• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24 
25 #include "igbvf.h"
26 
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 		  "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 		  "Copyright (c) 2009 - 2012 Intel Corporation.";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42 
43 static struct igbvf_info igbvf_vf_info = {
44 	.mac		= e1000_vfadapt,
45 	.flags		= 0,
46 	.pba		= 10,
47 	.init_ops	= e1000_init_function_pointers_vf,
48 };
49 
50 static struct igbvf_info igbvf_i350_vf_info = {
51 	.mac		= e1000_vfadapt_i350,
52 	.flags		= 0,
53 	.pba		= 10,
54 	.init_ops	= e1000_init_function_pointers_vf,
55 };
56 
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 	[board_vf]	= &igbvf_vf_info,
59 	[board_i350_vf]	= &igbvf_i350_vf_info,
60 };
61 
62 /**
63  * igbvf_desc_unused - calculate if we have unused descriptors
64  * @ring: address of receive ring structure
65  **/
igbvf_desc_unused(struct igbvf_ring * ring)66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 	if (ring->next_to_clean > ring->next_to_use)
69 		return ring->next_to_clean - ring->next_to_use - 1;
70 
71 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73 
74 /**
75  * igbvf_receive_skb - helper function to handle Rx indications
76  * @adapter: board private structure
77  * @netdev: pointer to netdev struct
78  * @skb: skb to indicate to stack
79  * @status: descriptor status field as written by hardware
80  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81  * @skb: pointer to sk_buff to be indicated to stack
82  **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,__le16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 			      struct net_device *netdev,
85 			      struct sk_buff *skb,
86 			      u32 status, __le16 vlan)
87 {
88 	u16 vid;
89 
90 	if (status & E1000_RXD_STAT_VP) {
91 		if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 		    (status & E1000_RXDEXT_STATERR_LB))
93 			vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 		else
95 			vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 		if (test_bit(vid, adapter->active_vlans))
97 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 	}
99 
100 	napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102 
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 					 u32 status_err, struct sk_buff *skb)
105 {
106 	skb_checksum_none_assert(skb);
107 
108 	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 	if ((status_err & E1000_RXD_STAT_IXSM) ||
110 	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 		return;
112 
113 	/* TCP/UDP checksum error bit is set */
114 	if (status_err &
115 	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 		/* let the stack verify checksum errors */
117 		adapter->hw_csum_err++;
118 		return;
119 	}
120 
121 	/* It must be a TCP or UDP packet with a valid checksum */
122 	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 		skb->ip_summed = CHECKSUM_UNNECESSARY;
124 
125 	adapter->hw_csum_good++;
126 }
127 
128 /**
129  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130  * @rx_ring: address of ring structure to repopulate
131  * @cleaned_count: number of buffers to repopulate
132  **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 				   int cleaned_count)
135 {
136 	struct igbvf_adapter *adapter = rx_ring->adapter;
137 	struct net_device *netdev = adapter->netdev;
138 	struct pci_dev *pdev = adapter->pdev;
139 	union e1000_adv_rx_desc *rx_desc;
140 	struct igbvf_buffer *buffer_info;
141 	struct sk_buff *skb;
142 	unsigned int i;
143 	int bufsz;
144 
145 	i = rx_ring->next_to_use;
146 	buffer_info = &rx_ring->buffer_info[i];
147 
148 	if (adapter->rx_ps_hdr_size)
149 		bufsz = adapter->rx_ps_hdr_size;
150 	else
151 		bufsz = adapter->rx_buffer_len;
152 
153 	while (cleaned_count--) {
154 		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155 
156 		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 			if (!buffer_info->page) {
158 				buffer_info->page = alloc_page(GFP_ATOMIC);
159 				if (!buffer_info->page) {
160 					adapter->alloc_rx_buff_failed++;
161 					goto no_buffers;
162 				}
163 				buffer_info->page_offset = 0;
164 			} else {
165 				buffer_info->page_offset ^= PAGE_SIZE / 2;
166 			}
167 			buffer_info->page_dma =
168 				dma_map_page(&pdev->dev, buffer_info->page,
169 					     buffer_info->page_offset,
170 					     PAGE_SIZE / 2,
171 					     DMA_FROM_DEVICE);
172 			if (dma_mapping_error(&pdev->dev,
173 					      buffer_info->page_dma)) {
174 				__free_page(buffer_info->page);
175 				buffer_info->page = NULL;
176 				dev_err(&pdev->dev, "RX DMA map failed\n");
177 				break;
178 			}
179 		}
180 
181 		if (!buffer_info->skb) {
182 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 			if (!skb) {
184 				adapter->alloc_rx_buff_failed++;
185 				goto no_buffers;
186 			}
187 
188 			buffer_info->skb = skb;
189 			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 							  bufsz,
191 							  DMA_FROM_DEVICE);
192 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 				dev_kfree_skb(buffer_info->skb);
194 				buffer_info->skb = NULL;
195 				dev_err(&pdev->dev, "RX DMA map failed\n");
196 				goto no_buffers;
197 			}
198 		}
199 		/* Refresh the desc even if buffer_addrs didn't change because
200 		 * each write-back erases this info.
201 		 */
202 		if (adapter->rx_ps_hdr_size) {
203 			rx_desc->read.pkt_addr =
204 			     cpu_to_le64(buffer_info->page_dma);
205 			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 		} else {
207 			rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 			rx_desc->read.hdr_addr = 0;
209 		}
210 
211 		i++;
212 		if (i == rx_ring->count)
213 			i = 0;
214 		buffer_info = &rx_ring->buffer_info[i];
215 	}
216 
217 no_buffers:
218 	if (rx_ring->next_to_use != i) {
219 		rx_ring->next_to_use = i;
220 		if (i == 0)
221 			i = (rx_ring->count - 1);
222 		else
223 			i--;
224 
225 		/* Force memory writes to complete before letting h/w
226 		 * know there are new descriptors to fetch.  (Only
227 		 * applicable for weak-ordered memory model archs,
228 		 * such as IA-64).
229 		*/
230 		wmb();
231 		writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 	}
233 }
234 
235 /**
236  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237  * @adapter: board private structure
238  * @work_done: output parameter used to indicate completed work
239  * @work_to_do: input parameter setting limit of work
240  *
241  * the return value indicates whether actual cleaning was done, there
242  * is no guarantee that everything was cleaned
243  **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 			       int *work_done, int work_to_do)
246 {
247 	struct igbvf_ring *rx_ring = adapter->rx_ring;
248 	struct net_device *netdev = adapter->netdev;
249 	struct pci_dev *pdev = adapter->pdev;
250 	union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 	struct igbvf_buffer *buffer_info, *next_buffer;
252 	struct sk_buff *skb;
253 	bool cleaned = false;
254 	int cleaned_count = 0;
255 	unsigned int total_bytes = 0, total_packets = 0;
256 	unsigned int i;
257 	u32 length, hlen, staterr;
258 
259 	i = rx_ring->next_to_clean;
260 	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262 
263 	while (staterr & E1000_RXD_STAT_DD) {
264 		if (*work_done >= work_to_do)
265 			break;
266 		(*work_done)++;
267 		rmb(); /* read descriptor and rx_buffer_info after status DD */
268 
269 		buffer_info = &rx_ring->buffer_info[i];
270 
271 		/* HW will not DMA in data larger than the given buffer, even
272 		 * if it parses the (NFS, of course) header to be larger.  In
273 		 * that case, it fills the header buffer and spills the rest
274 		 * into the page.
275 		 */
276 		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 		       & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 		       E1000_RXDADV_HDRBUFLEN_SHIFT;
279 		if (hlen > adapter->rx_ps_hdr_size)
280 			hlen = adapter->rx_ps_hdr_size;
281 
282 		length = le16_to_cpu(rx_desc->wb.upper.length);
283 		cleaned = true;
284 		cleaned_count++;
285 
286 		skb = buffer_info->skb;
287 		prefetch(skb->data - NET_IP_ALIGN);
288 		buffer_info->skb = NULL;
289 		if (!adapter->rx_ps_hdr_size) {
290 			dma_unmap_single(&pdev->dev, buffer_info->dma,
291 					 adapter->rx_buffer_len,
292 					 DMA_FROM_DEVICE);
293 			buffer_info->dma = 0;
294 			skb_put(skb, length);
295 			goto send_up;
296 		}
297 
298 		if (!skb_shinfo(skb)->nr_frags) {
299 			dma_unmap_single(&pdev->dev, buffer_info->dma,
300 					 adapter->rx_ps_hdr_size,
301 					 DMA_FROM_DEVICE);
302 			buffer_info->dma = 0;
303 			skb_put(skb, hlen);
304 		}
305 
306 		if (length) {
307 			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 				       PAGE_SIZE / 2,
309 				       DMA_FROM_DEVICE);
310 			buffer_info->page_dma = 0;
311 
312 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 					   buffer_info->page,
314 					   buffer_info->page_offset,
315 					   length);
316 
317 			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 			    (page_count(buffer_info->page) != 1))
319 				buffer_info->page = NULL;
320 			else
321 				get_page(buffer_info->page);
322 
323 			skb->len += length;
324 			skb->data_len += length;
325 			skb->truesize += PAGE_SIZE / 2;
326 		}
327 send_up:
328 		i++;
329 		if (i == rx_ring->count)
330 			i = 0;
331 		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 		prefetch(next_rxd);
333 		next_buffer = &rx_ring->buffer_info[i];
334 
335 		if (!(staterr & E1000_RXD_STAT_EOP)) {
336 			buffer_info->skb = next_buffer->skb;
337 			buffer_info->dma = next_buffer->dma;
338 			next_buffer->skb = skb;
339 			next_buffer->dma = 0;
340 			goto next_desc;
341 		}
342 
343 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 			dev_kfree_skb_irq(skb);
345 			goto next_desc;
346 		}
347 
348 		total_bytes += skb->len;
349 		total_packets++;
350 
351 		igbvf_rx_checksum_adv(adapter, staterr, skb);
352 
353 		skb->protocol = eth_type_trans(skb, netdev);
354 
355 		igbvf_receive_skb(adapter, netdev, skb, staterr,
356 				  rx_desc->wb.upper.vlan);
357 
358 next_desc:
359 		rx_desc->wb.upper.status_error = 0;
360 
361 		/* return some buffers to hardware, one at a time is too slow */
362 		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 			cleaned_count = 0;
365 		}
366 
367 		/* use prefetched values */
368 		rx_desc = next_rxd;
369 		buffer_info = next_buffer;
370 
371 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 	}
373 
374 	rx_ring->next_to_clean = i;
375 	cleaned_count = igbvf_desc_unused(rx_ring);
376 
377 	if (cleaned_count)
378 		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379 
380 	adapter->total_rx_packets += total_packets;
381 	adapter->total_rx_bytes += total_bytes;
382 	netdev->stats.rx_bytes += total_bytes;
383 	netdev->stats.rx_packets += total_packets;
384 	return cleaned;
385 }
386 
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)387 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 			    struct igbvf_buffer *buffer_info)
389 {
390 	if (buffer_info->dma) {
391 		if (buffer_info->mapped_as_page)
392 			dma_unmap_page(&adapter->pdev->dev,
393 				       buffer_info->dma,
394 				       buffer_info->length,
395 				       DMA_TO_DEVICE);
396 		else
397 			dma_unmap_single(&adapter->pdev->dev,
398 					 buffer_info->dma,
399 					 buffer_info->length,
400 					 DMA_TO_DEVICE);
401 		buffer_info->dma = 0;
402 	}
403 	if (buffer_info->skb) {
404 		dev_kfree_skb_any(buffer_info->skb);
405 		buffer_info->skb = NULL;
406 	}
407 	buffer_info->time_stamp = 0;
408 }
409 
410 /**
411  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412  * @adapter: board private structure
413  * @tx_ring: ring being initialized
414  *
415  * Return 0 on success, negative on failure
416  **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)417 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 			     struct igbvf_ring *tx_ring)
419 {
420 	struct pci_dev *pdev = adapter->pdev;
421 	int size;
422 
423 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 	tx_ring->buffer_info = vzalloc(size);
425 	if (!tx_ring->buffer_info)
426 		goto err;
427 
428 	/* round up to nearest 4K */
429 	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 	tx_ring->size = ALIGN(tx_ring->size, 4096);
431 
432 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 					   &tx_ring->dma, GFP_KERNEL);
