• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Access SD/MMC cards through SPI master controllers
4  *
5  * (C) Copyright 2005, Intec Automation,
6  *		Mike Lavender (mike@steroidmicros)
7  * (C) Copyright 2006-2007, David Brownell
8  * (C) Copyright 2007, Axis Communications,
9  *		Hans-Peter Nilsson (hp@axis.com)
10  * (C) Copyright 2007, ATRON electronic GmbH,
11  *		Jan Nikitenko <jan.nikitenko@gmail.com>
12  */
13 #include <linux/sched.h>
14 #include <linux/delay.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/dma-direction.h>
19 #include <linux/crc7.h>
20 #include <linux/crc-itu-t.h>
21 #include <linux/scatterlist.h>
22 
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/mmc.h>		/* for R1_SPI_* bit values */
25 #include <linux/mmc/slot-gpio.h>
26 
27 #include <linux/spi/spi.h>
28 #include <linux/spi/mmc_spi.h>
29 
30 #include <asm/unaligned.h>
31 
32 
33 /* NOTES:
34  *
35  * - For now, we won't try to interoperate with a real mmc/sd/sdio
36  *   controller, although some of them do have hardware support for
37  *   SPI protocol.  The main reason for such configs would be mmc-ish
38  *   cards like DataFlash, which don't support that "native" protocol.
39  *
40  *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
41  *   switch between driver stacks, and in any case if "native" mode
42  *   is available, it will be faster and hence preferable.
43  *
44  * - MMC depends on a different chipselect management policy than the
45  *   SPI interface currently supports for shared bus segments:  it needs
46  *   to issue multiple spi_message requests with the chipselect active,
47  *   using the results of one message to decide the next one to issue.
48  *
49  *   Pending updates to the programming interface, this driver expects
50  *   that it not share the bus with other drivers (precluding conflicts).
51  *
52  * - We tell the controller to keep the chipselect active from the
53  *   beginning of an mmc_host_ops.request until the end.  So beware
54  *   of SPI controller drivers that mis-handle the cs_change flag!
55  *
56  *   However, many cards seem OK with chipselect flapping up/down
57  *   during that time ... at least on unshared bus segments.
58  */
59 
60 
61 /*
62  * Local protocol constants, internal to data block protocols.
63  */
64 
65 /* Response tokens used to ack each block written: */
66 #define SPI_MMC_RESPONSE_CODE(x)	((x) & 0x1f)
67 #define SPI_RESPONSE_ACCEPTED		((2 << 1)|1)
68 #define SPI_RESPONSE_CRC_ERR		((5 << 1)|1)
69 #define SPI_RESPONSE_WRITE_ERR		((6 << 1)|1)
70 
71 /* Read and write blocks start with these tokens and end with crc;
72  * on error, read tokens act like a subset of R2_SPI_* values.
73  */
74 #define SPI_TOKEN_SINGLE	0xfe	/* single block r/w, multiblock read */
75 #define SPI_TOKEN_MULTI_WRITE	0xfc	/* multiblock write */
76 #define SPI_TOKEN_STOP_TRAN	0xfd	/* terminate multiblock write */
77 
78 #define MMC_SPI_BLOCKSIZE	512
79 
80 #define MMC_SPI_R1B_TIMEOUT_MS	3000
81 #define MMC_SPI_INIT_TIMEOUT_MS	3000
82 
83 /* One of the critical speed parameters is the amount of data which may
84  * be transferred in one command. If this value is too low, the SD card
85  * controller has to do multiple partial block writes (argggh!). With
86  * today (2008) SD cards there is little speed gain if we transfer more
87  * than 64 KBytes at a time. So use this value until there is any indication
88  * that we should do more here.
89  */
90 #define MMC_SPI_BLOCKSATONCE	128
91 
92 /****************************************************************************/
93 
94 /*
95  * Local Data Structures
96  */
97 
98 /* "scratch" is per-{command,block} data exchanged with the card */
99 struct scratch {
100 	u8			status[29];
101 	u8			data_token;
102 	__be16			crc_val;
103 };
104 
105 struct mmc_spi_host {
106 	struct mmc_host		*mmc;
107 	struct spi_device	*spi;
108 
109 	unsigned char		power_mode;
110 	u16			powerup_msecs;
111 
112 	struct mmc_spi_platform_data	*pdata;
113 
114 	/* for bulk data transfers */
115 	struct spi_transfer	token, t, crc, early_status;
116 	struct spi_message	m;
117 
118 	/* for status readback */
119 	struct spi_transfer	status;
120 	struct spi_message	readback;
121 
122 	/* buffer used for commands and for message "overhead" */
123 	struct scratch		*data;
124 
125 	/* Specs say to write ones most of the time, even when the card
126 	 * has no need to read its input data; and many cards won't care.
127 	 * This is our source of those ones.
128 	 */
129 	void			*ones;
130 };
131 
132 
133 /****************************************************************************/
134 
135 /*
136  * MMC-over-SPI protocol glue, used by the MMC stack interface
137  */
138 
mmc_cs_off(struct mmc_spi_host * host)139 static inline int mmc_cs_off(struct mmc_spi_host *host)
140 {
141 	/* chipselect will always be inactive after setup() */
142 	return spi_setup(host->spi);
143 }
144 
mmc_spi_readbytes(struct mmc_spi_host * host,unsigned int len)145 static int mmc_spi_readbytes(struct mmc_spi_host *host, unsigned int len)
146 {
147 	if (len > sizeof(*host->data)) {
148 		WARN_ON(1);
149 		return -EIO;
150 	}
151 
152 	host->status.len = len;
153 
154 	return spi_sync_locked(host->spi, &host->readback);
155 }
156 
mmc_spi_skip(struct mmc_spi_host * host,unsigned long timeout,unsigned n,u8 byte)157 static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
158 			unsigned n, u8 byte)
159 {
160 	u8 *cp = host->data->status;
161 	unsigned long start = jiffies;
162 
163 	while (1) {
164 		int		status;
165 		unsigned	i;
166 
167 		status = mmc_spi_readbytes(host, n);
168 		if (status < 0)
169 			return status;
170 
171 		for (i = 0; i < n; i++) {
172 			if (cp[i] != byte)
173 				return cp[i];
174 		}
175 
176 		if (time_is_before_jiffies(start + timeout))
177 			break;
178 
179 		/* If we need long timeouts, we may release the CPU.
