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2896 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2897
2898 rdev_for_each(rdev, mddev) {
2899 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2900 clear_bit(Blocked, &rdev->flags);
2901
2902 if (any_badblocks_changed)
2903 ack_all_badblocks(&rdev->badblocks);
2904 clear_bit(BlockedBadBlocks, &rdev->flags);
2905 wake_up(&rdev->blocked_wait);
2906 }
2907 }
2908 EXPORT_SYMBOL(md_update_sb);
2909
add_bound_rdev(struct md_rdev * rdev)2910 static int add_bound_rdev(struct md_rdev *rdev)
2911 {
2912 struct mddev *mddev = rdev->mddev;
2913 int err = 0;
2914 bool add_journal = test_bit(Journal, &rdev->flags);
2915
2916 if (!mddev->pers->hot_remove_disk || add_journal) {
2917 /* If there is hot_add_disk but no hot_remove_disk
2918 * then added disks for geometry changes,
2919 * and should be added immediately.
2920 */
2921 super_types[mddev->major_version].
2922 validate_super(mddev, NULL/*freshest*/, rdev);
2923 if (add_journal)
2924 mddev_suspend(mddev);
2925 err = mddev->pers->hot_add_disk(mddev, rdev);
2926 if (add_journal)
2927 mddev_resume(mddev);
2928 if (err) {
2929 md_kick_rdev_from_array(rdev);
2930 return err;
2931 }
2932 }
2933 sysfs_notify_dirent_safe(rdev->sysfs_state);
2934
2935 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2936 if (mddev->degraded)
2937 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2938 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2939 md_new_event(mddev);
2940 md_wakeup_thread(mddev->thread);
2941 return 0;
2942 }
2943
2944 /* words written to sysfs files may, or may not, be \n terminated.
2945 * We want to accept with case. For this we use cmd_match.
2946 */
cmd_match(const char * cmd,const char * str)2947 static int cmd_match(const char *cmd, const char *str)
2948 {
2949 /* See if cmd, written into a sysfs file, matches
2950 * str. They must either be the same, or cmd can
2951 * have a trailing newline
2952 */
2953 while (*cmd && *str && *cmd == *str) {
2954 cmd++;
2955 str++;
2956 }
2957 if (*cmd == '\n')
2958 cmd++;
2959 if (*str || *cmd)
2960 return 0;
2961 return 1;
2962 }
2963
2964 struct rdev_sysfs_entry {
2965 struct attribute attr;
2966 ssize_t (*show)(struct md_rdev *, char *);
2967 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2968 };
2969
2970 static ssize_t
state_show(struct md_rdev * rdev,char * page)2971 state_show(struct md_rdev *rdev, char *page)
2972 {
2973 char *sep = ",";
2974 size_t len = 0;
2975 unsigned long flags = READ_ONCE(rdev->flags);
2976
2977 if (test_bit(Faulty, &flags) ||
2978 (!test_bit(ExternalBbl, &flags) &&
2979 rdev->badblocks.unacked_exist))
2980 len += sprintf(page+len, "faulty%s", sep);
2981 if (test_bit(In_sync, &flags))
2982 len += sprintf(page+len, "in_sync%s", sep);
2983 if (test_bit(Journal, &flags))
2984 len += sprintf(page+len, "journal%s", sep);
2985 if (test_bit(WriteMostly, &flags))
2986 len += sprintf(page+len, "write_mostly%s", sep);
2987 if (test_bit(Blocked, &flags) ||
2988 (rdev->badblocks.unacked_exist
2989 && !test_bit(Faulty, &flags)))
2990 len += sprintf(page+len, "blocked%s", sep);
2991 if (!test_bit(Faulty, &flags) &&
2992 !test_bit(Journal, &flags) &&
2993 !test_bit(In_sync, &flags))
2994 len += sprintf(page+len, "spare%s", sep);
2995 if (test_bit(WriteErrorSeen, &flags))
2996 len += sprintf(page+len, "write_error%s", sep);
2997 if (test_bit(WantReplacement, &flags))
2998 len += sprintf(page+len, "want_replacement%s", sep);
2999 if (test_bit(Replacement, &flags))
3000 len += sprintf(page+len, "replacement%s", sep);
3001 if (test_bit(ExternalBbl, &flags))
3002 len += sprintf(page+len, "external_bbl%s", sep);
3003 if (test_bit(FailFast, &flags))
3004 len += sprintf(page+len, "failfast%s", sep);
3005
3006 if (len)
3007 len -= strlen(sep);
3008
3009 return len+sprintf(page+len, "\n");
3010 }
3011
3012 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)3013 state_store(struct md_rdev *rdev, const char *buf, size_t len)
3014 {
3015 /* can write
3016 * faulty - simulates an error
3017 * remove - disconnects the device
3018 * writemostly - sets write_mostly
3019 * -writemostly - clears write_mostly
3020 * blocked - sets the Blocked flags
3021 * -blocked - clears the Blocked and possibly simulates an error
3022 * insync - sets Insync providing device isn't active
3023 * -insync - clear Insync for a device with a slot assigned,
3024 * so that it gets rebuilt based on bitmap
3025 * write_error - sets WriteErrorSeen
3026 * -write_error - clears WriteErrorSeen
3027 * {,-}failfast - set/clear FailFast
3028 */
3029
3030 struct mddev *mddev = rdev->mddev;
3031 int err = -EINVAL;
3032 bool need_update_sb = false;
3033
3034 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
3035 md_error(rdev->mddev, rdev);
3036 if (test_bit(Faulty, &rdev->flags))
3037 err = 0;
3038 else
3039 err = -EBUSY;
3040 } else if (cmd_match(buf, "remove")) {
3041 if (rdev->mddev->pers) {
3042 clear_bit(Blocked, &rdev->flags);
3043 remove_and_add_spares(rdev->mddev, rdev);
3044 }
3045 if (rdev->raid_disk >= 0)
3046 err = -EBUSY;
3047 else {
3048 err = 0;
3049 if (mddev_is_clustered(mddev))
3050 err = md_cluster_ops->remove_disk(mddev, rdev);
3051
3052 if (err == 0) {
3053 md_kick_rdev_from_array(rdev);
3054 if (mddev->pers) {
3055 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3056 md_wakeup_thread(mddev->thread);
3057 }
3058 md_new_event(mddev);
3059 }
3060 }
3061 } else if (cmd_match(buf, "writemostly")) {
3062 set_bit(WriteMostly, &rdev->flags);
3063 mddev_create_serial_pool(rdev->mddev, rdev, false);
3064 need_update_sb = true;
3065 err = 0;
3066 } else if (cmd_match(buf, "-writemostly")) {
3067 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3068 clear_bit(WriteMostly, &rdev->flags);
3069 need_update_sb = true;
3070 err = 0;
3071 } else if (cmd_match(buf, "blocked")) {
3072 set_bit(Blocked, &rdev->flags);
3073 err = 0;
3074 } else if (cmd_match(buf, "-blocked")) {
3075 if (!test_bit(Faulty, &rdev->flags) &&
3076 !test_bit(ExternalBbl, &rdev->flags) &&
3077 rdev->badblocks.unacked_exist) {
3078 /* metadata handler doesn't understand badblocks,
3079 * so we need to fail the device
3080 */
3081 md_error(rdev->mddev, rdev);
3082 }
3083 clear_bit(Blocked, &rdev->flags);
3084 clear_bit(BlockedBadBlocks, &rdev->flags);
3085 wake_up(&rdev->blocked_wait);
3086 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3087 md_wakeup_thread(rdev->mddev->thread);
3088
3089 err = 0;
3090 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3091 set_bit(In_sync, &rdev->flags);
3092 err = 0;
3093 } else if (cmd_match(buf, "failfast")) {
3094 set_bit(FailFast, &rdev->flags);
3095 need_update_sb = true;
3096 err = 0;
3097 } else if (cmd_match(buf, "-failfast")) {
3098 clear_bit(FailFast, &rdev->flags);
3099 need_update_sb = true;
3100 err = 0;
3101 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3102 !test_bit(Journal, &rdev->flags)) {
3103 if (rdev->mddev->pers == NULL) {
3104 clear_bit(In_sync, &rdev->flags);
3105 rdev->saved_raid_disk = rdev->raid_disk;
3106 rdev->raid_disk = -1;
3107 err = 0;
3108 }
3109 } else if (cmd_match(buf, "write_error")) {
3110 set_bit(WriteErrorSeen, &rdev->flags);
3111 err = 0;
3112 } else if (cmd_match(buf, "-write_error")) {
3113 clear_bit(WriteErrorSeen, &rdev->flags);
3114 err = 0;
3115 } else if (cmd_match(buf, "want_replacement")) {
3116 /* Any non-spare device that is not a replacement can
3117 * become want_replacement at any time, but we then need to
3118 * check if recovery is needed.
3119 */
3120 if (rdev->raid_disk >= 0 &&
3121 !test_bit(Journal, &rdev->flags) &&
3122 !test_bit(Replacement, &rdev->flags))
3123 set_bit(WantReplacement, &rdev->flags);
3124 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3125 md_wakeup_thread(rdev->mddev->thread);
3126 err = 0;
3127 } else if (cmd_match(buf, "-want_replacement")) {
3128 /* Clearing 'want_replacement' is always allowed.
3129 * Once replacements starts it is too late though.
3130 */
3131 err = 0;
3132 clear_bit(WantReplacement, &rdev->flags);
3133 } else if (cmd_match(buf, "replacement")) {
3134 /* Can only set a device as a replacement when array has not
3135 * yet been started. Once running, replacement is automatic
3136 * from spares, or by assigning 'slot'.
3137 */
3138 if (rdev->mddev->pers)
3139 err = -EBUSY;
3140 else {
3141 set_bit(Replacement, &rdev->flags);
3142 err = 0;
3143 }
3144 } else if (cmd_match(buf, "-replacement")) {
3145 /* Similarly, can only clear Replacement before start */
3146 if (rdev->mddev->pers)
3147 err = -EBUSY;
3148 else {
3149 clear_bit(Replacement, &rdev->flags);
3150 err = 0;
3151 }
3152 } else if (cmd_match(buf, "re-add")) {
3153 if (!rdev->mddev->pers)
3154 err = -EINVAL;
3155 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3156 rdev->saved_raid_disk >= 0) {
3157 /* clear_bit is performed _after_ all the devices
3158 * have their local Faulty bit cleared. If any writes
3159 * happen in the meantime in the local node, they
3160 * will land in the local bitmap, which will be synced
3161 * by this node eventually
3162 */
3163 if (!mddev_is_clustered(rdev->mddev) ||
3164 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3165 clear_bit(Faulty, &rdev->flags);
3166 err = add_bound_rdev(rdev);
3167 }
3168 } else
3169 err = -EBUSY;
3170 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3171 set_bit(ExternalBbl, &rdev->flags);
3172 rdev->badblocks.shift = 0;
3173 err = 0;
3174 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3175 clear_bit(ExternalBbl, &rdev->flags);
3176 err = 0;
3177 }
3178 if (need_update_sb)
3179 md_update_sb(mddev, 1);
3180 if (!err)
3181 sysfs_notify_dirent_safe(rdev->sysfs_state);
3182 return err ? err : len;
3183 }
3184 static struct rdev_sysfs_entry rdev_state =
3185 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3186
3187 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3188 errors_show(struct md_rdev *rdev, char *page)
3189 {
3190 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3191 }
3192
3193 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3194 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3195 {
3196 unsigned int n;
3197 int rv;
3198
3199 rv = kstrtouint(buf, 10, &n);
3200 if (rv < 0)
3201 return rv;
3202 atomic_set(&rdev->corrected_errors, n);
3203 return len;
3204 }
3205 static struct rdev_sysfs_entry rdev_errors =
3206 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3207
3208 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3209 slot_show(struct md_rdev *rdev, char *page)
3210 {
3211 if (test_bit(Journal, &rdev->flags))
3212 return sprintf(page, "journal\n");
3213 else if (rdev->raid_disk < 0)
3214 return sprintf(page, "none\n");
3215 else
3216 return sprintf(page, "%d\n", rdev->raid_disk);
3217 }
3218
3219 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3220 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3221 {
3222 int slot;
3223 int err;
3224
3225 if (test_bit(Journal, &rdev->flags))
3226 return -EBUSY;
3227 if (strncmp(buf, "none", 4)==0)
3228 slot = -1;
3229 else {
3230 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3231 if (err < 0)
3232 return err;
3233 if (slot < 0)
3234 /* overflow */
3235 return -ENOSPC;
3236 }
3237 if (rdev->mddev->pers && slot == -1) {
3238 /* Setting 'slot' on an active array requires also
3239 * updating the 'rd%d' link, and communicating
3240 * with the personality with ->hot_*_disk.
3241 * For now we only support removing
3242 * failed/spare devices. This normally happens automatically,
3243 * but not when the metadata is externally managed.
3244 */
3245 if (rdev->raid_disk == -1)
3246 return -EEXIST;
3247 /* personality does all needed checks */
3248 if (rdev->mddev->pers->hot_remove_disk == NULL)
3249 return -EINVAL;
3250 clear_bit(Blocked, &rdev->flags);
3251 remove_and_add_spares(rdev->mddev, rdev);
3252 if (rdev->raid_disk >= 0)
3253 return -EBUSY;
3254 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3255 md_wakeup_thread(rdev->mddev->thread);
3256 } else if (rdev->mddev->pers) {
3257 /* Activating a spare .. or possibly reactivating
3258 * if we ever get bitmaps working here.
3259 */
3260 int err;
3261
3262 if (rdev->raid_disk != -1)
3263 return -EBUSY;
3264
3265 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3266 return -EBUSY;
3267
3268 if (rdev->mddev->pers->hot_add_disk == NULL)
3269 return -EINVAL;
3270
3271 if (slot >= rdev->mddev->raid_disks &&
3272 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3273 return -ENOSPC;
3274
3275 rdev->raid_disk = slot;
3276 if (test_bit(In_sync, &rdev->flags))
3277 rdev->saved_raid_disk = slot;
3278 else
3279 rdev->saved_raid_disk = -1;
3280 clear_bit(In_sync, &rdev->flags);
3281 clear_bit(Bitmap_sync, &rdev->flags);
3282 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3283 if (err) {
3284 rdev->raid_disk = -1;
3285 return err;
3286 } else
3287 sysfs_notify_dirent_safe(rdev->sysfs_state);
3288 /* failure here is OK */;
3289 sysfs_link_rdev(rdev->mddev, rdev);
3290 /* don't wakeup anyone, leave that to userspace. */
3291 } else {
3292 if (slot >= rdev->mddev->raid_disks &&
3293 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3294 return -ENOSPC;
3295 rdev->raid_disk = slot;
3296 /* assume it is working */
3297 clear_bit(Faulty, &rdev->flags);
3298 clear_bit(WriteMostly, &rdev->flags);
3299 set_bit(In_sync, &rdev->flags);
3300 sysfs_notify_dirent_safe(rdev->sysfs_state);
3301 }
3302 return len;
3303 }
3304
3305 static struct rdev_sysfs_entry rdev_slot =
3306 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3307
3308 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3309 offset_show(struct md_rdev *rdev, char *page)
3310 {
3311 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3312 }
3313
3314 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3315 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3316 {
3317 unsigned long long offset;
3318 if (kstrtoull(buf, 10, &offset) < 0)
3319 return -EINVAL;
3320 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3321 return -EBUSY;
3322 if (rdev->sectors && rdev->mddev->external)
3323 /* Must set offset before size, so overlap checks
3324 * can be sane */
3325 return -EBUSY;
3326 rdev->data_offset = offset;
3327 rdev->new_data_offset = offset;
3328 return len;
3329 }
3330
3331 static struct rdev_sysfs_entry rdev_offset =
3332 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3333
new_offset_show(struct md_rdev * rdev,char * page)3334 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3335 {
3336 return sprintf(page, "%llu\n",
3337 (unsigned long long)rdev->new_data_offset);
3338 }
3339
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3340 static ssize_t new_offset_store(struct md_rdev *rdev,
3341 const char *buf, size_t len)
3342 {
3343 unsigned long long new_offset;
3344 struct mddev *mddev = rdev->mddev;
3345
3346 if (kstrtoull(buf, 10, &new_offset) < 0)
3347 return -EINVAL;
3348
3349 if (mddev->sync_thread ||
3350 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3351 return -EBUSY;
3352 if (new_offset == rdev->data_offset)
3353 /* reset is always permitted */
3354 ;
3355 else if (new_offset > rdev->data_offset) {
3356 /* must not push array size beyond rdev_sectors */
3357 if (new_offset - rdev->data_offset
3358 + mddev->dev_sectors > rdev->sectors)
3359 return -E2BIG;
3360 }
3361 /* Metadata worries about other space details. */
3362
3363 /* decreasing the offset is inconsistent with a backwards
3364 * reshape.
3365 */
3366 if (new_offset < rdev->data_offset &&
3367 mddev->reshape_backwards)
3368 return -EINVAL;
3369 /* Increasing offset is inconsistent with forwards
3370 * reshape. reshape_direction should be set to
3371 * 'backwards' first.
3372 */
3373 if (new_offset > rdev->data_offset &&
3374 !mddev->reshape_backwards)
3375 return -EINVAL;
3376
3377 if (mddev->pers && mddev->persistent &&
3378 !super_types[mddev->major_version]
3379 .allow_new_offset(rdev, new_offset))
3380 return -E2BIG;
3381 rdev->new_data_offset = new_offset;
3382 if (new_offset > rdev->data_offset)
3383 mddev->reshape_backwards = 1;
3384 else if (new_offset < rdev->data_offset)
3385 mddev->reshape_backwards = 0;
3386
3387 return len;
3388 }
3389 static struct rdev_sysfs_entry rdev_new_offset =
3390 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3391
3392 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3393 rdev_size_show(struct md_rdev *rdev, char *page)
3394 {
3395 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3396 }
3397
overlaps(sector_t s1,sector_t l1,sector_t s2,sector_t l2)3398 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3399 {
3400 /* check if two start/length pairs overlap */
3401 if (s1+l1 <= s2)
3402 return 0;
3403 if (s2+l2 <= s1)
3404 return 0;
3405 return 1;
3406 }
3407
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3408 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3409 {
3410 unsigned long long blocks;
3411 sector_t new;
3412
3413 if (kstrtoull(buf, 10, &blocks) < 0)
3414 return -EINVAL;
3415
3416 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3417 return -EINVAL; /* sector conversion overflow */
3418
3419 new = blocks * 2;
3420 if (new != blocks * 2)
3421 return -EINVAL; /* unsigned long long to sector_t overflow */
3422
3423 *sectors = new;
3424 return 0;
3425 }
3426
3427 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3428 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3429 {
3430 struct mddev *my_mddev = rdev->mddev;
3431 sector_t oldsectors = rdev->sectors;
3432 sector_t sectors;
3433
3434 if (test_bit(Journal, &rdev->flags))
3435 return -EBUSY;
3436 if (strict_blocks_to_sectors(buf, §ors) < 0)
3437 return -EINVAL;
3438 if (rdev->data_offset != rdev->new_data_offset)
3439 return -EINVAL; /* too confusing */
3440 if (my_mddev->pers && rdev->raid_disk >= 0) {
3441 if (my_mddev->persistent) {
3442 sectors = super_types[my_mddev->major_version].
3443 rdev_size_change(rdev, sectors);
3444 if (!sectors)
3445 return -EBUSY;
3446 } else if (!sectors)
3447 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3448 rdev->data_offset;
3449 if (!my_mddev->pers->resize)
3450 /* Cannot change size for RAID0 or Linear etc */
3451 return -EINVAL;
3452 }
3453 if (sectors < my_mddev->dev_sectors)
3454 return -EINVAL; /* component must fit device */
3455
3456 rdev->sectors = sectors;
3457 if (sectors > oldsectors && my_mddev->external) {
3458 /* Need to check that all other rdevs with the same
3459 * ->bdev do not overlap. 'rcu' is sufficient to walk
3460 * the rdev lists safely.
3461 * This check does not provide a hard guarantee, it
3462 * just helps avoid dangerous mistakes.
3463 */
3464 struct mddev *mddev;
3465 int overlap = 0;
3466 struct list_head *tmp;
3467
3468 rcu_read_lock();
3469 for_each_mddev(mddev, tmp) {
3470 struct md_rdev *rdev2;
3471
3472 rdev_for_each(rdev2, mddev)
3473 if (rdev->bdev == rdev2->bdev &&
3474 rdev != rdev2 &&
3475 overlaps(rdev->data_offset, rdev->sectors,
3476 rdev2->data_offset,
3477 rdev2->sectors)) {
3478 overlap = 1;
3479 break;
3480 }
3481 if (overlap) {
3482 mddev_put(mddev);
3483 break;
3484 }
3485 }
3486 rcu_read_unlock();
3487 if (overlap) {
3488 /* Someone else could have slipped in a size
3489 * change here, but doing so is just silly.
3490 * We put oldsectors back because we *know* it is
3491 * safe, and trust userspace not to race with
3492 * itself
3493 */
3494 rdev->sectors = oldsectors;
3495 return -EBUSY;
3496 }
3497 }
3498 return len;
3499 }
3500
3501 static struct rdev_sysfs_entry rdev_size =
3502 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3503
recovery_start_show(struct md_rdev * rdev,char * page)3504 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3505 {
3506 unsigned long long recovery_start = rdev->recovery_offset;
3507
3508 if (test_bit(In_sync, &rdev->flags) ||
3509 recovery_start == MaxSector)
3510 return sprintf(page, "none\n");
3511
3512 return sprintf(page, "%llu\n", recovery_start);
3513 }
3514
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3515 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3516 {
3517 unsigned long long recovery_start;
3518
3519 if (cmd_match(buf, "none"))
3520 recovery_start = MaxSector;
3521 else if (kstrtoull(buf, 10, &recovery_start))
3522 return -EINVAL;
3523
3524 if (rdev->mddev->pers &&
3525 rdev->raid_disk >= 0)
3526 return -EBUSY;
3527
3528 rdev->recovery_offset = recovery_start;
3529 if (recovery_start == MaxSector)
3530 set_bit(In_sync, &rdev->flags);
3531 else
3532 clear_bit(In_sync, &rdev->flags);
3533 return len;
3534 }
3535
3536 static struct rdev_sysfs_entry rdev_recovery_start =
3537 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3538
3539 /* sysfs access to bad-blocks list.
3540 * We present two files.
3541 * 'bad-blocks' lists sector numbers and lengths of ranges that
3542 * are recorded as bad. The list is truncated to fit within
3543 * the one-page limit of sysfs.
3544 * Writing "sector length" to this file adds an acknowledged
3545 * bad block list.
3546 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3547 * been acknowledged. Writing to this file adds bad blocks
3548 * without acknowledging them. This is largely for testing.
3549 */
bb_show(struct md_rdev * rdev,char * page)3550 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3551 {
3552 return badblocks_show(&rdev->badblocks, page, 0);
3553 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3554 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3555 {
3556 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3557 /* Maybe that ack was all we needed */
3558 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3559 wake_up(&rdev->blocked_wait);
3560 return rv;
3561 }
3562 static struct rdev_sysfs_entry rdev_bad_blocks =
3563 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3564
ubb_show(struct md_rdev * rdev,char * page)3565 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3566 {
3567 return badblocks_show(&rdev->badblocks, page, 1);
3568 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3569 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3570 {
3571 return badblocks_store(&rdev->badblocks, page, len, 1);
3572 }
3573 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3574 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3575
3576 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3577 ppl_sector_show(struct md_rdev *rdev, char *page)
3578 {
3579 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3580 }
3581
3582 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3583 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3584 {
3585 unsigned long long sector;
3586
3587 if (kstrtoull(buf, 10, §or) < 0)
3588 return -EINVAL;
3589 if (sector != (sector_t)sector)
3590 return -EINVAL;
3591
3592 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3593 rdev->raid_disk >= 0)
3594 return -EBUSY;
3595
3596 if (rdev->mddev->persistent) {
3597 if (rdev->mddev->major_version == 0)
3598 return -EINVAL;
3599 if ((sector > rdev->sb_start &&
3600 sector - rdev->sb_start > S16_MAX) ||
3601 (sector < rdev->sb_start &&
3602 rdev->sb_start - sector > -S16_MIN))
3603 return -EINVAL;
3604 rdev->ppl.offset = sector - rdev->sb_start;
3605 } else if (!rdev->mddev->external) {
3606 return -EBUSY;
3607 }
3608 rdev->ppl.sector = sector;
3609 return len;
3610 }
3611
3612 static struct rdev_sysfs_entry rdev_ppl_sector =
3613 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3614
3615 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3616 ppl_size_show(struct md_rdev *rdev, char *page)
3617 {
3618 return sprintf(page, "%u\n", rdev->ppl.size);
3619 }
3620
3621 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3622 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3623 {
3624 unsigned int size;
3625
3626 if (kstrtouint(buf, 10, &size) < 0)
3627 return -EINVAL;
3628
3629 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3630 rdev->raid_disk >= 0)
3631 return -EBUSY;
3632
3633 if (rdev->mddev->persistent) {
3634 if (rdev->mddev->major_version == 0)
3635 return -EINVAL;
3636 if (size > U16_MAX)
3637 return -EINVAL;
3638 } else if (!rdev->mddev->external) {
3639 return -EBUSY;
3640 }
3641 rdev->ppl.size = size;
3642 return len;
3643 }
3644
3645 static struct rdev_sysfs_entry rdev_ppl_size =
3646 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3647
3648 static struct attribute *rdev_default_attrs[] = {
3649 &rdev_state.attr,
3650 &rdev_errors.attr,
3651 &rdev_slot.attr,
3652 &rdev_offset.attr,
3653 &rdev_new_offset.attr,
3654 &rdev_size.attr,
3655 &rdev_recovery_start.attr,
3656 &rdev_bad_blocks.attr,
3657 &rdev_unack_bad_blocks.attr,
3658 &rdev_ppl_sector.attr,
3659 &rdev_ppl_size.attr,
3660 NULL,
3661 };
3662 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3663 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3664 {
3665 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3666 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3667
3668 if (!entry->show)
3669 return -EIO;
3670 if (!rdev->mddev)
3671 return -ENODEV;
3672 return entry->show(rdev, page);
3673 }
3674
3675 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3676 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3677 const char *page, size_t length)
3678 {
3679 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3680 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3681 ssize_t rv;
3682 struct mddev *mddev = rdev->mddev;
3683
3684 if (!entry->store)
3685 return -EIO;
3686 if (!capable(CAP_SYS_ADMIN))
3687 return -EACCES;
3688 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3689 if (!rv) {
3690 if (rdev->mddev == NULL)
3691 rv = -ENODEV;
3692 else
3693 rv = entry->store(rdev, page, length);
3694 mddev_unlock(mddev);
3695 }
3696 return rv;
3697 }
3698
rdev_free(struct kobject * ko)3699 static void rdev_free(struct kobject *ko)
3700 {
3701 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3702 kfree(rdev);
3703 }
3704 static const struct sysfs_ops rdev_sysfs_ops = {
3705 .show = rdev_attr_show,
3706 .store = rdev_attr_store,
3707 };
3708 static struct kobj_type rdev_ktype = {
3709 .release = rdev_free,
3710 .sysfs_ops = &rdev_sysfs_ops,
3711 .default_attrs = rdev_default_attrs,
3712 };
3713
md_rdev_init(struct md_rdev * rdev)3714 int md_rdev_init(struct md_rdev *rdev)
3715 {
3716 rdev->desc_nr = -1;
3717 rdev->saved_raid_disk = -1;
3718 rdev->raid_disk = -1;
3719 rdev->flags = 0;
3720 rdev->data_offset = 0;
3721 rdev->new_data_offset = 0;
3722 rdev->sb_events = 0;
3723 rdev->last_read_error = 0;
3724 rdev->sb_loaded = 0;
3725 rdev->bb_page = NULL;
3726 atomic_set(&rdev->nr_pending, 0);
3727 atomic_set(&rdev->read_errors, 0);
3728 atomic_set(&rdev->corrected_errors, 0);
3729
3730 INIT_LIST_HEAD(&rdev->same_set);
3731 init_waitqueue_head(&rdev->blocked_wait);
3732
3733 /* Add space to store bad block list.