434 	if (!tx_ring->desc)
435 		goto err;
436 
437 	tx_ring->adapter = adapter;
438 	tx_ring->next_to_use = 0;
439 	tx_ring->next_to_clean = 0;
440 
441 	return 0;
442 err:
443 	vfree(tx_ring->buffer_info);
444 	dev_err(&adapter->pdev->dev,
445 		"Unable to allocate memory for the transmit descriptor ring\n");
446 	return -ENOMEM;
447 }
448 
449 /**
450  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451  * @adapter: board private structure
452  * @rx_ring: ring being initialized
453  *
454  * Returns 0 on success, negative on failure
455  **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)456 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 			     struct igbvf_ring *rx_ring)
458 {
459 	struct pci_dev *pdev = adapter->pdev;
460 	int size, desc_len;
461 
462 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 	rx_ring->buffer_info = vzalloc(size);
464 	if (!rx_ring->buffer_info)
465 		goto err;
466 
467 	desc_len = sizeof(union e1000_adv_rx_desc);
468 
469 	/* Round up to nearest 4K */
470 	rx_ring->size = rx_ring->count * desc_len;
471 	rx_ring->size = ALIGN(rx_ring->size, 4096);
472 
473 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 					   &rx_ring->dma, GFP_KERNEL);
475 	if (!rx_ring->desc)
476 		goto err;
477 
478 	rx_ring->next_to_clean = 0;
479 	rx_ring->next_to_use = 0;
480 
481 	rx_ring->adapter = adapter;
482 
483 	return 0;
484 
485 err:
486 	vfree(rx_ring->buffer_info);
487 	rx_ring->buffer_info = NULL;
488 	dev_err(&adapter->pdev->dev,
489 		"Unable to allocate memory for the receive descriptor ring\n");
490 	return -ENOMEM;
491 }
492 
493 /**
494  * igbvf_clean_tx_ring - Free Tx Buffers
495  * @tx_ring: ring to be cleaned
496  **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)497 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 {
499 	struct igbvf_adapter *adapter = tx_ring->adapter;
500 	struct igbvf_buffer *buffer_info;
501 	unsigned long size;
502 	unsigned int i;
503 
504 	if (!tx_ring->buffer_info)
505 		return;
506 
507 	/* Free all the Tx ring sk_buffs */
508 	for (i = 0; i < tx_ring->count; i++) {
509 		buffer_info = &tx_ring->buffer_info[i];
510 		igbvf_put_txbuf(adapter, buffer_info);
511 	}
512 
513 	size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 	memset(tx_ring->buffer_info, 0, size);
515 
516 	/* Zero out the descriptor ring */
517 	memset(tx_ring->desc, 0, tx_ring->size);
518 
519 	tx_ring->next_to_use = 0;
520 	tx_ring->next_to_clean = 0;
521 
522 	writel(0, adapter->hw.hw_addr + tx_ring->head);
523 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
524 }
525 
526 /**
527  * igbvf_free_tx_resources - Free Tx Resources per Queue
528  * @tx_ring: ring to free resources from
529  *
530  * Free all transmit software resources
531  **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)532 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 {
534 	struct pci_dev *pdev = tx_ring->adapter->pdev;
535 
536 	igbvf_clean_tx_ring(tx_ring);
537 
538 	vfree(tx_ring->buffer_info);
539 	tx_ring->buffer_info = NULL;
540 
541 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 			  tx_ring->dma);
543 
544 	tx_ring->desc = NULL;
545 }
546 
547 /**
548  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549  * @rx_ring: ring structure pointer to free buffers from
550  **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)551 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 {
553 	struct igbvf_adapter *adapter = rx_ring->adapter;
554 	struct igbvf_buffer *buffer_info;
555 	struct pci_dev *pdev = adapter->pdev;
556 	unsigned long size;
557 	unsigned int i;
558 
559 	if (!rx_ring->buffer_info)
560 		return;
561 
562 	/* Free all the Rx ring sk_buffs */
563 	for (i = 0; i < rx_ring->count; i++) {
564 		buffer_info = &rx_ring->buffer_info[i];
565 		if (buffer_info->dma) {
566 			if (adapter->rx_ps_hdr_size) {
567 				dma_unmap_single(&pdev->dev, buffer_info->dma,
568 						 adapter->rx_ps_hdr_size,
569 						 DMA_FROM_DEVICE);
570 			} else {
571 				dma_unmap_single(&pdev->dev, buffer_info->dma,
572 						 adapter->rx_buffer_len,
573 						 DMA_FROM_DEVICE);
574 			}
575 			buffer_info->dma = 0;
576 		}
577 
578 		if (buffer_info->skb) {
579 			dev_kfree_skb(buffer_info->skb);
580 			buffer_info->skb = NULL;
581 		}
582 
583 		if (buffer_info->page) {
584 			if (buffer_info->page_dma)
585 				dma_unmap_page(&pdev->dev,
586 					       buffer_info->page_dma,
587 					       PAGE_SIZE / 2,
588 					       DMA_FROM_DEVICE);
589 			put_page(buffer_info->page);
590 			buffer_info->page = NULL;
591 			buffer_info->page_dma = 0;
592 			buffer_info->page_offset = 0;
593 		}
594 	}
595 
596 	size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 	memset(rx_ring->buffer_info, 0, size);
598 
599 	/* Zero out the descriptor ring */
600 	memset(rx_ring->desc, 0, rx_ring->size);
601 
602 	rx_ring->next_to_clean = 0;
603 	rx_ring->next_to_use = 0;
604 
605 	writel(0, adapter->hw.hw_addr + rx_ring->head);
606 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
607 }
608 
609 /**
610  * igbvf_free_rx_resources - Free Rx Resources
611  * @rx_ring: ring to clean the resources from
612  *
613  * Free all receive software resources
614  **/
615 
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)616 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 {
618 	struct pci_dev *pdev = rx_ring->adapter->pdev;
619 
620 	igbvf_clean_rx_ring(rx_ring);
621 
622 	vfree(rx_ring->buffer_info);
623 	rx_ring->buffer_info = NULL;
624 
625 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 			  rx_ring->dma);
627 	rx_ring->desc = NULL;
628 }
629 
630 /**
631  * igbvf_update_itr - update the dynamic ITR value based on statistics
632  * @adapter: pointer to adapter
633  * @itr_setting: current adapter->itr
634  * @packets: the number of packets during this measurement interval
635  * @bytes: the number of bytes during this measurement interval
636  *
637  * Stores a new ITR value based on packets and byte counts during the last
638  * interrupt.  The advantage of per interrupt computation is faster updates
639  * and more accurate ITR for the current traffic pattern.  Constants in this
640  * function were computed based on theoretical maximum wire speed and thresholds
641  * were set based on testing data as well as attempting to minimize response
642  * time while increasing bulk throughput.
643  **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)644 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 					   enum latency_range itr_setting,
646 					   int packets, int bytes)
647 {
648 	enum latency_range retval = itr_setting;
649 
650 	if (packets == 0)
651 		goto update_itr_done;
652 
653 	switch (itr_setting) {
654 	case lowest_latency:
655 		/* handle TSO and jumbo frames */
656 		if (bytes/packets > 8000)
657 			retval = bulk_latency;
658 		else if ((packets < 5) && (bytes > 512))
659 			retval = low_latency;
660 		break;
661 	case low_latency:  /* 50 usec aka 20000 ints/s */
662 		if (bytes > 10000) {
663 			/* this if handles the TSO accounting */
664 			if (bytes/packets > 8000)
665 				retval = bulk_latency;
666 			else if ((packets < 10) || ((bytes/packets) > 1200))
667 				retval = bulk_latency;
668 			else if ((packets > 35))
669 				retval = lowest_latency;
670 		} else if (bytes/packets > 2000) {
671 			retval = bulk_latency;
672 		} else if (packets <= 2 && bytes < 512) {
673 			retval = lowest_latency;
674 		}
675 		break;
676 	case bulk_latency: /* 250 usec aka 4000 ints/s */
677 		if (bytes > 25000) {
678 			if (packets > 35)
679 				retval = low_latency;
680 		} else if (bytes < 6000) {
681 			retval = low_latency;
682 		}
683 		break;
684 	default:
685 		break;
686 	}
687 
688 update_itr_done:
689 	return retval;
690 }
691 
igbvf_range_to_itr(enum latency_range current_range)692 static int igbvf_range_to_itr(enum latency_range current_range)
693 {
694 	int new_itr;
695 
696 	switch (current_range) {
697 	/* counts and packets in update_itr are dependent on these numbers */
698 	case lowest_latency:
699 		new_itr = IGBVF_70K_ITR;
700 		break;
701 	case low_latency:
702 		new_itr = IGBVF_20K_ITR;
703 		break;
704 	case bulk_latency:
705 		new_itr = IGBVF_4K_ITR;
706 		break;
707 	default:
708 		new_itr = IGBVF_START_ITR;
709 		break;
710 	}
711 	return new_itr;
712 }
713 
igbvf_set_itr(struct igbvf_adapter * adapter)714 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 {
716 	u32 new_itr;
717 
718 	adapter->tx_ring->itr_range =
719 			igbvf_update_itr(adapter,
720 					 adapter->tx_ring->itr_val,
721 					 adapter->total_tx_packets,
722 					 adapter->total_tx_bytes);
723 
724 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
725 	if (adapter->requested_itr == 3 &&
726 	    adapter->tx_ring->itr_range == lowest_latency)
727 		adapter->tx_ring->itr_range = low_latency;
728 
729 	new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730 
731 	if (new_itr != adapter->tx_ring->itr_val) {
732 		u32 current_itr = adapter->tx_ring->itr_val;
733 		/* this attempts to bias the interrupt rate towards Bulk
734 		 * by adding intermediate steps when interrupt rate is
735 		 * increasing
736 		 */
737 		new_itr = new_itr > current_itr ?
738 			  min(current_itr + (new_itr >> 2), new_itr) :
739 			  new_itr;
740 		adapter->tx_ring->itr_val = new_itr;
741 
742 		adapter->tx_ring->set_itr = 1;
743 	}
744 
745 	adapter->rx_ring->itr_range =
746 			igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 					 adapter->total_rx_packets,
748 					 adapter->total_rx_bytes);
749 	if (adapter->requested_itr == 3 &&
750 	    adapter->rx_ring->itr_range == lowest_latency)
751 		adapter->rx_ring->itr_range = low_latency;
752 
753 	new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754 
755 	if (new_itr != adapter->rx_ring->itr_val) {
756 		u32 current_itr = adapter->rx_ring->itr_val;
757 
758 		new_itr = new_itr > current_itr ?
759 			  min(current_itr + (new_itr >> 2), new_itr) :
760 			  new_itr;
761 		adapter->rx_ring->itr_val = new_itr;
762 
763 		adapter->rx_ring->set_itr = 1;
764 	}
765 }
766 
767 /**
768  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769  * @tx_ring: ring structure to clean descriptors from
770  *
771  * returns true if ring is completely cleaned
772  **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)773 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 {
775 	struct igbvf_adapter *adapter = tx_ring->adapter;
776 	struct net_device *netdev = adapter->netdev;
777 	struct igbvf_buffer *buffer_info;
778 	struct sk_buff *skb;
779 	union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 	unsigned int total_bytes = 0, total_packets = 0;
781 	unsigned int i, count = 0;
782 	bool cleaned = false;
783 
784 	i = tx_ring->next_to_clean;
785 	buffer_info = &tx_ring->buffer_info[i];
786 	eop_desc = buffer_info->next_to_watch;
787 
788 	do {
789 		/* if next_to_watch is not set then there is no work pending */
790 		if (!eop_desc)
791 			break;
792 
793 		/* prevent any other reads prior to eop_desc */
794 		smp_rmb();
795 
796 		/* if DD is not set pending work has not been completed */
797 		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 			break;
799 
800 		/* clear next_to_watch to prevent false hangs */
801 		buffer_info->next_to_watch = NULL;
802 
803 		for (cleaned = false; !cleaned; count++) {
804 			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 			cleaned = (tx_desc == eop_desc);
806 			skb = buffer_info->skb;
807 
808 			if (skb) {
809 				unsigned int segs, bytecount;
810 
811 				/* gso_segs is currently only valid for tcp */
812 				segs = skb_shinfo(skb)->gso_segs ?: 1;
813 				/* multiply data chunks by size of headers */
814 				bytecount = ((segs - 1) * skb_headlen(skb)) +
815 					    skb->len;
816 				total_packets += segs;
817 				total_bytes += bytecount;
818 			}
819 
820 			igbvf_put_txbuf(adapter, buffer_info);
821 			tx_desc->wb.status = 0;
822 
823 			i++;
824 			if (i == tx_ring->count)
825 				i = 0;
826 
827 			buffer_info = &tx_ring->buffer_info[i];
828 		}
829 
830 		eop_desc = buffer_info->next_to_watch;
831 	} while (count < tx_ring->count);
832 
833 	tx_ring->next_to_clean = i;
834 
835 	if (unlikely(count && netif_carrier_ok(netdev) &&
836 	    igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 		/* Make sure that anybody stopping the queue after this
838 		 * sees the new next_to_clean.
