• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright © 2010-2015 Broadcom Corporation
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/platform_device.h>
12 #include <linux/err.h>
13 #include <linux/completion.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/ioport.h>
18 #include <linux/bug.h>
19 #include <linux/kernel.h>
20 #include <linux/bitops.h>
21 #include <linux/mm.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/rawnand.h>
24 #include <linux/mtd/partitions.h>
25 #include <linux/of.h>
26 #include <linux/of_platform.h>
27 #include <linux/slab.h>
28 #include <linux/static_key.h>
29 #include <linux/list.h>
30 #include <linux/log2.h>
31 
32 #include "brcmnand.h"
33 
34 /*
35  * This flag controls if WP stays on between erase/write commands to mitigate
36  * flash corruption due to power glitches. Values:
37  * 0: NAND_WP is not used or not available
38  * 1: NAND_WP is set by default, cleared for erase/write operations
39  * 2: NAND_WP is always cleared
40  */
41 static int wp_on = 1;
42 module_param(wp_on, int, 0444);
43 
44 /***********************************************************************
45  * Definitions
46  ***********************************************************************/
47 
48 #define DRV_NAME			"brcmnand"
49 
50 #define CMD_NULL			0x00
51 #define CMD_PAGE_READ			0x01
52 #define CMD_SPARE_AREA_READ		0x02
53 #define CMD_STATUS_READ			0x03
54 #define CMD_PROGRAM_PAGE		0x04
55 #define CMD_PROGRAM_SPARE_AREA		0x05
56 #define CMD_COPY_BACK			0x06
57 #define CMD_DEVICE_ID_READ		0x07
58 #define CMD_BLOCK_ERASE			0x08
59 #define CMD_FLASH_RESET			0x09
60 #define CMD_BLOCKS_LOCK			0x0a
61 #define CMD_BLOCKS_LOCK_DOWN		0x0b
62 #define CMD_BLOCKS_UNLOCK		0x0c
63 #define CMD_READ_BLOCKS_LOCK_STATUS	0x0d
64 #define CMD_PARAMETER_READ		0x0e
65 #define CMD_PARAMETER_CHANGE_COL	0x0f
66 #define CMD_LOW_LEVEL_OP		0x10
67 
68 struct brcm_nand_dma_desc {
69 	u32 next_desc;
70 	u32 next_desc_ext;
71 	u32 cmd_irq;
72 	u32 dram_addr;
73 	u32 dram_addr_ext;
74 	u32 tfr_len;
75 	u32 total_len;
76 	u32 flash_addr;
77 	u32 flash_addr_ext;
78 	u32 cs;
79 	u32 pad2[5];
80 	u32 status_valid;
81 } __packed;
82 
83 /* Bitfields for brcm_nand_dma_desc::status_valid */
84 #define FLASH_DMA_ECC_ERROR	(1 << 8)
85 #define FLASH_DMA_CORR_ERROR	(1 << 9)
86 
87 /* Bitfields for DMA_MODE */
88 #define FLASH_DMA_MODE_STOP_ON_ERROR	BIT(1) /* stop in Uncorr ECC error */
89 #define FLASH_DMA_MODE_MODE		BIT(0) /* link list */
90 #define FLASH_DMA_MODE_MASK		(FLASH_DMA_MODE_STOP_ON_ERROR |	\
91 						FLASH_DMA_MODE_MODE)
92 
93 /* 512B flash cache in the NAND controller HW */
94 #define FC_SHIFT		9U
95 #define FC_BYTES		512U
96 #define FC_WORDS		(FC_BYTES >> 2)
97 
98 #define BRCMNAND_MIN_PAGESIZE	512
99 #define BRCMNAND_MIN_BLOCKSIZE	(8 * 1024)
100 #define BRCMNAND_MIN_DEVSIZE	(4ULL * 1024 * 1024)
101 
102 #define NAND_CTRL_RDY			(INTFC_CTLR_READY | INTFC_FLASH_READY)
103 #define NAND_POLL_STATUS_TIMEOUT_MS	100
104 
105 #define EDU_CMD_WRITE          0x00
106 #define EDU_CMD_READ           0x01
107 #define EDU_STATUS_ACTIVE      BIT(0)
108 #define EDU_ERR_STATUS_ERRACK  BIT(0)
109 #define EDU_DONE_MASK		GENMASK(1, 0)
110 
111 #define EDU_CONFIG_MODE_NAND   BIT(0)
112 #define EDU_CONFIG_SWAP_BYTE   BIT(1)
113 #ifdef CONFIG_CPU_BIG_ENDIAN
114 #define EDU_CONFIG_SWAP_CFG     EDU_CONFIG_SWAP_BYTE
115 #else
116 #define EDU_CONFIG_SWAP_CFG     0
117 #endif
118 
119 /* edu registers */
120 enum edu_reg {
121 	EDU_CONFIG = 0,
122 	EDU_DRAM_ADDR,
123 	EDU_EXT_ADDR,
124 	EDU_LENGTH,
125 	EDU_CMD,
126 	EDU_STOP,
127 	EDU_STATUS,
128 	EDU_DONE,
129 	EDU_ERR_STATUS,
130 };
131 
132 static const u16  edu_regs[] = {
133 	[EDU_CONFIG] = 0x00,
134 	[EDU_DRAM_ADDR] = 0x04,
135 	[EDU_EXT_ADDR] = 0x08,
136 	[EDU_LENGTH] = 0x0c,
137 	[EDU_CMD] = 0x10,
138 	[EDU_STOP] = 0x14,
139 	[EDU_STATUS] = 0x18,
140 	[EDU_DONE] = 0x1c,
141 	[EDU_ERR_STATUS] = 0x20,
142 };
143 
144 /* flash_dma registers */
145 enum flash_dma_reg {
146 	FLASH_DMA_REVISION = 0,
147 	FLASH_DMA_FIRST_DESC,
148 	FLASH_DMA_FIRST_DESC_EXT,
149 	FLASH_DMA_CTRL,
150 	FLASH_DMA_MODE,
151 	FLASH_DMA_STATUS,
152 	FLASH_DMA_INTERRUPT_DESC,
153 	FLASH_DMA_INTERRUPT_DESC_EXT,
154 	FLASH_DMA_ERROR_STATUS,
155 	FLASH_DMA_CURRENT_DESC,
156 	FLASH_DMA_CURRENT_DESC_EXT,
157 };
158 
159 /* flash_dma registers v0*/
160 static const u16 flash_dma_regs_v0[] = {
161 	[FLASH_DMA_REVISION]		= 0x00,
162 	[FLASH_DMA_FIRST_DESC]		= 0x04,
163 	[FLASH_DMA_CTRL]		= 0x08,
164 	[FLASH_DMA_MODE]		= 0x0c,
165 	[FLASH_DMA_STATUS]		= 0x10,
166 	[FLASH_DMA_INTERRUPT_DESC]	= 0x14,
167 	[FLASH_DMA_ERROR_STATUS]	= 0x18,
168 	[FLASH_DMA_CURRENT_DESC]	= 0x1c,
169 };
170 
171 /* flash_dma registers v1*/
172 static const u16 flash_dma_regs_v1[] = {
173 	[FLASH_DMA_REVISION]		= 0x00,
174 	[FLASH_DMA_FIRST_DESC]		= 0x04,
175 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x08,
176 	[FLASH_DMA_CTRL]		= 0x0c,
177 	[FLASH_DMA_MODE]		= 0x10,
178 	[FLASH_DMA_STATUS]		= 0x14,
179 	[FLASH_DMA_INTERRUPT_DESC]	= 0x18,
180 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x1c,
181 	[FLASH_DMA_ERROR_STATUS]	= 0x20,
182 	[FLASH_DMA_CURRENT_DESC]	= 0x24,
183 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x28,
184 };
185 
186 /* flash_dma registers v4 */
187 static const u16 flash_dma_regs_v4[] = {
188 	[FLASH_DMA_REVISION]		= 0x00,
189 	[FLASH_DMA_FIRST_DESC]		= 0x08,
190 	[FLASH_DMA_FIRST_DESC_EXT]	= 0x0c,
191 	[FLASH_DMA_CTRL]		= 0x10,
192 	[FLASH_DMA_MODE]		= 0x14,
193 	[FLASH_DMA_STATUS]		= 0x18,
194 	[FLASH_DMA_INTERRUPT_DESC]	= 0x20,
195 	[FLASH_DMA_INTERRUPT_DESC_EXT]	= 0x24,
196 	[FLASH_DMA_ERROR_STATUS]	= 0x28,
197 	[FLASH_DMA_CURRENT_DESC]	= 0x30,
198 	[FLASH_DMA_CURRENT_DESC_EXT]	= 0x34,
199 };
200 
201 /* Controller feature flags */
202 enum {
203 	BRCMNAND_HAS_1K_SECTORS			= BIT(0),
204 	BRCMNAND_HAS_PREFETCH			= BIT(1),
205 	BRCMNAND_HAS_CACHE_MODE			= BIT(2),
206 	BRCMNAND_HAS_WP				= BIT(3),
207 };
208 
209 struct brcmnand_host;
210 
211 static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
212 
213 struct brcmnand_controller {
214 	struct device		*dev;
215 	struct nand_controller	controller;
216 	void __iomem		*nand_base;
217 	void __iomem		*nand_fc; /* flash cache */
218 	void __iomem		*flash_dma_base;
219 	unsigned int		irq;
220 	unsigned int		dma_irq;
221 	int			nand_version;
222 
223 	/* Some SoCs provide custom interrupt status register(s) */
224 	struct brcmnand_soc	*soc;
225 
226 	/* Some SoCs have a gateable clock for the controller */
227 	struct clk		*clk;
228 
229 	int			cmd_pending;
230 	bool			dma_pending;
231 	bool                    edu_pending;
232 	struct completion	done;
233 	struct completion	dma_done;
234 	struct completion       edu_done;
235 
236 	/* List of NAND hosts (one for each chip-select) */
237 	struct list_head host_list;
238 
239 	/* EDU info, per-transaction */
240 	const u16               *edu_offsets;
241 	void __iomem            *edu_base;
242 	int			edu_irq;
243 	int                     edu_count;
244 	u64                     edu_dram_addr;
245 	u32                     edu_ext_addr;
246 	u32                     edu_cmd;
247 	u32                     edu_config;
248 
249 	/* flash_dma reg */
250 	const u16		*flash_dma_offsets;
251 	struct brcm_nand_dma_desc *dma_desc;
252 	dma_addr_t		dma_pa;
253 
254 	int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
255 			 u32 len, u8 dma_cmd);
256 
257 	/* in-memory cache of the FLASH_CACHE, used only for some commands */
258 	u8			flash_cache[FC_BYTES];
259 
260 	/* Controller revision details */
261 	const u16		*reg_offsets;
262 	unsigned int		reg_spacing; /* between CS1, CS2, ... regs */
263 	const u8		*cs_offsets; /* within each chip-select */
264 	const u8		*cs0_offsets; /* within CS0, if different */
265 	unsigned int		max_block_size;
266 	const unsigned int	*block_sizes;
267 	unsigned int		max_page_size;
268 	const unsigned int	*page_sizes;
269 	unsigned int		page_size_shift;
270 	unsigned int		max_oob;
271 	u32			ecc_level_shift;
272 	u32			features;
273 
274 	/* for low-power standby/resume only */
275 	u32			nand_cs_nand_select;
276 	u32			nand_cs_nand_xor;
277 	u32			corr_stat_threshold;
278 	u32			flash_dma_mode;
279 	u32                     flash_edu_mode;
280 	bool			pio_poll_mode;
281 };
282 
283 struct brcmnand_cfg {
284 	u64			device_size;
285 	unsigned int		block_size;
286 	unsigned int		page_size;
287 	unsigned int		spare_area_size;
288 	unsigned int		device_width;
289 	unsigned int		col_adr_bytes;
290 	unsigned int		blk_adr_bytes;
291 	unsigned int		ful_adr_bytes;
292 	unsigned int		sector_size_1k;
293 	unsigned int		ecc_level;
294 	/* use for low-power standby/resume only */
295 	u32			acc_control;
296 	u32			config;
297 	u32			config_ext;
298 	u32			timing_1;
299 	u32			timing_2;
300 };
301 
302 struct brcmnand_host {
303 	struct list_head	node;
304 
305 	struct nand_chip	chip;
306 	struct platform_device	*pdev;
307 	int			cs;
308 
309 	unsigned int		last_cmd;
310 	unsigned int		last_byte;
311 	u64			last_addr;
312 	struct brcmnand_cfg	hwcfg;
313 	struct brcmnand_controller *ctrl;
314 };
315 
316 enum brcmnand_reg {
317 	BRCMNAND_CMD_START = 0,
318 	BRCMNAND_CMD_EXT_ADDRESS,
319 	BRCMNAND_CMD_ADDRESS,
320 	BRCMNAND_INTFC_STATUS,
321 	BRCMNAND_CS_SELECT,
322 	BRCMNAND_CS_XOR,
323 	BRCMNAND_LL_OP,
324 	BRCMNAND_CS0_BASE,
325 	BRCMNAND_CS1_BASE,		/* CS1 regs, if non-contiguous */
326 	BRCMNAND_CORR_THRESHOLD,
327 	BRCMNAND_CORR_THRESHOLD_EXT,
328 	BRCMNAND_UNCORR_COUNT,
329 	BRCMNAND_CORR_COUNT,
330 	BRCMNAND_CORR_EXT_ADDR,
331 	BRCMNAND_CORR_ADDR,
332 	BRCMNAND_UNCORR_EXT_ADDR,
333 	BRCMNAND_UNCORR_ADDR,
334 	BRCMNAND_SEMAPHORE,
335 	BRCMNAND_ID,
336 	BRCMNAND_ID_EXT,
337 	BRCMNAND_LL_RDATA,
338 	BRCMNAND_OOB_READ_BASE,
339 	BRCMNAND_OOB_READ_10_BASE,	/* offset 0x10, if non-contiguous */
340 	BRCMNAND_OOB_WRITE_BASE,
341 	BRCMNAND_OOB_WRITE_10_BASE,	/* offset 0x10, if non-contiguous */
342 	BRCMNAND_FC_BASE,
343 };
344 
345 /* BRCMNAND v2.1-v2.2 */
346 static const u16 brcmnand_regs_v21[] = {
347 	[BRCMNAND_CMD_START]		=  0x04,
348 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
349 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
350 	[BRCMNAND_INTFC_STATUS]		=  0x5c,
351 	[BRCMNAND_CS_SELECT]		=  0x14,
352 	[BRCMNAND_CS_XOR]		=  0x18,
353 	[BRCMNAND_LL_OP]		=     0,
354 	[BRCMNAND_CS0_BASE]		=  0x40,
355 	[BRCMNAND_CS1_BASE]		=     0,
356 	[BRCMNAND_CORR_THRESHOLD]	=     0,
357 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
358 	[BRCMNAND_UNCORR_COUNT]		=     0,
359 	[BRCMNAND_CORR_COUNT]		=     0,
360 	[BRCMNAND_CORR_EXT_ADDR]	=  0x60,
361 	[BRCMNAND_CORR_ADDR]		=  0x64,
362 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x68,
363 	[BRCMNAND_UNCORR_ADDR]		=  0x6c,
364 	[BRCMNAND_SEMAPHORE]		=  0x50,
365 	[BRCMNAND_ID]			=  0x54,
366 	[BRCMNAND_ID_EXT]		=     0,
367 	[BRCMNAND_LL_RDATA]		=     0,
368 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
369 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
370 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
371 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
372 	[BRCMNAND_FC_BASE]		= 0x200,
373 };
374 
375 /* BRCMNAND v3.3-v4.0 */
376 static const u16 brcmnand_regs_v33[] = {
377 	[BRCMNAND_CMD_START]		=  0x04,
378 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
379 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
380 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
381 	[BRCMNAND_CS_SELECT]		=  0x14,
382 	[BRCMNAND_CS_XOR]		=  0x18,
383 	[BRCMNAND_LL_OP]		= 0x178,
384 	[BRCMNAND_CS0_BASE]		=  0x40,
385 	[BRCMNAND_CS1_BASE]		=  0xd0,
386 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
387 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
388 	[BRCMNAND_UNCORR_COUNT]		=     0,
389 	[BRCMNAND_CORR_COUNT]		=     0,
390 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
391 	[BRCMNAND_CORR_ADDR]		=  0x74,
392 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
393 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
394 	[BRCMNAND_SEMAPHORE]		=  0x58,
395 	[BRCMNAND_ID]			=  0x60,
396 	[BRCMNAND_ID_EXT]		=  0x64,
397 	[BRCMNAND_LL_RDATA]		= 0x17c,
398 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
399 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
400 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