3734 * This reserves the space even on arrays where it cannot
3735 * be used - I wonder if that matters
3736 */
3737 return badblocks_init(&rdev->badblocks, 0);
3738 }
3739 EXPORT_SYMBOL_GPL(md_rdev_init);
3740 /*
3741 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3742 *
3743 * mark the device faulty if:
3744 *
3745 * - the device is nonexistent (zero size)
3746 * - the device has no valid superblock
3747 *
3748 * a faulty rdev _never_ has rdev->sb set.
3749 */
md_import_device(dev_t newdev,int super_format,int super_minor)3750 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3751 {
3752 char b[BDEVNAME_SIZE];
3753 int err;
3754 struct md_rdev *rdev;
3755 sector_t size;
3756
3757 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3758 if (!rdev)
3759 return ERR_PTR(-ENOMEM);
3760
3761 err = md_rdev_init(rdev);
3762 if (err)
3763 goto abort_free;
3764 err = alloc_disk_sb(rdev);
3765 if (err)
3766 goto abort_free;
3767
3768 err = lock_rdev(rdev, newdev, super_format == -2);
3769 if (err)
3770 goto abort_free;
3771
3772 kobject_init(&rdev->kobj, &rdev_ktype);
3773
3774 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3775 if (!size) {
3776 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3777 bdevname(rdev->bdev,b));
3778 err = -EINVAL;
3779 goto abort_free;
3780 }
3781
3782 if (super_format >= 0) {
3783 err = super_types[super_format].
3784 load_super(rdev, NULL, super_minor);
3785 if (err == -EINVAL) {
3786 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3787 bdevname(rdev->bdev,b),
3788 super_format, super_minor);
3789 goto abort_free;
3790 }
3791 if (err < 0) {
3792 pr_warn("md: could not read %s's sb, not importing!\n",
3793 bdevname(rdev->bdev,b));
3794 goto abort_free;
3795 }
3796 }
3797
3798 return rdev;
3799
3800 abort_free:
3801 if (rdev->bdev)
3802 unlock_rdev(rdev);
3803 md_rdev_clear(rdev);
3804 kfree(rdev);
3805 return ERR_PTR(err);
3806 }
3807
3808 /*
3809 * Check a full RAID array for plausibility
3810 */
3811
analyze_sbs(struct mddev * mddev)3812 static int analyze_sbs(struct mddev *mddev)
3813 {
3814 int i;
3815 struct md_rdev *rdev, *freshest, *tmp;
3816 char b[BDEVNAME_SIZE];
3817
3818 freshest = NULL;
3819 rdev_for_each_safe(rdev, tmp, mddev)
3820 switch (super_types[mddev->major_version].
3821 load_super(rdev, freshest, mddev->minor_version)) {
3822 case 1:
3823 freshest = rdev;
3824 break;
3825 case 0:
3826 break;
3827 default:
3828 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3829 bdevname(rdev->bdev,b));
3830 md_kick_rdev_from_array(rdev);
3831 }
3832
3833 /* Cannot find a valid fresh disk */
3834 if (!freshest) {
3835 pr_warn("md: cannot find a valid disk\n");
3836 return -EINVAL;
3837 }
3838
3839 super_types[mddev->major_version].
3840 validate_super(mddev, NULL/*freshest*/, freshest);
3841
3842 i = 0;
3843 rdev_for_each_safe(rdev, tmp, mddev) {
3844 if (mddev->max_disks &&
3845 (rdev->desc_nr >= mddev->max_disks ||
3846 i > mddev->max_disks)) {
3847 pr_warn("md: %s: %s: only %d devices permitted\n",
3848 mdname(mddev), bdevname(rdev->bdev, b),
3849 mddev->max_disks);
3850 md_kick_rdev_from_array(rdev);
3851 continue;
3852 }
3853 if (rdev != freshest) {
3854 if (super_types[mddev->major_version].
3855 validate_super(mddev, freshest, rdev)) {
3856 pr_warn("md: kicking non-fresh %s from array!\n",
3857 bdevname(rdev->bdev,b));
3858 md_kick_rdev_from_array(rdev);
3859 continue;
3860 }
3861 }
3862 if (mddev->level == LEVEL_MULTIPATH) {
3863 rdev->desc_nr = i++;
3864 rdev->raid_disk = rdev->desc_nr;
3865 set_bit(In_sync, &rdev->flags);
3866 } else if (rdev->raid_disk >=
3867 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3868 !test_bit(Journal, &rdev->flags)) {
3869 rdev->raid_disk = -1;
3870 clear_bit(In_sync, &rdev->flags);
3871 }
3872 }
3873
3874 return 0;
3875 }
3876
3877 /* Read a fixed-point number.
3878 * Numbers in sysfs attributes should be in "standard" units where
3879 * possible, so time should be in seconds.
3880 * However we internally use a a much smaller unit such as
3881 * milliseconds or jiffies.
3882 * This function takes a decimal number with a possible fractional
3883 * component, and produces an integer which is the result of
3884 * multiplying that number by 10^'scale'.
3885 * all without any floating-point arithmetic.
3886 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3887 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3888 {
3889 unsigned long result = 0;
3890 long decimals = -1;
3891 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3892 if (*cp == '.')
3893 decimals = 0;
3894 else if (decimals < scale) {
3895 unsigned int value;
3896 value = *cp - '0';
3897 result = result * 10 + value;
3898 if (decimals >= 0)
3899 decimals++;
3900 }
3901 cp++;
3902 }
3903 if (*cp == '\n')
3904 cp++;
3905 if (*cp)
3906 return -EINVAL;
3907 if (decimals < 0)
3908 decimals = 0;
3909 *res = result * int_pow(10, scale - decimals);
3910 return 0;
3911 }
3912
3913 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3914 safe_delay_show(struct mddev *mddev, char *page)
3915 {
3916 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3917
3918 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3919 }
3920 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3921 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3922 {
3923 unsigned long msec;
3924
3925 if (mddev_is_clustered(mddev)) {
3926 pr_warn("md: Safemode is disabled for clustered mode\n");
3927 return -EINVAL;
3928 }
3929
3930 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3931 return -EINVAL;
3932 if (msec == 0)
3933 mddev->safemode_delay = 0;
3934 else {
3935 unsigned long old_delay = mddev->safemode_delay;
3936 unsigned long new_delay = (msec*HZ)/1000;
3937
3938 if (new_delay == 0)
3939 new_delay = 1;
3940 mddev->safemode_delay = new_delay;
3941 if (new_delay < old_delay || old_delay == 0)
3942 mod_timer(&mddev->safemode_timer, jiffies+1);
3943 }
3944 return len;
3945 }
3946 static struct md_sysfs_entry md_safe_delay =
3947 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3948
3949 static ssize_t
level_show(struct mddev * mddev,char * page)3950 level_show(struct mddev *mddev, char *page)
3951 {
3952 struct md_personality *p;
3953 int ret;
3954 spin_lock(&mddev->lock);
3955 p = mddev->pers;
3956 if (p)
3957 ret = sprintf(page, "%s\n", p->name);
3958 else if (mddev->clevel[0])
3959 ret = sprintf(page, "%s\n", mddev->clevel);
3960 else if (mddev->level != LEVEL_NONE)
3961 ret = sprintf(page, "%d\n", mddev->level);
3962 else
3963 ret = 0;
3964 spin_unlock(&mddev->lock);
3965 return ret;
3966 }
3967
3968 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3969 level_store(struct mddev *mddev, const char *buf, size_t len)
3970 {
3971 char clevel[16];
3972 ssize_t rv;
3973 size_t slen = len;
3974 struct md_personality *pers, *oldpers;
3975 long level;
3976 void *priv, *oldpriv;
3977 struct md_rdev *rdev;
3978
3979 if (slen == 0 || slen >= sizeof(clevel))
3980 return -EINVAL;
3981
3982 rv = mddev_lock(mddev);
3983 if (rv)
3984 return rv;
3985
3986 if (mddev->pers == NULL) {
3987 strncpy(mddev->clevel, buf, slen);
3988 if (mddev->clevel[slen-1] == '\n')
3989 slen--;
3990 mddev->clevel[slen] = 0;
3991 mddev->level = LEVEL_NONE;
3992 rv = len;
3993 goto out_unlock;
3994 }
3995 rv = -EROFS;
3996 if (mddev->ro)
3997 goto out_unlock;
3998
3999 /* request to change the personality. Need to ensure:
4000 * - array is not engaged in resync/recovery/reshape
4001 * - old personality can be suspended
4002 * - new personality will access other array.
4003 */
4004
4005 rv = -EBUSY;
4006 if (mddev->sync_thread ||
4007 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4008 mddev->reshape_position != MaxSector ||
4009 mddev->sysfs_active)
4010 goto out_unlock;
4011
4012 rv = -EINVAL;
4013 if (!mddev->pers->quiesce) {
4014 pr_warn("md: %s: %s does not support online personality change\n",
4015 mdname(mddev), mddev->pers->name);
4016 goto out_unlock;
4017 }
4018
4019 /* Now find the new personality */
4020 strncpy(clevel, buf, slen);
4021 if (clevel[slen-1] == '\n')
4022 slen--;
4023 clevel[slen] = 0;
4024 if (kstrtol(clevel, 10, &level))
4025 level = LEVEL_NONE;
4026
4027 if (request_module("md-%s", clevel) != 0)
4028 request_module("md-level-%s", clevel);
4029 spin_lock(&pers_lock);
4030 pers = find_pers(level, clevel);
4031 if (!pers || !try_module_get(pers->owner)) {
4032 spin_unlock(&pers_lock);
4033 pr_warn("md: personality %s not loaded\n", clevel);
4034 rv = -EINVAL;
4035 goto out_unlock;
4036 }
4037 spin_unlock(&pers_lock);
4038
4039 if (pers == mddev->pers) {
4040 /* Nothing to do! */
4041 module_put(pers->owner);
4042 rv = len;
4043 goto out_unlock;
4044 }
4045 if (!pers->takeover) {
4046 module_put(pers->owner);
4047 pr_warn("md: %s: %s does not support personality takeover\n",
4048 mdname(mddev), clevel);
4049 rv = -EINVAL;
4050 goto out_unlock;
4051 }
4052
4053 rdev_for_each(rdev, mddev)
4054 rdev->new_raid_disk = rdev->raid_disk;
4055
4056 /* ->takeover must set new_* and/or delta_disks
4057 * if it succeeds, and may set them when it fails.
4058 */
4059 priv = pers->takeover(mddev);
4060 if (IS_ERR(priv)) {
4061 mddev->new_level = mddev->level;
4062 mddev->new_layout = mddev->layout;
4063 mddev->new_chunk_sectors = mddev->chunk_sectors;
4064 mddev->raid_disks -= mddev->delta_disks;
4065 mddev->delta_disks = 0;
4066 mddev->reshape_backwards = 0;
4067 module_put(pers->owner);
4068 pr_warn("md: %s: %s would not accept array\n",
4069 mdname(mddev), clevel);
4070 rv = PTR_ERR(priv);
4071 goto out_unlock;
4072 }
4073
4074 /* Looks like we have a winner */
4075 mddev_suspend(mddev);
4076 mddev_detach(mddev);
4077
4078 spin_lock(&mddev->lock);
4079 oldpers = mddev->pers;
4080 oldpriv = mddev->private;
4081 mddev->pers = pers;
4082 mddev->private = priv;
4083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4084 mddev->level = mddev->new_level;
4085 mddev->layout = mddev->new_layout;
4086 mddev->chunk_sectors = mddev->new_chunk_sectors;
4087 mddev->delta_disks = 0;
4088 mddev->reshape_backwards = 0;
4089 mddev->degraded = 0;
4090 spin_unlock(&mddev->lock);
4091
4092 if (oldpers->sync_request == NULL &&
4093 mddev->external) {
4094 /* We are converting from a no-redundancy array
4095 * to a redundancy array and metadata is managed
4096 * externally so we need to be sure that writes
4097 * won't block due to a need to transition
4098 * clean->dirty
4099 * until external management is started.
4100 */
4101 mddev->in_sync = 0;
4102 mddev->safemode_delay = 0;
4103 mddev->safemode = 0;
4104 }
4105
4106 oldpers->free(mddev, oldpriv);
4107
4108 if (oldpers->sync_request == NULL &&
4109 pers->sync_request != NULL) {
4110 /* need to add the md_redundancy_group */
4111 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4112 pr_warn("md: cannot register extra attributes for %s\n",
4113 mdname(mddev));
4114 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4115 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4116 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4117 }
4118 if (oldpers->sync_request != NULL &&
4119 pers->sync_request == NULL) {
4120 /* need to remove the md_redundancy_group */
4121 if (mddev->to_remove == NULL)
4122 mddev->to_remove = &md_redundancy_group;
4123 }
4124
4125 module_put(oldpers->owner);
4126
4127 rdev_for_each(rdev, mddev) {
4128 if (rdev->raid_disk < 0)
4129 continue;
4130 if (rdev->new_raid_disk >= mddev->raid_disks)
4131 rdev->new_raid_disk = -1;
4132 if (rdev->new_raid_disk == rdev->raid_disk)
4133 continue;
4134 sysfs_unlink_rdev(mddev, rdev);
4135 }
4136 rdev_for_each(rdev, mddev) {
4137 if (rdev->raid_disk < 0)
4138 continue;
4139 if (rdev->new_raid_disk == rdev->raid_disk)
4140 continue;
4141 rdev->raid_disk = rdev->new_raid_disk;
4142 if (rdev->raid_disk < 0)
4143 clear_bit(In_sync, &rdev->flags);
4144 else {
4145 if (sysfs_link_rdev(mddev, rdev))
4146 pr_warn("md: cannot register rd%d for %s after level change\n",
4147 rdev->raid_disk, mdname(mddev));
4148 }
4149 }
4150
4151 if (pers->sync_request == NULL) {
4152 /* this is now an array without redundancy, so
4153 * it must always be in_sync
4154 */
4155 mddev->in_sync = 1;
4156 del_timer_sync(&mddev->safemode_timer);
4157 }
4158 blk_set_stacking_limits(&mddev->queue->limits);
4159 pers->run(mddev);
4160 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4161 mddev_resume(mddev);
4162 if (!mddev->thread)
4163 md_update_sb(mddev, 1);
4164 sysfs_notify_dirent_safe(mddev->sysfs_level);
4165 md_new_event(mddev);
4166 rv = len;
4167 out_unlock:
4168 mddev_unlock(mddev);
4169 return rv;
4170 }
4171
4172 static struct md_sysfs_entry md_level =
4173 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4174
4175 static ssize_t
layout_show(struct mddev * mddev,char * page)4176 layout_show(struct mddev *mddev, char *page)
4177 {
4178 /* just a number, not meaningful for all levels */
4179 if (mddev->reshape_position != MaxSector &&
4180 mddev->layout != mddev->new_layout)
4181 return sprintf(page, "%d (%d)\n",
4182 mddev->new_layout, mddev->layout);
4183 return sprintf(page, "%d\n", mddev->layout);
4184 }
4185
4186 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4187 layout_store(struct mddev *mddev, const char *buf, size_t len)
4188 {
4189 unsigned int n;
4190 int err;
4191
4192 err = kstrtouint(buf, 10, &n);
4193 if (err < 0)
4194 return err;
4195 err = mddev_lock(mddev);
4196 if (err)
4197 return err;
4198
4199 if (mddev->pers) {
4200 if (mddev->pers->check_reshape == NULL)
4201 err = -EBUSY;
4202 else if (mddev->ro)
4203 err = -EROFS;
4204 else {
4205 mddev->new_layout = n;
4206 err = mddev->pers->check_reshape(mddev);
4207 if (err)
4208 mddev->new_layout = mddev->layout;
4209 }
4210 } else {
4211 mddev->new_layout = n;
4212 if (mddev->reshape_position == MaxSector)
4213 mddev->layout = n;
4214 }
4215 mddev_unlock(mddev);
4216 return err ?: len;
4217 }
4218 static struct md_sysfs_entry md_layout =
4219 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4220
4221 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4222 raid_disks_show(struct mddev *mddev, char *page)
4223 {
4224 if (mddev->raid_disks == 0)
4225 return 0;
4226 if (mddev->reshape_position != MaxSector &&
4227 mddev->delta_disks != 0)
4228 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4229 mddev->raid_disks - mddev->delta_disks);
4230 return sprintf(page, "%d\n", mddev->raid_disks);
4231 }
4232
4233 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4234
4235 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4236 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4237 {
4238 unsigned int n;
4239 int err;
4240
4241 err = kstrtouint(buf, 10, &n);
4242 if (err < 0)
4243 return err;
4244
4245 err = mddev_lock(mddev);
4246 if (err)
4247 return err;
4248 if (mddev->pers)
4249 err = update_raid_disks(mddev, n);
4250 else if (mddev->reshape_position != MaxSector) {
4251 struct md_rdev *rdev;
4252 int olddisks = mddev->raid_disks - mddev->delta_disks;
4253
4254 err = -EINVAL;
4255 rdev_for_each(rdev, mddev) {
4256 if (olddisks < n &&
4257 rdev->data_offset < rdev->new_data_offset)
4258 goto out_unlock;
4259 if (olddisks > n &&
4260 rdev->data_offset > rdev->new_data_offset)
4261 goto out_unlock;
4262 }
4263 err = 0;
4264 mddev->delta_disks = n - olddisks;
4265 mddev->raid_disks = n;
4266 mddev->reshape_backwards = (mddev->delta_disks < 0);
4267 } else
4268 mddev->raid_disks = n;
4269 out_unlock:
4270 mddev_unlock(mddev);
4271 return err ? err : len;
4272 }
4273 static struct md_sysfs_entry md_raid_disks =
4274 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4275
4276 static ssize_t
uuid_show(struct mddev * mddev,char * page)4277 uuid_show(struct mddev *mddev, char *page)
4278 {
4279 return sprintf(page, "%pU\n", mddev->uuid);
4280 }
4281 static struct md_sysfs_entry md_uuid =
4282 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4283
4284 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4285 chunk_size_show(struct mddev *mddev, char *page)
4286 {
4287 if (mddev->reshape_position != MaxSector &&
4288 mddev->chunk_sectors != mddev->new_chunk_sectors)
4289 return sprintf(page, "%d (%d)\n",
4290 mddev->new_chunk_sectors << 9,
4291 mddev->chunk_sectors << 9);
4292 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4293 }
4294
4295 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4296 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4297 {
4298 unsigned long n;
4299 int err;
4300
4301 err = kstrtoul(buf, 10, &n);
4302 if (err < 0)
4303 return err;
4304
4305 err = mddev_lock(mddev);
4306 if (err)
4307 return err;
4308 if (mddev->pers) {
4309 if (mddev->pers->check_reshape == NULL)
4310 err = -EBUSY;
4311 else if (mddev->ro)
4312 err = -EROFS;
4313 else {
4314 mddev->new_chunk_sectors = n >> 9;
4315 err = mddev->pers->check_reshape(mddev);
4316 if (err)
4317 mddev->new_chunk_sectors = mddev->chunk_sectors;
4318 }
4319 } else {
4320 mddev->new_chunk_sectors = n >> 9;
4321 if (mddev->reshape_position == MaxSector)
4322 mddev->chunk_sectors = n >> 9;
4323 }
4324 mddev_unlock(mddev);
4325 return err ?: len;
4326 }
4327 static struct md_sysfs_entry md_chunk_size =
4328 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4329
4330 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4331 resync_start_show(struct mddev *mddev, char *page)
4332 {
4333 if (mddev->recovery_cp == MaxSector)
4334 return sprintf(page, "none\n");
4335 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4336 }
4337
4338 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4339 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4340 {
4341 unsigned long long n;
4342 int err;
4343
4344 if (cmd_match(buf, "none"))
4345 n = MaxSector;
4346 else {
4347 err = kstrtoull(buf, 10, &n);
4348 if (err < 0)
4349 return err;
4350 if (n != (sector_t)n)
4351 return -EINVAL;
4352 }
4353
4354 err = mddev_lock(mddev);
4355 if (err)
4356 return err;
4357 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4358 err = -EBUSY;
4359
4360 if (!err) {
4361 mddev->recovery_cp = n;
4362 if (mddev->pers)
4363 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4364 }
4365 mddev_unlock(mddev);
4366 return err ?: len;
4367 }
4368 static struct md_sysfs_entry md_resync_start =
4369 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4370 resync_start_show, resync_start_store);
4371
4372 /*
4373 * The array state can be:
4374 *
4375 * clear
4376 * No devices, no size, no level
4377 * Equivalent to STOP_ARRAY ioctl
4378 * inactive
4379 * May have some settings, but array is not active
4380 * all IO results in error
4381 * When written, doesn't tear down array, but just stops it
4382 * suspended (not supported yet)
4383 * All IO requests will block. The array can be reconfigured.
4384 * Writing this, if accepted, will block until array is quiescent
4385 * readonly
4386 * no resync can happen. no superblocks get written.
4387 * write requests fail
4388 * read-auto
4389 * like readonly, but behaves like 'clean' on a write request.
4390 *
4391 * clean - no pending writes, but otherwise active.
4392 * When written to inactive array, starts without resync
4393 * If a write request arrives then
4394 * if metadata is known, mark 'dirty' and switch to 'active'.
4395 * if not known, block and switch to write-pending
4396 * If written to an active array that has pending writes, then fails.
4397 * active
4398 * fully active: IO and resync can be happening.
4399 * When written to inactive array, starts with resync
4400 *
4401 * write-pending
4402 * clean, but writes are blocked waiting for 'active' to be written.
4403 *
4404 * active-idle
4405 * like active, but no writes have been seen for a while (100msec).
4406 *
4407 * broken
4408 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4409 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4410 * when a member is gone, so this state will at least alert the
4411 * user that something is wrong.
4412 */
4413 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4414 write_pending, active_idle, broken, bad_word};
4415 static char *array_states[] = {
4416 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4417 "write-pending", "active-idle", "broken", NULL };
4418
match_word(const char * word,char ** list)4419 static int match_word(const char *word, char **list)
4420 {
4421 int n;
4422 for (n=0; list[n]; n++)
4423 if (cmd_match(word, list[n]))
4424 break;
4425 return n;
4426 }
4427
4428 static ssize_t
array_state_show(struct mddev * mddev,char * page)4429 array_state_show(struct mddev *mddev, char *page)
4430 {
4431 enum array_state st = inactive;
4432
4433 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4434 switch(mddev->ro) {
4435 case 1:
4436 st = readonly;
4437 break;
4438 case 2:
4439 st = read_auto;
4440 break;
4441 case 0:
4442 spin_lock(&mddev->lock);
4443 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4444 st = write_pending;
4445 else if (mddev->in_sync)
4446 st = clean;
4447 else if (mddev->safemode)
4448 st = active_idle;
4449 else
4450 st = active;
4451 spin_unlock(&mddev->lock);
4452 }
4453
4454 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4455 st = broken;
4456 } else {
4457 if (list_empty(&mddev->disks) &&
4458 mddev->raid_disks == 0 &&
4459 mddev->dev_sectors == 0)
4460 st = clear;
4461 else
4462 st = inactive;
4463 }
4464 return sprintf(page, "%s\n", array_states[st]);
4465 }
4466
4467 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4468 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4469 static int restart_array(struct mddev *mddev);
4470
4471 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4472 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474 int err = 0;
4475 enum array_state st = match_word(buf, array_states);
4476
4477 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4478 /* don't take reconfig_mutex when toggling between
4479 * clean and active
4480 */
4481 spin_lock(&mddev->lock);
4482 if (st == active) {
4483 restart_array(mddev);
4484 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4485 md_wakeup_thread(mddev->thread);
4486 wake_up(&mddev->sb_wait);
4487 } else /* st == clean */ {
4488 restart_array(mddev);
4489 if (!set_in_sync(mddev))
4490 err = -EBUSY;
4491 }
4492 if (!err)
4493 sysfs_notify_dirent_safe(mddev->sysfs_state);
4494 spin_unlock(&mddev->lock);
4495 return err ?: len;
4496 }
4497 err = mddev_lock(mddev);
4498 if (err)
4499 return err;
4500 err = -EINVAL;
4501 switch(st) {
4502 case bad_word:
4503 break;
4504 case clear:
4505 /* stopping an active array */
4506 err = do_md_stop(mddev, 0, NULL);
4507 break;
4508 case inactive:
4509 /* stopping an active array */
4510 if (mddev->pers)
4511 err = do_md_stop(mddev, 2, NULL);
4512 else
4513 err = 0; /* already inactive */
4514 break;
4515 case suspended:
4516 break; /* not supported yet */
4517 case readonly:
4518 if (mddev->pers)
4519 err = md_set_readonly(mddev, NULL);
4520 else {
4521 mddev->ro = 1;
4522 set_disk_ro(mddev->gendisk, 1);
4523 err = do_md_run(mddev);
4524 }
4525 break;
4526 case read_auto:
4527 if (mddev->pers) {
4528 if (mddev->ro == 0)
4529 err = md_set_readonly(mddev, NULL);
4530 else if (mddev->ro == 1)
4531 err = restart_array(mddev);
4532 if (err == 0) {
4533 mddev->ro = 2;
4534 set_disk_ro(mddev->gendisk, 0);
4535 }
4536 } else {
4537 mddev->ro = 2;
4538 err = do_md_run(mddev);
4539 }
4540 break;
4541 case clean:
4542 if (mddev->pers) {
4543 err = restart_array(mddev);
4544 if (err)
4545 break;
4546 spin_lock(&mddev->lock);
4547 if (!set_in_sync(mddev))
4548 err = -EBUSY;
4549 spin_unlock(&mddev->lock);
4550 } else
4551 err = -EINVAL;
4552 break;
4553 case active:
4554 if (mddev->pers) {
4555 err = restart_array(mddev);
4556 if (err)
4557 break;
4558 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4559 wake_up(&mddev->sb_wait);
4560 err = 0;
4561 } else {
4562 mddev->ro = 0;
4563 set_disk_ro(mddev->gendisk, 0);
4564 err = do_md_run(mddev);
4565 }
4566 break;
4567 case write_pending:
4568 case active_idle:
4569 case broken:
4570 /* these cannot be set */
4571 break;
4572 }
4573
4574 if (!err) {
4575 if (mddev->hold_active == UNTIL_IOCTL)
4576 mddev->hold_active = 0;
4577 sysfs_notify_dirent_safe(mddev->sysfs_state);
4578 }
4579 mddev_unlock(mddev);
4580 return err ?: len;
4581 }
4582 static struct md_sysfs_entry md_array_state =
4583 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4584
4585 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4586 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4587 return sprintf(page, "%d\n",
4588 atomic_read(&mddev->max_corr_read_errors));
4589 }
4590
4591 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4592 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4593 {
4594 unsigned int n;
4595 int rv;
4596
4597 rv = kstrtouint(buf, 10, &n);
4598 if (rv < 0)
4599 return rv;
4600 if (n > INT_MAX)
4601 return -EINVAL;
4602 atomic_set(&mddev->max_corr_read_errors, n);
4603 return len;
4604 }
4605
4606 static struct md_sysfs_entry max_corr_read_errors =
4607 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4608 max_corrected_read_errors_store);
4609
4610 static ssize_t
null_show(struct mddev * mddev,char * page)4611 null_show(struct mddev *mddev, char *page)
4612 {
4613 return -EINVAL;
4614 }
4615
4616 /* need to ensure rdev_delayed_delete() has completed */
flush_rdev_wq(struct mddev * mddev)4617 static void flush_rdev_wq(struct mddev *mddev)
4618 {
4619 struct md_rdev *rdev;
4620
4621 rcu_read_lock();
4622 rdev_for_each_rcu(rdev, mddev)
4623 if (work_pending(&rdev->del_work)) {
4624 flush_workqueue(md_rdev_misc_wq);
4625 break;
4626 }
4627 rcu_read_unlock();
4628 }
4629
4630 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4631 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 /* buf must be %d:%d\n? giving major and minor numbers */
4634 /* The new device is added to the array.