839 		 */
840 		smp_mb();
841 		if (netif_queue_stopped(netdev) &&
842 		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 			netif_wake_queue(netdev);
844 			++adapter->restart_queue;
845 		}
846 	}
847 
848 	netdev->stats.tx_bytes += total_bytes;
849 	netdev->stats.tx_packets += total_packets;
850 	return count < tx_ring->count;
851 }
852 
igbvf_msix_other(int irq,void * data)853 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 {
855 	struct net_device *netdev = data;
856 	struct igbvf_adapter *adapter = netdev_priv(netdev);
857 	struct e1000_hw *hw = &adapter->hw;
858 
859 	adapter->int_counter1++;
860 
861 	hw->mac.get_link_status = 1;
862 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
864 
865 	ew32(EIMS, adapter->eims_other);
866 
867 	return IRQ_HANDLED;
868 }
869 
igbvf_intr_msix_tx(int irq,void * data)870 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 {
872 	struct net_device *netdev = data;
873 	struct igbvf_adapter *adapter = netdev_priv(netdev);
874 	struct e1000_hw *hw = &adapter->hw;
875 	struct igbvf_ring *tx_ring = adapter->tx_ring;
876 
877 	if (tx_ring->set_itr) {
878 		writel(tx_ring->itr_val,
879 		       adapter->hw.hw_addr + tx_ring->itr_register);
880 		adapter->tx_ring->set_itr = 0;
881 	}
882 
883 	adapter->total_tx_bytes = 0;
884 	adapter->total_tx_packets = 0;
885 
886 	/* auto mask will automatically re-enable the interrupt when we write
887 	 * EICS
888 	 */
889 	if (!igbvf_clean_tx_irq(tx_ring))
890 		/* Ring was not completely cleaned, so fire another interrupt */
891 		ew32(EICS, tx_ring->eims_value);
892 	else
893 		ew32(EIMS, tx_ring->eims_value);
894 
895 	return IRQ_HANDLED;
896 }
897 
igbvf_intr_msix_rx(int irq,void * data)898 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 {
900 	struct net_device *netdev = data;
901 	struct igbvf_adapter *adapter = netdev_priv(netdev);
902 
903 	adapter->int_counter0++;
904 
905 	/* Write the ITR value calculated at the end of the
906 	 * previous interrupt.
907 	 */
908 	if (adapter->rx_ring->set_itr) {
909 		writel(adapter->rx_ring->itr_val,
910 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 		adapter->rx_ring->set_itr = 0;
912 	}
913 
914 	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 		adapter->total_rx_bytes = 0;
916 		adapter->total_rx_packets = 0;
917 		__napi_schedule(&adapter->rx_ring->napi);
918 	}
919 
920 	return IRQ_HANDLED;
921 }
922 
923 #define IGBVF_NO_QUEUE -1
924 
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)925 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 				int tx_queue, int msix_vector)
927 {
928 	struct e1000_hw *hw = &adapter->hw;
929 	u32 ivar, index;
930 
931 	/* 82576 uses a table-based method for assigning vectors.
932 	 * Each queue has a single entry in the table to which we write
933 	 * a vector number along with a "valid" bit.  Sadly, the layout
934 	 * of the table is somewhat counterintuitive.
935 	 */
936 	if (rx_queue > IGBVF_NO_QUEUE) {
937 		index = (rx_queue >> 1);
938 		ivar = array_er32(IVAR0, index);
939 		if (rx_queue & 0x1) {
940 			/* vector goes into third byte of register */
941 			ivar = ivar & 0xFF00FFFF;
942 			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 		} else {
944 			/* vector goes into low byte of register */
945 			ivar = ivar & 0xFFFFFF00;
946 			ivar |= msix_vector | E1000_IVAR_VALID;
947 		}
948 		adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 		array_ew32(IVAR0, index, ivar);
950 	}
951 	if (tx_queue > IGBVF_NO_QUEUE) {
952 		index = (tx_queue >> 1);
953 		ivar = array_er32(IVAR0, index);
954 		if (tx_queue & 0x1) {
955 			/* vector goes into high byte of register */
956 			ivar = ivar & 0x00FFFFFF;
957 			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 		} else {
959 			/* vector goes into second byte of register */
960 			ivar = ivar & 0xFFFF00FF;
961 			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 		}
963 		adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 		array_ew32(IVAR0, index, ivar);
965 	}
966 }
967 
968 /**
969  * igbvf_configure_msix - Configure MSI-X hardware
970  * @adapter: board private structure
971  *
972  * igbvf_configure_msix sets up the hardware to properly
973  * generate MSI-X interrupts.
974  **/
igbvf_configure_msix(struct igbvf_adapter * adapter)975 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 {
977 	u32 tmp;
978 	struct e1000_hw *hw = &adapter->hw;
979 	struct igbvf_ring *tx_ring = adapter->tx_ring;
980 	struct igbvf_ring *rx_ring = adapter->rx_ring;
981 	int vector = 0;
982 
983 	adapter->eims_enable_mask = 0;
984 
985 	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 	adapter->eims_enable_mask |= tx_ring->eims_value;
987 	writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 	adapter->eims_enable_mask |= rx_ring->eims_value;
990 	writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991 
992 	/* set vector for other causes, i.e. link changes */
993 
994 	tmp = (vector++ | E1000_IVAR_VALID);
995 
996 	ew32(IVAR_MISC, tmp);
997 
998 	adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 	adapter->eims_other = BIT(vector - 1);
1000 	e1e_flush();
1001 }
1002 
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 	if (adapter->msix_entries) {
1006 		pci_disable_msix(adapter->pdev);
1007 		kfree(adapter->msix_entries);
1008 		adapter->msix_entries = NULL;
1009 	}
1010 }
1011 
1012 /**
1013  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014  * @adapter: board private structure
1015  *
1016  * Attempt to configure interrupts using the best available
1017  * capabilities of the hardware and kernel.
1018  **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1019 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 	int err = -ENOMEM;
1022 	int i;
1023 
1024 	/* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 					GFP_KERNEL);
1027 	if (adapter->msix_entries) {
1028 		for (i = 0; i < 3; i++)
1029 			adapter->msix_entries[i].entry = i;
1030 
1031 		err = pci_enable_msix_range(adapter->pdev,
1032 					    adapter->msix_entries, 3, 3);
1033 	}
1034 
1035 	if (err < 0) {
1036 		/* MSI-X failed */
1037 		dev_err(&adapter->pdev->dev,
1038 			"Failed to initialize MSI-X interrupts.\n");
1039 		igbvf_reset_interrupt_capability(adapter);
1040 	}
1041 }
1042 
1043 /**
1044  * igbvf_request_msix - Initialize MSI-X interrupts
1045  * @adapter: board private structure
1046  *
1047  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048  * kernel.
1049  **/
igbvf_request_msix(struct igbvf_adapter * adapter)1050 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 {
1052 	struct net_device *netdev = adapter->netdev;
1053 	int err = 0, vector = 0;
1054 
1055 	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 	} else {
1059 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 	}
1062 
1063 	err = request_irq(adapter->msix_entries[vector].vector,
1064 			  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 			  netdev);
1066 	if (err)
1067 		goto out;
1068 
1069 	adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 	adapter->tx_ring->itr_val = adapter->current_itr;
1071 	vector++;
1072 
1073 	err = request_irq(adapter->msix_entries[vector].vector,
1074 			  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 			  netdev);
1076 	if (err)
1077 		goto free_irq_tx;
1078 
1079 	adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 	adapter->rx_ring->itr_val = adapter->current_itr;
1081 	vector++;
1082 
1083 	err = request_irq(adapter->msix_entries[vector].vector,
1084 			  igbvf_msix_other, 0, netdev->name, netdev);
1085 	if (err)
1086 		goto free_irq_rx;
1087 
1088 	igbvf_configure_msix(adapter);
1089 	return 0;
1090 free_irq_rx:
1091 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1092 free_irq_tx:
1093 	free_irq(adapter->msix_entries[--vector].vector, netdev);
1094 out:
1095 	return err;
1096 }
1097 
1098 /**
1099  * igbvf_alloc_queues - Allocate memory for all rings
1100  * @adapter: board private structure to initialize
1101  **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1102 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1103 {
1104 	struct net_device *netdev = adapter->netdev;
1105 
1106 	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 	if (!adapter->tx_ring)
1108 		return -ENOMEM;
1109 
1110 	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1111 	if (!adapter->rx_ring) {
1112 		kfree(adapter->tx_ring);
1113 		return -ENOMEM;
1114 	}
1115 
1116 	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1117 
1118 	return 0;
1119 }
1120 
1121 /**
1122  * igbvf_request_irq - initialize interrupts
1123  * @adapter: board private structure
1124  *
1125  * Attempts to configure interrupts using the best available
1126  * capabilities of the hardware and kernel.
