1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23 {
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91 {
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159 dma_fail:
160 return -1;
161 }
162
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
i40e_add_del_fdir_udpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176 {
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234 }
235
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
i40e_add_del_fdir_tcpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248 {
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312 }
313
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
i40e_add_del_fdir_sctpv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327 {
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386 }
387
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
i40e_add_del_fdir_ipv4(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add)398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401 {
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460 }
461
462 /**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471 {
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519 }
520
521 /**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 u64 qword1, u8 prog_id)
533 {
534 struct i40e_pf *pf = rx_ring->vsi->back;
535 struct pci_dev *pdev = pf->pdev;
536 struct i40e_16b_rx_wb_qw0 *qw0;
537 u32 fcnt_prog, fcnt_avail;
538 u32 error;
539
540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 if (qw0->hi_dword.fd_id != 0 ||
547 (I40E_DEBUG_FD & pf->hw.debug_mask))
548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 pf->fd_inv);
550
551 /* Check if the programming error is for ATR.
552 * If so, auto disable ATR and set a state for
553 * flush in progress. Next time we come here if flush is in
554 * progress do nothing, once flush is complete the state will
555 * be cleared.
556 */
557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 return;
559
560 pf->fd_add_err++;
561 /* store the current atr filter count */
562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564 if (qw0->hi_dword.fd_id == 0 &&
565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 /* These set_bit() calls aren't atomic with the
567 * test_bit() here, but worse case we potentially
568 * disable ATR and queue a flush right after SB
569 * support is re-enabled. That shouldn't cause an
570 * issue in practice
571 */
572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 }
575
576 /* filter programming failed most likely due to table full */
577 fcnt_prog = i40e_get_global_fd_count(pf);
578 fcnt_avail = pf->fdir_pf_filter_count;
579 /* If ATR is running fcnt_prog can quickly change,
580 * if we are very close to full, it makes sense to disable
581 * FD ATR/SB and then re-enable it when there is room.
582 */
583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 pf->state))
587 if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 }
590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 qw0->hi_dword.fd_id);
594 }
595 }
596
597 /**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring: the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 struct i40e_tx_buffer *tx_buffer)
604 {
605 if (tx_buffer->skb) {
606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 kfree(tx_buffer->raw_buf);
608 else if (ring_is_xdp(ring))
609 xdp_return_frame(tx_buffer->xdpf);
610 else
611 dev_kfree_skb_any(tx_buffer->skb);
612 if (dma_unmap_len(tx_buffer, len))
613 dma_unmap_single(ring->dev,
614 dma_unmap_addr(tx_buffer, dma),
615 dma_unmap_len(tx_buffer, len),
616 DMA_TO_DEVICE);
617 } else if (dma_unmap_len(tx_buffer, len)) {
618 dma_unmap_page(ring->dev,
619 dma_unmap_addr(tx_buffer, dma),
620 dma_unmap_len(tx_buffer, len),
621 DMA_TO_DEVICE);
622 }
623
624 tx_buffer->next_to_watch = NULL;
625 tx_buffer->skb = NULL;
626 dma_unmap_len_set(tx_buffer, len, 0);
627 /* tx_buffer must be completely set up in the transmit path */
628 }
629
630 /**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 unsigned long bi_size;
637 u16 i;
638
639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 i40e_xsk_clean_tx_ring(tx_ring);
641 } else {
642 /* ring already cleared, nothing to do */
643 if (!tx_ring->tx_bi)
644 return;
645
646 /* Free all the Tx ring sk_buffs */
647 for (i = 0; i < tx_ring->count; i++)
648 i40e_unmap_and_free_tx_resource(tx_ring,
649 &tx_ring->tx_bi[i]);
650 }
651
652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 memset(tx_ring->tx_bi, 0, bi_size);
654
655 /* Zero out the descriptor ring */
656 memset(tx_ring->desc, 0, tx_ring->size);
657
658 tx_ring->next_to_use = 0;
659 tx_ring->next_to_clean = 0;
660
661 if (!tx_ring->netdev)
662 return;
663
664 /* cleanup Tx queue statistics */
665 netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667
668 /**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 i40e_clean_tx_ring(tx_ring);
677 kfree(tx_ring->tx_bi);
678 tx_ring->tx_bi = NULL;
679
680 if (tx_ring->desc) {
681 dma_free_coherent(tx_ring->dev, tx_ring->size,
682 tx_ring->desc, tx_ring->dma);
683 tx_ring->desc = NULL;
684 }
685 }
686
687 /**
688 * i40e_get_tx_pending - how many tx descriptors not processed
689 * @ring: the ring of descriptors
690 * @in_sw: use SW variables
691 *
692 * Since there is no access to the ring head register
693 * in XL710, we need to use our local copies
694 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)695 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
696 {
697 u32 head, tail;
698
699 if (!in_sw) {
700 head = i40e_get_head(ring);
701 tail = readl(ring->tail);
702 } else {
703 head = ring->next_to_clean;
704 tail = ring->next_to_use;
705 }
706
707 if (head != tail)
708 return (head < tail) ?
709 tail - head : (tail + ring->count - head);
710
711 return 0;
712 }
713
714 /**
715 * i40e_detect_recover_hung - Function to detect and recover hung_queues
716 * @vsi: pointer to vsi struct with tx queues
717 *
718 * VSI has netdev and netdev has TX queues. This function is to check each of
719 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
720 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)721 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
722 {
723 struct i40e_ring *tx_ring = NULL;
724 struct net_device *netdev;
725 unsigned int i;
726 int packets;
727
728 if (!vsi)
729 return;
730
731 if (test_bit(__I40E_VSI_DOWN, vsi->state))
732 return;
733
734 netdev = vsi->netdev;
735 if (!netdev)
736 return;
737
738 if (!netif_carrier_ok(netdev))
739 return;
740
741 for (i = 0; i < vsi->num_queue_pairs; i++) {
742 tx_ring = vsi->tx_rings[i];
743 if (tx_ring && tx_ring->desc) {
744 /* If packet counter has not changed the queue is
745 * likely stalled, so force an interrupt for this
746 * queue.
747 *
748 * prev_pkt_ctr would be negative if there was no
749 * pending work.
750 */
751 packets = tx_ring->stats.packets & INT_MAX;
752 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
753 i40e_force_wb(vsi, tx_ring->q_vector);
754 continue;
755 }
756
757 /* Memory barrier between read of packet count and call
758 * to i40e_get_tx_pending()
759 */
760 smp_rmb();
761 tx_ring->tx_stats.prev_pkt_ctr =
762 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
763 }
764 }
765 }
766
767 /**
768 * i40e_clean_tx_irq - Reclaim resources after transmit completes
769 * @vsi: the VSI we care about
770 * @tx_ring: Tx ring to clean
771 * @napi_budget: Used to determine if we are in netpoll
772 *
773 * Returns true if there's any budget left (e.g. the clean is finished)
774 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)775 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
776 struct i40e_ring *tx_ring, int napi_budget)
777 {
778 int i = tx_ring->next_to_clean;
779 struct i40e_tx_buffer *tx_buf;
780 struct i40e_tx_desc *tx_head;
781 struct i40e_tx_desc *tx_desc;
782 unsigned int total_bytes = 0, total_packets = 0;
783 unsigned int budget = vsi->work_limit;
784
785 tx_buf = &tx_ring->tx_bi[i];
786 tx_desc = I40E_TX_DESC(tx_ring, i);
787 i -= tx_ring->count;
788
789 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
790
791 do {
792 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
793
794 /* if next_to_watch is not set then there is no work pending */
795 if (!eop_desc)
796 break;
797
798 /* prevent any other reads prior to eop_desc */
799 smp_rmb();
800
801 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
802 /* we have caught up to head, no work left to do */
803 if (tx_head == tx_desc)
804 break;
805
806 /* clear next_to_watch to prevent false hangs */
807 tx_buf->next_to_watch = NULL;
808
809 /* update the statistics for this packet */
810 total_bytes += tx_buf->bytecount;
811 total_packets += tx_buf->gso_segs;
812
813 /* free the skb/XDP data */
814 if (ring_is_xdp(tx_ring))
815 xdp_return_frame(tx_buf->xdpf);
816 else
817 napi_consume_skb(tx_buf->skb, napi_budget);
818
819 /* unmap skb header data */
820 dma_unmap_single(tx_ring->dev,
821 dma_unmap_addr(tx_buf, dma),
822 dma_unmap_len(tx_buf, len),
823 DMA_TO_DEVICE);
824
825 /* clear tx_buffer data */
826 tx_buf->skb = NULL;
827 dma_unmap_len_set(tx_buf, len, 0);
828
829 /* unmap remaining buffers */
830 while (tx_desc != eop_desc) {
831 i40e_trace(clean_tx_irq_unmap,
832 tx_ring, tx_desc, tx_buf);
833
834 tx_buf++;
835 tx_desc++;
836 i++;
837 if (unlikely(!i)) {
838 i -= tx_ring->count;
839 tx_buf = tx_ring->tx_bi;
840 tx_desc = I40E_TX_DESC(tx_ring, 0);
841 }
842
843 /* unmap any remaining paged data */
844 if (dma_unmap_len(tx_buf, len)) {
845 dma_unmap_page(tx_ring->dev,
846 dma_unmap_addr(tx_buf, dma),
847 dma_unmap_len(tx_buf, len),
848 DMA_TO_DEVICE);
849 dma_unmap_len_set(tx_buf, len, 0);
850 }
851 }
852
853 /* move us one more past the eop_desc for start of next pkt */
854 tx_buf++;
855 tx_desc++;
856 i++;
857 if (unlikely(!i)) {
858 i -= tx_ring->count;
859 tx_buf = tx_ring->tx_bi;
860 tx_desc = I40E_TX_DESC(tx_ring, 0);
861 }
862
863 prefetch(tx_desc);
864
865 /* update budget accounting */
866 budget--;
867 } while (likely(budget));
868
869 i += tx_ring->count;
870 tx_ring->next_to_clean = i;
871 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
872 i40e_arm_wb(tx_ring, vsi, budget);
873
874 if (ring_is_xdp(tx_ring))
875 return !!budget;
876
877 /* notify netdev of completed buffers */
878 netdev_tx_completed_queue(txring_txq(tx_ring),
879 total_packets, total_bytes);
880
881 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
882 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
883 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
884 /* Make sure that anybody stopping the queue after this
885 * sees the new next_to_clean.
886 */
887 smp_mb();
888 if (__netif_subqueue_stopped(tx_ring->netdev,
889 tx_ring->queue_index) &&
890 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
891 netif_wake_subqueue(tx_ring->netdev,
892 tx_ring->queue_index);
893 ++tx_ring->tx_stats.restart_queue;
894 }
895 }
896
897 return !!budget;
898 }
899
900 /**
901 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
902 * @vsi: the VSI we care about
903 * @q_vector: the vector on which to enable writeback
904 *
905 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)906 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
907 struct i40e_q_vector *q_vector)
908 {
909 u16 flags = q_vector->tx.ring[0].flags;
910 u32 val;
911
912 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
913 return;
914
915 if (q_vector->arm_wb_state)
916 return;
917
918 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
919 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
920 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
921
922 wr32(&vsi->back->hw,
923 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
924 val);
925 } else {
926 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
928
929 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
930 }
931 q_vector->arm_wb_state = true;
932 }
933
934 /**
935 * i40e_force_wb - Issue SW Interrupt so HW does a wb
936 * @vsi: the VSI we care about
937 * @q_vector: the vector on which to force writeback
938 *
939 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)940 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
941 {
942 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
943 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
944 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
945 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
946 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
947 /* allow 00 to be written to the index */
948
949 wr32(&vsi->back->hw,
950 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
951 } else {
952 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
953 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
954 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
955 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
956 /* allow 00 to be written to the index */
957
958 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
959 }
960 }
961
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)962 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
963 struct i40e_ring_container *rc)
964 {
965 return &q_vector->rx == rc;
966 }
967
i40e_itr_divisor(struct i40e_q_vector * q_vector)968 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
969 {
970 unsigned int divisor;
971
972 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
973 case I40E_LINK_SPEED_40GB:
974 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
975 break;
976 case I40E_LINK_SPEED_25GB:
977 case I40E_LINK_SPEED_20GB:
978 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
979 break;
980 default:
981 case I40E_LINK_SPEED_10GB:
982 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
983 break;
984 case I40E_LINK_SPEED_1GB:
985 case I40E_LINK_SPEED_100MB:
986 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
987 break;
988 }
989
990 return divisor;
991 }
992
993 /**
994 * i40e_update_itr - update the dynamic ITR value based on statistics
995 * @q_vector: structure containing interrupt and ring information
996 * @rc: structure containing ring performance data
997 *
998 * Stores a new ITR value based on packets and byte
999 * counts during the last interrupt. The advantage of per interrupt
1000 * computation is faster updates and more accurate ITR for the current
1001 * traffic pattern. Constants in this function were computed
1002 * based on theoretical maximum wire speed and thresholds were set based
1003 * on testing data as well as attempting to minimize response time
1004 * while increasing bulk throughput.