4635 * If the array has a persistent superblock, we read the
4636 * superblock to initialise info and check validity.
4637 * Otherwise, only checking done is that in bind_rdev_to_array,
4638 * which mainly checks size.
4639 */
4640 char *e;
4641 int major = simple_strtoul(buf, &e, 10);
4642 int minor;
4643 dev_t dev;
4644 struct md_rdev *rdev;
4645 int err;
4646
4647 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4648 return -EINVAL;
4649 minor = simple_strtoul(e+1, &e, 10);
4650 if (*e && *e != '\n')
4651 return -EINVAL;
4652 dev = MKDEV(major, minor);
4653 if (major != MAJOR(dev) ||
4654 minor != MINOR(dev))
4655 return -EOVERFLOW;
4656
4657 flush_rdev_wq(mddev);
4658 err = mddev_lock(mddev);
4659 if (err)
4660 return err;
4661 if (mddev->persistent) {
4662 rdev = md_import_device(dev, mddev->major_version,
4663 mddev->minor_version);
4664 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4665 struct md_rdev *rdev0
4666 = list_entry(mddev->disks.next,
4667 struct md_rdev, same_set);
4668 err = super_types[mddev->major_version]
4669 .load_super(rdev, rdev0, mddev->minor_version);
4670 if (err < 0)
4671 goto out;
4672 }
4673 } else if (mddev->external)
4674 rdev = md_import_device(dev, -2, -1);
4675 else
4676 rdev = md_import_device(dev, -1, -1);
4677
4678 if (IS_ERR(rdev)) {
4679 mddev_unlock(mddev);
4680 return PTR_ERR(rdev);
4681 }
4682 err = bind_rdev_to_array(rdev, mddev);
4683 out:
4684 if (err)
4685 export_rdev(rdev);
4686 mddev_unlock(mddev);
4687 if (!err)
4688 md_new_event(mddev);
4689 return err ? err : len;
4690 }
4691
4692 static struct md_sysfs_entry md_new_device =
4693 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4694
4695 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4696 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4697 {
4698 char *end;
4699 unsigned long chunk, end_chunk;
4700 int err;
4701
4702 err = mddev_lock(mddev);
4703 if (err)
4704 return err;
4705 if (!mddev->bitmap)
4706 goto out;
4707 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4708 while (*buf) {
4709 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4710 if (buf == end) break;
4711 if (*end == '-') { /* range */
4712 buf = end + 1;
4713 end_chunk = simple_strtoul(buf, &end, 0);
4714 if (buf == end) break;
4715 }
4716 if (*end && !isspace(*end)) break;
4717 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4718 buf = skip_spaces(end);
4719 }
4720 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4721 out:
4722 mddev_unlock(mddev);
4723 return len;
4724 }
4725
4726 static struct md_sysfs_entry md_bitmap =
4727 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4728
4729 static ssize_t
size_show(struct mddev * mddev,char * page)4730 size_show(struct mddev *mddev, char *page)
4731 {
4732 return sprintf(page, "%llu\n",
4733 (unsigned long long)mddev->dev_sectors / 2);
4734 }
4735
4736 static int update_size(struct mddev *mddev, sector_t num_sectors);
4737
4738 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4739 size_store(struct mddev *mddev, const char *buf, size_t len)
4740 {
4741 /* If array is inactive, we can reduce the component size, but
4742 * not increase it (except from 0).
4743 * If array is active, we can try an on-line resize
4744 */
4745 sector_t sectors;
4746 int err = strict_blocks_to_sectors(buf, §ors);
4747
4748 if (err < 0)
4749 return err;
4750 err = mddev_lock(mddev);
4751 if (err)
4752 return err;
4753 if (mddev->pers) {
4754 err = update_size(mddev, sectors);
4755 if (err == 0)
4756 md_update_sb(mddev, 1);
4757 } else {
4758 if (mddev->dev_sectors == 0 ||
4759 mddev->dev_sectors > sectors)
4760 mddev->dev_sectors = sectors;
4761 else
4762 err = -ENOSPC;
4763 }
4764 mddev_unlock(mddev);
4765 return err ? err : len;
4766 }
4767
4768 static struct md_sysfs_entry md_size =
4769 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4770
4771 /* Metadata version.
4772 * This is one of
4773 * 'none' for arrays with no metadata (good luck...)
4774 * 'external' for arrays with externally managed metadata,
4775 * or N.M for internally known formats
4776 */
4777 static ssize_t
metadata_show(struct mddev * mddev,char * page)4778 metadata_show(struct mddev *mddev, char *page)
4779 {
4780 if (mddev->persistent)
4781 return sprintf(page, "%d.%d\n",
4782 mddev->major_version, mddev->minor_version);
4783 else if (mddev->external)
4784 return sprintf(page, "external:%s\n", mddev->metadata_type);
4785 else
4786 return sprintf(page, "none\n");
4787 }
4788
4789 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4790 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4791 {
4792 int major, minor;
4793 char *e;
4794 int err;
4795 /* Changing the details of 'external' metadata is
4796 * always permitted. Otherwise there must be
4797 * no devices attached to the array.
4798 */
4799
4800 err = mddev_lock(mddev);
4801 if (err)
4802 return err;
4803 err = -EBUSY;
4804 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4805 ;
4806 else if (!list_empty(&mddev->disks))
4807 goto out_unlock;
4808
4809 err = 0;
4810 if (cmd_match(buf, "none")) {
4811 mddev->persistent = 0;
4812 mddev->external = 0;
4813 mddev->major_version = 0;
4814 mddev->minor_version = 90;
4815 goto out_unlock;
4816 }
4817 if (strncmp(buf, "external:", 9) == 0) {
4818 size_t namelen = len-9;
4819 if (namelen >= sizeof(mddev->metadata_type))
4820 namelen = sizeof(mddev->metadata_type)-1;
4821 strncpy(mddev->metadata_type, buf+9, namelen);
4822 mddev->metadata_type[namelen] = 0;
4823 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4824 mddev->metadata_type[--namelen] = 0;
4825 mddev->persistent = 0;
4826 mddev->external = 1;
4827 mddev->major_version = 0;
4828 mddev->minor_version = 90;
4829 goto out_unlock;
4830 }
4831 major = simple_strtoul(buf, &e, 10);
4832 err = -EINVAL;
4833 if (e==buf || *e != '.')
4834 goto out_unlock;
4835 buf = e+1;
4836 minor = simple_strtoul(buf, &e, 10);
4837 if (e==buf || (*e && *e != '\n') )
4838 goto out_unlock;
4839 err = -ENOENT;
4840 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4841 goto out_unlock;
4842 mddev->major_version = major;
4843 mddev->minor_version = minor;
4844 mddev->persistent = 1;
4845 mddev->external = 0;
4846 err = 0;
4847 out_unlock:
4848 mddev_unlock(mddev);
4849 return err ?: len;
4850 }
4851
4852 static struct md_sysfs_entry md_metadata =
4853 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4854
4855 static ssize_t
action_show(struct mddev * mddev,char * page)4856 action_show(struct mddev *mddev, char *page)
4857 {
4858 char *type = "idle";
4859 unsigned long recovery = mddev->recovery;
4860 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4861 type = "frozen";
4862 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4863 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4864 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4865 type = "reshape";
4866 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4867 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4868 type = "resync";
4869 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4870 type = "check";
4871 else
4872 type = "repair";
4873 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4874 type = "recover";
4875 else if (mddev->reshape_position != MaxSector)
4876 type = "reshape";
4877 }
4878 return sprintf(page, "%s\n", type);
4879 }
4880
4881 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4882 action_store(struct mddev *mddev, const char *page, size_t len)
4883 {
4884 if (!mddev->pers || !mddev->pers->sync_request)
4885 return -EINVAL;
4886
4887
4888 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4889 if (cmd_match(page, "frozen"))
4890 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4891 else
4892 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4893 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4894 mddev_lock(mddev) == 0) {
4895 if (work_pending(&mddev->del_work))
4896 flush_workqueue(md_misc_wq);
4897 if (mddev->sync_thread) {
4898 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4899 md_reap_sync_thread(mddev);
4900 }
4901 mddev_unlock(mddev);
4902 }
4903 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4904 return -EBUSY;
4905 else if (cmd_match(page, "resync"))
4906 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4907 else if (cmd_match(page, "recover")) {
4908 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4909 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4910 } else if (cmd_match(page, "reshape")) {
4911 int err;
4912 if (mddev->pers->start_reshape == NULL)
4913 return -EINVAL;
4914 err = mddev_lock(mddev);
4915 if (!err) {
4916 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4917 err = -EBUSY;
4918 } else if (mddev->reshape_position == MaxSector ||
4919 mddev->pers->check_reshape == NULL ||
4920 mddev->pers->check_reshape(mddev)) {
4921 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4922 err = mddev->pers->start_reshape(mddev);
4923 } else {
4924 /*
4925 * If reshape is still in progress, and
4926 * md_check_recovery() can continue to reshape,
4927 * don't restart reshape because data can be
4928 * corrupted for raid456.
4929 */
4930 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4931 }
4932 mddev_unlock(mddev);
4933 }
4934 if (err)
4935 return err;
4936 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4937 } else {
4938 if (cmd_match(page, "check"))
4939 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4940 else if (!cmd_match(page, "repair"))
4941 return -EINVAL;
4942 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4943 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4944 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4945 }
4946 if (mddev->ro == 2) {
4947 /* A write to sync_action is enough to justify
4948 * canceling read-auto mode
4949 */
4950 mddev->ro = 0;
4951 md_wakeup_thread(mddev->sync_thread);
4952 }
4953 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4954 md_wakeup_thread(mddev->thread);
4955 sysfs_notify_dirent_safe(mddev->sysfs_action);
4956 return len;
4957 }
4958
4959 static struct md_sysfs_entry md_scan_mode =
4960 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4961
4962 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4963 last_sync_action_show(struct mddev *mddev, char *page)
4964 {
4965 return sprintf(page, "%s\n", mddev->last_sync_action);
4966 }
4967
4968 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4969
4970 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4971 mismatch_cnt_show(struct mddev *mddev, char *page)
4972 {
4973 return sprintf(page, "%llu\n",
4974 (unsigned long long)
4975 atomic64_read(&mddev->resync_mismatches));
4976 }
4977
4978 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4979
4980 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4981 sync_min_show(struct mddev *mddev, char *page)
4982 {
4983 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4984 mddev->sync_speed_min ? "local": "system");
4985 }
4986
4987 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4988 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4989 {
4990 unsigned int min;
4991 int rv;
4992
4993 if (strncmp(buf, "system", 6)==0) {
4994 min = 0;
4995 } else {
4996 rv = kstrtouint(buf, 10, &min);
4997 if (rv < 0)
4998 return rv;
4999 if (min == 0)
5000 return -EINVAL;
5001 }
5002 mddev->sync_speed_min = min;
5003 return len;
5004 }
5005
5006 static struct md_sysfs_entry md_sync_min =
5007 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
5008
5009 static ssize_t
sync_max_show(struct mddev * mddev,char * page)5010 sync_max_show(struct mddev *mddev, char *page)
5011 {
5012 return sprintf(page, "%d (%s)\n", speed_max(mddev),
5013 mddev->sync_speed_max ? "local": "system");
5014 }
5015
5016 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)5017 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
5018 {
5019 unsigned int max;
5020 int rv;
5021
5022 if (strncmp(buf, "system", 6)==0) {
5023 max = 0;
5024 } else {
5025 rv = kstrtouint(buf, 10, &max);
5026 if (rv < 0)
5027 return rv;
5028 if (max == 0)
5029 return -EINVAL;
5030 }
5031 mddev->sync_speed_max = max;
5032 return len;
5033 }
5034
5035 static struct md_sysfs_entry md_sync_max =
5036 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5037
5038 static ssize_t
degraded_show(struct mddev * mddev,char * page)5039 degraded_show(struct mddev *mddev, char *page)
5040 {
5041 return sprintf(page, "%d\n", mddev->degraded);
5042 }
5043 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5044
5045 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5046 sync_force_parallel_show(struct mddev *mddev, char *page)
5047 {
5048 return sprintf(page, "%d\n", mddev->parallel_resync);
5049 }
5050
5051 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5052 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5053 {
5054 long n;
5055
5056 if (kstrtol(buf, 10, &n))
5057 return -EINVAL;
5058
5059 if (n != 0 && n != 1)
5060 return -EINVAL;
5061
5062 mddev->parallel_resync = n;
5063
5064 if (mddev->sync_thread)
5065 wake_up(&resync_wait);
5066
5067 return len;
5068 }
5069
5070 /* force parallel resync, even with shared block devices */
5071 static struct md_sysfs_entry md_sync_force_parallel =
5072 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5073 sync_force_parallel_show, sync_force_parallel_store);
5074
5075 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5076 sync_speed_show(struct mddev *mddev, char *page)
5077 {
5078 unsigned long resync, dt, db;
5079 if (mddev->curr_resync == 0)
5080 return sprintf(page, "none\n");
5081 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5082 dt = (jiffies - mddev->resync_mark) / HZ;
5083 if (!dt) dt++;
5084 db = resync - mddev->resync_mark_cnt;
5085 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5086 }
5087
5088 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5089
5090 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5091 sync_completed_show(struct mddev *mddev, char *page)
5092 {
5093 unsigned long long max_sectors, resync;
5094
5095 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5096 return sprintf(page, "none\n");
5097
5098 if (mddev->curr_resync == 1 ||
5099 mddev->curr_resync == 2)
5100 return sprintf(page, "delayed\n");
5101
5102 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5103 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5104 max_sectors = mddev->resync_max_sectors;
5105 else
5106 max_sectors = mddev->dev_sectors;
5107
5108 resync = mddev->curr_resync_completed;
5109 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5110 }
5111
5112 static struct md_sysfs_entry md_sync_completed =
5113 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5114
5115 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5116 min_sync_show(struct mddev *mddev, char *page)
5117 {
5118 return sprintf(page, "%llu\n",
5119 (unsigned long long)mddev->resync_min);
5120 }
5121 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5122 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5123 {
5124 unsigned long long min;
5125 int err;
5126
5127 if (kstrtoull(buf, 10, &min))
5128 return -EINVAL;
5129
5130 spin_lock(&mddev->lock);
5131 err = -EINVAL;
5132 if (min > mddev->resync_max)
5133 goto out_unlock;
5134
5135 err = -EBUSY;
5136 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5137 goto out_unlock;
5138
5139 /* Round down to multiple of 4K for safety */
5140 mddev->resync_min = round_down(min, 8);
5141 err = 0;
5142
5143 out_unlock:
5144 spin_unlock(&mddev->lock);
5145 return err ?: len;
5146 }
5147
5148 static struct md_sysfs_entry md_min_sync =
5149 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5150
5151 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5152 max_sync_show(struct mddev *mddev, char *page)
5153 {
5154 if (mddev->resync_max == MaxSector)
5155 return sprintf(page, "max\n");
5156 else
5157 return sprintf(page, "%llu\n",
5158 (unsigned long long)mddev->resync_max);
5159 }
5160 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5161 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5162 {
5163 int err;
5164 spin_lock(&mddev->lock);
5165 if (strncmp(buf, "max", 3) == 0)
5166 mddev->resync_max = MaxSector;
5167 else {
5168 unsigned long long max;
5169 int chunk;
5170
5171 err = -EINVAL;
5172 if (kstrtoull(buf, 10, &max))
5173 goto out_unlock;
5174 if (max < mddev->resync_min)
5175 goto out_unlock;
5176
5177 err = -EBUSY;
5178 if (max < mddev->resync_max &&
5179 mddev->ro == 0 &&
5180 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5181 goto out_unlock;
5182
5183 /* Must be a multiple of chunk_size */
5184 chunk = mddev->chunk_sectors;
5185 if (chunk) {
5186 sector_t temp = max;
5187
5188 err = -EINVAL;
5189 if (sector_div(temp, chunk))
5190 goto out_unlock;
5191 }
5192 mddev->resync_max = max;
5193 }
5194 wake_up(&mddev->recovery_wait);
5195 err = 0;
5196 out_unlock:
5197 spin_unlock(&mddev->lock);
5198 return err ?: len;
5199 }
5200
5201 static struct md_sysfs_entry md_max_sync =
5202 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5203
5204 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5205 suspend_lo_show(struct mddev *mddev, char *page)
5206 {
5207 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5208 }
5209
5210 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5211 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5212 {
5213 unsigned long long new;
5214 int err;
5215
5216 err = kstrtoull(buf, 10, &new);
5217 if (err < 0)
5218 return err;
5219 if (new != (sector_t)new)
5220 return -EINVAL;
5221
5222 err = mddev_lock(mddev);
5223 if (err)
5224 return err;
5225 err = -EINVAL;
5226 if (mddev->pers == NULL ||
5227 mddev->pers->quiesce == NULL)
5228 goto unlock;
5229 mddev_suspend(mddev);
5230 mddev->suspend_lo = new;
5231 mddev_resume(mddev);
5232
5233 err = 0;
5234 unlock:
5235 mddev_unlock(mddev);
5236 return err ?: len;
5237 }
5238 static struct md_sysfs_entry md_suspend_lo =
5239 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5240
5241 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5242 suspend_hi_show(struct mddev *mddev, char *page)
5243 {
5244 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5245 }
5246
5247 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5248 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5249 {
5250 unsigned long long new;
5251 int err;
5252
5253 err = kstrtoull(buf, 10, &new);
5254 if (err < 0)
5255 return err;
5256 if (new != (sector_t)new)
5257 return -EINVAL;
5258
5259 err = mddev_lock(mddev);
5260 if (err)
5261 return err;
5262 err = -EINVAL;
5263 if (mddev->pers == NULL)
5264 goto unlock;
5265
5266 mddev_suspend(mddev);
5267 mddev->suspend_hi = new;
5268 mddev_resume(mddev);
5269
5270 err = 0;
5271 unlock:
5272 mddev_unlock(mddev);
5273 return err ?: len;
5274 }
5275 static struct md_sysfs_entry md_suspend_hi =
5276 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5277
5278 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5279 reshape_position_show(struct mddev *mddev, char *page)
5280 {
5281 if (mddev->reshape_position != MaxSector)
5282 return sprintf(page, "%llu\n",
5283 (unsigned long long)mddev->reshape_position);
5284 strcpy(page, "none\n");
5285 return 5;
5286 }
5287
5288 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5289 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5290 {
5291 struct md_rdev *rdev;
5292 unsigned long long new;
5293 int err;
5294
5295 err = kstrtoull(buf, 10, &new);
5296 if (err < 0)
5297 return err;
5298 if (new != (sector_t)new)
5299 return -EINVAL;
5300 err = mddev_lock(mddev);
5301 if (err)
5302 return err;
5303 err = -EBUSY;
5304 if (mddev->pers)
5305 goto unlock;
5306 mddev->reshape_position = new;
5307 mddev->delta_disks = 0;
5308 mddev->reshape_backwards = 0;
5309 mddev->new_level = mddev->level;
5310 mddev->new_layout = mddev->layout;
5311 mddev->new_chunk_sectors = mddev->chunk_sectors;
5312 rdev_for_each(rdev, mddev)
5313 rdev->new_data_offset = rdev->data_offset;
5314 err = 0;
5315 unlock:
5316 mddev_unlock(mddev);
5317 return err ?: len;
5318 }
5319
5320 static struct md_sysfs_entry md_reshape_position =
5321 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5322 reshape_position_store);
5323
5324 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5325 reshape_direction_show(struct mddev *mddev, char *page)
5326 {
5327 return sprintf(page, "%s\n",
5328 mddev->reshape_backwards ? "backwards" : "forwards");
5329 }
5330
5331 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5332 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5333 {
5334 int backwards = 0;
5335 int err;
5336
5337 if (cmd_match(buf, "forwards"))
5338 backwards = 0;
5339 else if (cmd_match(buf, "backwards"))
5340 backwards = 1;
5341 else
5342 return -EINVAL;
5343 if (mddev->reshape_backwards == backwards)
5344 return len;
5345
5346 err = mddev_lock(mddev);
5347 if (err)
5348 return err;
5349 /* check if we are allowed to change */
5350 if (mddev->delta_disks)
5351 err = -EBUSY;
5352 else if (mddev->persistent &&
5353 mddev->major_version == 0)
5354 err = -EINVAL;
5355 else
5356 mddev->reshape_backwards = backwards;
5357 mddev_unlock(mddev);
5358 return err ?: len;
5359 }
5360
5361 static struct md_sysfs_entry md_reshape_direction =
5362 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5363 reshape_direction_store);
5364
5365 static ssize_t
array_size_show(struct mddev * mddev,char * page)5366 array_size_show(struct mddev *mddev, char *page)
5367 {
5368 if (mddev->external_size)
5369 return sprintf(page, "%llu\n",
5370 (unsigned long long)mddev->array_sectors/2);
5371 else
5372 return sprintf(page, "default\n");
5373 }
5374
5375 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5376 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5377 {
5378 sector_t sectors;
5379 int err;
5380
5381 err = mddev_lock(mddev);
5382 if (err)
5383 return err;
5384
5385 /* cluster raid doesn't support change array_sectors */
5386 if (mddev_is_clustered(mddev)) {
5387 mddev_unlock(mddev);
5388 return -EINVAL;
5389 }
5390
5391 if (strncmp(buf, "default", 7) == 0) {
5392 if (mddev->pers)
5393 sectors = mddev->pers->size(mddev, 0, 0);
5394 else
5395 sectors = mddev->array_sectors;
5396
5397 mddev->external_size = 0;
5398 } else {
5399 if (strict_blocks_to_sectors(buf, §ors) < 0)
5400 err = -EINVAL;
5401 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5402 err = -E2BIG;
5403 else
5404 mddev->external_size = 1;
5405 }
5406
5407 if (!err) {
5408 mddev->array_sectors = sectors;
5409 if (mddev->pers) {
5410 set_capacity(mddev->gendisk, mddev->array_sectors);
5411 revalidate_disk_size(mddev->gendisk, true);
5412 }
5413 }
5414 mddev_unlock(mddev);
5415 return err ?: len;
5416 }
5417
5418 static struct md_sysfs_entry md_array_size =
5419 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5420 array_size_store);
5421
5422 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5423 consistency_policy_show(struct mddev *mddev, char *page)
5424 {
5425 int ret;
5426
5427 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5428 ret = sprintf(page, "journal\n");
5429 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5430 ret = sprintf(page, "ppl\n");
5431 } else if (mddev->bitmap) {
5432 ret = sprintf(page, "bitmap\n");
5433 } else if (mddev->pers) {
5434 if (mddev->pers->sync_request)
5435 ret = sprintf(page, "resync\n");
5436 else
5437 ret = sprintf(page, "none\n");
5438 } else {
5439 ret = sprintf(page, "unknown\n");
5440 }
5441
5442 return ret;
5443 }
5444
5445 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5446 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5447 {
5448 int err = 0;
5449
5450 if (mddev->pers) {
5451 if (mddev->pers->change_consistency_policy)
5452 err = mddev->pers->change_consistency_policy(mddev, buf);
5453 else
5454 err = -EBUSY;
5455 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5456 set_bit(MD_HAS_PPL, &mddev->flags);
5457 } else {
5458 err = -EINVAL;
5459 }
5460
5461 return err ? err : len;
5462 }
5463
5464 static struct md_sysfs_entry md_consistency_policy =
5465 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5466 consistency_policy_store);
5467
fail_last_dev_show(struct mddev * mddev,char * page)5468 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5469 {
5470 return sprintf(page, "%d\n", mddev->fail_last_dev);
5471 }
5472
5473 /*
5474 * Setting fail_last_dev to true to allow last device to be forcibly removed
5475 * from RAID1/RAID10.
5476 */
5477 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5478 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5479 {
5480 int ret;
5481 bool value;
5482
5483 ret = kstrtobool(buf, &value);
5484 if (ret)
5485 return ret;
5486
5487 if (value != mddev->fail_last_dev)
5488 mddev->fail_last_dev = value;
5489
5490 return len;
5491 }
5492 static struct md_sysfs_entry md_fail_last_dev =
5493 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5494 fail_last_dev_store);
5495
serialize_policy_show(struct mddev * mddev,char * page)5496 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5497 {
5498 if (mddev->pers == NULL || (mddev->pers->level != 1))
5499 return sprintf(page, "n/a\n");
5500 else
5501 return sprintf(page, "%d\n", mddev->serialize_policy);
5502 }
5503
5504 /*
5505 * Setting serialize_policy to true to enforce write IO is not reordered
5506 * for raid1.
5507 */
5508 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5509 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5510 {
5511 int err;
5512 bool value;
5513
5514 err = kstrtobool(buf, &value);
5515 if (err)
5516 return err;
5517
5518 if (value == mddev->serialize_policy)
5519 return len;
5520
5521 err = mddev_lock(mddev);
5522 if (err)
5523 return err;
5524 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5525 pr_err("md: serialize_policy is only effective for raid1\n");
5526 err = -EINVAL;
5527 goto unlock;
5528 }
5529
5530 mddev_suspend(mddev);
5531 if (value)
5532 mddev_create_serial_pool(mddev, NULL, true);
5533 else
5534 mddev_destroy_serial_pool(mddev, NULL, true);
5535 mddev->serialize_policy = value;
5536 mddev_resume(mddev);
5537 unlock:
5538 mddev_unlock(mddev);
5539 return err ?: len;
5540 }
5541
5542 static struct md_sysfs_entry md_serialize_policy =
5543 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5544 serialize_policy_store);
5545
5546
5547 static struct attribute *md_default_attrs[] = {
5548 &md_level.attr,
5549 &md_layout.attr,
5550 &md_raid_disks.attr,
5551 &md_uuid.attr,
5552 &md_chunk_size.attr,
5553 &md_size.attr,
5554 &md_resync_start.attr,
5555 &md_metadata.attr,
5556 &md_new_device.attr,
5557 &md_safe_delay.attr,
5558 &md_array_state.attr,
5559 &md_reshape_position.attr,
5560 &md_reshape_direction.attr,
5561 &md_array_size.attr,
5562 &max_corr_read_errors.attr,
5563 &md_consistency_policy.attr,
5564 &md_fail_last_dev.attr,
5565 &md_serialize_policy.attr,
5566 NULL,
5567 };
5568
5569 static struct attribute *md_redundancy_attrs[] = {
5570 &md_scan_mode.attr,
5571 &md_last_scan_mode.attr,
5572 &md_mismatches.attr,
5573 &md_sync_min.attr,
5574 &md_sync_max.attr,
5575 &md_sync_speed.attr,
5576 &md_sync_force_parallel.attr,
5577 &md_sync_completed.attr,
5578 &md_min_sync.attr,
5579 &md_max_sync.attr,
5580 &md_suspend_lo.attr,
5581 &md_suspend_hi.attr,
5582 &md_bitmap.attr,
5583 &md_degraded.attr,
5584 NULL,
5585 };
5586 static struct attribute_group md_redundancy_group = {
5587 .name = NULL,
5588 .attrs = md_redundancy_attrs,
5589 };
5590
5591 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5592 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5593 {
5594 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5595 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5596 ssize_t rv;
5597
5598 if (!entry->show)
5599 return -EIO;
5600 spin_lock(&all_mddevs_lock);
5601 if (list_empty(&mddev->all_mddevs)) {
5602 spin_unlock(&all_mddevs_lock);
5603 return -EBUSY;
5604 }
5605 mddev_get(mddev);
5606 spin_unlock(&all_mddevs_lock);
5607
5608 rv = entry->show(mddev, page);
5609 mddev_put(mddev);
5610 return rv;
5611 }
5612
5613 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5614 md_attr_store(struct kobject *kobj, struct attribute *attr,
5615 const char *page, size_t length)
5616 {
5617 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5618 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5619 ssize_t rv;
5620
5621 if (!entry->store)
5622 return -EIO;
5623 if (!capable(CAP_SYS_ADMIN))
5624 return -EACCES;
5625 spin_lock(&all_mddevs_lock);
5626 if (list_empty(&mddev->all_mddevs)) {
5627 spin_unlock(&all_mddevs_lock);
5628 return -EBUSY;
5629 }
5630 mddev_get(mddev);
5631 spin_unlock(&all_mddevs_lock);
5632 rv = entry->store(mddev, page, length);
5633 mddev_put(mddev);
5634 return rv;
5635 }
5636
md_free(struct kobject * ko)5637 static void md_free(struct kobject *ko)
5638 {
5639 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5640
5641 if (mddev->sysfs_state)
5642 sysfs_put(mddev->sysfs_state);
5643 if (mddev->sysfs_level)
5644 sysfs_put(mddev->sysfs_level);
5645
5646 if (mddev->gendisk)
5647 del_gendisk(mddev->gendisk);
5648 if (mddev->queue)
5649 blk_cleanup_queue(mddev->queue);
5650 if (mddev->gendisk)
5651 put_disk(mddev->gendisk);
5652 percpu_ref_exit(&mddev->writes_pending);
5653
5654 bioset_exit(&mddev->bio_set);
5655 bioset_exit(&mddev->sync_set);
5656 kfree(mddev);
5657 }
5658
5659 static const struct sysfs_ops md_sysfs_ops = {
5660 .show = md_attr_show,
5661 .store = md_attr_store,
5662 };
5663 static struct kobj_type md_ktype = {
5664 .release = md_free,
5665 .sysfs_ops = &md_sysfs_ops,
5666 .default_attrs = md_default_attrs,
5667 };
5668
5669 int mdp_major = 0;
5670
mddev_delayed_delete(struct work_struct * ws)5671 static void mddev_delayed_delete(struct work_struct *ws)
5672 {
5673 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5674
5675 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5676 kobject_del(&mddev->kobj);
5677 kobject_put(&mddev->kobj);
5678 }
5679
no_op(struct percpu_ref * r)5680 static void no_op(struct percpu_ref *r) {}
5681
mddev_init_writes_pending(struct mddev * mddev)5682 int mddev_init_writes_pending(struct mddev *mddev)
5683 {
5684 if (mddev->writes_pending.percpu_count_ptr)
5685 return 0;
5686 if (percpu_ref_init(&mddev->writes_pending, no_op,
5687 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5688 return -ENOMEM;
5689 /* We want to start with the refcount at zero */
5690 percpu_ref_put(&mddev->writes_pending);
5691 return 0;
5692 }
5693 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5694
md_alloc(dev_t dev,char * name)5695 static int md_alloc(dev_t dev, char *name)
5696 {
5697 /*
5698 * If dev is zero, name is the name of a device to allocate with
5699 * an arbitrary minor number. It will be "md_???"