1127  **/
igbvf_request_irq(struct igbvf_adapter * adapter)1128 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1129 {
1130 	int err = -1;
1131 
1132 	/* igbvf supports msi-x only */
1133 	if (adapter->msix_entries)
1134 		err = igbvf_request_msix(adapter);
1135 
1136 	if (!err)
1137 		return err;
1138 
1139 	dev_err(&adapter->pdev->dev,
1140 		"Unable to allocate interrupt, Error: %d\n", err);
1141 
1142 	return err;
1143 }
1144 
igbvf_free_irq(struct igbvf_adapter * adapter)1145 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1146 {
1147 	struct net_device *netdev = adapter->netdev;
1148 	int vector;
1149 
1150 	if (adapter->msix_entries) {
1151 		for (vector = 0; vector < 3; vector++)
1152 			free_irq(adapter->msix_entries[vector].vector, netdev);
1153 	}
1154 }
1155 
1156 /**
1157  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1158  * @adapter: board private structure
1159  **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1160 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1161 {
1162 	struct e1000_hw *hw = &adapter->hw;
1163 
1164 	ew32(EIMC, ~0);
1165 
1166 	if (adapter->msix_entries)
1167 		ew32(EIAC, 0);
1168 }
1169 
1170 /**
1171  * igbvf_irq_enable - Enable default interrupt generation settings
1172  * @adapter: board private structure
1173  **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1174 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1175 {
1176 	struct e1000_hw *hw = &adapter->hw;
1177 
1178 	ew32(EIAC, adapter->eims_enable_mask);
1179 	ew32(EIAM, adapter->eims_enable_mask);
1180 	ew32(EIMS, adapter->eims_enable_mask);
1181 }
1182 
1183 /**
1184  * igbvf_poll - NAPI Rx polling callback
1185  * @napi: struct associated with this polling callback
1186  * @budget: amount of packets driver is allowed to process this poll
1187  **/
igbvf_poll(struct napi_struct * napi,int budget)1188 static int igbvf_poll(struct napi_struct *napi, int budget)
1189 {
1190 	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1191 	struct igbvf_adapter *adapter = rx_ring->adapter;
1192 	struct e1000_hw *hw = &adapter->hw;
1193 	int work_done = 0;
1194 
1195 	igbvf_clean_rx_irq(adapter, &work_done, budget);
1196 
1197 	if (work_done == budget)
1198 		return budget;
1199 
1200 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1201 	 * poll us due to busy-polling
1202 	 */
1203 	if (likely(napi_complete_done(napi, work_done))) {
1204 		if (adapter->requested_itr & 3)
1205 			igbvf_set_itr(adapter);
1206 
1207 		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1208 			ew32(EIMS, adapter->rx_ring->eims_value);
1209 	}
1210 
1211 	return work_done;
1212 }
1213 
1214 /**
1215  * igbvf_set_rlpml - set receive large packet maximum length
1216  * @adapter: board private structure
1217  *
1218  * Configure the maximum size of packets that will be received
1219  */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1220 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1221 {
1222 	int max_frame_size;
1223 	struct e1000_hw *hw = &adapter->hw;
1224 
1225 	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1226 
1227 	spin_lock_bh(&hw->mbx_lock);
1228 
1229 	e1000_rlpml_set_vf(hw, max_frame_size);
1230 
1231 	spin_unlock_bh(&hw->mbx_lock);
1232 }
1233 
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1234 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1235 				 __be16 proto, u16 vid)
1236 {
1237 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 	struct e1000_hw *hw = &adapter->hw;
1239 
1240 	spin_lock_bh(&hw->mbx_lock);
1241 
1242 	if (hw->mac.ops.set_vfta(hw, vid, true)) {
1243 		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1244 		spin_unlock_bh(&hw->mbx_lock);
1245 		return -EINVAL;
1246 	}
1247 
1248 	spin_unlock_bh(&hw->mbx_lock);
1249 
1250 	set_bit(vid, adapter->active_vlans);
1251 	return 0;
1252 }
1253 
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255 				  __be16 proto, u16 vid)
1256 {
1257 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1258 	struct e1000_hw *hw = &adapter->hw;
1259 
1260 	spin_lock_bh(&hw->mbx_lock);
1261 
1262 	if (hw->mac.ops.set_vfta(hw, vid, false)) {
1263 		dev_err(&adapter->pdev->dev,
1264 			"Failed to remove vlan id %d\n", vid);
1265 		spin_unlock_bh(&hw->mbx_lock);
1266 		return -EINVAL;
1267 	}
1268 
1269 	spin_unlock_bh(&hw->mbx_lock);
1270 
1271 	clear_bit(vid, adapter->active_vlans);
1272 	return 0;
1273 }
1274 
igbvf_restore_vlan(struct igbvf_adapter * adapter)1275 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1276 {
1277 	u16 vid;
1278 
1279 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1280 		igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1281 }
1282 
1283 /**
1284  * igbvf_configure_tx - Configure Transmit Unit after Reset
1285  * @adapter: board private structure
1286  *
1287  * Configure the Tx unit of the MAC after a reset.
1288  **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1289 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1290 {
1291 	struct e1000_hw *hw = &adapter->hw;
1292 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1293 	u64 tdba;
1294 	u32 txdctl, dca_txctrl;
1295 
1296 	/* disable transmits */
1297 	txdctl = er32(TXDCTL(0));
1298 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1299 	e1e_flush();
1300 	msleep(10);
1301 
1302 	/* Setup the HW Tx Head and Tail descriptor pointers */
1303 	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1304 	tdba = tx_ring->dma;
1305 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1306 	ew32(TDBAH(0), (tdba >> 32));
1307 	ew32(TDH(0), 0);
1308 	ew32(TDT(0), 0);
1309 	tx_ring->head = E1000_TDH(0);
1310 	tx_ring->tail = E1000_TDT(0);
1311 
1312 	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1313 	 * MUST be delivered in order or it will completely screw up
1314 	 * our bookkeeping.
1315 	 */
1316 	dca_txctrl = er32(DCA_TXCTRL(0));
1317 	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1318 	ew32(DCA_TXCTRL(0), dca_txctrl);
1319 
1320 	/* enable transmits */
1321 	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1322 	ew32(TXDCTL(0), txdctl);
1323 
1324 	/* Setup Transmit Descriptor Settings for eop descriptor */
1325 	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1326 
1327 	/* enable Report Status bit */
1328 	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1329 }
1330 
1331 /**
1332  * igbvf_setup_srrctl - configure the receive control registers
1333  * @adapter: Board private structure
1334  **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1335 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1336 {
1337 	struct e1000_hw *hw = &adapter->hw;
1338 	u32 srrctl = 0;
1339 
1340 	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1341 		    E1000_SRRCTL_BSIZEHDR_MASK |
1342 		    E1000_SRRCTL_BSIZEPKT_MASK);
1343 
1344 	/* Enable queue drop to avoid head of line blocking */
1345 	srrctl |= E1000_SRRCTL_DROP_EN;
1346 
1347 	/* Setup buffer sizes */
1348 	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1349 		  E1000_SRRCTL_BSIZEPKT_SHIFT;
1350 
1351 	if (adapter->rx_buffer_len < 2048) {
1352 		adapter->rx_ps_hdr_size = 0;
1353 		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1354 	} else {
1355 		adapter->rx_ps_hdr_size = 128;
1356 		srrctl |= adapter->rx_ps_hdr_size <<
1357 			  E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1358 		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1359 	}
1360 
1361 	ew32(SRRCTL(0), srrctl);
1362 }
1363 
1364 /**
1365  * igbvf_configure_rx - Configure Receive Unit after Reset
1366  * @adapter: board private structure
1367  *
1368  * Configure the Rx unit of the MAC after a reset.
1369  **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1370 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1371 {
1372 	struct e1000_hw *hw = &adapter->hw;
1373 	struct igbvf_ring *rx_ring = adapter->rx_ring;
1374 	u64 rdba;
1375 	u32 rxdctl;
1376 
1377 	/* disable receives */
1378 	rxdctl = er32(RXDCTL(0));
1379 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1380 	e1e_flush();
1381 	msleep(10);
1382 
1383 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1384 	 * the Base and Length of the Rx Descriptor Ring
1385 	 */
1386 	rdba = rx_ring->dma;
1387 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1388 	ew32(RDBAH(0), (rdba >> 32));
1389 	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1390 	rx_ring->head = E1000_RDH(0);
1391 	rx_ring->tail = E1000_RDT(0);
1392 	ew32(RDH(0), 0);
1393 	ew32(RDT(0), 0);
1394 
1395 	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1396 	rxdctl &= 0xFFF00000;
1397 	rxdctl |= IGBVF_RX_PTHRESH;
1398 	rxdctl |= IGBVF_RX_HTHRESH << 8;
1399 	rxdctl |= IGBVF_RX_WTHRESH << 16;
1400 
1401 	igbvf_set_rlpml(adapter);
1402 
1403 	/* enable receives */
1404 	ew32(RXDCTL(0), rxdctl);
1405 }
1406 
1407 /**
1408  * igbvf_set_multi - Multicast and Promiscuous mode set
1409  * @netdev: network interface device structure
1410  *
1411  * The set_multi entry point is called whenever the multicast address
1412  * list or the network interface flags are updated.  This routine is
1413  * responsible for configuring the hardware for proper multicast,
1414  * promiscuous mode, and all-multi behavior.
1415  **/
igbvf_set_multi(struct net_device * netdev)1416 static void igbvf_set_multi(struct net_device *netdev)
1417 {
1418 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1419 	struct e1000_hw *hw = &adapter->hw;
1420 	struct netdev_hw_addr *ha;
1421 	u8  *mta_list = NULL;
1422 	int i;
1423 
1424 	if (!netdev_mc_empty(netdev)) {
1425 		mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1426 					 GFP_ATOMIC);
1427 		if (!mta_list)
1428 			return;
1429 	}
1430 
1431 	/* prepare a packed array of only addresses. */
1432 	i = 0;
1433 	netdev_for_each_mc_addr(ha, netdev)
1434 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1435 
1436 	spin_lock_bh(&hw->mbx_lock);
1437 
1438 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1439 
1440 	spin_unlock_bh(&hw->mbx_lock);
1441 	kfree(mta_list);
1442 }
1443 
1444 /**
1445  * igbvf_set_uni - Configure unicast MAC filters
1446  * @netdev: network interface device structure
1447  *
1448  * This routine is responsible for configuring the hardware for proper
1449  * unicast filters.
1450  **/
igbvf_set_uni(struct net_device * netdev)1451 static int igbvf_set_uni(struct net_device *netdev)
1452 {
1453 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1454 	struct e1000_hw *hw = &adapter->hw;
1455 
1456 	if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1457 		pr_err("Too many unicast filters - No Space\n");
1458 		return -ENOSPC;
1459 	}
1460 
1461 	spin_lock_bh(&hw->mbx_lock);
1462 
1463 	/* Clear all unicast MAC filters */
1464 	hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1465 
1466 	spin_unlock_bh(&hw->mbx_lock);
1467 
1468 	if (!netdev_uc_empty(netdev)) {
1469 		struct netdev_hw_addr *ha;
1470 
1471 		/* Add MAC filters one by one */
1472 		netdev_for_each_uc_addr(ha, netdev) {
1473 			spin_lock_bh(&hw->mbx_lock);
1474 
1475 			hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1476 						ha->addr);
1477 
1478 			spin_unlock_bh(&hw->mbx_lock);
1479 			udelay(200);
1480 		}
1481 	}
1482 
1483 	return 0;
1484 }
1485 
igbvf_set_rx_mode(struct net_device * netdev)1486 static void igbvf_set_rx_mode(struct net_device *netdev)
1487 {
1488 	igbvf_set_multi(netdev);
1489 	igbvf_set_uni(netdev);
1490 }
1491 
1492 /**
1493  * igbvf_configure - configure the hardware for Rx and Tx
1494  * @adapter: private board structure
1495  **/
igbvf_configure(struct igbvf_adapter * adapter)1496 static void igbvf_configure(struct igbvf_adapter *adapter)
1497 {
1498 	igbvf_set_rx_mode(adapter->netdev);
1499 
1500 	igbvf_restore_vlan(adapter);
1501 
1502 	igbvf_configure_tx(adapter);
1503 	igbvf_setup_srrctl(adapter);
1504 	igbvf_configure_rx(adapter);
1505 	igbvf_alloc_rx_buffers(adapter->rx_ring,
1506 			       igbvf_desc_unused(adapter->rx_ring));
1507 }
1508 
1509 /* igbvf_reset - bring the hardware into a known good state
1510  * @adapter: private board structure
1511  *
1512  * This function boots the hardware and enables some settings that
1513  * require a configuration cycle of the hardware - those cannot be
1514  * set/changed during runtime. After reset the device needs to be
1515  * properly configured for Rx, Tx etc.