1005 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1006 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1007 struct i40e_ring_container *rc)
1008 {
1009 unsigned int avg_wire_size, packets, bytes, itr;
1010 unsigned long next_update = jiffies;
1011
1012 /* If we don't have any rings just leave ourselves set for maximum
1013 * possible latency so we take ourselves out of the equation.
1014 */
1015 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1016 return;
1017
1018 /* For Rx we want to push the delay up and default to low latency.
1019 * for Tx we want to pull the delay down and default to high latency.
1020 */
1021 itr = i40e_container_is_rx(q_vector, rc) ?
1022 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1023 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1024
1025 /* If we didn't update within up to 1 - 2 jiffies we can assume
1026 * that either packets are coming in so slow there hasn't been
1027 * any work, or that there is so much work that NAPI is dealing
1028 * with interrupt moderation and we don't need to do anything.
1029 */
1030 if (time_after(next_update, rc->next_update))
1031 goto clear_counts;
1032
1033 /* If itr_countdown is set it means we programmed an ITR within
1034 * the last 4 interrupt cycles. This has a side effect of us
1035 * potentially firing an early interrupt. In order to work around
1036 * this we need to throw out any data received for a few
1037 * interrupts following the update.
1038 */
1039 if (q_vector->itr_countdown) {
1040 itr = rc->target_itr;
1041 goto clear_counts;
1042 }
1043
1044 packets = rc->total_packets;
1045 bytes = rc->total_bytes;
1046
1047 if (i40e_container_is_rx(q_vector, rc)) {
1048 /* If Rx there are 1 to 4 packets and bytes are less than
1049 * 9000 assume insufficient data to use bulk rate limiting
1050 * approach unless Tx is already in bulk rate limiting. We
1051 * are likely latency driven.
1052 */
1053 if (packets && packets < 4 && bytes < 9000 &&
1054 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1055 itr = I40E_ITR_ADAPTIVE_LATENCY;
1056 goto adjust_by_size;
1057 }
1058 } else if (packets < 4) {
1059 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1060 * bulk mode and we are receiving 4 or fewer packets just
1061 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1062 * that the Rx can relax.
1063 */
1064 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1065 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1066 I40E_ITR_ADAPTIVE_MAX_USECS)
1067 goto clear_counts;
1068 } else if (packets > 32) {
1069 /* If we have processed over 32 packets in a single interrupt
1070 * for Tx assume we need to switch over to "bulk" mode.
1071 */
1072 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1073 }
1074
1075 /* We have no packets to actually measure against. This means
1076 * either one of the other queues on this vector is active or
1077 * we are a Tx queue doing TSO with too high of an interrupt rate.
1078 *
1079 * Between 4 and 56 we can assume that our current interrupt delay
1080 * is only slightly too low. As such we should increase it by a small
1081 * fixed amount.
1082 */
1083 if (packets < 56) {
1084 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1085 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1086 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1087 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1088 }
1089 goto clear_counts;
1090 }
1091
1092 if (packets <= 256) {
1093 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1094 itr &= I40E_ITR_MASK;
1095
1096 /* Between 56 and 112 is our "goldilocks" zone where we are
1097 * working out "just right". Just report that our current
1098 * ITR is good for us.
1099 */
1100 if (packets <= 112)
1101 goto clear_counts;
1102
1103 /* If packet count is 128 or greater we are likely looking
1104 * at a slight overrun of the delay we want. Try halving
1105 * our delay to see if that will cut the number of packets
1106 * in half per interrupt.
1107 */
1108 itr /= 2;
1109 itr &= I40E_ITR_MASK;
1110 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1111 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1112
1113 goto clear_counts;
1114 }
1115
1116 /* The paths below assume we are dealing with a bulk ITR since
1117 * number of packets is greater than 256. We are just going to have
1118 * to compute a value and try to bring the count under control,
1119 * though for smaller packet sizes there isn't much we can do as
1120 * NAPI polling will likely be kicking in sooner rather than later.
1121 */
1122 itr = I40E_ITR_ADAPTIVE_BULK;
1123
1124 adjust_by_size:
1125 /* If packet counts are 256 or greater we can assume we have a gross
1126 * overestimation of what the rate should be. Instead of trying to fine
1127 * tune it just use the formula below to try and dial in an exact value
1128 * give the current packet size of the frame.
1129 */
1130 avg_wire_size = bytes / packets;
1131
1132 /* The following is a crude approximation of:
1133 * wmem_default / (size + overhead) = desired_pkts_per_int
1134 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1135 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1136 *
1137 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1138 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1139 * formula down to
1140 *
1141 * (170 * (size + 24)) / (size + 640) = ITR
1142 *
1143 * We first do some math on the packet size and then finally bitshift
1144 * by 8 after rounding up. We also have to account for PCIe link speed
1145 * difference as ITR scales based on this.
1146 */
1147 if (avg_wire_size <= 60) {
1148 /* Start at 250k ints/sec */
1149 avg_wire_size = 4096;
1150 } else if (avg_wire_size <= 380) {
1151 /* 250K ints/sec to 60K ints/sec */
1152 avg_wire_size *= 40;
1153 avg_wire_size += 1696;
1154 } else if (avg_wire_size <= 1084) {
1155 /* 60K ints/sec to 36K ints/sec */
1156 avg_wire_size *= 15;
1157 avg_wire_size += 11452;
1158 } else if (avg_wire_size <= 1980) {
1159 /* 36K ints/sec to 30K ints/sec */
1160 avg_wire_size *= 5;
1161 avg_wire_size += 22420;
1162 } else {
1163 /* plateau at a limit of 30K ints/sec */
1164 avg_wire_size = 32256;
1165 }
1166
1167 /* If we are in low latency mode halve our delay which doubles the
1168 * rate to somewhere between 100K to 16K ints/sec
1169 */
1170 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1171 avg_wire_size /= 2;
1172
1173 /* Resultant value is 256 times larger than it needs to be. This
1174 * gives us room to adjust the value as needed to either increase
1175 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1176 *
1177 * Use addition as we have already recorded the new latency flag
1178 * for the ITR value.
1179 */
1180 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1181 I40E_ITR_ADAPTIVE_MIN_INC;
1182
1183 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1184 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1185 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1186 }
1187
1188 clear_counts:
1189 /* write back value */
1190 rc->target_itr = itr;
1191
1192 /* next update should occur within next jiffy */
1193 rc->next_update = next_update + 1;
1194
1195 rc->total_bytes = 0;
1196 rc->total_packets = 0;
1197 }
1198
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1199 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1200 {
1201 return &rx_ring->rx_bi[idx];
1202 }
1203
1204 /**
1205 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1206 * @rx_ring: rx descriptor ring to store buffers on
1207 * @old_buff: donor buffer to have page reused
1208 *
1209 * Synchronizes page for reuse by the adapter
1210 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1211 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1212 struct i40e_rx_buffer *old_buff)
1213 {
1214 struct i40e_rx_buffer *new_buff;
1215 u16 nta = rx_ring->next_to_alloc;
1216
1217 new_buff = i40e_rx_bi(rx_ring, nta);
1218
1219 /* update, and store next to alloc */
1220 nta++;
1221 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1222
1223 /* transfer page from old buffer to new buffer */
1224 new_buff->dma = old_buff->dma;
1225 new_buff->page = old_buff->page;
1226 new_buff->page_offset = old_buff->page_offset;
1227 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1228
1229 rx_ring->rx_stats.page_reuse_count++;
1230
1231 /* clear contents of buffer_info */
1232 old_buff->page = NULL;
1233 }
1234
1235 /**
1236 * i40e_clean_programming_status - clean the programming status descriptor
1237 * @rx_ring: the rx ring that has this descriptor
1238 * @qword0_raw: qword0
1239 * @qword1: qword1 representing status_error_len in CPU ordering
1240 *
1241 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1242 * status being successful or not and take actions accordingly. FCoE should
1243 * handle its context/filter programming/invalidation status and take actions.
1244 *
1245 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1246 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1247 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1248 u64 qword1)
1249 {
1250 u8 id;
1251
1252 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1253 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1254
1255 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1256 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1257 }
1258
1259 /**
1260 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1261 * @tx_ring: the tx ring to set up
1262 *
1263 * Return 0 on success, negative on error
1264 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1265 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1266 {
1267 struct device *dev = tx_ring->dev;
1268 int bi_size;
1269
1270 if (!dev)
1271 return -ENOMEM;
1272
1273 /* warn if we are about to overwrite the pointer */
1274 WARN_ON(tx_ring->tx_bi);
1275 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1276 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1277 if (!tx_ring->tx_bi)
1278 goto err;
1279
1280 u64_stats_init(&tx_ring->syncp);
1281
1282 /* round up to nearest 4K */
1283 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1284 /* add u32 for head writeback, align after this takes care of
1285 * guaranteeing this is at least one cache line in size
1286 */
1287 tx_ring->size += sizeof(u32);
1288 tx_ring->size = ALIGN(tx_ring->size, 4096);
1289 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1290 &tx_ring->dma, GFP_KERNEL);
1291 if (!tx_ring->desc) {
1292 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1293 tx_ring->size);
1294 goto err;
1295 }
1296
1297 tx_ring->next_to_use = 0;
1298 tx_ring->next_to_clean = 0;
1299 tx_ring->tx_stats.prev_pkt_ctr = -1;
1300 return 0;
1301
1302 err:
1303 kfree(tx_ring->tx_bi);
1304 tx_ring->tx_bi = NULL;
1305 return -ENOMEM;
1306 }
1307
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1308 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1309 {
1310 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1311 }
1312
1313 /**
1314 * i40e_clean_rx_ring - Free Rx buffers
1315 * @rx_ring: ring to be cleaned
1316 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1317 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1318 {
1319 u16 i;
1320
1321 /* ring already cleared, nothing to do */
1322 if (!rx_ring->rx_bi)
1323 return;
1324
1325 if (rx_ring->skb) {
1326 dev_kfree_skb(rx_ring->skb);
1327 rx_ring->skb = NULL;
1328 }
1329
1330 if (rx_ring->xsk_pool) {
1331 i40e_xsk_clean_rx_ring(rx_ring);
1332 goto skip_free;
1333 }
1334
1335 /* Free all the Rx ring sk_buffs */
1336 for (i = 0; i < rx_ring->count; i++) {
1337 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1338
1339 if (!rx_bi->page)
1340 continue;
1341
1342 /* Invalidate cache lines that may have been written to by
1343 * device so that we avoid corrupting memory.
