• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3 
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12 
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15  * i40e_fdir - Generate a Flow Director descriptor based on fdata
16  * @tx_ring: Tx ring to send buffer on
17  * @fdata: Flow director filter data
18  * @add: Indicate if we are adding a rule or deleting one
19  *
20  **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 		      struct i40e_fdir_filter *fdata, bool add)
23 {
24 	struct i40e_filter_program_desc *fdir_desc;
25 	struct i40e_pf *pf = tx_ring->vsi->back;
26 	u32 flex_ptype, dtype_cmd;
27 	u16 i;
28 
29 	/* grab the next descriptor */
30 	i = tx_ring->next_to_use;
31 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32 
33 	i++;
34 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35 
36 	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38 
39 	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41 
42 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44 
45 	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47 
48 	/* Use LAN VSI Id if not programmed by user */
49 	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52 
53 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54 
55 	dtype_cmd |= add ?
56 		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60 
61 	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63 
64 	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66 
67 	if (fdata->cnt_index) {
68 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 			     ((u32)fdata->cnt_index <<
71 			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 	}
73 
74 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 	fdir_desc->rsvd = cpu_to_le32(0);
76 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79 
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82  * i40e_program_fdir_filter - Program a Flow Director filter
83  * @fdir_data: Packet data that will be filter parameters
84  * @raw_packet: the pre-allocated packet buffer for FDir
85  * @pf: The PF pointer
86  * @add: True for add/update, False for remove
87  **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 				    u8 *raw_packet, struct i40e_pf *pf,
90 				    bool add)
91 {
92 	struct i40e_tx_buffer *tx_buf, *first;
93 	struct i40e_tx_desc *tx_desc;
94 	struct i40e_ring *tx_ring;
95 	struct i40e_vsi *vsi;
96 	struct device *dev;
97 	dma_addr_t dma;
98 	u32 td_cmd = 0;
99 	u16 i;
100 
101 	/* find existing FDIR VSI */
102 	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 	if (!vsi)
104 		return -ENOENT;
105 
106 	tx_ring = vsi->tx_rings[0];
107 	dev = tx_ring->dev;
108 
109 	/* we need two descriptors to add/del a filter and we can wait */
110 	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 		if (!i)
112 			return -EAGAIN;
113 		msleep_interruptible(1);
114 	}
115 
116 	dma = dma_map_single(dev, raw_packet,
117 			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 	if (dma_mapping_error(dev, dma))
119 		goto dma_fail;
120 
121 	/* grab the next descriptor */
122 	i = tx_ring->next_to_use;
123 	first = &tx_ring->tx_bi[i];
124 	i40e_fdir(tx_ring, fdir_data, add);
125 
126 	/* Now program a dummy descriptor */
127 	i = tx_ring->next_to_use;
128 	tx_desc = I40E_TX_DESC(tx_ring, i);
129 	tx_buf = &tx_ring->tx_bi[i];
130 
131 	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132 
133 	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134 
135 	/* record length, and DMA address */
136 	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 	dma_unmap_addr_set(tx_buf, dma, dma);
138 
139 	tx_desc->buffer_addr = cpu_to_le64(dma);
140 	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141 
142 	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 	tx_buf->raw_buf = (void *)raw_packet;
144 
145 	tx_desc->cmd_type_offset_bsz =
146 		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147 
148 	/* Force memory writes to complete before letting h/w
149 	 * know there are new descriptors to fetch.
150 	 */
151 	wmb();
152 
153 	/* Mark the data descriptor to be watched */
154 	first->next_to_watch = tx_desc;
155 
156 	writel(tx_ring->next_to_use, tx_ring->tail);
157 	return 0;
158 
159 dma_fail:
160 	return -1;
161 }
162 
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167  * @vsi: pointer to the targeted VSI
168  * @fd_data: the flow director data required for the FDir descriptor
169  * @add: true adds a filter, false removes it
170  *
171  * Returns 0 if the filters were successfully added or removed
172  **/
i40e_add_del_fdir_udpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 				   struct i40e_fdir_filter *fd_data,
175 				   bool add)
176 {
177 	struct i40e_pf *pf = vsi->back;
178 	struct udphdr *udp;
179 	struct iphdr *ip;
180 	u8 *raw_packet;
181 	int ret;
182 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185 
186 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 	if (!raw_packet)
188 		return -ENOMEM;
189 	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190 
191 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 	      + sizeof(struct iphdr));
194 
195 	ip->daddr = fd_data->dst_ip;
196 	udp->dest = fd_data->dst_port;
197 	ip->saddr = fd_data->src_ip;
198 	udp->source = fd_data->src_port;
199 
200 	if (fd_data->flex_filter) {
201 		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 		__be16 pattern = fd_data->flex_word;
203 		u16 off = fd_data->flex_offset;
204 
205 		*((__force __be16 *)(payload + off)) = pattern;
206 	}
207 
208 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 	if (ret) {
211 		dev_info(&pf->pdev->dev,
212 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 			 fd_data->pctype, fd_data->fd_id, ret);
214 		/* Free the packet buffer since it wasn't added to the ring */
215 		kfree(raw_packet);
216 		return -EOPNOTSUPP;
217 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 		if (add)
219 			dev_info(&pf->pdev->dev,
220 				 "Filter OK for PCTYPE %d loc = %d\n",
221 				 fd_data->pctype, fd_data->fd_id);
222 		else
223 			dev_info(&pf->pdev->dev,
224 				 "Filter deleted for PCTYPE %d loc = %d\n",
225 				 fd_data->pctype, fd_data->fd_id);
226 	}
227 
228 	if (add)
229 		pf->fd_udp4_filter_cnt++;
230 	else
231 		pf->fd_udp4_filter_cnt--;
232 
233 	return 0;
234 }
235 
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239  * @vsi: pointer to the targeted VSI
240  * @fd_data: the flow director data required for the FDir descriptor
241  * @add: true adds a filter, false removes it
242  *
243  * Returns 0 if the filters were successfully added or removed
244  **/
i40e_add_del_fdir_tcpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 				   struct i40e_fdir_filter *fd_data,
247 				   bool add)
248 {
249 	struct i40e_pf *pf = vsi->back;
250 	struct tcphdr *tcp;
251 	struct iphdr *ip;
252 	u8 *raw_packet;
253 	int ret;
254 	/* Dummy packet */
255 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 		0x0, 0x72, 0, 0, 0, 0};
259 
260 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 	if (!raw_packet)
262 		return -ENOMEM;
263 	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264 
265 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 	      + sizeof(struct iphdr));
268 
269 	ip->daddr = fd_data->dst_ip;
270 	tcp->dest = fd_data->dst_port;
271 	ip->saddr = fd_data->src_ip;
272 	tcp->source = fd_data->src_port;
273 
274 	if (fd_data->flex_filter) {
275 		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 		__be16 pattern = fd_data->flex_word;
277 		u16 off = fd_data->flex_offset;
278 
279 		*((__force __be16 *)(payload + off)) = pattern;
280 	}
281 
282 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 	if (ret) {
285 		dev_info(&pf->pdev->dev,
286 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 			 fd_data->pctype, fd_data->fd_id, ret);
288 		/* Free the packet buffer since it wasn't added to the ring */
289 		kfree(raw_packet);
290 		return -EOPNOTSUPP;
291 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 		if (add)
293 			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 				 fd_data->pctype, fd_data->fd_id);
295 		else
296 			dev_info(&pf->pdev->dev,
297 				 "Filter deleted for PCTYPE %d loc = %d\n",
298 				 fd_data->pctype, fd_data->fd_id);
299 	}
300 
301 	if (add) {
302 		pf->fd_tcp4_filter_cnt++;
303 		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 		    I40E_DEBUG_FD & pf->hw.debug_mask)
305 			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 	} else {
308 		pf->fd_tcp4_filter_cnt--;
309 	}
310 
311 	return 0;
312 }
313 
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317  * a specific flow spec
318  * @vsi: pointer to the targeted VSI
319  * @fd_data: the flow director data required for the FDir descriptor
320  * @add: true adds a filter, false removes it
321  *
322  * Returns 0 if the filters were successfully added or removed
323  **/
i40e_add_del_fdir_sctpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 				    struct i40e_fdir_filter *fd_data,
326 				    bool add)
327 {
328 	struct i40e_pf *pf = vsi->back;
329 	struct sctphdr *sctp;
330 	struct iphdr *ip;
331 	u8 *raw_packet;
332 	int ret;
333 	/* Dummy packet */
334 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337 
338 	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 	if (!raw_packet)
340 		return -ENOMEM;
341 	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342 
343 	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 	      + sizeof(struct iphdr));
346 
347 	ip->daddr = fd_data->dst_ip;
348 	sctp->dest = fd_data->dst_port;
349 	ip->saddr = fd_data->src_ip;
350 	sctp->source = fd_data->src_port;
351 
352 	if (fd_data->flex_filter) {
353 		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 		__be16 pattern = fd_data->flex_word;
355 		u16 off = fd_data->flex_offset;
356 
357 		*((__force __be16 *)(payload + off)) = pattern;
358 	}
359 
360 	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 	if (ret) {
363 		dev_info(&pf->pdev->dev,
364 			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 			 fd_data->pctype, fd_data->fd_id, ret);
366 		/* Free the packet buffer since it wasn't added to the ring */
367 		kfree(raw_packet);
368 		return -EOPNOTSUPP;
369 	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 		if (add)
371 			dev_info(&pf->pdev->dev,
372 				 "Filter OK for PCTYPE %d loc = %d\n",
373 				 fd_data->pctype, fd_data->fd_id);
374 		else
375 			dev_info(&pf->pdev->dev,
376 				 "Filter deleted for PCTYPE %d loc = %d\n",
377 				 fd_data->pctype, fd_data->fd_id);
378 	}
379 
380 	if (add)
381 		pf->fd_sctp4_filter_cnt++;
382 	else
383 		pf->fd_sctp4_filter_cnt--;
384 
385 	return 0;
386 }
387 
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391  * a specific flow spec
392  * @vsi: pointer to the targeted VSI
393  * @fd_data: the flow director data required for the FDir descriptor
394  * @add: true adds a filter, false removes it
395  *
396  * Returns 0 if the filters were successfully added or removed
397  **/
i40e_add_del_fdir_ipv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 				  struct i40e_fdir_filter *fd_data,
400 				  bool add)
401 {
402 	struct i40e_pf *pf = vsi->back;
403 	struct iphdr *ip;
404 	u8 *raw_packet;
405 	int ret;
406 	int i;
407 	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 		0, 0, 0, 0};
410 
411 	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
413 		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 		if (!raw_packet)
415 			return -ENOMEM;
416 		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418 
419 		ip->saddr = fd_data->src_ip;
420 		ip->daddr = fd_data->dst_ip;
421 		ip->protocol = 0;
422 
423 		if (fd_data->flex_filter) {
424 			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 			__be16 pattern = fd_data->flex_word;
426 			u16 off = fd_data->flex_offset;
427 
428 			*((__force __be16 *)(payload + off)) = pattern;
429 		}
430 
431 		fd_data->pctype = i;
432 		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 		if (ret) {
434 			dev_info(&pf->pdev->dev,
435 				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 				 fd_data->pctype, fd_data->fd_id, ret);
437 			/* The packet buffer wasn't added to the ring so we
438 			 * need to free it now.
439 			 */
440 			kfree(raw_packet);
441 			return -EOPNOTSUPP;
442 		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 			if (add)
444 				dev_info(&pf->pdev->dev,
445 					 "Filter OK for PCTYPE %d loc = %d\n",
446 					 fd_data->pctype, fd_data->fd_id);
447 			else
448 				dev_info(&pf->pdev->dev,
449 					 "Filter deleted for PCTYPE %d loc = %d\n",
450 					 fd_data->pctype, fd_data->fd_id);
451 		}
452 	}
453 
454 	if (add)
455 		pf->fd_ip4_filter_cnt++;
456 	else
457 		pf->fd_ip4_filter_cnt--;
458 
459 	return 0;
460 }
461 
462 /**
463  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464  * @vsi: pointer to the targeted VSI
465  * @input: filter to add or delete
466  * @add: true adds a filter, false removes it
467  *
468  **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 		      struct i40e_fdir_filter *input, bool add)
471 {
472 	struct i40e_pf *pf = vsi->back;
473 	int ret;
474 
475 	switch (input->flow_type & ~FLOW_EXT) {
476 	case TCP_V4_FLOW:
477 		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 		break;
479 	case UDP_V4_FLOW:
480 		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 		break;
482 	case SCTP_V4_FLOW:
483 		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 		break;
485 	case IP_USER_FLOW:
486 		switch (input->ip4_proto) {
487 		case IPPROTO_TCP:
488 			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 			break;
490 		case IPPROTO_UDP:
491 			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 			break;
493 		case IPPROTO_SCTP:
494 			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 			break;
496 		case IPPROTO_IP:
497 			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 			break;
499 		default:
500 			/* We cannot support masking based on protocol */
501 			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 				 input->ip4_proto);
503 			return -EINVAL;
504 		}
505 		break;
506 	default:
507 		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 			 input->flow_type);
509 		return -EINVAL;
510 	}
511 
512 	/* The buffer allocated here will be normally be freed by
513 	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 	 * completion. In the event of an error adding the buffer to the FDIR
515 	 * ring, it will immediately be freed. It may also be freed by
516 	 * i40e_clean_tx_ring() when closing the VSI.
517 	 */
518 	return ret;
519 }
520 
521 /**
522  * i40e_fd_handle_status - check the Programming Status for FD
523  * @rx_ring: the Rx ring for this descriptor
524  * @qword0_raw: qword0
525  * @qword1: qword1 after le_to_cpu
526  * @prog_id: the id originally used for programming
527  *
528  * This is used to verify if the FD programming or invalidation
529  * requested by SW to the HW is successful or not and take actions accordingly.
530  **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 				  u64 qword1, u8 prog_id)
533 {
534 	struct i40e_pf *pf = rx_ring->vsi->back;
535 	struct pci_dev *pdev = pf->pdev;
536 	struct i40e_16b_rx_wb_qw0 *qw0;
537 	u32 fcnt_prog, fcnt_avail;
538 	u32 error;
539 
540 	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 	error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543 
544 	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 		if (qw0->hi_dword.fd_id != 0 ||
547 		    (I40E_DEBUG_FD & pf->hw.debug_mask))
548 			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 				 pf->fd_inv);
550 
551 		/* Check if the programming error is for ATR.
552 		 * If so, auto disable ATR and set a state for
553 		 * flush in progress. Next time we come here if flush is in
554 		 * progress do nothing, once flush is complete the state will
555 		 * be cleared.