1516  */
igbvf_reset(struct igbvf_adapter * adapter)1517 static void igbvf_reset(struct igbvf_adapter *adapter)
1518 {
1519 	struct e1000_mac_info *mac = &adapter->hw.mac;
1520 	struct net_device *netdev = adapter->netdev;
1521 	struct e1000_hw *hw = &adapter->hw;
1522 
1523 	spin_lock_bh(&hw->mbx_lock);
1524 
1525 	/* Allow time for pending master requests to run */
1526 	if (mac->ops.reset_hw(hw))
1527 		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1528 
1529 	mac->ops.init_hw(hw);
1530 
1531 	spin_unlock_bh(&hw->mbx_lock);
1532 
1533 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1534 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1535 		       netdev->addr_len);
1536 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1537 		       netdev->addr_len);
1538 	}
1539 
1540 	adapter->last_reset = jiffies;
1541 }
1542 
igbvf_up(struct igbvf_adapter * adapter)1543 int igbvf_up(struct igbvf_adapter *adapter)
1544 {
1545 	struct e1000_hw *hw = &adapter->hw;
1546 
1547 	/* hardware has been reset, we need to reload some things */
1548 	igbvf_configure(adapter);
1549 
1550 	clear_bit(__IGBVF_DOWN, &adapter->state);
1551 
1552 	napi_enable(&adapter->rx_ring->napi);
1553 	if (adapter->msix_entries)
1554 		igbvf_configure_msix(adapter);
1555 
1556 	/* Clear any pending interrupts. */
1557 	er32(EICR);
1558 	igbvf_irq_enable(adapter);
1559 
1560 	/* start the watchdog */
1561 	hw->mac.get_link_status = 1;
1562 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1563 
1564 	return 0;
1565 }
1566 
igbvf_down(struct igbvf_adapter * adapter)1567 void igbvf_down(struct igbvf_adapter *adapter)
1568 {
1569 	struct net_device *netdev = adapter->netdev;
1570 	struct e1000_hw *hw = &adapter->hw;
1571 	u32 rxdctl, txdctl;
1572 
1573 	/* signal that we're down so the interrupt handler does not
1574 	 * reschedule our watchdog timer
1575 	 */
1576 	set_bit(__IGBVF_DOWN, &adapter->state);
1577 
1578 	/* disable receives in the hardware */
1579 	rxdctl = er32(RXDCTL(0));
1580 	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1581 
1582 	netif_carrier_off(netdev);
1583 	netif_stop_queue(netdev);
1584 
1585 	/* disable transmits in the hardware */
1586 	txdctl = er32(TXDCTL(0));
1587 	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1588 
1589 	/* flush both disables and wait for them to finish */
1590 	e1e_flush();
1591 	msleep(10);
1592 
1593 	napi_disable(&adapter->rx_ring->napi);
1594 
1595 	igbvf_irq_disable(adapter);
1596 
1597 	del_timer_sync(&adapter->watchdog_timer);
1598 
1599 	/* record the stats before reset*/
1600 	igbvf_update_stats(adapter);
1601 
1602 	adapter->link_speed = 0;
1603 	adapter->link_duplex = 0;
1604 
1605 	igbvf_reset(adapter);
1606 	igbvf_clean_tx_ring(adapter->tx_ring);
1607 	igbvf_clean_rx_ring(adapter->rx_ring);
1608 }
1609 
igbvf_reinit_locked(struct igbvf_adapter * adapter)1610 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1611 {
1612 	might_sleep();
1613 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1614 		usleep_range(1000, 2000);
1615 	igbvf_down(adapter);
1616 	igbvf_up(adapter);
1617 	clear_bit(__IGBVF_RESETTING, &adapter->state);
1618 }
1619 
1620 /**
1621  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1622  * @adapter: board private structure to initialize
1623  *
1624  * igbvf_sw_init initializes the Adapter private data structure.
1625  * Fields are initialized based on PCI device information and
1626  * OS network device settings (MTU size).
1627  **/
igbvf_sw_init(struct igbvf_adapter * adapter)1628 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1629 {
1630 	struct net_device *netdev = adapter->netdev;
1631 	s32 rc;
1632 
1633 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1634 	adapter->rx_ps_hdr_size = 0;
1635 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1636 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1637 
1638 	adapter->tx_int_delay = 8;
1639 	adapter->tx_abs_int_delay = 32;
1640 	adapter->rx_int_delay = 0;
1641 	adapter->rx_abs_int_delay = 8;
1642 	adapter->requested_itr = 3;
1643 	adapter->current_itr = IGBVF_START_ITR;
1644 
1645 	/* Set various function pointers */
1646 	adapter->ei->init_ops(&adapter->hw);
1647 
1648 	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1649 	if (rc)
1650 		return rc;
1651 
1652 	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1653 	if (rc)
1654 		return rc;
1655 
1656 	igbvf_set_interrupt_capability(adapter);
1657 
1658 	if (igbvf_alloc_queues(adapter))
1659 		return -ENOMEM;
1660 
1661 	spin_lock_init(&adapter->tx_queue_lock);
1662 
1663 	/* Explicitly disable IRQ since the NIC can be in any state. */
1664 	igbvf_irq_disable(adapter);
1665 
1666 	spin_lock_init(&adapter->stats_lock);
1667 	spin_lock_init(&adapter->hw.mbx_lock);
1668 
1669 	set_bit(__IGBVF_DOWN, &adapter->state);
1670 	return 0;
1671 }
1672 
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1673 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1674 {
1675 	struct e1000_hw *hw = &adapter->hw;
1676 
1677 	adapter->stats.last_gprc = er32(VFGPRC);
1678 	adapter->stats.last_gorc = er32(VFGORC);
1679 	adapter->stats.last_gptc = er32(VFGPTC);
1680 	adapter->stats.last_gotc = er32(VFGOTC);
1681 	adapter->stats.last_mprc = er32(VFMPRC);
1682 	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1683 	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1684 	adapter->stats.last_gorlbc = er32(VFGORLBC);
1685 	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1686 
1687 	adapter->stats.base_gprc = er32(VFGPRC);
1688 	adapter->stats.base_gorc = er32(VFGORC);
1689 	adapter->stats.base_gptc = er32(VFGPTC);
1690 	adapter->stats.base_gotc = er32(VFGOTC);
1691 	adapter->stats.base_mprc = er32(VFMPRC);
1692 	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1693 	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1694 	adapter->stats.base_gorlbc = er32(VFGORLBC);
1695 	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1696 }
1697 
1698 /**
1699  * igbvf_open - Called when a network interface is made active
1700  * @netdev: network interface device structure
1701  *
1702  * Returns 0 on success, negative value on failure
1703  *
1704  * The open entry point is called when a network interface is made
1705  * active by the system (IFF_UP).  At this point all resources needed
1706  * for transmit and receive operations are allocated, the interrupt
1707  * handler is registered with the OS, the watchdog timer is started,
1708  * and the stack is notified that the interface is ready.
1709  **/
igbvf_open(struct net_device * netdev)1710 static int igbvf_open(struct net_device *netdev)
1711 {
1712 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1713 	struct e1000_hw *hw = &adapter->hw;
1714 	int err;
1715 
1716 	/* disallow open during test */
1717 	if (test_bit(__IGBVF_TESTING, &adapter->state))
1718 		return -EBUSY;
1719 
1720 	/* allocate transmit descriptors */
1721 	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1722 	if (err)
1723 		goto err_setup_tx;
1724 
1725 	/* allocate receive descriptors */
1726 	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1727 	if (err)
1728 		goto err_setup_rx;
1729 
1730 	/* before we allocate an interrupt, we must be ready to handle it.
1731 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1732 	 * as soon as we call pci_request_irq, so we have to setup our
1733 	 * clean_rx handler before we do so.
1734 	 */
1735 	igbvf_configure(adapter);
1736 
1737 	err = igbvf_request_irq(adapter);
1738 	if (err)
1739 		goto err_req_irq;
1740 
1741 	/* From here on the code is the same as igbvf_up() */
1742 	clear_bit(__IGBVF_DOWN, &adapter->state);
1743 
1744 	napi_enable(&adapter->rx_ring->napi);
1745 
1746 	/* clear any pending interrupts */
1747 	er32(EICR);
1748 
1749 	igbvf_irq_enable(adapter);
1750 
1751 	/* start the watchdog */
1752 	hw->mac.get_link_status = 1;
1753 	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1754 
1755 	return 0;
1756 
1757 err_req_irq:
1758 	igbvf_free_rx_resources(adapter->rx_ring);
1759 err_setup_rx:
1760 	igbvf_free_tx_resources(adapter->tx_ring);
1761 err_setup_tx:
1762 	igbvf_reset(adapter);
1763 
1764 	return err;
1765 }
1766 
1767 /**
1768  * igbvf_close - Disables a network interface
1769  * @netdev: network interface device structure
1770  *
1771  * Returns 0, this is not allowed to fail
1772  *
1773  * The close entry point is called when an interface is de-activated
1774  * by the OS.  The hardware is still under the drivers control, but
1775  * needs to be disabled.  A global MAC reset is issued to stop the
1776  * hardware, and all transmit and receive resources are freed.
1777  **/
igbvf_close(struct net_device * netdev)1778 static int igbvf_close(struct net_device *netdev)
1779 {
1780 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1781 
1782 	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1783 	igbvf_down(adapter);
1784 
1785 	igbvf_free_irq(adapter);
1786 
1787 	igbvf_free_tx_resources(adapter->tx_ring);
1788 	igbvf_free_rx_resources(adapter->rx_ring);
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  * igbvf_set_mac - Change the Ethernet Address of the NIC
1795  * @netdev: network interface device structure
1796  * @p: pointer to an address structure
1797  *
1798  * Returns 0 on success, negative on failure
1799  **/
igbvf_set_mac(struct net_device * netdev,void * p)1800 static int igbvf_set_mac(struct net_device *netdev, void *p)
1801 {
1802 	struct igbvf_adapter *adapter = netdev_priv(netdev);
1803 	struct e1000_hw *hw = &adapter->hw;
1804 	struct sockaddr *addr = p;
1805 
1806 	if (!is_valid_ether_addr(addr->sa_data))
1807 		return -EADDRNOTAVAIL;
1808 
1809 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1810 
1811 	spin_lock_bh(&hw->mbx_lock);
1812 
1813 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1814 
1815 	spin_unlock_bh(&hw->mbx_lock);
1816 
1817 	if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1818 		return -EADDRNOTAVAIL;
1819 
1820 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1821 
1822 	return 0;
1823 }
1824 
1825 #define UPDATE_VF_COUNTER(reg, name) \
1826 { \
1827 	u32 current_counter = er32(reg); \
1828 	if (current_counter < adapter->stats.last_##name) \
1829 		adapter->stats.name += 0x100000000LL; \
1830 	adapter->stats.last_##name = current_counter; \
1831 	adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1832 	adapter->stats.name |= current_counter; \
1833 }
1834 
1835 /**
1836  * igbvf_update_stats - Update the board statistics counters
1837  * @adapter: board private structure
1838 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1839 void igbvf_update_stats(struct igbvf_adapter *adapter)
1840 {
1841 	struct e1000_hw *hw = &adapter->hw;
1842 	struct pci_dev *pdev = adapter->pdev;
1843 
1844 	/* Prevent stats update while adapter is being reset, link is down
1845 	 * or if the pci connection is down.
1846 	 */
1847 	if (adapter->link_speed == 0)
1848 		return;
1849 
1850 	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1851 		return;
1852 
1853 	if (pci_channel_offline(pdev))
1854 		return;
1855 
1856 	UPDATE_VF_COUNTER(VFGPRC, gprc);
1857 	UPDATE_VF_COUNTER(VFGORC, gorc);
1858 	UPDATE_VF_COUNTER(VFGPTC, gptc);
1859 	UPDATE_VF_COUNTER(VFGOTC, gotc);
1860 	UPDATE_VF_COUNTER(VFMPRC, mprc);
1861 	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1862 	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1863 	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1864 	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1865 
1866 	/* Fill out the OS statistics structure */
1867 	adapter->netdev->stats.multicast = adapter->stats.mprc;
1868 }
1869 
igbvf_print_link_info(struct igbvf_adapter * adapter)1870 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1871 {
1872 	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1873 		 adapter->link_speed,
1874 		 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1875 }
1876 
igbvf_has_link(struct igbvf_adapter * adapter)1877 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1878 {
1879 	struct e1000_hw *hw = &adapter->hw;
1880 	s32 ret_val = E1000_SUCCESS;
1881 	bool link_active;
1882 
1883 	/* If interface is down, stay link down */
1884 	if (test_bit(__IGBVF_DOWN, &adapter->state))
1885 		return false;
1886 
1887 	spin_lock_bh(&hw->mbx_lock);
1888 
1889 	ret_val = hw->mac.ops.check_for_link(hw);
1890 
1891 	spin_unlock_bh(&hw->mbx_lock);
1892 
1893 	link_active = !hw->mac.get_link_status;
1894 
1895 	/* if check for link returns error we will need to reset */
1896 	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1897 		schedule_work(&adapter->reset_task);
1898 
1899 	return link_active;
1900 }
1901 
1902 /**
1903  * igbvf_watchdog - Timer Call-back
1904  * @t: timer list pointer containing private struct
1905  **/
igbvf_watchdog(struct timer_list * t)1906 static void igbvf_watchdog(struct timer_list *t)
1907 {
1908 	struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1909 
1910 	/* Do the rest outside of interrupt context */
1911 	schedule_work(&adapter->watchdog_task);
1912 }
1913 
igbvf_watchdog_task(struct work_struct * work)1914 static void igbvf_watchdog_task(struct work_struct *work)
1915 {
1916 	struct igbvf_adapter *adapter = container_of(work,
1917 						     struct igbvf_adapter,
1918 						     watchdog_task);
1919 	struct net_device *netdev = adapter->netdev;
1920 	struct e1000_mac_info *mac = &adapter->hw.mac;
1921 	struct igbvf_ring *tx_ring = adapter->tx_ring;
1922 	struct e1000_hw *hw = &adapter->hw;
1923 	u32 link;
1924 	int tx_pending = 0;
1925 
1926 	link = igbvf_has_link(adapter);
1927 
1928 	if (link) {
1929 		if (!netif_carrier_ok(netdev)) {
1930 			mac->ops.get_link_up_info(&adapter->hw,
1931 						  &adapter->link_speed,
1932 						  &adapter->link_duplex);
1933 			igbvf_print_link_info(adapter);
1934 
1935 			netif_carrier_on(netdev);
1936 			netif_wake_queue(netdev);
1937 		}
1938 	} else {
1939 		if (netif_carrier_ok(netdev)) {
1940 			adapter->link_speed = 0;
1941 			adapter->link_duplex = 0;
1942 			dev_info(&adapter->pdev->dev, "Link is Down\n");
1943 			netif_carrier_off(netdev);
1944 			netif_stop_queue(netdev);
1945 		}
1946 	}
1947 
1948 	if (netif_carrier_ok(netdev)) {
1949 		igbvf_update_stats(adapter);
1950 	} else {
1951 		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1952 			      tx_ring->count);
1953 		if (tx_pending) {
1954 			/* We've lost link, so the controller stops DMA,
1955 			 * but we've got queued Tx work that's never going
1956 			 * to get done, so reset controller to flush Tx.