401 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
402 	[BRCMNAND_FC_BASE]		= 0x200,
403 };
404 
405 /* BRCMNAND v5.0 */
406 static const u16 brcmnand_regs_v50[] = {
407 	[BRCMNAND_CMD_START]		=  0x04,
408 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
409 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
410 	[BRCMNAND_INTFC_STATUS]		=  0x6c,
411 	[BRCMNAND_CS_SELECT]		=  0x14,
412 	[BRCMNAND_CS_XOR]		=  0x18,
413 	[BRCMNAND_LL_OP]		= 0x178,
414 	[BRCMNAND_CS0_BASE]		=  0x40,
415 	[BRCMNAND_CS1_BASE]		=  0xd0,
416 	[BRCMNAND_CORR_THRESHOLD]	=  0x84,
417 	[BRCMNAND_CORR_THRESHOLD_EXT]	=     0,
418 	[BRCMNAND_UNCORR_COUNT]		=     0,
419 	[BRCMNAND_CORR_COUNT]		=     0,
420 	[BRCMNAND_CORR_EXT_ADDR]	=  0x70,
421 	[BRCMNAND_CORR_ADDR]		=  0x74,
422 	[BRCMNAND_UNCORR_EXT_ADDR]	=  0x78,
423 	[BRCMNAND_UNCORR_ADDR]		=  0x7c,
424 	[BRCMNAND_SEMAPHORE]		=  0x58,
425 	[BRCMNAND_ID]			=  0x60,
426 	[BRCMNAND_ID_EXT]		=  0x64,
427 	[BRCMNAND_LL_RDATA]		= 0x17c,
428 	[BRCMNAND_OOB_READ_BASE]	=  0x20,
429 	[BRCMNAND_OOB_READ_10_BASE]	= 0x130,
430 	[BRCMNAND_OOB_WRITE_BASE]	=  0x30,
431 	[BRCMNAND_OOB_WRITE_10_BASE]	= 0x140,
432 	[BRCMNAND_FC_BASE]		= 0x200,
433 };
434 
435 /* BRCMNAND v6.0 - v7.1 */
436 static const u16 brcmnand_regs_v60[] = {
437 	[BRCMNAND_CMD_START]		=  0x04,
438 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
439 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
440 	[BRCMNAND_INTFC_STATUS]		=  0x14,
441 	[BRCMNAND_CS_SELECT]		=  0x18,
442 	[BRCMNAND_CS_XOR]		=  0x1c,
443 	[BRCMNAND_LL_OP]		=  0x20,
444 	[BRCMNAND_CS0_BASE]		=  0x50,
445 	[BRCMNAND_CS1_BASE]		=     0,
446 	[BRCMNAND_CORR_THRESHOLD]	=  0xc0,
447 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xc4,
448 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
449 	[BRCMNAND_CORR_COUNT]		= 0x100,
450 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
451 	[BRCMNAND_CORR_ADDR]		= 0x110,
452 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
453 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
454 	[BRCMNAND_SEMAPHORE]		= 0x150,
455 	[BRCMNAND_ID]			= 0x194,
456 	[BRCMNAND_ID_EXT]		= 0x198,
457 	[BRCMNAND_LL_RDATA]		= 0x19c,
458 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
459 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
460 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
461 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
462 	[BRCMNAND_FC_BASE]		= 0x400,
463 };
464 
465 /* BRCMNAND v7.1 */
466 static const u16 brcmnand_regs_v71[] = {
467 	[BRCMNAND_CMD_START]		=  0x04,
468 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
469 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
470 	[BRCMNAND_INTFC_STATUS]		=  0x14,
471 	[BRCMNAND_CS_SELECT]		=  0x18,
472 	[BRCMNAND_CS_XOR]		=  0x1c,
473 	[BRCMNAND_LL_OP]		=  0x20,
474 	[BRCMNAND_CS0_BASE]		=  0x50,
475 	[BRCMNAND_CS1_BASE]		=     0,
476 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
477 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
478 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
479 	[BRCMNAND_CORR_COUNT]		= 0x100,
480 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
481 	[BRCMNAND_CORR_ADDR]		= 0x110,
482 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
483 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
484 	[BRCMNAND_SEMAPHORE]		= 0x150,
485 	[BRCMNAND_ID]			= 0x194,
486 	[BRCMNAND_ID_EXT]		= 0x198,
487 	[BRCMNAND_LL_RDATA]		= 0x19c,
488 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
489 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
490 	[BRCMNAND_OOB_WRITE_BASE]	= 0x280,
491 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
492 	[BRCMNAND_FC_BASE]		= 0x400,
493 };
494 
495 /* BRCMNAND v7.2 */
496 static const u16 brcmnand_regs_v72[] = {
497 	[BRCMNAND_CMD_START]		=  0x04,
498 	[BRCMNAND_CMD_EXT_ADDRESS]	=  0x08,
499 	[BRCMNAND_CMD_ADDRESS]		=  0x0c,
500 	[BRCMNAND_INTFC_STATUS]		=  0x14,
501 	[BRCMNAND_CS_SELECT]		=  0x18,
502 	[BRCMNAND_CS_XOR]		=  0x1c,
503 	[BRCMNAND_LL_OP]		=  0x20,
504 	[BRCMNAND_CS0_BASE]		=  0x50,
505 	[BRCMNAND_CS1_BASE]		=     0,
506 	[BRCMNAND_CORR_THRESHOLD]	=  0xdc,
507 	[BRCMNAND_CORR_THRESHOLD_EXT]	=  0xe0,
508 	[BRCMNAND_UNCORR_COUNT]		=  0xfc,
509 	[BRCMNAND_CORR_COUNT]		= 0x100,
510 	[BRCMNAND_CORR_EXT_ADDR]	= 0x10c,
511 	[BRCMNAND_CORR_ADDR]		= 0x110,
512 	[BRCMNAND_UNCORR_EXT_ADDR]	= 0x114,
513 	[BRCMNAND_UNCORR_ADDR]		= 0x118,
514 	[BRCMNAND_SEMAPHORE]		= 0x150,
515 	[BRCMNAND_ID]			= 0x194,
516 	[BRCMNAND_ID_EXT]		= 0x198,
517 	[BRCMNAND_LL_RDATA]		= 0x19c,
518 	[BRCMNAND_OOB_READ_BASE]	= 0x200,
519 	[BRCMNAND_OOB_READ_10_BASE]	=     0,
520 	[BRCMNAND_OOB_WRITE_BASE]	= 0x400,
521 	[BRCMNAND_OOB_WRITE_10_BASE]	=     0,
522 	[BRCMNAND_FC_BASE]		= 0x600,
523 };
524 
525 enum brcmnand_cs_reg {
526 	BRCMNAND_CS_CFG_EXT = 0,
527 	BRCMNAND_CS_CFG,
528 	BRCMNAND_CS_ACC_CONTROL,
529 	BRCMNAND_CS_TIMING1,
530 	BRCMNAND_CS_TIMING2,
531 };
532 
533 /* Per chip-select offsets for v7.1 */
534 static const u8 brcmnand_cs_offsets_v71[] = {
535 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
536 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
537 	[BRCMNAND_CS_CFG]		= 0x08,
538 	[BRCMNAND_CS_TIMING1]		= 0x0c,
539 	[BRCMNAND_CS_TIMING2]		= 0x10,
540 };
541 
542 /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
543 static const u8 brcmnand_cs_offsets[] = {
544 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
545 	[BRCMNAND_CS_CFG_EXT]		= 0x04,
546 	[BRCMNAND_CS_CFG]		= 0x04,
547 	[BRCMNAND_CS_TIMING1]		= 0x08,
548 	[BRCMNAND_CS_TIMING2]		= 0x0c,
549 };
550 
551 /* Per chip-select offset for <= v5.0 on CS0 only */
552 static const u8 brcmnand_cs_offsets_cs0[] = {
553 	[BRCMNAND_CS_ACC_CONTROL]	= 0x00,
554 	[BRCMNAND_CS_CFG_EXT]		= 0x08,
555 	[BRCMNAND_CS_CFG]		= 0x08,
556 	[BRCMNAND_CS_TIMING1]		= 0x10,
557 	[BRCMNAND_CS_TIMING2]		= 0x14,
558 };
559 
560 /*
561  * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
562  * one config register, but once the bitfields overflowed, newer controllers
563  * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
564  */
565 enum {
566 	CFG_BLK_ADR_BYTES_SHIFT		= 8,
567 	CFG_COL_ADR_BYTES_SHIFT		= 12,
568 	CFG_FUL_ADR_BYTES_SHIFT		= 16,
569 	CFG_BUS_WIDTH_SHIFT		= 23,
570 	CFG_BUS_WIDTH			= BIT(CFG_BUS_WIDTH_SHIFT),
571 	CFG_DEVICE_SIZE_SHIFT		= 24,
572 
573 	/* Only for v2.1 */
574 	CFG_PAGE_SIZE_SHIFT_v2_1	= 30,
575 
576 	/* Only for pre-v7.1 (with no CFG_EXT register) */
577 	CFG_PAGE_SIZE_SHIFT		= 20,
578 	CFG_BLK_SIZE_SHIFT		= 28,
579 
580 	/* Only for v7.1+ (with CFG_EXT register) */
581 	CFG_EXT_PAGE_SIZE_SHIFT		= 0,
582 	CFG_EXT_BLK_SIZE_SHIFT		= 4,
583 };
584 
585 /* BRCMNAND_INTFC_STATUS */
586 enum {
587 	INTFC_FLASH_STATUS		= GENMASK(7, 0),
588 
589 	INTFC_ERASED			= BIT(27),
590 	INTFC_OOB_VALID			= BIT(28),
591 	INTFC_CACHE_VALID		= BIT(29),
592 	INTFC_FLASH_READY		= BIT(30),
593 	INTFC_CTLR_READY		= BIT(31),
594 };
595 
596 /***********************************************************************
597  * NAND ACC CONTROL bitfield
598  *
599  * Some bits have remained constant throughout hardware revision, while
600  * others have shifted around.
601  ***********************************************************************/
602 
603 /* Constant for all versions (where supported) */
604 enum {
605 	/* See BRCMNAND_HAS_CACHE_MODE */
606 	ACC_CONTROL_CACHE_MODE				= BIT(22),
607 
608 	/* See BRCMNAND_HAS_PREFETCH */
609 	ACC_CONTROL_PREFETCH				= BIT(23),
610 
611 	ACC_CONTROL_PAGE_HIT				= BIT(24),
612 	ACC_CONTROL_WR_PREEMPT				= BIT(25),
613 	ACC_CONTROL_PARTIAL_PAGE			= BIT(26),
614 	ACC_CONTROL_RD_ERASED				= BIT(27),
615 	ACC_CONTROL_FAST_PGM_RDIN			= BIT(28),
616 	ACC_CONTROL_WR_ECC				= BIT(30),
617 	ACC_CONTROL_RD_ECC				= BIT(31),
618 };
619 
620 #define	ACC_CONTROL_ECC_SHIFT			16
621 /* Only for v7.2 */
622 #define	ACC_CONTROL_ECC_EXT_SHIFT		13
623 
brcmnand_non_mmio_ops(struct brcmnand_controller * ctrl)624 static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
625 {
626 	return static_branch_unlikely(&brcmnand_soc_has_ops_key);
627 }
628 
nand_readreg(struct brcmnand_controller * ctrl,u32 offs)629 static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
630 {
631 	if (brcmnand_non_mmio_ops(ctrl))
632 		return brcmnand_soc_read(ctrl->soc, offs);
633 	return brcmnand_readl(ctrl->nand_base + offs);
634 }
635 
nand_writereg(struct brcmnand_controller * ctrl,u32 offs,u32 val)636 static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
637 				 u32 val)
638 {
639 	if (brcmnand_non_mmio_ops(ctrl))
640 		brcmnand_soc_write(ctrl->soc, val, offs);
641 	else
642 		brcmnand_writel(val, ctrl->nand_base + offs);
643 }
644 
brcmnand_revision_init(struct brcmnand_controller * ctrl)645 static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
646 {
647 	static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
648 	static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
649 	static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
650 	static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
651 	static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
652 	static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
653 	static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
654 
655 	ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
656 
657 	/* Only support v2.1+ */
658 	if (ctrl->nand_version < 0x0201) {
659 		dev_err(ctrl->dev, "version %#x not supported\n",
660 			ctrl->nand_version);
661 		return -ENODEV;
662 	}
663 
664 	/* Register offsets */
665 	if (ctrl->nand_version >= 0x0702)
666 		ctrl->reg_offsets = brcmnand_regs_v72;
667 	else if (ctrl->nand_version == 0x0701)
668 		ctrl->reg_offsets = brcmnand_regs_v71;
669 	else if (ctrl->nand_version >= 0x0600)
670 		ctrl->reg_offsets = brcmnand_regs_v60;
671 	else if (ctrl->nand_version >= 0x0500)
672 		ctrl->reg_offsets = brcmnand_regs_v50;
673 	else if (ctrl->nand_version >= 0x0303)
674 		ctrl->reg_offsets = brcmnand_regs_v33;
675 	else if (ctrl->nand_version >= 0x0201)
676 		ctrl->reg_offsets = brcmnand_regs_v21;
677 
678 	/* Chip-select stride */
679 	if (ctrl->nand_version >= 0x0701)
680 		ctrl->reg_spacing = 0x14;
681 	else
682 		ctrl->reg_spacing = 0x10;
683 
684 	/* Per chip-select registers */
685 	if (ctrl->nand_version >= 0x0701) {
686 		ctrl->cs_offsets = brcmnand_cs_offsets_v71;
687 	} else {
688 		ctrl->cs_offsets = brcmnand_cs_offsets;
689 
690 		/* v3.3-5.0 have a different CS0 offset layout */
691 		if (ctrl->nand_version >= 0x0303 &&
692 		    ctrl->nand_version <= 0x0500)
693 			ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
694 	}
695 
696 	/* Page / block sizes */
697 	if (ctrl->nand_version >= 0x0701) {
698 		/* >= v7.1 use nice power-of-2 values! */
699 		ctrl->max_page_size = 16 * 1024;
700 		ctrl->max_block_size = 2 * 1024 * 1024;
701 	} else {
702 		if (ctrl->nand_version >= 0x0304)
703 			ctrl->page_sizes = page_sizes_v3_4;
704 		else if (ctrl->nand_version >= 0x0202)
705 			ctrl->page_sizes = page_sizes_v2_2;
706 		else
707 			ctrl->page_sizes = page_sizes_v2_1;
708 
709 		if (ctrl->nand_version >= 0x0202)
710 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
711 		else
712 			ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
713 
714 		if (ctrl->nand_version >= 0x0600)
715 			ctrl->block_sizes = block_sizes_v6;
716 		else if (ctrl->nand_version >= 0x0400)
717 			ctrl->block_sizes = block_sizes_v4;
718 		else if (ctrl->nand_version >= 0x0202)
719 			ctrl->block_sizes = block_sizes_v2_2;
720 		else
721 			ctrl->block_sizes = block_sizes_v2_1;
722 
723 		if (ctrl->nand_version < 0x0400) {
724 			if (ctrl->nand_version < 0x0202)
725 				ctrl->max_page_size = 2048;
726 			else
727 				ctrl->max_page_size = 4096;
728 			ctrl->max_block_size = 512 * 1024;
729 		}
730 	}
731 
732 	/* Maximum spare area sector size (per 512B) */
733 	if (ctrl->nand_version == 0x0702)
734 		ctrl->max_oob = 128;
735 	else if (ctrl->nand_version >= 0x0600)
736 		ctrl->max_oob = 64;
737 	else if (ctrl->nand_version >= 0x0500)
738 		ctrl->max_oob = 32;
739 	else
740 		ctrl->max_oob = 16;
741 
742 	/* v6.0 and newer (except v6.1) have prefetch support */
743 	if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
744 		ctrl->features |= BRCMNAND_HAS_PREFETCH;
745 
746 	/*
747 	 * v6.x has cache mode, but it's implemented differently. Ignore it for
748 	 * now.