180 		 * We use jiffies here because we want to have a relation
181 		 * between elapsed time and the blocking of the scheduler.
182 		 */
183 		if (time_is_before_jiffies(start + 1))
184 			schedule();
185 	}
186 	return -ETIMEDOUT;
187 }
188 
189 static inline int
mmc_spi_wait_unbusy(struct mmc_spi_host * host,unsigned long timeout)190 mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
191 {
192 	return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
193 }
194 
mmc_spi_readtoken(struct mmc_spi_host * host,unsigned long timeout)195 static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
196 {
197 	return mmc_spi_skip(host, timeout, 1, 0xff);
198 }
199 
200 
201 /*
202  * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
203  * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
204  * R2_SPI bits ... for SEND_STATUS, or after data read errors.
205  *
206  * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
207  * newer cards R7 (IF_COND).
208  */
209 
maptype(struct mmc_command * cmd)210 static char *maptype(struct mmc_command *cmd)
211 {
212 	switch (mmc_spi_resp_type(cmd)) {
213 	case MMC_RSP_SPI_R1:	return "R1";
214 	case MMC_RSP_SPI_R1B:	return "R1B";
215 	case MMC_RSP_SPI_R2:	return "R2/R5";
216 	case MMC_RSP_SPI_R3:	return "R3/R4/R7";
217 	default:		return "?";
218 	}
219 }
220 
221 /* return zero, else negative errno after setting cmd->error */
mmc_spi_response_get(struct mmc_spi_host * host,struct mmc_command * cmd,int cs_on)222 static int mmc_spi_response_get(struct mmc_spi_host *host,
223 		struct mmc_command *cmd, int cs_on)
224 {
225 	unsigned long timeout_ms;
226 	u8	*cp = host->data->status;
227 	u8	*end = cp + host->t.len;
228 	int	value = 0;
229 	int	bitshift;
230 	u8 	leftover = 0;
231 	unsigned short rotator;
232 	int 	i;
233 	char	tag[32];
234 
235 	snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
236 		cmd->opcode, maptype(cmd));
237 
238 	/* Except for data block reads, the whole response will already
239 	 * be stored in the scratch buffer.  It's somewhere after the
240 	 * command and the first byte we read after it.  We ignore that
241 	 * first byte.  After STOP_TRANSMISSION command it may include
242 	 * two data bits, but otherwise it's all ones.
243 	 */
244 	cp += 8;
245 	while (cp < end && *cp == 0xff)
246 		cp++;
247 
248 	/* Data block reads (R1 response types) may need more data... */
249 	if (cp == end) {
250 		cp = host->data->status;
251 		end = cp+1;
252 
253 		/* Card sends N(CR) (== 1..8) bytes of all-ones then one
254 		 * status byte ... and we already scanned 2 bytes.
255 		 *
256 		 * REVISIT block read paths use nasty byte-at-a-time I/O
257 		 * so it can always DMA directly into the target buffer.
258 		 * It'd probably be better to memcpy() the first chunk and
259 		 * avoid extra i/o calls...
260 		 *
261 		 * Note we check for more than 8 bytes, because in practice,
262 		 * some SD cards are slow...
263 		 */
264 		for (i = 2; i < 16; i++) {
265 			value = mmc_spi_readbytes(host, 1);
266 			if (value < 0)
267 				goto done;
268 			if (*cp != 0xff)
269 				goto checkstatus;
270 		}
271 		value = -ETIMEDOUT;
272 		goto done;
273 	}
274 
275 checkstatus:
276 	bitshift = 0;
277 	if (*cp & 0x80)	{
278 		/* Houston, we have an ugly card with a bit-shifted response */
279 		rotator = *cp++ << 8;
280 		/* read the next byte */
281 		if (cp == end) {
282 			value = mmc_spi_readbytes(host, 1);
283 			if (value < 0)
284 				goto done;
285 			cp = host->data->status;
286 			end = cp+1;
287 		}
288 		rotator |= *cp++;
289 		while (rotator & 0x8000) {
290 			bitshift++;
291 			rotator <<= 1;
292 		}
293 		cmd->resp[0] = rotator >> 8;
294 		leftover = rotator;
295 	} else {
296 		cmd->resp[0] = *cp++;
297 	}
298 	cmd->error = 0;
299 
300 	/* Status byte: the entire seven-bit R1 response.  */
301 	if (cmd->resp[0] != 0) {
302 		if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
303 				& cmd->resp[0])
304 			value = -EFAULT; /* Bad address */
305 		else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
306 			value = -ENOSYS; /* Function not implemented */
307 		else if (R1_SPI_COM_CRC & cmd->resp[0])
308 			value = -EILSEQ; /* Illegal byte sequence */
309 		else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
310 				& cmd->resp[0])
311 			value = -EIO;    /* I/O error */
312 		/* else R1_SPI_IDLE, "it's resetting" */
313 	}
314 
315 	switch (mmc_spi_resp_type(cmd)) {
316 
317 	/* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
318 	 * and less-common stuff like various erase operations.