1957 			 * (Do the reset outside of interrupt context).
1958 			 */
1959 			adapter->tx_timeout_count++;
1960 			schedule_work(&adapter->reset_task);
1961 		}
1962 	}
1963 
1964 	/* Cause software interrupt to ensure Rx ring is cleaned */
1965 	ew32(EICS, adapter->rx_ring->eims_value);
1966 
1967 	/* Reset the timer */
1968 	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1969 		mod_timer(&adapter->watchdog_timer,
1970 			  round_jiffies(jiffies + (2 * HZ)));
1971 }
1972 
1973 #define IGBVF_TX_FLAGS_CSUM		0x00000001
1974 #define IGBVF_TX_FLAGS_VLAN		0x00000002
1975 #define IGBVF_TX_FLAGS_TSO		0x00000004
1976 #define IGBVF_TX_FLAGS_IPV4		0x00000008
1977 #define IGBVF_TX_FLAGS_VLAN_MASK	0xffff0000
1978 #define IGBVF_TX_FLAGS_VLAN_SHIFT	16
1979 
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1980 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1981 			      u32 type_tucmd, u32 mss_l4len_idx)
1982 {
1983 	struct e1000_adv_tx_context_desc *context_desc;
1984 	struct igbvf_buffer *buffer_info;
1985 	u16 i = tx_ring->next_to_use;
1986 
1987 	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1988 	buffer_info = &tx_ring->buffer_info[i];
1989 
1990 	i++;
1991 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1992 
1993 	/* set bits to identify this as an advanced context descriptor */
1994 	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1995 
1996 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1997 	context_desc->seqnum_seed	= 0;
1998 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1999 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
2000 
2001 	buffer_info->time_stamp = jiffies;
2002 	buffer_info->dma = 0;
2003 }
2004 
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)2005 static int igbvf_tso(struct igbvf_ring *tx_ring,
2006 		     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2007 {
2008 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2009 	union {
2010 		struct iphdr *v4;
2011 		struct ipv6hdr *v6;
2012 		unsigned char *hdr;
2013 	} ip;
2014 	union {
2015 		struct tcphdr *tcp;
2016 		unsigned char *hdr;
2017 	} l4;
2018 	u32 paylen, l4_offset;
2019 	int err;
2020 
2021 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2022 		return 0;
2023 
2024 	if (!skb_is_gso(skb))
2025 		return 0;
2026 
2027 	err = skb_cow_head(skb, 0);
2028 	if (err < 0)
2029 		return err;
2030 
2031 	ip.hdr = skb_network_header(skb);
2032 	l4.hdr = skb_checksum_start(skb);
2033 
2034 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2035 	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2036 
2037 	/* initialize outer IP header fields */
2038 	if (ip.v4->version == 4) {
2039 		unsigned char *csum_start = skb_checksum_start(skb);
2040 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2041 
2042 		/* IP header will have to cancel out any data that
2043 		 * is not a part of the outer IP header
2044 		 */
2045 		ip.v4->check = csum_fold(csum_partial(trans_start,
2046 						      csum_start - trans_start,
2047 						      0));
2048 		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2049 
2050 		ip.v4->tot_len = 0;
2051 	} else {
2052 		ip.v6->payload_len = 0;
2053 	}
2054 
2055 	/* determine offset of inner transport header */
2056 	l4_offset = l4.hdr - skb->data;
2057 
2058 	/* compute length of segmentation header */
2059 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
2060 
2061 	/* remove payload length from inner checksum */
2062 	paylen = skb->len - l4_offset;
2063 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2064 
2065 	/* MSS L4LEN IDX */
2066 	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2067 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2068 
2069 	/* VLAN MACLEN IPLEN */
2070 	vlan_macip_lens = l4.hdr - ip.hdr;
2071 	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2072 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2073 
2074 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2075 
2076 	return 1;
2077 }
2078 
igbvf_ipv6_csum_is_sctp(struct sk_buff * skb)2079 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2080 {
2081 	unsigned int offset = 0;
2082 
2083 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2084 
2085 	return offset == skb_checksum_start_offset(skb);
2086 }
2087 
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2088 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2089 			  u32 tx_flags, __be16 protocol)
2090 {
2091 	u32 vlan_macip_lens = 0;
2092 	u32 type_tucmd = 0;
2093 
2094 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
2095 csum_failed:
2096 		if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2097 			return false;
2098 		goto no_csum;
2099 	}
2100 
2101 	switch (skb->csum_offset) {
2102 	case offsetof(struct tcphdr, check):
2103 		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2104 		fallthrough;
2105 	case offsetof(struct udphdr, check):
2106 		break;
2107 	case offsetof(struct sctphdr, checksum):
2108 		/* validate that this is actually an SCTP request */
2109 		if (((protocol == htons(ETH_P_IP)) &&
2110 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2111 		    ((protocol == htons(ETH_P_IPV6)) &&
2112 		     igbvf_ipv6_csum_is_sctp(skb))) {
2113 			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2114 			break;
2115 		}
2116 		fallthrough;
2117 	default:
2118 		skb_checksum_help(skb);
2119 		goto csum_failed;
2120 	}
2121 
2122 	vlan_macip_lens = skb_checksum_start_offset(skb) -
2123 			  skb_network_offset(skb);
2124 no_csum:
2125 	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2126 	vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2127 
2128 	igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2129 	return true;
2130 }
2131 
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2132 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2133 {
2134 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2135 
2136 	/* there is enough descriptors then we don't need to worry  */
2137 	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2138 		return 0;
2139 
2140 	netif_stop_queue(netdev);
2141 
2142 	/* Herbert's original patch had:
2143 	 *  smp_mb__after_netif_stop_queue();
2144 	 * but since that doesn't exist yet, just open code it.
2145 	 */
2146 	smp_mb();
2147 
2148 	/* We need to check again just in case room has been made available */
2149 	if (igbvf_desc_unused(adapter->tx_ring) < size)
2150 		return -EBUSY;
2151 
2152 	netif_wake_queue(netdev);
2153 
2154 	++adapter->restart_queue;
2155 	return 0;
2156 }
2157 
2158 #define IGBVF_MAX_TXD_PWR	16
2159 #define IGBVF_MAX_DATA_PER_TXD	(1u << IGBVF_MAX_TXD_PWR)
2160 
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2161 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2162 				   struct igbvf_ring *tx_ring,
2163 				   struct sk_buff *skb)
2164 {
2165 	struct igbvf_buffer *buffer_info;
2166 	struct pci_dev *pdev = adapter->pdev;
2167 	unsigned int len = skb_headlen(skb);
2168 	unsigned int count = 0, i;
2169 	unsigned int f;
2170 
2171 	i = tx_ring->next_to_use;
2172 
2173 	buffer_info = &tx_ring->buffer_info[i];
2174 	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2175 	buffer_info->length = len;
2176 	/* set time_stamp *before* dma to help avoid a possible race */
2177 	buffer_info->time_stamp = jiffies;
2178 	buffer_info->mapped_as_page = false;
2179 	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2180 					  DMA_TO_DEVICE);
2181 	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2182 		goto dma_error;
2183 
2184 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2185 		const skb_frag_t *frag;
2186 
2187 		count++;
2188 		i++;
2189 		if (i == tx_ring->count)
2190 			i = 0;
2191 
2192 		frag = &skb_shinfo(skb)->frags[f];
2193 		len = skb_frag_size(frag);
2194 
2195 		buffer_info = &tx_ring->buffer_info[i];
2196 		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2197 		buffer_info->length = len;
2198 		buffer_info->time_stamp = jiffies;
2199 		buffer_info->mapped_as_page = true;
2200 		buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2201 						    DMA_TO_DEVICE);
2202 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2203 			goto dma_error;
2204 	}
2205 
2206 	tx_ring->buffer_info[i].skb = skb;
2207 
2208 	return ++count;
2209 
2210 dma_error:
2211 	dev_err(&pdev->dev, "TX DMA map failed\n");
2212 
2213 	/* clear timestamp and dma mappings for failed buffer_info mapping */
2214 	buffer_info->dma = 0;
2215 	buffer_info->time_stamp = 0;
2216 	buffer_info->length = 0;
2217 	buffer_info->mapped_as_page = false;
2218 	if (count)
2219 		count--;
2220 
2221 	/* clear timestamp and dma mappings for remaining portion of packet */
2222 	while (count--) {
2223 		if (i == 0)
2224 			i += tx_ring->count;
2225 		i--;
2226 		buffer_info = &tx_ring->buffer_info[i];
2227 		igbvf_put_txbuf(adapter, buffer_info);
2228 	}
2229 
2230 	return 0;
2231 }
2232 
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2233 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2234 				      struct igbvf_ring *tx_ring,
2235 				      int tx_flags, int count,
2236 				      unsigned int first, u32 paylen,
2237 				      u8 hdr_len)
2238 {
2239 	union e1000_adv_tx_desc *tx_desc = NULL;
2240 	struct igbvf_buffer *buffer_info;
2241 	u32 olinfo_status = 0, cmd_type_len;
2242 	unsigned int i;
2243 
2244 	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2245 			E1000_ADVTXD_DCMD_DEXT);
2246 
2247 	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2248 		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2249 
2250 	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2251 		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2252 
2253 		/* insert tcp checksum */
2254 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2255 
2256 		/* insert ip checksum */
2257 		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2258 			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2259 
2260 	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2261 		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2262 	}
2263 
2264 	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2265 
2266 	i = tx_ring->next_to_use;
2267 	while (count--) {
2268 		buffer_info = &tx_ring->buffer_info[i];
2269 		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2270 		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2271 		tx_desc->read.cmd_type_len =
2272 			 cpu_to_le32(cmd_type_len | buffer_info->length);
2273 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2274 		i++;
2275 		if (i == tx_ring->count)
2276 			i = 0;
2277 	}
2278 
2279 	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2280 	/* Force memory writes to complete before letting h/w
2281 	 * know there are new descriptors to fetch.  (Only
2282 	 * applicable for weak-ordered memory model archs,
2283 	 * such as IA-64).