1344 */
1345 dma_sync_single_range_for_cpu(rx_ring->dev,
1346 rx_bi->dma,
1347 rx_bi->page_offset,
1348 rx_ring->rx_buf_len,
1349 DMA_FROM_DEVICE);
1350
1351 /* free resources associated with mapping */
1352 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1353 i40e_rx_pg_size(rx_ring),
1354 DMA_FROM_DEVICE,
1355 I40E_RX_DMA_ATTR);
1356
1357 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1358
1359 rx_bi->page = NULL;
1360 rx_bi->page_offset = 0;
1361 }
1362
1363 skip_free:
1364 if (rx_ring->xsk_pool)
1365 i40e_clear_rx_bi_zc(rx_ring);
1366 else
1367 i40e_clear_rx_bi(rx_ring);
1368
1369 /* Zero out the descriptor ring */
1370 memset(rx_ring->desc, 0, rx_ring->size);
1371
1372 rx_ring->next_to_alloc = 0;
1373 rx_ring->next_to_clean = 0;
1374 rx_ring->next_to_use = 0;
1375 }
1376
1377 /**
1378 * i40e_free_rx_resources - Free Rx resources
1379 * @rx_ring: ring to clean the resources from
1380 *
1381 * Free all receive software resources
1382 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1383 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1384 {
1385 i40e_clean_rx_ring(rx_ring);
1386 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1387 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1388 rx_ring->xdp_prog = NULL;
1389 kfree(rx_ring->rx_bi);
1390 rx_ring->rx_bi = NULL;
1391
1392 if (rx_ring->desc) {
1393 dma_free_coherent(rx_ring->dev, rx_ring->size,
1394 rx_ring->desc, rx_ring->dma);
1395 rx_ring->desc = NULL;
1396 }
1397 }
1398
1399 /**
1400 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1401 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1402 *
1403 * Returns 0 on success, negative on failure
1404 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1405 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1406 {
1407 struct device *dev = rx_ring->dev;
1408 int err;
1409
1410 u64_stats_init(&rx_ring->syncp);
1411
1412 /* Round up to nearest 4K */
1413 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1414 rx_ring->size = ALIGN(rx_ring->size, 4096);
1415 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1416 &rx_ring->dma, GFP_KERNEL);
1417
1418 if (!rx_ring->desc) {
1419 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1420 rx_ring->size);
1421 return -ENOMEM;
1422 }
1423
1424 rx_ring->next_to_alloc = 0;
1425 rx_ring->next_to_clean = 0;
1426 rx_ring->next_to_use = 0;
1427
1428 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1429 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1430 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1431 rx_ring->queue_index);
1432 if (err < 0)
1433 return err;
1434 }
1435
1436 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1437
1438 rx_ring->rx_bi =
1439 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1440 if (!rx_ring->rx_bi)
1441 return -ENOMEM;
1442
1443 return 0;
1444 }
1445
1446 /**
1447 * i40e_release_rx_desc - Store the new tail and head values
1448 * @rx_ring: ring to bump
1449 * @val: new head index
1450 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1451 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1452 {
1453 rx_ring->next_to_use = val;
1454
1455 /* update next to alloc since we have filled the ring */
1456 rx_ring->next_to_alloc = val;
1457
1458 /* Force memory writes to complete before letting h/w
1459 * know there are new descriptors to fetch. (Only
1460 * applicable for weak-ordered memory model archs,
1461 * such as IA-64).
1462 */
1463 wmb();
1464 writel(val, rx_ring->tail);
1465 }
1466
1467 /**
1468 * i40e_rx_offset - Return expected offset into page to access data
1469 * @rx_ring: Ring we are requesting offset of
1470 *
1471 * Returns the offset value for ring into the data buffer.
1472 */
i40e_rx_offset(struct i40e_ring * rx_ring)1473 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1474 {
1475 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1476 }
1477
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1478 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1479 unsigned int size)
1480 {
1481 unsigned int truesize;
1482
1483 #if (PAGE_SIZE < 8192)
1484 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1485 #else
1486 truesize = i40e_rx_offset(rx_ring) ?
1487 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1488 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1489 SKB_DATA_ALIGN(size);
1490 #endif
1491 return truesize;
1492 }
1493
1494 /**
1495 * i40e_alloc_mapped_page - recycle or make a new page
1496 * @rx_ring: ring to use
1497 * @bi: rx_buffer struct to modify
1498 *
1499 * Returns true if the page was successfully allocated or
1500 * reused.
1501 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1502 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1503 struct i40e_rx_buffer *bi)
1504 {
1505 struct page *page = bi->page;
1506 dma_addr_t dma;
1507
1508 /* since we are recycling buffers we should seldom need to alloc */
1509 if (likely(page)) {
1510 rx_ring->rx_stats.page_reuse_count++;
1511 return true;
1512 }
1513
1514 /* alloc new page for storage */
1515 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1516 if (unlikely(!page)) {
1517 rx_ring->rx_stats.alloc_page_failed++;
1518 return false;
1519 }
1520
1521 /* map page for use */
1522 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1523 i40e_rx_pg_size(rx_ring),
1524 DMA_FROM_DEVICE,
1525 I40E_RX_DMA_ATTR);
1526
1527 /* if mapping failed free memory back to system since
1528 * there isn't much point in holding memory we can't use
1529 */
1530 if (dma_mapping_error(rx_ring->dev, dma)) {
1531 __free_pages(page, i40e_rx_pg_order(rx_ring));
1532 rx_ring->rx_stats.alloc_page_failed++;
1533 return false;
1534 }
1535
1536 bi->dma = dma;
1537 bi->page = page;
1538 bi->page_offset = i40e_rx_offset(rx_ring);
1539 page_ref_add(page, USHRT_MAX - 1);
1540 bi->pagecnt_bias = USHRT_MAX;
1541
1542 return true;
1543 }
1544
1545 /**
1546 * i40e_alloc_rx_buffers - Replace used receive buffers
1547 * @rx_ring: ring to place buffers on
1548 * @cleaned_count: number of buffers to replace
1549 *
1550 * Returns false if all allocations were successful, true if any fail
1551 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1552 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1553 {
1554 u16 ntu = rx_ring->next_to_use;
1555 union i40e_rx_desc *rx_desc;
1556 struct i40e_rx_buffer *bi;
1557
1558 /* do nothing if no valid netdev defined */
1559 if (!rx_ring->netdev || !cleaned_count)
1560 return false;
1561
1562 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1563 bi = i40e_rx_bi(rx_ring, ntu);
1564
1565 do {
1566 if (!i40e_alloc_mapped_page(rx_ring, bi))
1567 goto no_buffers;
1568
1569 /* sync the buffer for use by the device */
1570 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1571 bi->page_offset,
1572 rx_ring->rx_buf_len,
1573 DMA_FROM_DEVICE);
1574
1575 /* Refresh the desc even if buffer_addrs didn't change
1576 * because each write-back erases this info.
1577 */
1578 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1579
1580 rx_desc++;
1581 bi++;
1582 ntu++;
1583 if (unlikely(ntu == rx_ring->count)) {
1584 rx_desc = I40E_RX_DESC(rx_ring, 0);
1585 bi = i40e_rx_bi(rx_ring, 0);
1586 ntu = 0;
1587 }
1588
1589 /* clear the status bits for the next_to_use descriptor */
1590 rx_desc->wb.qword1.status_error_len = 0;
1591
1592 cleaned_count--;
1593 } while (cleaned_count);
1594
1595 if (rx_ring->next_to_use != ntu)
1596 i40e_release_rx_desc(rx_ring, ntu);
1597
1598 return false;
1599
1600 no_buffers:
1601 if (rx_ring->next_to_use != ntu)
1602 i40e_release_rx_desc(rx_ring, ntu);
1603
1604 /* make sure to come back via polling to try again after
1605 * allocation failure
1606 */
1607 return true;
1608 }
1609
1610 /**
1611 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1612 * @vsi: the VSI we care about
1613 * @skb: skb currently being received and modified
1614 * @rx_desc: the receive descriptor
1615 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1616 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1617 struct sk_buff *skb,
1618 union i40e_rx_desc *rx_desc)
1619 {
1620 struct i40e_rx_ptype_decoded decoded;
1621 u32 rx_error, rx_status;
1622 bool ipv4, ipv6;
1623 u8 ptype;
1624 u64 qword;
1625
1626 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1627 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1628 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1629 I40E_RXD_QW1_ERROR_SHIFT;
1630 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1631 I40E_RXD_QW1_STATUS_SHIFT;
1632 decoded = decode_rx_desc_ptype(ptype);
1633
1634 skb->ip_summed = CHECKSUM_NONE;
1635
1636 skb_checksum_none_assert(skb);
1637
1638 /* Rx csum enabled and ip headers found? */
1639 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1640 return;
1641
1642 /* did the hardware decode the packet and checksum? */
1643 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1644 return;
1645
1646 /* both known and outer_ip must be set for the below code to work */
1647 if (!(decoded.known && decoded.outer_ip))
1648 return;
1649
1650 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1651 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1652 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1653 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1654
1655 if (ipv4 &&
1656 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1657 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1658 goto checksum_fail;
1659
1660 /* likely incorrect csum if alternate IP extension headers found */
1661 if (ipv6 &&
1662 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1663 /* don't increment checksum err here, non-fatal err */
1664 return;
1665
1666 /* there was some L4 error, count error and punt packet to the stack */
1667 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1668 goto checksum_fail;
1669
1670 /* handle packets that were not able to be checksummed due
1671 * to arrival speed, in this case the stack can compute
1672 * the csum.
1673 */
1674 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1675 return;
1676
1677 /* If there is an outer header present that might contain a checksum
1678 * we need to bump the checksum level by 1 to reflect the fact that
1679 * we are indicating we validated the inner checksum.
1680 */
1681 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1682 skb->csum_level = 1;
1683
1684 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1685 switch (decoded.inner_prot) {
1686 case I40E_RX_PTYPE_INNER_PROT_TCP:
1687 case I40E_RX_PTYPE_INNER_PROT_UDP:
1688 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1689 skb->ip_summed = CHECKSUM_UNNECESSARY;
1690 fallthrough;
1691 default:
1692 break;
1693 }
1694
1695 return;
1696
1697 checksum_fail:
1698 vsi->back->hw_csum_rx_error++;
1699 }
1700
1701 /**
1702 * i40e_ptype_to_htype - get a hash type
1703 * @ptype: the ptype value from the descriptor
1704 *
1705 * Returns a hash type to be used by skb_set_hash
1706 **/
i40e_ptype_to_htype(u8 ptype)1707 static inline int i40e_ptype_to_htype(u8 ptype)
1708 {
1709 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1710
1711 if (!decoded.known)
1712 return PKT_HASH_TYPE_NONE;
1713
1714 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1715 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1716 return PKT_HASH_TYPE_L4;
1717 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1718 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1719 return PKT_HASH_TYPE_L3;
1720 else
1721 return PKT_HASH_TYPE_L2;
1722 }
1723
1724 /**
1725 * i40e_rx_hash - set the hash value in the skb
1726 * @ring: descriptor ring
1727 * @rx_desc: specific descriptor
1728 * @skb: skb currently being received and modified
1729 * @rx_ptype: Rx packet type
1730 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1731 static inline void i40e_rx_hash(struct i40e_ring *ring,
1732 union i40e_rx_desc *rx_desc,
1733 struct sk_buff *skb,
1734 u8 rx_ptype)
1735 {
1736 u32 hash;
1737 const __le64 rss_mask =
1738 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1739 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1740
1741 if (!(ring->netdev->features & NETIF_F_RXHASH))
1742 return;
1743
1744 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1745 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1746 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1747 }
1748 }
1749
1750 /**
1751 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1752 * @rx_ring: rx descriptor ring packet is being transacted on
1753 * @rx_desc: pointer to the EOP Rx descriptor
1754 * @skb: pointer to current skb being populated
1755 *
1756 * This function checks the ring, descriptor, and packet information in
1757 * order to populate the hash, checksum, VLAN, protocol, and
1758 * other fields within the skb.
1759 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1760 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1761 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1762 {
1763 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1764 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1765 I40E_RXD_QW1_STATUS_SHIFT;
1766 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1767 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1768 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1769 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1770 I40E_RXD_QW1_PTYPE_SHIFT;
1771
1772 if (unlikely(tsynvalid))
1773 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1774
1775 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1776
1777 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1778
1779 skb_record_rx_queue(skb, rx_ring->queue_index);
1780
1781 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1782 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1783
1784 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1785 le16_to_cpu(vlan_tag));
1786 }
1787
1788 /* modifies the skb - consumes the enet header */
1789 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1790 }
1791
1792 /**
1793 * i40e_cleanup_headers - Correct empty headers
1794 * @rx_ring: rx descriptor ring packet is being transacted on
1795 * @skb: pointer to current skb being fixed
1796 * @rx_desc: pointer to the EOP Rx descriptor
1797 *
1798 * Also address the case where we are pulling data in on pages only
1799 * and as such no data is present in the skb header.
1800 *
1801 * In addition if skb is not at least 60 bytes we need to pad it so that
1802 * it is large enough to qualify as a valid Ethernet frame.
1803 *
1804 * Returns true if an error was encountered and skb was freed.