319 	 */
320 	case MMC_RSP_SPI_R1B:
321 		/* maybe we read all the busy tokens already */
322 		while (cp < end && *cp == 0)
323 			cp++;
324 		if (cp == end) {
325 			timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
326 				MMC_SPI_R1B_TIMEOUT_MS;
327 			mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
328 		}
329 		break;
330 
331 	/* SPI R2 == R1 + second status byte; SEND_STATUS
332 	 * SPI R5 == R1 + data byte; IO_RW_DIRECT
333 	 */
334 	case MMC_RSP_SPI_R2:
335 		/* read the next byte */
336 		if (cp == end) {
337 			value = mmc_spi_readbytes(host, 1);
338 			if (value < 0)
339 				goto done;
340 			cp = host->data->status;
341 			end = cp+1;
342 		}
343 		if (bitshift) {
344 			rotator = leftover << 8;
345 			rotator |= *cp << bitshift;
346 			cmd->resp[0] |= (rotator & 0xFF00);
347 		} else {
348 			cmd->resp[0] |= *cp << 8;
349 		}
350 		break;
351 
352 	/* SPI R3, R4, or R7 == R1 + 4 bytes */
353 	case MMC_RSP_SPI_R3:
354 		rotator = leftover << 8;
355 		cmd->resp[1] = 0;
356 		for (i = 0; i < 4; i++) {
357 			cmd->resp[1] <<= 8;
358 			/* read the next byte */
359 			if (cp == end) {
360 				value = mmc_spi_readbytes(host, 1);
361 				if (value < 0)
362 					goto done;
363 				cp = host->data->status;
364 				end = cp+1;
365 			}
366 			if (bitshift) {
367 				rotator |= *cp++ << bitshift;
368 				cmd->resp[1] |= (rotator >> 8);
369 				rotator <<= 8;
370 			} else {
371 				cmd->resp[1] |= *cp++;
372 			}
373 		}
374 		break;
375 
376 	/* SPI R1 == just one status byte */
377 	case MMC_RSP_SPI_R1:
378 		break;
379 
380 	default:
381 		dev_dbg(&host->spi->dev, "bad response type %04x\n",
382 			mmc_spi_resp_type(cmd));
383 		if (value >= 0)
384 			value = -EINVAL;
385 		goto done;
386 	}
387 
388 	if (value < 0)
389 		dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
390 			tag, cmd->resp[0], cmd->resp[1]);
391 
392 	/* disable chipselect on errors and some success cases */
393 	if (value >= 0 && cs_on)
394 		return value;
395 done:
396 	if (value < 0)
397 		cmd->error = value;
398 	mmc_cs_off(host);
399 	return value;
400 }
401 
402 /* Issue command and read its response.
403  * Returns zero on success, negative for error.
404  *
405  * On error, caller must cope with mmc core retry mechanism.  That
406  * means immediate low-level resubmit, which affects the bus lock...
407  */
408 static int
mmc_spi_command_send(struct mmc_spi_host * host,struct mmc_request * mrq,struct mmc_command * cmd,int cs_on)409 mmc_spi_command_send(struct mmc_spi_host *host,
410 		struct mmc_request *mrq,
411 		struct mmc_command *cmd, int cs_on)
412 {
413 	struct scratch		*data = host->data;
414 	u8			*cp = data->status;
415 	int			status;
416 	struct spi_transfer	*t;
417 
418 	/* We can handle most commands (except block reads) in one full
419 	 * duplex I/O operation before either starting the next transfer
420 	 * (data block or command) or else deselecting the card.
421 	 *
422 	 * First, write 7 bytes:
423 	 *  - an all-ones byte to ensure the card is ready
424 	 *  - opcode byte (plus start and transmission bits)
425 	 *  - four bytes of big-endian argument
426 	 *  - crc7 (plus end bit) ... always computed, it's cheap
427 	 *
428 	 * We init the whole buffer to all-ones, which is what we need
429 	 * to write while we're reading (later) response data.
430 	 */
431 	memset(cp, 0xff, sizeof(data->status));
432 
433 	cp[1] = 0x40 | cmd->opcode;
434 	put_unaligned_be32(cmd->arg, cp + 2);
435 	cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
436 	cp += 7;
437 
438 	/* Then, read up to 13 bytes (while writing all-ones):
439 	 *  - N(CR) (== 1..8) bytes of all-ones
440 	 *  - status byte (for all response types)
441 	 *  - the rest of the response, either:
442 	 *      + nothing, for R1 or R1B responses
443 	 *	+ second status byte, for R2 responses
444 	 *	+ four data bytes, for R3 and R7 responses
445 	 *
446 	 * Finally, read some more bytes ... in the nice cases we know in
447 	 * advance how many, and reading 1 more is always OK:
448 	 *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
449 	 *  - N(RC) (== 1..N) bytes of all-ones, before next command
450 	 *  - N(WR) (== 1..N) bytes of all-ones, before data write
451 	 *
452 	 * So in those cases one full duplex I/O of at most 21 bytes will
453 	 * handle the whole command, leaving the card ready to receive a
454 	 * data block or new command.  We do that whenever we can, shaving
455 	 * CPU and IRQ costs (especially when using DMA or FIFOs).
456 	 *
457 	 * There are two other cases, where it's not generally practical
458 	 * to rely on a single I/O:
459 	 *
460 	 *  - R1B responses need at least N(EC) bytes of all-zeroes.
461 	 *
462 	 *    In this case we can *try* to fit it into one I/O, then
463 	 *    maybe read more data later.
464 	 *
465 	 *  - Data block reads are more troublesome, since a variable
466 	 *    number of padding bytes precede the token and data.
467 	 *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
468 	 *      + N(AC) (== 1..many) bytes of all-ones
469 	 *
470 	 *    In this case we currently only have minimal speedups here:
471 	 *    when N(CR) == 1 we can avoid I/O in response_get().
472 	 */
473 	if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
474 		cp += 2;	/* min(N(CR)) + status */
475 		/* R1 */
476 	} else {
477 		cp += 10;	/* max(N(CR)) + status + min(N(RC),N(WR)) */
478 		if (cmd->flags & MMC_RSP_SPI_S2)	/* R2/R5 */
479 			cp++;
480 		else if (cmd->flags & MMC_RSP_SPI_B4)	/* R3/R4/R7 */
481 			cp += 4;
482 		else if (cmd->flags & MMC_RSP_BUSY)	/* R1B */
483 			cp = data->status + sizeof(data->status);
484 		/* else:  R1 (most commands) */
485 	}
486 
487 	dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
488 		cmd->opcode, maptype(cmd));
489 
490 	/* send command, leaving chipselect active */
491 	spi_message_init(&host->m);
492 
493 	t = &host->t;
494 	memset(t, 0, sizeof(*t));
495 	t->tx_buf = t->rx_buf = data->status;
496 	t->len = cp - data->status;
497 	t->cs_change = 1;
498 	spi_message_add_tail(t, &host->m);
499 
500 	status = spi_sync_locked(host->spi, &host->m);
501 	if (status < 0) {
502 		dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
503 		cmd->error = status;
504 		return status;
505 	}
506 
507 	/* after no-data commands and STOP_TRANSMISSION, chipselect off */
508 	return mmc_spi_response_get(host, cmd, cs_on);
509 }
510 
511 /* Build data message with up to four separate transfers.  For TX, we
512  * start by writing the data token.  And in most cases, we finish with
513  * a status transfer.