2284 	 */
2285 	wmb();
2286 
2287 	tx_ring->buffer_info[first].next_to_watch = tx_desc;
2288 	tx_ring->next_to_use = i;
2289 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2290 }
2291 
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2292 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2293 					     struct net_device *netdev,
2294 					     struct igbvf_ring *tx_ring)
2295 {
2296 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2297 	unsigned int first, tx_flags = 0;
2298 	u8 hdr_len = 0;
2299 	int count = 0;
2300 	int tso = 0;
2301 	__be16 protocol = vlan_get_protocol(skb);
2302 
2303 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2304 		dev_kfree_skb_any(skb);
2305 		return NETDEV_TX_OK;
2306 	}
2307 
2308 	if (skb->len <= 0) {
2309 		dev_kfree_skb_any(skb);
2310 		return NETDEV_TX_OK;
2311 	}
2312 
2313 	/* need: count + 4 desc gap to keep tail from touching
2314 	 *       + 2 desc gap to keep tail from touching head,
2315 	 *       + 1 desc for skb->data,
2316 	 *       + 1 desc for context descriptor,
2317 	 * head, otherwise try next time
2318 	 */
2319 	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2320 		/* this is a hard error */
2321 		return NETDEV_TX_BUSY;
2322 	}
2323 
2324 	if (skb_vlan_tag_present(skb)) {
2325 		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2326 		tx_flags |= (skb_vlan_tag_get(skb) <<
2327 			     IGBVF_TX_FLAGS_VLAN_SHIFT);
2328 	}
2329 
2330 	if (protocol == htons(ETH_P_IP))
2331 		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2332 
2333 	first = tx_ring->next_to_use;
2334 
2335 	tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2336 	if (unlikely(tso < 0)) {
2337 		dev_kfree_skb_any(skb);
2338 		return NETDEV_TX_OK;
2339 	}
2340 
2341 	if (tso)
2342 		tx_flags |= IGBVF_TX_FLAGS_TSO;
2343 	else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2344 		 (skb->ip_summed == CHECKSUM_PARTIAL))
2345 		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2346 
2347 	/* count reflects descriptors mapped, if 0 then mapping error
2348 	 * has occurred and we need to rewind the descriptor queue
2349 	 */
2350 	count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2351 
2352 	if (count) {
2353 		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2354 				   first, skb->len, hdr_len);
2355 		/* Make sure there is space in the ring for the next send. */
2356 		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2357 	} else {
2358 		dev_kfree_skb_any(skb);
2359 		tx_ring->buffer_info[first].time_stamp = 0;
2360 		tx_ring->next_to_use = first;
2361 	}
2362 
2363 	return NETDEV_TX_OK;
2364 }
2365 
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2366 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2367 				    struct net_device *netdev)
2368 {
2369 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2370 	struct igbvf_ring *tx_ring;
2371 
2372 	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2373 		dev_kfree_skb_any(skb);
2374 		return NETDEV_TX_OK;
2375 	}
2376 
2377 	tx_ring = &adapter->tx_ring[0];
2378 
2379 	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2380 }
2381 
2382 /**
2383  * igbvf_tx_timeout - Respond to a Tx Hang
2384  * @netdev: network interface device structure
2385  * @txqueue: queue timing out (unused)
2386  **/
igbvf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)2387 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2388 {
2389 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2390 
2391 	/* Do the reset outside of interrupt context */
2392 	adapter->tx_timeout_count++;
2393 	schedule_work(&adapter->reset_task);
2394 }
2395 
igbvf_reset_task(struct work_struct * work)2396 static void igbvf_reset_task(struct work_struct *work)
2397 {
2398 	struct igbvf_adapter *adapter;
2399 
2400 	adapter = container_of(work, struct igbvf_adapter, reset_task);
2401 
2402 	igbvf_reinit_locked(adapter);
2403 }
2404 
2405 /**
2406  * igbvf_change_mtu - Change the Maximum Transfer Unit
2407  * @netdev: network interface device structure
2408  * @new_mtu: new value for maximum frame size
2409  *
2410  * Returns 0 on success, negative on failure
2411  **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2412 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2413 {
2414 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2415 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2416 
2417 	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2418 		usleep_range(1000, 2000);
2419 	/* igbvf_down has a dependency on max_frame_size */
2420 	adapter->max_frame_size = max_frame;
2421 	if (netif_running(netdev))
2422 		igbvf_down(adapter);
2423 
2424 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2425 	 * means we reserve 2 more, this pushes us to allocate from the next
2426 	 * larger slab size.
2427 	 * i.e. RXBUFFER_2048 --> size-4096 slab
2428 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2429 	 * fragmented skbs
2430 	 */
2431 
2432 	if (max_frame <= 1024)
2433 		adapter->rx_buffer_len = 1024;
2434 	else if (max_frame <= 2048)
2435 		adapter->rx_buffer_len = 2048;
2436 	else
2437 #if (PAGE_SIZE / 2) > 16384
2438 		adapter->rx_buffer_len = 16384;
2439 #else
2440 		adapter->rx_buffer_len = PAGE_SIZE / 2;
2441 #endif
2442 
2443 	/* adjust allocation if LPE protects us, and we aren't using SBP */
2444 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2445 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2446 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2447 					 ETH_FCS_LEN;
2448 
2449 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
2450 		   netdev->mtu, new_mtu);
2451 	netdev->mtu = new_mtu;
2452 
2453 	if (netif_running(netdev))
2454 		igbvf_up(adapter);
2455 	else
2456 		igbvf_reset(adapter);
2457 
2458 	clear_bit(__IGBVF_RESETTING, &adapter->state);
2459 
2460 	return 0;
2461 }
2462 
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2463 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2464 {
2465 	switch (cmd) {
2466 	default:
2467 		return -EOPNOTSUPP;
2468 	}
2469 }
2470 
igbvf_suspend(struct device * dev_d)2471 static int igbvf_suspend(struct device *dev_d)
2472 {
2473 	struct net_device *netdev = dev_get_drvdata(dev_d);
2474 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2475 
2476 	netif_device_detach(netdev);
2477 
2478 	if (netif_running(netdev)) {
2479 		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2480 		igbvf_down(adapter);
2481 		igbvf_free_irq(adapter);
2482 	}
2483 
2484 	return 0;
2485 }
2486 
igbvf_resume(struct device * dev_d)2487 static int __maybe_unused igbvf_resume(struct device *dev_d)
2488 {
2489 	struct pci_dev *pdev = to_pci_dev(dev_d);
2490 	struct net_device *netdev = pci_get_drvdata(pdev);
2491 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2492 	u32 err;
2493 
2494 	pci_set_master(pdev);
2495 
2496 	if (netif_running(netdev)) {
2497 		err = igbvf_request_irq(adapter);
2498 		if (err)
2499 			return err;
2500 	}
2501 
2502 	igbvf_reset(adapter);
2503 
2504 	if (netif_running(netdev))
2505 		igbvf_up(adapter);
2506 
2507 	netif_device_attach(netdev);
2508 
2509 	return 0;
2510 }
2511 
igbvf_shutdown(struct pci_dev * pdev)2512 static void igbvf_shutdown(struct pci_dev *pdev)
2513 {
2514 	igbvf_suspend(&pdev->dev);
2515 }
2516 
2517 #ifdef CONFIG_NET_POLL_CONTROLLER
2518 /* Polling 'interrupt' - used by things like netconsole to send skbs
2519  * without having to re-enable interrupts. It's not called while
2520  * the interrupt routine is executing.
2521  */
igbvf_netpoll(struct net_device * netdev)2522 static void igbvf_netpoll(struct net_device *netdev)
2523 {
2524 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2525 
2526 	disable_irq(adapter->pdev->irq);
2527 
2528 	igbvf_clean_tx_irq(adapter->tx_ring);
2529 
2530 	enable_irq(adapter->pdev->irq);
2531 }
2532 #endif
2533 
2534 /**
2535  * igbvf_io_error_detected - called when PCI error is detected
2536  * @pdev: Pointer to PCI device
2537  * @state: The current pci connection state
2538  *
2539  * This function is called after a PCI bus error affecting
2540  * this device has been detected.
2541  */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2542 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2543 						pci_channel_state_t state)
2544 {
2545 	struct net_device *netdev = pci_get_drvdata(pdev);
2546 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2547 
2548 	netif_device_detach(netdev);
2549 
2550 	if (state == pci_channel_io_perm_failure)
2551 		return PCI_ERS_RESULT_DISCONNECT;
2552 
2553 	if (netif_running(netdev))
2554 		igbvf_down(adapter);
2555 	pci_disable_device(pdev);
2556 
2557 	/* Request a slot slot reset. */
2558 	return PCI_ERS_RESULT_NEED_RESET;
2559 }
2560 
2561 /**
2562  * igbvf_io_slot_reset - called after the pci bus has been reset.
2563  * @pdev: Pointer to PCI device
2564  *
2565  * Restart the card from scratch, as if from a cold-boot. Implementation
2566  * resembles the first-half of the igbvf_resume routine.
2567  */
igbvf_io_slot_reset(struct pci_dev * pdev)2568 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2569 {
2570 	struct net_device *netdev = pci_get_drvdata(pdev);
2571 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2572 
2573 	if (pci_enable_device_mem(pdev)) {
2574 		dev_err(&pdev->dev,
2575 			"Cannot re-enable PCI device after reset.\n");
2576 		return PCI_ERS_RESULT_DISCONNECT;
2577 	}
2578 	pci_set_master(pdev);
2579 
2580 	igbvf_reset(adapter);
2581 
2582 	return PCI_ERS_RESULT_RECOVERED;
2583 }
2584 
2585 /**
2586  * igbvf_io_resume - called when traffic can start flowing again.
2587  * @pdev: Pointer to PCI device
2588  *
2589  * This callback is called when the error recovery driver tells us that
2590  * its OK to resume normal operation. Implementation resembles the
2591  * second-half of the igbvf_resume routine.
2592  */
igbvf_io_resume(struct pci_dev * pdev)2593 static void igbvf_io_resume(struct pci_dev *pdev)
2594 {
2595 	struct net_device *netdev = pci_get_drvdata(pdev);
2596 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2597 
2598 	if (netif_running(netdev)) {
2599 		if (igbvf_up(adapter)) {
2600 			dev_err(&pdev->dev,
2601 				"can't bring device back up after reset\n");
2602 			return;
2603 		}
2604 	}
2605 
2606 	netif_device_attach(netdev);
2607 }
2608 
igbvf_print_device_info(struct igbvf_adapter * adapter)2609 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2610 {
2611 	struct e1000_hw *hw = &adapter->hw;
2612 	struct net_device *netdev = adapter->netdev;
2613 	struct pci_dev *pdev = adapter->pdev;
2614 
2615 	if (hw->mac.type == e1000_vfadapt_i350)
2616 		dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2617 	else
2618 		dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2619 	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2620 }
2621 
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2622 static int igbvf_set_features(struct net_device *netdev,
2623 			      netdev_features_t features)
2624 {
2625 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2626 
2627 	if (features & NETIF_F_RXCSUM)
2628 		adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2629 	else
2630 		adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2631 
2632 	return 0;
2633 }
2634 
2635 #define IGBVF_MAX_MAC_HDR_LEN		127
2636 #define IGBVF_MAX_NETWORK_HDR_LEN	511
2637 
2638 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2639 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2640 		     netdev_features_t features)
2641 {
2642 	unsigned int network_hdr_len, mac_hdr_len;
2643 
2644 	/* Make certain the headers can be described by a context descriptor */
2645 	mac_hdr_len = skb_network_header(skb) - skb->data;
2646 	if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2647 		return features & ~(NETIF_F_HW_CSUM |
2648 				    NETIF_F_SCTP_CRC |
2649 				    NETIF_F_HW_VLAN_CTAG_TX |
2650 				    NETIF_F_TSO |
2651 				    NETIF_F_TSO6);
2652 
2653 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2654 	if (unlikely(network_hdr_len >  IGBVF_MAX_NETWORK_HDR_LEN))
2655 		return features & ~(NETIF_F_HW_CSUM |
2656 				    NETIF_F_SCTP_CRC |
2657 				    NETIF_F_TSO |
2658 				    NETIF_F_TSO6);
2659 
2660 	/* We can only support IPV4 TSO in tunnels if we can mangle the
2661 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2662 	 */
2663 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2664 		features &= ~NETIF_F_TSO;
2665 
2666 	return features;
2667 }
2668 
2669 static const struct net_device_ops igbvf_netdev_ops = {
2670 	.ndo_open		= igbvf_open,
2671 	.ndo_stop		= igbvf_close,
2672 	.ndo_start_xmit		= igbvf_xmit_frame,
2673 	.ndo_set_rx_mode	= igbvf_set_rx_mode,
2674 	.ndo_set_mac_address	= igbvf_set_mac,
2675 	.ndo_change_mtu		= igbvf_change_mtu,
2676 	.ndo_do_ioctl		= igbvf_ioctl,
2677 	.ndo_tx_timeout		= igbvf_tx_timeout,
2678 	.ndo_vlan_rx_add_vid	= igbvf_vlan_rx_add_vid,
2679 	.ndo_vlan_rx_kill_vid	= igbvf_vlan_rx_kill_vid,
2680 #ifdef CONFIG_NET_POLL_CONTROLLER
2681 	.ndo_poll_controller	= igbvf_netpoll,
2682 #endif
2683 	.ndo_set_features	= igbvf_set_features,
2684 	.ndo_features_check	= igbvf_features_check,
2685 };
2686 
2687 /**
2688  * igbvf_probe - Device Initialization Routine
2689  * @pdev: PCI device information struct
2690  * @ent: entry in igbvf_pci_tbl
2691  *
2692  * Returns 0 on success, negative on failure
2693  *
2694  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2695  * The OS initialization, configuring of the adapter private structure,
2696  * and a hardware reset occur.