1805 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1806 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1807 union i40e_rx_desc *rx_desc)
1808
1809 {
1810 /* ERR_MASK will only have valid bits if EOP set, and
1811 * what we are doing here is actually checking
1812 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1813 * the error field
1814 */
1815 if (unlikely(i40e_test_staterr(rx_desc,
1816 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1817 dev_kfree_skb_any(skb);
1818 return true;
1819 }
1820
1821 /* if eth_skb_pad returns an error the skb was freed */
1822 if (eth_skb_pad(skb))
1823 return true;
1824
1825 return false;
1826 }
1827
1828 /**
1829 * i40e_page_is_reusable - check if any reuse is possible
1830 * @page: page struct to check
1831 *
1832 * A page is not reusable if it was allocated under low memory
1833 * conditions, or it's not in the same NUMA node as this CPU.
1834 */
i40e_page_is_reusable(struct page * page)1835 static inline bool i40e_page_is_reusable(struct page *page)
1836 {
1837 return (page_to_nid(page) == numa_mem_id()) &&
1838 !page_is_pfmemalloc(page);
1839 }
1840
1841 /**
1842 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1843 * the adapter for another receive
1844 *
1845 * @rx_buffer: buffer containing the page
1846 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1847 *
1848 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1849 * an unused region in the page.
1850 *
1851 * For small pages, @truesize will be a constant value, half the size
1852 * of the memory at page. We'll attempt to alternate between high and
1853 * low halves of the page, with one half ready for use by the hardware
1854 * and the other half being consumed by the stack. We use the page
1855 * ref count to determine whether the stack has finished consuming the
1856 * portion of this page that was passed up with a previous packet. If
1857 * the page ref count is >1, we'll assume the "other" half page is
1858 * still busy, and this page cannot be reused.
1859 *
1860 * For larger pages, @truesize will be the actual space used by the
1861 * received packet (adjusted upward to an even multiple of the cache
1862 * line size). This will advance through the page by the amount
1863 * actually consumed by the received packets while there is still
1864 * space for a buffer. Each region of larger pages will be used at
1865 * most once, after which the page will not be reused.
1866 *
1867 * In either case, if the page is reusable its refcount is increased.
1868 **/
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)1869 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1870 int rx_buffer_pgcnt)
1871 {
1872 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1873 struct page *page = rx_buffer->page;
1874
1875 /* Is any reuse possible? */
1876 if (unlikely(!i40e_page_is_reusable(page)))
1877 return false;
1878
1879 #if (PAGE_SIZE < 8192)
1880 /* if we are only owner of page we can reuse it */
1881 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1882 return false;
1883 #else
1884 #define I40E_LAST_OFFSET \
1885 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1886 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1887 return false;
1888 #endif
1889
1890 /* If we have drained the page fragment pool we need to update
1891 * the pagecnt_bias and page count so that we fully restock the
1892 * number of references the driver holds.
1893 */
1894 if (unlikely(pagecnt_bias == 1)) {
1895 page_ref_add(page, USHRT_MAX - 1);
1896 rx_buffer->pagecnt_bias = USHRT_MAX;
1897 }
1898
1899 return true;
1900 }
1901
1902 /**
1903 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1904 * @rx_ring: rx descriptor ring to transact packets on
1905 * @rx_buffer: buffer containing page to add
1906 * @skb: sk_buff to place the data into
1907 * @size: packet length from rx_desc
1908 *
1909 * This function will add the data contained in rx_buffer->page to the skb.
1910 * It will just attach the page as a frag to the skb.
1911 *
1912 * The function will then update the page offset.
1913 **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1914 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1915 struct i40e_rx_buffer *rx_buffer,
1916 struct sk_buff *skb,
1917 unsigned int size)
1918 {
1919 #if (PAGE_SIZE < 8192)
1920 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1921 #else
1922 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1923 #endif
1924
1925 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1926 rx_buffer->page_offset, size, truesize);
1927
1928 /* page is being used so we must update the page offset */
1929 #if (PAGE_SIZE < 8192)
1930 rx_buffer->page_offset ^= truesize;
1931 #else
1932 rx_buffer->page_offset += truesize;
1933 #endif
1934 }
1935
1936 /**
1937 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1938 * @rx_ring: rx descriptor ring to transact packets on
1939 * @size: size of buffer to add to skb
1940 * @rx_buffer_pgcnt: buffer page refcount
1941 *
1942 * This function will pull an Rx buffer from the ring and synchronize it
1943 * for use by the CPU.
1944 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1945 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1946 const unsigned int size,
1947 int *rx_buffer_pgcnt)
1948 {
1949 struct i40e_rx_buffer *rx_buffer;
1950
1951 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1952 *rx_buffer_pgcnt =
1953 #if (PAGE_SIZE < 8192)
1954 page_count(rx_buffer->page);
1955 #else
1956 0;
1957 #endif
1958 prefetch_page_address(rx_buffer->page);
1959
1960 /* we are reusing so sync this buffer for CPU use */
1961 dma_sync_single_range_for_cpu(rx_ring->dev,
1962 rx_buffer->dma,
1963 rx_buffer->page_offset,
1964 size,
1965 DMA_FROM_DEVICE);
1966
1967 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1968 rx_buffer->pagecnt_bias--;
1969
1970 return rx_buffer;
1971 }
1972
1973 /**
1974 * i40e_construct_skb - Allocate skb and populate it
1975 * @rx_ring: rx descriptor ring to transact packets on
1976 * @rx_buffer: rx buffer to pull data from
1977 * @xdp: xdp_buff pointing to the data
1978 *
1979 * This function allocates an skb. It then populates it with the page
1980 * data from the current receive descriptor, taking care to set up the
1981 * skb correctly.
1982 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)1983 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1984 struct i40e_rx_buffer *rx_buffer,
1985 struct xdp_buff *xdp)
1986 {
1987 unsigned int size = xdp->data_end - xdp->data;
1988 #if (PAGE_SIZE < 8192)
1989 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1990 #else
1991 unsigned int truesize = SKB_DATA_ALIGN(size);
1992 #endif
1993 unsigned int headlen;
1994 struct sk_buff *skb;
1995
1996 /* prefetch first cache line of first page */
1997 net_prefetch(xdp->data);
1998
1999 /* Note, we get here by enabling legacy-rx via:
2000 *
2001 * ethtool --set-priv-flags <dev> legacy-rx on
2002 *
2003 * In this mode, we currently get 0 extra XDP headroom as
2004 * opposed to having legacy-rx off, where we process XDP
2005 * packets going to stack via i40e_build_skb(). The latter
2006 * provides us currently with 192 bytes of headroom.
2007 *
2008 * For i40e_construct_skb() mode it means that the
2009 * xdp->data_meta will always point to xdp->data, since
2010 * the helper cannot expand the head. Should this ever
2011 * change in future for legacy-rx mode on, then lets also
2012 * add xdp->data_meta handling here.
2013 */
2014
2015 /* allocate a skb to store the frags */
2016 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2017 I40E_RX_HDR_SIZE,
2018 GFP_ATOMIC | __GFP_NOWARN);
2019 if (unlikely(!skb))
2020 return NULL;
2021
2022 /* Determine available headroom for copy */
2023 headlen = size;
2024 if (headlen > I40E_RX_HDR_SIZE)
2025 headlen = eth_get_headlen(skb->dev, xdp->data,
2026 I40E_RX_HDR_SIZE);
2027
2028 /* align pull length to size of long to optimize memcpy performance */
2029 memcpy(__skb_put(skb, headlen), xdp->data,
2030 ALIGN(headlen, sizeof(long)));
2031
2032 /* update all of the pointers */
2033 size -= headlen;
2034 if (size) {
2035 skb_add_rx_frag(skb, 0, rx_buffer->page,
2036 rx_buffer->page_offset + headlen,
2037 size, truesize);
2038
2039 /* buffer is used by skb, update page_offset */
2040 #if (PAGE_SIZE < 8192)
2041 rx_buffer->page_offset ^= truesize;
2042 #else
2043 rx_buffer->page_offset += truesize;
2044 #endif
2045 } else {
2046 /* buffer is unused, reset bias back to rx_buffer */
2047 rx_buffer->pagecnt_bias++;
2048 }
2049
2050 return skb;
2051 }
2052
2053 /**
2054 * i40e_build_skb - Build skb around an existing buffer
2055 * @rx_ring: Rx descriptor ring to transact packets on
2056 * @rx_buffer: Rx buffer to pull data from
2057 * @xdp: xdp_buff pointing to the data
2058 *
2059 * This function builds an skb around an existing Rx buffer, taking care
2060 * to set up the skb correctly and avoid any memcpy overhead.
2061 */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2062 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2063 struct i40e_rx_buffer *rx_buffer,
2064 struct xdp_buff *xdp)
2065 {
2066 unsigned int metasize = xdp->data - xdp->data_meta;
2067 #if (PAGE_SIZE < 8192)
2068 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2069 #else
2070 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2071 SKB_DATA_ALIGN(xdp->data_end -
2072 xdp->data_hard_start);
2073 #endif
2074 struct sk_buff *skb;
2075
2076 /* Prefetch first cache line of first page. If xdp->data_meta
2077 * is unused, this points exactly as xdp->data, otherwise we
2078 * likely have a consumer accessing first few bytes of meta
2079 * data, and then actual data.
2080 */
2081 net_prefetch(xdp->data_meta);
2082
2083 /* build an skb around the page buffer */
2084 skb = build_skb(xdp->data_hard_start, truesize);
2085 if (unlikely(!skb))
2086 return NULL;
2087
2088 /* update pointers within the skb to store the data */
2089 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2090 __skb_put(skb, xdp->data_end - xdp->data);
2091 if (metasize)
2092 skb_metadata_set(skb, metasize);
2093
2094 /* buffer is used by skb, update page_offset */
2095 #if (PAGE_SIZE < 8192)
2096 rx_buffer->page_offset ^= truesize;
2097 #else
2098 rx_buffer->page_offset += truesize;
2099 #endif
2100
2101 return skb;
2102 }
2103
2104 /**
2105 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2106 * @rx_ring: rx descriptor ring to transact packets on
2107 * @rx_buffer: rx buffer to pull data from
2108 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2109 *
2110 * This function will clean up the contents of the rx_buffer. It will
2111 * either recycle the buffer or unmap it and free the associated resources.
2112 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2113 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2114 struct i40e_rx_buffer *rx_buffer,
2115 int rx_buffer_pgcnt)
2116 {
2117 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2118 /* hand second half of page back to the ring */
2119 i40e_reuse_rx_page(rx_ring, rx_buffer);
2120 } else {
2121 /* we are not reusing the buffer so unmap it */
2122 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2123 i40e_rx_pg_size(rx_ring),
2124 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2125 __page_frag_cache_drain(rx_buffer->page,
2126 rx_buffer->pagecnt_bias);
2127 /* clear contents of buffer_info */
2128 rx_buffer->page = NULL;
2129 }
2130 }
2131
2132 /**
2133 * i40e_is_non_eop - process handling of non-EOP buffers
2134 * @rx_ring: Rx ring being processed
2135 * @rx_desc: Rx descriptor for current buffer
2136 * @skb: Current socket buffer containing buffer in progress
2137 *
2138 * This function updates next to clean. If the buffer is an EOP buffer
2139 * this function exits returning false, otherwise it will place the
2140 * sk_buff in the next buffer to be chained and return true indicating
2141 * that this is in fact a non-EOP buffer.