749 	 */
750 	if (ctrl->nand_version >= 0x0700)
751 		ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
752 
753 	if (ctrl->nand_version >= 0x0500)
754 		ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
755 
756 	if (ctrl->nand_version >= 0x0700)
757 		ctrl->features |= BRCMNAND_HAS_WP;
758 	else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
759 		ctrl->features |= BRCMNAND_HAS_WP;
760 
761 	/* v7.2 has different ecc level shift in the acc register */
762 	if (ctrl->nand_version == 0x0702)
763 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
764 	else
765 		ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
766 
767 	return 0;
768 }
769 
brcmnand_flash_dma_revision_init(struct brcmnand_controller * ctrl)770 static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
771 {
772 	/* flash_dma register offsets */
773 	if (ctrl->nand_version >= 0x0703)
774 		ctrl->flash_dma_offsets = flash_dma_regs_v4;
775 	else if (ctrl->nand_version == 0x0602)
776 		ctrl->flash_dma_offsets = flash_dma_regs_v0;
777 	else
778 		ctrl->flash_dma_offsets = flash_dma_regs_v1;
779 }
780 
brcmnand_read_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg)781 static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
782 		enum brcmnand_reg reg)
783 {
784 	u16 offs = ctrl->reg_offsets[reg];
785 
786 	if (offs)
787 		return nand_readreg(ctrl, offs);
788 	else
789 		return 0;
790 }
791 
brcmnand_write_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 val)792 static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
793 				      enum brcmnand_reg reg, u32 val)
794 {
795 	u16 offs = ctrl->reg_offsets[reg];
796 
797 	if (offs)
798 		nand_writereg(ctrl, offs, val);
799 }
800 
brcmnand_rmw_reg(struct brcmnand_controller * ctrl,enum brcmnand_reg reg,u32 mask,unsigned int shift,u32 val)801 static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
802 				    enum brcmnand_reg reg, u32 mask, unsigned
803 				    int shift, u32 val)
804 {
805 	u32 tmp = brcmnand_read_reg(ctrl, reg);
806 
807 	tmp &= ~mask;
808 	tmp |= val << shift;
809 	brcmnand_write_reg(ctrl, reg, tmp);
810 }
811 
brcmnand_read_fc(struct brcmnand_controller * ctrl,int word)812 static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
813 {
814 	if (brcmnand_non_mmio_ops(ctrl))
815 		return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
816 	return __raw_readl(ctrl->nand_fc + word * 4);
817 }
818 
brcmnand_write_fc(struct brcmnand_controller * ctrl,int word,u32 val)819 static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
820 				     int word, u32 val)
821 {
822 	if (brcmnand_non_mmio_ops(ctrl))
823 		brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
824 	else
825 		__raw_writel(val, ctrl->nand_fc + word * 4);
826 }
827 
edu_writel(struct brcmnand_controller * ctrl,enum edu_reg reg,u32 val)828 static inline void edu_writel(struct brcmnand_controller *ctrl,
829 			      enum edu_reg reg, u32 val)
830 {
831 	u16 offs = ctrl->edu_offsets[reg];
832 
833 	brcmnand_writel(val, ctrl->edu_base + offs);
834 }
835 
edu_readl(struct brcmnand_controller * ctrl,enum edu_reg reg)836 static inline u32 edu_readl(struct brcmnand_controller *ctrl,
837 			    enum edu_reg reg)
838 {
839 	u16 offs = ctrl->edu_offsets[reg];
840 
841 	return brcmnand_readl(ctrl->edu_base + offs);
842 }
843 
brcmnand_clear_ecc_addr(struct brcmnand_controller * ctrl)844 static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
845 {
846 
847 	/* Clear error addresses */
848 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
849 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
850 	brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
851 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
852 }
853 
brcmnand_get_uncorrecc_addr(struct brcmnand_controller * ctrl)854 static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
855 {
856 	u64 err_addr;
857 
858 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
859 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
860 					     BRCMNAND_UNCORR_EXT_ADDR)
861 					     & 0xffff) << 32);
862 
863 	return err_addr;
864 }
865 
brcmnand_get_correcc_addr(struct brcmnand_controller * ctrl)866 static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
867 {
868 	u64 err_addr;
869 
870 	err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
871 	err_addr |= ((u64)(brcmnand_read_reg(ctrl,
872 					     BRCMNAND_CORR_EXT_ADDR)
873 					     & 0xffff) << 32);
874 
875 	return err_addr;
876 }
877 
brcmnand_set_cmd_addr(struct mtd_info * mtd,u64 addr)878 static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
879 {
880 	struct nand_chip *chip =  mtd_to_nand(mtd);
881 	struct brcmnand_host *host = nand_get_controller_data(chip);
882 	struct brcmnand_controller *ctrl = host->ctrl;
883 
884 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
885 			   (host->cs << 16) | ((addr >> 32) & 0xffff));
886 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
887 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
888 			   lower_32_bits(addr));
889 	(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
890 }
891 
brcmnand_cs_offset(struct brcmnand_controller * ctrl,int cs,enum brcmnand_cs_reg reg)892 static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
893 				     enum brcmnand_cs_reg reg)
894 {
895 	u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
896 	u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
897 	u8 cs_offs;
898 
899 	if (cs == 0 && ctrl->cs0_offsets)
900 		cs_offs = ctrl->cs0_offsets[reg];
901 	else
902 		cs_offs = ctrl->cs_offsets[reg];
903 
904 	if (cs && offs_cs1)
905 		return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
906 
907 	return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
908 }
909 
brcmnand_count_corrected(struct brcmnand_controller * ctrl)910 static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
911 {
912 	if (ctrl->nand_version < 0x0600)
913 		return 1;
914 	return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
915 }
916 
brcmnand_wr_corr_thresh(struct brcmnand_host * host,u8 val)917 static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
918 {
919 	struct brcmnand_controller *ctrl = host->ctrl;
920 	unsigned int shift = 0, bits;
921 	enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
922 	int cs = host->cs;
923 
924 	if (!ctrl->reg_offsets[reg])
925 		return;
926 
927 	if (ctrl->nand_version == 0x0702)
928 		bits = 7;
929 	else if (ctrl->nand_version >= 0x0600)
930 		bits = 6;
931 	else if (ctrl->nand_version >= 0x0500)
932 		bits = 5;
933 	else
934 		bits = 4;
935 
936 	if (ctrl->nand_version >= 0x0702) {
937 		if (cs >= 4)
938 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
939 		shift = (cs % 4) * bits;
940 	} else if (ctrl->nand_version >= 0x0600) {
941 		if (cs >= 5)
942 			reg = BRCMNAND_CORR_THRESHOLD_EXT;
943 		shift = (cs % 5) * bits;
944 	}
945 	brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
946 }
947 
brcmnand_cmd_shift(struct brcmnand_controller * ctrl)948 static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
949 {
950 	if (ctrl->nand_version < 0x0602)
951 		return 24;
952 	return 0;
953 }
954 
brcmnand_spare_area_mask(struct brcmnand_controller * ctrl)955 static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
956 {
957 	if (ctrl->nand_version == 0x0702)
958 		return GENMASK(7, 0);
959 	else if (ctrl->nand_version >= 0x0600)
960 		return GENMASK(6, 0);
961 	else if (ctrl->nand_version >= 0x0303)
962 		return GENMASK(5, 0);
963 	else
964 		return GENMASK(4, 0);
965 }
966 
brcmnand_ecc_level_mask(struct brcmnand_controller * ctrl)967 static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
968 {
969 	u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
970 
971 	mask <<= ACC_CONTROL_ECC_SHIFT;
972 
973 	/* v7.2 includes additional ECC levels */
974 	if (ctrl->nand_version == 0x0702)
975 		mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
976 
977 	return mask;
978 }
979 
brcmnand_set_ecc_enabled(struct brcmnand_host * host,int en)980 static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
981 {
982 	struct brcmnand_controller *ctrl = host->ctrl;
983 	u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
984 	u32 acc_control = nand_readreg(ctrl, offs);
985 	u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
986 
987 	if (en) {
988 		acc_control |= ecc_flags; /* enable RD/WR ECC */
989 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
990 		acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
991 	} else {
992 		acc_control &= ~ecc_flags; /* disable RD/WR ECC */
993 		acc_control &= ~brcmnand_ecc_level_mask(ctrl);
994 	}
995 
996 	nand_writereg(ctrl, offs, acc_control);
997 }
998 
brcmnand_sector_1k_shift(struct brcmnand_controller * ctrl)999 static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
1000 {
1001 	if (ctrl->nand_version >= 0x0702)
1002 		return 9;
1003 	else if (ctrl->nand_version >= 0x0600)
1004 		return 7;
1005 	else if (ctrl->nand_version >= 0x0500)
1006 		return 6;
1007 	else
1008 		return -1;
1009 }
1010 
brcmnand_get_sector_size_1k(struct brcmnand_host * host)1011 static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
1012 {
1013 	struct brcmnand_controller *ctrl = host->ctrl;
1014 	int shift = brcmnand_sector_1k_shift(ctrl);
1015 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1016 						  BRCMNAND_CS_ACC_CONTROL);
1017 
1018 	if (shift < 0)
1019 		return 0;
1020 
1021 	return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
1022 }
1023 
brcmnand_set_sector_size_1k(struct brcmnand_host * host,int val)1024 static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
1025 {
1026 	struct brcmnand_controller *ctrl = host->ctrl;
1027 	int shift = brcmnand_sector_1k_shift(ctrl);
1028 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
1029 						  BRCMNAND_CS_ACC_CONTROL);
1030 	u32 tmp;
1031 
1032 	if (shift < 0)
1033 		return;
1034 
1035 	tmp = nand_readreg(ctrl, acc_control_offs);
1036 	tmp &= ~(1 << shift);
1037 	tmp |= (!!val) << shift;
1038 	nand_writereg(ctrl, acc_control_offs, tmp);
1039 }
1040 
1041 /***********************************************************************
1042  * CS_NAND_SELECT
1043  ***********************************************************************/
1044 
1045 enum {
1046 	CS_SELECT_NAND_WP			= BIT(29),
1047 	CS_SELECT_AUTO_DEVICE_ID_CFG		= BIT(30),
1048 };
1049 
bcmnand_ctrl_poll_status(struct brcmnand_controller * ctrl,u32 mask,u32 expected_val,unsigned long timeout_ms)1050 static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
1051 				    u32 mask, u32 expected_val,
1052 				    unsigned long timeout_ms)
1053 {
1054 	unsigned long limit;
1055 	u32 val;
1056 
1057 	if (!timeout_ms)
1058 		timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
1059 
1060 	limit = jiffies + msecs_to_jiffies(timeout_ms);
1061 	do {
1062 		val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1063 		if ((val & mask) == expected_val)
1064 			return 0;
1065 
1066 		cpu_relax();
1067 	} while (time_after(limit, jiffies));
1068 
1069 	/*
1070 	 * do a final check after time out in case the CPU was busy and the driver
1071 	 * did not get enough time to perform the polling to avoid false alarms
1072 	 */
1073 	val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
1074 	if ((val & mask) == expected_val)
1075 		return 0;
1076 
1077 	dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
1078 		 expected_val, val & mask);
1079 
1080 	return -ETIMEDOUT;
1081 }
1082 
brcmnand_set_wp(struct brcmnand_controller * ctrl,bool en)1083 static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
1084 {
1085 	u32 val = en ? CS_SELECT_NAND_WP : 0;
1086 
1087 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
1088 }
1089 
1090 /***********************************************************************
1091  * Flash DMA
1092  ***********************************************************************/
1093 
has_flash_dma(struct brcmnand_controller * ctrl)1094 static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
1095 {
1096 	return ctrl->flash_dma_base;
1097 }
1098 
has_edu(struct brcmnand_controller * ctrl)1099 static inline bool has_edu(struct brcmnand_controller *ctrl)
1100 {
1101 	return ctrl->edu_base;
1102 }
1103 
use_dma(struct brcmnand_controller * ctrl)1104 static inline bool use_dma(struct brcmnand_controller *ctrl)
1105 {
1106 	return has_flash_dma(ctrl) || has_edu(ctrl);
1107 }
1108 
disable_ctrl_irqs(struct brcmnand_controller * ctrl)1109 static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
1110 {
1111 	if (ctrl->pio_poll_mode)
1112 		return;
1113 
1114 	if (has_flash_dma(ctrl)) {
1115 		ctrl->flash_dma_base = NULL;
1116 		disable_irq(ctrl->dma_irq);
1117 	}
1118 
1119 	disable_irq(ctrl->irq);
1120 	ctrl->pio_poll_mode = true;
1121 }
1122 
flash_dma_buf_ok(const void * buf)1123 static inline bool flash_dma_buf_ok(const void *buf)
1124 {
1125 	return buf && !is_vmalloc_addr(buf) &&
1126 		likely(IS_ALIGNED((uintptr_t)buf, 4));
1127 }
1128 
flash_dma_writel(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg,u32 val)1129 static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
1130 				    enum flash_dma_reg dma_reg, u32 val)
1131 {
1132 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1133 
1134 	brcmnand_writel(val, ctrl->flash_dma_base + offs);
1135 }
1136 
flash_dma_readl(struct brcmnand_controller * ctrl,enum flash_dma_reg dma_reg)1137 static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
1138 				  enum flash_dma_reg dma_reg)
1139 {
1140 	u16 offs = ctrl->flash_dma_offsets[dma_reg];
1141 
1142 	return brcmnand_readl(ctrl->flash_dma_base + offs);
1143 }
1144 
1145 /* Low-level operation types: command, address, write, or read */
1146 enum brcmnand_llop_type {
1147 	LL_OP_CMD,
1148 	LL_OP_ADDR,
1149 	LL_OP_WR,
1150 	LL_OP_RD,
1151 };
1152 
1153 /***********************************************************************
1154  * Internal support functions
1155  ***********************************************************************/
1156 
is_hamming_ecc(struct brcmnand_controller * ctrl,struct brcmnand_cfg * cfg)1157 static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
1158 				  struct brcmnand_cfg *cfg)
1159 {
1160 	if (ctrl->nand_version <= 0x0701)
1161 		return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
1162 			cfg->ecc_level == 15;
1163 	else
1164 		return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
1165 			cfg->ecc_level == 15) ||
1166 			(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
1167 }
1168 
1169 /*
1170  * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
1171  * the layout/configuration.