2697  **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2698 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2699 {
2700 	struct net_device *netdev;
2701 	struct igbvf_adapter *adapter;
2702 	struct e1000_hw *hw;
2703 	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2704 
2705 	static int cards_found;
2706 	int err, pci_using_dac;
2707 
2708 	err = pci_enable_device_mem(pdev);
2709 	if (err)
2710 		return err;
2711 
2712 	pci_using_dac = 0;
2713 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2714 	if (!err) {
2715 		pci_using_dac = 1;
2716 	} else {
2717 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2718 		if (err) {
2719 			dev_err(&pdev->dev,
2720 				"No usable DMA configuration, aborting\n");
2721 			goto err_dma;
2722 		}
2723 	}
2724 
2725 	err = pci_request_regions(pdev, igbvf_driver_name);
2726 	if (err)
2727 		goto err_pci_reg;
2728 
2729 	pci_set_master(pdev);
2730 
2731 	err = -ENOMEM;
2732 	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2733 	if (!netdev)
2734 		goto err_alloc_etherdev;
2735 
2736 	SET_NETDEV_DEV(netdev, &pdev->dev);
2737 
2738 	pci_set_drvdata(pdev, netdev);
2739 	adapter = netdev_priv(netdev);
2740 	hw = &adapter->hw;
2741 	adapter->netdev = netdev;
2742 	adapter->pdev = pdev;
2743 	adapter->ei = ei;
2744 	adapter->pba = ei->pba;
2745 	adapter->flags = ei->flags;
2746 	adapter->hw.back = adapter;
2747 	adapter->hw.mac.type = ei->mac;
2748 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2749 
2750 	/* PCI config space info */
2751 
2752 	hw->vendor_id = pdev->vendor;
2753 	hw->device_id = pdev->device;
2754 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2755 	hw->subsystem_device_id = pdev->subsystem_device;
2756 	hw->revision_id = pdev->revision;
2757 
2758 	err = -EIO;
2759 	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2760 				      pci_resource_len(pdev, 0));
2761 
2762 	if (!adapter->hw.hw_addr)
2763 		goto err_ioremap;
2764 
2765 	if (ei->get_variants) {
2766 		err = ei->get_variants(adapter);
2767 		if (err)
2768 			goto err_get_variants;
2769 	}
2770 
2771 	/* setup adapter struct */
2772 	err = igbvf_sw_init(adapter);
2773 	if (err)
2774 		goto err_sw_init;
2775 
2776 	/* construct the net_device struct */
2777 	netdev->netdev_ops = &igbvf_netdev_ops;
2778 
2779 	igbvf_set_ethtool_ops(netdev);
2780 	netdev->watchdog_timeo = 5 * HZ;
2781 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2782 
2783 	adapter->bd_number = cards_found++;
2784 
2785 	netdev->hw_features = NETIF_F_SG |
2786 			      NETIF_F_TSO |
2787 			      NETIF_F_TSO6 |
2788 			      NETIF_F_RXCSUM |
2789 			      NETIF_F_HW_CSUM |
2790 			      NETIF_F_SCTP_CRC;
2791 
2792 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2793 				    NETIF_F_GSO_GRE_CSUM | \
2794 				    NETIF_F_GSO_IPXIP4 | \
2795 				    NETIF_F_GSO_IPXIP6 | \
2796 				    NETIF_F_GSO_UDP_TUNNEL | \
2797 				    NETIF_F_GSO_UDP_TUNNEL_CSUM)
2798 
2799 	netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2800 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2801 			       IGBVF_GSO_PARTIAL_FEATURES;
2802 
2803 	netdev->features = netdev->hw_features;
2804 
2805 	if (pci_using_dac)
2806 		netdev->features |= NETIF_F_HIGHDMA;
2807 
2808 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2809 	netdev->mpls_features |= NETIF_F_HW_CSUM;
2810 	netdev->hw_enc_features |= netdev->vlan_features;
2811 
2812 	/* set this bit last since it cannot be part of vlan_features */
2813 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2814 			    NETIF_F_HW_VLAN_CTAG_RX |
2815 			    NETIF_F_HW_VLAN_CTAG_TX;
2816 
2817 	/* MTU range: 68 - 9216 */
2818 	netdev->min_mtu = ETH_MIN_MTU;
2819 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2820 
2821 	spin_lock_bh(&hw->mbx_lock);
2822 
2823 	/*reset the controller to put the device in a known good state */
2824 	err = hw->mac.ops.reset_hw(hw);
2825 	if (err) {
2826 		dev_info(&pdev->dev,
2827 			 "PF still in reset state. Is the PF interface up?\n");
2828 	} else {
2829 		err = hw->mac.ops.read_mac_addr(hw);
2830 		if (err)
2831 			dev_info(&pdev->dev, "Error reading MAC address.\n");
2832 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2833 			dev_info(&pdev->dev,
2834 				 "MAC address not assigned by administrator.\n");
2835 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2836 		       netdev->addr_len);
2837 	}
2838 
2839 	spin_unlock_bh(&hw->mbx_lock);
2840 
2841 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2842 		dev_info(&pdev->dev, "Assigning random MAC address.\n");
2843 		eth_hw_addr_random(netdev);
2844 		memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2845 		       netdev->addr_len);
2846 	}
2847 
2848 	timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2849 
2850 	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2851 	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2852 
2853 	/* ring size defaults */
2854 	adapter->rx_ring->count = 1024;
2855 	adapter->tx_ring->count = 1024;
2856 
2857 	/* reset the hardware with the new settings */
2858 	igbvf_reset(adapter);
2859 
2860 	/* set hardware-specific flags */
2861 	if (adapter->hw.mac.type == e1000_vfadapt_i350)
2862 		adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2863 
2864 	strcpy(netdev->name, "eth%d");
2865 	err = register_netdev(netdev);
2866 	if (err)
2867 		goto err_hw_init;
2868 
2869 	/* tell the stack to leave us alone until igbvf_open() is called */
2870 	netif_carrier_off(netdev);
2871 	netif_stop_queue(netdev);
2872 
2873 	igbvf_print_device_info(adapter);
2874 
2875 	igbvf_initialize_last_counter_stats(adapter);
2876 
2877 	return 0;
2878 
2879 err_hw_init:
2880 	netif_napi_del(&adapter->rx_ring->napi);
2881 	kfree(adapter->tx_ring);
2882 	kfree(adapter->rx_ring);
2883 err_sw_init:
2884 	igbvf_reset_interrupt_capability(adapter);
2885 err_get_variants:
2886 	iounmap(adapter->hw.hw_addr);
2887 err_ioremap:
2888 	free_netdev(netdev);
2889 err_alloc_etherdev:
2890 	pci_release_regions(pdev);
2891 err_pci_reg:
2892 err_dma:
2893 	pci_disable_device(pdev);
2894 	return err;
2895 }
2896 
2897 /**
2898  * igbvf_remove - Device Removal Routine
2899  * @pdev: PCI device information struct
2900  *
2901  * igbvf_remove is called by the PCI subsystem to alert the driver
2902  * that it should release a PCI device.  The could be caused by a
2903  * Hot-Plug event, or because the driver is going to be removed from
2904  * memory.
2905  **/
igbvf_remove(struct pci_dev * pdev)2906 static void igbvf_remove(struct pci_dev *pdev)
2907 {
2908 	struct net_device *netdev = pci_get_drvdata(pdev);
2909 	struct igbvf_adapter *adapter = netdev_priv(netdev);
2910 	struct e1000_hw *hw = &adapter->hw;
2911 
2912 	/* The watchdog timer may be rescheduled, so explicitly
2913 	 * disable it from being rescheduled.
2914 	 */
2915 	set_bit(__IGBVF_DOWN, &adapter->state);
2916 	del_timer_sync(&adapter->watchdog_timer);
2917 
2918 	cancel_work_sync(&adapter->reset_task);
2919 	cancel_work_sync(&adapter->watchdog_task);
2920 
2921 	unregister_netdev(netdev);
2922 
2923 	igbvf_reset_interrupt_capability(adapter);
2924 
2925 	/* it is important to delete the NAPI struct prior to freeing the
2926 	 * Rx ring so that you do not end up with null pointer refs
2927 	 */
2928 	netif_napi_del(&adapter->rx_ring->napi);
2929 	kfree(adapter->tx_ring);
2930 	kfree(adapter->rx_ring);
2931 
2932 	iounmap(hw->hw_addr);
2933 	if (hw->flash_address)
2934 		iounmap(hw->flash_address);
2935 	pci_release_regions(pdev);
2936 
2937 	free_netdev(netdev);
2938 
2939 	pci_disable_device(pdev);
2940 }
2941 
2942 /* PCI Error Recovery (ERS) */
2943 static const struct pci_error_handlers igbvf_err_handler = {
2944 	.error_detected = igbvf_io_error_detected,
2945 	.slot_reset = igbvf_io_slot_reset,
2946 	.resume = igbvf_io_resume,
2947 };
2948 
2949 static const struct pci_device_id igbvf_pci_tbl[] = {
2950 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2951 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2952 	{ } /* terminate list */
2953 };
2954 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2955 
2956 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2957 
2958 /* PCI Device API Driver */
2959 static struct pci_driver igbvf_driver = {
2960 	.name		= igbvf_driver_name,
2961 	.id_table	= igbvf_pci_tbl,
2962 	.probe		= igbvf_probe,
2963 	.remove		= igbvf_remove,
2964 	.driver.pm	= &igbvf_pm_ops,
2965 	.shutdown	= igbvf_shutdown,
2966 	.err_handler	= &igbvf_err_handler
2967 };
2968 
2969 /**
2970  * igbvf_init_module - Driver Registration Routine
2971  *
2972  * igbvf_init_module is the first routine called when the driver is
2973  * loaded. All it does is register with the PCI subsystem.
2974  **/
igbvf_init_module(void)2975 static int __init igbvf_init_module(void)
2976 {
2977 	int ret;
2978 
2979 	pr_info("%s\n", igbvf_driver_string);
2980 	pr_info("%s\n", igbvf_copyright);
2981 
2982 	ret = pci_register_driver(&igbvf_driver);
2983 
2984 	return ret;
2985 }
2986 module_init(igbvf_init_module);
2987 
2988 /**
2989  * igbvf_exit_module - Driver Exit Cleanup Routine
2990  *
2991  * igbvf_exit_module is called just before the driver is removed
2992  * from memory.
2993  **/
igbvf_exit_module(void)2994 static void __exit igbvf_exit_module(void)
2995 {
2996 	pci_unregister_driver(&igbvf_driver);
2997 }
2998 module_exit(igbvf_exit_module);
2999 
3000 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3001 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002 MODULE_LICENSE("GPL v2");
3003 
3004 /* netdev.c */
3005