5700 * If dev is non-zero it must be a device number with a MAJOR of
5701 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5702 * the device is being created by opening a node in /dev.
5703 * If "name" is not NULL, the device is being created by
5704 * writing to /sys/module/md_mod/parameters/new_array.
5705 */
5706 static DEFINE_MUTEX(disks_mutex);
5707 struct mddev *mddev = mddev_find_or_alloc(dev);
5708 struct gendisk *disk;
5709 int partitioned;
5710 int shift;
5711 int unit;
5712 int error;
5713
5714 if (!mddev)
5715 return -ENODEV;
5716
5717 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5718 shift = partitioned ? MdpMinorShift : 0;
5719 unit = MINOR(mddev->unit) >> shift;
5720
5721 /* wait for any previous instance of this device to be
5722 * completely removed (mddev_delayed_delete).
5723 */
5724 flush_workqueue(md_misc_wq);
5725 flush_workqueue(md_rdev_misc_wq);
5726
5727 mutex_lock(&disks_mutex);
5728 error = -EEXIST;
5729 if (mddev->gendisk)
5730 goto abort;
5731
5732 if (name && !dev) {
5733 /* Need to ensure that 'name' is not a duplicate.
5734 */
5735 struct mddev *mddev2;
5736 spin_lock(&all_mddevs_lock);
5737
5738 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5739 if (mddev2->gendisk &&
5740 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5741 spin_unlock(&all_mddevs_lock);
5742 goto abort;
5743 }
5744 spin_unlock(&all_mddevs_lock);
5745 }
5746 if (name && dev)
5747 /*
5748 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5749 */
5750 mddev->hold_active = UNTIL_STOP;
5751
5752 error = -ENOMEM;
5753 mddev->queue = blk_alloc_queue(NUMA_NO_NODE);
5754 if (!mddev->queue)
5755 goto abort;
5756
5757 blk_set_stacking_limits(&mddev->queue->limits);
5758
5759 disk = alloc_disk(1 << shift);
5760 if (!disk) {
5761 blk_cleanup_queue(mddev->queue);
5762 mddev->queue = NULL;
5763 goto abort;
5764 }
5765 disk->major = MAJOR(mddev->unit);
5766 disk->first_minor = unit << shift;
5767 if (name)
5768 strcpy(disk->disk_name, name);
5769 else if (partitioned)
5770 sprintf(disk->disk_name, "md_d%d", unit);
5771 else
5772 sprintf(disk->disk_name, "md%d", unit);
5773 disk->fops = &md_fops;
5774 disk->private_data = mddev;
5775 disk->queue = mddev->queue;
5776 blk_queue_write_cache(mddev->queue, true, true);
5777 /* Allow extended partitions. This makes the
5778 * 'mdp' device redundant, but we can't really
5779 * remove it now.
5780 */
5781 disk->flags |= GENHD_FL_EXT_DEVT;
5782 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5783 mddev->gendisk = disk;
5784 add_disk(disk);
5785
5786 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5787 if (error) {
5788 /* This isn't possible, but as kobject_init_and_add is marked
5789 * __must_check, we must do something with the result
5790 */
5791 pr_debug("md: cannot register %s/md - name in use\n",
5792 disk->disk_name);
5793 error = 0;
5794 }
5795 if (mddev->kobj.sd &&
5796 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5797 pr_debug("pointless warning\n");
5798 abort:
5799 mutex_unlock(&disks_mutex);
5800 if (!error && mddev->kobj.sd) {
5801 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5802 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5803 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5804 }
5805 mddev_put(mddev);
5806 return error;
5807 }
5808
md_probe(dev_t dev,int * part,void * data)5809 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5810 {
5811 if (create_on_open)
5812 md_alloc(dev, NULL);
5813 return NULL;
5814 }
5815
add_named_array(const char * val,const struct kernel_param * kp)5816 static int add_named_array(const char *val, const struct kernel_param *kp)
5817 {
5818 /*
5819 * val must be "md_*" or "mdNNN".
5820 * For "md_*" we allocate an array with a large free minor number, and
5821 * set the name to val. val must not already be an active name.
5822 * For "mdNNN" we allocate an array with the minor number NNN
5823 * which must not already be in use.
5824 */
5825 int len = strlen(val);
5826 char buf[DISK_NAME_LEN];
5827 unsigned long devnum;
5828
5829 while (len && val[len-1] == '\n')
5830 len--;
5831 if (len >= DISK_NAME_LEN)
5832 return -E2BIG;
5833 strlcpy(buf, val, len+1);
5834 if (strncmp(buf, "md_", 3) == 0)
5835 return md_alloc(0, buf);
5836 if (strncmp(buf, "md", 2) == 0 &&
5837 isdigit(buf[2]) &&
5838 kstrtoul(buf+2, 10, &devnum) == 0 &&
5839 devnum <= MINORMASK)
5840 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5841
5842 return -EINVAL;
5843 }
5844
md_safemode_timeout(struct timer_list * t)5845 static void md_safemode_timeout(struct timer_list *t)
5846 {
5847 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5848
5849 mddev->safemode = 1;
5850 if (mddev->external)
5851 sysfs_notify_dirent_safe(mddev->sysfs_state);
5852
5853 md_wakeup_thread(mddev->thread);
5854 }
5855
5856 static int start_dirty_degraded;
5857
md_run(struct mddev * mddev)5858 int md_run(struct mddev *mddev)
5859 {
5860 int err;
5861 struct md_rdev *rdev;
5862 struct md_personality *pers;
5863
5864 if (list_empty(&mddev->disks))
5865 /* cannot run an array with no devices.. */
5866 return -EINVAL;
5867
5868 if (mddev->pers)
5869 return -EBUSY;
5870 /* Cannot run until previous stop completes properly */
5871 if (mddev->sysfs_active)
5872 return -EBUSY;
5873
5874 /*
5875 * Analyze all RAID superblock(s)
5876 */
5877 if (!mddev->raid_disks) {
5878 if (!mddev->persistent)
5879 return -EINVAL;
5880 err = analyze_sbs(mddev);
5881 if (err)
5882 return -EINVAL;
5883 }
5884
5885 if (mddev->level != LEVEL_NONE)
5886 request_module("md-level-%d", mddev->level);
5887 else if (mddev->clevel[0])
5888 request_module("md-%s", mddev->clevel);
5889
5890 /*
5891 * Drop all container device buffers, from now on
5892 * the only valid external interface is through the md
5893 * device.
5894 */
5895 mddev->has_superblocks = false;
5896 rdev_for_each(rdev, mddev) {
5897 if (test_bit(Faulty, &rdev->flags))
5898 continue;
5899 sync_blockdev(rdev->bdev);
5900 invalidate_bdev(rdev->bdev);
5901 if (mddev->ro != 1 &&
5902 (bdev_read_only(rdev->bdev) ||
5903 bdev_read_only(rdev->meta_bdev))) {
5904 mddev->ro = 1;
5905 if (mddev->gendisk)
5906 set_disk_ro(mddev->gendisk, 1);
5907 }
5908
5909 if (rdev->sb_page)
5910 mddev->has_superblocks = true;
5911
5912 /* perform some consistency tests on the device.
5913 * We don't want the data to overlap the metadata,
5914 * Internal Bitmap issues have been handled elsewhere.
5915 */
5916 if (rdev->meta_bdev) {
5917 /* Nothing to check */;
5918 } else if (rdev->data_offset < rdev->sb_start) {
5919 if (mddev->dev_sectors &&
5920 rdev->data_offset + mddev->dev_sectors
5921 > rdev->sb_start) {
5922 pr_warn("md: %s: data overlaps metadata\n",
5923 mdname(mddev));
5924 return -EINVAL;
5925 }
5926 } else {
5927 if (rdev->sb_start + rdev->sb_size/512
5928 > rdev->data_offset) {
5929 pr_warn("md: %s: metadata overlaps data\n",
5930 mdname(mddev));
5931 return -EINVAL;
5932 }
5933 }
5934 sysfs_notify_dirent_safe(rdev->sysfs_state);
5935 }
5936
5937 if (!bioset_initialized(&mddev->bio_set)) {
5938 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5939 if (err)
5940 return err;
5941 }
5942 if (!bioset_initialized(&mddev->sync_set)) {
5943 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5944 if (err)
5945 return err;
5946 }
5947
5948 spin_lock(&pers_lock);
5949 pers = find_pers(mddev->level, mddev->clevel);
5950 if (!pers || !try_module_get(pers->owner)) {
5951 spin_unlock(&pers_lock);
5952 if (mddev->level != LEVEL_NONE)
5953 pr_warn("md: personality for level %d is not loaded!\n",
5954 mddev->level);
5955 else
5956 pr_warn("md: personality for level %s is not loaded!\n",
5957 mddev->clevel);
5958 err = -EINVAL;
5959 goto abort;
5960 }
5961 spin_unlock(&pers_lock);
5962 if (mddev->level != pers->level) {
5963 mddev->level = pers->level;
5964 mddev->new_level = pers->level;
5965 }
5966 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5967
5968 if (mddev->reshape_position != MaxSector &&
5969 pers->start_reshape == NULL) {
5970 /* This personality cannot handle reshaping... */
5971 module_put(pers->owner);
5972 err = -EINVAL;
5973 goto abort;
5974 }
5975
5976 if (pers->sync_request) {
5977 /* Warn if this is a potentially silly
5978 * configuration.
5979 */
5980 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5981 struct md_rdev *rdev2;
5982 int warned = 0;
5983
5984 rdev_for_each(rdev, mddev)
5985 rdev_for_each(rdev2, mddev) {
5986 if (rdev < rdev2 &&
5987 rdev->bdev->bd_disk ==
5988 rdev2->bdev->bd_disk) {
5989 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5990 mdname(mddev),
5991 bdevname(rdev->bdev,b),
5992 bdevname(rdev2->bdev,b2));
5993 warned = 1;
5994 }
5995 }
5996
5997 if (warned)
5998 pr_warn("True protection against single-disk failure might be compromised.\n");
5999 }
6000
6001 mddev->recovery = 0;
6002 /* may be over-ridden by personality */
6003 mddev->resync_max_sectors = mddev->dev_sectors;
6004
6005 mddev->ok_start_degraded = start_dirty_degraded;
6006
6007 if (start_readonly && mddev->ro == 0)
6008 mddev->ro = 2; /* read-only, but switch on first write */
6009
6010 err = pers->run(mddev);
6011 if (err)
6012 pr_warn("md: pers->run() failed ...\n");
6013 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6014 WARN_ONCE(!mddev->external_size,
6015 "%s: default size too small, but 'external_size' not in effect?\n",
6016 __func__);
6017 pr_warn("md: invalid array_size %llu > default size %llu\n",
6018 (unsigned long long)mddev->array_sectors / 2,
6019 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6020 err = -EINVAL;
6021 }
6022 if (err == 0 && pers->sync_request &&
6023 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6024 struct bitmap *bitmap;
6025
6026 bitmap = md_bitmap_create(mddev, -1);
6027 if (IS_ERR(bitmap)) {
6028 err = PTR_ERR(bitmap);
6029 pr_warn("%s: failed to create bitmap (%d)\n",
6030 mdname(mddev), err);
6031 } else
6032 mddev->bitmap = bitmap;
6033
6034 }
6035 if (err)
6036 goto bitmap_abort;
6037
6038 if (mddev->bitmap_info.max_write_behind > 0) {
6039 bool create_pool = false;
6040
6041 rdev_for_each(rdev, mddev) {
6042 if (test_bit(WriteMostly, &rdev->flags) &&
6043 rdev_init_serial(rdev))
6044 create_pool = true;
6045 }
6046 if (create_pool && mddev->serial_info_pool == NULL) {
6047 mddev->serial_info_pool =
6048 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6049 sizeof(struct serial_info));
6050 if (!mddev->serial_info_pool) {
6051 err = -ENOMEM;
6052 goto bitmap_abort;
6053 }
6054 }
6055 }
6056
6057 if (mddev->queue) {
6058 bool nonrot = true;
6059
6060 rdev_for_each(rdev, mddev) {
6061 if (rdev->raid_disk >= 0 &&
6062 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6063 nonrot = false;
6064 break;
6065 }
6066 }
6067 if (mddev->degraded)
6068 nonrot = false;
6069 if (nonrot)
6070 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6071 else
6072 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6073 }
6074 if (pers->sync_request) {
6075 if (mddev->kobj.sd &&
6076 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6077 pr_warn("md: cannot register extra attributes for %s\n",
6078 mdname(mddev));
6079 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6080 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6081 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6082 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6083 mddev->ro = 0;
6084
6085 atomic_set(&mddev->max_corr_read_errors,
6086 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6087 mddev->safemode = 0;
6088 if (mddev_is_clustered(mddev))
6089 mddev->safemode_delay = 0;
6090 else
6091 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6092 mddev->in_sync = 1;
6093 smp_wmb();
6094 spin_lock(&mddev->lock);
6095 mddev->pers = pers;
6096 spin_unlock(&mddev->lock);
6097 rdev_for_each(rdev, mddev)
6098 if (rdev->raid_disk >= 0)
6099 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6100
6101 if (mddev->degraded && !mddev->ro)
6102 /* This ensures that recovering status is reported immediately
6103 * via sysfs - until a lack of spares is confirmed.
6104 */
6105 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6106 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6107
6108 if (mddev->sb_flags)
6109 md_update_sb(mddev, 0);
6110
6111 md_new_event(mddev);
6112 return 0;
6113
6114 bitmap_abort:
6115 mddev_detach(mddev);
6116 if (mddev->private)
6117 pers->free(mddev, mddev->private);
6118 mddev->private = NULL;
6119 module_put(pers->owner);
6120 md_bitmap_destroy(mddev);
6121 abort:
6122 bioset_exit(&mddev->bio_set);
6123 bioset_exit(&mddev->sync_set);
6124 return err;
6125 }
6126 EXPORT_SYMBOL_GPL(md_run);
6127
do_md_run(struct mddev * mddev)6128 int do_md_run(struct mddev *mddev)
6129 {
6130 int err;
6131
6132 set_bit(MD_NOT_READY, &mddev->flags);
6133 err = md_run(mddev);
6134 if (err)
6135 goto out;
6136 err = md_bitmap_load(mddev);
6137 if (err) {
6138 md_bitmap_destroy(mddev);
6139 goto out;
6140 }
6141
6142 if (mddev_is_clustered(mddev))
6143 md_allow_write(mddev);
6144
6145 /* run start up tasks that require md_thread */
6146 md_start(mddev);
6147
6148 md_wakeup_thread(mddev->thread);
6149 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6150
6151 set_capacity(mddev->gendisk, mddev->array_sectors);
6152 revalidate_disk_size(mddev->gendisk, true);
6153 clear_bit(MD_NOT_READY, &mddev->flags);
6154 mddev->changed = 1;
6155 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6156 sysfs_notify_dirent_safe(mddev->sysfs_state);
6157 sysfs_notify_dirent_safe(mddev->sysfs_action);
6158 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6159 out:
6160 clear_bit(MD_NOT_READY, &mddev->flags);
6161 return err;
6162 }
6163
md_start(struct mddev * mddev)6164 int md_start(struct mddev *mddev)
6165 {
6166 int ret = 0;
6167
6168 if (mddev->pers->start) {
6169 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6170 md_wakeup_thread(mddev->thread);
6171 ret = mddev->pers->start(mddev);
6172 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6173 md_wakeup_thread(mddev->sync_thread);
6174 }
6175 return ret;
6176 }
6177 EXPORT_SYMBOL_GPL(md_start);
6178
restart_array(struct mddev * mddev)6179 static int restart_array(struct mddev *mddev)
6180 {
6181 struct gendisk *disk = mddev->gendisk;
6182 struct md_rdev *rdev;
6183 bool has_journal = false;
6184 bool has_readonly = false;
6185
6186 /* Complain if it has no devices */
6187 if (list_empty(&mddev->disks))
6188 return -ENXIO;
6189 if (!mddev->pers)
6190 return -EINVAL;
6191 if (!mddev->ro)
6192 return -EBUSY;
6193
6194 rcu_read_lock();
6195 rdev_for_each_rcu(rdev, mddev) {
6196 if (test_bit(Journal, &rdev->flags) &&
6197 !test_bit(Faulty, &rdev->flags))
6198 has_journal = true;
6199 if (bdev_read_only(rdev->bdev))
6200 has_readonly = true;
6201 }
6202 rcu_read_unlock();
6203 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6204 /* Don't restart rw with journal missing/faulty */
6205 return -EINVAL;
6206 if (has_readonly)
6207 return -EROFS;
6208
6209 mddev->safemode = 0;
6210 mddev->ro = 0;
6211 set_disk_ro(disk, 0);
6212 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6213 /* Kick recovery or resync if necessary */
6214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6215 md_wakeup_thread(mddev->thread);
6216 md_wakeup_thread(mddev->sync_thread);
6217 sysfs_notify_dirent_safe(mddev->sysfs_state);
6218 return 0;
6219 }
6220
md_clean(struct mddev * mddev)6221 static void md_clean(struct mddev *mddev)
6222 {
6223 mddev->array_sectors = 0;
6224 mddev->external_size = 0;
6225 mddev->dev_sectors = 0;
6226 mddev->raid_disks = 0;
6227 mddev->recovery_cp = 0;
6228 mddev->resync_min = 0;
6229 mddev->resync_max = MaxSector;
6230 mddev->reshape_position = MaxSector;
6231 mddev->external = 0;
6232 mddev->persistent = 0;
6233 mddev->level = LEVEL_NONE;
6234 mddev->clevel[0] = 0;
6235 mddev->flags = 0;
6236 mddev->sb_flags = 0;
6237 mddev->ro = 0;
6238 mddev->metadata_type[0] = 0;
6239 mddev->chunk_sectors = 0;
6240 mddev->ctime = mddev->utime = 0;
6241 mddev->layout = 0;
6242 mddev->max_disks = 0;
6243 mddev->events = 0;
6244 mddev->can_decrease_events = 0;
6245 mddev->delta_disks = 0;
6246 mddev->reshape_backwards = 0;
6247 mddev->new_level = LEVEL_NONE;
6248 mddev->new_layout = 0;
6249 mddev->new_chunk_sectors = 0;
6250 mddev->curr_resync = 0;
6251 atomic64_set(&mddev->resync_mismatches, 0);
6252 mddev->suspend_lo = mddev->suspend_hi = 0;
6253 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6254 mddev->recovery = 0;
6255 mddev->in_sync = 0;
6256 mddev->changed = 0;
6257 mddev->degraded = 0;
6258 mddev->safemode = 0;
6259 mddev->private = NULL;
6260 mddev->cluster_info = NULL;
6261 mddev->bitmap_info.offset = 0;
6262 mddev->bitmap_info.default_offset = 0;
6263 mddev->bitmap_info.default_space = 0;
6264 mddev->bitmap_info.chunksize = 0;
6265 mddev->bitmap_info.daemon_sleep = 0;
6266 mddev->bitmap_info.max_write_behind = 0;
6267 mddev->bitmap_info.nodes = 0;
6268 }
6269
__md_stop_writes(struct mddev * mddev)6270 static void __md_stop_writes(struct mddev *mddev)
6271 {
6272 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6273 if (work_pending(&mddev->del_work))
6274 flush_workqueue(md_misc_wq);
6275 if (mddev->sync_thread) {
6276 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6277 md_reap_sync_thread(mddev);
6278 }
6279
6280 del_timer_sync(&mddev->safemode_timer);
6281
6282 if (mddev->pers && mddev->pers->quiesce) {
6283 mddev->pers->quiesce(mddev, 1);
6284 mddev->pers->quiesce(mddev, 0);
6285 }
6286 md_bitmap_flush(mddev);
6287
6288 if (mddev->ro == 0 &&
6289 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6290 mddev->sb_flags)) {
6291 /* mark array as shutdown cleanly */
6292 if (!mddev_is_clustered(mddev))
6293 mddev->in_sync = 1;
6294 md_update_sb(mddev, 1);
6295 }
6296 /* disable policy to guarantee rdevs free resources for serialization */
6297 mddev->serialize_policy = 0;
6298 mddev_destroy_serial_pool(mddev, NULL, true);
6299 }
6300
md_stop_writes(struct mddev * mddev)6301 void md_stop_writes(struct mddev *mddev)
6302 {
6303 mddev_lock_nointr(mddev);
6304 __md_stop_writes(mddev);
6305 mddev_unlock(mddev);
6306 }
6307 EXPORT_SYMBOL_GPL(md_stop_writes);
6308
mddev_detach(struct mddev * mddev)6309 static void mddev_detach(struct mddev *mddev)
6310 {
6311 md_bitmap_wait_behind_writes(mddev);
6312 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6313 mddev->pers->quiesce(mddev, 1);
6314 mddev->pers->quiesce(mddev, 0);
6315 }
6316 md_unregister_thread(&mddev->thread);
6317 if (mddev->queue)
6318 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6319 }
6320
__md_stop(struct mddev * mddev)6321 static void __md_stop(struct mddev *mddev)
6322 {
6323 struct md_personality *pers = mddev->pers;
6324 md_bitmap_destroy(mddev);
6325 mddev_detach(mddev);
6326 /* Ensure ->event_work is done */
6327 if (mddev->event_work.func)
6328 flush_workqueue(md_misc_wq);
6329 spin_lock(&mddev->lock);
6330 mddev->pers = NULL;
6331 spin_unlock(&mddev->lock);
6332 pers->free(mddev, mddev->private);
6333 mddev->private = NULL;
6334 if (pers->sync_request && mddev->to_remove == NULL)
6335 mddev->to_remove = &md_redundancy_group;
6336 module_put(pers->owner);
6337 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6338 }
6339
md_stop(struct mddev * mddev)6340 void md_stop(struct mddev *mddev)
6341 {
6342 lockdep_assert_held(&mddev->reconfig_mutex);
6343
6344 /* stop the array and free an attached data structures.
6345 * This is called from dm-raid
6346 */
6347 __md_stop_writes(mddev);
6348 __md_stop(mddev);
6349 bioset_exit(&mddev->bio_set);
6350 bioset_exit(&mddev->sync_set);
6351 }
6352
6353 EXPORT_SYMBOL_GPL(md_stop);
6354
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6355 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6356 {
6357 int err = 0;
6358 int did_freeze = 0;
6359
6360 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6361 did_freeze = 1;
6362 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6363 md_wakeup_thread(mddev->thread);
6364 }
6365 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6366 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6367 if (mddev->sync_thread)
6368 /* Thread might be blocked waiting for metadata update
6369 * which will now never happen */
6370 wake_up_process(mddev->sync_thread->tsk);
6371
6372 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6373 return -EBUSY;
6374 mddev_unlock(mddev);
6375 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6376 &mddev->recovery));
6377 wait_event(mddev->sb_wait,
6378 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6379 mddev_lock_nointr(mddev);
6380
6381 mutex_lock(&mddev->open_mutex);
6382 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6383 mddev->sync_thread ||
6384 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6385 pr_warn("md: %s still in use.\n",mdname(mddev));
6386 if (did_freeze) {
6387 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6388 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6389 md_wakeup_thread(mddev->thread);
6390 }
6391 err = -EBUSY;
6392 goto out;
6393 }
6394 if (mddev->pers) {
6395 __md_stop_writes(mddev);
6396
6397 err = -ENXIO;
6398 if (mddev->ro==1)
6399 goto out;
6400 mddev->ro = 1;
6401 set_disk_ro(mddev->gendisk, 1);
6402 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6403 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6404 md_wakeup_thread(mddev->thread);
6405 sysfs_notify_dirent_safe(mddev->sysfs_state);
6406 err = 0;
6407 }
6408 out:
6409 mutex_unlock(&mddev->open_mutex);
6410 return err;
6411 }
6412
6413 /* mode:
6414 * 0 - completely stop and dis-assemble array
6415 * 2 - stop but do not disassemble array
6416 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6417 static int do_md_stop(struct mddev *mddev, int mode,
6418 struct block_device *bdev)
6419 {
6420 struct gendisk *disk = mddev->gendisk;
6421 struct md_rdev *rdev;
6422 int did_freeze = 0;
6423
6424 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6425 did_freeze = 1;
6426 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6427 md_wakeup_thread(mddev->thread);
6428 }
6429 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6430 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6431 if (mddev->sync_thread)
6432 /* Thread might be blocked waiting for metadata update
6433 * which will now never happen */
6434 wake_up_process(mddev->sync_thread->tsk);
6435
6436 mddev_unlock(mddev);
6437 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6438 !test_bit(MD_RECOVERY_RUNNING,
6439 &mddev->recovery)));
6440 mddev_lock_nointr(mddev);
6441
6442 mutex_lock(&mddev->open_mutex);
6443 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6444 mddev->sysfs_active ||
6445 mddev->sync_thread ||
6446 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6447 pr_warn("md: %s still in use.\n",mdname(mddev));
6448 mutex_unlock(&mddev->open_mutex);
6449 if (did_freeze) {
6450 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6451 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6452 md_wakeup_thread(mddev->thread);
6453 }
6454 return -EBUSY;
6455 }
6456 if (mddev->pers) {
6457 if (mddev->ro)
6458 set_disk_ro(disk, 0);
6459
6460 __md_stop_writes(mddev);
6461 __md_stop(mddev);
6462
6463 /* tell userspace to handle 'inactive' */
6464 sysfs_notify_dirent_safe(mddev->sysfs_state);
6465
6466 rdev_for_each(rdev, mddev)
6467 if (rdev->raid_disk >= 0)
6468 sysfs_unlink_rdev(mddev, rdev);
6469
6470 set_capacity(disk, 0);
6471 mutex_unlock(&mddev->open_mutex);
6472 mddev->changed = 1;
6473 revalidate_disk_size(disk, true);
6474
6475 if (mddev->ro)
6476 mddev->ro = 0;
6477 } else
6478 mutex_unlock(&mddev->open_mutex);
6479 /*
6480 * Free resources if final stop
6481 */
6482 if (mode == 0) {
6483 pr_info("md: %s stopped.\n", mdname(mddev));
6484
6485 if (mddev->bitmap_info.file) {
6486 struct file *f = mddev->bitmap_info.file;
6487 spin_lock(&mddev->lock);
6488 mddev->bitmap_info.file = NULL;
6489 spin_unlock(&mddev->lock);
6490 fput(f);
6491 }
6492 mddev->bitmap_info.offset = 0;
6493
6494 export_array(mddev);
6495
6496 md_clean(mddev);
6497 if (mddev->hold_active == UNTIL_STOP)
6498 mddev->hold_active = 0;
6499 }
6500 md_new_event(mddev);
6501 sysfs_notify_dirent_safe(mddev->sysfs_state);
6502 return 0;
6503 }
6504
6505 #ifndef MODULE
autorun_array(struct mddev * mddev)6506 static void autorun_array(struct mddev *mddev)
6507 {
6508 struct md_rdev *rdev;
6509 int err;
6510
6511 if (list_empty(&mddev->disks))
6512 return;
6513
6514 pr_info("md: running: ");
6515
6516 rdev_for_each(rdev, mddev) {
6517 char b[BDEVNAME_SIZE];
6518 pr_cont("<%s>", bdevname(rdev->bdev,b));
6519 }
6520 pr_cont("\n");
6521
6522 err = do_md_run(mddev);
6523 if (err) {
6524 pr_warn("md: do_md_run() returned %d\n", err);
6525 do_md_stop(mddev, 0, NULL);
6526 }
6527 }
6528
6529 /*
6530 * lets try to run arrays based on all disks that have arrived
6531 * until now. (those are in pending_raid_disks)
6532 *
6533 * the method: pick the first pending disk, collect all disks with
6534 * the same UUID, remove all from the pending list and put them into
6535 * the 'same_array' list. Then order this list based on superblock
6536 * update time (freshest comes first), kick out 'old' disks and
6537 * compare superblocks. If everything's fine then run it.