2142 **/
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)2143 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2144 union i40e_rx_desc *rx_desc,
2145 struct sk_buff *skb)
2146 {
2147 u32 ntc = rx_ring->next_to_clean + 1;
2148
2149 /* fetch, update, and store next to clean */
2150 ntc = (ntc < rx_ring->count) ? ntc : 0;
2151 rx_ring->next_to_clean = ntc;
2152
2153 prefetch(I40E_RX_DESC(rx_ring, ntc));
2154
2155 /* if we are the last buffer then there is nothing else to do */
2156 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2157 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2158 return false;
2159
2160 rx_ring->rx_stats.non_eop_descs++;
2161
2162 return true;
2163 }
2164
2165 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2166 struct i40e_ring *xdp_ring);
2167
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2168 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2169 {
2170 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2171
2172 if (unlikely(!xdpf))
2173 return I40E_XDP_CONSUMED;
2174
2175 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2176 }
2177
2178 /**
2179 * i40e_run_xdp - run an XDP program
2180 * @rx_ring: Rx ring being processed
2181 * @xdp: XDP buffer containing the frame
2182 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp)2183 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2184 {
2185 int err, result = I40E_XDP_PASS;
2186 struct i40e_ring *xdp_ring;
2187 struct bpf_prog *xdp_prog;
2188 u32 act;
2189
2190 rcu_read_lock();
2191 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2192
2193 if (!xdp_prog)
2194 goto xdp_out;
2195
2196 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2197
2198 act = bpf_prog_run_xdp(xdp_prog, xdp);
2199 switch (act) {
2200 case XDP_PASS:
2201 break;
2202 case XDP_TX:
2203 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2204 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2205 if (result == I40E_XDP_CONSUMED)
2206 goto out_failure;
2207 break;
2208 case XDP_REDIRECT:
2209 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2210 if (err)
2211 goto out_failure;
2212 result = I40E_XDP_REDIR;
2213 break;
2214 default:
2215 bpf_warn_invalid_xdp_action(act);
2216 fallthrough;
2217 case XDP_ABORTED:
2218 out_failure:
2219 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2220 fallthrough; /* handle aborts by dropping packet */
2221 case XDP_DROP:
2222 result = I40E_XDP_CONSUMED;
2223 break;
2224 }
2225 xdp_out:
2226 rcu_read_unlock();
2227 return result;
2228 }
2229
2230 /**
2231 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2232 * @rx_ring: Rx ring
2233 * @rx_buffer: Rx buffer to adjust
2234 * @size: Size of adjustment
2235 **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2236 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2237 struct i40e_rx_buffer *rx_buffer,
2238 unsigned int size)
2239 {
2240 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2241
2242 #if (PAGE_SIZE < 8192)
2243 rx_buffer->page_offset ^= truesize;
2244 #else
2245 rx_buffer->page_offset += truesize;
2246 #endif
2247 }
2248
2249 /**
2250 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2251 * @xdp_ring: XDP Tx ring
2252 *
2253 * This function updates the XDP Tx ring tail register.
2254 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2255 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2256 {
2257 /* Force memory writes to complete before letting h/w
2258 * know there are new descriptors to fetch.
2259 */
2260 wmb();
2261 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2262 }
2263
2264 /**
2265 * i40e_update_rx_stats - Update Rx ring statistics
2266 * @rx_ring: rx descriptor ring
2267 * @total_rx_bytes: number of bytes received
2268 * @total_rx_packets: number of packets received
2269 *
2270 * This function updates the Rx ring statistics.
2271 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2272 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2273 unsigned int total_rx_bytes,
2274 unsigned int total_rx_packets)
2275 {
2276 u64_stats_update_begin(&rx_ring->syncp);
2277 rx_ring->stats.packets += total_rx_packets;
2278 rx_ring->stats.bytes += total_rx_bytes;
2279 u64_stats_update_end(&rx_ring->syncp);
2280 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2281 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2282 }
2283
2284 /**
2285 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2286 * @rx_ring: Rx ring
2287 * @xdp_res: Result of the receive batch
2288 *
2289 * This function bumps XDP Tx tail and/or flush redirect map, and
2290 * should be called when a batch of packets has been processed in the
2291 * napi loop.
2292 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2293 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2294 {
2295 if (xdp_res & I40E_XDP_REDIR)
2296 xdp_do_flush_map();
2297
2298 if (xdp_res & I40E_XDP_TX) {
2299 struct i40e_ring *xdp_ring =
2300 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2301
2302 i40e_xdp_ring_update_tail(xdp_ring);
2303 }
2304 }
2305
2306 /**
2307 * i40e_inc_ntc: Advance the next_to_clean index
2308 * @rx_ring: Rx ring
2309 **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2310 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2311 {
2312 u32 ntc = rx_ring->next_to_clean + 1;
2313
2314 ntc = (ntc < rx_ring->count) ? ntc : 0;
2315 rx_ring->next_to_clean = ntc;
2316 prefetch(I40E_RX_DESC(rx_ring, ntc));
2317 }
2318
2319 /**
2320 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2321 * @rx_ring: rx descriptor ring to transact packets on
2322 * @budget: Total limit on number of packets to process
2323 *
2324 * This function provides a "bounce buffer" approach to Rx interrupt
2325 * processing. The advantage to this is that on systems that have
2326 * expensive overhead for IOMMU access this provides a means of avoiding
2327 * it by maintaining the mapping of the page to the system.
2328 *
2329 * Returns amount of work completed
2330 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2331 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2332 {
2333 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2334 struct sk_buff *skb = rx_ring->skb;
2335 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2336 unsigned int xdp_xmit = 0;
2337 bool failure = false;
2338 struct xdp_buff xdp;
2339 int xdp_res = 0;
2340
2341 #if (PAGE_SIZE < 8192)
2342 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2343 #endif
2344 xdp.rxq = &rx_ring->xdp_rxq;
2345
2346 while (likely(total_rx_packets < (unsigned int)budget)) {
2347 struct i40e_rx_buffer *rx_buffer;
2348 union i40e_rx_desc *rx_desc;
2349 int rx_buffer_pgcnt;
2350 unsigned int size;
2351 u64 qword;
2352
2353 /* return some buffers to hardware, one at a time is too slow */
2354 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2355 failure = failure ||
2356 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2357 cleaned_count = 0;
2358 }
2359
2360 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2361
2362 /* status_error_len will always be zero for unused descriptors
2363 * because it's cleared in cleanup, and overlaps with hdr_addr
2364 * which is always zero because packet split isn't used, if the
2365 * hardware wrote DD then the length will be non-zero
2366 */
2367 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2368
2369 /* This memory barrier is needed to keep us from reading
2370 * any other fields out of the rx_desc until we have
2371 * verified the descriptor has been written back.
2372 */
2373 dma_rmb();
2374
2375 if (i40e_rx_is_programming_status(qword)) {
2376 i40e_clean_programming_status(rx_ring,
2377 rx_desc->raw.qword[0],
2378 qword);
2379 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2380 i40e_inc_ntc(rx_ring);
2381 i40e_reuse_rx_page(rx_ring, rx_buffer);
2382 cleaned_count++;
2383 continue;
2384 }
2385
2386 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2387 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2388 if (!size)
2389 break;
2390
2391 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2392 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2393
2394 /* retrieve a buffer from the ring */
2395 if (!skb) {
2396 xdp.data = page_address(rx_buffer->page) +
2397 rx_buffer->page_offset;
2398 xdp.data_meta = xdp.data;
2399 xdp.data_hard_start = xdp.data -
2400 i40e_rx_offset(rx_ring);
2401 xdp.data_end = xdp.data + size;
2402 #if (PAGE_SIZE > 4096)
2403 /* At larger PAGE_SIZE, frame_sz depend on len size */
2404 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2405 #endif
2406 xdp_res = i40e_run_xdp(rx_ring, &xdp);
2407 }
2408
2409 if (xdp_res) {
2410 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2411 xdp_xmit |= xdp_res;
2412 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2413 } else {
2414 rx_buffer->pagecnt_bias++;
2415 }
2416 total_rx_bytes += size;
2417 total_rx_packets++;
2418 } else if (skb) {
2419 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2420 } else if (ring_uses_build_skb(rx_ring)) {
2421 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2422 } else {
2423 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2424 }
2425
2426 /* exit if we failed to retrieve a buffer */
2427 if (!xdp_res && !skb) {
2428 rx_ring->rx_stats.alloc_buff_failed++;
2429 rx_buffer->pagecnt_bias++;
2430 break;
2431 }
2432
2433 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2434 cleaned_count++;
2435
2436 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2437 continue;
2438
2439 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2440 skb = NULL;
2441 continue;
2442 }
2443
2444 /* probably a little skewed due to removing CRC */
2445 total_rx_bytes += skb->len;
2446
2447 /* populate checksum, VLAN, and protocol */
2448 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2449
2450 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2451 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2452 skb = NULL;
2453
2454 /* update budget accounting */
2455 total_rx_packets++;
2456 }
2457
2458 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2459 rx_ring->skb = skb;
2460
2461 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2462
2463 /* guarantee a trip back through this routine if there was a failure */
2464 return failure ? budget : (int)total_rx_packets;
2465 }
2466
i40e_buildreg_itr(const int type,u16 itr)2467 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2468 {
2469 u32 val;
2470
2471 /* We don't bother with setting the CLEARPBA bit as the data sheet
2472 * points out doing so is "meaningless since it was already
2473 * auto-cleared". The auto-clearing happens when the interrupt is
2474 * asserted.
2475 *
2476 * Hardware errata 28 for also indicates that writing to a
2477 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2478 * an event in the PBA anyway so we need to rely on the automask
2479 * to hold pending events for us until the interrupt is re-enabled
2480 *
2481 * The itr value is reported in microseconds, and the register
2482 * value is recorded in 2 microsecond units. For this reason we
2483 * only need to shift by the interval shift - 1 instead of the
2484 * full value.
2485 */
2486 itr &= I40E_ITR_MASK;
2487
2488 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2489 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2490 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2491
2492 return val;
2493 }
2494
2495 /* a small macro to shorten up some long lines */
2496 #define INTREG I40E_PFINT_DYN_CTLN
2497
2498 /* The act of updating the ITR will cause it to immediately trigger. In order
2499 * to prevent this from throwing off adaptive update statistics we defer the
2500 * update so that it can only happen so often. So after either Tx or Rx are
2501 * updated we make the adaptive scheme wait until either the ITR completely
2502 * expires via the next_update expiration or we have been through at least
2503 * 3 interrupts.
2504 */
2505 #define ITR_COUNTDOWN_START 3
2506
2507 /**
2508 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2509 * @vsi: the VSI we care about
2510 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2511 *
2512 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2513 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2514 struct i40e_q_vector *q_vector)
2515 {
2516 struct i40e_hw *hw = &vsi->back->hw;
2517 u32 intval;
2518
2519 /* If we don't have MSIX, then we only need to re-enable icr0 */
2520 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2521 i40e_irq_dynamic_enable_icr0(vsi->back);
2522 return;
2523 }
2524
2525 /* These will do nothing if dynamic updates are not enabled */
2526 i40e_update_itr(q_vector, &q_vector->tx);
2527 i40e_update_itr(q_vector, &q_vector->rx);
2528
2529 /* This block of logic allows us to get away with only updating
2530 * one ITR value with each interrupt. The idea is to perform a
2531 * pseudo-lazy update with the following criteria.
2532 *
2533 * 1. Rx is given higher priority than Tx if both are in same state
2534 * 2. If we must reduce an ITR that is given highest priority.
2535 * 3. We then give priority to increasing ITR based on amount.
2536 */
2537 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2538 /* Rx ITR needs to be reduced, this is highest priority */
2539 intval = i40e_buildreg_itr(I40E_RX_ITR,
2540 q_vector->rx.target_itr);
2541 q_vector->rx.current_itr = q_vector->rx.target_itr;
2542 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2543 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2544 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2545 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2546 /* Tx ITR needs to be reduced, this is second priority
2547 * Tx ITR needs to be increased more than Rx, fourth priority
2548 */
2549 intval = i40e_buildreg_itr(I40E_TX_ITR,
2550 q_vector->tx.target_itr);
2551 q_vector->tx.current_itr = q_vector->tx.target_itr;
2552 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2553 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2554 /* Rx ITR needs to be increased, third priority */
2555 intval = i40e_buildreg_itr(I40E_RX_ITR,
2556 q_vector->rx.target_itr);
2557 q_vector->rx.current_itr = q_vector->rx.target_itr;
2558 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2559 } else {
2560 /* No ITR update, lowest priority */
2561 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2562 if (q_vector->itr_countdown)
2563 q_vector->itr_countdown--;
2564 }
2565
2566 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2567 wr32(hw, INTREG(q_vector->reg_idx), intval);
2568 }
2569
2570 /**
2571 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2572 * @napi: napi struct with our devices info in it
2573 * @budget: amount of work driver is allowed to do this pass, in packets
2574 *
2575 * This function will clean all queues associated with a q_vector.