1172  * Returns -ERRCODE on failure.
1173  */
brcmnand_hamming_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1174 static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
1175 					  struct mtd_oob_region *oobregion)
1176 {
1177 	struct nand_chip *chip = mtd_to_nand(mtd);
1178 	struct brcmnand_host *host = nand_get_controller_data(chip);
1179 	struct brcmnand_cfg *cfg = &host->hwcfg;
1180 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1181 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1182 
1183 	if (section >= sectors)
1184 		return -ERANGE;
1185 
1186 	oobregion->offset = (section * sas) + 6;
1187 	oobregion->length = 3;
1188 
1189 	return 0;
1190 }
1191 
brcmnand_hamming_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1192 static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
1193 					   struct mtd_oob_region *oobregion)
1194 {
1195 	struct nand_chip *chip = mtd_to_nand(mtd);
1196 	struct brcmnand_host *host = nand_get_controller_data(chip);
1197 	struct brcmnand_cfg *cfg = &host->hwcfg;
1198 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1199 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1200 	u32 next;
1201 
1202 	if (section > sectors)
1203 		return -ERANGE;
1204 
1205 	next = (section * sas);
1206 	if (section < sectors)
1207 		next += 6;
1208 
1209 	if (section) {
1210 		oobregion->offset = ((section - 1) * sas) + 9;
1211 	} else {
1212 		if (cfg->page_size > 512) {
1213 			/* Large page NAND uses first 2 bytes for BBI */
1214 			oobregion->offset = 2;
1215 		} else {
1216 			/* Small page NAND uses last byte before ECC for BBI */
1217 			oobregion->offset = 0;
1218 			next--;
1219 		}
1220 	}
1221 
1222 	oobregion->length = next - oobregion->offset;
1223 
1224 	return 0;
1225 }
1226 
1227 static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
1228 	.ecc = brcmnand_hamming_ooblayout_ecc,
1229 	.free = brcmnand_hamming_ooblayout_free,
1230 };
1231 
brcmnand_bch_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1232 static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
1233 				      struct mtd_oob_region *oobregion)
1234 {
1235 	struct nand_chip *chip = mtd_to_nand(mtd);
1236 	struct brcmnand_host *host = nand_get_controller_data(chip);
1237 	struct brcmnand_cfg *cfg = &host->hwcfg;
1238 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1239 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1240 
1241 	if (section >= sectors)
1242 		return -ERANGE;
1243 
1244 	oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
1245 	oobregion->length = chip->ecc.bytes;
1246 
1247 	return 0;
1248 }
1249 
brcmnand_bch_ooblayout_free_lp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1250 static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
1251 					  struct mtd_oob_region *oobregion)
1252 {
1253 	struct nand_chip *chip = mtd_to_nand(mtd);
1254 	struct brcmnand_host *host = nand_get_controller_data(chip);
1255 	struct brcmnand_cfg *cfg = &host->hwcfg;
1256 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1257 	int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
1258 
1259 	if (section >= sectors)
1260 		return -ERANGE;
1261 
1262 	if (sas <= chip->ecc.bytes)
1263 		return 0;
1264 
1265 	oobregion->offset = section * sas;
1266 	oobregion->length = sas - chip->ecc.bytes;
1267 
1268 	if (!section) {
1269 		oobregion->offset++;
1270 		oobregion->length--;
1271 	}
1272 
1273 	return 0;
1274 }
1275 
brcmnand_bch_ooblayout_free_sp(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1276 static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
1277 					  struct mtd_oob_region *oobregion)
1278 {
1279 	struct nand_chip *chip = mtd_to_nand(mtd);
1280 	struct brcmnand_host *host = nand_get_controller_data(chip);
1281 	struct brcmnand_cfg *cfg = &host->hwcfg;
1282 	int sas = cfg->spare_area_size << cfg->sector_size_1k;
1283 
1284 	if (section > 1 || sas - chip->ecc.bytes < 6 ||
1285 	    (section && sas - chip->ecc.bytes == 6))
1286 		return -ERANGE;
1287 
1288 	if (!section) {
1289 		oobregion->offset = 0;
1290 		oobregion->length = 5;
1291 	} else {
1292 		oobregion->offset = 6;
1293 		oobregion->length = sas - chip->ecc.bytes - 6;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
1300 	.ecc = brcmnand_bch_ooblayout_ecc,
1301 	.free = brcmnand_bch_ooblayout_free_lp,
1302 };
1303 
1304 static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
1305 	.ecc = brcmnand_bch_ooblayout_ecc,
1306 	.free = brcmnand_bch_ooblayout_free_sp,
1307 };
1308 
brcmstb_choose_ecc_layout(struct brcmnand_host * host)1309 static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
1310 {
1311 	struct brcmnand_cfg *p = &host->hwcfg;
1312 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
1313 	struct nand_ecc_ctrl *ecc = &host->chip.ecc;
1314 	unsigned int ecc_level = p->ecc_level;
1315 	int sas = p->spare_area_size << p->sector_size_1k;
1316 	int sectors = p->page_size / (512 << p->sector_size_1k);
1317 
1318 	if (p->sector_size_1k)
1319 		ecc_level <<= 1;
1320 
1321 	if (is_hamming_ecc(host->ctrl, p)) {
1322 		ecc->bytes = 3 * sectors;
1323 		mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
1324 		return 0;
1325 	}
1326 
1327 	/*
1328 	 * CONTROLLER_VERSION:
1329 	 *   < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
1330 	 *  >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
1331 	 * But we will just be conservative.
1332 	 */
1333 	ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
1334 	if (p->page_size == 512)
1335 		mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
1336 	else
1337 		mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
1338 
1339 	if (ecc->bytes >= sas) {
1340 		dev_err(&host->pdev->dev,
1341 			"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
1342 			ecc->bytes, sas);
1343 		return -EINVAL;
1344 	}
1345 
1346 	return 0;
1347 }
1348 
brcmnand_wp(struct mtd_info * mtd,int wp)1349 static void brcmnand_wp(struct mtd_info *mtd, int wp)
1350 {
1351 	struct nand_chip *chip = mtd_to_nand(mtd);
1352 	struct brcmnand_host *host = nand_get_controller_data(chip);
1353 	struct brcmnand_controller *ctrl = host->ctrl;
1354 
1355 	if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
1356 		static int old_wp = -1;
1357 		int ret;
1358 
1359 		if (old_wp != wp) {
1360 			dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
1361 			old_wp = wp;
1362 		}
1363 
1364 		/*
1365 		 * make sure ctrl/flash ready before and after
1366 		 * changing state of #WP pin
1367 		 */
1368 		ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
1369 					       NAND_STATUS_READY,
1370 					       NAND_CTRL_RDY |
1371 					       NAND_STATUS_READY, 0);
1372 		if (ret)
1373 			return;
1374 
1375 		brcmnand_set_wp(ctrl, wp);
1376 		nand_status_op(chip, NULL);
1377 		/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
1378 		ret = bcmnand_ctrl_poll_status(ctrl,
1379 					       NAND_CTRL_RDY |
1380 					       NAND_STATUS_READY |
1381 					       NAND_STATUS_WP,
1382 					       NAND_CTRL_RDY |
1383 					       NAND_STATUS_READY |
1384 					       (wp ? 0 : NAND_STATUS_WP), 0);
1385 
1386 		if (ret)
1387 			dev_err_ratelimited(&host->pdev->dev,
1388 					    "nand #WP expected %s\n",
1389 					    wp ? "on" : "off");
1390 	}
1391 }
1392 
1393 /* Helper functions for reading and writing OOB registers */
oob_reg_read(struct brcmnand_controller * ctrl,u32 offs)1394 static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
1395 {
1396 	u16 offset0, offset10, reg_offs;
1397 
1398 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
1399 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
1400 
1401 	if (offs >= ctrl->max_oob)
1402 		return 0x77;
1403 
1404 	if (offs >= 16 && offset10)
1405 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1406 	else
1407 		reg_offs = offset0 + (offs & ~0x03);
1408 
1409 	return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
1410 }
1411 
oob_reg_write(struct brcmnand_controller * ctrl,u32 offs,u32 data)1412 static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
1413 				 u32 data)
1414 {
1415 	u16 offset0, offset10, reg_offs;
1416 
1417 	offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
1418 	offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
1419 
1420 	if (offs >= ctrl->max_oob)
1421 		return;
1422 
1423 	if (offs >= 16 && offset10)
1424 		reg_offs = offset10 + ((offs - 0x10) & ~0x03);
1425 	else
1426 		reg_offs = offset0 + (offs & ~0x03);
1427 
1428 	nand_writereg(ctrl, reg_offs, data);
1429 }
1430 
1431 /*
1432  * read_oob_from_regs - read data from OOB registers
1433  * @ctrl: NAND controller
1434  * @i: sub-page sector index
1435  * @oob: buffer to read to
1436  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1437  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1438  */
read_oob_from_regs(struct brcmnand_controller * ctrl,int i,u8 * oob,int sas,int sector_1k)1439 static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
1440 			      int sas, int sector_1k)
1441 {
1442 	int tbytes = sas << sector_1k;
1443 	int j;
1444 
1445 	/* Adjust OOB values for 1K sector size */
1446 	if (sector_1k && (i & 0x01))
1447 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1448 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1449 
1450 	for (j = 0; j < tbytes; j++)
1451 		oob[j] = oob_reg_read(ctrl, j);
1452 	return tbytes;
1453 }
1454 
1455 /*
1456  * write_oob_to_regs - write data to OOB registers
1457  * @i: sub-page sector index
1458  * @oob: buffer to write from
1459  * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
1460  * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
1461  */
write_oob_to_regs(struct brcmnand_controller * ctrl,int i,const u8 * oob,int sas,int sector_1k)1462 static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
1463 			     const u8 *oob, int sas, int sector_1k)
1464 {
1465 	int tbytes = sas << sector_1k;
1466 	int j, k = 0;
1467 	u32 last = 0xffffffff;
1468 	u8 *plast = (u8 *)&last;
1469 
1470 	/* Adjust OOB values for 1K sector size */
1471 	if (sector_1k && (i & 0x01))
1472 		tbytes = max(0, tbytes - (int)ctrl->max_oob);
1473 	tbytes = min_t(int, tbytes, ctrl->max_oob);
1474 
1475 	/*
1476 	 * tbytes may not be multiple of words. Make sure we don't read out of
1477 	 * the boundary and stop at last word.
1478 	 */
1479 	for (j = 0; (j + 3) < tbytes; j += 4)
1480 		oob_reg_write(ctrl, j,
1481 				(oob[j + 0] << 24) |
1482 				(oob[j + 1] << 16) |
1483 				(oob[j + 2] <<  8) |
1484 				(oob[j + 3] <<  0));
1485 
1486 	/* handle the remaing bytes */
1487 	while (j < tbytes)
1488 		plast[k++] = oob[j++];
1489 
1490 	if (tbytes & 0x3)
1491 		oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
1492 
1493 	return tbytes;
1494 }
1495 
brcmnand_edu_init(struct brcmnand_controller * ctrl)1496 static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
1497 {
1498 	/* initialize edu */
1499 	edu_writel(ctrl, EDU_ERR_STATUS, 0);
1500 	edu_readl(ctrl, EDU_ERR_STATUS);
1501 	edu_writel(ctrl, EDU_DONE, 0);
1502 	edu_writel(ctrl, EDU_DONE, 0);
1503 	edu_writel(ctrl, EDU_DONE, 0);
1504 	edu_writel(ctrl, EDU_DONE, 0);
1505 	edu_readl(ctrl, EDU_DONE);
1506 }
1507 
1508 /* edu irq */
brcmnand_edu_irq(int irq,void * data)1509 static irqreturn_t brcmnand_edu_irq(int irq, void *data)
1510 {
1511 	struct brcmnand_controller *ctrl = data;
1512 
1513 	if (ctrl->edu_count) {
1514 		ctrl->edu_count--;
1515 		while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
1516 			udelay(1);
1517 		edu_writel(ctrl, EDU_DONE, 0);
1518 		edu_readl(ctrl, EDU_DONE);
1519 	}
1520 
1521 	if (ctrl->edu_count) {
1522 		ctrl->edu_dram_addr += FC_BYTES;
1523 		ctrl->edu_ext_addr += FC_BYTES;
1524 
1525 		edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1526 		edu_readl(ctrl, EDU_DRAM_ADDR);
1527 		edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1528 		edu_readl(ctrl, EDU_EXT_ADDR);
1529 
1530 		mb(); /* flush previous writes */
1531 		edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1532 		edu_readl(ctrl, EDU_CMD);
1533 
1534 		return IRQ_HANDLED;
1535 	}
1536 
1537 	complete(&ctrl->edu_done);
1538 
1539 	return IRQ_HANDLED;
1540 }
1541 
brcmnand_ctlrdy_irq(int irq,void * data)1542 static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
1543 {
1544 	struct brcmnand_controller *ctrl = data;
1545 
1546 	/* Discard all NAND_CTLRDY interrupts during DMA */
1547 	if (ctrl->dma_pending)
1548 		return IRQ_HANDLED;
1549 
1550 	/* check if you need to piggy back on the ctrlrdy irq */
1551 	if (ctrl->edu_pending) {
1552 		if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
1553 	/* Discard interrupts while using dedicated edu irq */
1554 			return IRQ_HANDLED;
1555 
1556 	/* no registered edu irq, call handler */
1557 		return brcmnand_edu_irq(irq, data);
1558 	}
1559 
1560 	complete(&ctrl->done);
1561 	return IRQ_HANDLED;
1562 }
1563 
1564 /* Handle SoC-specific interrupt hardware */
brcmnand_irq(int irq,void * data)1565 static irqreturn_t brcmnand_irq(int irq, void *data)
1566 {
1567 	struct brcmnand_controller *ctrl = data;
1568 
1569 	if (ctrl->soc->ctlrdy_ack(ctrl->soc))
1570 		return brcmnand_ctlrdy_irq(irq, data);
1571 
1572 	return IRQ_NONE;
1573 }
1574 
brcmnand_dma_irq(int irq,void * data)1575 static irqreturn_t brcmnand_dma_irq(int irq, void *data)
1576 {
1577 	struct brcmnand_controller *ctrl = data;
1578 
1579 	complete(&ctrl->dma_done);
1580 
1581 	return IRQ_HANDLED;
1582 }
1583 
brcmnand_send_cmd(struct brcmnand_host * host,int cmd)1584 static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
1585 {
1586 	struct brcmnand_controller *ctrl = host->ctrl;
1587 	int ret;
1588 	u64 cmd_addr;
1589 
1590 	cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
1591 
1592 	dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
1593 
1594 	/*
1595 	 * If we came here through _panic_write and there is a pending
1596 	 * command, try to wait for it. If it times out, rather than
1597 	 * hitting BUG_ON, just return so we don't crash while crashing.