6538 *
6539 * If "unit" is allocated, then bump its reference count
6540 */
autorun_devices(int part)6541 static void autorun_devices(int part)
6542 {
6543 struct md_rdev *rdev0, *rdev, *tmp;
6544 struct mddev *mddev;
6545 char b[BDEVNAME_SIZE];
6546
6547 pr_info("md: autorun ...\n");
6548 while (!list_empty(&pending_raid_disks)) {
6549 int unit;
6550 dev_t dev;
6551 LIST_HEAD(candidates);
6552 rdev0 = list_entry(pending_raid_disks.next,
6553 struct md_rdev, same_set);
6554
6555 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6556 INIT_LIST_HEAD(&candidates);
6557 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6558 if (super_90_load(rdev, rdev0, 0) >= 0) {
6559 pr_debug("md: adding %s ...\n",
6560 bdevname(rdev->bdev,b));
6561 list_move(&rdev->same_set, &candidates);
6562 }
6563 /*
6564 * now we have a set of devices, with all of them having
6565 * mostly sane superblocks. It's time to allocate the
6566 * mddev.
6567 */
6568 if (part) {
6569 dev = MKDEV(mdp_major,
6570 rdev0->preferred_minor << MdpMinorShift);
6571 unit = MINOR(dev) >> MdpMinorShift;
6572 } else {
6573 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6574 unit = MINOR(dev);
6575 }
6576 if (rdev0->preferred_minor != unit) {
6577 pr_warn("md: unit number in %s is bad: %d\n",
6578 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6579 break;
6580 }
6581
6582 md_probe(dev, NULL, NULL);
6583 mddev = mddev_find(dev);
6584 if (!mddev)
6585 break;
6586
6587 if (mddev_lock(mddev))
6588 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6589 else if (mddev->raid_disks || mddev->major_version
6590 || !list_empty(&mddev->disks)) {
6591 pr_warn("md: %s already running, cannot run %s\n",
6592 mdname(mddev), bdevname(rdev0->bdev,b));
6593 mddev_unlock(mddev);
6594 } else {
6595 pr_debug("md: created %s\n", mdname(mddev));
6596 mddev->persistent = 1;
6597 rdev_for_each_list(rdev, tmp, &candidates) {
6598 list_del_init(&rdev->same_set);
6599 if (bind_rdev_to_array(rdev, mddev))
6600 export_rdev(rdev);
6601 }
6602 autorun_array(mddev);
6603 mddev_unlock(mddev);
6604 }
6605 /* on success, candidates will be empty, on error
6606 * it won't...
6607 */
6608 rdev_for_each_list(rdev, tmp, &candidates) {
6609 list_del_init(&rdev->same_set);
6610 export_rdev(rdev);
6611 }
6612 mddev_put(mddev);
6613 }
6614 pr_info("md: ... autorun DONE.\n");
6615 }
6616 #endif /* !MODULE */
6617
get_version(void __user * arg)6618 static int get_version(void __user *arg)
6619 {
6620 mdu_version_t ver;
6621
6622 ver.major = MD_MAJOR_VERSION;
6623 ver.minor = MD_MINOR_VERSION;
6624 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6625
6626 if (copy_to_user(arg, &ver, sizeof(ver)))
6627 return -EFAULT;
6628
6629 return 0;
6630 }
6631
get_array_info(struct mddev * mddev,void __user * arg)6632 static int get_array_info(struct mddev *mddev, void __user *arg)
6633 {
6634 mdu_array_info_t info;
6635 int nr,working,insync,failed,spare;
6636 struct md_rdev *rdev;
6637
6638 nr = working = insync = failed = spare = 0;
6639 rcu_read_lock();
6640 rdev_for_each_rcu(rdev, mddev) {
6641 nr++;
6642 if (test_bit(Faulty, &rdev->flags))
6643 failed++;
6644 else {
6645 working++;
6646 if (test_bit(In_sync, &rdev->flags))
6647 insync++;
6648 else if (test_bit(Journal, &rdev->flags))
6649 /* TODO: add journal count to md_u.h */
6650 ;
6651 else
6652 spare++;
6653 }
6654 }
6655 rcu_read_unlock();
6656
6657 info.major_version = mddev->major_version;
6658 info.minor_version = mddev->minor_version;
6659 info.patch_version = MD_PATCHLEVEL_VERSION;
6660 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6661 info.level = mddev->level;
6662 info.size = mddev->dev_sectors / 2;
6663 if (info.size != mddev->dev_sectors / 2) /* overflow */
6664 info.size = -1;
6665 info.nr_disks = nr;
6666 info.raid_disks = mddev->raid_disks;
6667 info.md_minor = mddev->md_minor;
6668 info.not_persistent= !mddev->persistent;
6669
6670 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6671 info.state = 0;
6672 if (mddev->in_sync)
6673 info.state = (1<<MD_SB_CLEAN);
6674 if (mddev->bitmap && mddev->bitmap_info.offset)
6675 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6676 if (mddev_is_clustered(mddev))
6677 info.state |= (1<<MD_SB_CLUSTERED);
6678 info.active_disks = insync;
6679 info.working_disks = working;
6680 info.failed_disks = failed;
6681 info.spare_disks = spare;
6682
6683 info.layout = mddev->layout;
6684 info.chunk_size = mddev->chunk_sectors << 9;
6685
6686 if (copy_to_user(arg, &info, sizeof(info)))
6687 return -EFAULT;
6688
6689 return 0;
6690 }
6691
get_bitmap_file(struct mddev * mddev,void __user * arg)6692 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6693 {
6694 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6695 char *ptr;
6696 int err;
6697
6698 file = kzalloc(sizeof(*file), GFP_NOIO);
6699 if (!file)
6700 return -ENOMEM;
6701
6702 err = 0;
6703 spin_lock(&mddev->lock);
6704 /* bitmap enabled */
6705 if (mddev->bitmap_info.file) {
6706 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6707 sizeof(file->pathname));
6708 if (IS_ERR(ptr))
6709 err = PTR_ERR(ptr);
6710 else
6711 memmove(file->pathname, ptr,
6712 sizeof(file->pathname)-(ptr-file->pathname));
6713 }
6714 spin_unlock(&mddev->lock);
6715
6716 if (err == 0 &&
6717 copy_to_user(arg, file, sizeof(*file)))
6718 err = -EFAULT;
6719
6720 kfree(file);
6721 return err;
6722 }
6723
get_disk_info(struct mddev * mddev,void __user * arg)6724 static int get_disk_info(struct mddev *mddev, void __user * arg)
6725 {
6726 mdu_disk_info_t info;
6727 struct md_rdev *rdev;
6728
6729 if (copy_from_user(&info, arg, sizeof(info)))
6730 return -EFAULT;
6731
6732 rcu_read_lock();
6733 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6734 if (rdev) {
6735 info.major = MAJOR(rdev->bdev->bd_dev);
6736 info.minor = MINOR(rdev->bdev->bd_dev);
6737 info.raid_disk = rdev->raid_disk;
6738 info.state = 0;
6739 if (test_bit(Faulty, &rdev->flags))
6740 info.state |= (1<<MD_DISK_FAULTY);
6741 else if (test_bit(In_sync, &rdev->flags)) {
6742 info.state |= (1<<MD_DISK_ACTIVE);
6743 info.state |= (1<<MD_DISK_SYNC);
6744 }
6745 if (test_bit(Journal, &rdev->flags))
6746 info.state |= (1<<MD_DISK_JOURNAL);
6747 if (test_bit(WriteMostly, &rdev->flags))
6748 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6749 if (test_bit(FailFast, &rdev->flags))
6750 info.state |= (1<<MD_DISK_FAILFAST);
6751 } else {
6752 info.major = info.minor = 0;
6753 info.raid_disk = -1;
6754 info.state = (1<<MD_DISK_REMOVED);
6755 }
6756 rcu_read_unlock();
6757
6758 if (copy_to_user(arg, &info, sizeof(info)))
6759 return -EFAULT;
6760
6761 return 0;
6762 }
6763
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6764 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6765 {
6766 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6767 struct md_rdev *rdev;
6768 dev_t dev = MKDEV(info->major,info->minor);
6769
6770 if (mddev_is_clustered(mddev) &&
6771 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6772 pr_warn("%s: Cannot add to clustered mddev.\n",
6773 mdname(mddev));
6774 return -EINVAL;
6775 }
6776
6777 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6778 return -EOVERFLOW;
6779
6780 if (!mddev->raid_disks) {
6781 int err;
6782 /* expecting a device which has a superblock */
6783 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6784 if (IS_ERR(rdev)) {
6785 pr_warn("md: md_import_device returned %ld\n",
6786 PTR_ERR(rdev));
6787 return PTR_ERR(rdev);
6788 }
6789 if (!list_empty(&mddev->disks)) {
6790 struct md_rdev *rdev0
6791 = list_entry(mddev->disks.next,
6792 struct md_rdev, same_set);
6793 err = super_types[mddev->major_version]
6794 .load_super(rdev, rdev0, mddev->minor_version);
6795 if (err < 0) {
6796 pr_warn("md: %s has different UUID to %s\n",
6797 bdevname(rdev->bdev,b),
6798 bdevname(rdev0->bdev,b2));
6799 export_rdev(rdev);
6800 return -EINVAL;
6801 }
6802 }
6803 err = bind_rdev_to_array(rdev, mddev);
6804 if (err)
6805 export_rdev(rdev);
6806 return err;
6807 }
6808
6809 /*
6810 * md_add_new_disk can be used once the array is assembled
6811 * to add "hot spares". They must already have a superblock
6812 * written
6813 */
6814 if (mddev->pers) {
6815 int err;
6816 if (!mddev->pers->hot_add_disk) {
6817 pr_warn("%s: personality does not support diskops!\n",
6818 mdname(mddev));
6819 return -EINVAL;
6820 }
6821 if (mddev->persistent)
6822 rdev = md_import_device(dev, mddev->major_version,
6823 mddev->minor_version);
6824 else
6825 rdev = md_import_device(dev, -1, -1);
6826 if (IS_ERR(rdev)) {
6827 pr_warn("md: md_import_device returned %ld\n",
6828 PTR_ERR(rdev));
6829 return PTR_ERR(rdev);
6830 }
6831 /* set saved_raid_disk if appropriate */
6832 if (!mddev->persistent) {
6833 if (info->state & (1<<MD_DISK_SYNC) &&
6834 info->raid_disk < mddev->raid_disks) {
6835 rdev->raid_disk = info->raid_disk;
6836 set_bit(In_sync, &rdev->flags);
6837 clear_bit(Bitmap_sync, &rdev->flags);
6838 } else
6839 rdev->raid_disk = -1;
6840 rdev->saved_raid_disk = rdev->raid_disk;
6841 } else
6842 super_types[mddev->major_version].
6843 validate_super(mddev, NULL/*freshest*/, rdev);
6844 if ((info->state & (1<<MD_DISK_SYNC)) &&
6845 rdev->raid_disk != info->raid_disk) {
6846 /* This was a hot-add request, but events doesn't
6847 * match, so reject it.
6848 */
6849 export_rdev(rdev);
6850 return -EINVAL;
6851 }
6852
6853 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6854 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6855 set_bit(WriteMostly, &rdev->flags);
6856 else
6857 clear_bit(WriteMostly, &rdev->flags);
6858 if (info->state & (1<<MD_DISK_FAILFAST))
6859 set_bit(FailFast, &rdev->flags);
6860 else
6861 clear_bit(FailFast, &rdev->flags);
6862
6863 if (info->state & (1<<MD_DISK_JOURNAL)) {
6864 struct md_rdev *rdev2;
6865 bool has_journal = false;
6866
6867 /* make sure no existing journal disk */
6868 rdev_for_each(rdev2, mddev) {
6869 if (test_bit(Journal, &rdev2->flags)) {
6870 has_journal = true;
6871 break;
6872 }
6873 }
6874 if (has_journal || mddev->bitmap) {
6875 export_rdev(rdev);
6876 return -EBUSY;
6877 }
6878 set_bit(Journal, &rdev->flags);
6879 }
6880 /*
6881 * check whether the device shows up in other nodes
6882 */
6883 if (mddev_is_clustered(mddev)) {
6884 if (info->state & (1 << MD_DISK_CANDIDATE))
6885 set_bit(Candidate, &rdev->flags);
6886 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6887 /* --add initiated by this node */
6888 err = md_cluster_ops->add_new_disk(mddev, rdev);
6889 if (err) {
6890 export_rdev(rdev);
6891 return err;
6892 }
6893 }
6894 }
6895
6896 rdev->raid_disk = -1;
6897 err = bind_rdev_to_array(rdev, mddev);
6898
6899 if (err)
6900 export_rdev(rdev);
6901
6902 if (mddev_is_clustered(mddev)) {
6903 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6904 if (!err) {
6905 err = md_cluster_ops->new_disk_ack(mddev,
6906 err == 0);
6907 if (err)
6908 md_kick_rdev_from_array(rdev);
6909 }
6910 } else {
6911 if (err)
6912 md_cluster_ops->add_new_disk_cancel(mddev);
6913 else
6914 err = add_bound_rdev(rdev);
6915 }
6916
6917 } else if (!err)
6918 err = add_bound_rdev(rdev);
6919
6920 return err;
6921 }
6922
6923 /* otherwise, md_add_new_disk is only allowed
6924 * for major_version==0 superblocks
6925 */
6926 if (mddev->major_version != 0) {
6927 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6928 return -EINVAL;
6929 }
6930
6931 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6932 int err;
6933 rdev = md_import_device(dev, -1, 0);
6934 if (IS_ERR(rdev)) {
6935 pr_warn("md: error, md_import_device() returned %ld\n",
6936 PTR_ERR(rdev));
6937 return PTR_ERR(rdev);
6938 }
6939 rdev->desc_nr = info->number;
6940 if (info->raid_disk < mddev->raid_disks)
6941 rdev->raid_disk = info->raid_disk;
6942 else
6943 rdev->raid_disk = -1;
6944
6945 if (rdev->raid_disk < mddev->raid_disks)
6946 if (info->state & (1<<MD_DISK_SYNC))
6947 set_bit(In_sync, &rdev->flags);
6948
6949 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6950 set_bit(WriteMostly, &rdev->flags);
6951 if (info->state & (1<<MD_DISK_FAILFAST))
6952 set_bit(FailFast, &rdev->flags);
6953
6954 if (!mddev->persistent) {
6955 pr_debug("md: nonpersistent superblock ...\n");
6956 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6957 } else
6958 rdev->sb_start = calc_dev_sboffset(rdev);
6959 rdev->sectors = rdev->sb_start;
6960
6961 err = bind_rdev_to_array(rdev, mddev);
6962 if (err) {
6963 export_rdev(rdev);
6964 return err;
6965 }
6966 }
6967
6968 return 0;
6969 }
6970
hot_remove_disk(struct mddev * mddev,dev_t dev)6971 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6972 {
6973 char b[BDEVNAME_SIZE];
6974 struct md_rdev *rdev;
6975
6976 if (!mddev->pers)
6977 return -ENODEV;
6978
6979 rdev = find_rdev(mddev, dev);
6980 if (!rdev)
6981 return -ENXIO;
6982
6983 if (rdev->raid_disk < 0)
6984 goto kick_rdev;
6985
6986 clear_bit(Blocked, &rdev->flags);
6987 remove_and_add_spares(mddev, rdev);
6988
6989 if (rdev->raid_disk >= 0)
6990 goto busy;
6991
6992 kick_rdev:
6993 if (mddev_is_clustered(mddev)) {
6994 if (md_cluster_ops->remove_disk(mddev, rdev))
6995 goto busy;
6996 }
6997
6998 md_kick_rdev_from_array(rdev);
6999 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7000 if (mddev->thread)
7001 md_wakeup_thread(mddev->thread);
7002 else
7003 md_update_sb(mddev, 1);
7004 md_new_event(mddev);
7005
7006 return 0;
7007 busy:
7008 pr_debug("md: cannot remove active disk %s from %s ...\n",
7009 bdevname(rdev->bdev,b), mdname(mddev));
7010 return -EBUSY;
7011 }
7012
hot_add_disk(struct mddev * mddev,dev_t dev)7013 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7014 {
7015 char b[BDEVNAME_SIZE];
7016 int err;
7017 struct md_rdev *rdev;
7018
7019 if (!mddev->pers)
7020 return -ENODEV;
7021
7022 if (mddev->major_version != 0) {
7023 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7024 mdname(mddev));
7025 return -EINVAL;
7026 }
7027 if (!mddev->pers->hot_add_disk) {
7028 pr_warn("%s: personality does not support diskops!\n",
7029 mdname(mddev));
7030 return -EINVAL;
7031 }
7032
7033 rdev = md_import_device(dev, -1, 0);
7034 if (IS_ERR(rdev)) {
7035 pr_warn("md: error, md_import_device() returned %ld\n",
7036 PTR_ERR(rdev));
7037 return -EINVAL;
7038 }
7039
7040 if (mddev->persistent)
7041 rdev->sb_start = calc_dev_sboffset(rdev);
7042 else
7043 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
7044
7045 rdev->sectors = rdev->sb_start;
7046
7047 if (test_bit(Faulty, &rdev->flags)) {
7048 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
7049 bdevname(rdev->bdev,b), mdname(mddev));
7050 err = -EINVAL;
7051 goto abort_export;
7052 }
7053
7054 clear_bit(In_sync, &rdev->flags);
7055 rdev->desc_nr = -1;
7056 rdev->saved_raid_disk = -1;
7057 err = bind_rdev_to_array(rdev, mddev);
7058 if (err)
7059 goto abort_export;
7060
7061 /*
7062 * The rest should better be atomic, we can have disk failures
7063 * noticed in interrupt contexts ...
7064 */
7065
7066 rdev->raid_disk = -1;
7067
7068 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7069 if (!mddev->thread)
7070 md_update_sb(mddev, 1);
7071 /*
7072 * Kick recovery, maybe this spare has to be added to the
7073 * array immediately.
7074 */
7075 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7076 md_wakeup_thread(mddev->thread);
7077 md_new_event(mddev);
7078 return 0;
7079
7080 abort_export:
7081 export_rdev(rdev);
7082 return err;
7083 }
7084
set_bitmap_file(struct mddev * mddev,int fd)7085 static int set_bitmap_file(struct mddev *mddev, int fd)
7086 {
7087 int err = 0;
7088
7089 if (mddev->pers) {
7090 if (!mddev->pers->quiesce || !mddev->thread)
7091 return -EBUSY;
7092 if (mddev->recovery || mddev->sync_thread)
7093 return -EBUSY;
7094 /* we should be able to change the bitmap.. */
7095 }
7096
7097 if (fd >= 0) {
7098 struct inode *inode;
7099 struct file *f;
7100
7101 if (mddev->bitmap || mddev->bitmap_info.file)
7102 return -EEXIST; /* cannot add when bitmap is present */
7103 f = fget(fd);
7104
7105 if (f == NULL) {
7106 pr_warn("%s: error: failed to get bitmap file\n",
7107 mdname(mddev));
7108 return -EBADF;
7109 }
7110
7111 inode = f->f_mapping->host;
7112 if (!S_ISREG(inode->i_mode)) {
7113 pr_warn("%s: error: bitmap file must be a regular file\n",
7114 mdname(mddev));
7115 err = -EBADF;
7116 } else if (!(f->f_mode & FMODE_WRITE)) {
7117 pr_warn("%s: error: bitmap file must open for write\n",
7118 mdname(mddev));
7119 err = -EBADF;
7120 } else if (atomic_read(&inode->i_writecount) != 1) {
7121 pr_warn("%s: error: bitmap file is already in use\n",
7122 mdname(mddev));
7123 err = -EBUSY;
7124 }
7125 if (err) {
7126 fput(f);
7127 return err;
7128 }
7129 mddev->bitmap_info.file = f;
7130 mddev->bitmap_info.offset = 0; /* file overrides offset */
7131 } else if (mddev->bitmap == NULL)
7132 return -ENOENT; /* cannot remove what isn't there */
7133 err = 0;
7134 if (mddev->pers) {
7135 if (fd >= 0) {
7136 struct bitmap *bitmap;
7137
7138 bitmap = md_bitmap_create(mddev, -1);
7139 mddev_suspend(mddev);
7140 if (!IS_ERR(bitmap)) {
7141 mddev->bitmap = bitmap;
7142 err = md_bitmap_load(mddev);
7143 } else
7144 err = PTR_ERR(bitmap);
7145 if (err) {
7146 md_bitmap_destroy(mddev);
7147 fd = -1;
7148 }
7149 mddev_resume(mddev);
7150 } else if (fd < 0) {
7151 mddev_suspend(mddev);
7152 md_bitmap_destroy(mddev);
7153 mddev_resume(mddev);
7154 }
7155 }
7156 if (fd < 0) {
7157 struct file *f = mddev->bitmap_info.file;
7158 if (f) {
7159 spin_lock(&mddev->lock);
7160 mddev->bitmap_info.file = NULL;
7161 spin_unlock(&mddev->lock);
7162 fput(f);
7163 }
7164 }
7165
7166 return err;
7167 }
7168
7169 /*
7170 * md_set_array_info is used two different ways
7171 * The original usage is when creating a new array.
7172 * In this usage, raid_disks is > 0 and it together with
7173 * level, size, not_persistent,layout,chunksize determine the
7174 * shape of the array.
7175 * This will always create an array with a type-0.90.0 superblock.
7176 * The newer usage is when assembling an array.
7177 * In this case raid_disks will be 0, and the major_version field is
7178 * use to determine which style super-blocks are to be found on the devices.
7179 * The minor and patch _version numbers are also kept incase the
7180 * super_block handler wishes to interpret them.
7181 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7182 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7183 {
7184 if (info->raid_disks == 0) {
7185 /* just setting version number for superblock loading */
7186 if (info->major_version < 0 ||
7187 info->major_version >= ARRAY_SIZE(super_types) ||
7188 super_types[info->major_version].name == NULL) {
7189 /* maybe try to auto-load a module? */
7190 pr_warn("md: superblock version %d not known\n",
7191 info->major_version);
7192 return -EINVAL;
7193 }
7194 mddev->major_version = info->major_version;
7195 mddev->minor_version = info->minor_version;
7196 mddev->patch_version = info->patch_version;
7197 mddev->persistent = !info->not_persistent;
7198 /* ensure mddev_put doesn't delete this now that there
7199 * is some minimal configuration.
7200 */
7201 mddev->ctime = ktime_get_real_seconds();
7202 return 0;
7203 }
7204 mddev->major_version = MD_MAJOR_VERSION;
7205 mddev->minor_version = MD_MINOR_VERSION;
7206 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7207 mddev->ctime = ktime_get_real_seconds();
7208
7209 mddev->level = info->level;
7210 mddev->clevel[0] = 0;
7211 mddev->dev_sectors = 2 * (sector_t)info->size;
7212 mddev->raid_disks = info->raid_disks;
7213 /* don't set md_minor, it is determined by which /dev/md* was
7214 * openned
7215 */
7216 if (info->state & (1<<MD_SB_CLEAN))
7217 mddev->recovery_cp = MaxSector;
7218 else
7219 mddev->recovery_cp = 0;
7220 mddev->persistent = ! info->not_persistent;
7221 mddev->external = 0;
7222
7223 mddev->layout = info->layout;
7224 if (mddev->level == 0)
7225 /* Cannot trust RAID0 layout info here */
7226 mddev->layout = -1;
7227 mddev->chunk_sectors = info->chunk_size >> 9;
7228
7229 if (mddev->persistent) {
7230 mddev->max_disks = MD_SB_DISKS;
7231 mddev->flags = 0;
7232 mddev->sb_flags = 0;
7233 }
7234 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7235
7236 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7237 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7238 mddev->bitmap_info.offset = 0;
7239
7240 mddev->reshape_position = MaxSector;
7241
7242 /*
7243 * Generate a 128 bit UUID
7244 */
7245 get_random_bytes(mddev->uuid, 16);
7246
7247 mddev->new_level = mddev->level;
7248 mddev->new_chunk_sectors = mddev->chunk_sectors;
7249 mddev->new_layout = mddev->layout;
7250 mddev->delta_disks = 0;
7251 mddev->reshape_backwards = 0;
7252
7253 return 0;
7254 }
7255
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7256 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7257 {
7258 lockdep_assert_held(&mddev->reconfig_mutex);
7259
7260 if (mddev->external_size)
7261 return;
7262
7263 mddev->array_sectors = array_sectors;
7264 }
7265 EXPORT_SYMBOL(md_set_array_sectors);
7266
update_size(struct mddev * mddev,sector_t num_sectors)7267 static int update_size(struct mddev *mddev, sector_t num_sectors)
7268 {
7269 struct md_rdev *rdev;
7270 int rv;
7271 int fit = (num_sectors == 0);
7272 sector_t old_dev_sectors = mddev->dev_sectors;
7273
7274 if (mddev->pers->resize == NULL)
7275 return -EINVAL;
7276 /* The "num_sectors" is the number of sectors of each device that
7277 * is used. This can only make sense for arrays with redundancy.
7278 * linear and raid0 always use whatever space is available. We can only
7279 * consider changing this number if no resync or reconstruction is
7280 * happening, and if the new size is acceptable. It must fit before the
7281 * sb_start or, if that is <data_offset, it must fit before the size
7282 * of each device. If num_sectors is zero, we find the largest size
7283 * that fits.