2576 *
2577 * Returns the amount of work done
2578 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2579 int i40e_napi_poll(struct napi_struct *napi, int budget)
2580 {
2581 struct i40e_q_vector *q_vector =
2582 container_of(napi, struct i40e_q_vector, napi);
2583 struct i40e_vsi *vsi = q_vector->vsi;
2584 struct i40e_ring *ring;
2585 bool clean_complete = true;
2586 bool arm_wb = false;
2587 int budget_per_ring;
2588 int work_done = 0;
2589
2590 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2591 napi_complete(napi);
2592 return 0;
2593 }
2594
2595 /* Since the actual Tx work is minimal, we can give the Tx a larger
2596 * budget and be more aggressive about cleaning up the Tx descriptors.
2597 */
2598 i40e_for_each_ring(ring, q_vector->tx) {
2599 bool wd = ring->xsk_pool ?
2600 i40e_clean_xdp_tx_irq(vsi, ring) :
2601 i40e_clean_tx_irq(vsi, ring, budget);
2602
2603 if (!wd) {
2604 clean_complete = false;
2605 continue;
2606 }
2607 arm_wb |= ring->arm_wb;
2608 ring->arm_wb = false;
2609 }
2610
2611 /* Handle case where we are called by netpoll with a budget of 0 */
2612 if (budget <= 0)
2613 goto tx_only;
2614
2615 /* normally we have 1 Rx ring per q_vector */
2616 if (unlikely(q_vector->num_ringpairs > 1))
2617 /* We attempt to distribute budget to each Rx queue fairly, but
2618 * don't allow the budget to go below 1 because that would exit
2619 * polling early.
2620 */
2621 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2622 else
2623 /* Max of 1 Rx ring in this q_vector so give it the budget */
2624 budget_per_ring = budget;
2625
2626 i40e_for_each_ring(ring, q_vector->rx) {
2627 int cleaned = ring->xsk_pool ?
2628 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2629 i40e_clean_rx_irq(ring, budget_per_ring);
2630
2631 work_done += cleaned;
2632 /* if we clean as many as budgeted, we must not be done */
2633 if (cleaned >= budget_per_ring)
2634 clean_complete = false;
2635 }
2636
2637 /* If work not completed, return budget and polling will return */
2638 if (!clean_complete) {
2639 int cpu_id = smp_processor_id();
2640
2641 /* It is possible that the interrupt affinity has changed but,
2642 * if the cpu is pegged at 100%, polling will never exit while
2643 * traffic continues and the interrupt will be stuck on this
2644 * cpu. We check to make sure affinity is correct before we
2645 * continue to poll, otherwise we must stop polling so the
2646 * interrupt can move to the correct cpu.
2647 */
2648 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2649 /* Tell napi that we are done polling */
2650 napi_complete_done(napi, work_done);
2651
2652 /* Force an interrupt */
2653 i40e_force_wb(vsi, q_vector);
2654
2655 /* Return budget-1 so that polling stops */
2656 return budget - 1;
2657 }
2658 tx_only:
2659 if (arm_wb) {
2660 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2661 i40e_enable_wb_on_itr(vsi, q_vector);
2662 }
2663 return budget;
2664 }
2665
2666 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2667 q_vector->arm_wb_state = false;
2668
2669 /* Exit the polling mode, but don't re-enable interrupts if stack might
2670 * poll us due to busy-polling
2671 */
2672 if (likely(napi_complete_done(napi, work_done)))
2673 i40e_update_enable_itr(vsi, q_vector);
2674
2675 return min(work_done, budget - 1);
2676 }
2677
2678 /**
2679 * i40e_atr - Add a Flow Director ATR filter
2680 * @tx_ring: ring to add programming descriptor to
2681 * @skb: send buffer
2682 * @tx_flags: send tx flags
2683 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2684 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2685 u32 tx_flags)
2686 {
2687 struct i40e_filter_program_desc *fdir_desc;
2688 struct i40e_pf *pf = tx_ring->vsi->back;
2689 union {
2690 unsigned char *network;
2691 struct iphdr *ipv4;
2692 struct ipv6hdr *ipv6;
2693 } hdr;
2694 struct tcphdr *th;
2695 unsigned int hlen;
2696 u32 flex_ptype, dtype_cmd;
2697 int l4_proto;
2698 u16 i;
2699
2700 /* make sure ATR is enabled */
2701 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2702 return;
2703
2704 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2705 return;
2706
2707 /* if sampling is disabled do nothing */
2708 if (!tx_ring->atr_sample_rate)
2709 return;
2710
2711 /* Currently only IPv4/IPv6 with TCP is supported */
2712 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2713 return;
2714
2715 /* snag network header to get L4 type and address */
2716 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2717 skb_inner_network_header(skb) : skb_network_header(skb);
2718
2719 /* Note: tx_flags gets modified to reflect inner protocols in
2720 * tx_enable_csum function if encap is enabled.
2721 */
2722 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2723 /* access ihl as u8 to avoid unaligned access on ia64 */
2724 hlen = (hdr.network[0] & 0x0F) << 2;
2725 l4_proto = hdr.ipv4->protocol;
2726 } else {
2727 /* find the start of the innermost ipv6 header */
2728 unsigned int inner_hlen = hdr.network - skb->data;
2729 unsigned int h_offset = inner_hlen;
2730
2731 /* this function updates h_offset to the end of the header */
2732 l4_proto =
2733 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2734 /* hlen will contain our best estimate of the tcp header */
2735 hlen = h_offset - inner_hlen;
2736 }
2737
2738 if (l4_proto != IPPROTO_TCP)
2739 return;
2740
2741 th = (struct tcphdr *)(hdr.network + hlen);
2742
2743 /* Due to lack of space, no more new filters can be programmed */
2744 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2745 return;
2746 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2747 /* HW ATR eviction will take care of removing filters on FIN
2748 * and RST packets.
2749 */
2750 if (th->fin || th->rst)
2751 return;
2752 }
2753
2754 tx_ring->atr_count++;
2755
2756 /* sample on all syn/fin/rst packets or once every atr sample rate */
2757 if (!th->fin &&
2758 !th->syn &&
2759 !th->rst &&
2760 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2761 return;
2762
2763 tx_ring->atr_count = 0;
2764
2765 /* grab the next descriptor */
2766 i = tx_ring->next_to_use;
2767 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2768
2769 i++;
2770 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2771
2772 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2773 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2774 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2775 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2776 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2777 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2778 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2779
2780 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2781
2782 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2783
2784 dtype_cmd |= (th->fin || th->rst) ?
2785 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2786 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2787 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2788 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2789
2790 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2791 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2792
2793 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2794 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2795
2796 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2797 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2798 dtype_cmd |=
2799 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2800 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2801 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2802 else
2803 dtype_cmd |=
2804 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2805 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2806 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2807
2808 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2809 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2810
2811 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2812 fdir_desc->rsvd = cpu_to_le32(0);
2813 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2814 fdir_desc->fd_id = cpu_to_le32(0);
2815 }
2816
2817 /**
2818 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2819 * @skb: send buffer
2820 * @tx_ring: ring to send buffer on
2821 * @flags: the tx flags to be set
2822 *
2823 * Checks the skb and set up correspondingly several generic transmit flags
2824 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2825 *
2826 * Returns error code indicate the frame should be dropped upon error and the
2827 * otherwise returns 0 to indicate the flags has been set properly.
2828 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2829 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2830 struct i40e_ring *tx_ring,
2831 u32 *flags)
2832 {
2833 __be16 protocol = skb->protocol;
2834 u32 tx_flags = 0;
2835
2836 if (protocol == htons(ETH_P_8021Q) &&
2837 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2838 /* When HW VLAN acceleration is turned off by the user the
2839 * stack sets the protocol to 8021q so that the driver
2840 * can take any steps required to support the SW only
2841 * VLAN handling. In our case the driver doesn't need
2842 * to take any further steps so just set the protocol
2843 * to the encapsulated ethertype.
2844 */
2845 skb->protocol = vlan_get_protocol(skb);
2846 goto out;
2847 }
2848
2849 /* if we have a HW VLAN tag being added, default to the HW one */
2850 if (skb_vlan_tag_present(skb)) {
2851 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2852 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2853 /* else if it is a SW VLAN, check the next protocol and store the tag */
2854 } else if (protocol == htons(ETH_P_8021Q)) {
2855 struct vlan_hdr *vhdr, _vhdr;
2856
2857 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2858 if (!vhdr)
2859 return -EINVAL;
2860
2861 protocol = vhdr->h_vlan_encapsulated_proto;
2862 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2863 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2864 }
2865
2866 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2867 goto out;
2868
2869 /* Insert 802.1p priority into VLAN header */
2870 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2871 (skb->priority != TC_PRIO_CONTROL)) {
2872 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2873 tx_flags |= (skb->priority & 0x7) <<
2874 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2875 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2876 struct vlan_ethhdr *vhdr;
2877 int rc;
2878
2879 rc = skb_cow_head(skb, 0);
2880 if (rc < 0)
2881 return rc;
2882 vhdr = skb_vlan_eth_hdr(skb);
2883 vhdr->h_vlan_TCI = htons(tx_flags >>
2884 I40E_TX_FLAGS_VLAN_SHIFT);
2885 } else {
2886 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2887 }
2888 }
2889
2890 out:
2891 *flags = tx_flags;
2892 return 0;
2893 }
2894
2895 /**
2896 * i40e_tso - set up the tso context descriptor
2897 * @first: pointer to first Tx buffer for xmit
2898 * @hdr_len: ptr to the size of the packet header
2899 * @cd_type_cmd_tso_mss: Quad Word 1
2900 *
2901 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2902 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)2903 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2904 u64 *cd_type_cmd_tso_mss)
2905 {
2906 struct sk_buff *skb = first->skb;
2907 u64 cd_cmd, cd_tso_len, cd_mss;
2908 union {
2909 struct iphdr *v4;
2910 struct ipv6hdr *v6;
2911 unsigned char *hdr;
2912 } ip;
2913 union {
2914 struct tcphdr *tcp;
2915 struct udphdr *udp;
2916 unsigned char *hdr;
2917 } l4;
2918 u32 paylen, l4_offset;
2919 u16 gso_segs, gso_size;
2920 int err;
2921
2922 if (skb->ip_summed != CHECKSUM_PARTIAL)
2923 return 0;
2924
2925 if (!skb_is_gso(skb))
2926 return 0;
2927
2928 err = skb_cow_head(skb, 0);
2929 if (err < 0)
2930 return err;
2931
2932 ip.hdr = skb_network_header(skb);
2933 l4.hdr = skb_transport_header(skb);
2934
2935 /* initialize outer IP header fields */
2936 if (ip.v4->version == 4) {
2937 ip.v4->tot_len = 0;
2938 ip.v4->check = 0;
2939 } else {
2940 ip.v6->payload_len = 0;
2941 }
2942
2943 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2944 SKB_GSO_GRE_CSUM |
2945 SKB_GSO_IPXIP4 |
2946 SKB_GSO_IPXIP6 |
2947 SKB_GSO_UDP_TUNNEL |
2948 SKB_GSO_UDP_TUNNEL_CSUM)) {
2949 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2950 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2951 l4.udp->len = 0;
2952
2953 /* determine offset of outer transport header */
2954 l4_offset = l4.hdr - skb->data;
2955
2956 /* remove payload length from outer checksum */
2957 paylen = skb->len - l4_offset;
2958 csum_replace_by_diff(&l4.udp->check,
2959 (__force __wsum)htonl(paylen));
2960 }
2961
2962 /* reset pointers to inner headers */
2963 ip.hdr = skb_inner_network_header(skb);
2964 l4.hdr = skb_inner_transport_header(skb);
2965
2966 /* initialize inner IP header fields */
2967 if (ip.v4->version == 4) {
2968 ip.v4->tot_len = 0;
2969 ip.v4->check = 0;
2970 } else {
2971 ip.v6->payload_len = 0;
2972 }
2973 }
2974
2975 /* determine offset of inner transport header */
2976 l4_offset = l4.hdr - skb->data;
2977
2978 /* remove payload length from inner checksum */
2979 paylen = skb->len - l4_offset;
2980
2981 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2982 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2983 /* compute length of segmentation header */
2984 *hdr_len = sizeof(*l4.udp) + l4_offset;
2985 } else {
2986 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2987 /* compute length of segmentation header */
2988 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2989 }
2990
2991 /* pull values out of skb_shinfo */
2992 gso_size = skb_shinfo(skb)->gso_size;
2993 gso_segs = skb_shinfo(skb)->gso_segs;
2994
2995 /* update GSO size and bytecount with header size */
2996 first->gso_segs = gso_segs;
2997 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2998
2999 /* find the field values */
3000 cd_cmd = I40E_TX_CTX_DESC_TSO;
3001 cd_tso_len = skb->len - *hdr_len;
3002 cd_mss = gso_size;
3003 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3004 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3005 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3006 return 1;
3007 }
3008
3009 /**
3010 * i40e_tsyn - set up the tsyn context descriptor
3011 * @tx_ring: ptr to the ring to send
3012 * @skb: ptr to the skb we're sending
3013 * @tx_flags: the collected send information
3014 * @cd_type_cmd_tso_mss: Quad Word 1
3015 *