514  *
515  * We always provide TX data for data and CRC.  The MMC/SD protocol
516  * requires us to write ones; but Linux defaults to writing zeroes;
517  * so we explicitly initialize it to all ones on RX paths.
518  */
519 static void
mmc_spi_setup_data_message(struct mmc_spi_host * host,int multiple,enum dma_data_direction direction)520 mmc_spi_setup_data_message(
521 	struct mmc_spi_host	*host,
522 	int			multiple,
523 	enum dma_data_direction	direction)
524 {
525 	struct spi_transfer	*t;
526 	struct scratch		*scratch = host->data;
527 
528 	spi_message_init(&host->m);
529 
530 	/* for reads, readblock() skips 0xff bytes before finding
531 	 * the token; for writes, this transfer issues that token.
532 	 */
533 	if (direction == DMA_TO_DEVICE) {
534 		t = &host->token;
535 		memset(t, 0, sizeof(*t));
536 		t->len = 1;
537 		if (multiple)
538 			scratch->data_token = SPI_TOKEN_MULTI_WRITE;
539 		else
540 			scratch->data_token = SPI_TOKEN_SINGLE;
541 		t->tx_buf = &scratch->data_token;
542 		spi_message_add_tail(t, &host->m);
543 	}
544 
545 	/* Body of transfer is buffer, then CRC ...
546 	 * either TX-only, or RX with TX-ones.
547 	 */
548 	t = &host->t;
549 	memset(t, 0, sizeof(*t));
550 	t->tx_buf = host->ones;
551 	/* length and actual buffer info are written later */
552 	spi_message_add_tail(t, &host->m);
553 
554 	t = &host->crc;
555 	memset(t, 0, sizeof(*t));
556 	t->len = 2;
557 	if (direction == DMA_TO_DEVICE) {
558 		/* the actual CRC may get written later */
559 		t->tx_buf = &scratch->crc_val;
560 	} else {
561 		t->tx_buf = host->ones;
562 		t->rx_buf = &scratch->crc_val;
563 	}
564 	spi_message_add_tail(t, &host->m);
565 
566 	/*
567 	 * A single block read is followed by N(EC) [0+] all-ones bytes
568 	 * before deselect ... don't bother.
569 	 *
570 	 * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
571 	 * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
572 	 * collect that single byte, so readblock() doesn't need to.
573 	 *
574 	 * For a write, the one-byte data response follows immediately, then
575 	 * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
576 	 * Then single block reads may deselect, and multiblock ones issue
577 	 * the next token (next data block, or STOP_TRAN).  We can try to
578 	 * minimize I/O ops by using a single read to collect end-of-busy.
579 	 */
580 	if (multiple || direction == DMA_TO_DEVICE) {
581 		t = &host->early_status;
582 		memset(t, 0, sizeof(*t));
583 		t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
584 		t->tx_buf = host->ones;
585 		t->rx_buf = scratch->status;
586 		t->cs_change = 1;
587 		spi_message_add_tail(t, &host->m);
588 	}
589 }
590 
591 /*
592  * Write one block:
593  *  - caller handled preceding N(WR) [1+] all-ones bytes
594  *  - data block
595  *	+ token
596  *	+ data bytes
597  *	+ crc16
598  *  - an all-ones byte ... card writes a data-response byte
599  *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
600  *
601  * Return negative errno, else success.
602  */
603 static int
mmc_spi_writeblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)604 mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
605 	unsigned long timeout)
606 {
607 	struct spi_device	*spi = host->spi;
608 	int			status, i;
609 	struct scratch		*scratch = host->data;
610 	u32			pattern;
611 
612 	if (host->mmc->use_spi_crc)
613 		scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
614 
615 	status = spi_sync_locked(spi, &host->m);
616 	if (status != 0) {
617 		dev_dbg(&spi->dev, "write error (%d)\n", status);
618 		return status;
619 	}
620 
621 	/*
622 	 * Get the transmission data-response reply.  It must follow
623 	 * immediately after the data block we transferred.  This reply
624 	 * doesn't necessarily tell whether the write operation succeeded;
625 	 * it just says if the transmission was ok and whether *earlier*
626 	 * writes succeeded; see the standard.
627 	 *
628 	 * In practice, there are (even modern SDHC-)cards which are late
629 	 * in sending the response, and miss the time frame by a few bits,
630 	 * so we have to cope with this situation and check the response
631 	 * bit-by-bit. Arggh!!!
632 	 */
633 	pattern = get_unaligned_be32(scratch->status);
634 
635 	/* First 3 bit of pattern are undefined */
636 	pattern |= 0xE0000000;
637 
638 	/* left-adjust to leading 0 bit */
639 	while (pattern & 0x80000000)
640 		pattern <<= 1;
641 	/* right-adjust for pattern matching. Code is in bit 4..0 now. */
642 	pattern >>= 27;
643 
644 	switch (pattern) {
645 	case SPI_RESPONSE_ACCEPTED:
646 		status = 0;
647 		break;
648 	case SPI_RESPONSE_CRC_ERR:
649 		/* host shall then issue MMC_STOP_TRANSMISSION */
650 		status = -EILSEQ;
651 		break;
652 	case SPI_RESPONSE_WRITE_ERR:
653 		/* host shall then issue MMC_STOP_TRANSMISSION,
654 		 * and should MMC_SEND_STATUS to sort it out
655 		 */
656 		status = -EIO;
657 		break;
658 	default:
659 		status = -EPROTO;
660 		break;
661 	}
662 	if (status != 0) {
663 		dev_dbg(&spi->dev, "write error %02x (%d)\n",
664 			scratch->status[0], status);
665 		return status;
666 	}
667 
668 	t->tx_buf += t->len;
669 
670 	/* Return when not busy.  If we didn't collect that status yet,
671 	 * we'll need some more I/O.