7284 */
7285 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7286 mddev->sync_thread)
7287 return -EBUSY;
7288 if (mddev->ro)
7289 return -EROFS;
7290
7291 rdev_for_each(rdev, mddev) {
7292 sector_t avail = rdev->sectors;
7293
7294 if (fit && (num_sectors == 0 || num_sectors > avail))
7295 num_sectors = avail;
7296 if (avail < num_sectors)
7297 return -ENOSPC;
7298 }
7299 rv = mddev->pers->resize(mddev, num_sectors);
7300 if (!rv) {
7301 if (mddev_is_clustered(mddev))
7302 md_cluster_ops->update_size(mddev, old_dev_sectors);
7303 else if (mddev->queue) {
7304 set_capacity(mddev->gendisk, mddev->array_sectors);
7305 revalidate_disk_size(mddev->gendisk, true);
7306 }
7307 }
7308 return rv;
7309 }
7310
update_raid_disks(struct mddev * mddev,int raid_disks)7311 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7312 {
7313 int rv;
7314 struct md_rdev *rdev;
7315 /* change the number of raid disks */
7316 if (mddev->pers->check_reshape == NULL)
7317 return -EINVAL;
7318 if (mddev->ro)
7319 return -EROFS;
7320 if (raid_disks <= 0 ||
7321 (mddev->max_disks && raid_disks >= mddev->max_disks))
7322 return -EINVAL;
7323 if (mddev->sync_thread ||
7324 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7325 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7326 mddev->reshape_position != MaxSector)
7327 return -EBUSY;
7328
7329 rdev_for_each(rdev, mddev) {
7330 if (mddev->raid_disks < raid_disks &&
7331 rdev->data_offset < rdev->new_data_offset)
7332 return -EINVAL;
7333 if (mddev->raid_disks > raid_disks &&
7334 rdev->data_offset > rdev->new_data_offset)
7335 return -EINVAL;
7336 }
7337
7338 mddev->delta_disks = raid_disks - mddev->raid_disks;
7339 if (mddev->delta_disks < 0)
7340 mddev->reshape_backwards = 1;
7341 else if (mddev->delta_disks > 0)
7342 mddev->reshape_backwards = 0;
7343
7344 rv = mddev->pers->check_reshape(mddev);
7345 if (rv < 0) {
7346 mddev->delta_disks = 0;
7347 mddev->reshape_backwards = 0;
7348 }
7349 return rv;
7350 }
7351
7352 /*
7353 * update_array_info is used to change the configuration of an
7354 * on-line array.
7355 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7356 * fields in the info are checked against the array.
7357 * Any differences that cannot be handled will cause an error.
7358 * Normally, only one change can be managed at a time.
7359 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7360 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7361 {
7362 int rv = 0;
7363 int cnt = 0;
7364 int state = 0;
7365
7366 /* calculate expected state,ignoring low bits */
7367 if (mddev->bitmap && mddev->bitmap_info.offset)
7368 state |= (1 << MD_SB_BITMAP_PRESENT);
7369
7370 if (mddev->major_version != info->major_version ||
7371 mddev->minor_version != info->minor_version ||
7372 /* mddev->patch_version != info->patch_version || */
7373 mddev->ctime != info->ctime ||
7374 mddev->level != info->level ||
7375 /* mddev->layout != info->layout || */
7376 mddev->persistent != !info->not_persistent ||
7377 mddev->chunk_sectors != info->chunk_size >> 9 ||
7378 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7379 ((state^info->state) & 0xfffffe00)
7380 )
7381 return -EINVAL;
7382 /* Check there is only one change */
7383 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7384 cnt++;
7385 if (mddev->raid_disks != info->raid_disks)
7386 cnt++;
7387 if (mddev->layout != info->layout)
7388 cnt++;
7389 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7390 cnt++;
7391 if (cnt == 0)
7392 return 0;
7393 if (cnt > 1)
7394 return -EINVAL;
7395
7396 if (mddev->layout != info->layout) {
7397 /* Change layout
7398 * we don't need to do anything at the md level, the
7399 * personality will take care of it all.
7400 */
7401 if (mddev->pers->check_reshape == NULL)
7402 return -EINVAL;
7403 else {
7404 mddev->new_layout = info->layout;
7405 rv = mddev->pers->check_reshape(mddev);
7406 if (rv)
7407 mddev->new_layout = mddev->layout;
7408 return rv;
7409 }
7410 }
7411 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7412 rv = update_size(mddev, (sector_t)info->size * 2);
7413
7414 if (mddev->raid_disks != info->raid_disks)
7415 rv = update_raid_disks(mddev, info->raid_disks);
7416
7417 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7418 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7419 rv = -EINVAL;
7420 goto err;
7421 }
7422 if (mddev->recovery || mddev->sync_thread) {
7423 rv = -EBUSY;
7424 goto err;
7425 }
7426 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7427 struct bitmap *bitmap;
7428 /* add the bitmap */
7429 if (mddev->bitmap) {
7430 rv = -EEXIST;
7431 goto err;
7432 }
7433 if (mddev->bitmap_info.default_offset == 0) {
7434 rv = -EINVAL;
7435 goto err;
7436 }
7437 mddev->bitmap_info.offset =
7438 mddev->bitmap_info.default_offset;
7439 mddev->bitmap_info.space =
7440 mddev->bitmap_info.default_space;
7441 bitmap = md_bitmap_create(mddev, -1);
7442 mddev_suspend(mddev);
7443 if (!IS_ERR(bitmap)) {
7444 mddev->bitmap = bitmap;
7445 rv = md_bitmap_load(mddev);
7446 } else
7447 rv = PTR_ERR(bitmap);
7448 if (rv)
7449 md_bitmap_destroy(mddev);
7450 mddev_resume(mddev);
7451 } else {
7452 /* remove the bitmap */
7453 if (!mddev->bitmap) {
7454 rv = -ENOENT;
7455 goto err;
7456 }
7457 if (mddev->bitmap->storage.file) {
7458 rv = -EINVAL;
7459 goto err;
7460 }
7461 if (mddev->bitmap_info.nodes) {
7462 /* hold PW on all the bitmap lock */
7463 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7464 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7465 rv = -EPERM;
7466 md_cluster_ops->unlock_all_bitmaps(mddev);
7467 goto err;
7468 }
7469
7470 mddev->bitmap_info.nodes = 0;
7471 md_cluster_ops->leave(mddev);
7472 module_put(md_cluster_mod);
7473 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7474 }
7475 mddev_suspend(mddev);
7476 md_bitmap_destroy(mddev);
7477 mddev_resume(mddev);
7478 mddev->bitmap_info.offset = 0;
7479 }
7480 }
7481 md_update_sb(mddev, 1);
7482 return rv;
7483 err:
7484 return rv;
7485 }
7486
set_disk_faulty(struct mddev * mddev,dev_t dev)7487 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7488 {
7489 struct md_rdev *rdev;
7490 int err = 0;
7491
7492 if (mddev->pers == NULL)
7493 return -ENODEV;
7494
7495 rcu_read_lock();
7496 rdev = md_find_rdev_rcu(mddev, dev);
7497 if (!rdev)
7498 err = -ENODEV;
7499 else {
7500 md_error(mddev, rdev);
7501 if (!test_bit(Faulty, &rdev->flags))
7502 err = -EBUSY;
7503 }
7504 rcu_read_unlock();
7505 return err;
7506 }
7507
7508 /*
7509 * We have a problem here : there is no easy way to give a CHS
7510 * virtual geometry. We currently pretend that we have a 2 heads
7511 * 4 sectors (with a BIG number of cylinders...). This drives
7512 * dosfs just mad... ;-)
7513 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7514 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7515 {
7516 struct mddev *mddev = bdev->bd_disk->private_data;
7517
7518 geo->heads = 2;
7519 geo->sectors = 4;
7520 geo->cylinders = mddev->array_sectors / 8;
7521 return 0;
7522 }
7523
md_ioctl_valid(unsigned int cmd)7524 static inline bool md_ioctl_valid(unsigned int cmd)
7525 {
7526 switch (cmd) {
7527 case ADD_NEW_DISK:
7528 case BLKROSET:
7529 case GET_ARRAY_INFO:
7530 case GET_BITMAP_FILE:
7531 case GET_DISK_INFO:
7532 case HOT_ADD_DISK:
7533 case HOT_REMOVE_DISK:
7534 case RAID_VERSION:
7535 case RESTART_ARRAY_RW:
7536 case RUN_ARRAY:
7537 case SET_ARRAY_INFO:
7538 case SET_BITMAP_FILE:
7539 case SET_DISK_FAULTY:
7540 case STOP_ARRAY:
7541 case STOP_ARRAY_RO:
7542 case CLUSTERED_DISK_NACK:
7543 return true;
7544 default:
7545 return false;
7546 }
7547 }
7548
md_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7549 static int md_ioctl(struct block_device *bdev, fmode_t mode,
7550 unsigned int cmd, unsigned long arg)
7551 {
7552 int err = 0;
7553 void __user *argp = (void __user *)arg;
7554 struct mddev *mddev = NULL;
7555 int ro;
7556 bool did_set_md_closing = false;
7557
7558 if (!md_ioctl_valid(cmd))
7559 return -ENOTTY;
7560
7561 switch (cmd) {
7562 case RAID_VERSION:
7563 case GET_ARRAY_INFO:
7564 case GET_DISK_INFO:
7565 break;
7566 default:
7567 if (!capable(CAP_SYS_ADMIN))
7568 return -EACCES;
7569 }
7570
7571 /*
7572 * Commands dealing with the RAID driver but not any
7573 * particular array:
7574 */
7575 switch (cmd) {
7576 case RAID_VERSION:
7577 err = get_version(argp);
7578 goto out;
7579 default:;
7580 }
7581
7582 /*
7583 * Commands creating/starting a new array:
7584 */
7585
7586 mddev = bdev->bd_disk->private_data;
7587
7588 if (!mddev) {
7589 BUG();
7590 goto out;
7591 }
7592
7593 /* Some actions do not requires the mutex */
7594 switch (cmd) {
7595 case GET_ARRAY_INFO:
7596 if (!mddev->raid_disks && !mddev->external)
7597 err = -ENODEV;
7598 else
7599 err = get_array_info(mddev, argp);
7600 goto out;
7601
7602 case GET_DISK_INFO:
7603 if (!mddev->raid_disks && !mddev->external)
7604 err = -ENODEV;
7605 else
7606 err = get_disk_info(mddev, argp);
7607 goto out;
7608
7609 case SET_DISK_FAULTY:
7610 err = set_disk_faulty(mddev, new_decode_dev(arg));
7611 goto out;
7612
7613 case GET_BITMAP_FILE:
7614 err = get_bitmap_file(mddev, argp);
7615 goto out;
7616
7617 }
7618
7619 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7620 flush_rdev_wq(mddev);
7621
7622 if (cmd == HOT_REMOVE_DISK)
7623 /* need to ensure recovery thread has run */
7624 wait_event_interruptible_timeout(mddev->sb_wait,
7625 !test_bit(MD_RECOVERY_NEEDED,
7626 &mddev->recovery),
7627 msecs_to_jiffies(5000));
7628 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7629 /* Need to flush page cache, and ensure no-one else opens
7630 * and writes
7631 */
7632 mutex_lock(&mddev->open_mutex);
7633 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7634 mutex_unlock(&mddev->open_mutex);
7635 err = -EBUSY;
7636 goto out;
7637 }
7638 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7639 mutex_unlock(&mddev->open_mutex);
7640 err = -EBUSY;
7641 goto out;
7642 }
7643 did_set_md_closing = true;
7644 mutex_unlock(&mddev->open_mutex);
7645 sync_blockdev(bdev);
7646 }
7647 err = mddev_lock(mddev);
7648 if (err) {
7649 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7650 err, cmd);
7651 goto out;
7652 }
7653
7654 if (cmd == SET_ARRAY_INFO) {
7655 mdu_array_info_t info;
7656 if (!arg)
7657 memset(&info, 0, sizeof(info));
7658 else if (copy_from_user(&info, argp, sizeof(info))) {
7659 err = -EFAULT;
7660 goto unlock;
7661 }
7662 if (mddev->pers) {
7663 err = update_array_info(mddev, &info);
7664 if (err) {
7665 pr_warn("md: couldn't update array info. %d\n", err);
7666 goto unlock;
7667 }
7668 goto unlock;
7669 }
7670 if (!list_empty(&mddev->disks)) {
7671 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7672 err = -EBUSY;
7673 goto unlock;
7674 }
7675 if (mddev->raid_disks) {
7676 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7677 err = -EBUSY;
7678 goto unlock;
7679 }
7680 err = md_set_array_info(mddev, &info);
7681 if (err) {
7682 pr_warn("md: couldn't set array info. %d\n", err);
7683 goto unlock;
7684 }
7685 goto unlock;
7686 }
7687
7688 /*
7689 * Commands querying/configuring an existing array:
7690 */
7691 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7692 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7693 if ((!mddev->raid_disks && !mddev->external)
7694 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7695 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7696 && cmd != GET_BITMAP_FILE) {
7697 err = -ENODEV;
7698 goto unlock;
7699 }
7700
7701 /*
7702 * Commands even a read-only array can execute:
7703 */
7704 switch (cmd) {
7705 case RESTART_ARRAY_RW:
7706 err = restart_array(mddev);
7707 goto unlock;
7708
7709 case STOP_ARRAY:
7710 err = do_md_stop(mddev, 0, bdev);
7711 goto unlock;
7712
7713 case STOP_ARRAY_RO:
7714 err = md_set_readonly(mddev, bdev);
7715 goto unlock;
7716
7717 case HOT_REMOVE_DISK:
7718 err = hot_remove_disk(mddev, new_decode_dev(arg));
7719 goto unlock;
7720
7721 case ADD_NEW_DISK:
7722 /* We can support ADD_NEW_DISK on read-only arrays
7723 * only if we are re-adding a preexisting device.
7724 * So require mddev->pers and MD_DISK_SYNC.
7725 */
7726 if (mddev->pers) {
7727 mdu_disk_info_t info;
7728 if (copy_from_user(&info, argp, sizeof(info)))
7729 err = -EFAULT;
7730 else if (!(info.state & (1<<MD_DISK_SYNC)))
7731 /* Need to clear read-only for this */
7732 break;
7733 else
7734 err = md_add_new_disk(mddev, &info);
7735 goto unlock;
7736 }
7737 break;
7738
7739 case BLKROSET:
7740 if (get_user(ro, (int __user *)(arg))) {
7741 err = -EFAULT;
7742 goto unlock;
7743 }
7744 err = -EINVAL;
7745
7746 /* if the bdev is going readonly the value of mddev->ro
7747 * does not matter, no writes are coming
7748 */
7749 if (ro)
7750 goto unlock;
7751
7752 /* are we are already prepared for writes? */
7753 if (mddev->ro != 1)
7754 goto unlock;
7755
7756 /* transitioning to readauto need only happen for
7757 * arrays that call md_write_start
7758 */
7759 if (mddev->pers) {
7760 err = restart_array(mddev);
7761 if (err == 0) {
7762 mddev->ro = 2;
7763 set_disk_ro(mddev->gendisk, 0);
7764 }
7765 }
7766 goto unlock;
7767 }
7768
7769 /*
7770 * The remaining ioctls are changing the state of the
7771 * superblock, so we do not allow them on read-only arrays.
7772 */
7773 if (mddev->ro && mddev->pers) {
7774 if (mddev->ro == 2) {
7775 mddev->ro = 0;
7776 sysfs_notify_dirent_safe(mddev->sysfs_state);
7777 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7778 /* mddev_unlock will wake thread */
7779 /* If a device failed while we were read-only, we
7780 * need to make sure the metadata is updated now.
7781 */
7782 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7783 mddev_unlock(mddev);
7784 wait_event(mddev->sb_wait,
7785 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7786 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7787 mddev_lock_nointr(mddev);
7788 }
7789 } else {
7790 err = -EROFS;
7791 goto unlock;
7792 }
7793 }
7794
7795 switch (cmd) {
7796 case ADD_NEW_DISK:
7797 {
7798 mdu_disk_info_t info;
7799 if (copy_from_user(&info, argp, sizeof(info)))
7800 err = -EFAULT;
7801 else
7802 err = md_add_new_disk(mddev, &info);
7803 goto unlock;
7804 }
7805
7806 case CLUSTERED_DISK_NACK:
7807 if (mddev_is_clustered(mddev))
7808 md_cluster_ops->new_disk_ack(mddev, false);
7809 else
7810 err = -EINVAL;
7811 goto unlock;
7812
7813 case HOT_ADD_DISK:
7814 err = hot_add_disk(mddev, new_decode_dev(arg));
7815 goto unlock;
7816
7817 case RUN_ARRAY:
7818 err = do_md_run(mddev);
7819 goto unlock;
7820
7821 case SET_BITMAP_FILE:
7822 err = set_bitmap_file(mddev, (int)arg);
7823 goto unlock;
7824
7825 default:
7826 err = -EINVAL;
7827 goto unlock;
7828 }
7829
7830 unlock:
7831 if (mddev->hold_active == UNTIL_IOCTL &&
7832 err != -EINVAL)
7833 mddev->hold_active = 0;
7834 mddev_unlock(mddev);
7835 out:
7836 if(did_set_md_closing)
7837 clear_bit(MD_CLOSING, &mddev->flags);
7838 return err;
7839 }
7840 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)7841 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7842 unsigned int cmd, unsigned long arg)
7843 {
7844 switch (cmd) {
7845 case HOT_REMOVE_DISK:
7846 case HOT_ADD_DISK:
7847 case SET_DISK_FAULTY:
7848 case SET_BITMAP_FILE:
7849 /* These take in integer arg, do not convert */
7850 break;
7851 default:
7852 arg = (unsigned long)compat_ptr(arg);
7853 break;
7854 }
7855
7856 return md_ioctl(bdev, mode, cmd, arg);
7857 }
7858 #endif /* CONFIG_COMPAT */
7859
md_open(struct block_device * bdev,fmode_t mode)7860 static int md_open(struct block_device *bdev, fmode_t mode)
7861 {
7862 /*
7863 * Succeed if we can lock the mddev, which confirms that
7864 * it isn't being stopped right now.
7865 */
7866 struct mddev *mddev = mddev_find(bdev->bd_dev);
7867 int err;
7868
7869 if (!mddev)
7870 return -ENODEV;
7871
7872 if (mddev->gendisk != bdev->bd_disk) {
7873 /* we are racing with mddev_put which is discarding this
7874 * bd_disk.
7875 */
7876 mddev_put(mddev);
7877 /* Wait until bdev->bd_disk is definitely gone */
7878 if (work_pending(&mddev->del_work))
7879 flush_workqueue(md_misc_wq);
7880 return -EBUSY;
7881 }
7882 BUG_ON(mddev != bdev->bd_disk->private_data);
7883
7884 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7885 goto out;
7886
7887 if (test_bit(MD_CLOSING, &mddev->flags)) {
7888 mutex_unlock(&mddev->open_mutex);
7889 err = -ENODEV;
7890 goto out;
7891 }
7892
7893 err = 0;
7894 atomic_inc(&mddev->openers);
7895 mutex_unlock(&mddev->open_mutex);
7896
7897 bdev_check_media_change(bdev);
7898 out:
7899 if (err)
7900 mddev_put(mddev);
7901 return err;
7902 }
7903
md_release(struct gendisk * disk,fmode_t mode)7904 static void md_release(struct gendisk *disk, fmode_t mode)
7905 {
7906 struct mddev *mddev = disk->private_data;
7907
7908 BUG_ON(!mddev);
7909 atomic_dec(&mddev->openers);
7910 mddev_put(mddev);
7911 }
7912
md_check_events(struct gendisk * disk,unsigned int clearing)7913 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7914 {
7915 struct mddev *mddev = disk->private_data;
7916 unsigned int ret = 0;
7917
7918 if (mddev->changed)
7919 ret = DISK_EVENT_MEDIA_CHANGE;
7920 mddev->changed = 0;
7921 return ret;
7922 }
7923
7924 const struct block_device_operations md_fops =
7925 {
7926 .owner = THIS_MODULE,
7927 .submit_bio = md_submit_bio,
7928 .open = md_open,
7929 .release = md_release,
7930 .ioctl = md_ioctl,
7931 #ifdef CONFIG_COMPAT
7932 .compat_ioctl = md_compat_ioctl,
7933 #endif
7934 .getgeo = md_getgeo,
7935 .check_events = md_check_events,
7936 };
7937
md_thread(void * arg)7938 static int md_thread(void *arg)
7939 {
7940 struct md_thread *thread = arg;
7941
7942 /*
7943 * md_thread is a 'system-thread', it's priority should be very
7944 * high. We avoid resource deadlocks individually in each
7945 * raid personality. (RAID5 does preallocation) We also use RR and
7946 * the very same RT priority as kswapd, thus we will never get
7947 * into a priority inversion deadlock.
7948 *
7949 * we definitely have to have equal or higher priority than
7950 * bdflush, otherwise bdflush will deadlock if there are too
7951 * many dirty RAID5 blocks.
7952 */
7953
7954 allow_signal(SIGKILL);
7955 while (!kthread_should_stop()) {
7956
7957 /* We need to wait INTERRUPTIBLE so that
7958 * we don't add to the load-average.
7959 * That means we need to be sure no signals are
7960 * pending
7961 */
7962 if (signal_pending(current))
7963 flush_signals(current);
7964
7965 wait_event_interruptible_timeout
7966 (thread->wqueue,
7967 test_bit(THREAD_WAKEUP, &thread->flags)
7968 || kthread_should_stop() || kthread_should_park(),
7969 thread->timeout);
7970
7971 clear_bit(THREAD_WAKEUP, &thread->flags);
7972 if (kthread_should_park())
7973 kthread_parkme();
7974 if (!kthread_should_stop())
7975 thread->run(thread);
7976 }
7977
7978 return 0;
7979 }
7980
md_wakeup_thread(struct md_thread * thread)7981 void md_wakeup_thread(struct md_thread *thread)
7982 {
7983 if (thread) {
7984 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7985 set_bit(THREAD_WAKEUP, &thread->flags);
7986 wake_up(&thread->wqueue);
7987 }
7988 }
7989 EXPORT_SYMBOL(md_wakeup_thread);
7990
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)7991 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7992 struct mddev *mddev, const char *name)
7993 {
7994 struct md_thread *thread;
7995
7996 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7997 if (!thread)
7998 return NULL;
7999
8000 init_waitqueue_head(&thread->wqueue);
8001
8002 thread->run = run;
8003 thread->mddev = mddev;
8004 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8005 thread->tsk = kthread_run(md_thread, thread,
8006 "%s_%s",
8007 mdname(thread->mddev),
8008 name);
8009 if (IS_ERR(thread->tsk)) {
8010 kfree(thread);
8011 return NULL;
8012 }
8013 return thread;
8014 }
8015 EXPORT_SYMBOL(md_register_thread);
8016
md_unregister_thread(struct md_thread ** threadp)8017 void md_unregister_thread(struct md_thread **threadp)
8018 {
8019 struct md_thread *thread;
8020
8021 /*
8022 * Locking ensures that mddev_unlock does not wake_up a
8023 * non-existent thread
8024 */
8025 spin_lock(&pers_lock);
8026 thread = *threadp;
8027 if (!thread) {
8028 spin_unlock(&pers_lock);
8029 return;
8030 }
8031 *threadp = NULL;
8032 spin_unlock(&pers_lock);
8033
8034 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8035 kthread_stop(thread->tsk);
8036 kfree(thread);
8037 }
8038 EXPORT_SYMBOL(md_unregister_thread);
8039
md_error(struct mddev * mddev,struct md_rdev * rdev)8040 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8041 {
8042 if (!rdev || test_bit(Faulty, &rdev->flags))
8043 return;
8044
8045 if (!mddev->pers || !mddev->pers->error_handler)
8046 return;
8047 mddev->pers->error_handler(mddev,rdev);
8048 if (mddev->degraded)
8049 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8050 sysfs_notify_dirent_safe(rdev->sysfs_state);
8051 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8052 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8053 md_wakeup_thread(mddev->thread);
8054 if (mddev->event_work.func)
8055 queue_work(md_misc_wq, &mddev->event_work);
8056 md_new_event(mddev);
8057 }
8058 EXPORT_SYMBOL(md_error);
8059
8060 /* seq_file implementation /proc/mdstat */
8061
status_unused(struct seq_file * seq)8062 static void status_unused(struct seq_file *seq)
8063 {
8064 int i = 0;
8065 struct md_rdev *rdev;
8066
8067 seq_printf(seq, "unused devices: ");
8068
8069 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8070 char b[BDEVNAME_SIZE];
8071 i++;
8072 seq_printf(seq, "%s ",
8073 bdevname(rdev->bdev,b));
8074 }
8075 if (!i)
8076 seq_printf(seq, "<none>");
8077
8078 seq_printf(seq, "\n");
8079 }
8080
status_resync(struct seq_file * seq,struct mddev * mddev)8081 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8082 {
8083 sector_t max_sectors, resync, res;
8084 unsigned long dt, db = 0;
8085 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8086 int scale, recovery_active;
8087 unsigned int per_milli;
8088
8089 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8090 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8091 max_sectors = mddev->resync_max_sectors;
8092 else
8093 max_sectors = mddev->dev_sectors;
8094
8095 resync = mddev->curr_resync;
8096 if (resync <= 3) {
8097 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8098 /* Still cleaning up */
8099 resync = max_sectors;
8100 } else if (resync > max_sectors)
8101 resync = max_sectors;
8102 else
8103 resync -= atomic_read(&mddev->recovery_active);
8104
8105 if (resync == 0) {
8106 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8107 struct md_rdev *rdev;
8108
8109 rdev_for_each(rdev, mddev)
8110 if (rdev->raid_disk >= 0 &&
8111 !test_bit(Faulty, &rdev->flags) &&
8112 rdev->recovery_offset != MaxSector &&
8113 rdev->recovery_offset) {
8114 seq_printf(seq, "\trecover=REMOTE");
8115 return 1;
8116 }
8117 if (mddev->reshape_position != MaxSector)
8118 seq_printf(seq, "\treshape=REMOTE");
8119 else
8120 seq_printf(seq, "\tresync=REMOTE");
8121 return 1;
8122 }
8123 if (mddev->recovery_cp < MaxSector) {
8124 seq_printf(seq, "\tresync=PENDING");
8125 return 1;
8126 }
8127 return 0;
8128 }
8129 if (resync < 3) {
8130 seq_printf(seq, "\tresync=DELAYED");
8131 return 1;
8132 }
8133
8134 WARN_ON(max_sectors == 0);
8135 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8136 * in a sector_t, and (max_sectors>>scale) will fit in a
8137 * u32, as those are the requirements for sector_div.
8138 * Thus 'scale' must be at least 10
8139 */
8140 scale = 10;
8141 if (sizeof(sector_t) > sizeof(unsigned long)) {
8142 while ( max_sectors/2 > (1ULL<<(scale+32)))
8143 scale++;
8144 }
8145 res = (resync>>scale)*1000;
8146 sector_div(res, (u32)((max_sectors>>scale)+1));
8147
8148 per_milli = res;
8149 {
8150 int i, x = per_milli/50, y = 20-x;
8151 seq_printf(seq, "[");
8152 for (i = 0; i < x; i++)
8153 seq_printf(seq, "=");
8154 seq_printf(seq, ">");
8155 for (i = 0; i < y; i++)
8156 seq_printf(seq, ".");
8157 seq_printf(seq, "] ");
8158 }
8159 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8160 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8161 "reshape" :
8162 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8163 "check" :
8164 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8165 "resync" : "recovery"))),
8166 per_milli/10, per_milli % 10,
8167 (unsigned long long) resync/2,
8168 (unsigned long long) max_sectors/2);
8169
8170 /*
8171 * dt: time from mark until now
8172 * db: blocks written from mark until now
8173 * rt: remaining time
8174 *
8175 * rt is a sector_t, which is always 64bit now. We are keeping
8176 * the original algorithm, but it is not really necessary.
8177 *
8178 * Original algorithm:
8179 * So we divide before multiply in case it is 32bit and close
8180 * to the limit.
8181 * We scale the divisor (db) by 32 to avoid losing precision
8182 * near the end of resync when the number of remaining sectors
8183 * is close to 'db'.
8184 * We then divide rt by 32 after multiplying by db to compensate.
8185 * The '+1' avoids division by zero if db is very small.