1598 	 */
1599 	if (oops_in_progress) {
1600 		if (ctrl->cmd_pending &&
1601 			bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
1602 			return;
1603 	} else
1604 		BUG_ON(ctrl->cmd_pending != 0);
1605 	ctrl->cmd_pending = cmd;
1606 
1607 	ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
1608 	WARN_ON(ret);
1609 
1610 	mb(); /* flush previous writes */
1611 	brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
1612 			   cmd << brcmnand_cmd_shift(ctrl));
1613 }
1614 
1615 /***********************************************************************
1616  * NAND MTD API: read/program/erase
1617  ***********************************************************************/
1618 
brcmnand_cmd_ctrl(struct nand_chip * chip,int dat,unsigned int ctrl)1619 static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
1620 			      unsigned int ctrl)
1621 {
1622 	/* intentionally left blank */
1623 }
1624 
brcmstb_nand_wait_for_completion(struct nand_chip * chip)1625 static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
1626 {
1627 	struct brcmnand_host *host = nand_get_controller_data(chip);
1628 	struct brcmnand_controller *ctrl = host->ctrl;
1629 	struct mtd_info *mtd = nand_to_mtd(chip);
1630 	bool err = false;
1631 	int sts;
1632 
1633 	if (mtd->oops_panic_write) {
1634 		/* switch to interrupt polling and PIO mode */
1635 		disable_ctrl_irqs(ctrl);
1636 		sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
1637 					       NAND_CTRL_RDY, 0);
1638 		err = (sts < 0) ? true : false;
1639 	} else {
1640 		unsigned long timeo = msecs_to_jiffies(
1641 						NAND_POLL_STATUS_TIMEOUT_MS);
1642 		/* wait for completion interrupt */
1643 		sts = wait_for_completion_timeout(&ctrl->done, timeo);
1644 		err = (sts <= 0) ? true : false;
1645 	}
1646 
1647 	return err;
1648 }
1649 
brcmnand_waitfunc(struct nand_chip * chip)1650 static int brcmnand_waitfunc(struct nand_chip *chip)
1651 {
1652 	struct brcmnand_host *host = nand_get_controller_data(chip);
1653 	struct brcmnand_controller *ctrl = host->ctrl;
1654 	bool err = false;
1655 
1656 	dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
1657 	if (ctrl->cmd_pending)
1658 		err = brcmstb_nand_wait_for_completion(chip);
1659 
1660 	if (err) {
1661 		u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
1662 					>> brcmnand_cmd_shift(ctrl);
1663 
1664 		dev_err_ratelimited(ctrl->dev,
1665 			"timeout waiting for command %#02x\n", cmd);
1666 		dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
1667 			brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
1668 	}
1669 	ctrl->cmd_pending = 0;
1670 	return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1671 				 INTFC_FLASH_STATUS;
1672 }
1673 
1674 enum {
1675 	LLOP_RE				= BIT(16),
1676 	LLOP_WE				= BIT(17),
1677 	LLOP_ALE			= BIT(18),
1678 	LLOP_CLE			= BIT(19),
1679 	LLOP_RETURN_IDLE		= BIT(31),
1680 
1681 	LLOP_DATA_MASK			= GENMASK(15, 0),
1682 };
1683 
brcmnand_low_level_op(struct brcmnand_host * host,enum brcmnand_llop_type type,u32 data,bool last_op)1684 static int brcmnand_low_level_op(struct brcmnand_host *host,
1685 				 enum brcmnand_llop_type type, u32 data,
1686 				 bool last_op)
1687 {
1688 	struct nand_chip *chip = &host->chip;
1689 	struct brcmnand_controller *ctrl = host->ctrl;
1690 	u32 tmp;
1691 
1692 	tmp = data & LLOP_DATA_MASK;
1693 	switch (type) {
1694 	case LL_OP_CMD:
1695 		tmp |= LLOP_WE | LLOP_CLE;
1696 		break;
1697 	case LL_OP_ADDR:
1698 		/* WE | ALE */
1699 		tmp |= LLOP_WE | LLOP_ALE;
1700 		break;
1701 	case LL_OP_WR:
1702 		/* WE */
1703 		tmp |= LLOP_WE;
1704 		break;
1705 	case LL_OP_RD:
1706 		/* RE */
1707 		tmp |= LLOP_RE;
1708 		break;
1709 	}
1710 	if (last_op)
1711 		/* RETURN_IDLE */
1712 		tmp |= LLOP_RETURN_IDLE;
1713 
1714 	dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
1715 
1716 	brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
1717 	(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
1718 
1719 	brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
1720 	return brcmnand_waitfunc(chip);
1721 }
1722 
brcmnand_cmdfunc(struct nand_chip * chip,unsigned command,int column,int page_addr)1723 static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
1724 			     int column, int page_addr)
1725 {
1726 	struct mtd_info *mtd = nand_to_mtd(chip);
1727 	struct brcmnand_host *host = nand_get_controller_data(chip);
1728 	struct brcmnand_controller *ctrl = host->ctrl;
1729 	u64 addr = (u64)page_addr << chip->page_shift;
1730 	int native_cmd = 0;
1731 
1732 	if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
1733 			command == NAND_CMD_RNDOUT)
1734 		addr = (u64)column;
1735 	/* Avoid propagating a negative, don't-care address */
1736 	else if (page_addr < 0)
1737 		addr = 0;
1738 
1739 	dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
1740 		(unsigned long long)addr);
1741 
1742 	host->last_cmd = command;
1743 	host->last_byte = 0;
1744 	host->last_addr = addr;
1745 
1746 	switch (command) {
1747 	case NAND_CMD_RESET:
1748 		native_cmd = CMD_FLASH_RESET;
1749 		break;
1750 	case NAND_CMD_STATUS:
1751 		native_cmd = CMD_STATUS_READ;
1752 		break;
1753 	case NAND_CMD_READID:
1754 		native_cmd = CMD_DEVICE_ID_READ;
1755 		break;
1756 	case NAND_CMD_READOOB:
1757 		native_cmd = CMD_SPARE_AREA_READ;
1758 		break;
1759 	case NAND_CMD_ERASE1:
1760 		native_cmd = CMD_BLOCK_ERASE;
1761 		brcmnand_wp(mtd, 0);
1762 		break;
1763 	case NAND_CMD_PARAM:
1764 		native_cmd = CMD_PARAMETER_READ;
1765 		break;
1766 	case NAND_CMD_SET_FEATURES:
1767 	case NAND_CMD_GET_FEATURES:
1768 		brcmnand_low_level_op(host, LL_OP_CMD, command, false);
1769 		brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
1770 		break;
1771 	case NAND_CMD_RNDOUT:
1772 		native_cmd = CMD_PARAMETER_CHANGE_COL;
1773 		addr &= ~((u64)(FC_BYTES - 1));
1774 		/*
1775 		 * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
1776 		 * NB: hwcfg.sector_size_1k may not be initialized yet
1777 		 */
1778 		if (brcmnand_get_sector_size_1k(host)) {
1779 			host->hwcfg.sector_size_1k =
1780 				brcmnand_get_sector_size_1k(host);
1781 			brcmnand_set_sector_size_1k(host, 0);
1782 		}
1783 		break;
1784 	}
1785 
1786 	if (!native_cmd)
1787 		return;
1788 
1789 	brcmnand_set_cmd_addr(mtd, addr);
1790 	brcmnand_send_cmd(host, native_cmd);
1791 	brcmnand_waitfunc(chip);
1792 
1793 	if (native_cmd == CMD_PARAMETER_READ ||
1794 			native_cmd == CMD_PARAMETER_CHANGE_COL) {
1795 		/* Copy flash cache word-wise */
1796 		u32 *flash_cache = (u32 *)ctrl->flash_cache;
1797 		int i;
1798 
1799 		brcmnand_soc_data_bus_prepare(ctrl->soc, true);
1800 
1801 		/*
1802 		 * Must cache the FLASH_CACHE now, since changes in
1803 		 * SECTOR_SIZE_1K may invalidate it
1804 		 */
1805 		for (i = 0; i < FC_WORDS; i++)
1806 			/*
1807 			 * Flash cache is big endian for parameter pages, at
1808 			 * least on STB SoCs
1809 			 */
1810 			flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
1811 
1812 		brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
1813 
1814 		/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
1815 		if (host->hwcfg.sector_size_1k)
1816 			brcmnand_set_sector_size_1k(host,
1817 						    host->hwcfg.sector_size_1k);
1818 	}
1819 
1820 	/* Re-enable protection is necessary only after erase */
1821 	if (command == NAND_CMD_ERASE1)
1822 		brcmnand_wp(mtd, 1);
1823 }
1824 
brcmnand_read_byte(struct nand_chip * chip)1825 static uint8_t brcmnand_read_byte(struct nand_chip *chip)
1826 {
1827 	struct brcmnand_host *host = nand_get_controller_data(chip);
1828 	struct brcmnand_controller *ctrl = host->ctrl;
1829 	uint8_t ret = 0;
1830 	int addr, offs;
1831 
1832 	switch (host->last_cmd) {
1833 	case NAND_CMD_READID:
1834 		if (host->last_byte < 4)
1835 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
1836 				(24 - (host->last_byte << 3));
1837 		else if (host->last_byte < 8)
1838 			ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
1839 				(56 - (host->last_byte << 3));
1840 		break;
1841 
1842 	case NAND_CMD_READOOB:
1843 		ret = oob_reg_read(ctrl, host->last_byte);
1844 		break;
1845 
1846 	case NAND_CMD_STATUS:
1847 		ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1848 					INTFC_FLASH_STATUS;
1849 		if (wp_on) /* hide WP status */
1850 			ret |= NAND_STATUS_WP;
1851 		break;
1852 
1853 	case NAND_CMD_PARAM:
1854 	case NAND_CMD_RNDOUT:
1855 		addr = host->last_addr + host->last_byte;
1856 		offs = addr & (FC_BYTES - 1);
1857 
1858 		/* At FC_BYTES boundary, switch to next column */
1859 		if (host->last_byte > 0 && offs == 0)
1860 			nand_change_read_column_op(chip, addr, NULL, 0, false);
1861 
1862 		ret = ctrl->flash_cache[offs];
1863 		break;
1864 	case NAND_CMD_GET_FEATURES:
1865 		if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
1866 			ret = 0;
1867 		} else {
1868 			bool last = host->last_byte ==
1869 				ONFI_SUBFEATURE_PARAM_LEN - 1;
1870 			brcmnand_low_level_op(host, LL_OP_RD, 0, last);
1871 			ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
1872 		}
1873 	}
1874 
1875 	dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
1876 	host->last_byte++;
1877 
1878 	return ret;
1879 }
1880 
brcmnand_read_buf(struct nand_chip * chip,uint8_t * buf,int len)1881 static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
1882 {
1883 	int i;
1884 
1885 	for (i = 0; i < len; i++, buf++)
1886 		*buf = brcmnand_read_byte(chip);
1887 }
1888 
brcmnand_write_buf(struct nand_chip * chip,const uint8_t * buf,int len)1889 static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
1890 			       int len)
1891 {
1892 	int i;
1893 	struct brcmnand_host *host = nand_get_controller_data(chip);
1894 
1895 	switch (host->last_cmd) {
1896 	case NAND_CMD_SET_FEATURES:
1897 		for (i = 0; i < len; i++)
1898 			brcmnand_low_level_op(host, LL_OP_WR, buf[i],
1899 						  (i + 1) == len);
1900 		break;
1901 	default:
1902 		BUG();
1903 		break;
1904 	}
1905 }
1906 
1907 /**
1908  *  Kick EDU engine
1909  */
brcmnand_edu_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 cmd)1910 static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
1911 			      u32 len, u8 cmd)
1912 {
1913 	struct brcmnand_controller *ctrl = host->ctrl;
1914 	unsigned long timeo = msecs_to_jiffies(200);
1915 	int ret = 0;
1916 	int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1917 	u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
1918 	unsigned int trans = len >> FC_SHIFT;
1919 	dma_addr_t pa;
1920 
1921 	pa = dma_map_single(ctrl->dev, buf, len, dir);
1922 	if (dma_mapping_error(ctrl->dev, pa)) {
1923 		dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
1924 		return -ENOMEM;
1925 	}
1926 
1927 	ctrl->edu_pending = true;
1928 	ctrl->edu_dram_addr = pa;
1929 	ctrl->edu_ext_addr = addr;
1930 	ctrl->edu_cmd = edu_cmd;
1931 	ctrl->edu_count = trans;
1932 
1933 	edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
1934 	edu_readl(ctrl,  EDU_DRAM_ADDR);
1935 	edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
1936 	edu_readl(ctrl, EDU_EXT_ADDR);
1937 	edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
1938 	edu_readl(ctrl, EDU_LENGTH);
1939 
1940 	/* Start edu engine */
1941 	mb(); /* flush previous writes */
1942 	edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
1943 	edu_readl(ctrl, EDU_CMD);
1944 
1945 	if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
1946 		dev_err(ctrl->dev,
1947 			"timeout waiting for EDU; status %#x, error status %#x\n",
1948 			edu_readl(ctrl, EDU_STATUS),
1949 			edu_readl(ctrl, EDU_ERR_STATUS));
1950 	}
1951 
1952 	dma_unmap_single(ctrl->dev, pa, len, dir);
1953 
1954 	/* for program page check NAND status */
1955 	if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
1956 	      INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
1957 	    edu_cmd == EDU_CMD_WRITE) {
1958 		dev_info(ctrl->dev, "program failed at %llx\n",
1959 			 (unsigned long long)addr);
1960 		ret = -EIO;
1961 	}
1962 
1963 	/* Make sure the EDU status is clean */
1964 	if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
1965 		dev_warn(ctrl->dev, "EDU still active: %#x\n",
1966 			 edu_readl(ctrl, EDU_STATUS));
1967 
1968 	if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
1969 		dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
1970 			 (unsigned long long)addr);
1971 		ret = -EIO;
1972 	}
1973 
1974 	ctrl->edu_pending = false;
1975 	brcmnand_edu_init(ctrl);
1976 	edu_writel(ctrl, EDU_STOP, 0); /* force stop */
1977 	edu_readl(ctrl, EDU_STOP);
1978 
1979 	if (!ret && edu_cmd == EDU_CMD_READ) {
1980 		u64 err_addr = 0;
1981 
1982 		/*
1983 		 * check for ECC errors here, subpage ECC errors are
1984 		 * retained in ECC error address register
1985 		 */
1986 		err_addr = brcmnand_get_uncorrecc_addr(ctrl);
1987 		if (!err_addr) {
1988 			err_addr = brcmnand_get_correcc_addr(ctrl);
1989 			if (err_addr)
1990 				ret = -EUCLEAN;
1991 		} else
1992 			ret = -EBADMSG;
1993 	}
1994 
1995 	return ret;
1996 }
1997 
1998 /**
1999  * Construct a FLASH_DMA descriptor as part of a linked list. You must know the
2000  * following ahead of time:
2001  *  - Is this descriptor the beginning or end of a linked list?