672 	 */
673 	for (i = 4; i < sizeof(scratch->status); i++) {
674 		/* card is non-busy if the most recent bit is 1 */
675 		if (scratch->status[i] & 0x01)
676 			return 0;
677 	}
678 	return mmc_spi_wait_unbusy(host, timeout);
679 }
680 
681 /*
682  * Read one block:
683  *  - skip leading all-ones bytes ... either
684  *      + N(AC) [1..f(clock,CSD)] usually, else
685  *      + N(CX) [0..8] when reading CSD or CID
686  *  - data block
687  *	+ token ... if error token, no data or crc
688  *	+ data bytes
689  *	+ crc16
690  *
691  * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
692  * before dropping chipselect.
693  *
694  * For multiblock reads, caller either reads the next block or issues a
695  * STOP_TRANSMISSION command.
696  */
697 static int
mmc_spi_readblock(struct mmc_spi_host * host,struct spi_transfer * t,unsigned long timeout)698 mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
699 	unsigned long timeout)
700 {
701 	struct spi_device	*spi = host->spi;
702 	int			status;
703 	struct scratch		*scratch = host->data;
704 	unsigned int 		bitshift;
705 	u8			leftover;
706 
707 	/* At least one SD card sends an all-zeroes byte when N(CX)
708 	 * applies, before the all-ones bytes ... just cope with that.
709 	 */
710 	status = mmc_spi_readbytes(host, 1);
711 	if (status < 0)
712 		return status;
713 	status = scratch->status[0];
714 	if (status == 0xff || status == 0)
715 		status = mmc_spi_readtoken(host, timeout);
716 
717 	if (status < 0) {
718 		dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
719 		return status;
720 	}
721 
722 	/* The token may be bit-shifted...
723 	 * the first 0-bit precedes the data stream.
724 	 */
725 	bitshift = 7;
726 	while (status & 0x80) {
727 		status <<= 1;
728 		bitshift--;
729 	}
730 	leftover = status << 1;
731 
732 	status = spi_sync_locked(spi, &host->m);
733 	if (status < 0) {
734 		dev_dbg(&spi->dev, "read error %d\n", status);
735 		return status;
736 	}
737 
738 	if (bitshift) {
739 		/* Walk through the data and the crc and do
740 		 * all the magic to get byte-aligned data.
741 		 */
742 		u8 *cp = t->rx_buf;
743 		unsigned int len;
744 		unsigned int bitright = 8 - bitshift;
745 		u8 temp;
746 		for (len = t->len; len; len--) {
747 			temp = *cp;
748 			*cp++ = leftover | (temp >> bitshift);
749 			leftover = temp << bitright;
750 		}
751 		cp = (u8 *) &scratch->crc_val;
752 		temp = *cp;
753 		*cp++ = leftover | (temp >> bitshift);
754 		leftover = temp << bitright;
755 		temp = *cp;
756 		*cp = leftover | (temp >> bitshift);
757 	}
758 
759 	if (host->mmc->use_spi_crc) {
760 		u16 crc = crc_itu_t(0, t->rx_buf, t->len);
761 
762 		be16_to_cpus(&scratch->crc_val);
763 		if (scratch->crc_val != crc) {
764 			dev_dbg(&spi->dev,
765 				"read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
766 				scratch->crc_val, crc, t->len);
767 			return -EILSEQ;
768 		}
769 	}
770 
771 	t->rx_buf += t->len;
772 
773 	return 0;
774 }
775 
776 /*
777  * An MMC/SD data stage includes one or more blocks, optional CRCs,
778  * and inline handshaking.  That handhaking makes it unlike most
779  * other SPI protocol stacks.
780  */
781 static void
mmc_spi_data_do(struct mmc_spi_host * host,struct mmc_command * cmd,struct mmc_data * data,u32 blk_size)782 mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
783 		struct mmc_data *data, u32 blk_size)
784 {
785 	struct spi_device	*spi = host->spi;
786 	struct spi_transfer	*t;
787 	enum dma_data_direction	direction;
788 	struct scatterlist	*sg;
789 	unsigned		n_sg;
790 	int			multiple = (data->blocks > 1);
791 	u32			clock_rate;
792 	unsigned long		timeout;
793 
794 	direction = mmc_get_dma_dir(data);
795 	mmc_spi_setup_data_message(host, multiple, direction);
796 	t = &host->t;
797 
798 	if (t->speed_hz)
799 		clock_rate = t->speed_hz;
800 	else
801 		clock_rate = spi->max_speed_hz;
802 
803 	timeout = data->timeout_ns / 1000 +
804 		  data->timeout_clks * 1000000 / clock_rate;
805 	timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
806 
807 	/* Handle scatterlist segments one at a time, with synch for
808 	 * each 512-byte block
809 	 */
810 	for_each_sg(data->sg, sg, data->sg_len, n_sg) {
811 		int			status = 0;
812 		void			*kmap_addr;
813 		unsigned		length = sg->length;
814 
815 		/* allow pio too; we don't allow highmem */
816 		kmap_addr = kmap(sg_page(sg));
817 		if (direction == DMA_TO_DEVICE)
818 			t->tx_buf = kmap_addr + sg->offset;
819 		else
820 			t->rx_buf = kmap_addr + sg->offset;
821 
822 		/* transfer each block, and update request status */
823 		while (length) {
824 			t->len = min(length, blk_size);
825 
826 			dev_dbg(&host->spi->dev,
827 				"    mmc_spi: %s block, %d bytes\n",
828 				(direction == DMA_TO_DEVICE) ? "write" : "read",
829 				t->len);
830 
831 			if (direction == DMA_TO_DEVICE)
832 				status = mmc_spi_writeblock(host, t, timeout);
833 			else
834 				status = mmc_spi_readblock(host, t, timeout);
835 			if (status < 0)
836 				break;
837 
838 			data->bytes_xfered += t->len;
839 			length -= t->len;
840 
841 			if (!multiple)
842 				break;
843 		}
844 
845 		/* discard mappings */
846 		if (direction == DMA_FROM_DEVICE)
847 			flush_kernel_dcache_page(sg_page(sg));
848 		kunmap(sg_page(sg));
849 
850 		if (status < 0) {
851 			data->error = status;
852 			dev_dbg(&spi->dev, "%s status %d\n",
853 				(direction == DMA_TO_DEVICE) ? "write" : "read",
854 				status);
855 			break;
856 		}
857 	}
858 
859 	/* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
860 	 * can be issued before multiblock writes.  Unlike its more widely
861 	 * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
862 	 * that can affect the STOP_TRAN logic.   Complete (and current)
863 	 * MMC specs should sort that out before Linux starts using CMD23.