3016 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3017 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3018 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3019 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3020 {
3021 struct i40e_pf *pf;
3022
3023 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3024 return 0;
3025
3026 /* Tx timestamps cannot be sampled when doing TSO */
3027 if (tx_flags & I40E_TX_FLAGS_TSO)
3028 return 0;
3029
3030 /* only timestamp the outbound packet if the user has requested it and
3031 * we are not already transmitting a packet to be timestamped
3032 */
3033 pf = i40e_netdev_to_pf(tx_ring->netdev);
3034 if (!(pf->flags & I40E_FLAG_PTP))
3035 return 0;
3036
3037 if (pf->ptp_tx &&
3038 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3039 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3040 pf->ptp_tx_start = jiffies;
3041 pf->ptp_tx_skb = skb_get(skb);
3042 } else {
3043 pf->tx_hwtstamp_skipped++;
3044 return 0;
3045 }
3046
3047 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3048 I40E_TXD_CTX_QW1_CMD_SHIFT;
3049
3050 return 1;
3051 }
3052
3053 /**
3054 * i40e_tx_enable_csum - Enable Tx checksum offloads
3055 * @skb: send buffer
3056 * @tx_flags: pointer to Tx flags currently set
3057 * @td_cmd: Tx descriptor command bits to set
3058 * @td_offset: Tx descriptor header offsets to set
3059 * @tx_ring: Tx descriptor ring
3060 * @cd_tunneling: ptr to context desc bits
3061 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3062 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3063 u32 *td_cmd, u32 *td_offset,
3064 struct i40e_ring *tx_ring,
3065 u32 *cd_tunneling)
3066 {
3067 union {
3068 struct iphdr *v4;
3069 struct ipv6hdr *v6;
3070 unsigned char *hdr;
3071 } ip;
3072 union {
3073 struct tcphdr *tcp;
3074 struct udphdr *udp;
3075 unsigned char *hdr;
3076 } l4;
3077 unsigned char *exthdr;
3078 u32 offset, cmd = 0;
3079 __be16 frag_off;
3080 u8 l4_proto = 0;
3081
3082 if (skb->ip_summed != CHECKSUM_PARTIAL)
3083 return 0;
3084
3085 ip.hdr = skb_network_header(skb);
3086 l4.hdr = skb_transport_header(skb);
3087
3088 /* compute outer L2 header size */
3089 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3090
3091 if (skb->encapsulation) {
3092 u32 tunnel = 0;
3093 /* define outer network header type */
3094 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3095 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3096 I40E_TX_CTX_EXT_IP_IPV4 :
3097 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3098
3099 l4_proto = ip.v4->protocol;
3100 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3101 int ret;
3102
3103 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3104
3105 exthdr = ip.hdr + sizeof(*ip.v6);
3106 l4_proto = ip.v6->nexthdr;
3107 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3108 &l4_proto, &frag_off);
3109 if (ret < 0)
3110 return -1;
3111 }
3112
3113 /* define outer transport */
3114 switch (l4_proto) {
3115 case IPPROTO_UDP:
3116 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3117 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3118 break;
3119 case IPPROTO_GRE:
3120 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3121 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3122 break;
3123 case IPPROTO_IPIP:
3124 case IPPROTO_IPV6:
3125 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3126 l4.hdr = skb_inner_network_header(skb);
3127 break;
3128 default:
3129 if (*tx_flags & I40E_TX_FLAGS_TSO)
3130 return -1;
3131
3132 skb_checksum_help(skb);
3133 return 0;
3134 }
3135
3136 /* compute outer L3 header size */
3137 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3138 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3139
3140 /* switch IP header pointer from outer to inner header */
3141 ip.hdr = skb_inner_network_header(skb);
3142
3143 /* compute tunnel header size */
3144 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3145 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3146
3147 /* indicate if we need to offload outer UDP header */
3148 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3149 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3151 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3152
3153 /* record tunnel offload values */
3154 *cd_tunneling |= tunnel;
3155
3156 /* switch L4 header pointer from outer to inner */
3157 l4.hdr = skb_inner_transport_header(skb);
3158 l4_proto = 0;
3159
3160 /* reset type as we transition from outer to inner headers */
3161 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3162 if (ip.v4->version == 4)
3163 *tx_flags |= I40E_TX_FLAGS_IPV4;
3164 if (ip.v6->version == 6)
3165 *tx_flags |= I40E_TX_FLAGS_IPV6;
3166 }
3167
3168 /* Enable IP checksum offloads */
3169 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3170 l4_proto = ip.v4->protocol;
3171 /* the stack computes the IP header already, the only time we
3172 * need the hardware to recompute it is in the case of TSO.
3173 */
3174 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3175 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3176 I40E_TX_DESC_CMD_IIPT_IPV4;
3177 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3178 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3179
3180 exthdr = ip.hdr + sizeof(*ip.v6);
3181 l4_proto = ip.v6->nexthdr;
3182 if (l4.hdr != exthdr)
3183 ipv6_skip_exthdr(skb, exthdr - skb->data,
3184 &l4_proto, &frag_off);
3185 }
3186
3187 /* compute inner L3 header size */
3188 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3189
3190 /* Enable L4 checksum offloads */
3191 switch (l4_proto) {
3192 case IPPROTO_TCP:
3193 /* enable checksum offloads */
3194 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3195 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3196 break;
3197 case IPPROTO_SCTP:
3198 /* enable SCTP checksum offload */
3199 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3200 offset |= (sizeof(struct sctphdr) >> 2) <<
3201 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3202 break;
3203 case IPPROTO_UDP:
3204 /* enable UDP checksum offload */
3205 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3206 offset |= (sizeof(struct udphdr) >> 2) <<
3207 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3208 break;
3209 default:
3210 if (*tx_flags & I40E_TX_FLAGS_TSO)
3211 return -1;
3212 skb_checksum_help(skb);
3213 return 0;
3214 }
3215
3216 *td_cmd |= cmd;
3217 *td_offset |= offset;
3218
3219 return 1;
3220 }
3221
3222 /**
3223 * i40e_create_tx_ctx Build the Tx context descriptor
3224 * @tx_ring: ring to create the descriptor on
3225 * @cd_type_cmd_tso_mss: Quad Word 1
3226 * @cd_tunneling: Quad Word 0 - bits 0-31
3227 * @cd_l2tag2: Quad Word 0 - bits 32-63
3228 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3229 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3230 const u64 cd_type_cmd_tso_mss,
3231 const u32 cd_tunneling, const u32 cd_l2tag2)
3232 {
3233 struct i40e_tx_context_desc *context_desc;
3234 int i = tx_ring->next_to_use;
3235
3236 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3237 !cd_tunneling && !cd_l2tag2)
3238 return;
3239
3240 /* grab the next descriptor */
3241 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3242
3243 i++;
3244 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3245
3246 /* cpu_to_le32 and assign to struct fields */
3247 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3248 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3249 context_desc->rsvd = cpu_to_le16(0);
3250 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3251 }
3252
3253 /**
3254 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3255 * @tx_ring: the ring to be checked
3256 * @size: the size buffer we want to assure is available
3257 *
3258 * Returns -EBUSY if a stop is needed, else 0
3259 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3260 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3261 {
3262 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3263 /* Memory barrier before checking head and tail */
3264 smp_mb();
3265
3266 /* Check again in a case another CPU has just made room available. */
3267 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3268 return -EBUSY;
3269
3270 /* A reprieve! - use start_queue because it doesn't call schedule */
3271 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3272 ++tx_ring->tx_stats.restart_queue;
3273 return 0;
3274 }
3275
3276 /**
3277 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3278 * @skb: send buffer
3279 *
3280 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3281 * and so we need to figure out the cases where we need to linearize the skb.
3282 *
3283 * For TSO we need to count the TSO header and segment payload separately.
3284 * As such we need to check cases where we have 7 fragments or more as we
3285 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3286 * the segment payload in the first descriptor, and another 7 for the
3287 * fragments.
3288 **/
__i40e_chk_linearize(struct sk_buff * skb)3289 bool __i40e_chk_linearize(struct sk_buff *skb)
3290 {
3291 const skb_frag_t *frag, *stale;
3292 int nr_frags, sum;
3293
3294 /* no need to check if number of frags is less than 7 */
3295 nr_frags = skb_shinfo(skb)->nr_frags;
3296 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3297 return false;
3298
3299 /* We need to walk through the list and validate that each group
3300 * of 6 fragments totals at least gso_size.
3301 */
3302 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3303 frag = &skb_shinfo(skb)->frags[0];
3304
3305 /* Initialize size to the negative value of gso_size minus 1. We
3306 * use this as the worst case scenerio in which the frag ahead
3307 * of us only provides one byte which is why we are limited to 6
3308 * descriptors for a single transmit as the header and previous
3309 * fragment are already consuming 2 descriptors.
3310 */
3311 sum = 1 - skb_shinfo(skb)->gso_size;
3312
3313 /* Add size of frags 0 through 4 to create our initial sum */
3314 sum += skb_frag_size(frag++);
3315 sum += skb_frag_size(frag++);
3316 sum += skb_frag_size(frag++);
3317 sum += skb_frag_size(frag++);
3318 sum += skb_frag_size(frag++);
3319
3320 /* Walk through fragments adding latest fragment, testing it, and
3321 * then removing stale fragments from the sum.
3322 */
3323 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3324 int stale_size = skb_frag_size(stale);
3325
3326 sum += skb_frag_size(frag++);
3327
3328 /* The stale fragment may present us with a smaller
3329 * descriptor than the actual fragment size. To account
3330 * for that we need to remove all the data on the front and
3331 * figure out what the remainder would be in the last
3332 * descriptor associated with the fragment.
3333 */
3334 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3335 int align_pad = -(skb_frag_off(stale)) &
3336 (I40E_MAX_READ_REQ_SIZE - 1);
3337
3338 sum -= align_pad;
3339 stale_size -= align_pad;
3340
3341 do {
3342 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3343 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3344 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3345 }
3346
3347 /* if sum is negative we failed to make sufficient progress */
3348 if (sum < 0)
3349 return true;
3350
3351 if (!nr_frags--)
3352 break;
3353
3354 sum -= stale_size;
3355 }
3356
3357 return false;
3358 }
3359
3360 /**
3361 * i40e_tx_map - Build the Tx descriptor
3362 * @tx_ring: ring to send buffer on
3363 * @skb: send buffer
3364 * @first: first buffer info buffer to use
3365 * @tx_flags: collected send information
3366 * @hdr_len: size of the packet header
3367 * @td_cmd: the command field in the descriptor
3368 * @td_offset: offset for checksum or crc
3369 *
3370 * Returns 0 on success, -1 on failure to DMA
3371 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3372 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3373 struct i40e_tx_buffer *first, u32 tx_flags,
3374 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3375 {
3376 unsigned int data_len = skb->data_len;
3377 unsigned int size = skb_headlen(skb);
3378 skb_frag_t *frag;
3379 struct i40e_tx_buffer *tx_bi;
3380 struct i40e_tx_desc *tx_desc;
3381 u16 i = tx_ring->next_to_use;
3382 u32 td_tag = 0;
3383 dma_addr_t dma;
3384 u16 desc_count = 1;
3385
3386 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3387 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3388 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3389 I40E_TX_FLAGS_VLAN_SHIFT;
3390 }
3391
3392 first->tx_flags = tx_flags;
3393
3394 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3395
3396 tx_desc = I40E_TX_DESC(tx_ring, i);
3397 tx_bi = first;
3398
3399 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3400 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3401
3402 if (dma_mapping_error(tx_ring->dev, dma))
3403 goto dma_error;
3404
3405 /* record length, and DMA address */
3406 dma_unmap_len_set(tx_bi, len, size);
3407 dma_unmap_addr_set(tx_bi, dma, dma);
3408
3409 /* align size to end of page */
3410 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3411 tx_desc->buffer_addr = cpu_to_le64(dma);
3412
3413 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3414 tx_desc->cmd_type_offset_bsz =
3415 build_ctob(td_cmd, td_offset,
3416 max_data, td_tag);
3417
3418 tx_desc++;
3419 i++;
3420 desc_count++;
3421
3422 if (i == tx_ring->count) {
3423 tx_desc = I40E_TX_DESC(tx_ring, 0);
3424 i = 0;
3425 }
3426
3427 dma += max_data;
3428 size -= max_data;
3429
3430 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3431 tx_desc->buffer_addr = cpu_to_le64(dma);
3432 }
3433
3434 if (likely(!data_len))
3435 break;
3436
3437 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3438 size, td_tag);
3439
3440 tx_desc++;
3441 i++;
3442 desc_count++;
3443
3444 if (i == tx_ring->count) {
3445 tx_desc = I40E_TX_DESC(tx_ring, 0);
3446 i = 0;
3447 }
3448
3449 size = skb_frag_size(frag);
3450 data_len -= size;
3451
3452 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3453 DMA_TO_DEVICE);
3454
3455 tx_bi = &tx_ring->tx_bi[i];
3456 }
3457
3458 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3459
3460 i++;
3461 if (i == tx_ring->count)
3462 i = 0;
3463
3464 tx_ring->next_to_use = i;
3465
3466 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3467
3468 /* write last descriptor with EOP bit */
3469 td_cmd |= I40E_TX_DESC_CMD_EOP;
3470
3471 /* We OR these values together to check both against 4 (WB_STRIDE)
3472 * below. This is safe since we don't re-use desc_count afterwards.