2002  *  - What is the (DMA) address of the next descriptor in the linked list?
2003  */
brcmnand_fill_dma_desc(struct brcmnand_host * host,struct brcm_nand_dma_desc * desc,u64 addr,dma_addr_t buf,u32 len,u8 dma_cmd,bool begin,bool end,dma_addr_t next_desc)2004 static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
2005 				  struct brcm_nand_dma_desc *desc, u64 addr,
2006 				  dma_addr_t buf, u32 len, u8 dma_cmd,
2007 				  bool begin, bool end,
2008 				  dma_addr_t next_desc)
2009 {
2010 	memset(desc, 0, sizeof(*desc));
2011 	/* Descriptors are written in native byte order (wordwise) */
2012 	desc->next_desc = lower_32_bits(next_desc);
2013 	desc->next_desc_ext = upper_32_bits(next_desc);
2014 	desc->cmd_irq = (dma_cmd << 24) |
2015 		(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
2016 		(!!begin) | ((!!end) << 1); /* head, tail */
2017 #ifdef CONFIG_CPU_BIG_ENDIAN
2018 	desc->cmd_irq |= 0x01 << 12;
2019 #endif
2020 	desc->dram_addr = lower_32_bits(buf);
2021 	desc->dram_addr_ext = upper_32_bits(buf);
2022 	desc->tfr_len = len;
2023 	desc->total_len = len;
2024 	desc->flash_addr = lower_32_bits(addr);
2025 	desc->flash_addr_ext = upper_32_bits(addr);
2026 	desc->cs = host->cs;
2027 	desc->status_valid = 0x01;
2028 	return 0;
2029 }
2030 
2031 /**
2032  * Kick the FLASH_DMA engine, with a given DMA descriptor
2033  */
brcmnand_dma_run(struct brcmnand_host * host,dma_addr_t desc)2034 static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
2035 {
2036 	struct brcmnand_controller *ctrl = host->ctrl;
2037 	unsigned long timeo = msecs_to_jiffies(100);
2038 
2039 	flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
2040 	(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
2041 	if (ctrl->nand_version > 0x0602) {
2042 		flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
2043 				 upper_32_bits(desc));
2044 		(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
2045 	}
2046 
2047 	/* Start FLASH_DMA engine */
2048 	ctrl->dma_pending = true;
2049 	mb(); /* flush previous writes */
2050 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
2051 
2052 	if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
2053 		dev_err(ctrl->dev,
2054 				"timeout waiting for DMA; status %#x, error status %#x\n",
2055 				flash_dma_readl(ctrl, FLASH_DMA_STATUS),
2056 				flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
2057 	}
2058 	ctrl->dma_pending = false;
2059 	flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
2060 }
2061 
brcmnand_dma_trans(struct brcmnand_host * host,u64 addr,u32 * buf,u32 len,u8 dma_cmd)2062 static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
2063 			      u32 len, u8 dma_cmd)
2064 {
2065 	struct brcmnand_controller *ctrl = host->ctrl;
2066 	dma_addr_t buf_pa;
2067 	int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2068 
2069 	buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
2070 	if (dma_mapping_error(ctrl->dev, buf_pa)) {
2071 		dev_err(ctrl->dev, "unable to map buffer for DMA\n");
2072 		return -ENOMEM;
2073 	}
2074 
2075 	brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
2076 				   dma_cmd, true, true, 0);
2077 
2078 	brcmnand_dma_run(host, ctrl->dma_pa);
2079 
2080 	dma_unmap_single(ctrl->dev, buf_pa, len, dir);
2081 
2082 	if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
2083 		return -EBADMSG;
2084 	else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
2085 		return -EUCLEAN;
2086 
2087 	return 0;
2088 }
2089 
2090 /*
2091  * Assumes proper CS is already set
2092  */
brcmnand_read_by_pio(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob,u64 * err_addr)2093 static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
2094 				u64 addr, unsigned int trans, u32 *buf,
2095 				u8 *oob, u64 *err_addr)
2096 {
2097 	struct brcmnand_host *host = nand_get_controller_data(chip);
2098 	struct brcmnand_controller *ctrl = host->ctrl;
2099 	int i, j, ret = 0;
2100 
2101 	brcmnand_clear_ecc_addr(ctrl);
2102 
2103 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2104 		brcmnand_set_cmd_addr(mtd, addr);
2105 		/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
2106 		brcmnand_send_cmd(host, CMD_PAGE_READ);
2107 		brcmnand_waitfunc(chip);
2108 
2109 		if (likely(buf)) {
2110 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2111 
2112 			for (j = 0; j < FC_WORDS; j++, buf++)
2113 				*buf = brcmnand_read_fc(ctrl, j);
2114 
2115 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2116 		}
2117 
2118 		if (oob)
2119 			oob += read_oob_from_regs(ctrl, i, oob,
2120 					mtd->oobsize / trans,
2121 					host->hwcfg.sector_size_1k);
2122 
2123 		if (ret != -EBADMSG) {
2124 			*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
2125 
2126 			if (*err_addr)
2127 				ret = -EBADMSG;
2128 		}
2129 
2130 		if (!ret) {
2131 			*err_addr = brcmnand_get_correcc_addr(ctrl);
2132 
2133 			if (*err_addr)
2134 				ret = -EUCLEAN;
2135 		}
2136 	}
2137 
2138 	return ret;
2139 }
2140 
2141 /*
2142  * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
2143  * error
2144  *
2145  * Because the HW ECC signals an ECC error if an erase paged has even a single
2146  * bitflip, we must check each ECC error to see if it is actually an erased
2147  * page with bitflips, not a truly corrupted page.
2148  *
2149  * On a real error, return a negative error code (-EBADMSG for ECC error), and
2150  * buf will contain raw data.
2151  * Otherwise, buf gets filled with 0xffs and return the maximum number of
2152  * bitflips-per-ECC-sector to the caller.
2153  *
2154  */
brcmstb_nand_verify_erased_page(struct mtd_info * mtd,struct nand_chip * chip,void * buf,u64 addr)2155 static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
2156 		  struct nand_chip *chip, void *buf, u64 addr)
2157 {
2158 	struct mtd_oob_region ecc;
2159 	int i;
2160 	int bitflips = 0;
2161 	int page = addr >> chip->page_shift;
2162 	int ret;
2163 	void *ecc_bytes;
2164 	void *ecc_chunk;
2165 
2166 	if (!buf)
2167 		buf = nand_get_data_buf(chip);
2168 
2169 	/* read without ecc for verification */
2170 	ret = chip->ecc.read_page_raw(chip, buf, true, page);
2171 	if (ret)
2172 		return ret;
2173 
2174 	for (i = 0; i < chip->ecc.steps; i++) {
2175 		ecc_chunk = buf + chip->ecc.size * i;
2176 
2177 		mtd_ooblayout_ecc(mtd, i, &ecc);
2178 		ecc_bytes = chip->oob_poi + ecc.offset;
2179 
2180 		ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
2181 						  ecc_bytes, ecc.length,
2182 						  NULL, 0,
2183 						  chip->ecc.strength);
2184 		if (ret < 0)
2185 			return ret;
2186 
2187 		bitflips = max(bitflips, ret);
2188 	}
2189 
2190 	return bitflips;
2191 }
2192 
brcmnand_read(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,unsigned int trans,u32 * buf,u8 * oob)2193 static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
2194 			 u64 addr, unsigned int trans, u32 *buf, u8 *oob)
2195 {
2196 	struct brcmnand_host *host = nand_get_controller_data(chip);
2197 	struct brcmnand_controller *ctrl = host->ctrl;
2198 	u64 err_addr = 0;
2199 	int err;
2200 	bool retry = true;
2201 	bool edu_err = false;
2202 
2203 	dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
2204 
2205 try_dmaread:
2206 	brcmnand_clear_ecc_addr(ctrl);
2207 
2208 	if (ctrl->dma_trans && !oob && flash_dma_buf_ok(buf)) {
2209 		err = ctrl->dma_trans(host, addr, buf,
2210 				      trans * FC_BYTES,
2211 				      CMD_PAGE_READ);
2212 
2213 		if (err) {
2214 			if (mtd_is_bitflip_or_eccerr(err))
2215 				err_addr = addr;
2216 			else
2217 				return -EIO;
2218 		}
2219 
2220 		if (has_edu(ctrl) && err_addr)
2221 			edu_err = true;
2222 
2223 	} else {
2224 		if (oob)
2225 			memset(oob, 0x99, mtd->oobsize);
2226 
2227 		err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2228 					       oob, &err_addr);
2229 	}
2230 
2231 	if (mtd_is_eccerr(err)) {
2232 		/*
2233 		 * On controller version and 7.0, 7.1 , DMA read after a
2234 		 * prior PIO read that reported uncorrectable error,
2235 		 * the DMA engine captures this error following DMA read
2236 		 * cleared only on subsequent DMA read, so just retry once
2237 		 * to clear a possible false error reported for current DMA
2238 		 * read
2239 		 */
2240 		if ((ctrl->nand_version == 0x0700) ||
2241 		    (ctrl->nand_version == 0x0701)) {
2242 			if (retry) {
2243 				retry = false;
2244 				goto try_dmaread;
2245 			}
2246 		}
2247 
2248 		/*
2249 		 * Controller version 7.2 has hw encoder to detect erased page
2250 		 * bitflips, apply sw verification for older controllers only
2251 		 */
2252 		if (ctrl->nand_version < 0x0702) {
2253 			err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
2254 							      addr);
2255 			/* erased page bitflips corrected */
2256 			if (err >= 0)
2257 				return err;
2258 		}
2259 
2260 		dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
2261 			(unsigned long long)err_addr);
2262 		mtd->ecc_stats.failed++;
2263 		/* NAND layer expects zero on ECC errors */
2264 		return 0;
2265 	}
2266 
2267 	if (mtd_is_bitflip(err)) {
2268 		unsigned int corrected = brcmnand_count_corrected(ctrl);
2269 
2270 		/* in case of EDU correctable error we read again using PIO */
2271 		if (edu_err)
2272 			err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
2273 						   oob, &err_addr);
2274 
2275 		dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
2276 			(unsigned long long)err_addr);
2277 		mtd->ecc_stats.corrected += corrected;
2278 		/* Always exceed the software-imposed threshold */
2279 		return max(mtd->bitflip_threshold, corrected);
2280 	}
2281 
2282 	return 0;
2283 }
2284 
brcmnand_read_page(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2285 static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
2286 			      int oob_required, int page)
2287 {
2288 	struct mtd_info *mtd = nand_to_mtd(chip);
2289 	struct brcmnand_host *host = nand_get_controller_data(chip);
2290 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2291 
2292 	nand_read_page_op(chip, page, 0, NULL, 0);
2293 
2294 	return brcmnand_read(mtd, chip, host->last_addr,
2295 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2296 }
2297 
brcmnand_read_page_raw(struct nand_chip * chip,uint8_t * buf,int oob_required,int page)2298 static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
2299 				  int oob_required, int page)
2300 {
2301 	struct brcmnand_host *host = nand_get_controller_data(chip);
2302 	struct mtd_info *mtd = nand_to_mtd(chip);
2303 	u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
2304 	int ret;
2305 
2306 	nand_read_page_op(chip, page, 0, NULL, 0);
2307 
2308 	brcmnand_set_ecc_enabled(host, 0);
2309 	ret = brcmnand_read(mtd, chip, host->last_addr,
2310 			mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
2311 	brcmnand_set_ecc_enabled(host, 1);
2312 	return ret;
2313 }
2314 
brcmnand_read_oob(struct nand_chip * chip,int page)2315 static int brcmnand_read_oob(struct nand_chip *chip, int page)
2316 {
2317 	struct mtd_info *mtd = nand_to_mtd(chip);
2318 
2319 	return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2320 			mtd->writesize >> FC_SHIFT,
2321 			NULL, (u8 *)chip->oob_poi);
2322 }
2323 
brcmnand_read_oob_raw(struct nand_chip * chip,int page)2324 static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
2325 {
2326 	struct mtd_info *mtd = nand_to_mtd(chip);
2327 	struct brcmnand_host *host = nand_get_controller_data(chip);
2328 
2329 	brcmnand_set_ecc_enabled(host, 0);
2330 	brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
2331 		mtd->writesize >> FC_SHIFT,
2332 		NULL, (u8 *)chip->oob_poi);
2333 	brcmnand_set_ecc_enabled(host, 1);
2334 	return 0;
2335 }
2336 
brcmnand_write(struct mtd_info * mtd,struct nand_chip * chip,u64 addr,const u32 * buf,u8 * oob)2337 static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
2338 			  u64 addr, const u32 *buf, u8 *oob)
2339 {
2340 	struct brcmnand_host *host = nand_get_controller_data(chip);
2341 	struct brcmnand_controller *ctrl = host->ctrl;
2342 	unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
2343 	int status, ret = 0;
2344 
2345 	dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
2346 
2347 	if (unlikely((unsigned long)buf & 0x03)) {
2348 		dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
2349 		buf = (u32 *)((unsigned long)buf & ~0x03);
2350 	}
2351 
2352 	brcmnand_wp(mtd, 0);
2353 
2354 	for (i = 0; i < ctrl->max_oob; i += 4)
2355 		oob_reg_write(ctrl, i, 0xffffffff);
2356 
2357 	if (use_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
2358 		if (ctrl->dma_trans(host, addr, (u32 *)buf, mtd->writesize,
2359 				    CMD_PROGRAM_PAGE))
2360 
2361 			ret = -EIO;
2362 
2363 		goto out;
2364 	}
2365 
2366 	for (i = 0; i < trans; i++, addr += FC_BYTES) {
2367 		/* full address MUST be set before populating FC */
2368 		brcmnand_set_cmd_addr(mtd, addr);
2369 
2370 		if (buf) {
2371 			brcmnand_soc_data_bus_prepare(ctrl->soc, false);
2372 
2373 			for (j = 0; j < FC_WORDS; j++, buf++)
2374 				brcmnand_write_fc(ctrl, j, *buf);
2375 
2376 			brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
2377 		} else if (oob) {
2378 			for (j = 0; j < FC_WORDS; j++)
2379 				brcmnand_write_fc(ctrl, j, 0xffffffff);
2380 		}
2381 
2382 		if (oob) {
2383 			oob += write_oob_to_regs(ctrl, i, oob,
2384 					mtd->oobsize / trans,
2385 					host->hwcfg.sector_size_1k);
2386 		}
2387 
2388 		/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
2389 		brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
2390 		status = brcmnand_waitfunc(chip);
2391 
2392 		if (status & NAND_STATUS_FAIL) {
2393 			dev_info(ctrl->dev, "program failed at %llx\n",
2394 				(unsigned long long)addr);
2395 			ret = -EIO;
2396 			goto out;
2397 		}
2398 	}
2399 out:
2400 	brcmnand_wp(mtd, 1);
2401 	return ret;
2402 }
2403 
brcmnand_write_page(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2404 static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
2405 			       int oob_required, int page)
2406 {
2407 	struct mtd_info *mtd = nand_to_mtd(chip);
2408 	struct brcmnand_host *host = nand_get_controller_data(chip);
2409 	void *oob = oob_required ? chip->oob_poi : NULL;
2410 
2411 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2412 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2413 
2414 	return nand_prog_page_end_op(chip);
2415 }
2416 