864 	 */
865 	if (direction == DMA_TO_DEVICE && multiple) {
866 		struct scratch	*scratch = host->data;
867 		int		tmp;
868 		const unsigned	statlen = sizeof(scratch->status);
869 
870 		dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
871 
872 		/* Tweak the per-block message we set up earlier by morphing
873 		 * it to hold single buffer with the token followed by some
874 		 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
875 		 * "not busy any longer" status, and leave chip selected.
876 		 */
877 		INIT_LIST_HEAD(&host->m.transfers);
878 		list_add(&host->early_status.transfer_list,
879 				&host->m.transfers);
880 
881 		memset(scratch->status, 0xff, statlen);
882 		scratch->status[0] = SPI_TOKEN_STOP_TRAN;
883 
884 		host->early_status.tx_buf = host->early_status.rx_buf;
885 		host->early_status.len = statlen;
886 
887 		tmp = spi_sync_locked(spi, &host->m);
888 		if (tmp < 0) {
889 			if (!data->error)
890 				data->error = tmp;
891 			return;
892 		}
893 
894 		/* Ideally we collected "not busy" status with one I/O,
895 		 * avoiding wasteful byte-at-a-time scanning... but more
896 		 * I/O is often needed.
897 		 */
898 		for (tmp = 2; tmp < statlen; tmp++) {
899 			if (scratch->status[tmp] != 0)
900 				return;
901 		}
902 		tmp = mmc_spi_wait_unbusy(host, timeout);
903 		if (tmp < 0 && !data->error)
904 			data->error = tmp;
905 	}
906 }
907 
908 /****************************************************************************/
909 
910 /*
911  * MMC driver implementation -- the interface to the MMC stack
912  */
913 
mmc_spi_request(struct mmc_host * mmc,struct mmc_request * mrq)914 static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
915 {
916 	struct mmc_spi_host	*host = mmc_priv(mmc);
917 	int			status = -EINVAL;
918 	int			crc_retry = 5;
919 	struct mmc_command	stop;
920 
921 #ifdef DEBUG
922 	/* MMC core and layered drivers *MUST* issue SPI-aware commands */
923 	{
924 		struct mmc_command	*cmd;
925 		int			invalid = 0;
926 
927 		cmd = mrq->cmd;
928 		if (!mmc_spi_resp_type(cmd)) {
929 			dev_dbg(&host->spi->dev, "bogus command\n");
930 			cmd->error = -EINVAL;
931 			invalid = 1;
932 		}
933 
934 		cmd = mrq->stop;
935 		if (cmd && !mmc_spi_resp_type(cmd)) {
936 			dev_dbg(&host->spi->dev, "bogus STOP command\n");
937 			cmd->error = -EINVAL;
938 			invalid = 1;
939 		}
940 
941 		if (invalid) {
942 			dump_stack();
943 			mmc_request_done(host->mmc, mrq);
944 			return;
945 		}
946 	}
947 #endif
948 
949 	/* request exclusive bus access */
950 	spi_bus_lock(host->spi->master);
951 
952 crc_recover:
953 	/* issue command; then optionally data and stop */
954 	status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
955 	if (status == 0 && mrq->data) {
956 		mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
957 
958 		/*
959 		 * The SPI bus is not always reliable for large data transfers.
960 		 * If an occasional crc error is reported by the SD device with
961 		 * data read/write over SPI, it may be recovered by repeating
962 		 * the last SD command again. The retry count is set to 5 to
963 		 * ensure the driver passes stress tests.
964 		 */
965 		if (mrq->data->error == -EILSEQ && crc_retry) {
966 			stop.opcode = MMC_STOP_TRANSMISSION;
967 			stop.arg = 0;
968 			stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
969 			status = mmc_spi_command_send(host, mrq, &stop, 0);
970 			crc_retry--;
971 			mrq->data->error = 0;
972 			goto crc_recover;
973 		}
974 
975 		if (mrq->stop)
976 			status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
977 		else
978 			mmc_cs_off(host);
979 	}
980 
981 	/* release the bus */
982 	spi_bus_unlock(host->spi->master);
983 
984 	mmc_request_done(host->mmc, mrq);
985 }
986 
987 /* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
988  *
989  * NOTE that here we can't know that the card has just been powered up;
990  * not all MMC/SD sockets support power switching.
991  *
992  * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
993  * this doesn't seem to do the right thing at all...
994  */
mmc_spi_initsequence(struct mmc_spi_host * host)995 static void mmc_spi_initsequence(struct mmc_spi_host *host)
996 {
997 	/* Try to be very sure any previous command has completed;
998 	 * wait till not-busy, skip debris from any old commands.
999 	 */
1000 	mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1001 	mmc_spi_readbytes(host, 10);
1002 
1003 	/*
1004 	 * Do a burst with chipselect active-high.  We need to do this to
1005 	 * meet the requirement of 74 clock cycles with both chipselect
1006 	 * and CMD (MOSI) high before CMD0 ... after the card has been
1007 	 * powered up to Vdd(min), and so is ready to take commands.
1008 	 *
1009 	 * Some cards are particularly needy of this (e.g. Viking "SD256")
1010 	 * while most others don't seem to care.
1011 	 *
1012 	 * Note that this is one of the places MMC/SD plays games with the
1013 	 * SPI protocol.  Another is that when chipselect is released while
1014 	 * the card returns BUSY status, the clock must issue several cycles
1015 	 * with chipselect high before the card will stop driving its output.
1016 	 *
1017 	 * SPI_CS_HIGH means "asserted" here. In some cases like when using
1018 	 * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1019 	 * inverted by gpiolib, so if we want to ascertain to drive it high
1020 	 * we should toggle the default with an XOR as we do here.