3473 */
3474 desc_count |= ++tx_ring->packet_stride;
3475
3476 if (desc_count >= WB_STRIDE) {
3477 /* write last descriptor with RS bit set */
3478 td_cmd |= I40E_TX_DESC_CMD_RS;
3479 tx_ring->packet_stride = 0;
3480 }
3481
3482 tx_desc->cmd_type_offset_bsz =
3483 build_ctob(td_cmd, td_offset, size, td_tag);
3484
3485 skb_tx_timestamp(skb);
3486
3487 /* Force memory writes to complete before letting h/w know there
3488 * are new descriptors to fetch.
3489 *
3490 * We also use this memory barrier to make certain all of the
3491 * status bits have been updated before next_to_watch is written.
3492 */
3493 wmb();
3494
3495 /* set next_to_watch value indicating a packet is present */
3496 first->next_to_watch = tx_desc;
3497
3498 /* notify HW of packet */
3499 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3500 writel(i, tx_ring->tail);
3501 }
3502
3503 return 0;
3504
3505 dma_error:
3506 dev_info(tx_ring->dev, "TX DMA map failed\n");
3507
3508 /* clear dma mappings for failed tx_bi map */
3509 for (;;) {
3510 tx_bi = &tx_ring->tx_bi[i];
3511 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3512 if (tx_bi == first)
3513 break;
3514 if (i == 0)
3515 i = tx_ring->count;
3516 i--;
3517 }
3518
3519 tx_ring->next_to_use = i;
3520
3521 return -1;
3522 }
3523
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3524 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3525 const struct sk_buff *skb,
3526 u16 num_tx_queues)
3527 {
3528 u32 jhash_initval_salt = 0xd631614b;
3529 u32 hash;
3530
3531 if (skb->sk && skb->sk->sk_hash)
3532 hash = skb->sk->sk_hash;
3533 else
3534 hash = (__force u16)skb->protocol ^ skb->hash;
3535
3536 hash = jhash_1word(hash, jhash_initval_salt);
3537
3538 return (u16)(((u64)hash * num_tx_queues) >> 32);
3539 }
3540
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3541 u16 i40e_lan_select_queue(struct net_device *netdev,
3542 struct sk_buff *skb,
3543 struct net_device __always_unused *sb_dev)
3544 {
3545 struct i40e_netdev_priv *np = netdev_priv(netdev);
3546 struct i40e_vsi *vsi = np->vsi;
3547 struct i40e_hw *hw;
3548 u16 qoffset;
3549 u16 qcount;
3550 u8 tclass;
3551 u16 hash;
3552 u8 prio;
3553
3554 /* is DCB enabled at all? */
3555 if (vsi->tc_config.numtc == 1)
3556 return netdev_pick_tx(netdev, skb, sb_dev);
3557
3558 prio = skb->priority;
3559 hw = &vsi->back->hw;
3560 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3561 /* sanity check */
3562 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3563 tclass = 0;
3564
3565 /* select a queue assigned for the given TC */
3566 qcount = vsi->tc_config.tc_info[tclass].qcount;
3567 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3568
3569 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3570 return qoffset + hash;
3571 }
3572
3573 /**
3574 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3575 * @xdpf: data to transmit
3576 * @xdp_ring: XDP Tx ring
3577 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3578 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3579 struct i40e_ring *xdp_ring)
3580 {
3581 u16 i = xdp_ring->next_to_use;
3582 struct i40e_tx_buffer *tx_bi;
3583 struct i40e_tx_desc *tx_desc;
3584 void *data = xdpf->data;
3585 u32 size = xdpf->len;
3586 dma_addr_t dma;
3587
3588 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3589 xdp_ring->tx_stats.tx_busy++;
3590 return I40E_XDP_CONSUMED;
3591 }
3592 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3593 if (dma_mapping_error(xdp_ring->dev, dma))
3594 return I40E_XDP_CONSUMED;
3595
3596 tx_bi = &xdp_ring->tx_bi[i];
3597 tx_bi->bytecount = size;
3598 tx_bi->gso_segs = 1;
3599 tx_bi->xdpf = xdpf;
3600
3601 /* record length, and DMA address */
3602 dma_unmap_len_set(tx_bi, len, size);
3603 dma_unmap_addr_set(tx_bi, dma, dma);
3604
3605 tx_desc = I40E_TX_DESC(xdp_ring, i);
3606 tx_desc->buffer_addr = cpu_to_le64(dma);
3607 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3608 | I40E_TXD_CMD,
3609 0, size, 0);
3610
3611 /* Make certain all of the status bits have been updated
3612 * before next_to_watch is written.
3613 */
3614 smp_wmb();
3615
3616 xdp_ring->xdp_tx_active++;
3617 i++;
3618 if (i == xdp_ring->count)
3619 i = 0;
3620
3621 tx_bi->next_to_watch = tx_desc;
3622 xdp_ring->next_to_use = i;
3623
3624 return I40E_XDP_TX;
3625 }
3626
3627 /**
3628 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3629 * @skb: send buffer
3630 * @tx_ring: ring to send buffer on
3631 *
3632 * Returns NETDEV_TX_OK if sent, else an error code
3633 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3634 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3635 struct i40e_ring *tx_ring)
3636 {
3637 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3638 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3639 struct i40e_tx_buffer *first;
3640 u32 td_offset = 0;
3641 u32 tx_flags = 0;
3642 __be16 protocol;
3643 u32 td_cmd = 0;
3644 u8 hdr_len = 0;
3645 int tso, count;
3646 int tsyn;
3647
3648 /* prefetch the data, we'll need it later */
3649 prefetch(skb->data);
3650
3651 i40e_trace(xmit_frame_ring, skb, tx_ring);
3652
3653 count = i40e_xmit_descriptor_count(skb);
3654 if (i40e_chk_linearize(skb, count)) {
3655 if (__skb_linearize(skb)) {
3656 dev_kfree_skb_any(skb);
3657 return NETDEV_TX_OK;
3658 }
3659 count = i40e_txd_use_count(skb->len);
3660 tx_ring->tx_stats.tx_linearize++;
3661 }
3662
3663 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3664 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3665 * + 4 desc gap to avoid the cache line where head is,
3666 * + 1 desc for context descriptor,
3667 * otherwise try next time
3668 */
3669 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3670 tx_ring->tx_stats.tx_busy++;
3671 return NETDEV_TX_BUSY;
3672 }
3673
3674 /* record the location of the first descriptor for this packet */
3675 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3676 first->skb = skb;
3677 first->bytecount = skb->len;
3678 first->gso_segs = 1;
3679
3680 /* prepare the xmit flags */
3681 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3682 goto out_drop;
3683
3684 /* obtain protocol of skb */
3685 protocol = vlan_get_protocol(skb);
3686
3687 /* setup IPv4/IPv6 offloads */
3688 if (protocol == htons(ETH_P_IP))
3689 tx_flags |= I40E_TX_FLAGS_IPV4;
3690 else if (protocol == htons(ETH_P_IPV6))
3691 tx_flags |= I40E_TX_FLAGS_IPV6;
3692
3693 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3694
3695 if (tso < 0)
3696 goto out_drop;
3697 else if (tso)
3698 tx_flags |= I40E_TX_FLAGS_TSO;
3699
3700 /* Always offload the checksum, since it's in the data descriptor */
3701 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3702 tx_ring, &cd_tunneling);
3703 if (tso < 0)
3704 goto out_drop;
3705
3706 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3707
3708 if (tsyn)
3709 tx_flags |= I40E_TX_FLAGS_TSYN;
3710
3711 /* always enable CRC insertion offload */
3712 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3713
3714 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3715 cd_tunneling, cd_l2tag2);
3716
3717 /* Add Flow Director ATR if it's enabled.
3718 *
3719 * NOTE: this must always be directly before the data descriptor.
3720 */
3721 i40e_atr(tx_ring, skb, tx_flags);
3722
3723 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3724 td_cmd, td_offset))
3725 goto cleanup_tx_tstamp;
3726
3727 return NETDEV_TX_OK;
3728
3729 out_drop:
3730 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3731 dev_kfree_skb_any(first->skb);
3732 first->skb = NULL;
3733 cleanup_tx_tstamp:
3734 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3735 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3736
3737 dev_kfree_skb_any(pf->ptp_tx_skb);
3738 pf->ptp_tx_skb = NULL;
3739 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3740 }
3741
3742 return NETDEV_TX_OK;
3743 }
3744
3745 /**
3746 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3747 * @skb: send buffer
3748 * @netdev: network interface device structure
3749 *
3750 * Returns NETDEV_TX_OK if sent, else an error code
3751 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3752 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3753 {
3754 struct i40e_netdev_priv *np = netdev_priv(netdev);
3755 struct i40e_vsi *vsi = np->vsi;
3756 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3757
3758 /* hardware can't handle really short frames, hardware padding works
3759 * beyond this point
3760 */
3761 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3762 return NETDEV_TX_OK;
3763
3764 return i40e_xmit_frame_ring(skb, tx_ring);
3765 }
3766
3767 /**
3768 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3769 * @dev: netdev
3770 * @n: number of frames
3771 * @frames: array of XDP buffer pointers
3772 * @flags: XDP extra info
3773 *
3774 * Returns number of frames successfully sent. Frames that fail are
3775 * free'ed via XDP return API.
3776 *
3777 * For error cases, a negative errno code is returned and no-frames
3778 * are transmitted (caller must handle freeing frames).
3779 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3780 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3781 u32 flags)
3782 {
3783 struct i40e_netdev_priv *np = netdev_priv(dev);
3784 unsigned int queue_index = smp_processor_id();
3785 struct i40e_vsi *vsi = np->vsi;
3786 struct i40e_pf *pf = vsi->back;
3787 struct i40e_ring *xdp_ring;
3788 int drops = 0;
3789 int i;
3790
3791 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3792 return -ENETDOWN;
3793
3794 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3795 test_bit(__I40E_CONFIG_BUSY, pf->state))
3796 return -ENXIO;
3797
3798 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3799 return -EINVAL;
3800
3801 xdp_ring = vsi->xdp_rings[queue_index];
3802
3803 for (i = 0; i < n; i++) {
3804 struct xdp_frame *xdpf = frames[i];
3805 int err;
3806
3807 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3808 if (err != I40E_XDP_TX) {
3809 xdp_return_frame_rx_napi(xdpf);
3810 drops++;
3811 }
3812 }
3813
3814 if (unlikely(flags & XDP_XMIT_FLUSH))
3815 i40e_xdp_ring_update_tail(xdp_ring);
3816
3817 return n - drops;
3818 }
3819