556 		 */
557 		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 			return;
559 
560 		pf->fd_add_err++;
561 		/* store the current atr filter count */
562 		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563 
564 		if (qw0->hi_dword.fd_id == 0 &&
565 		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 			/* These set_bit() calls aren't atomic with the
567 			 * test_bit() here, but worse case we potentially
568 			 * disable ATR and queue a flush right after SB
569 			 * support is re-enabled. That shouldn't cause an
570 			 * issue in practice
571 			 */
572 			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 		}
575 
576 		/* filter programming failed most likely due to table full */
577 		fcnt_prog = i40e_get_global_fd_count(pf);
578 		fcnt_avail = pf->fdir_pf_filter_count;
579 		/* If ATR is running fcnt_prog can quickly change,
580 		 * if we are very close to full, it makes sense to disable
581 		 * FD ATR/SB and then re-enable it when there is room.
582 		 */
583 		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 					      pf->state))
587 				if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 		}
590 	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 		if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 				 qw0->hi_dword.fd_id);
594 	}
595 }
596 
597 /**
598  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599  * @ring:      the ring that owns the buffer
600  * @tx_buffer: the buffer to free
601  **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 					    struct i40e_tx_buffer *tx_buffer)
604 {
605 	if (tx_buffer->skb) {
606 		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 			kfree(tx_buffer->raw_buf);
608 		else if (ring_is_xdp(ring))
609 			xdp_return_frame(tx_buffer->xdpf);
610 		else
611 			dev_kfree_skb_any(tx_buffer->skb);
612 		if (dma_unmap_len(tx_buffer, len))
613 			dma_unmap_single(ring->dev,
614 					 dma_unmap_addr(tx_buffer, dma),
615 					 dma_unmap_len(tx_buffer, len),
616 					 DMA_TO_DEVICE);
617 	} else if (dma_unmap_len(tx_buffer, len)) {
618 		dma_unmap_page(ring->dev,
619 			       dma_unmap_addr(tx_buffer, dma),
620 			       dma_unmap_len(tx_buffer, len),
621 			       DMA_TO_DEVICE);
622 	}
623 
624 	tx_buffer->next_to_watch = NULL;
625 	tx_buffer->skb = NULL;
626 	dma_unmap_len_set(tx_buffer, len, 0);
627 	/* tx_buffer must be completely set up in the transmit path */
628 }
629 
630 /**
631  * i40e_clean_tx_ring - Free any empty Tx buffers
632  * @tx_ring: ring to be cleaned
633  **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 	unsigned long bi_size;
637 	u16 i;
638 
639 	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 		i40e_xsk_clean_tx_ring(tx_ring);
641 	} else {
642 		/* ring already cleared, nothing to do */
643 		if (!tx_ring->tx_bi)
644 			return;
645 
646 		/* Free all the Tx ring sk_buffs */
647 		for (i = 0; i < tx_ring->count; i++)
648 			i40e_unmap_and_free_tx_resource(tx_ring,
649 							&tx_ring->tx_bi[i]);
650 	}
651 
652 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 	memset(tx_ring->tx_bi, 0, bi_size);
654 
655 	/* Zero out the descriptor ring */
656 	memset(tx_ring->desc, 0, tx_ring->size);
657 
658 	tx_ring->next_to_use = 0;
659 	tx_ring->next_to_clean = 0;
660 
661 	if (!tx_ring->netdev)
662 		return;
663 
664 	/* cleanup Tx queue statistics */
665 	netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667 
668 /**
669  * i40e_free_tx_resources - Free Tx resources per queue
670  * @tx_ring: Tx descriptor ring for a specific queue
671  *
672  * Free all transmit software resources
673  **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 	i40e_clean_tx_ring(tx_ring);
677 	kfree(tx_ring->tx_bi);
678 	tx_ring->tx_bi = NULL;
679 
680 	if (tx_ring->desc) {
681 		dma_free_coherent(tx_ring->dev, tx_ring->size,
682 				  tx_ring->desc, tx_ring->dma);
683 		tx_ring->desc = NULL;
684 	}
685 }
686 
687 /**
688  * i40e_get_tx_pending - how many tx descriptors not processed
689  * @ring: the ring of descriptors
690  * @in_sw: use SW variables
691  *
692  * Since there is no access to the ring head register
693  * in XL710, we need to use our local copies
694  **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 	u32 head, tail;
698 
699 	if (!in_sw) {
700 		head = i40e_get_head(ring);
701 		tail = readl(ring->tail);
702 	} else {
703 		head = ring->next_to_clean;
704 		tail = ring->next_to_use;
705 	}
706 
707 	if (head != tail)
708 		return (head < tail) ?
709 			tail - head : (tail + ring->count - head);
710 
711 	return 0;
712 }
713 
714 /**
715  * i40e_detect_recover_hung - Function to detect and recover hung_queues
716  * @vsi:  pointer to vsi struct with tx queues
717  *
718  * VSI has netdev and netdev has TX queues. This function is to check each of
719  * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720  **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 	struct i40e_ring *tx_ring = NULL;
724 	struct net_device *netdev;
725 	unsigned int i;
726 	int packets;
727 
728 	if (!vsi)
729 		return;
730 
731 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 		return;
733 
734 	netdev = vsi->netdev;
735 	if (!netdev)
736 		return;
737 
738 	if (!netif_carrier_ok(netdev))
739 		return;
740 
741 	for (i = 0; i < vsi->num_queue_pairs; i++) {
742 		tx_ring = vsi->tx_rings[i];
743 		if (tx_ring && tx_ring->desc) {
744 			/* If packet counter has not changed the queue is
745 			 * likely stalled, so force an interrupt for this
746 			 * queue.
747 			 *
748 			 * prev_pkt_ctr would be negative if there was no
749 			 * pending work.
750 			 */
751 			packets = tx_ring->stats.packets & INT_MAX;
752 			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 				i40e_force_wb(vsi, tx_ring->q_vector);
754 				continue;
755 			}
756 
757 			/* Memory barrier between read of packet count and call
758 			 * to i40e_get_tx_pending()
759 			 */
760 			smp_rmb();
761 			tx_ring->tx_stats.prev_pkt_ctr =
762 			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 		}
764 	}
765 }
766 
767 /**
768  * i40e_clean_tx_irq - Reclaim resources after transmit completes
769  * @vsi: the VSI we care about
770  * @tx_ring: Tx ring to clean
771  * @napi_budget: Used to determine if we are in netpoll
772  *
773  * Returns true if there's any budget left (e.g. the clean is finished)
774  **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 			      struct i40e_ring *tx_ring, int napi_budget)
777 {
778 	int i = tx_ring->next_to_clean;
779 	struct i40e_tx_buffer *tx_buf;
780 	struct i40e_tx_desc *tx_head;
781 	struct i40e_tx_desc *tx_desc;
782 	unsigned int total_bytes = 0, total_packets = 0;
783 	unsigned int budget = vsi->work_limit;
784 
785 	tx_buf = &tx_ring->tx_bi[i];
786 	tx_desc = I40E_TX_DESC(tx_ring, i);
787 	i -= tx_ring->count;
788 
789 	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790 
791 	do {
792 		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793 
794 		/* if next_to_watch is not set then there is no work pending */
795 		if (!eop_desc)
796 			break;
797 
798 		/* prevent any other reads prior to eop_desc */
799 		smp_rmb();
800 
801 		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 		/* we have caught up to head, no work left to do */
803 		if (tx_head == tx_desc)
804 			break;
805 
806 		/* clear next_to_watch to prevent false hangs */
807 		tx_buf->next_to_watch = NULL;
808 
809 		/* update the statistics for this packet */
810 		total_bytes += tx_buf->bytecount;
811 		total_packets += tx_buf->gso_segs;
812 
813 		/* free the skb/XDP data */
814 		if (ring_is_xdp(tx_ring))
815 			xdp_return_frame(tx_buf->xdpf);
816 		else
817 			napi_consume_skb(tx_buf->skb, napi_budget);
818 
819 		/* unmap skb header data */
820 		dma_unmap_single(tx_ring->dev,
821 				 dma_unmap_addr(tx_buf, dma),
822 				 dma_unmap_len(tx_buf, len),
823 				 DMA_TO_DEVICE);
824 
825 		/* clear tx_buffer data */
826 		tx_buf->skb = NULL;
827 		dma_unmap_len_set(tx_buf, len, 0);
828 
829 		/* unmap remaining buffers */
830 		while (tx_desc != eop_desc) {
831 			i40e_trace(clean_tx_irq_unmap,
832 				   tx_ring, tx_desc, tx_buf);
833 
834 			tx_buf++;
835 			tx_desc++;
836 			i++;
837 			if (unlikely(!i)) {
838 				i -= tx_ring->count;
839 				tx_buf = tx_ring->tx_bi;
840 				tx_desc = I40E_TX_DESC(tx_ring, 0);
841 			}
842 
843 			/* unmap any remaining paged data */
844 			if (dma_unmap_len(tx_buf, len)) {
845 				dma_unmap_page(tx_ring->dev,
846 					       dma_unmap_addr(tx_buf, dma),
847 					       dma_unmap_len(tx_buf, len),
848 					       DMA_TO_DEVICE);
849 				dma_unmap_len_set(tx_buf, len, 0);
850 			}
851 		}
852 
853 		/* move us one more past the eop_desc for start of next pkt */
854 		tx_buf++;
855 		tx_desc++;
856 		i++;
857 		if (unlikely(!i)) {
858 			i -= tx_ring->count;
859 			tx_buf = tx_ring->tx_bi;
860 			tx_desc = I40E_TX_DESC(tx_ring, 0);
861 		}
862 
863 		prefetch(tx_desc);
864 
865 		/* update budget accounting */
866 		budget--;
867 	} while (likely(budget));
868 
869 	i += tx_ring->count;
870 	tx_ring->next_to_clean = i;
871 	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 	i40e_arm_wb(tx_ring, vsi, budget);
873 
874 	if (ring_is_xdp(tx_ring))
875 		return !!budget;
876 
877 	/* notify netdev of completed buffers */
878 	netdev_tx_completed_queue(txring_txq(tx_ring),
879 				  total_packets, total_bytes);
880 
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 		/* Make sure that anybody stopping the queue after this
885 		 * sees the new next_to_clean.
886 		 */
887 		smp_mb();
888 		if (__netif_subqueue_stopped(tx_ring->netdev,
889 					     tx_ring->queue_index) &&
890 		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 			netif_wake_subqueue(tx_ring->netdev,
892 					    tx_ring->queue_index);
893 			++tx_ring->tx_stats.restart_queue;
894 		}
895 	}
896 
897 	return !!budget;
898 }
899 
900 /**
901  * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902  * @vsi: the VSI we care about
903  * @q_vector: the vector on which to enable writeback
904  *
905  **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 				  struct i40e_q_vector *q_vector)
908 {
909 	u16 flags = q_vector->tx.ring[0].flags;
910 	u32 val;
911 
912 	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 		return;
914 
915 	if (q_vector->arm_wb_state)
916 		return;
917 
918 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921 
922 		wr32(&vsi->back->hw,
923 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 		     val);
925 	} else {
926 		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928 
929 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 	}
931 	q_vector->arm_wb_state = true;
932 }
933 
934 /**
935  * i40e_force_wb - Issue SW Interrupt so HW does a wb
936  * @vsi: the VSI we care about
937  * @q_vector: the vector  on which to force writeback
938  *
939  **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 			  /* allow 00 to be written to the index */
948 
949 		wr32(&vsi->back->hw,
950 		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 	} else {
952 		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 			/* allow 00 to be written to the index */
957 
958 		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 	}
960 }
961 
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 					struct i40e_ring_container *rc)
964 {
965 	return &q_vector->rx == rc;
966 }
967 
i40e_itr_divisor(struct i40e_q_vector * q_vector)968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 	unsigned int divisor;
971 
972 	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 	case I40E_LINK_SPEED_40GB:
974 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 		break;
976 	case I40E_LINK_SPEED_25GB:
977 	case I40E_LINK_SPEED_20GB:
978 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 		break;
980 	default:
981 	case I40E_LINK_SPEED_10GB:
982 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 		break;
984 	case I40E_LINK_SPEED_1GB:
985 	case I40E_LINK_SPEED_100MB:
986 		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 		break;
988 	}
989 
990 	return divisor;
991 }
992 
993 /**
994  * i40e_update_itr - update the dynamic ITR value based on statistics
995  * @q_vector: structure containing interrupt and ring information
996  * @rc: structure containing ring performance data
997  *
998  * Stores a new ITR value based on packets and byte
999  * counts during the last interrupt.  The advantage of per interrupt
1000  * computation is faster updates and more accurate ITR for the current
1001  * traffic pattern.  Constants in this function were computed
1002  * based on theoretical maximum wire speed and thresholds were set based
1003  * on testing data as well as attempting to minimize response time
1004  * while increasing bulk throughput.
1005  **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 			    struct i40e_ring_container *rc)
1008 {
1009 	unsigned int avg_wire_size, packets, bytes, itr;
1010 	unsigned long next_update = jiffies;
1011 
1012 	/* If we don't have any rings just leave ourselves set for maximum
1013 	 * possible latency so we take ourselves out of the equation.
1014 	 */
1015 	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 		return;
1017 
1018 	/* For Rx we want to push the delay up and default to low latency.
1019 	 * for Tx we want to pull the delay down and default to high latency.
1020 	 */
1021 	itr = i40e_container_is_rx(q_vector, rc) ?
1022 	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024 
1025 	/* If we didn't update within up to 1 - 2 jiffies we can assume
1026 	 * that either packets are coming in so slow there hasn't been
1027 	 * any work, or that there is so much work that NAPI is dealing
1028 	 * with interrupt moderation and we don't need to do anything.
1029 	 */
1030 	if (time_after(next_update, rc->next_update))
1031 		goto clear_counts;
1032 
1033 	/* If itr_countdown is set it means we programmed an ITR within
1034 	 * the last 4 interrupt cycles. This has a side effect of us
1035 	 * potentially firing an early interrupt. In order to work around
1036 	 * this we need to throw out any data received for a few
1037 	 * interrupts following the update.
1038 	 */
1039 	if (q_vector->itr_countdown) {
1040 		itr = rc->target_itr;
1041 		goto clear_counts;
1042 	}
1043 
1044 	packets = rc->total_packets;
1045 	bytes = rc->total_bytes;
1046 
1047 	if (i40e_container_is_rx(q_vector, rc)) {
1048 		/* If Rx there are 1 to 4 packets and bytes are less than
1049 		 * 9000 assume insufficient data to use bulk rate limiting
1050 		 * approach unless Tx is already in bulk rate limiting. We
1051 		 * are likely latency driven.