brcmnand_write_page_raw(struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2417 static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
2418 				   int oob_required, int page)
2419 {
2420 	struct mtd_info *mtd = nand_to_mtd(chip);
2421 	struct brcmnand_host *host = nand_get_controller_data(chip);
2422 	void *oob = oob_required ? chip->oob_poi : NULL;
2423 
2424 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2425 	brcmnand_set_ecc_enabled(host, 0);
2426 	brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
2427 	brcmnand_set_ecc_enabled(host, 1);
2428 
2429 	return nand_prog_page_end_op(chip);
2430 }
2431 
brcmnand_write_oob(struct nand_chip * chip,int page)2432 static int brcmnand_write_oob(struct nand_chip *chip, int page)
2433 {
2434 	return brcmnand_write(nand_to_mtd(chip), chip,
2435 			      (u64)page << chip->page_shift, NULL,
2436 			      chip->oob_poi);
2437 }
2438 
brcmnand_write_oob_raw(struct nand_chip * chip,int page)2439 static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
2440 {
2441 	struct mtd_info *mtd = nand_to_mtd(chip);
2442 	struct brcmnand_host *host = nand_get_controller_data(chip);
2443 	int ret;
2444 
2445 	brcmnand_set_ecc_enabled(host, 0);
2446 	ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
2447 				 (u8 *)chip->oob_poi);
2448 	brcmnand_set_ecc_enabled(host, 1);
2449 
2450 	return ret;
2451 }
2452 
2453 /***********************************************************************
2454  * Per-CS setup (1 NAND device)
2455  ***********************************************************************/
2456 
brcmnand_set_cfg(struct brcmnand_host * host,struct brcmnand_cfg * cfg)2457 static int brcmnand_set_cfg(struct brcmnand_host *host,
2458 			    struct brcmnand_cfg *cfg)
2459 {
2460 	struct brcmnand_controller *ctrl = host->ctrl;
2461 	struct nand_chip *chip = &host->chip;
2462 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2463 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2464 			BRCMNAND_CS_CFG_EXT);
2465 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2466 			BRCMNAND_CS_ACC_CONTROL);
2467 	u8 block_size = 0, page_size = 0, device_size = 0;
2468 	u32 tmp;
2469 
2470 	if (ctrl->block_sizes) {
2471 		int i, found;
2472 
2473 		for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
2474 			if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
2475 				block_size = i;
2476 				found = 1;
2477 			}
2478 		if (!found) {
2479 			dev_warn(ctrl->dev, "invalid block size %u\n",
2480 					cfg->block_size);
2481 			return -EINVAL;
2482 		}
2483 	} else {
2484 		block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
2485 	}
2486 
2487 	if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
2488 				cfg->block_size > ctrl->max_block_size)) {
2489 		dev_warn(ctrl->dev, "invalid block size %u\n",
2490 				cfg->block_size);
2491 		block_size = 0;
2492 	}
2493 
2494 	if (ctrl->page_sizes) {
2495 		int i, found;
2496 
2497 		for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
2498 			if (ctrl->page_sizes[i] == cfg->page_size) {
2499 				page_size = i;
2500 				found = 1;
2501 			}
2502 		if (!found) {
2503 			dev_warn(ctrl->dev, "invalid page size %u\n",
2504 					cfg->page_size);
2505 			return -EINVAL;
2506 		}
2507 	} else {
2508 		page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
2509 	}
2510 
2511 	if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
2512 				cfg->page_size > ctrl->max_page_size)) {
2513 		dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
2514 		return -EINVAL;
2515 	}
2516 
2517 	if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
2518 		dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
2519 			(unsigned long long)cfg->device_size);
2520 		return -EINVAL;
2521 	}
2522 	device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
2523 
2524 	tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
2525 		(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
2526 		(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
2527 		(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
2528 		(device_size << CFG_DEVICE_SIZE_SHIFT);
2529 	if (cfg_offs == cfg_ext_offs) {
2530 		tmp |= (page_size << ctrl->page_size_shift) |
2531 		       (block_size << CFG_BLK_SIZE_SHIFT);
2532 		nand_writereg(ctrl, cfg_offs, tmp);
2533 	} else {
2534 		nand_writereg(ctrl, cfg_offs, tmp);
2535 		tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
2536 		      (block_size << CFG_EXT_BLK_SIZE_SHIFT);
2537 		nand_writereg(ctrl, cfg_ext_offs, tmp);
2538 	}
2539 
2540 	tmp = nand_readreg(ctrl, acc_control_offs);
2541 	tmp &= ~brcmnand_ecc_level_mask(ctrl);
2542 	tmp &= ~brcmnand_spare_area_mask(ctrl);
2543 	if (ctrl->nand_version >= 0x0302) {
2544 		tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2545 		tmp |= cfg->spare_area_size;
2546 	}
2547 	nand_writereg(ctrl, acc_control_offs, tmp);
2548 
2549 	brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
2550 
2551 	/* threshold = ceil(BCH-level * 0.75) */
2552 	brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
2553 
2554 	return 0;
2555 }
2556 
brcmnand_print_cfg(struct brcmnand_host * host,char * buf,struct brcmnand_cfg * cfg)2557 static void brcmnand_print_cfg(struct brcmnand_host *host,
2558 			       char *buf, struct brcmnand_cfg *cfg)
2559 {
2560 	buf += sprintf(buf,
2561 		"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
2562 		(unsigned long long)cfg->device_size >> 20,
2563 		cfg->block_size >> 10,
2564 		cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
2565 		cfg->page_size >= 1024 ? "KiB" : "B",
2566 		cfg->spare_area_size, cfg->device_width);
2567 
2568 	/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
2569 	if (is_hamming_ecc(host->ctrl, cfg))
2570 		sprintf(buf, ", Hamming ECC");
2571 	else if (cfg->sector_size_1k)
2572 		sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
2573 	else
2574 		sprintf(buf, ", BCH-%u", cfg->ecc_level);
2575 }
2576 
2577 /*
2578  * Minimum number of bytes to address a page. Calculated as:
2579  *     roundup(log2(size / page-size) / 8)
2580  *
2581  * NB: the following does not "round up" for non-power-of-2 'size'; but this is
2582  *     OK because many other things will break if 'size' is irregular...
2583  */
get_blk_adr_bytes(u64 size,u32 writesize)2584 static inline int get_blk_adr_bytes(u64 size, u32 writesize)
2585 {
2586 	return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
2587 }
2588 
brcmnand_setup_dev(struct brcmnand_host * host)2589 static int brcmnand_setup_dev(struct brcmnand_host *host)
2590 {
2591 	struct mtd_info *mtd = nand_to_mtd(&host->chip);
2592 	struct nand_chip *chip = &host->chip;
2593 	const struct nand_ecc_props *requirements =
2594 		nanddev_get_ecc_requirements(&chip->base);
2595 	struct nand_memory_organization *memorg =
2596 		nanddev_get_memorg(&chip->base);
2597 	struct brcmnand_controller *ctrl = host->ctrl;
2598 	struct brcmnand_cfg *cfg = &host->hwcfg;
2599 	char msg[128];
2600 	u32 offs, tmp, oob_sector;
2601 	int ret;
2602 
2603 	memset(cfg, 0, sizeof(*cfg));
2604 
2605 	ret = of_property_read_u32(nand_get_flash_node(chip),
2606 				   "brcm,nand-oob-sector-size",
2607 				   &oob_sector);
2608 	if (ret) {
2609 		/* Use detected size */
2610 		cfg->spare_area_size = mtd->oobsize /
2611 					(mtd->writesize >> FC_SHIFT);
2612 	} else {
2613 		cfg->spare_area_size = oob_sector;
2614 	}
2615 	if (cfg->spare_area_size > ctrl->max_oob)
2616 		cfg->spare_area_size = ctrl->max_oob;
2617 	/*
2618 	 * Set mtd and memorg oobsize to be consistent with controller's
2619 	 * spare_area_size, as the rest is inaccessible.
2620 	 */
2621 	mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2622 	memorg->oobsize = mtd->oobsize;
2623 
2624 	cfg->device_size = mtd->size;
2625 	cfg->block_size = mtd->erasesize;
2626 	cfg->page_size = mtd->writesize;
2627 	cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
2628 	cfg->col_adr_bytes = 2;
2629 	cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
2630 
2631 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
2632 		dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
2633 			chip->ecc.engine_type);
2634 		return -EINVAL;
2635 	}
2636 
2637 	if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
2638 		if (chip->ecc.strength == 1 && chip->ecc.size == 512)
2639 			/* Default to Hamming for 1-bit ECC, if unspecified */
2640 			chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
2641 		else
2642 			/* Otherwise, BCH */
2643 			chip->ecc.algo = NAND_ECC_ALGO_BCH;
2644 	}
2645 
2646 	if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
2647 	    (chip->ecc.strength != 1 || chip->ecc.size != 512)) {
2648 		dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
2649 			chip->ecc.strength, chip->ecc.size);
2650 		return -EINVAL;
2651 	}
2652 
2653 	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
2654 	    (!chip->ecc.size || !chip->ecc.strength)) {
2655 		if (requirements->step_size && requirements->strength) {
2656 			/* use detected ECC parameters */
2657 			chip->ecc.size = requirements->step_size;
2658 			chip->ecc.strength = requirements->strength;
2659 			dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
2660 				chip->ecc.size, chip->ecc.strength);
2661 		}
2662 	}
2663 
2664 	switch (chip->ecc.size) {
2665 	case 512:
2666 		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
2667 			cfg->ecc_level = 15;
2668 		else
2669 			cfg->ecc_level = chip->ecc.strength;
2670 		cfg->sector_size_1k = 0;
2671 		break;
2672 	case 1024:
2673 		if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
2674 			dev_err(ctrl->dev, "1KB sectors not supported\n");
2675 			return -EINVAL;
2676 		}
2677 		if (chip->ecc.strength & 0x1) {
2678 			dev_err(ctrl->dev,
2679 				"odd ECC not supported with 1KB sectors\n");
2680 			return -EINVAL;
2681 		}
2682 
2683 		cfg->ecc_level = chip->ecc.strength >> 1;
2684 		cfg->sector_size_1k = 1;
2685 		break;
2686 	default:
2687 		dev_err(ctrl->dev, "unsupported ECC size: %d\n",
2688 			chip->ecc.size);
2689 		return -EINVAL;
2690 	}
2691 
2692 	cfg->ful_adr_bytes = cfg->blk_adr_bytes;
2693 	if (mtd->writesize > 512)
2694 		cfg->ful_adr_bytes += cfg->col_adr_bytes;
2695 	else
2696 		cfg->ful_adr_bytes += 1;
2697 
2698 	ret = brcmnand_set_cfg(host, cfg);
2699 	if (ret)
2700 		return ret;
2701 
2702 	brcmnand_set_ecc_enabled(host, 1);
2703 
2704 	brcmnand_print_cfg(host, msg, cfg);
2705 	dev_info(ctrl->dev, "detected %s\n", msg);
2706 
2707 	/* Configure ACC_CONTROL */
2708 	offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
2709 	tmp = nand_readreg(ctrl, offs);
2710 	tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
2711 	tmp &= ~ACC_CONTROL_RD_ERASED;
2712 
2713 	/* We need to turn on Read from erased paged protected by ECC */
2714 	if (ctrl->nand_version >= 0x0702)
2715 		tmp |= ACC_CONTROL_RD_ERASED;
2716 	tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
2717 	if (ctrl->features & BRCMNAND_HAS_PREFETCH)
2718 		tmp &= ~ACC_CONTROL_PREFETCH;
2719 
2720 	nand_writereg(ctrl, offs, tmp);
2721 
2722 	return 0;
2723 }
2724 
brcmnand_attach_chip(struct nand_chip * chip)2725 static int brcmnand_attach_chip(struct nand_chip *chip)
2726 {
2727 	struct mtd_info *mtd = nand_to_mtd(chip);
2728 	struct brcmnand_host *host = nand_get_controller_data(chip);
2729 	int ret;
2730 
2731 	chip->options |= NAND_NO_SUBPAGE_WRITE;
2732 	/*
2733 	 * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
2734 	 * to/from, and have nand_base pass us a bounce buffer instead, as
2735 	 * needed.
2736 	 */
2737 	chip->options |= NAND_USES_DMA;
2738 
2739 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
2740 		chip->bbt_options |= NAND_BBT_NO_OOB;
2741 
2742 	if (brcmnand_setup_dev(host))
2743 		return -ENXIO;
2744 
2745 	chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
2746 
2747 	/* only use our internal HW threshold */
2748 	mtd->bitflip_threshold = 1;
2749 
2750 	ret = brcmstb_choose_ecc_layout(host);
2751 
2752 	/* If OOB is written with ECC enabled it will cause ECC errors */
2753 	if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
2754 		chip->ecc.write_oob = brcmnand_write_oob_raw;
2755 		chip->ecc.read_oob = brcmnand_read_oob_raw;
2756 	}
2757 
2758 	return ret;
2759 }
2760 
2761 static const struct nand_controller_ops brcmnand_controller_ops = {
2762 	.attach_chip = brcmnand_attach_chip,
2763 };
2764 
brcmnand_init_cs(struct brcmnand_host * host,struct device_node * dn)2765 static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn)
2766 {
2767 	struct brcmnand_controller *ctrl = host->ctrl;
2768 	struct platform_device *pdev = host->pdev;
2769 	struct mtd_info *mtd;
2770 	struct nand_chip *chip;
2771 	int ret;
2772 	u16 cfg_offs;
2773 
2774 	ret = of_property_read_u32(dn, "reg", &host->cs);
2775 	if (ret) {
2776 		dev_err(&pdev->dev, "can't get chip-select\n");
2777 		return -ENXIO;
2778 	}
2779 
2780 	mtd = nand_to_mtd(&host->chip);
2781 	chip = &host->chip;
2782 
2783 	nand_set_flash_node(chip, dn);
2784 	nand_set_controller_data(chip, host);
2785 	mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d",
2786 				   host->cs);
2787 	if (!mtd->name)
2788 		return -ENOMEM;
2789 
2790 	mtd->owner = THIS_MODULE;
2791 	mtd->dev.parent = &pdev->dev;
2792 
2793 	chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
2794 	chip->legacy.cmdfunc = brcmnand_cmdfunc;
2795 	chip->legacy.waitfunc = brcmnand_waitfunc;
2796 	chip->legacy.read_byte = brcmnand_read_byte;
2797 	chip->legacy.read_buf = brcmnand_read_buf;
2798 	chip->legacy.write_buf = brcmnand_write_buf;
2799 
2800 	chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
2801 	chip->ecc.read_page = brcmnand_read_page;
2802 	chip->ecc.write_page = brcmnand_write_page;
2803 	chip->ecc.read_page_raw = brcmnand_read_page_raw;
2804 	chip->ecc.write_page_raw = brcmnand_write_page_raw;
2805 	chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
2806 	chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
2807 	chip->ecc.read_oob = brcmnand_read_oob;
2808 	chip->ecc.write_oob = brcmnand_write_oob;
2809 
2810 	chip->controller = &ctrl->controller;
2811 
2812 	/*
2813 	 * The bootloader might have configured 16bit mode but
2814 	 * NAND READID command only works in 8bit mode. We force
2815 	 * 8bit mode here to ensure that NAND READID commands works.