8186 */
8187 dt = ((jiffies - mddev->resync_mark) / HZ);
8188 if (!dt) dt++;
8189
8190 curr_mark_cnt = mddev->curr_mark_cnt;
8191 recovery_active = atomic_read(&mddev->recovery_active);
8192 resync_mark_cnt = mddev->resync_mark_cnt;
8193
8194 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8195 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8196
8197 rt = max_sectors - resync; /* number of remaining sectors */
8198 rt = div64_u64(rt, db/32+1);
8199 rt *= dt;
8200 rt >>= 5;
8201
8202 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8203 ((unsigned long)rt % 60)/6);
8204
8205 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8206 return 1;
8207 }
8208
md_seq_start(struct seq_file * seq,loff_t * pos)8209 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8210 {
8211 struct list_head *tmp;
8212 loff_t l = *pos;
8213 struct mddev *mddev;
8214
8215 if (l == 0x10000) {
8216 ++*pos;
8217 return (void *)2;
8218 }
8219 if (l > 0x10000)
8220 return NULL;
8221 if (!l--)
8222 /* header */
8223 return (void*)1;
8224
8225 spin_lock(&all_mddevs_lock);
8226 list_for_each(tmp,&all_mddevs)
8227 if (!l--) {
8228 mddev = list_entry(tmp, struct mddev, all_mddevs);
8229 mddev_get(mddev);
8230 spin_unlock(&all_mddevs_lock);
8231 return mddev;
8232 }
8233 spin_unlock(&all_mddevs_lock);
8234 if (!l--)
8235 return (void*)2;/* tail */
8236 return NULL;
8237 }
8238
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8239 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8240 {
8241 struct list_head *tmp;
8242 struct mddev *next_mddev, *mddev = v;
8243
8244 ++*pos;
8245 if (v == (void*)2)
8246 return NULL;
8247
8248 spin_lock(&all_mddevs_lock);
8249 if (v == (void*)1)
8250 tmp = all_mddevs.next;
8251 else
8252 tmp = mddev->all_mddevs.next;
8253 if (tmp != &all_mddevs)
8254 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8255 else {
8256 next_mddev = (void*)2;
8257 *pos = 0x10000;
8258 }
8259 spin_unlock(&all_mddevs_lock);
8260
8261 if (v != (void*)1)
8262 mddev_put(mddev);
8263 return next_mddev;
8264
8265 }
8266
md_seq_stop(struct seq_file * seq,void * v)8267 static void md_seq_stop(struct seq_file *seq, void *v)
8268 {
8269 struct mddev *mddev = v;
8270
8271 if (mddev && v != (void*)1 && v != (void*)2)
8272 mddev_put(mddev);
8273 }
8274
md_seq_show(struct seq_file * seq,void * v)8275 static int md_seq_show(struct seq_file *seq, void *v)
8276 {
8277 struct mddev *mddev = v;
8278 sector_t sectors;
8279 struct md_rdev *rdev;
8280
8281 if (v == (void*)1) {
8282 struct md_personality *pers;
8283 seq_printf(seq, "Personalities : ");
8284 spin_lock(&pers_lock);
8285 list_for_each_entry(pers, &pers_list, list)
8286 seq_printf(seq, "[%s] ", pers->name);
8287
8288 spin_unlock(&pers_lock);
8289 seq_printf(seq, "\n");
8290 seq->poll_event = atomic_read(&md_event_count);
8291 return 0;
8292 }
8293 if (v == (void*)2) {
8294 status_unused(seq);
8295 return 0;
8296 }
8297
8298 spin_lock(&mddev->lock);
8299 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8300 seq_printf(seq, "%s : %sactive", mdname(mddev),
8301 mddev->pers ? "" : "in");
8302 if (mddev->pers) {
8303 if (mddev->ro==1)
8304 seq_printf(seq, " (read-only)");
8305 if (mddev->ro==2)
8306 seq_printf(seq, " (auto-read-only)");
8307 seq_printf(seq, " %s", mddev->pers->name);
8308 }
8309
8310 sectors = 0;
8311 rcu_read_lock();
8312 rdev_for_each_rcu(rdev, mddev) {
8313 char b[BDEVNAME_SIZE];
8314 seq_printf(seq, " %s[%d]",
8315 bdevname(rdev->bdev,b), rdev->desc_nr);
8316 if (test_bit(WriteMostly, &rdev->flags))
8317 seq_printf(seq, "(W)");
8318 if (test_bit(Journal, &rdev->flags))
8319 seq_printf(seq, "(J)");
8320 if (test_bit(Faulty, &rdev->flags)) {
8321 seq_printf(seq, "(F)");
8322 continue;
8323 }
8324 if (rdev->raid_disk < 0)
8325 seq_printf(seq, "(S)"); /* spare */
8326 if (test_bit(Replacement, &rdev->flags))
8327 seq_printf(seq, "(R)");
8328 sectors += rdev->sectors;
8329 }
8330 rcu_read_unlock();
8331
8332 if (!list_empty(&mddev->disks)) {
8333 if (mddev->pers)
8334 seq_printf(seq, "\n %llu blocks",
8335 (unsigned long long)
8336 mddev->array_sectors / 2);
8337 else
8338 seq_printf(seq, "\n %llu blocks",
8339 (unsigned long long)sectors / 2);
8340 }
8341 if (mddev->persistent) {
8342 if (mddev->major_version != 0 ||
8343 mddev->minor_version != 90) {
8344 seq_printf(seq," super %d.%d",
8345 mddev->major_version,
8346 mddev->minor_version);
8347 }
8348 } else if (mddev->external)
8349 seq_printf(seq, " super external:%s",
8350 mddev->metadata_type);
8351 else
8352 seq_printf(seq, " super non-persistent");
8353
8354 if (mddev->pers) {
8355 mddev->pers->status(seq, mddev);
8356 seq_printf(seq, "\n ");
8357 if (mddev->pers->sync_request) {
8358 if (status_resync(seq, mddev))
8359 seq_printf(seq, "\n ");
8360 }
8361 } else
8362 seq_printf(seq, "\n ");
8363
8364 md_bitmap_status(seq, mddev->bitmap);
8365
8366 seq_printf(seq, "\n");
8367 }
8368 spin_unlock(&mddev->lock);
8369
8370 return 0;
8371 }
8372
8373 static const struct seq_operations md_seq_ops = {
8374 .start = md_seq_start,
8375 .next = md_seq_next,
8376 .stop = md_seq_stop,
8377 .show = md_seq_show,
8378 };
8379
md_seq_open(struct inode * inode,struct file * file)8380 static int md_seq_open(struct inode *inode, struct file *file)
8381 {
8382 struct seq_file *seq;
8383 int error;
8384
8385 error = seq_open(file, &md_seq_ops);
8386 if (error)
8387 return error;
8388
8389 seq = file->private_data;
8390 seq->poll_event = atomic_read(&md_event_count);
8391 return error;
8392 }
8393
8394 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8395 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8396 {
8397 struct seq_file *seq = filp->private_data;
8398 __poll_t mask;
8399
8400 if (md_unloading)
8401 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8402 poll_wait(filp, &md_event_waiters, wait);
8403
8404 /* always allow read */
8405 mask = EPOLLIN | EPOLLRDNORM;
8406
8407 if (seq->poll_event != atomic_read(&md_event_count))
8408 mask |= EPOLLERR | EPOLLPRI;
8409 return mask;
8410 }
8411
8412 static const struct proc_ops mdstat_proc_ops = {
8413 .proc_open = md_seq_open,
8414 .proc_read = seq_read,
8415 .proc_lseek = seq_lseek,
8416 .proc_release = seq_release,
8417 .proc_poll = mdstat_poll,
8418 };
8419
register_md_personality(struct md_personality * p)8420 int register_md_personality(struct md_personality *p)
8421 {
8422 pr_debug("md: %s personality registered for level %d\n",
8423 p->name, p->level);
8424 spin_lock(&pers_lock);
8425 list_add_tail(&p->list, &pers_list);
8426 spin_unlock(&pers_lock);
8427 return 0;
8428 }
8429 EXPORT_SYMBOL(register_md_personality);
8430
unregister_md_personality(struct md_personality * p)8431 int unregister_md_personality(struct md_personality *p)
8432 {
8433 pr_debug("md: %s personality unregistered\n", p->name);
8434 spin_lock(&pers_lock);
8435 list_del_init(&p->list);
8436 spin_unlock(&pers_lock);
8437 return 0;
8438 }
8439 EXPORT_SYMBOL(unregister_md_personality);
8440
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8441 int register_md_cluster_operations(struct md_cluster_operations *ops,
8442 struct module *module)
8443 {
8444 int ret = 0;
8445 spin_lock(&pers_lock);
8446 if (md_cluster_ops != NULL)
8447 ret = -EALREADY;
8448 else {
8449 md_cluster_ops = ops;
8450 md_cluster_mod = module;
8451 }
8452 spin_unlock(&pers_lock);
8453 return ret;
8454 }
8455 EXPORT_SYMBOL(register_md_cluster_operations);
8456
unregister_md_cluster_operations(void)8457 int unregister_md_cluster_operations(void)
8458 {
8459 spin_lock(&pers_lock);
8460 md_cluster_ops = NULL;
8461 spin_unlock(&pers_lock);
8462 return 0;
8463 }
8464 EXPORT_SYMBOL(unregister_md_cluster_operations);
8465
md_setup_cluster(struct mddev * mddev,int nodes)8466 int md_setup_cluster(struct mddev *mddev, int nodes)
8467 {
8468 int ret;
8469 if (!md_cluster_ops)
8470 request_module("md-cluster");
8471 spin_lock(&pers_lock);
8472 /* ensure module won't be unloaded */
8473 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8474 pr_warn("can't find md-cluster module or get it's reference.\n");
8475 spin_unlock(&pers_lock);
8476 return -ENOENT;
8477 }
8478 spin_unlock(&pers_lock);
8479
8480 ret = md_cluster_ops->join(mddev, nodes);
8481 if (!ret)
8482 mddev->safemode_delay = 0;
8483 return ret;
8484 }
8485
md_cluster_stop(struct mddev * mddev)8486 void md_cluster_stop(struct mddev *mddev)
8487 {
8488 if (!md_cluster_ops)
8489 return;
8490 md_cluster_ops->leave(mddev);
8491 module_put(md_cluster_mod);
8492 }
8493
is_mddev_idle(struct mddev * mddev,int init)8494 static int is_mddev_idle(struct mddev *mddev, int init)
8495 {
8496 struct md_rdev *rdev;
8497 int idle;
8498 int curr_events;
8499
8500 idle = 1;
8501 rcu_read_lock();
8502 rdev_for_each_rcu(rdev, mddev) {
8503 struct gendisk *disk = rdev->bdev->bd_disk;
8504 curr_events = (int)part_stat_read_accum(&disk->part0, sectors) -
8505 atomic_read(&disk->sync_io);
8506 /* sync IO will cause sync_io to increase before the disk_stats
8507 * as sync_io is counted when a request starts, and
8508 * disk_stats is counted when it completes.
8509 * So resync activity will cause curr_events to be smaller than
8510 * when there was no such activity.
8511 * non-sync IO will cause disk_stat to increase without
8512 * increasing sync_io so curr_events will (eventually)
8513 * be larger than it was before. Once it becomes
8514 * substantially larger, the test below will cause
8515 * the array to appear non-idle, and resync will slow
8516 * down.
8517 * If there is a lot of outstanding resync activity when
8518 * we set last_event to curr_events, then all that activity
8519 * completing might cause the array to appear non-idle
8520 * and resync will be slowed down even though there might
8521 * not have been non-resync activity. This will only
8522 * happen once though. 'last_events' will soon reflect
8523 * the state where there is little or no outstanding
8524 * resync requests, and further resync activity will
8525 * always make curr_events less than last_events.
8526 *
8527 */
8528 if (init || curr_events - rdev->last_events > 64) {
8529 rdev->last_events = curr_events;
8530 idle = 0;
8531 }
8532 }
8533 rcu_read_unlock();
8534 return idle;
8535 }
8536
md_done_sync(struct mddev * mddev,int blocks,int ok)8537 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8538 {
8539 /* another "blocks" (512byte) blocks have been synced */
8540 atomic_sub(blocks, &mddev->recovery_active);
8541 wake_up(&mddev->recovery_wait);
8542 if (!ok) {
8543 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8544 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8545 md_wakeup_thread(mddev->thread);
8546 // stop recovery, signal do_sync ....
8547 }
8548 }
8549 EXPORT_SYMBOL(md_done_sync);
8550
8551 /* md_write_start(mddev, bi)
8552 * If we need to update some array metadata (e.g. 'active' flag
8553 * in superblock) before writing, schedule a superblock update
8554 * and wait for it to complete.
8555 * A return value of 'false' means that the write wasn't recorded
8556 * and cannot proceed as the array is being suspend.
8557 */
md_write_start(struct mddev * mddev,struct bio * bi)8558 bool md_write_start(struct mddev *mddev, struct bio *bi)
8559 {
8560 int did_change = 0;
8561
8562 if (bio_data_dir(bi) != WRITE)
8563 return true;
8564
8565 BUG_ON(mddev->ro == 1);
8566 if (mddev->ro == 2) {
8567 /* need to switch to read/write */
8568 mddev->ro = 0;
8569 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8570 md_wakeup_thread(mddev->thread);
8571 md_wakeup_thread(mddev->sync_thread);
8572 did_change = 1;
8573 }
8574 rcu_read_lock();
8575 percpu_ref_get(&mddev->writes_pending);
8576 smp_mb(); /* Match smp_mb in set_in_sync() */
8577 if (mddev->safemode == 1)
8578 mddev->safemode = 0;
8579 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8580 if (mddev->in_sync || mddev->sync_checkers) {
8581 spin_lock(&mddev->lock);
8582 if (mddev->in_sync) {
8583 mddev->in_sync = 0;
8584 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8585 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8586 md_wakeup_thread(mddev->thread);
8587 did_change = 1;
8588 }
8589 spin_unlock(&mddev->lock);
8590 }
8591 rcu_read_unlock();
8592 if (did_change)
8593 sysfs_notify_dirent_safe(mddev->sysfs_state);
8594 if (!mddev->has_superblocks)
8595 return true;
8596 wait_event(mddev->sb_wait,
8597 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8598 mddev->suspended);
8599 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8600 percpu_ref_put(&mddev->writes_pending);
8601 return false;
8602 }
8603 return true;
8604 }
8605 EXPORT_SYMBOL(md_write_start);
8606
8607 /* md_write_inc can only be called when md_write_start() has
8608 * already been called at least once of the current request.
8609 * It increments the counter and is useful when a single request
8610 * is split into several parts. Each part causes an increment and
8611 * so needs a matching md_write_end().
8612 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8613 * a spinlocked region.
8614 */
md_write_inc(struct mddev * mddev,struct bio * bi)8615 void md_write_inc(struct mddev *mddev, struct bio *bi)
8616 {
8617 if (bio_data_dir(bi) != WRITE)
8618 return;
8619 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8620 percpu_ref_get(&mddev->writes_pending);
8621 }
8622 EXPORT_SYMBOL(md_write_inc);
8623
md_write_end(struct mddev * mddev)8624 void md_write_end(struct mddev *mddev)
8625 {
8626 percpu_ref_put(&mddev->writes_pending);
8627
8628 if (mddev->safemode == 2)
8629 md_wakeup_thread(mddev->thread);
8630 else if (mddev->safemode_delay)
8631 /* The roundup() ensures this only performs locking once
8632 * every ->safemode_delay jiffies
8633 */
8634 mod_timer(&mddev->safemode_timer,
8635 roundup(jiffies, mddev->safemode_delay) +
8636 mddev->safemode_delay);
8637 }
8638
8639 EXPORT_SYMBOL(md_write_end);
8640
8641 /* md_allow_write(mddev)
8642 * Calling this ensures that the array is marked 'active' so that writes
8643 * may proceed without blocking. It is important to call this before
8644 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8645 * Must be called with mddev_lock held.
8646 */
md_allow_write(struct mddev * mddev)8647 void md_allow_write(struct mddev *mddev)
8648 {
8649 if (!mddev->pers)
8650 return;
8651 if (mddev->ro)
8652 return;
8653 if (!mddev->pers->sync_request)
8654 return;
8655
8656 spin_lock(&mddev->lock);
8657 if (mddev->in_sync) {
8658 mddev->in_sync = 0;
8659 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8660 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8661 if (mddev->safemode_delay &&
8662 mddev->safemode == 0)
8663 mddev->safemode = 1;
8664 spin_unlock(&mddev->lock);
8665 md_update_sb(mddev, 0);
8666 sysfs_notify_dirent_safe(mddev->sysfs_state);
8667 /* wait for the dirty state to be recorded in the metadata */
8668 wait_event(mddev->sb_wait,
8669 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8670 } else
8671 spin_unlock(&mddev->lock);
8672 }
8673 EXPORT_SYMBOL_GPL(md_allow_write);
8674
8675 #define SYNC_MARKS 10
8676 #define SYNC_MARK_STEP (3*HZ)
8677 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8678 void md_do_sync(struct md_thread *thread)
8679 {
8680 struct mddev *mddev = thread->mddev;
8681 struct mddev *mddev2;
8682 unsigned int currspeed = 0, window;
8683 sector_t max_sectors,j, io_sectors, recovery_done;
8684 unsigned long mark[SYNC_MARKS];
8685 unsigned long update_time;
8686 sector_t mark_cnt[SYNC_MARKS];
8687 int last_mark,m;
8688 struct list_head *tmp;
8689 sector_t last_check;
8690 int skipped = 0;
8691 struct md_rdev *rdev;
8692 char *desc, *action = NULL;
8693 struct blk_plug plug;
8694 int ret;
8695
8696 /* just incase thread restarts... */
8697 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8698 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8699 return;
8700 if (mddev->ro) {/* never try to sync a read-only array */
8701 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8702 return;
8703 }
8704
8705 if (mddev_is_clustered(mddev)) {
8706 ret = md_cluster_ops->resync_start(mddev);
8707 if (ret)
8708 goto skip;
8709
8710 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8711 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8712 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8713 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8714 && ((unsigned long long)mddev->curr_resync_completed
8715 < (unsigned long long)mddev->resync_max_sectors))
8716 goto skip;
8717 }
8718
8719 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8720 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8721 desc = "data-check";
8722 action = "check";
8723 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8724 desc = "requested-resync";
8725 action = "repair";
8726 } else
8727 desc = "resync";
8728 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8729 desc = "reshape";
8730 else
8731 desc = "recovery";
8732
8733 mddev->last_sync_action = action ?: desc;
8734
8735 /* we overload curr_resync somewhat here.
8736 * 0 == not engaged in resync at all
8737 * 2 == checking that there is no conflict with another sync
8738 * 1 == like 2, but have yielded to allow conflicting resync to
8739 * commence
8740 * other == active in resync - this many blocks
8741 *
8742 * Before starting a resync we must have set curr_resync to
8743 * 2, and then checked that every "conflicting" array has curr_resync
8744 * less than ours. When we find one that is the same or higher
8745 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8746 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8747 * This will mean we have to start checking from the beginning again.
8748 *
8749 */
8750
8751 do {
8752 int mddev2_minor = -1;
8753 mddev->curr_resync = 2;
8754
8755 try_again:
8756 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8757 goto skip;
8758 for_each_mddev(mddev2, tmp) {
8759 if (mddev2 == mddev)
8760 continue;
8761 if (!mddev->parallel_resync
8762 && mddev2->curr_resync
8763 && match_mddev_units(mddev, mddev2)) {
8764 DEFINE_WAIT(wq);
8765 if (mddev < mddev2 && mddev->curr_resync == 2) {
8766 /* arbitrarily yield */
8767 mddev->curr_resync = 1;
8768 wake_up(&resync_wait);
8769 }
8770 if (mddev > mddev2 && mddev->curr_resync == 1)
8771 /* no need to wait here, we can wait the next
8772 * time 'round when curr_resync == 2
8773 */
8774 continue;
8775 /* We need to wait 'interruptible' so as not to
8776 * contribute to the load average, and not to
8777 * be caught by 'softlockup'
8778 */
8779 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8780 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8781 mddev2->curr_resync >= mddev->curr_resync) {
8782 if (mddev2_minor != mddev2->md_minor) {
8783 mddev2_minor = mddev2->md_minor;
8784 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8785 desc, mdname(mddev),
8786 mdname(mddev2));
8787 }
8788 mddev_put(mddev2);
8789 if (signal_pending(current))
8790 flush_signals(current);
8791 schedule();
8792 finish_wait(&resync_wait, &wq);
8793 goto try_again;
8794 }
8795 finish_wait(&resync_wait, &wq);
8796 }
8797 }
8798 } while (mddev->curr_resync < 2);
8799
8800 j = 0;
8801 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8802 /* resync follows the size requested by the personality,
8803 * which defaults to physical size, but can be virtual size
8804 */
8805 max_sectors = mddev->resync_max_sectors;
8806 atomic64_set(&mddev->resync_mismatches, 0);
8807 /* we don't use the checkpoint if there's a bitmap */
8808 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8809 j = mddev->resync_min;
8810 else if (!mddev->bitmap)
8811 j = mddev->recovery_cp;
8812
8813 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8814 max_sectors = mddev->resync_max_sectors;
8815 /*
8816 * If the original node aborts reshaping then we continue the
8817 * reshaping, so set j again to avoid restart reshape from the
8818 * first beginning
8819 */
8820 if (mddev_is_clustered(mddev) &&
8821 mddev->reshape_position != MaxSector)
8822 j = mddev->reshape_position;
8823 } else {
8824 /* recovery follows the physical size of devices */
8825 max_sectors = mddev->dev_sectors;
8826 j = MaxSector;
8827 rcu_read_lock();
8828 rdev_for_each_rcu(rdev, mddev)
8829 if (rdev->raid_disk >= 0 &&
8830 !test_bit(Journal, &rdev->flags) &&
8831 !test_bit(Faulty, &rdev->flags) &&
8832 !test_bit(In_sync, &rdev->flags) &&
8833 rdev->recovery_offset < j)
8834 j = rdev->recovery_offset;
8835 rcu_read_unlock();
8836
8837 /* If there is a bitmap, we need to make sure all
8838 * writes that started before we added a spare
8839 * complete before we start doing a recovery.
8840 * Otherwise the write might complete and (via
8841 * bitmap_endwrite) set a bit in the bitmap after the
8842 * recovery has checked that bit and skipped that
8843 * region.
8844 */
8845 if (mddev->bitmap) {
8846 mddev->pers->quiesce(mddev, 1);
8847 mddev->pers->quiesce(mddev, 0);
8848 }
8849 }
8850
8851 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8852 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8853 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8854 speed_max(mddev), desc);
8855
8856 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8857
8858 io_sectors = 0;
8859 for (m = 0; m < SYNC_MARKS; m++) {
8860 mark[m] = jiffies;
8861 mark_cnt[m] = io_sectors;
8862 }
8863 last_mark = 0;
8864 mddev->resync_mark = mark[last_mark];
8865 mddev->resync_mark_cnt = mark_cnt[last_mark];
8866
8867 /*
8868 * Tune reconstruction:
8869 */
8870 window = 32 * (PAGE_SIZE / 512);
8871 pr_debug("md: using %dk window, over a total of %lluk.\n",
8872 window/2, (unsigned long long)max_sectors/2);
8873
8874 atomic_set(&mddev->recovery_active, 0);
8875 last_check = 0;
8876
8877 if (j>2) {
8878 pr_debug("md: resuming %s of %s from checkpoint.\n",
8879 desc, mdname(mddev));
8880 mddev->curr_resync = j;
8881 } else
8882 mddev->curr_resync = 3; /* no longer delayed */
8883 mddev->curr_resync_completed = j;
8884 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8885 md_new_event(mddev);
8886 update_time = jiffies;
8887
8888 blk_start_plug(&plug);
8889 while (j < max_sectors) {
8890 sector_t sectors;
8891
8892 skipped = 0;
8893
8894 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8895 ((mddev->curr_resync > mddev->curr_resync_completed &&
8896 (mddev->curr_resync - mddev->curr_resync_completed)
8897 > (max_sectors >> 4)) ||
8898 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8899 (j - mddev->curr_resync_completed)*2
8900 >= mddev->resync_max - mddev->curr_resync_completed ||
8901 mddev->curr_resync_completed > mddev->resync_max
8902 )) {
8903 /* time to update curr_resync_completed */
8904 wait_event(mddev->recovery_wait,
8905 atomic_read(&mddev->recovery_active) == 0);
8906 mddev->curr_resync_completed = j;
8907 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8908 j > mddev->recovery_cp)
8909 mddev->recovery_cp = j;
8910 update_time = jiffies;
8911 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8912 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8913 }
8914
8915 while (j >= mddev->resync_max &&
8916 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8917 /* As this condition is controlled by user-space,
8918 * we can block indefinitely, so use '_interruptible'
8919 * to avoid triggering warnings.
8920 */
8921 flush_signals(current); /* just in case */
8922 wait_event_interruptible(mddev->recovery_wait,
8923 mddev->resync_max > j
8924 || test_bit(MD_RECOVERY_INTR,
8925 &mddev->recovery));
8926 }
8927
8928 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8929 break;
8930
8931 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8932 if (sectors == 0) {
8933 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8934 break;
8935 }
8936
8937 if (!skipped) { /* actual IO requested */
8938 io_sectors += sectors;
8939 atomic_add(sectors, &mddev->recovery_active);
8940 }
8941
8942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8943 break;
8944
8945 j += sectors;
8946 if (j > max_sectors)
8947 /* when skipping, extra large numbers can be returned. */
8948 j = max_sectors;
8949 if (j > 2)
8950 mddev->curr_resync = j;
8951 mddev->curr_mark_cnt = io_sectors;
8952 if (last_check == 0)
8953 /* this is the earliest that rebuild will be
8954 * visible in /proc/mdstat
8955 */
8956 md_new_event(mddev);
8957
8958 if (last_check + window > io_sectors || j == max_sectors)
8959 continue;
8960
8961 last_check = io_sectors;
8962 repeat:
8963 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8964 /* step marks */
8965 int next = (last_mark+1) % SYNC_MARKS;
8966
8967 mddev->resync_mark = mark[next];
8968 mddev->resync_mark_cnt = mark_cnt[next];
8969 mark[next] = jiffies;
8970 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8971 last_mark = next;
8972 }
8973
8974 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8975 break;
8976
8977 /*
8978 * this loop exits only if either when we are slower than
8979 * the 'hard' speed limit, or the system was IO-idle for
8980 * a jiffy.
8981 * the system might be non-idle CPU-wise, but we only care
8982 * about not overloading the IO subsystem. (things like an
8983 * e2fsck being done on the RAID array should execute fast)
8984 */
8985 cond_resched();
8986
8987 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8988 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8989 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8990
8991 if (currspeed > speed_min(mddev)) {
8992 if (currspeed > speed_max(mddev)) {
8993 msleep(500);
8994 goto repeat;
8995 }
8996 if (!is_mddev_idle(mddev, 0)) {
8997 /*
8998 * Give other IO more of a chance.
8999 * The faster the devices, the less we wait.