1052 		 */
1053 		if (packets && packets < 4 && bytes < 9000 &&
1054 		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 			itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 			goto adjust_by_size;
1057 		}
1058 	} else if (packets < 4) {
1059 		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 		 * bulk mode and we are receiving 4 or fewer packets just
1061 		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 		 * that the Rx can relax.
1063 		 */
1064 		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 		     I40E_ITR_ADAPTIVE_MAX_USECS)
1067 			goto clear_counts;
1068 	} else if (packets > 32) {
1069 		/* If we have processed over 32 packets in a single interrupt
1070 		 * for Tx assume we need to switch over to "bulk" mode.
1071 		 */
1072 		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 	}
1074 
1075 	/* We have no packets to actually measure against. This means
1076 	 * either one of the other queues on this vector is active or
1077 	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 	 *
1079 	 * Between 4 and 56 we can assume that our current interrupt delay
1080 	 * is only slightly too low. As such we should increase it by a small
1081 	 * fixed amount.
1082 	 */
1083 	if (packets < 56) {
1084 		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 		}
1089 		goto clear_counts;
1090 	}
1091 
1092 	if (packets <= 256) {
1093 		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 		itr &= I40E_ITR_MASK;
1095 
1096 		/* Between 56 and 112 is our "goldilocks" zone where we are
1097 		 * working out "just right". Just report that our current
1098 		 * ITR is good for us.
1099 		 */
1100 		if (packets <= 112)
1101 			goto clear_counts;
1102 
1103 		/* If packet count is 128 or greater we are likely looking
1104 		 * at a slight overrun of the delay we want. Try halving
1105 		 * our delay to see if that will cut the number of packets
1106 		 * in half per interrupt.
1107 		 */
1108 		itr /= 2;
1109 		itr &= I40E_ITR_MASK;
1110 		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112 
1113 		goto clear_counts;
1114 	}
1115 
1116 	/* The paths below assume we are dealing with a bulk ITR since
1117 	 * number of packets is greater than 256. We are just going to have
1118 	 * to compute a value and try to bring the count under control,
1119 	 * though for smaller packet sizes there isn't much we can do as
1120 	 * NAPI polling will likely be kicking in sooner rather than later.
1121 	 */
1122 	itr = I40E_ITR_ADAPTIVE_BULK;
1123 
1124 adjust_by_size:
1125 	/* If packet counts are 256 or greater we can assume we have a gross
1126 	 * overestimation of what the rate should be. Instead of trying to fine
1127 	 * tune it just use the formula below to try and dial in an exact value
1128 	 * give the current packet size of the frame.
1129 	 */
1130 	avg_wire_size = bytes / packets;
1131 
1132 	/* The following is a crude approximation of:
1133 	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1134 	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 	 *
1137 	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 	 * formula down to
1140 	 *
1141 	 *  (170 * (size + 24)) / (size + 640) = ITR
1142 	 *
1143 	 * We first do some math on the packet size and then finally bitshift
1144 	 * by 8 after rounding up. We also have to account for PCIe link speed
1145 	 * difference as ITR scales based on this.
1146 	 */
1147 	if (avg_wire_size <= 60) {
1148 		/* Start at 250k ints/sec */
1149 		avg_wire_size = 4096;
1150 	} else if (avg_wire_size <= 380) {
1151 		/* 250K ints/sec to 60K ints/sec */
1152 		avg_wire_size *= 40;
1153 		avg_wire_size += 1696;
1154 	} else if (avg_wire_size <= 1084) {
1155 		/* 60K ints/sec to 36K ints/sec */
1156 		avg_wire_size *= 15;
1157 		avg_wire_size += 11452;
1158 	} else if (avg_wire_size <= 1980) {
1159 		/* 36K ints/sec to 30K ints/sec */
1160 		avg_wire_size *= 5;
1161 		avg_wire_size += 22420;
1162 	} else {
1163 		/* plateau at a limit of 30K ints/sec */
1164 		avg_wire_size = 32256;
1165 	}
1166 
1167 	/* If we are in low latency mode halve our delay which doubles the
1168 	 * rate to somewhere between 100K to 16K ints/sec
1169 	 */
1170 	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 		avg_wire_size /= 2;
1172 
1173 	/* Resultant value is 256 times larger than it needs to be. This
1174 	 * gives us room to adjust the value as needed to either increase
1175 	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 	 *
1177 	 * Use addition as we have already recorded the new latency flag
1178 	 * for the ITR value.
1179 	 */
1180 	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 	       I40E_ITR_ADAPTIVE_MIN_INC;
1182 
1183 	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 	}
1187 
1188 clear_counts:
1189 	/* write back value */
1190 	rc->target_itr = itr;
1191 
1192 	/* next update should occur within next jiffy */
1193 	rc->next_update = next_update + 1;
1194 
1195 	rc->total_bytes = 0;
1196 	rc->total_packets = 0;
1197 }
1198 
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 	return &rx_ring->rx_bi[idx];
1202 }
1203 
1204 /**
1205  * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206  * @rx_ring: rx descriptor ring to store buffers on
1207  * @old_buff: donor buffer to have page reused
1208  *
1209  * Synchronizes page for reuse by the adapter
1210  **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 			       struct i40e_rx_buffer *old_buff)
1213 {
1214 	struct i40e_rx_buffer *new_buff;
1215 	u16 nta = rx_ring->next_to_alloc;
1216 
1217 	new_buff = i40e_rx_bi(rx_ring, nta);
1218 
1219 	/* update, and store next to alloc */
1220 	nta++;
1221 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222 
1223 	/* transfer page from old buffer to new buffer */
1224 	new_buff->dma		= old_buff->dma;
1225 	new_buff->page		= old_buff->page;
1226 	new_buff->page_offset	= old_buff->page_offset;
1227 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1228 
1229 	rx_ring->rx_stats.page_reuse_count++;
1230 
1231 	/* clear contents of buffer_info */
1232 	old_buff->page = NULL;
1233 }
1234 
1235 /**
1236  * i40e_clean_programming_status - clean the programming status descriptor
1237  * @rx_ring: the rx ring that has this descriptor
1238  * @qword0_raw: qword0
1239  * @qword1: qword1 representing status_error_len in CPU ordering
1240  *
1241  * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242  * status being successful or not and take actions accordingly. FCoE should
1243  * handle its context/filter programming/invalidation status and take actions.
1244  *
1245  * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246  **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 				   u64 qword1)
1249 {
1250 	u8 id;
1251 
1252 	id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254 
1255 	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258 
1259 /**
1260  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261  * @tx_ring: the tx ring to set up
1262  *
1263  * Return 0 on success, negative on error
1264  **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 	struct device *dev = tx_ring->dev;
1268 	int bi_size;
1269 
1270 	if (!dev)
1271 		return -ENOMEM;
1272 
1273 	/* warn if we are about to overwrite the pointer */
1274 	WARN_ON(tx_ring->tx_bi);
1275 	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 	if (!tx_ring->tx_bi)
1278 		goto err;
1279 
1280 	u64_stats_init(&tx_ring->syncp);
1281 
1282 	/* round up to nearest 4K */
1283 	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 	/* add u32 for head writeback, align after this takes care of
1285 	 * guaranteeing this is at least one cache line in size
1286 	 */
1287 	tx_ring->size += sizeof(u32);
1288 	tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 					   &tx_ring->dma, GFP_KERNEL);
1291 	if (!tx_ring->desc) {
1292 		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 			 tx_ring->size);
1294 		goto err;
1295 	}
1296 
1297 	tx_ring->next_to_use = 0;
1298 	tx_ring->next_to_clean = 0;
1299 	tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 	return 0;
1301 
1302 err:
1303 	kfree(tx_ring->tx_bi);
1304 	tx_ring->tx_bi = NULL;
1305 	return -ENOMEM;
1306 }
1307 
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1308 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1311 }
1312 
1313 /**
1314  * i40e_clean_rx_ring - Free Rx buffers
1315  * @rx_ring: ring to be cleaned
1316  **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1317 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1318 {
1319 	u16 i;
1320 
1321 	/* ring already cleared, nothing to do */
1322 	if (!rx_ring->rx_bi)
1323 		return;
1324 
1325 	if (rx_ring->skb) {
1326 		dev_kfree_skb(rx_ring->skb);
1327 		rx_ring->skb = NULL;
1328 	}
1329 
1330 	if (rx_ring->xsk_pool) {
1331 		i40e_xsk_clean_rx_ring(rx_ring);
1332 		goto skip_free;
1333 	}
1334 
1335 	/* Free all the Rx ring sk_buffs */
1336 	for (i = 0; i < rx_ring->count; i++) {
1337 		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1338 
1339 		if (!rx_bi->page)
1340 			continue;
1341 
1342 		/* Invalidate cache lines that may have been written to by
1343 		 * device so that we avoid corrupting memory.
1344 		 */
1345 		dma_sync_single_range_for_cpu(rx_ring->dev,
1346 					      rx_bi->dma,
1347 					      rx_bi->page_offset,
1348 					      rx_ring->rx_buf_len,
1349 					      DMA_FROM_DEVICE);
1350 
1351 		/* free resources associated with mapping */
1352 		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1353 				     i40e_rx_pg_size(rx_ring),
1354 				     DMA_FROM_DEVICE,
1355 				     I40E_RX_DMA_ATTR);
1356 
1357 		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1358 
1359 		rx_bi->page = NULL;
1360 		rx_bi->page_offset = 0;
1361 	}
1362 
1363 skip_free:
1364 	if (rx_ring->xsk_pool)
1365 		i40e_clear_rx_bi_zc(rx_ring);
1366 	else
1367 		i40e_clear_rx_bi(rx_ring);
1368 
1369 	/* Zero out the descriptor ring */
1370 	memset(rx_ring->desc, 0, rx_ring->size);
1371 
1372 	rx_ring->next_to_alloc = 0;
1373 	rx_ring->next_to_clean = 0;
1374 	rx_ring->next_to_use = 0;
1375 }
1376 
1377 /**
1378  * i40e_free_rx_resources - Free Rx resources
1379  * @rx_ring: ring to clean the resources from
1380  *
1381  * Free all receive software resources
1382  **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1383 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1384 {
1385 	i40e_clean_rx_ring(rx_ring);
1386 	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1387 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1388 	rx_ring->xdp_prog = NULL;
1389 	kfree(rx_ring->rx_bi);
1390 	rx_ring->rx_bi = NULL;
1391 
1392 	if (rx_ring->desc) {
1393 		dma_free_coherent(rx_ring->dev, rx_ring->size,
1394 				  rx_ring->desc, rx_ring->dma);
1395 		rx_ring->desc = NULL;
1396 	}
1397 }
1398 
1399 /**
1400  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1401  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1402  *
1403  * Returns 0 on success, negative on failure
1404  **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1405 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1406 {
1407 	struct device *dev = rx_ring->dev;
1408 	int err;
1409 
1410 	u64_stats_init(&rx_ring->syncp);
1411 
1412 	/* Round up to nearest 4K */
1413 	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1414 	rx_ring->size = ALIGN(rx_ring->size, 4096);
1415 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1416 					   &rx_ring->dma, GFP_KERNEL);
1417 
1418 	if (!rx_ring->desc) {
1419 		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1420 			 rx_ring->size);
1421 		return -ENOMEM;
1422 	}
1423 
1424 	rx_ring->next_to_alloc = 0;
1425 	rx_ring->next_to_clean = 0;
1426 	rx_ring->next_to_use = 0;
1427 
1428 	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1429 	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1430 		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1431 				       rx_ring->queue_index);
1432 		if (err < 0)
1433 			return err;
1434 	}
1435 
1436 	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1437 
1438 	rx_ring->rx_bi =
1439 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1440 	if (!rx_ring->rx_bi)
1441 		return -ENOMEM;
1442 
1443 	return 0;
1444 }
1445 
1446 /**
1447  * i40e_release_rx_desc - Store the new tail and head values
1448  * @rx_ring: ring to bump
1449  * @val: new head index
1450  **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1451 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1452 {
1453 	rx_ring->next_to_use = val;
1454 
1455 	/* update next to alloc since we have filled the ring */
1456 	rx_ring->next_to_alloc = val;
1457 
1458 	/* Force memory writes to complete before letting h/w
1459 	 * know there are new descriptors to fetch.  (Only
1460 	 * applicable for weak-ordered memory model archs,
1461 	 * such as IA-64).
1462 	 */
1463 	wmb();
1464 	writel(val, rx_ring->tail);
1465 }
1466 
1467 /**
1468  * i40e_rx_offset - Return expected offset into page to access data
1469  * @rx_ring: Ring we are requesting offset of
1470  *
1471  * Returns the offset value for ring into the data buffer.
1472  */
i40e_rx_offset(struct i40e_ring * rx_ring)1473 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1474 {
1475 	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1476 }
1477 
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1478 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1479 					   unsigned int size)
1480 {
1481 	unsigned int truesize;
1482 
1483 #if (PAGE_SIZE < 8192)
1484 	truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1485 #else
1486 	truesize = i40e_rx_offset(rx_ring) ?
1487 		SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1488 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1489 		SKB_DATA_ALIGN(size);
1490 #endif
1491 	return truesize;
1492 }
1493 
1494 /**
1495  * i40e_alloc_mapped_page - recycle or make a new page
1496  * @rx_ring: ring to use
1497  * @bi: rx_buffer struct to modify
1498  *
1499  * Returns true if the page was successfully allocated or
1500  * reused.
1501  **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1502 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1503 				   struct i40e_rx_buffer *bi)
1504 {
1505 	struct page *page = bi->page;
1506 	dma_addr_t dma;
1507 
1508 	/* since we are recycling buffers we should seldom need to alloc */
1509 	if (likely(page)) {
1510 		rx_ring->rx_stats.page_reuse_count++;
1511 		return true;
1512 	}
1513 
1514 	/* alloc new page for storage */
1515 	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1516 	if (unlikely(!page)) {
1517 		rx_ring->rx_stats.alloc_page_failed++;
1518 		return false;
1519 	}
1520 
1521 	/* map page for use */
1522 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1523 				 i40e_rx_pg_size(rx_ring),
1524 				 DMA_FROM_DEVICE,
1525 				 I40E_RX_DMA_ATTR);
1526 
1527 	/* if mapping failed free memory back to system since
1528 	 * there isn't much point in holding memory we can't use
1529 	 */
1530 	if (dma_mapping_error(rx_ring->dev, dma)) {
1531 		__free_pages(page, i40e_rx_pg_order(rx_ring));
1532 		rx_ring->rx_stats.alloc_page_failed++;
1533 		return false;
1534 	}
1535 
1536 	bi->dma = dma;
1537 	bi->page = page;
1538 	bi->page_offset = i40e_rx_offset(rx_ring);
1539 	page_ref_add(page, USHRT_MAX - 1);
1540 	bi->pagecnt_bias = USHRT_MAX;
1541 
1542 	return true;
1543 }
1544 
1545 /**
1546  * i40e_alloc_rx_buffers - Replace used receive buffers
1547  * @rx_ring: ring to place buffers on
1548  * @cleaned_count: number of buffers to replace
1549  *
1550  * Returns false if all allocations were successful, true if any fail
1551  **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1552 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1553 {
1554 	u16 ntu = rx_ring->next_to_use;
1555 	union i40e_rx_desc *rx_desc;
1556 	struct i40e_rx_buffer *bi;
1557 
1558 	/* do nothing if no valid netdev defined */
1559 	if (!rx_ring->netdev || !cleaned_count)
1560 		return false;
1561 
1562 	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1563 	bi = i40e_rx_bi(rx_ring, ntu);
1564 
1565 	do {
1566 		if (!i40e_alloc_mapped_page(rx_ring, bi))
1567 			goto no_buffers;
1568 
1569 		/* sync the buffer for use by the device */
1570 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1571 						 bi->page_offset,
1572 						 rx_ring->rx_buf_len,
1573 						 DMA_FROM_DEVICE);
1574 
1575 		/* Refresh the desc even if buffer_addrs didn't change
1576 		 * because each write-back erases this info.