1021 	 */
1022 	host->spi->mode ^= SPI_CS_HIGH;
1023 	if (spi_setup(host->spi) != 0) {
1024 		/* Just warn; most cards work without it. */
1025 		dev_warn(&host->spi->dev,
1026 				"can't change chip-select polarity\n");
1027 		host->spi->mode ^= SPI_CS_HIGH;
1028 	} else {
1029 		mmc_spi_readbytes(host, 18);
1030 
1031 		host->spi->mode ^= SPI_CS_HIGH;
1032 		if (spi_setup(host->spi) != 0) {
1033 			/* Wot, we can't get the same setup we had before? */
1034 			dev_err(&host->spi->dev,
1035 					"can't restore chip-select polarity\n");
1036 		}
1037 	}
1038 }
1039 
mmc_powerstring(u8 power_mode)1040 static char *mmc_powerstring(u8 power_mode)
1041 {
1042 	switch (power_mode) {
1043 	case MMC_POWER_OFF: return "off";
1044 	case MMC_POWER_UP:  return "up";
1045 	case MMC_POWER_ON:  return "on";
1046 	}
1047 	return "?";
1048 }
1049 
mmc_spi_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1050 static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1051 {
1052 	struct mmc_spi_host *host = mmc_priv(mmc);
1053 
1054 	if (host->power_mode != ios->power_mode) {
1055 		int		canpower;
1056 
1057 		canpower = host->pdata && host->pdata->setpower;
1058 
1059 		dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1060 				mmc_powerstring(ios->power_mode),
1061 				ios->vdd,
1062 				canpower ? ", can switch" : "");
1063 
1064 		/* switch power on/off if possible, accounting for
1065 		 * max 250msec powerup time if needed.
1066 		 */
1067 		if (canpower) {
1068 			switch (ios->power_mode) {
1069 			case MMC_POWER_OFF:
1070 			case MMC_POWER_UP:
1071 				host->pdata->setpower(&host->spi->dev,
1072 						ios->vdd);
1073 				if (ios->power_mode == MMC_POWER_UP)
1074 					msleep(host->powerup_msecs);
1075 			}
1076 		}
1077 
1078 		/* See 6.4.1 in the simplified SD card physical spec 2.0 */
1079 		if (ios->power_mode == MMC_POWER_ON)
1080 			mmc_spi_initsequence(host);
1081 
1082 		/* If powering down, ground all card inputs to avoid power
1083 		 * delivery from data lines!  On a shared SPI bus, this
1084 		 * will probably be temporary; 6.4.2 of the simplified SD
1085 		 * spec says this must last at least 1msec.
1086 		 *
1087 		 *   - Clock low means CPOL 0, e.g. mode 0
1088 		 *   - MOSI low comes from writing zero
1089 		 *   - Chipselect is usually active low...
1090 		 */
1091 		if (canpower && ios->power_mode == MMC_POWER_OFF) {
1092 			int mres;
1093 			u8 nullbyte = 0;
1094 
1095 			host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1096 			mres = spi_setup(host->spi);
1097 			if (mres < 0)
1098 				dev_dbg(&host->spi->dev,
1099 					"switch to SPI mode 0 failed\n");
1100 
1101 			if (spi_write(host->spi, &nullbyte, 1) < 0)
1102 				dev_dbg(&host->spi->dev,
1103 					"put spi signals to low failed\n");
1104 
1105 			/*
1106 			 * Now clock should be low due to spi mode 0;
1107 			 * MOSI should be low because of written 0x00;
1108 			 * chipselect should be low (it is active low)
1109 			 * power supply is off, so now MMC is off too!
1110 			 *
1111 			 * FIXME no, chipselect can be high since the
1112 			 * device is inactive and SPI_CS_HIGH is clear...
1113 			 */
1114 			msleep(10);
1115 			if (mres == 0) {
1116 				host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1117 				mres = spi_setup(host->spi);
1118 				if (mres < 0)
1119 					dev_dbg(&host->spi->dev,
1120 						"switch back to SPI mode 3 failed\n");
1121 			}
1122 		}
1123 
1124 		host->power_mode = ios->power_mode;
1125 	}
1126 
1127 	if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1128 		int		status;
1129 
1130 		host->spi->max_speed_hz = ios->clock;
1131 		status = spi_setup(host->spi);
1132 		dev_dbg(&host->spi->dev,
1133 			"mmc_spi:  clock to %d Hz, %d\n",
1134 			host->spi->max_speed_hz, status);
1135 	}
1136 }
1137 
1138 static const struct mmc_host_ops mmc_spi_ops = {
1139 	.request	= mmc_spi_request,
1140 	.set_ios	= mmc_spi_set_ios,
1141 	.get_ro		= mmc_gpio_get_ro,
1142 	.get_cd		= mmc_gpio_get_cd,
1143 };
1144 
1145 
1146 /****************************************************************************/
1147 
1148 /*
1149  * SPI driver implementation
1150  */
1151 
1152 static irqreturn_t
mmc_spi_detect_irq(int irq,void * mmc)1153 mmc_spi_detect_irq(int irq, void *mmc)
1154 {
1155 	struct mmc_spi_host *host = mmc_priv(mmc);
1156 	u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1157 
1158 	mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1159 	return IRQ_HANDLED;
1160 }
1161 
mmc_spi_probe(struct spi_device * spi)1162 static int mmc_spi_probe(struct spi_device *spi)
1163 {
1164 	void			*ones;
1165 	struct mmc_host		*mmc;
1166 	struct mmc_spi_host	*host;
1167 	int			status;
1168 	bool			has_ro = false;
1169 
1170 	/* We rely on full duplex transfers, mostly to reduce
1171 	 * per-transfer overheads (by making fewer transfers).
1172 	 */
1173 	if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1174 		return -EINVAL;
1175 
1176 	/* MMC and SD specs only seem to care that sampling is on the
1177 	 * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1178 	 * should be legit.  We'll use mode 0 since the steady state is 0,
1179 	 * which is appropriate for hotplugging, unless the platform data
1180 	 * specify mode 3 (if hardware is not compatible to mode 0).
1181 	 */
1182 	if (spi->mode != SPI_MODE_3)
1183 		spi->mode = SPI_MODE_0;
1184 	spi->bits_per_word = 8;
1185 
1186 	status = spi_setup(spi);
1187 	if (status < 0) {
1188 		dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1189 				spi->mode, spi->max_speed_hz / 1000,
1190 				status);
1191 		return status;
1192 	}
1193 
1194 	/* We need a supply of ones to transmit.  This is the only time
1195 	 * the CPU touches these, so cache coherency isn't a concern.