9000 */
9001 wait_event(mddev->recovery_wait,
9002 !atomic_read(&mddev->recovery_active));
9003 }
9004 }
9005 }
9006 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9007 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9008 ? "interrupted" : "done");
9009 /*
9010 * this also signals 'finished resyncing' to md_stop
9011 */
9012 blk_finish_plug(&plug);
9013 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9014
9015 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9016 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9017 mddev->curr_resync > 3) {
9018 mddev->curr_resync_completed = mddev->curr_resync;
9019 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9020 }
9021 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9022
9023 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9024 mddev->curr_resync > 3) {
9025 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9026 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9027 if (mddev->curr_resync >= mddev->recovery_cp) {
9028 pr_debug("md: checkpointing %s of %s.\n",
9029 desc, mdname(mddev));
9030 if (test_bit(MD_RECOVERY_ERROR,
9031 &mddev->recovery))
9032 mddev->recovery_cp =
9033 mddev->curr_resync_completed;
9034 else
9035 mddev->recovery_cp =
9036 mddev->curr_resync;
9037 }
9038 } else
9039 mddev->recovery_cp = MaxSector;
9040 } else {
9041 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9042 mddev->curr_resync = MaxSector;
9043 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9044 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9045 rcu_read_lock();
9046 rdev_for_each_rcu(rdev, mddev)
9047 if (rdev->raid_disk >= 0 &&
9048 mddev->delta_disks >= 0 &&
9049 !test_bit(Journal, &rdev->flags) &&
9050 !test_bit(Faulty, &rdev->flags) &&
9051 !test_bit(In_sync, &rdev->flags) &&
9052 rdev->recovery_offset < mddev->curr_resync)
9053 rdev->recovery_offset = mddev->curr_resync;
9054 rcu_read_unlock();
9055 }
9056 }
9057 }
9058 skip:
9059 /* set CHANGE_PENDING here since maybe another update is needed,
9060 * so other nodes are informed. It should be harmless for normal
9061 * raid */
9062 set_mask_bits(&mddev->sb_flags, 0,
9063 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9064
9065 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9066 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9067 mddev->delta_disks > 0 &&
9068 mddev->pers->finish_reshape &&
9069 mddev->pers->size &&
9070 mddev->queue) {
9071 mddev_lock_nointr(mddev);
9072 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9073 mddev_unlock(mddev);
9074 if (!mddev_is_clustered(mddev)) {
9075 set_capacity(mddev->gendisk, mddev->array_sectors);
9076 revalidate_disk_size(mddev->gendisk, true);
9077 }
9078 }
9079
9080 spin_lock(&mddev->lock);
9081 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9082 /* We completed so min/max setting can be forgotten if used. */
9083 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9084 mddev->resync_min = 0;
9085 mddev->resync_max = MaxSector;
9086 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9087 mddev->resync_min = mddev->curr_resync_completed;
9088 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9089 mddev->curr_resync = 0;
9090 spin_unlock(&mddev->lock);
9091
9092 wake_up(&resync_wait);
9093 md_wakeup_thread(mddev->thread);
9094 return;
9095 }
9096 EXPORT_SYMBOL_GPL(md_do_sync);
9097
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9098 static int remove_and_add_spares(struct mddev *mddev,
9099 struct md_rdev *this)
9100 {
9101 struct md_rdev *rdev;
9102 int spares = 0;
9103 int removed = 0;
9104 bool remove_some = false;
9105
9106 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9107 /* Mustn't remove devices when resync thread is running */
9108 return 0;
9109
9110 rdev_for_each(rdev, mddev) {
9111 if ((this == NULL || rdev == this) &&
9112 rdev->raid_disk >= 0 &&
9113 !test_bit(Blocked, &rdev->flags) &&
9114 test_bit(Faulty, &rdev->flags) &&
9115 atomic_read(&rdev->nr_pending)==0) {
9116 /* Faulty non-Blocked devices with nr_pending == 0
9117 * never get nr_pending incremented,
9118 * never get Faulty cleared, and never get Blocked set.
9119 * So we can synchronize_rcu now rather than once per device
9120 */
9121 remove_some = true;
9122 set_bit(RemoveSynchronized, &rdev->flags);
9123 }
9124 }
9125
9126 if (remove_some)
9127 synchronize_rcu();
9128 rdev_for_each(rdev, mddev) {
9129 if ((this == NULL || rdev == this) &&
9130 rdev->raid_disk >= 0 &&
9131 !test_bit(Blocked, &rdev->flags) &&
9132 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9133 (!test_bit(In_sync, &rdev->flags) &&
9134 !test_bit(Journal, &rdev->flags))) &&
9135 atomic_read(&rdev->nr_pending)==0)) {
9136 if (mddev->pers->hot_remove_disk(
9137 mddev, rdev) == 0) {
9138 sysfs_unlink_rdev(mddev, rdev);
9139 rdev->saved_raid_disk = rdev->raid_disk;
9140 rdev->raid_disk = -1;
9141 removed++;
9142 }
9143 }
9144 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9145 clear_bit(RemoveSynchronized, &rdev->flags);
9146 }
9147
9148 if (removed && mddev->kobj.sd)
9149 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9150
9151 if (this && removed)
9152 goto no_add;
9153
9154 rdev_for_each(rdev, mddev) {
9155 if (this && this != rdev)
9156 continue;
9157 if (test_bit(Candidate, &rdev->flags))
9158 continue;
9159 if (rdev->raid_disk >= 0 &&
9160 !test_bit(In_sync, &rdev->flags) &&
9161 !test_bit(Journal, &rdev->flags) &&
9162 !test_bit(Faulty, &rdev->flags))
9163 spares++;
9164 if (rdev->raid_disk >= 0)
9165 continue;
9166 if (test_bit(Faulty, &rdev->flags))
9167 continue;
9168 if (!test_bit(Journal, &rdev->flags)) {
9169 if (mddev->ro &&
9170 ! (rdev->saved_raid_disk >= 0 &&
9171 !test_bit(Bitmap_sync, &rdev->flags)))
9172 continue;
9173
9174 rdev->recovery_offset = 0;
9175 }
9176 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9177 /* failure here is OK */
9178 sysfs_link_rdev(mddev, rdev);
9179 if (!test_bit(Journal, &rdev->flags))
9180 spares++;
9181 md_new_event(mddev);
9182 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9183 }
9184 }
9185 no_add:
9186 if (removed)
9187 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9188 return spares;
9189 }
9190
md_start_sync(struct work_struct * ws)9191 static void md_start_sync(struct work_struct *ws)
9192 {
9193 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9194
9195 mddev->sync_thread = md_register_thread(md_do_sync,
9196 mddev,
9197 "resync");
9198 if (!mddev->sync_thread) {
9199 pr_warn("%s: could not start resync thread...\n",
9200 mdname(mddev));
9201 /* leave the spares where they are, it shouldn't hurt */
9202 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9203 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9204 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9205 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9206 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9207 wake_up(&resync_wait);
9208 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9209 &mddev->recovery))
9210 if (mddev->sysfs_action)
9211 sysfs_notify_dirent_safe(mddev->sysfs_action);
9212 } else
9213 md_wakeup_thread(mddev->sync_thread);
9214 sysfs_notify_dirent_safe(mddev->sysfs_action);
9215 md_new_event(mddev);
9216 }
9217
9218 /*
9219 * This routine is regularly called by all per-raid-array threads to
9220 * deal with generic issues like resync and super-block update.
9221 * Raid personalities that don't have a thread (linear/raid0) do not
9222 * need this as they never do any recovery or update the superblock.
9223 *
9224 * It does not do any resync itself, but rather "forks" off other threads
9225 * to do that as needed.
9226 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9227 * "->recovery" and create a thread at ->sync_thread.
9228 * When the thread finishes it sets MD_RECOVERY_DONE
9229 * and wakeups up this thread which will reap the thread and finish up.
9230 * This thread also removes any faulty devices (with nr_pending == 0).
9231 *
9232 * The overall approach is:
9233 * 1/ if the superblock needs updating, update it.
9234 * 2/ If a recovery thread is running, don't do anything else.
9235 * 3/ If recovery has finished, clean up, possibly marking spares active.
9236 * 4/ If there are any faulty devices, remove them.
9237 * 5/ If array is degraded, try to add spares devices
9238 * 6/ If array has spares or is not in-sync, start a resync thread.
9239 */
md_check_recovery(struct mddev * mddev)9240 void md_check_recovery(struct mddev *mddev)
9241 {
9242 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9243 /* Write superblock - thread that called mddev_suspend()
9244 * holds reconfig_mutex for us.
9245 */
9246 set_bit(MD_UPDATING_SB, &mddev->flags);
9247 smp_mb__after_atomic();
9248 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9249 md_update_sb(mddev, 0);
9250 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9251 wake_up(&mddev->sb_wait);
9252 }
9253
9254 if (mddev->suspended)
9255 return;
9256
9257 if (mddev->bitmap)
9258 md_bitmap_daemon_work(mddev);
9259
9260 if (signal_pending(current)) {
9261 if (mddev->pers->sync_request && !mddev->external) {
9262 pr_debug("md: %s in immediate safe mode\n",
9263 mdname(mddev));
9264 mddev->safemode = 2;
9265 }
9266 flush_signals(current);
9267 }
9268
9269 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9270 return;
9271 if ( ! (
9272 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9273 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9274 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9275 (mddev->external == 0 && mddev->safemode == 1) ||
9276 (mddev->safemode == 2
9277 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9278 ))
9279 return;
9280
9281 if (mddev_trylock(mddev)) {
9282 int spares = 0;
9283 bool try_set_sync = mddev->safemode != 0;
9284
9285 if (!mddev->external && mddev->safemode == 1)
9286 mddev->safemode = 0;
9287
9288 if (mddev->ro) {
9289 struct md_rdev *rdev;
9290 if (!mddev->external && mddev->in_sync)
9291 /* 'Blocked' flag not needed as failed devices
9292 * will be recorded if array switched to read/write.
9293 * Leaving it set will prevent the device
9294 * from being removed.
9295 */
9296 rdev_for_each(rdev, mddev)
9297 clear_bit(Blocked, &rdev->flags);
9298 /* On a read-only array we can:
9299 * - remove failed devices
9300 * - add already-in_sync devices if the array itself
9301 * is in-sync.
9302 * As we only add devices that are already in-sync,
9303 * we can activate the spares immediately.
9304 */
9305 remove_and_add_spares(mddev, NULL);
9306 /* There is no thread, but we need to call
9307 * ->spare_active and clear saved_raid_disk
9308 */
9309 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9310 md_reap_sync_thread(mddev);
9311 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9312 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9313 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9314 goto unlock;
9315 }
9316
9317 if (mddev_is_clustered(mddev)) {
9318 struct md_rdev *rdev, *tmp;
9319 /* kick the device if another node issued a
9320 * remove disk.
9321 */
9322 rdev_for_each_safe(rdev, tmp, mddev) {
9323 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9324 rdev->raid_disk < 0)
9325 md_kick_rdev_from_array(rdev);
9326 }
9327 }
9328
9329 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9330 spin_lock(&mddev->lock);
9331 set_in_sync(mddev);
9332 spin_unlock(&mddev->lock);
9333 }
9334
9335 if (mddev->sb_flags)
9336 md_update_sb(mddev, 0);
9337
9338 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9339 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9340 /* resync/recovery still happening */
9341 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9342 goto unlock;
9343 }
9344 if (mddev->sync_thread) {
9345 md_reap_sync_thread(mddev);
9346 goto unlock;
9347 }
9348 /* Set RUNNING before clearing NEEDED to avoid
9349 * any transients in the value of "sync_action".
9350 */
9351 mddev->curr_resync_completed = 0;
9352 spin_lock(&mddev->lock);
9353 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9354 spin_unlock(&mddev->lock);
9355 /* Clear some bits that don't mean anything, but
9356 * might be left set
9357 */
9358 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9359 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9360
9361 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9362 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9363 goto not_running;
9364 /* no recovery is running.
9365 * remove any failed drives, then
9366 * add spares if possible.
9367 * Spares are also removed and re-added, to allow
9368 * the personality to fail the re-add.
9369 */
9370
9371 if (mddev->reshape_position != MaxSector) {
9372 if (mddev->pers->check_reshape == NULL ||
9373 mddev->pers->check_reshape(mddev) != 0)
9374 /* Cannot proceed */
9375 goto not_running;
9376 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9377 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9378 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9379 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9380 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9381 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9382 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9383 } else if (mddev->recovery_cp < MaxSector) {
9384 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9385 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9386 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9387 /* nothing to be done ... */
9388 goto not_running;
9389
9390 if (mddev->pers->sync_request) {
9391 if (spares) {
9392 /* We are adding a device or devices to an array
9393 * which has the bitmap stored on all devices.
9394 * So make sure all bitmap pages get written
9395 */
9396 md_bitmap_write_all(mddev->bitmap);
9397 }
9398 INIT_WORK(&mddev->del_work, md_start_sync);
9399 queue_work(md_misc_wq, &mddev->del_work);
9400 goto unlock;
9401 }
9402 not_running:
9403 if (!mddev->sync_thread) {
9404 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9405 wake_up(&resync_wait);
9406 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9407 &mddev->recovery))
9408 if (mddev->sysfs_action)
9409 sysfs_notify_dirent_safe(mddev->sysfs_action);
9410 }
9411 unlock:
9412 wake_up(&mddev->sb_wait);
9413 mddev_unlock(mddev);
9414 }
9415 }
9416 EXPORT_SYMBOL(md_check_recovery);
9417
md_reap_sync_thread(struct mddev * mddev)9418 void md_reap_sync_thread(struct mddev *mddev)
9419 {
9420 struct md_rdev *rdev;
9421 sector_t old_dev_sectors = mddev->dev_sectors;
9422 bool is_reshaped = false;
9423
9424 /* resync has finished, collect result */
9425 md_unregister_thread(&mddev->sync_thread);
9426 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9427 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9428 mddev->degraded != mddev->raid_disks) {
9429 /* success...*/
9430 /* activate any spares */
9431 if (mddev->pers->spare_active(mddev)) {
9432 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9433 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9434 }
9435 }
9436 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9437 mddev->pers->finish_reshape) {
9438 mddev->pers->finish_reshape(mddev);
9439 if (mddev_is_clustered(mddev))
9440 is_reshaped = true;
9441 }
9442
9443 /* If array is no-longer degraded, then any saved_raid_disk
9444 * information must be scrapped.
9445 */
9446 if (!mddev->degraded)
9447 rdev_for_each(rdev, mddev)
9448 rdev->saved_raid_disk = -1;
9449
9450 md_update_sb(mddev, 1);
9451 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9452 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9453 * clustered raid */
9454 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9455 md_cluster_ops->resync_finish(mddev);
9456 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9457 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9458 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9459 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9460 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9461 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9462 /*
9463 * We call md_cluster_ops->update_size here because sync_size could
9464 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9465 * so it is time to update size across cluster.
9466 */
9467 if (mddev_is_clustered(mddev) && is_reshaped
9468 && !test_bit(MD_CLOSING, &mddev->flags))
9469 md_cluster_ops->update_size(mddev, old_dev_sectors);
9470 wake_up(&resync_wait);
9471 /* flag recovery needed just to double check */
9472 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9473 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9474 sysfs_notify_dirent_safe(mddev->sysfs_action);
9475 md_new_event(mddev);
9476 if (mddev->event_work.func)
9477 queue_work(md_misc_wq, &mddev->event_work);
9478 }
9479 EXPORT_SYMBOL(md_reap_sync_thread);
9480
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9481 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9482 {
9483 sysfs_notify_dirent_safe(rdev->sysfs_state);
9484 wait_event_timeout(rdev->blocked_wait,
9485 !test_bit(Blocked, &rdev->flags) &&
9486 !test_bit(BlockedBadBlocks, &rdev->flags),
9487 msecs_to_jiffies(5000));
9488 rdev_dec_pending(rdev, mddev);
9489 }
9490 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9491
md_finish_reshape(struct mddev * mddev)9492 void md_finish_reshape(struct mddev *mddev)
9493 {
9494 /* called be personality module when reshape completes. */
9495 struct md_rdev *rdev;
9496
9497 rdev_for_each(rdev, mddev) {
9498 if (rdev->data_offset > rdev->new_data_offset)
9499 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9500 else
9501 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9502 rdev->data_offset = rdev->new_data_offset;
9503 }
9504 }
9505 EXPORT_SYMBOL(md_finish_reshape);
9506
9507 /* Bad block management */
9508
9509 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9510 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9511 int is_new)
9512 {
9513 struct mddev *mddev = rdev->mddev;
9514 int rv;
9515 if (is_new)
9516 s += rdev->new_data_offset;
9517 else
9518 s += rdev->data_offset;
9519 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9520 if (rv == 0) {
9521 /* Make sure they get written out promptly */
9522 if (test_bit(ExternalBbl, &rdev->flags))
9523 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9524 sysfs_notify_dirent_safe(rdev->sysfs_state);
9525 set_mask_bits(&mddev->sb_flags, 0,
9526 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9527 md_wakeup_thread(rdev->mddev->thread);
9528 return 1;
9529 } else
9530 return 0;
9531 }
9532 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9533
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9534 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9535 int is_new)
9536 {
9537 int rv;
9538 if (is_new)
9539 s += rdev->new_data_offset;
9540 else
9541 s += rdev->data_offset;
9542 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9543 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9544 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9545 return rv;
9546 }
9547 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9548
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9549 static int md_notify_reboot(struct notifier_block *this,
9550 unsigned long code, void *x)
9551 {
9552 struct list_head *tmp;
9553 struct mddev *mddev;
9554 int need_delay = 0;
9555
9556 for_each_mddev(mddev, tmp) {
9557 if (mddev_trylock(mddev)) {
9558 if (mddev->pers)
9559 __md_stop_writes(mddev);
9560 if (mddev->persistent)
9561 mddev->safemode = 2;
9562 mddev_unlock(mddev);
9563 }
9564 need_delay = 1;
9565 }
9566 /*
9567 * certain more exotic SCSI devices are known to be
9568 * volatile wrt too early system reboots. While the
9569 * right place to handle this issue is the given
9570 * driver, we do want to have a safe RAID driver ...
9571 */
9572 if (need_delay)
9573 mdelay(1000*1);
9574
9575 return NOTIFY_DONE;
9576 }
9577
9578 static struct notifier_block md_notifier = {
9579 .notifier_call = md_notify_reboot,
9580 .next = NULL,
9581 .priority = INT_MAX, /* before any real devices */
9582 };
9583
md_geninit(void)9584 static void md_geninit(void)
9585 {
9586 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9587
9588 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9589 }
9590
md_init(void)9591 static int __init md_init(void)
9592 {
9593 int ret = -ENOMEM;
9594
9595 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9596 if (!md_wq)
9597 goto err_wq;
9598
9599 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9600 if (!md_misc_wq)
9601 goto err_misc_wq;
9602
9603 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9604 if (!md_rdev_misc_wq)
9605 goto err_rdev_misc_wq;
9606
9607 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
9608 goto err_md;
9609
9610 if ((ret = register_blkdev(0, "mdp")) < 0)
9611 goto err_mdp;
9612 mdp_major = ret;
9613
9614 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
9615 md_probe, NULL, NULL);
9616 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
9617 md_probe, NULL, NULL);
9618
9619 register_reboot_notifier(&md_notifier);
9620 raid_table_header = register_sysctl_table(raid_root_table);
9621
9622 md_geninit();
9623 return 0;
9624
9625 err_mdp:
9626 unregister_blkdev(MD_MAJOR, "md");
9627 err_md:
9628 destroy_workqueue(md_rdev_misc_wq);
9629 err_rdev_misc_wq:
9630 destroy_workqueue(md_misc_wq);
9631 err_misc_wq:
9632 destroy_workqueue(md_wq);
9633 err_wq:
9634 return ret;
9635 }
9636
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9637 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9638 {
9639 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9640 struct md_rdev *rdev2, *tmp;
9641 int role, ret;
9642 char b[BDEVNAME_SIZE];
9643
9644 /*
9645 * If size is changed in another node then we need to
9646 * do resize as well.
9647 */
9648 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9649 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9650 if (ret)
9651 pr_info("md-cluster: resize failed\n");
9652 else
9653 md_bitmap_update_sb(mddev->bitmap);
9654 }
9655
9656 /* Check for change of roles in the active devices */
9657 rdev_for_each_safe(rdev2, tmp, mddev) {
9658 if (test_bit(Faulty, &rdev2->flags))
9659 continue;
9660
9661 /* Check if the roles changed */
9662 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9663
9664 if (test_bit(Candidate, &rdev2->flags)) {
9665 if (role == 0xfffe) {
9666 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9667 md_kick_rdev_from_array(rdev2);
9668 continue;
9669 }
9670 else
9671 clear_bit(Candidate, &rdev2->flags);
9672 }
9673
9674 if (role != rdev2->raid_disk) {
9675 /*
9676 * got activated except reshape is happening.
9677 */
9678 if (rdev2->raid_disk == -1 && role != 0xffff &&
9679 !(le32_to_cpu(sb->feature_map) &
9680 MD_FEATURE_RESHAPE_ACTIVE)) {
9681 rdev2->saved_raid_disk = role;
9682 ret = remove_and_add_spares(mddev, rdev2);
9683 pr_info("Activated spare: %s\n",
9684 bdevname(rdev2->bdev,b));
9685 /* wakeup mddev->thread here, so array could
9686 * perform resync with the new activated disk */
9687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9688 md_wakeup_thread(mddev->thread);
9689 }
9690 /* device faulty
9691 * We just want to do the minimum to mark the disk
9692 * as faulty. The recovery is performed by the
9693 * one who initiated the error.
9694 */
9695 if ((role == 0xfffe) || (role == 0xfffd)) {
9696 md_error(mddev, rdev2);
9697 clear_bit(Blocked, &rdev2->flags);
9698 }
9699 }
9700 }
9701
9702 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9703 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9704 if (ret)
9705 pr_warn("md: updating array disks failed. %d\n", ret);
9706 }
9707
9708 /*
9709 * Since mddev->delta_disks has already updated in update_raid_disks,
9710 * so it is time to check reshape.
9711 */
9712 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9713 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9714 /*
9715 * reshape is happening in the remote node, we need to
9716 * update reshape_position and call start_reshape.
9717 */
9718 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9719 if (mddev->pers->update_reshape_pos)
9720 mddev->pers->update_reshape_pos(mddev);
9721 if (mddev->pers->start_reshape)
9722 mddev->pers->start_reshape(mddev);
9723 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9724 mddev->reshape_position != MaxSector &&
9725 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9726 /* reshape is just done in another node. */
9727 mddev->reshape_position = MaxSector;
9728 if (mddev->pers->update_reshape_pos)
9729 mddev->pers->update_reshape_pos(mddev);
9730 }
9731
9732 /* Finally set the event to be up to date */
9733 mddev->events = le64_to_cpu(sb->events);
9734 }
9735
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9736 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9737 {
9738 int err;
9739 struct page *swapout = rdev->sb_page;
9740 struct mdp_superblock_1 *sb;
9741
9742 /* Store the sb page of the rdev in the swapout temporary
9743 * variable in case we err in the future
9744 */
9745 rdev->sb_page = NULL;
9746 err = alloc_disk_sb(rdev);
9747 if (err == 0) {
9748 ClearPageUptodate(rdev->sb_page);
9749 rdev->sb_loaded = 0;
9750 err = super_types[mddev->major_version].
9751 load_super(rdev, NULL, mddev->minor_version);
9752 }
9753 if (err < 0) {
9754 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9755 __func__, __LINE__, rdev->desc_nr, err);
9756 if (rdev->sb_page)
9757 put_page(rdev->sb_page);
9758 rdev->sb_page = swapout;
9759 rdev->sb_loaded = 1;
9760 return err;
9761 }
9762
9763 sb = page_address(rdev->sb_page);
9764 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9765 * is not set
9766 */
9767
9768 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9769 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9770
9771 /* The other node finished recovery, call spare_active to set
9772 * device In_sync and mddev->degraded
9773 */
9774 if (rdev->recovery_offset == MaxSector &&
9775 !test_bit(In_sync, &rdev->flags) &&
9776 mddev->pers->spare_active(mddev))
9777 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9778
9779 put_page(swapout);
9780 return 0;
9781 }
9782
md_reload_sb(struct mddev * mddev,int nr)9783 void md_reload_sb(struct mddev *mddev, int nr)
9784 {
9785 struct md_rdev *rdev = NULL, *iter;
9786 int err;
9787
9788 /* Find the rdev */
9789 rdev_for_each_rcu(iter, mddev) {
9790 if (iter->desc_nr == nr) {
9791 rdev = iter;
9792 break;
9793 }
9794 }
9795
9796 if (!rdev) {
9797 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9798 return;
9799 }
9800
9801 err = read_rdev(mddev, rdev);
9802 if (err < 0)
9803 return;
9804
9805 check_sb_changes(mddev, rdev);
9806
9807 /* Read all rdev's to update recovery_offset */
9808 rdev_for_each_rcu(rdev, mddev) {
9809 if (!test_bit(Faulty, &rdev->flags))
9810 read_rdev(mddev, rdev);
9811 }
9812 }
9813 EXPORT_SYMBOL(md_reload_sb);
9814
9815 #ifndef MODULE
9816
9817 /*
9818 * Searches all registered partitions for autorun RAID arrays
9819 * at boot time.
9820 */
9821
9822 static DEFINE_MUTEX(detected_devices_mutex);
9823 static LIST_HEAD(all_detected_devices);
9824 struct detected_devices_node {
9825 struct list_head list;
9826 dev_t dev;
9827 };
9828
md_autodetect_dev(dev_t dev)9829 void md_autodetect_dev(dev_t dev)
9830 {
9831 struct detected_devices_node *node_detected_dev;
9832
9833 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9834 if (node_detected_dev) {
9835 node_detected_dev->dev = dev;
9836 mutex_lock(&detected_devices_mutex);
9837 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9838 mutex_unlock(&detected_devices_mutex);
9839 }
9840 }
9841
md_autostart_arrays(int part)9842 void md_autostart_arrays(int part)
9843 {
9844 struct md_rdev *rdev;
9845 struct detected_devices_node *node_detected_dev;
9846 dev_t dev;
9847 int i_scanned, i_passed;
9848
9849 i_scanned = 0;
9850 i_passed = 0;
9851
9852 pr_info("md: Autodetecting RAID arrays.\n");
9853
9854 mutex_lock(&detected_devices_mutex);
9855 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9856 i_scanned++;
9857 node_detected_dev = list_entry(all_detected_devices.next,
9858 struct detected_devices_node, list);
9859 list_del(&node_detected_dev->list);
9860 dev = node_detected_dev->dev;
9861 kfree(node_detected_dev);
9862 mutex_unlock(&detected_devices_mutex);
9863 rdev = md_import_device(dev,0, 90);
9864 mutex_lock(&detected_devices_mutex);
9865 if (IS_ERR(rdev))
9866 continue;
9867
9868 if (test_bit(Faulty, &rdev->flags))
9869 continue;
9870
9871 set_bit(AutoDetected, &rdev->flags);
9872 list_add(&rdev->same_set, &pending_raid_disks);
9873 i_passed++;
9874 }
9875 mutex_unlock(&detected_devices_mutex);
9876
9877 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9878
9879 autorun_devices(part);
9880 }
9881
9882 #endif /* !MODULE */
9883
md_exit(void)9884 static __exit void md_exit(void)
9885 {
9886 struct mddev *mddev;
9887 struct list_head *tmp;
9888 int delay = 1;
9889
9890 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9891 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9892
9893 unregister_blkdev(MD_MAJOR,"md");
9894 unregister_blkdev(mdp_major, "mdp");
9895 unregister_reboot_notifier(&md_notifier);
9896 unregister_sysctl_table(raid_table_header);
9897
9898 /* We cannot unload the modules while some process is
9899 * waiting for us in select() or poll() - wake them up
9900 */
9901 md_unloading = 1;
9902 while (waitqueue_active(&md_event_waiters)) {
9903 /* not safe to leave yet */
9904 wake_up(&md_event_waiters);
9905 msleep(delay);
9906 delay += delay;
9907 }
9908 remove_proc_entry("mdstat", NULL);
9909
9910 for_each_mddev(mddev, tmp) {
9911 export_array(mddev);
9912 mddev->ctime = 0;
9913 mddev->hold_active = 0;
9914 /*
9915 * for_each_mddev() will call mddev_put() at the end of each
9916 * iteration. As the mddev is now fully clear, this will
9917 * schedule the mddev for destruction by a workqueue, and the
9918 * destroy_workqueue() below will wait for that to complete.
9919 */
9920 }
9921 destroy_workqueue(md_rdev_misc_wq);
9922 destroy_workqueue(md_misc_wq);
9923 destroy_workqueue(md_wq);
9924 }
9925
9926 subsys_initcall(md_init);
module_exit(md_exit)9927 module_exit(md_exit)
9928
9929 static int get_ro(char *buffer, const struct kernel_param *kp)
9930 {
9931 return sprintf(buffer, "%d\n", start_readonly);
9932 }
set_ro(const char * val,const struct kernel_param * kp)9933 static int set_ro(const char *val, const struct kernel_param *kp)
9934 {
9935 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9936 }
9937
9938 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9939 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9940 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9941 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9942
9943 MODULE_LICENSE("GPL");
9944 MODULE_DESCRIPTION("MD RAID framework");
9945 MODULE_ALIAS("md");
9946 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
9947