1577 		 */
1578 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1579 
1580 		rx_desc++;
1581 		bi++;
1582 		ntu++;
1583 		if (unlikely(ntu == rx_ring->count)) {
1584 			rx_desc = I40E_RX_DESC(rx_ring, 0);
1585 			bi = i40e_rx_bi(rx_ring, 0);
1586 			ntu = 0;
1587 		}
1588 
1589 		/* clear the status bits for the next_to_use descriptor */
1590 		rx_desc->wb.qword1.status_error_len = 0;
1591 
1592 		cleaned_count--;
1593 	} while (cleaned_count);
1594 
1595 	if (rx_ring->next_to_use != ntu)
1596 		i40e_release_rx_desc(rx_ring, ntu);
1597 
1598 	return false;
1599 
1600 no_buffers:
1601 	if (rx_ring->next_to_use != ntu)
1602 		i40e_release_rx_desc(rx_ring, ntu);
1603 
1604 	/* make sure to come back via polling to try again after
1605 	 * allocation failure
1606 	 */
1607 	return true;
1608 }
1609 
1610 /**
1611  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1612  * @vsi: the VSI we care about
1613  * @skb: skb currently being received and modified
1614  * @rx_desc: the receive descriptor
1615  **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1616 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1617 				    struct sk_buff *skb,
1618 				    union i40e_rx_desc *rx_desc)
1619 {
1620 	struct i40e_rx_ptype_decoded decoded;
1621 	u32 rx_error, rx_status;
1622 	bool ipv4, ipv6;
1623 	u8 ptype;
1624 	u64 qword;
1625 
1626 	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1627 	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1628 	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1629 		   I40E_RXD_QW1_ERROR_SHIFT;
1630 	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1631 		    I40E_RXD_QW1_STATUS_SHIFT;
1632 	decoded = decode_rx_desc_ptype(ptype);
1633 
1634 	skb->ip_summed = CHECKSUM_NONE;
1635 
1636 	skb_checksum_none_assert(skb);
1637 
1638 	/* Rx csum enabled and ip headers found? */
1639 	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1640 		return;
1641 
1642 	/* did the hardware decode the packet and checksum? */
1643 	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1644 		return;
1645 
1646 	/* both known and outer_ip must be set for the below code to work */
1647 	if (!(decoded.known && decoded.outer_ip))
1648 		return;
1649 
1650 	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1651 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1652 	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1653 	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1654 
1655 	if (ipv4 &&
1656 	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1657 			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1658 		goto checksum_fail;
1659 
1660 	/* likely incorrect csum if alternate IP extension headers found */
1661 	if (ipv6 &&
1662 	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1663 		/* don't increment checksum err here, non-fatal err */
1664 		return;
1665 
1666 	/* there was some L4 error, count error and punt packet to the stack */
1667 	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1668 		goto checksum_fail;
1669 
1670 	/* handle packets that were not able to be checksummed due
1671 	 * to arrival speed, in this case the stack can compute
1672 	 * the csum.
1673 	 */
1674 	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1675 		return;
1676 
1677 	/* If there is an outer header present that might contain a checksum
1678 	 * we need to bump the checksum level by 1 to reflect the fact that
1679 	 * we are indicating we validated the inner checksum.
1680 	 */
1681 	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1682 		skb->csum_level = 1;
1683 
1684 	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1685 	switch (decoded.inner_prot) {
1686 	case I40E_RX_PTYPE_INNER_PROT_TCP:
1687 	case I40E_RX_PTYPE_INNER_PROT_UDP:
1688 	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1689 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1690 		fallthrough;
1691 	default:
1692 		break;
1693 	}
1694 
1695 	return;
1696 
1697 checksum_fail:
1698 	vsi->back->hw_csum_rx_error++;
1699 }
1700 
1701 /**
1702  * i40e_ptype_to_htype - get a hash type
1703  * @ptype: the ptype value from the descriptor
1704  *
1705  * Returns a hash type to be used by skb_set_hash
1706  **/
i40e_ptype_to_htype(u8 ptype)1707 static inline int i40e_ptype_to_htype(u8 ptype)
1708 {
1709 	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1710 
1711 	if (!decoded.known)
1712 		return PKT_HASH_TYPE_NONE;
1713 
1714 	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1715 	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1716 		return PKT_HASH_TYPE_L4;
1717 	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1719 		return PKT_HASH_TYPE_L3;
1720 	else
1721 		return PKT_HASH_TYPE_L2;
1722 }
1723 
1724 /**
1725  * i40e_rx_hash - set the hash value in the skb
1726  * @ring: descriptor ring
1727  * @rx_desc: specific descriptor
1728  * @skb: skb currently being received and modified
1729  * @rx_ptype: Rx packet type
1730  **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1731 static inline void i40e_rx_hash(struct i40e_ring *ring,
1732 				union i40e_rx_desc *rx_desc,
1733 				struct sk_buff *skb,
1734 				u8 rx_ptype)
1735 {
1736 	u32 hash;
1737 	const __le64 rss_mask =
1738 		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1739 			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1740 
1741 	if (!(ring->netdev->features & NETIF_F_RXHASH))
1742 		return;
1743 
1744 	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1745 		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1746 		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1747 	}
1748 }
1749 
1750 /**
1751  * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1752  * @rx_ring: rx descriptor ring packet is being transacted on
1753  * @rx_desc: pointer to the EOP Rx descriptor
1754  * @skb: pointer to current skb being populated
1755  *
1756  * This function checks the ring, descriptor, and packet information in
1757  * order to populate the hash, checksum, VLAN, protocol, and
1758  * other fields within the skb.
1759  **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1760 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1761 			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1762 {
1763 	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1764 	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1765 			I40E_RXD_QW1_STATUS_SHIFT;
1766 	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1767 	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1768 		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1769 	u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1770 		      I40E_RXD_QW1_PTYPE_SHIFT;
1771 
1772 	if (unlikely(tsynvalid))
1773 		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1774 
1775 	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1776 
1777 	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1778 
1779 	skb_record_rx_queue(skb, rx_ring->queue_index);
1780 
1781 	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1782 		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1783 
1784 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1785 				       le16_to_cpu(vlan_tag));
1786 	}
1787 
1788 	/* modifies the skb - consumes the enet header */
1789 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1790 }
1791 
1792 /**
1793  * i40e_cleanup_headers - Correct empty headers
1794  * @rx_ring: rx descriptor ring packet is being transacted on
1795  * @skb: pointer to current skb being fixed
1796  * @rx_desc: pointer to the EOP Rx descriptor
1797  *
1798  * Also address the case where we are pulling data in on pages only
1799  * and as such no data is present in the skb header.
1800  *
1801  * In addition if skb is not at least 60 bytes we need to pad it so that
1802  * it is large enough to qualify as a valid Ethernet frame.
1803  *
1804  * Returns true if an error was encountered and skb was freed.
1805  **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1806 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1807 				 union i40e_rx_desc *rx_desc)
1808 
1809 {
1810 	/* ERR_MASK will only have valid bits if EOP set, and
1811 	 * what we are doing here is actually checking
1812 	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1813 	 * the error field
1814 	 */
1815 	if (unlikely(i40e_test_staterr(rx_desc,
1816 				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1817 		dev_kfree_skb_any(skb);
1818 		return true;
1819 	}
1820 
1821 	/* if eth_skb_pad returns an error the skb was freed */
1822 	if (eth_skb_pad(skb))
1823 		return true;
1824 
1825 	return false;
1826 }
1827 
1828 /**
1829  * i40e_page_is_reusable - check if any reuse is possible
1830  * @page: page struct to check
1831  *
1832  * A page is not reusable if it was allocated under low memory
1833  * conditions, or it's not in the same NUMA node as this CPU.
1834  */
i40e_page_is_reusable(struct page * page)1835 static inline bool i40e_page_is_reusable(struct page *page)
1836 {
1837 	return (page_to_nid(page) == numa_mem_id()) &&
1838 		!page_is_pfmemalloc(page);
1839 }
1840 
1841 /**
1842  * i40e_can_reuse_rx_page - Determine if this page can be reused by
1843  * the adapter for another receive
1844  *
1845  * @rx_buffer: buffer containing the page
1846  * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1847  *
1848  * If page is reusable, rx_buffer->page_offset is adjusted to point to
1849  * an unused region in the page.
1850  *
1851  * For small pages, @truesize will be a constant value, half the size
1852  * of the memory at page.  We'll attempt to alternate between high and
1853  * low halves of the page, with one half ready for use by the hardware
1854  * and the other half being consumed by the stack.  We use the page
1855  * ref count to determine whether the stack has finished consuming the
1856  * portion of this page that was passed up with a previous packet.  If
1857  * the page ref count is >1, we'll assume the "other" half page is
1858  * still busy, and this page cannot be reused.
1859  *
1860  * For larger pages, @truesize will be the actual space used by the
1861  * received packet (adjusted upward to an even multiple of the cache
1862  * line size).  This will advance through the page by the amount
1863  * actually consumed by the received packets while there is still
1864  * space for a buffer.  Each region of larger pages will be used at
1865  * most once, after which the page will not be reused.
1866  *
1867  * In either case, if the page is reusable its refcount is increased.
1868  **/
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1869 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1870 				   int rx_buffer_pgcnt)
1871 {
1872 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1873 	struct page *page = rx_buffer->page;
1874 
1875 	/* Is any reuse possible? */
1876 	if (unlikely(!i40e_page_is_reusable(page)))
1877 		return false;
1878 
1879 #if (PAGE_SIZE < 8192)
1880 	/* if we are only owner of page we can reuse it */
1881 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1882 		return false;
1883 #else
1884 #define I40E_LAST_OFFSET \
1885 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1886 	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1887 		return false;
1888 #endif
1889 
1890 	/* If we have drained the page fragment pool we need to update
1891 	 * the pagecnt_bias and page count so that we fully restock the
1892 	 * number of references the driver holds.
1893 	 */
1894 	if (unlikely(pagecnt_bias == 1)) {
1895 		page_ref_add(page, USHRT_MAX - 1);
1896 		rx_buffer->pagecnt_bias = USHRT_MAX;
1897 	}
1898 
1899 	return true;
1900 }
1901 
1902 /**
1903  * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1904  * @rx_ring: rx descriptor ring to transact packets on
1905  * @rx_buffer: buffer containing page to add
1906  * @skb: sk_buff to place the data into
1907  * @size: packet length from rx_desc
1908  *
1909  * This function will add the data contained in rx_buffer->page to the skb.
1910  * It will just attach the page as a frag to the skb.
1911  *
1912  * The function will then update the page offset.
1913  **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1914 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1915 			     struct i40e_rx_buffer *rx_buffer,
1916 			     struct sk_buff *skb,
1917 			     unsigned int size)
1918 {
1919 #if (PAGE_SIZE < 8192)
1920 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1921 #else
1922 	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1923 #endif
1924 
1925 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1926 			rx_buffer->page_offset, size, truesize);
1927 
1928 	/* page is being used so we must update the page offset */
1929 #if (PAGE_SIZE < 8192)
1930 	rx_buffer->page_offset ^= truesize;
1931 #else
1932 	rx_buffer->page_offset += truesize;
1933 #endif
1934 }
1935 
1936 /**
1937  * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1938  * @rx_ring: rx descriptor ring to transact packets on
1939  * @size: size of buffer to add to skb
1940  * @rx_buffer_pgcnt: buffer page refcount
1941  *
1942  * This function will pull an Rx buffer from the ring and synchronize it
1943  * for use by the CPU.
1944  */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1945 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1946 						 const unsigned int size,
1947 						 int *rx_buffer_pgcnt)
1948 {
1949 	struct i40e_rx_buffer *rx_buffer;
1950 
1951 	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1952 	*rx_buffer_pgcnt =
1953 #if (PAGE_SIZE < 8192)
1954 		page_count(rx_buffer->page);
1955 #else
1956 		0;
1957 #endif
1958 	prefetch_page_address(rx_buffer->page);
1959 
1960 	/* we are reusing so sync this buffer for CPU use */
1961 	dma_sync_single_range_for_cpu(rx_ring->dev,
1962 				      rx_buffer->dma,
1963 				      rx_buffer->page_offset,
1964 				      size,
1965 				      DMA_FROM_DEVICE);
1966 
1967 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1968 	rx_buffer->pagecnt_bias--;
1969 
1970 	return rx_buffer;
1971 }
1972 
1973 /**
1974  * i40e_construct_skb - Allocate skb and populate it
1975  * @rx_ring: rx descriptor ring to transact packets on
1976  * @rx_buffer: rx buffer to pull data from
1977  * @xdp: xdp_buff pointing to the data
1978  *
1979  * This function allocates an skb.  It then populates it with the page
1980  * data from the current receive descriptor, taking care to set up the
1981  * skb correctly.
1982  */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)1983 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1984 					  struct i40e_rx_buffer *rx_buffer,
1985 					  struct xdp_buff *xdp)
1986 {
1987 	unsigned int size = xdp->data_end - xdp->data;
1988 #if (PAGE_SIZE < 8192)
1989 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1990 #else
1991 	unsigned int truesize = SKB_DATA_ALIGN(size);
1992 #endif
1993 	unsigned int headlen;
1994 	struct sk_buff *skb;
1995 
1996 	/* prefetch first cache line of first page */
1997 	net_prefetch(xdp->data);
1998 
1999 	/* Note, we get here by enabling legacy-rx via:
2000 	 *
2001 	 *    ethtool --set-priv-flags <dev> legacy-rx on
2002 	 *
2003 	 * In this mode, we currently get 0 extra XDP headroom as
2004 	 * opposed to having legacy-rx off, where we process XDP
2005 	 * packets going to stack via i40e_build_skb(). The latter
2006 	 * provides us currently with 192 bytes of headroom.