1196 	 *
1197 	 * NOTE if many systems use more than one MMC-over-SPI connector
1198 	 * it'd save some memory to share this.  That's evidently rare.
1199 	 */
1200 	status = -ENOMEM;
1201 	ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1202 	if (!ones)
1203 		goto nomem;
1204 	memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1205 
1206 	mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1207 	if (!mmc)
1208 		goto nomem;
1209 
1210 	mmc->ops = &mmc_spi_ops;
1211 	mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1212 	mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1213 	mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1214 	mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1215 
1216 	mmc->caps = MMC_CAP_SPI;
1217 
1218 	/* SPI doesn't need the lowspeed device identification thing for
1219 	 * MMC or SD cards, since it never comes up in open drain mode.
1220 	 * That's good; some SPI masters can't handle very low speeds!
1221 	 *
1222 	 * However, low speed SDIO cards need not handle over 400 KHz;
1223 	 * that's the only reason not to use a few MHz for f_min (until
1224 	 * the upper layer reads the target frequency from the CSD).
1225 	 */
1226 	mmc->f_min = 400000;
1227 	mmc->f_max = spi->max_speed_hz;
1228 
1229 	host = mmc_priv(mmc);
1230 	host->mmc = mmc;
1231 	host->spi = spi;
1232 
1233 	host->ones = ones;
1234 
1235 	/* Platform data is used to hook up things like card sensing
1236 	 * and power switching gpios.
1237 	 */
1238 	host->pdata = mmc_spi_get_pdata(spi);
1239 	if (host->pdata)
1240 		mmc->ocr_avail = host->pdata->ocr_mask;
1241 	if (!mmc->ocr_avail) {
1242 		dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1243 		mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1244 	}
1245 	if (host->pdata && host->pdata->setpower) {
1246 		host->powerup_msecs = host->pdata->powerup_msecs;
1247 		if (!host->powerup_msecs || host->powerup_msecs > 250)
1248 			host->powerup_msecs = 250;
1249 	}
1250 
1251 	dev_set_drvdata(&spi->dev, mmc);
1252 
1253 	/* Preallocate buffers */
1254 	host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1255 	if (!host->data)
1256 		goto fail_nobuf1;
1257 
1258 	/* setup message for status/busy readback */
1259 	spi_message_init(&host->readback);
1260 
1261 	spi_message_add_tail(&host->status, &host->readback);
1262 	host->status.tx_buf = host->ones;
1263 	host->status.rx_buf = &host->data->status;
1264 	host->status.cs_change = 1;
1265 
1266 	/* register card detect irq */
1267 	if (host->pdata && host->pdata->init) {
1268 		status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1269 		if (status != 0)
1270 			goto fail_glue_init;
1271 	}
1272 
1273 	/* pass platform capabilities, if any */
1274 	if (host->pdata) {
1275 		mmc->caps |= host->pdata->caps;
1276 		mmc->caps2 |= host->pdata->caps2;
1277 	}
1278 
1279 	status = mmc_add_host(mmc);
1280 	if (status != 0)
1281 		goto fail_glue_init;
1282 
1283 	/*
1284 	 * Index 0 is card detect
1285 	 * Old boardfiles were specifying 1 ms as debounce
1286 	 */
1287 	status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1288 	if (status == -EPROBE_DEFER)
1289 		goto fail_gpiod_request;
1290 	if (!status) {
1291 		/*
1292 		 * The platform has a CD GPIO signal that may support
1293 		 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1294 		 * if polling is needed or not.
1295 		 */
1296 		mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1297 		mmc_gpiod_request_cd_irq(mmc);
1298 	}
1299 	mmc_detect_change(mmc, 0);
1300 
1301 	/* Index 1 is write protect/read only */
1302 	status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1303 	if (status == -EPROBE_DEFER)
1304 		goto fail_gpiod_request;
1305 	if (!status)
1306 		has_ro = true;
1307 
1308 	dev_info(&spi->dev, "SD/MMC host %s%s%s%s\n",
1309 			dev_name(&mmc->class_dev),
1310 			has_ro ? "" : ", no WP",
1311 			(host->pdata && host->pdata->setpower)
1312 				? "" : ", no poweroff",
1313 			(mmc->caps & MMC_CAP_NEEDS_POLL)
1314 				? ", cd polling" : "");
1315 	return 0;
1316 
1317 fail_gpiod_request:
1318 	mmc_remove_host(mmc);
1319 fail_glue_init:
1320 	kfree(host->data);
1321 fail_nobuf1:
1322 	mmc_free_host(mmc);
1323 	mmc_spi_put_pdata(spi);
1324 nomem:
1325 	kfree(ones);
1326 	return status;
1327 }
1328 
1329 
mmc_spi_remove(struct spi_device * spi)1330 static int mmc_spi_remove(struct spi_device *spi)
1331 {
1332 	struct mmc_host		*mmc = dev_get_drvdata(&spi->dev);
1333 	struct mmc_spi_host	*host = mmc_priv(mmc);
1334 
1335 	/* prevent new mmc_detect_change() calls */
1336 	if (host->pdata && host->pdata->exit)
1337 		host->pdata->exit(&spi->dev, mmc);
1338 
1339 	mmc_remove_host(mmc);
1340 
1341 	kfree(host->data);
1342 	kfree(host->ones);
1343 
1344 	spi->max_speed_hz = mmc->f_max;
1345 	mmc_free_host(mmc);
1346 	mmc_spi_put_pdata(spi);
1347 	return 0;
1348 }
1349 
1350 static const struct of_device_id mmc_spi_of_match_table[] = {
1351 	{ .compatible = "mmc-spi-slot", },
1352 	{},
1353 };
1354 MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1355 
1356 static struct spi_driver mmc_spi_driver = {
1357 	.driver = {
1358 		.name =		"mmc_spi",
1359 		.of_match_table = mmc_spi_of_match_table,
1360 	},
1361 	.probe =	mmc_spi_probe,
1362 	.remove =	mmc_spi_remove,
1363 };
1364 
1365 module_spi_driver(mmc_spi_driver);
1366 
1367 MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1368 MODULE_DESCRIPTION("SPI SD/MMC host driver");
1369 MODULE_LICENSE("GPL");
1370 MODULE_ALIAS("spi:mmc_spi");
1371