2816 	 */
2817 	cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2818 	nand_writereg(ctrl, cfg_offs,
2819 		      nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
2820 
2821 	ret = nand_scan(chip, 1);
2822 	if (ret)
2823 		return ret;
2824 
2825 	ret = mtd_device_register(mtd, NULL, 0);
2826 	if (ret)
2827 		nand_cleanup(chip);
2828 
2829 	return ret;
2830 }
2831 
brcmnand_save_restore_cs_config(struct brcmnand_host * host,int restore)2832 static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
2833 					    int restore)
2834 {
2835 	struct brcmnand_controller *ctrl = host->ctrl;
2836 	u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
2837 	u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
2838 			BRCMNAND_CS_CFG_EXT);
2839 	u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
2840 			BRCMNAND_CS_ACC_CONTROL);
2841 	u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
2842 	u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
2843 
2844 	if (restore) {
2845 		nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
2846 		if (cfg_offs != cfg_ext_offs)
2847 			nand_writereg(ctrl, cfg_ext_offs,
2848 				      host->hwcfg.config_ext);
2849 		nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
2850 		nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
2851 		nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
2852 	} else {
2853 		host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
2854 		if (cfg_offs != cfg_ext_offs)
2855 			host->hwcfg.config_ext =
2856 				nand_readreg(ctrl, cfg_ext_offs);
2857 		host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
2858 		host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
2859 		host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
2860 	}
2861 }
2862 
brcmnand_suspend(struct device * dev)2863 static int brcmnand_suspend(struct device *dev)
2864 {
2865 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2866 	struct brcmnand_host *host;
2867 
2868 	list_for_each_entry(host, &ctrl->host_list, node)
2869 		brcmnand_save_restore_cs_config(host, 0);
2870 
2871 	ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
2872 	ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
2873 	ctrl->corr_stat_threshold =
2874 		brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
2875 
2876 	if (has_flash_dma(ctrl))
2877 		ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
2878 	else if (has_edu(ctrl))
2879 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2880 
2881 	return 0;
2882 }
2883 
brcmnand_resume(struct device * dev)2884 static int brcmnand_resume(struct device *dev)
2885 {
2886 	struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
2887 	struct brcmnand_host *host;
2888 
2889 	if (has_flash_dma(ctrl)) {
2890 		flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
2891 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
2892 	}
2893 
2894 	if (has_edu(ctrl)) {
2895 		ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
2896 		edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
2897 		edu_readl(ctrl, EDU_CONFIG);
2898 		brcmnand_edu_init(ctrl);
2899 	}
2900 
2901 	brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
2902 	brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
2903 	brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
2904 			ctrl->corr_stat_threshold);
2905 	if (ctrl->soc) {
2906 		/* Clear/re-enable interrupt */
2907 		ctrl->soc->ctlrdy_ack(ctrl->soc);
2908 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
2909 	}
2910 
2911 	list_for_each_entry(host, &ctrl->host_list, node) {
2912 		struct nand_chip *chip = &host->chip;
2913 
2914 		brcmnand_save_restore_cs_config(host, 1);
2915 
2916 		/* Reset the chip, required by some chips after power-up */
2917 		nand_reset_op(chip);
2918 	}
2919 
2920 	return 0;
2921 }
2922 
2923 const struct dev_pm_ops brcmnand_pm_ops = {
2924 	.suspend		= brcmnand_suspend,
2925 	.resume			= brcmnand_resume,
2926 };
2927 EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
2928 
2929 static const struct of_device_id brcmnand_of_match[] = {
2930 	{ .compatible = "brcm,brcmnand-v2.1" },
2931 	{ .compatible = "brcm,brcmnand-v2.2" },
2932 	{ .compatible = "brcm,brcmnand-v4.0" },
2933 	{ .compatible = "brcm,brcmnand-v5.0" },
2934 	{ .compatible = "brcm,brcmnand-v6.0" },
2935 	{ .compatible = "brcm,brcmnand-v6.1" },
2936 	{ .compatible = "brcm,brcmnand-v6.2" },
2937 	{ .compatible = "brcm,brcmnand-v7.0" },
2938 	{ .compatible = "brcm,brcmnand-v7.1" },
2939 	{ .compatible = "brcm,brcmnand-v7.2" },
2940 	{ .compatible = "brcm,brcmnand-v7.3" },
2941 	{},
2942 };
2943 MODULE_DEVICE_TABLE(of, brcmnand_of_match);
2944 
2945 /***********************************************************************
2946  * Platform driver setup (per controller)
2947  ***********************************************************************/
brcmnand_edu_setup(struct platform_device * pdev)2948 static int brcmnand_edu_setup(struct platform_device *pdev)
2949 {
2950 	struct device *dev = &pdev->dev;
2951 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
2952 	struct resource *res;
2953 	int ret;
2954 
2955 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
2956 	if (res) {
2957 		ctrl->edu_base = devm_ioremap_resource(dev, res);
2958 		if (IS_ERR(ctrl->edu_base))
2959 			return PTR_ERR(ctrl->edu_base);
2960 
2961 		ctrl->edu_offsets = edu_regs;
2962 
2963 		edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
2964 			   EDU_CONFIG_SWAP_CFG);
2965 		edu_readl(ctrl, EDU_CONFIG);
2966 
2967 		/* initialize edu */
2968 		brcmnand_edu_init(ctrl);
2969 
2970 		ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
2971 		if (ctrl->edu_irq < 0) {
2972 			dev_warn(dev,
2973 				 "FLASH EDU enabled, using ctlrdy irq\n");
2974 		} else {
2975 			ret = devm_request_irq(dev, ctrl->edu_irq,
2976 					       brcmnand_edu_irq, 0,
2977 					       "brcmnand-edu", ctrl);
2978 			if (ret < 0) {
2979 				dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
2980 					ctrl->edu_irq, ret);
2981 				return ret;
2982 			}
2983 
2984 			dev_info(dev, "FLASH EDU enabled using irq %u\n",
2985 				 ctrl->edu_irq);
2986 		}
2987 	}
2988 
2989 	return 0;
2990 }
2991 
brcmnand_probe(struct platform_device * pdev,struct brcmnand_soc * soc)2992 int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
2993 {
2994 	struct device *dev = &pdev->dev;
2995 	struct device_node *dn = dev->of_node, *child;
2996 	struct brcmnand_controller *ctrl;
2997 	struct resource *res;
2998 	int ret;
2999 
3000 	/* We only support device-tree instantiation */
3001 	if (!dn)
3002 		return -ENODEV;
3003 
3004 	if (!of_match_node(brcmnand_of_match, dn))
3005 		return -ENODEV;
3006 
3007 	ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
3008 	if (!ctrl)
3009 		return -ENOMEM;
3010 
3011 	dev_set_drvdata(dev, ctrl);
3012 	ctrl->dev = dev;
3013 
3014 	/* Enable the static key if the soc provides I/O operations indicating
3015 	 * that a non-memory mapped IO access path must be used
3016 	 */
3017 	if (brcmnand_soc_has_ops(ctrl->soc))
3018 		static_branch_enable(&brcmnand_soc_has_ops_key);
3019 
3020 	init_completion(&ctrl->done);
3021 	init_completion(&ctrl->dma_done);
3022 	init_completion(&ctrl->edu_done);
3023 	nand_controller_init(&ctrl->controller);
3024 	ctrl->controller.ops = &brcmnand_controller_ops;
3025 	INIT_LIST_HEAD(&ctrl->host_list);
3026 
3027 	/* NAND register range */
3028 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3029 	ctrl->nand_base = devm_ioremap_resource(dev, res);
3030 	if (IS_ERR(ctrl->nand_base))
3031 		return PTR_ERR(ctrl->nand_base);
3032 
3033 	/* Enable clock before using NAND registers */
3034 	ctrl->clk = devm_clk_get(dev, "nand");
3035 	if (!IS_ERR(ctrl->clk)) {
3036 		ret = clk_prepare_enable(ctrl->clk);
3037 		if (ret)
3038 			return ret;
3039 	} else {
3040 		ret = PTR_ERR(ctrl->clk);
3041 		if (ret == -EPROBE_DEFER)
3042 			return ret;
3043 
3044 		ctrl->clk = NULL;
3045 	}
3046 
3047 	/* Initialize NAND revision */
3048 	ret = brcmnand_revision_init(ctrl);
3049 	if (ret)
3050 		goto err;
3051 
3052 	/*
3053 	 * Most chips have this cache at a fixed offset within 'nand' block.
3054 	 * Some must specify this region separately.
3055 	 */
3056 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
3057 	if (res) {
3058 		ctrl->nand_fc = devm_ioremap_resource(dev, res);
3059 		if (IS_ERR(ctrl->nand_fc)) {
3060 			ret = PTR_ERR(ctrl->nand_fc);
3061 			goto err;
3062 		}
3063 	} else {
3064 		ctrl->nand_fc = ctrl->nand_base +
3065 				ctrl->reg_offsets[BRCMNAND_FC_BASE];
3066 	}
3067 
3068 	/* FLASH_DMA */
3069 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
3070 	if (res) {
3071 		ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
3072 		if (IS_ERR(ctrl->flash_dma_base)) {
3073 			ret = PTR_ERR(ctrl->flash_dma_base);
3074 			goto err;
3075 		}
3076 
3077 		/* initialize the dma version */
3078 		brcmnand_flash_dma_revision_init(ctrl);
3079 
3080 		ret = -EIO;
3081 		if (ctrl->nand_version >= 0x0700)
3082 			ret = dma_set_mask_and_coherent(&pdev->dev,
3083 							DMA_BIT_MASK(40));
3084 		if (ret)
3085 			ret = dma_set_mask_and_coherent(&pdev->dev,
3086 							DMA_BIT_MASK(32));
3087 		if (ret)
3088 			goto err;
3089 
3090 		/* linked-list and stop on error */
3091 		flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
3092 		flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
3093 
3094 		/* Allocate descriptor(s) */
3095 		ctrl->dma_desc = dmam_alloc_coherent(dev,
3096 						     sizeof(*ctrl->dma_desc),
3097 						     &ctrl->dma_pa, GFP_KERNEL);
3098 		if (!ctrl->dma_desc) {
3099 			ret = -ENOMEM;
3100 			goto err;
3101 		}
3102 
3103 		ctrl->dma_irq = platform_get_irq(pdev, 1);
3104 		if ((int)ctrl->dma_irq < 0) {
3105 			dev_err(dev, "missing FLASH_DMA IRQ\n");
3106 			ret = -ENODEV;
3107 			goto err;
3108 		}
3109 
3110 		ret = devm_request_irq(dev, ctrl->dma_irq,
3111 				brcmnand_dma_irq, 0, DRV_NAME,
3112 				ctrl);
3113 		if (ret < 0) {
3114 			dev_err(dev, "can't allocate IRQ %d: error %d\n",
3115 					ctrl->dma_irq, ret);
3116 			goto err;
3117 		}
3118 
3119 		dev_info(dev, "enabling FLASH_DMA\n");
3120 		/* set flash dma transfer function to call */
3121 		ctrl->dma_trans = brcmnand_dma_trans;
3122 	} else	{
3123 		ret = brcmnand_edu_setup(pdev);
3124 		if (ret < 0)
3125 			goto err;
3126 
3127 		if (has_edu(ctrl))
3128 			/* set edu transfer function to call */
3129 			ctrl->dma_trans = brcmnand_edu_trans;
3130 	}
3131 
3132 	/* Disable automatic device ID config, direct addressing */
3133 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
3134 			 CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
3135 	/* Disable XOR addressing */
3136 	brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
3137 
3138 	if (ctrl->features & BRCMNAND_HAS_WP) {
3139 		/* Permanently disable write protection */
3140 		if (wp_on == 2)
3141 			brcmnand_set_wp(ctrl, false);
3142 	} else {
3143 		wp_on = 0;
3144 	}
3145 
3146 	/* IRQ */
3147 	ctrl->irq = platform_get_irq(pdev, 0);
3148 	if ((int)ctrl->irq < 0) {
3149 		dev_err(dev, "no IRQ defined\n");
3150 		ret = -ENODEV;
3151 		goto err;
3152 	}
3153 
3154 	/*
3155 	 * Some SoCs integrate this controller (e.g., its interrupt bits) in
3156 	 * interesting ways
3157 	 */
3158 	if (soc) {
3159 		ctrl->soc = soc;
3160 
3161 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
3162 				       DRV_NAME, ctrl);
3163 
3164 		/* Enable interrupt */
3165 		ctrl->soc->ctlrdy_ack(ctrl->soc);
3166 		ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
3167 	} else {
3168 		/* Use standard interrupt infrastructure */
3169 		ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
3170 				       DRV_NAME, ctrl);
3171 	}
3172 	if (ret < 0) {
3173 		dev_err(dev, "can't allocate IRQ %d: error %d\n",
3174 			ctrl->irq, ret);
3175 		goto err;
3176 	}
3177 
3178 	for_each_available_child_of_node(dn, child) {
3179 		if (of_device_is_compatible(child, "brcm,nandcs")) {
3180 			struct brcmnand_host *host;
3181 
3182 			host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
3183 			if (!host) {
3184 				of_node_put(child);
3185 				ret = -ENOMEM;
3186 				goto err;
3187 			}
3188 			host->pdev = pdev;
3189 			host->ctrl = ctrl;
3190 
3191 			ret = brcmnand_init_cs(host, child);
3192 			if (ret) {
3193 				devm_kfree(dev, host);
3194 				continue; /* Try all chip-selects */
3195 			}
3196 
3197 			list_add_tail(&host->node, &ctrl->host_list);
3198 		}
3199 	}
3200 
3201 	/* No chip-selects could initialize properly */
3202 	if (list_empty(&ctrl->host_list)) {
3203 		ret = -ENODEV;
3204 		goto err;
3205 	}
3206 
3207 	return 0;
3208 
3209 err:
3210 	clk_disable_unprepare(ctrl->clk);
3211 	return ret;
3212 
3213 }
3214 EXPORT_SYMBOL_GPL(brcmnand_probe);
3215 
brcmnand_remove(struct platform_device * pdev)3216 int brcmnand_remove(struct platform_device *pdev)
3217 {
3218 	struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
3219 	struct brcmnand_host *host;
3220 	struct nand_chip *chip;
3221 	int ret;
3222 
3223 	list_for_each_entry(host, &ctrl->host_list, node) {
3224 		chip = &host->chip;
3225 		ret = mtd_device_unregister(nand_to_mtd(chip));
3226 		WARN_ON(ret);
3227 		nand_cleanup(chip);
3228 	}
3229 
3230 	clk_disable_unprepare(ctrl->clk);
3231 
3232 	dev_set_drvdata(&pdev->dev, NULL);
3233 
3234 	return 0;
3235 }
3236 EXPORT_SYMBOL_GPL(brcmnand_remove);
3237 
3238 MODULE_LICENSE("GPL v2");
3239 MODULE_AUTHOR("Kevin Cernekee");
3240 MODULE_AUTHOR("Brian Norris");
3241 MODULE_DESCRIPTION("NAND driver for Broadcom chips");
3242 MODULE_ALIAS("platform:brcmnand");
3243