2007 	 *
2008 	 * For i40e_construct_skb() mode it means that the
2009 	 * xdp->data_meta will always point to xdp->data, since
2010 	 * the helper cannot expand the head. Should this ever
2011 	 * change in future for legacy-rx mode on, then lets also
2012 	 * add xdp->data_meta handling here.
2013 	 */
2014 
2015 	/* allocate a skb to store the frags */
2016 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017 			       I40E_RX_HDR_SIZE,
2018 			       GFP_ATOMIC | __GFP_NOWARN);
2019 	if (unlikely(!skb))
2020 		return NULL;
2021 
2022 	/* Determine available headroom for copy */
2023 	headlen = size;
2024 	if (headlen > I40E_RX_HDR_SIZE)
2025 		headlen = eth_get_headlen(skb->dev, xdp->data,
2026 					  I40E_RX_HDR_SIZE);
2027 
2028 	/* align pull length to size of long to optimize memcpy performance */
2029 	memcpy(__skb_put(skb, headlen), xdp->data,
2030 	       ALIGN(headlen, sizeof(long)));
2031 
2032 	/* update all of the pointers */
2033 	size -= headlen;
2034 	if (size) {
2035 		skb_add_rx_frag(skb, 0, rx_buffer->page,
2036 				rx_buffer->page_offset + headlen,
2037 				size, truesize);
2038 
2039 		/* buffer is used by skb, update page_offset */
2040 #if (PAGE_SIZE < 8192)
2041 		rx_buffer->page_offset ^= truesize;
2042 #else
2043 		rx_buffer->page_offset += truesize;
2044 #endif
2045 	} else {
2046 		/* buffer is unused, reset bias back to rx_buffer */
2047 		rx_buffer->pagecnt_bias++;
2048 	}
2049 
2050 	return skb;
2051 }
2052 
2053 /**
2054  * i40e_build_skb - Build skb around an existing buffer
2055  * @rx_ring: Rx descriptor ring to transact packets on
2056  * @rx_buffer: Rx buffer to pull data from
2057  * @xdp: xdp_buff pointing to the data
2058  *
2059  * This function builds an skb around an existing Rx buffer, taking care
2060  * to set up the skb correctly and avoid any memcpy overhead.
2061  */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2062 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063 				      struct i40e_rx_buffer *rx_buffer,
2064 				      struct xdp_buff *xdp)
2065 {
2066 	unsigned int metasize = xdp->data - xdp->data_meta;
2067 #if (PAGE_SIZE < 8192)
2068 	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069 #else
2070 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071 				SKB_DATA_ALIGN(xdp->data_end -
2072 					       xdp->data_hard_start);
2073 #endif
2074 	struct sk_buff *skb;
2075 
2076 	/* Prefetch first cache line of first page. If xdp->data_meta
2077 	 * is unused, this points exactly as xdp->data, otherwise we
2078 	 * likely have a consumer accessing first few bytes of meta
2079 	 * data, and then actual data.
2080 	 */
2081 	net_prefetch(xdp->data_meta);
2082 
2083 	/* build an skb around the page buffer */
2084 	skb = build_skb(xdp->data_hard_start, truesize);
2085 	if (unlikely(!skb))
2086 		return NULL;
2087 
2088 	/* update pointers within the skb to store the data */
2089 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2090 	__skb_put(skb, xdp->data_end - xdp->data);
2091 	if (metasize)
2092 		skb_metadata_set(skb, metasize);
2093 
2094 	/* buffer is used by skb, update page_offset */
2095 #if (PAGE_SIZE < 8192)
2096 	rx_buffer->page_offset ^= truesize;
2097 #else
2098 	rx_buffer->page_offset += truesize;
2099 #endif
2100 
2101 	return skb;
2102 }
2103 
2104 /**
2105  * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2106  * @rx_ring: rx descriptor ring to transact packets on
2107  * @rx_buffer: rx buffer to pull data from
2108  * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2109  *
2110  * This function will clean up the contents of the rx_buffer.  It will
2111  * either recycle the buffer or unmap it and free the associated resources.
2112  */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2113 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2114 			       struct i40e_rx_buffer *rx_buffer,
2115 			       int rx_buffer_pgcnt)
2116 {
2117 	if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2118 		/* hand second half of page back to the ring */
2119 		i40e_reuse_rx_page(rx_ring, rx_buffer);
2120 	} else {
2121 		/* we are not reusing the buffer so unmap it */
2122 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123 				     i40e_rx_pg_size(rx_ring),
2124 				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125 		__page_frag_cache_drain(rx_buffer->page,
2126 					rx_buffer->pagecnt_bias);
2127 		/* clear contents of buffer_info */
2128 		rx_buffer->page = NULL;
2129 	}
2130 }
2131 
2132 /**
2133  * i40e_is_non_eop - process handling of non-EOP buffers
2134  * @rx_ring: Rx ring being processed
2135  * @rx_desc: Rx descriptor for current buffer
2136  * @skb: Current socket buffer containing buffer in progress
2137  *
2138  * This function updates next to clean.  If the buffer is an EOP buffer
2139  * this function exits returning false, otherwise it will place the
2140  * sk_buff in the next buffer to be chained and return true indicating
2141  * that this is in fact a non-EOP buffer.
2142  **/
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)2143 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144 			    union i40e_rx_desc *rx_desc,
2145 			    struct sk_buff *skb)
2146 {
2147 	u32 ntc = rx_ring->next_to_clean + 1;
2148 
2149 	/* fetch, update, and store next to clean */
2150 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2151 	rx_ring->next_to_clean = ntc;
2152 
2153 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2154 
2155 	/* if we are the last buffer then there is nothing else to do */
2156 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157 	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158 		return false;
2159 
2160 	rx_ring->rx_stats.non_eop_descs++;
2161 
2162 	return true;
2163 }
2164 
2165 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166 			      struct i40e_ring *xdp_ring);
2167 
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2168 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169 {
2170 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171 
2172 	if (unlikely(!xdpf))
2173 		return I40E_XDP_CONSUMED;
2174 
2175 	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176 }
2177 
2178 /**
2179  * i40e_run_xdp - run an XDP program
2180  * @rx_ring: Rx ring being processed
2181  * @xdp: XDP buffer containing the frame
2182  **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2183 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2184 {
2185 	int err, result = I40E_XDP_PASS;
2186 	struct i40e_ring *xdp_ring;
2187 	struct bpf_prog *xdp_prog;
2188 	u32 act;
2189 
2190 	rcu_read_lock();
2191 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2192 
2193 	if (!xdp_prog)
2194 		goto xdp_out;
2195 
2196 	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2197 
2198 	act = bpf_prog_run_xdp(xdp_prog, xdp);
2199 	switch (act) {
2200 	case XDP_PASS:
2201 		break;
2202 	case XDP_TX:
2203 		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2204 		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2205 		if (result == I40E_XDP_CONSUMED)
2206 			goto out_failure;
2207 		break;
2208 	case XDP_REDIRECT:
2209 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2210 		if (err)
2211 			goto out_failure;
2212 		result = I40E_XDP_REDIR;
2213 		break;
2214 	default:
2215 		bpf_warn_invalid_xdp_action(act);
2216 		fallthrough;
2217 	case XDP_ABORTED:
2218 out_failure:
2219 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2220 		fallthrough; /* handle aborts by dropping packet */
2221 	case XDP_DROP:
2222 		result = I40E_XDP_CONSUMED;
2223 		break;
2224 	}
2225 xdp_out:
2226 	rcu_read_unlock();
2227 	return result;
2228 }
2229 
2230 /**
2231  * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2232  * @rx_ring: Rx ring
2233  * @rx_buffer: Rx buffer to adjust
2234  * @size: Size of adjustment
2235  **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2236 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2237 				struct i40e_rx_buffer *rx_buffer,
2238 				unsigned int size)
2239 {
2240 	unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2241 
2242 #if (PAGE_SIZE < 8192)
2243 	rx_buffer->page_offset ^= truesize;
2244 #else
2245 	rx_buffer->page_offset += truesize;
2246 #endif
2247 }
2248 
2249 /**
2250  * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2251  * @xdp_ring: XDP Tx ring
2252  *
2253  * This function updates the XDP Tx ring tail register.
2254  **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2255 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2256 {
2257 	/* Force memory writes to complete before letting h/w
2258 	 * know there are new descriptors to fetch.
2259 	 */
2260 	wmb();
2261 	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2262 }
2263 
2264 /**
2265  * i40e_update_rx_stats - Update Rx ring statistics
2266  * @rx_ring: rx descriptor ring
2267  * @total_rx_bytes: number of bytes received
2268  * @total_rx_packets: number of packets received
2269  *
2270  * This function updates the Rx ring statistics.
2271  **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2272 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2273 			  unsigned int total_rx_bytes,
2274 			  unsigned int total_rx_packets)
2275 {
2276 	u64_stats_update_begin(&rx_ring->syncp);
2277 	rx_ring->stats.packets += total_rx_packets;
2278 	rx_ring->stats.bytes += total_rx_bytes;
2279 	u64_stats_update_end(&rx_ring->syncp);
2280 	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2281 	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2282 }
2283 
2284 /**
2285  * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2286  * @rx_ring: Rx ring
2287  * @xdp_res: Result of the receive batch
2288  *
2289  * This function bumps XDP Tx tail and/or flush redirect map, and
2290  * should be called when a batch of packets has been processed in the
2291  * napi loop.
2292  **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2293 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2294 {
2295 	if (xdp_res & I40E_XDP_REDIR)
2296 		xdp_do_flush_map();
2297 
2298 	if (xdp_res & I40E_XDP_TX) {
2299 		struct i40e_ring *xdp_ring =
2300 			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2301 
2302 		i40e_xdp_ring_update_tail(xdp_ring);
2303 	}
2304 }
2305 
2306 /**
2307  * i40e_inc_ntc: Advance the next_to_clean index
2308  * @rx_ring: Rx ring
2309  **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2310 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2311 {
2312 	u32 ntc = rx_ring->next_to_clean + 1;
2313 
2314 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2315 	rx_ring->next_to_clean = ntc;
2316 	prefetch(I40E_RX_DESC(rx_ring, ntc));
2317 }
2318 
2319 /**
2320  * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2321  * @rx_ring: rx descriptor ring to transact packets on
2322  * @budget: Total limit on number of packets to process
2323  *
2324  * This function provides a "bounce buffer" approach to Rx interrupt
2325  * processing.  The advantage to this is that on systems that have
2326  * expensive overhead for IOMMU access this provides a means of avoiding
2327  * it by maintaining the mapping of the page to the system.
2328  *
2329  * Returns amount of work completed
2330  **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2331 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2332 {
2333 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2334 	struct sk_buff *skb = rx_ring->skb;
2335 	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2336 	unsigned int xdp_xmit = 0;
2337 	bool failure = false;
2338 	struct xdp_buff xdp;
2339 	int xdp_res = 0;
2340 
2341 #if (PAGE_SIZE < 8192)
2342 	xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2343 #endif
2344 	xdp.rxq = &rx_ring->xdp_rxq;
2345 
2346 	while (likely(total_rx_packets < (unsigned int)budget)) {
2347 		struct i40e_rx_buffer *rx_buffer;
2348 		union i40e_rx_desc *rx_desc;
2349 		int rx_buffer_pgcnt;
2350 		unsigned int size;
2351 		u64 qword;
2352 
2353 		/* return some buffers to hardware, one at a time is too slow */
2354 		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2355 			failure = failure ||
2356 				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2357 			cleaned_count = 0;
2358 		}
2359 
2360 		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2361 
2362 		/* status_error_len will always be zero for unused descriptors
2363 		 * because it's cleared in cleanup, and overlaps with hdr_addr
2364 		 * which is always zero because packet split isn't used, if the
2365 		 * hardware wrote DD then the length will be non-zero
2366 		 */
2367 		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2368 
2369 		/* This memory barrier is needed to keep us from reading
2370 		 * any other fields out of the rx_desc until we have
2371 		 * verified the descriptor has been written back.
2372 		 */
2373 		dma_rmb();
2374 
2375 		if (i40e_rx_is_programming_status(qword)) {
2376 			i40e_clean_programming_status(rx_ring,
2377 						      rx_desc->raw.qword[0],
2378 						      qword);
2379 			rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2380 			i40e_inc_ntc(rx_ring);
2381 			i40e_reuse_rx_page(rx_ring, rx_buffer);
2382 			cleaned_count++;
2383 			continue;
2384 		}
2385 
2386 		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2387 		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2388 		if (!size)
2389 			break;
2390 
2391 		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2392 		rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2393 
2394 		/* retrieve a buffer from the ring */
2395 		if (!skb) {
2396 			xdp.data = page_address(rx_buffer->page) +
2397 				   rx_buffer->page_offset;
2398 			xdp.data_meta = xdp.data;
2399 			xdp.data_hard_start = xdp.data -
2400 					      i40e_rx_offset(rx_ring);
2401 			xdp.data_end = xdp.data + size;
2402 #if (PAGE_SIZE > 4096)
2403 			/* At larger PAGE_SIZE, frame_sz depend on len size */
2404 			xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2405 #endif
2406 			xdp_res = i40e_run_xdp(rx_ring, &xdp);
2407 		}
2408 
2409 		if (xdp_res) {
2410 			if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2411 				xdp_xmit |= xdp_res;
2412 				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2413 			} else {
2414 				rx_buffer->pagecnt_bias++;
2415 			}
2416 			total_rx_bytes += size;
2417 			total_rx_packets++;
2418 		} else if (skb) {
2419 			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2420 		} else if (ring_uses_build_skb(rx_ring)) {
2421 			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2422 		} else {
2423 			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2424 		}
2425 
2426 		/* exit if we failed to retrieve a buffer */
2427 		if (!xdp_res && !skb) {
2428 			rx_ring->rx_stats.alloc_buff_failed++;
2429 			rx_buffer->pagecnt_bias++;
2430 			break;
2431 		}
2432 
2433 		i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2434 		cleaned_count++;
2435 
2436 		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2437 			continue;
2438 
2439 		if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2440 			skb = NULL;
2441 			continue;
2442 		}
2443 
2444 		/* probably a little skewed due to removing CRC */
2445 		total_rx_bytes += skb->len;
2446 
2447 		/* populate checksum, VLAN, and protocol */
2448 		i40e_process_skb_fields(rx_ring, rx_desc, skb);
2449 
2450 		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2451 		napi_gro_receive(&rx_ring->q_vector->napi, skb);
2452 		skb = NULL;
2453 
2454 		/* update budget accounting */
2455 		total_rx_packets++;
2456 	}
2457 
2458 	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2459 	rx_ring->skb = skb;
2460 
2461 	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2462 
2463 	/* guarantee a trip back through this routine if there was a failure */
2464 	return failure ? budget : (int)total_rx_packets;
2465 }
2466 
i40e_buildreg_itr(const int type,u16 itr)2467 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2468 {
2469 	u32 val;
2470 
2471 	/* We don't bother with setting the CLEARPBA bit as the data sheet
2472 	 * points out doing so is "meaningless since it was already
2473 	 * auto-cleared". The auto-clearing happens when the interrupt is
2474 	 * asserted.
2475 	 *
2476 	 * Hardware errata 28 for also indicates that writing to a
2477 	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2478 	 * an event in the PBA anyway so we need to rely on the automask
2479 	 * to hold pending events for us until the interrupt is re-enabled
2480 	 *
2481 	 * The itr value is reported in microseconds, and the register
2482 	 * value is recorded in 2 microsecond units. For this reason we
2483 	 * only need to shift by the interval shift - 1 instead of the
2484 	 * full value.
2485 	 */
2486 	itr &= I40E_ITR_MASK;
2487 
2488 	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2489 	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2490 	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2491 
2492 	return val;
2493 }
2494 
2495 /* a small macro to shorten up some long lines */
2496 #define INTREG I40E_PFINT_DYN_CTLN
2497 
2498 /* The act of updating the ITR will cause it to immediately trigger. In order
2499  * to prevent this from throwing off adaptive update statistics we defer the
2500  * update so that it can only happen so often. So after either Tx or Rx are
2501  * updated we make the adaptive scheme wait until either the ITR completely
2502  * expires via the next_update expiration or we have been through at least
2503  * 3 interrupts.
2504  */
2505 #define ITR_COUNTDOWN_START 3
2506 
2507 /**
2508  * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2509  * @vsi: the VSI we care about
2510  * @q_vector: q_vector for which itr is being updated and interrupt enabled
2511  *
2512  **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2513 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2514 					  struct i40e_q_vector *q_vector)
2515 {
2516 	struct i40e_hw *hw = &vsi->back->hw;
2517 	u32 intval;
2518 
2519 	/* If we don't have MSIX, then we only need to re-enable icr0 */
2520 	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2521 		i40e_irq_dynamic_enable_icr0(vsi->back);
2522 		return;
2523 	}
2524 
2525 	/* These will do nothing if dynamic updates are not enabled */
2526 	i40e_update_itr(q_vector, &q_vector->tx);
2527 	i40e_update_itr(q_vector, &q_vector->rx);
2528 
2529 	/* This block of logic allows us to get away with only updating
2530 	 * one ITR value with each interrupt. The idea is to perform a
2531 	 * pseudo-lazy update with the following criteria.
2532 	 *
2533 	 * 1. Rx is given higher priority than Tx if both are in same state
2534 	 * 2. If we must reduce an ITR that is given highest priority.
2535 	 * 3. We then give priority to increasing ITR based on amount.
2536 	 */
2537 	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2538 		/* Rx ITR needs to be reduced, this is highest priority */
2539 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2540 					   q_vector->rx.target_itr);
2541 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2542 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2543 	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2544 		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2545 		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2546 		/* Tx ITR needs to be reduced, this is second priority
2547 		 * Tx ITR needs to be increased more than Rx, fourth priority
2548 		 */
2549 		intval = i40e_buildreg_itr(I40E_TX_ITR,
2550 					   q_vector->tx.target_itr);
2551 		q_vector->tx.current_itr = q_vector->tx.target_itr;
2552 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2553 	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2554 		/* Rx ITR needs to be increased, third priority */
2555 		intval = i40e_buildreg_itr(I40E_RX_ITR,
2556 					   q_vector->rx.target_itr);
2557 		q_vector->rx.current_itr = q_vector->rx.target_itr;
2558 		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2559 	} else {
2560 		/* No ITR update, lowest priority */
2561 		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2562 		if (q_vector->itr_countdown)
2563 			q_vector->itr_countdown--;
2564 	}
2565 
2566 	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2567 		wr32(hw, INTREG(q_vector->reg_idx), intval);
2568 }
2569 
2570 /**
2571  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2572  * @napi: napi struct with our devices info in it
2573  * @budget: amount of work driver is allowed to do this pass, in packets
2574  *
2575  * This function will clean all queues associated with a q_vector.
2576  *
2577  * Returns the amount of work done
2578  **/
i40e_napi_poll(struct napi_struct * napi,int budget)2579 int i40e_napi_poll(struct napi_struct *napi, int budget)
2580 {
2581 	struct i40e_q_vector *q_vector =
2582 			       container_of(napi, struct i40e_q_vector, napi);
2583 	struct i40e_vsi *vsi = q_vector->vsi;
2584 	struct i40e_ring *ring;
2585 	bool clean_complete = true;
2586 	bool arm_wb = false;
2587 	int budget_per_ring;
2588 	int work_done = 0;
2589 
2590 	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2591 		napi_complete(napi);
2592 		return 0;
2593 	}
2594 
2595 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2596 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2597 	 */
2598 	i40e_for_each_ring(ring, q_vector->tx) {
2599 		bool wd = ring->xsk_pool ?
2600 			  i40e_clean_xdp_tx_irq(vsi, ring) :
2601 			  i40e_clean_tx_irq(vsi, ring, budget);
2602 
2603 		if (!wd) {
2604 			clean_complete = false;
2605 			continue;
2606 		}
2607 		arm_wb |= ring->arm_wb;
2608 		ring->arm_wb = false;
2609 	}
2610 
2611 	/* Handle case where we are called by netpoll with a budget of 0 */
2612 	if (budget <= 0)
2613 		goto tx_only;
2614 
2615 	/* normally we have 1 Rx ring per q_vector */
2616 	if (unlikely(q_vector->num_ringpairs > 1))
2617 		/* We attempt to distribute budget to each Rx queue fairly, but
2618 		 * don't allow the budget to go below 1 because that would exit
2619 		 * polling early.
2620 		 */
2621 		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2622 	else
2623 		/* Max of 1 Rx ring in this q_vector so give it the budget */
2624 		budget_per_ring = budget;
2625 
2626 	i40e_for_each_ring(ring, q_vector->rx) {
2627 		int cleaned = ring->xsk_pool ?
2628 			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2629 			      i40e_clean_rx_irq(ring, budget_per_ring);
2630 
2631 		work_done += cleaned;
2632 		/* if we clean as many as budgeted, we must not be done */
2633 		if (cleaned >= budget_per_ring)
2634 			clean_complete = false;
2635 	}
2636 
2637 	/* If work not completed, return budget and polling will return */
2638 	if (!clean_complete) {
2639 		int cpu_id = smp_processor_id();
2640 
2641 		/* It is possible that the interrupt affinity has changed but,
2642 		 * if the cpu is pegged at 100%, polling will never exit while
2643 		 * traffic continues and the interrupt will be stuck on this
2644 		 * cpu.  We check to make sure affinity is correct before we
2645 		 * continue to poll, otherwise we must stop polling so the
2646 		 * interrupt can move to the correct cpu.
2647 		 */
2648 		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2649 			/* Tell napi that we are done polling */
2650 			napi_complete_done(napi, work_done);
2651 
2652 			/* Force an interrupt */
2653 			i40e_force_wb(vsi, q_vector);
2654 
2655 			/* Return budget-1 so that polling stops */
2656 			return budget - 1;
2657 		}
2658 tx_only:
2659 		if (arm_wb) {
2660 			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2661 			i40e_enable_wb_on_itr(vsi, q_vector);
2662 		}
2663 		return budget;
2664 	}
2665 
2666 	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2667 		q_vector->arm_wb_state = false;
2668 
2669 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2670 	 * poll us due to busy-polling
2671 	 */
2672 	if (likely(napi_complete_done(napi, work_done)))
2673 		i40e_update_enable_itr(vsi, q_vector);
2674 
2675 	return min(work_done, budget - 1);
2676 }
2677 
2678 /**
2679  * i40e_atr - Add a Flow Director ATR filter
2680  * @tx_ring:  ring to add programming descriptor to
2681  * @skb:      send buffer
2682  * @tx_flags: send tx flags
2683  **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2684 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2685 		     u32 tx_flags)
2686 {
2687 	struct i40e_filter_program_desc *fdir_desc;
2688 	struct i40e_pf *pf = tx_ring->vsi->back;
2689 	union {
2690 		unsigned char *network;
2691 		struct iphdr *ipv4;
2692 		struct ipv6hdr *ipv6;
2693 	} hdr;
2694 	struct tcphdr *th;
2695 	unsigned int hlen;
2696 	u32 flex_ptype, dtype_cmd;
2697 	int l4_proto;
2698 	u16 i;
2699 
2700 	/* make sure ATR is enabled */
2701 	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2702 		return;
2703 
2704 	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2705 		return;
2706 
2707 	/* if sampling is disabled do nothing */
2708 	if (!tx_ring->atr_sample_rate)
2709 		return;
2710 
2711 	/* Currently only IPv4/IPv6 with TCP is supported */
2712 	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2713 		return;
2714 
2715 	/* snag network header to get L4 type and address */
2716 	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2717 		      skb_inner_network_header(skb) : skb_network_header(skb);
2718 
2719 	/* Note: tx_flags gets modified to reflect inner protocols in
2720 	 * tx_enable_csum function if encap is enabled.
2721 	 */
2722 	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2723 		/* access ihl as u8 to avoid unaligned access on ia64 */
2724 		hlen = (hdr.network[0] & 0x0F) << 2;
2725 		l4_proto = hdr.ipv4->protocol;
2726 	} else {
2727 		/* find the start of the innermost ipv6 header */
2728 		unsigned int inner_hlen = hdr.network - skb->data;
2729 		unsigned int h_offset = inner_hlen;
2730 
2731 		/* this function updates h_offset to the end of the header */
2732 		l4_proto =
2733 		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2734 		/* hlen will contain our best estimate of the tcp header */
2735 		hlen = h_offset - inner_hlen;
2736 	}
2737 
2738 	if (l4_proto != IPPROTO_TCP)
2739 		return;
2740 
2741 	th = (struct tcphdr *)(hdr.network + hlen);
2742 
2743 	/* Due to lack of space, no more new filters can be programmed */
2744 	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2745 		return;
2746 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2747 		/* HW ATR eviction will take care of removing filters on FIN
2748 		 * and RST packets.
2749 		 */
2750 		if (th->fin || th->rst)
2751 			return;
2752 	}
2753 
2754 	tx_ring->atr_count++;
2755 
2756 	/* sample on all syn/fin/rst packets or once every atr sample rate */
2757 	if (!th->fin &&
2758 	    !th->syn &&
2759 	    !th->rst &&
2760 	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2761 		return;
2762 
2763 	tx_ring->atr_count = 0;
2764 
2765 	/* grab the next descriptor */
2766 	i = tx_ring->next_to_use;
2767 	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2768 
2769 	i++;
2770 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2771 
2772 	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2773 		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2774 	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2775 		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2776 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2777 		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2778 		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2779 
2780 	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2781 
2782 	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2783 
2784 	dtype_cmd |= (th->fin || th->rst) ?
2785 		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2786 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2787 		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2788 		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2789 
2790 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2791 		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2792 
2793 	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2794 		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2795 
2796 	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2797 	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2798 		dtype_cmd |=
2799 			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2800 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2801 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2802 	else
2803 		dtype_cmd |=
2804 			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2805 			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2806 			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2807 
2808 	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2809 		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2810 
2811 	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2812 	fdir_desc->rsvd = cpu_to_le32(0);
2813 	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2814 	fdir_desc->fd_id = cpu_to_le32(0);
2815 }
2816 
2817 /**
2818  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2819  * @skb:     send buffer
2820  * @tx_ring: ring to send buffer on
2821  * @flags:   the tx flags to be set
2822  *
2823  * Checks the skb and set up correspondingly several generic transmit flags
2824  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2825  *
2826  * Returns error code indicate the frame should be dropped upon error and the
2827  * otherwise  returns 0 to indicate the flags has been set properly.
2828  **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2829 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2830 					     struct i40e_ring *tx_ring,
2831 					     u32 *flags)
2832 {
2833 	__be16 protocol = skb->protocol;
2834 	u32  tx_flags = 0;
2835 
2836 	if (protocol == htons(ETH_P_8021Q) &&
2837 	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2838 		/* When HW VLAN acceleration is turned off by the user the
2839 		 * stack sets the protocol to 8021q so that the driver
2840 		 * can take any steps required to support the SW only
2841 		 * VLAN handling.  In our case the driver doesn't need
2842 		 * to take any further steps so just set the protocol
2843 		 * to the encapsulated ethertype.
2844 		 */
2845 		skb->protocol = vlan_get_protocol(skb);
2846 		goto out;
2847 	}
2848 
2849 	/* if we have a HW VLAN tag being added, default to the HW one */
2850 	if (skb_vlan_tag_present(skb)) {
2851 		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2852 		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2853 	/* else if it is a SW VLAN, check the next protocol and store the tag */
2854 	} else if (protocol == htons(ETH_P_8021Q)) {
2855 		struct vlan_hdr *vhdr, _vhdr;
2856 
2857 		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2858 		if (!vhdr)
2859 			return -EINVAL;
2860 
2861 		protocol = vhdr->h_vlan_encapsulated_proto;
2862 		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2863 		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2864 	}
2865 
2866 	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2867 		goto out;
2868 
2869 	/* Insert 802.1p priority into VLAN header */
2870 	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2871 	    (skb->priority != TC_PRIO_CONTROL)) {
2872 		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2873 		tx_flags |= (skb->priority & 0x7) <<
2874 				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2875 		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2876 			struct vlan_ethhdr *vhdr;
2877 			int rc;
2878 
2879 			rc = skb_cow_head(skb, 0);
2880 			if (rc < 0)
2881 				return rc;
2882 			vhdr = skb_vlan_eth_hdr(skb);
2883 			vhdr->h_vlan_TCI = htons(tx_flags >>
2884 						 I40E_TX_FLAGS_VLAN_SHIFT);
2885 		} else {
2886 			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2887 		}
2888 	}
2889 
2890 out:
2891 	*flags = tx_flags;
2892 	return 0;
2893 }
2894 
2895 /**
2896  * i40e_tso - set up the tso context descriptor
2897  * @first:    pointer to first Tx buffer for xmit
2898  * @hdr_len:  ptr to the size of the packet header
2899  * @cd_type_cmd_tso_mss: Quad Word 1
2900  *
2901  * Returns 0 if no TSO can happen, 1 if tso is going, or error
2902  **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)2903 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2904 		    u64 *cd_type_cmd_tso_mss)
2905 {
2906 	struct sk_buff *skb = first->skb;
2907 	u64 cd_cmd, cd_tso_len, cd_mss;
2908 	union {
2909 		struct iphdr *v4;
2910 		struct ipv6hdr *v6;
2911 		unsigned char *hdr;
2912 	} ip;
2913 	union {
2914 		struct tcphdr *tcp;
2915 		struct udphdr *udp;
2916 		unsigned char *hdr;
2917 	} l4;
2918 	u32 paylen, l4_offset;
2919 	u16 gso_segs, gso_size;
2920 	int err;
2921 
2922 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2923 		return 0;
2924 
2925 	if (!skb_is_gso(skb))
2926 		return 0;
2927 
2928 	err = skb_cow_head(skb, 0);
2929 	if (err < 0)
2930 		return err;
2931 
2932 	ip.hdr = skb_network_header(skb);
2933 	l4.hdr = skb_transport_header(skb);
2934 
2935 	/* initialize outer IP header fields */
2936 	if (ip.v4->version == 4) {
2937 		ip.v4->tot_len = 0;
2938 		ip.v4->check = 0;
2939 	} else {
2940 		ip.v6->payload_len = 0;
2941 	}
2942 
2943 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2944 					 SKB_GSO_GRE_CSUM |
2945 					 SKB_GSO_IPXIP4 |
2946 					 SKB_GSO_IPXIP6 |
2947 					 SKB_GSO_UDP_TUNNEL |
2948 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2949 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2950 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2951 			l4.udp->len = 0;
2952 
2953 			/* determine offset of outer transport header */
2954 			l4_offset = l4.hdr - skb->data;
2955 
2956 			/* remove payload length from outer checksum */
2957 			paylen = skb->len - l4_offset;
2958 			csum_replace_by_diff(&l4.udp->check,
2959 					     (__force __wsum)htonl(paylen));
2960 		}
2961 
2962 		/* reset pointers to inner headers */
2963 		ip.hdr = skb_inner_network_header(skb);
2964 		l4.hdr = skb_inner_transport_header(skb);
2965 
2966 		/* initialize inner IP header fields */
2967 		if (ip.v4->version == 4) {
2968 			ip.v4->tot_len = 0;
2969 			ip.v4->check = 0;
2970 		} else {
2971 			ip.v6->payload_len = 0;
2972 		}
2973 	}
2974 
2975 	/* determine offset of inner transport header */
2976 	l4_offset = l4.hdr - skb->data;
2977 
2978 	/* remove payload length from inner checksum */
2979 	paylen = skb->len - l4_offset;
2980 
2981 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2982 		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2983 		/* compute length of segmentation header */
2984 		*hdr_len = sizeof(*l4.udp) + l4_offset;
2985 	} else {
2986 		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2987 		/* compute length of segmentation header */
2988 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2989 	}
2990 
2991 	/* pull values out of skb_shinfo */
2992 	gso_size = skb_shinfo(skb)->gso_size;
2993 	gso_segs = skb_shinfo(skb)->gso_segs;
2994 
2995 	/* update GSO size and bytecount with header size */
2996 	first->gso_segs = gso_segs;
2997 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2998 
2999 	/* find the field values */
3000 	cd_cmd = I40E_TX_CTX_DESC_TSO;
3001 	cd_tso_len = skb->len - *hdr_len;
3002 	cd_mss = gso_size;
3003 	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3004 				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3005 				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3006 	return 1;
3007 }
3008 
3009 /**
3010  * i40e_tsyn - set up the tsyn context descriptor
3011  * @tx_ring:  ptr to the ring to send
3012  * @skb:      ptr to the skb we're sending
3013  * @tx_flags: the collected send information
3014  * @cd_type_cmd_tso_mss: Quad Word 1
3015  *
3016  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3017  **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3018 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3019 		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3020 {
3021 	struct i40e_pf *pf;
3022 
3023 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3024 		return 0;
3025 
3026 	/* Tx timestamps cannot be sampled when doing TSO */
3027 	if (tx_flags & I40E_TX_FLAGS_TSO)
3028 		return 0;
3029 
3030 	/* only timestamp the outbound packet if the user has requested it and
3031 	 * we are not already transmitting a packet to be timestamped
3032 	 */
3033 	pf = i40e_netdev_to_pf(tx_ring->netdev);
3034 	if (!(pf->flags & I40E_FLAG_PTP))
3035 		return 0;
3036 
3037 	if (pf->ptp_tx &&
3038 	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3039 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3040 		pf->ptp_tx_start = jiffies;
3041 		pf->ptp_tx_skb = skb_get(skb);
3042 	} else {
3043 		pf->tx_hwtstamp_skipped++;
3044 		return 0;
3045 	}
3046 
3047 	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3048 				I40E_TXD_CTX_QW1_CMD_SHIFT;
3049 
3050 	return 1;
3051 }
3052 
3053 /**
3054  * i40e_tx_enable_csum - Enable Tx checksum offloads
3055  * @skb: send buffer
3056  * @tx_flags: pointer to Tx flags currently set
3057  * @td_cmd: Tx descriptor command bits to set
3058  * @td_offset: Tx descriptor header offsets to set
3059  * @tx_ring: Tx descriptor ring
3060  * @cd_tunneling: ptr to context desc bits
3061  **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3062 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3063 			       u32 *td_cmd, u32 *td_offset,
3064 			       struct i40e_ring *tx_ring,
3065 			       u32 *cd_tunneling)
3066 {
3067 	union {
3068 		struct iphdr *v4;
3069 		struct ipv6hdr *v6;
3070 		unsigned char *hdr;
3071 	} ip;
3072 	union {
3073 		struct tcphdr *tcp;
3074 		struct udphdr *udp;
3075 		unsigned char *hdr;
3076 	} l4;
3077 	unsigned char *exthdr;
3078 	u32 offset, cmd = 0;
3079 	__be16 frag_off;
3080 	u8 l4_proto = 0;
3081 
3082 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3083 		return 0;
3084 
3085 	ip.hdr = skb_network_header(skb);
3086 	l4.hdr = skb_transport_header(skb);
3087 
3088 	/* compute outer L2 header size */
3089 	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3090 
3091 	if (skb->encapsulation) {
3092 		u32 tunnel = 0;
3093 		/* define outer network header type */
3094 		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3095 			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3096 				  I40E_TX_CTX_EXT_IP_IPV4 :
3097 				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3098 
3099 			l4_proto = ip.v4->protocol;
3100 		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3101 			int ret;
3102 
3103 			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3104 
3105 			exthdr = ip.hdr + sizeof(*ip.v6);
3106 			l4_proto = ip.v6->nexthdr;
3107 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3108 					       &l4_proto, &frag_off);
3109 			if (ret < 0)
3110 				return -1;
3111 		}
3112 
3113 		/* define outer transport */
3114 		switch (l4_proto) {
3115 		case IPPROTO_UDP:
3116 			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3117 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3118 			break;
3119 		case IPPROTO_GRE:
3120 			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3121 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3122 			break;
3123 		case IPPROTO_IPIP:
3124 		case IPPROTO_IPV6:
3125 			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3126 			l4.hdr = skb_inner_network_header(skb);
3127 			break;
3128 		default:
3129 			if (*tx_flags & I40E_TX_FLAGS_TSO)
3130 				return -1;
3131 
3132 			skb_checksum_help(skb);
3133 			return 0;
3134 		}
3135 
3136 		/* compute outer L3 header size */
3137 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3138 			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3139 
3140 		/* switch IP header pointer from outer to inner header */
3141 		ip.hdr = skb_inner_network_header(skb);
3142 
3143 		/* compute tunnel header size */
3144 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3145 			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3146 
3147 		/* indicate if we need to offload outer UDP header */
3148 		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3149 		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3151 			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3152 
3153 		/* record tunnel offload values */
3154 		*cd_tunneling |= tunnel;
3155 
3156 		/* switch L4 header pointer from outer to inner */
3157 		l4.hdr = skb_inner_transport_header(skb);
3158 		l4_proto = 0;
3159 
3160 		/* reset type as we transition from outer to inner headers */
3161 		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3162 		if (ip.v4->version == 4)
3163 			*tx_flags |= I40E_TX_FLAGS_IPV4;
3164 		if (ip.v6->version == 6)
3165 			*tx_flags |= I40E_TX_FLAGS_IPV6;
3166 	}
3167 
3168 	/* Enable IP checksum offloads */
3169 	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3170 		l4_proto = ip.v4->protocol;
3171 		/* the stack computes the IP header already, the only time we
3172 		 * need the hardware to recompute it is in the case of TSO.
3173 		 */
3174 		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3175 		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3176 		       I40E_TX_DESC_CMD_IIPT_IPV4;
3177 	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3178 		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3179 
3180 		exthdr = ip.hdr + sizeof(*ip.v6);
3181 		l4_proto = ip.v6->nexthdr;
3182 		if (l4.hdr != exthdr)
3183 			ipv6_skip_exthdr(skb, exthdr - skb->data,
3184 					 &l4_proto, &frag_off);
3185 	}
3186 
3187 	/* compute inner L3 header size */
3188 	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3189 
3190 	/* Enable L4 checksum offloads */
3191 	switch (l4_proto) {
3192 	case IPPROTO_TCP:
3193 		/* enable checksum offloads */
3194 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3195 		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3196 		break;
3197 	case IPPROTO_SCTP:
3198 		/* enable SCTP checksum offload */
3199 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3200 		offset |= (sizeof(struct sctphdr) >> 2) <<
3201 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3202 		break;
3203 	case IPPROTO_UDP:
3204 		/* enable UDP checksum offload */
3205 		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3206 		offset |= (sizeof(struct udphdr) >> 2) <<
3207 			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3208 		break;
3209 	default:
3210 		if (*tx_flags & I40E_TX_FLAGS_TSO)
3211 			return -1;
3212 		skb_checksum_help(skb);
3213 		return 0;
3214 	}
3215 
3216 	*td_cmd |= cmd;
3217 	*td_offset |= offset;
3218 
3219 	return 1;
3220 }
3221 
3222 /**
3223  * i40e_create_tx_ctx Build the Tx context descriptor
3224  * @tx_ring:  ring to create the descriptor on
3225  * @cd_type_cmd_tso_mss: Quad Word 1
3226  * @cd_tunneling: Quad Word 0 - bits 0-31
3227  * @cd_l2tag2: Quad Word 0 - bits 32-63
3228  **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3229 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3230 			       const u64 cd_type_cmd_tso_mss,
3231 			       const u32 cd_tunneling, const u32 cd_l2tag2)
3232 {
3233 	struct i40e_tx_context_desc *context_desc;
3234 	int i = tx_ring->next_to_use;
3235 
3236 	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3237 	    !cd_tunneling && !cd_l2tag2)
3238 		return;
3239 
3240 	/* grab the next descriptor */
3241 	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3242 
3243 	i++;
3244 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3245 
3246 	/* cpu_to_le32 and assign to struct fields */
3247 	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3248 	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3249 	context_desc->rsvd = cpu_to_le16(0);
3250 	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3251 }
3252 
3253 /**
3254  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3255  * @tx_ring: the ring to be checked
3256  * @size:    the size buffer we want to assure is available
3257  *
3258  * Returns -EBUSY if a stop is needed, else 0
3259  **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3260 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3261 {
3262 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3263 	/* Memory barrier before checking head and tail */
3264 	smp_mb();
3265 
3266 	/* Check again in a case another CPU has just made room available. */
3267 	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3268 		return -EBUSY;
3269 
3270 	/* A reprieve! - use start_queue because it doesn't call schedule */
3271 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3272 	++tx_ring->tx_stats.restart_queue;
3273 	return 0;
3274 }
3275 
3276 /**
3277  * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3278  * @skb:      send buffer
3279  *
3280  * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3281  * and so we need to figure out the cases where we need to linearize the skb.
3282  *
3283  * For TSO we need to count the TSO header and segment payload separately.
3284  * As such we need to check cases where we have 7 fragments or more as we
3285  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3286  * the segment payload in the first descriptor, and another 7 for the
3287  * fragments.
3288  **/
__i40e_chk_linearize(struct sk_buff * skb)3289 bool __i40e_chk_linearize(struct sk_buff *skb)
3290 {
3291 	const skb_frag_t *frag, *stale;
3292 	int nr_frags, sum;
3293 
3294 	/* no need to check if number of frags is less than 7 */
3295 	nr_frags = skb_shinfo(skb)->nr_frags;
3296 	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3297 		return false;
3298 
3299 	/* We need to walk through the list and validate that each group
3300 	 * of 6 fragments totals at least gso_size.
3301 	 */
3302 	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3303 	frag = &skb_shinfo(skb)->frags[0];
3304 
3305 	/* Initialize size to the negative value of gso_size minus 1.  We
3306 	 * use this as the worst case scenerio in which the frag ahead
3307 	 * of us only provides one byte which is why we are limited to 6
3308 	 * descriptors for a single transmit as the header and previous
3309 	 * fragment are already consuming 2 descriptors.
3310 	 */
3311 	sum = 1 - skb_shinfo(skb)->gso_size;
3312 
3313 	/* Add size of frags 0 through 4 to create our initial sum */
3314 	sum += skb_frag_size(frag++);
3315 	sum += skb_frag_size(frag++);
3316 	sum += skb_frag_size(frag++);
3317 	sum += skb_frag_size(frag++);
3318 	sum += skb_frag_size(frag++);
3319 
3320 	/* Walk through fragments adding latest fragment, testing it, and
3321 	 * then removing stale fragments from the sum.
3322 	 */
3323 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3324 		int stale_size = skb_frag_size(stale);
3325 
3326 		sum += skb_frag_size(frag++);
3327 
3328 		/* The stale fragment may present us with a smaller
3329 		 * descriptor than the actual fragment size. To account
3330 		 * for that we need to remove all the data on the front and
3331 		 * figure out what the remainder would be in the last
3332 		 * descriptor associated with the fragment.
3333 		 */
3334 		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3335 			int align_pad = -(skb_frag_off(stale)) &
3336 					(I40E_MAX_READ_REQ_SIZE - 1);
3337 
3338 			sum -= align_pad;
3339 			stale_size -= align_pad;
3340 
3341 			do {
3342 				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3343 				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3344 			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3345 		}
3346 
3347 		/* if sum is negative we failed to make sufficient progress */
3348 		if (sum < 0)
3349 			return true;
3350 
3351 		if (!nr_frags--)
3352 			break;
3353 
3354 		sum -= stale_size;
3355 	}
3356 
3357 	return false;
3358 }
3359 
3360 /**
3361  * i40e_tx_map - Build the Tx descriptor
3362  * @tx_ring:  ring to send buffer on
3363  * @skb:      send buffer
3364  * @first:    first buffer info buffer to use
3365  * @tx_flags: collected send information
3366  * @hdr_len:  size of the packet header
3367  * @td_cmd:   the command field in the descriptor
3368  * @td_offset: offset for checksum or crc
3369  *
3370  * Returns 0 on success, -1 on failure to DMA
3371  **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3372 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3373 			      struct i40e_tx_buffer *first, u32 tx_flags,
3374 			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3375 {
3376 	unsigned int data_len = skb->data_len;
3377 	unsigned int size = skb_headlen(skb);
3378 	skb_frag_t *frag;
3379 	struct i40e_tx_buffer *tx_bi;
3380 	struct i40e_tx_desc *tx_desc;
3381 	u16 i = tx_ring->next_to_use;
3382 	u32 td_tag = 0;
3383 	dma_addr_t dma;
3384 	u16 desc_count = 1;
3385 
3386 	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3387 		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3388 		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3389 			 I40E_TX_FLAGS_VLAN_SHIFT;
3390 	}
3391 
3392 	first->tx_flags = tx_flags;
3393 
3394 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3395 
3396 	tx_desc = I40E_TX_DESC(tx_ring, i);
3397 	tx_bi = first;
3398 
3399 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3400 		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3401 
3402 		if (dma_mapping_error(tx_ring->dev, dma))
3403 			goto dma_error;
3404 
3405 		/* record length, and DMA address */
3406 		dma_unmap_len_set(tx_bi, len, size);
3407 		dma_unmap_addr_set(tx_bi, dma, dma);
3408 
3409 		/* align size to end of page */
3410 		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3411 		tx_desc->buffer_addr = cpu_to_le64(dma);
3412 
3413 		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3414 			tx_desc->cmd_type_offset_bsz =
3415 				build_ctob(td_cmd, td_offset,
3416 					   max_data, td_tag);
3417 
3418 			tx_desc++;
3419 			i++;
3420 			desc_count++;
3421 
3422 			if (i == tx_ring->count) {
3423 				tx_desc = I40E_TX_DESC(tx_ring, 0);
3424 				i = 0;
3425 			}
3426 
3427 			dma += max_data;
3428 			size -= max_data;
3429 
3430 			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3431 			tx_desc->buffer_addr = cpu_to_le64(dma);
3432 		}
3433 
3434 		if (likely(!data_len))
3435 			break;
3436 
3437 		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3438 							  size, td_tag);
3439 
3440 		tx_desc++;
3441 		i++;
3442 		desc_count++;
3443 
3444 		if (i == tx_ring->count) {
3445 			tx_desc = I40E_TX_DESC(tx_ring, 0);
3446 			i = 0;
3447 		}
3448 
3449 		size = skb_frag_size(frag);
3450 		data_len -= size;
3451 
3452 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3453 				       DMA_TO_DEVICE);
3454 
3455 		tx_bi = &tx_ring->tx_bi[i];
3456 	}
3457 
3458 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3459 
3460 	i++;
3461 	if (i == tx_ring->count)
3462 		i = 0;
3463 
3464 	tx_ring->next_to_use = i;
3465 
3466 	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3467 
3468 	/* write last descriptor with EOP bit */
3469 	td_cmd |= I40E_TX_DESC_CMD_EOP;
3470 
3471 	/* We OR these values together to check both against 4 (WB_STRIDE)
3472 	 * below. This is safe since we don't re-use desc_count afterwards.
3473 	 */
3474 	desc_count |= ++tx_ring->packet_stride;
3475 
3476 	if (desc_count >= WB_STRIDE) {
3477 		/* write last descriptor with RS bit set */
3478 		td_cmd |= I40E_TX_DESC_CMD_RS;
3479 		tx_ring->packet_stride = 0;
3480 	}
3481 
3482 	tx_desc->cmd_type_offset_bsz =
3483 			build_ctob(td_cmd, td_offset, size, td_tag);
3484 
3485 	skb_tx_timestamp(skb);
3486 
3487 	/* Force memory writes to complete before letting h/w know there
3488 	 * are new descriptors to fetch.
3489 	 *
3490 	 * We also use this memory barrier to make certain all of the
3491 	 * status bits have been updated before next_to_watch is written.
3492 	 */
3493 	wmb();
3494 
3495 	/* set next_to_watch value indicating a packet is present */
3496 	first->next_to_watch = tx_desc;
3497 
3498 	/* notify HW of packet */
3499 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3500 		writel(i, tx_ring->tail);
3501 	}
3502 
3503 	return 0;
3504 
3505 dma_error:
3506 	dev_info(tx_ring->dev, "TX DMA map failed\n");
3507 
3508 	/* clear dma mappings for failed tx_bi map */
3509 	for (;;) {
3510 		tx_bi = &tx_ring->tx_bi[i];
3511 		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3512 		if (tx_bi == first)
3513 			break;
3514 		if (i == 0)
3515 			i = tx_ring->count;
3516 		i--;
3517 	}
3518 
3519 	tx_ring->next_to_use = i;
3520 
3521 	return -1;
3522 }
3523 
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3524 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3525 				  const struct sk_buff *skb,
3526 				  u16 num_tx_queues)
3527 {
3528 	u32 jhash_initval_salt = 0xd631614b;
3529 	u32 hash;
3530 
3531 	if (skb->sk && skb->sk->sk_hash)
3532 		hash = skb->sk->sk_hash;
3533 	else
3534 		hash = (__force u16)skb->protocol ^ skb->hash;
3535 
3536 	hash = jhash_1word(hash, jhash_initval_salt);
3537 
3538 	return (u16)(((u64)hash * num_tx_queues) >> 32);
3539 }
3540 
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3541 u16 i40e_lan_select_queue(struct net_device *netdev,
3542 			  struct sk_buff *skb,
3543 			  struct net_device __always_unused *sb_dev)
3544 {
3545 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3546 	struct i40e_vsi *vsi = np->vsi;
3547 	struct i40e_hw *hw;
3548 	u16 qoffset;
3549 	u16 qcount;
3550 	u8 tclass;
3551 	u16 hash;
3552 	u8 prio;
3553 
3554 	/* is DCB enabled at all? */
3555 	if (vsi->tc_config.numtc == 1)
3556 		return netdev_pick_tx(netdev, skb, sb_dev);
3557 
3558 	prio = skb->priority;
3559 	hw = &vsi->back->hw;
3560 	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3561 	/* sanity check */
3562 	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3563 		tclass = 0;
3564 
3565 	/* select a queue assigned for the given TC */
3566 	qcount = vsi->tc_config.tc_info[tclass].qcount;
3567 	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3568 
3569 	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3570 	return qoffset + hash;
3571 }
3572 
3573 /**
3574  * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3575  * @xdpf: data to transmit
3576  * @xdp_ring: XDP Tx ring
3577  **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3578 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3579 			      struct i40e_ring *xdp_ring)
3580 {
3581 	u16 i = xdp_ring->next_to_use;
3582 	struct i40e_tx_buffer *tx_bi;
3583 	struct i40e_tx_desc *tx_desc;
3584 	void *data = xdpf->data;
3585 	u32 size = xdpf->len;
3586 	dma_addr_t dma;
3587 
3588 	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3589 		xdp_ring->tx_stats.tx_busy++;
3590 		return I40E_XDP_CONSUMED;
3591 	}
3592 	dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3593 	if (dma_mapping_error(xdp_ring->dev, dma))
3594 		return I40E_XDP_CONSUMED;
3595 
3596 	tx_bi = &xdp_ring->tx_bi[i];
3597 	tx_bi->bytecount = size;
3598 	tx_bi->gso_segs = 1;
3599 	tx_bi->xdpf = xdpf;
3600 
3601 	/* record length, and DMA address */
3602 	dma_unmap_len_set(tx_bi, len, size);
3603 	dma_unmap_addr_set(tx_bi, dma, dma);
3604 
3605 	tx_desc = I40E_TX_DESC(xdp_ring, i);
3606 	tx_desc->buffer_addr = cpu_to_le64(dma);
3607 	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3608 						  | I40E_TXD_CMD,
3609 						  0, size, 0);
3610 
3611 	/* Make certain all of the status bits have been updated
3612 	 * before next_to_watch is written.
3613 	 */
3614 	smp_wmb();
3615 
3616 	xdp_ring->xdp_tx_active++;
3617 	i++;
3618 	if (i == xdp_ring->count)
3619 		i = 0;
3620 
3621 	tx_bi->next_to_watch = tx_desc;
3622 	xdp_ring->next_to_use = i;
3623 
3624 	return I40E_XDP_TX;
3625 }
3626 
3627 /**
3628  * i40e_xmit_frame_ring - Sends buffer on Tx ring
3629  * @skb:     send buffer
3630  * @tx_ring: ring to send buffer on
3631  *
3632  * Returns NETDEV_TX_OK if sent, else an error code
3633  **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3634 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3635 					struct i40e_ring *tx_ring)
3636 {
3637 	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3638 	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3639 	struct i40e_tx_buffer *first;
3640 	u32 td_offset = 0;
3641 	u32 tx_flags = 0;
3642 	__be16 protocol;
3643 	u32 td_cmd = 0;
3644 	u8 hdr_len = 0;
3645 	int tso, count;
3646 	int tsyn;
3647 
3648 	/* prefetch the data, we'll need it later */
3649 	prefetch(skb->data);
3650 
3651 	i40e_trace(xmit_frame_ring, skb, tx_ring);
3652 
3653 	count = i40e_xmit_descriptor_count(skb);
3654 	if (i40e_chk_linearize(skb, count)) {
3655 		if (__skb_linearize(skb)) {
3656 			dev_kfree_skb_any(skb);
3657 			return NETDEV_TX_OK;
3658 		}
3659 		count = i40e_txd_use_count(skb->len);
3660 		tx_ring->tx_stats.tx_linearize++;
3661 	}
3662 
3663 	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3664 	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3665 	 *       + 4 desc gap to avoid the cache line where head is,
3666 	 *       + 1 desc for context descriptor,
3667 	 * otherwise try next time
3668 	 */
3669 	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3670 		tx_ring->tx_stats.tx_busy++;
3671 		return NETDEV_TX_BUSY;
3672 	}
3673 
3674 	/* record the location of the first descriptor for this packet */
3675 	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3676 	first->skb = skb;
3677 	first->bytecount = skb->len;
3678 	first->gso_segs = 1;
3679 
3680 	/* prepare the xmit flags */
3681 	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3682 		goto out_drop;
3683 
3684 	/* obtain protocol of skb */
3685 	protocol = vlan_get_protocol(skb);
3686 
3687 	/* setup IPv4/IPv6 offloads */
3688 	if (protocol == htons(ETH_P_IP))
3689 		tx_flags |= I40E_TX_FLAGS_IPV4;
3690 	else if (protocol == htons(ETH_P_IPV6))
3691 		tx_flags |= I40E_TX_FLAGS_IPV6;
3692 
3693 	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3694 
3695 	if (tso < 0)
3696 		goto out_drop;
3697 	else if (tso)
3698 		tx_flags |= I40E_TX_FLAGS_TSO;
3699 
3700 	/* Always offload the checksum, since it's in the data descriptor */
3701 	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3702 				  tx_ring, &cd_tunneling);
3703 	if (tso < 0)
3704 		goto out_drop;
3705 
3706 	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3707 
3708 	if (tsyn)
3709 		tx_flags |= I40E_TX_FLAGS_TSYN;
3710 
3711 	/* always enable CRC insertion offload */
3712 	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3713 
3714 	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3715 			   cd_tunneling, cd_l2tag2);
3716 
3717 	/* Add Flow Director ATR if it's enabled.
3718 	 *
3719 	 * NOTE: this must always be directly before the data descriptor.
3720 	 */
3721 	i40e_atr(tx_ring, skb, tx_flags);
3722 
3723 	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3724 			td_cmd, td_offset))
3725 		goto cleanup_tx_tstamp;
3726 
3727 	return NETDEV_TX_OK;
3728 
3729 out_drop:
3730 	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3731 	dev_kfree_skb_any(first->skb);
3732 	first->skb = NULL;
3733 cleanup_tx_tstamp:
3734 	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3735 		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3736 
3737 		dev_kfree_skb_any(pf->ptp_tx_skb);
3738 		pf->ptp_tx_skb = NULL;
3739 		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3740 	}
3741 
3742 	return NETDEV_TX_OK;
3743 }
3744 
3745 /**
3746  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3747  * @skb:    send buffer
3748  * @netdev: network interface device structure
3749  *
3750  * Returns NETDEV_TX_OK if sent, else an error code
3751  **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3752 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3753 {
3754 	struct i40e_netdev_priv *np = netdev_priv(netdev);
3755 	struct i40e_vsi *vsi = np->vsi;
3756 	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3757 
3758 	/* hardware can't handle really short frames, hardware padding works
3759 	 * beyond this point
3760 	 */
3761 	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3762 		return NETDEV_TX_OK;
3763 
3764 	return i40e_xmit_frame_ring(skb, tx_ring);
3765 }
3766 
3767 /**
3768  * i40e_xdp_xmit - Implements ndo_xdp_xmit
3769  * @dev: netdev
3770  * @n: number of frames
3771  * @frames: array of XDP buffer pointers
3772  * @flags: XDP extra info
3773  *
3774  * Returns number of frames successfully sent. Frames that fail are
3775  * free'ed via XDP return API.
3776  *
3777  * For error cases, a negative errno code is returned and no-frames
3778  * are transmitted (caller must handle freeing frames).
3779  **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3780 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3781 		  u32 flags)
3782 {
3783 	struct i40e_netdev_priv *np = netdev_priv(dev);
3784 	unsigned int queue_index = smp_processor_id();
3785 	struct i40e_vsi *vsi = np->vsi;
3786 	struct i40e_pf *pf = vsi->back;
3787 	struct i40e_ring *xdp_ring;
3788 	int drops = 0;
3789 	int i;
3790 
3791 	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3792 		return -ENETDOWN;
3793 
3794 	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3795 	    test_bit(__I40E_CONFIG_BUSY, pf->state))
3796 		return -ENXIO;
3797 
3798 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3799 		return -EINVAL;
3800 
3801 	xdp_ring = vsi->xdp_rings[queue_index];
3802 
3803 	for (i = 0; i < n; i++) {
3804 		struct xdp_frame *xdpf = frames[i];
3805 		int err;
3806 
3807 		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3808 		if (err != I40E_XDP_TX) {
3809 			xdp_return_frame_rx_napi(xdpf);
3810 			drops++;
3811 		}
3812 	}
3813 
3814 	if (unlikely(flags & XDP_XMIT_FLUSH))
3815 		i40e_xdp_ring_update_tail(xdp_ring);
3816 
3817 	return n - drops;
3818 }
3819