1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/tcp.h>
15 #include <linux/ipv6.h>
16 #include <linux/slab.h>
17 #include <net/checksum.h>
18 #include <net/ip6_checksum.h>
19 #include <linux/mii.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/prefetch.h>
23 #include <linux/sctp.h>
24
25 #include "igbvf.h"
26
27 char igbvf_driver_name[] = "igbvf";
28 static const char igbvf_driver_string[] =
29 "Intel(R) Gigabit Virtual Function Network Driver";
30 static const char igbvf_copyright[] =
31 "Copyright (c) 2009 - 2012 Intel Corporation.";
32
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37
38 static int igbvf_poll(struct napi_struct *napi, int budget);
39 static void igbvf_reset(struct igbvf_adapter *);
40 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
41 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
42
43 static struct igbvf_info igbvf_vf_info = {
44 .mac = e1000_vfadapt,
45 .flags = 0,
46 .pba = 10,
47 .init_ops = e1000_init_function_pointers_vf,
48 };
49
50 static struct igbvf_info igbvf_i350_vf_info = {
51 .mac = e1000_vfadapt_i350,
52 .flags = 0,
53 .pba = 10,
54 .init_ops = e1000_init_function_pointers_vf,
55 };
56
57 static const struct igbvf_info *igbvf_info_tbl[] = {
58 [board_vf] = &igbvf_vf_info,
59 [board_i350_vf] = &igbvf_i350_vf_info,
60 };
61
62 /**
63 * igbvf_desc_unused - calculate if we have unused descriptors
64 * @ring: address of receive ring structure
65 **/
igbvf_desc_unused(struct igbvf_ring * ring)66 static int igbvf_desc_unused(struct igbvf_ring *ring)
67 {
68 if (ring->next_to_clean > ring->next_to_use)
69 return ring->next_to_clean - ring->next_to_use - 1;
70
71 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
72 }
73
74 /**
75 * igbvf_receive_skb - helper function to handle Rx indications
76 * @adapter: board private structure
77 * @netdev: pointer to netdev struct
78 * @skb: skb to indicate to stack
79 * @status: descriptor status field as written by hardware
80 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
81 * @skb: pointer to sk_buff to be indicated to stack
82 **/
igbvf_receive_skb(struct igbvf_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 status,__le16 vlan)83 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
84 struct net_device *netdev,
85 struct sk_buff *skb,
86 u32 status, __le16 vlan)
87 {
88 u16 vid;
89
90 if (status & E1000_RXD_STAT_VP) {
91 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
92 (status & E1000_RXDEXT_STATERR_LB))
93 vid = be16_to_cpu((__force __be16)vlan) & E1000_RXD_SPC_VLAN_MASK;
94 else
95 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
96 if (test_bit(vid, adapter->active_vlans))
97 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
98 }
99
100 napi_gro_receive(&adapter->rx_ring->napi, skb);
101 }
102
igbvf_rx_checksum_adv(struct igbvf_adapter * adapter,u32 status_err,struct sk_buff * skb)103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
104 u32 status_err, struct sk_buff *skb)
105 {
106 skb_checksum_none_assert(skb);
107
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err & E1000_RXD_STAT_IXSM) ||
110 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
111 return;
112
113 /* TCP/UDP checksum error bit is set */
114 if (status_err &
115 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
116 /* let the stack verify checksum errors */
117 adapter->hw_csum_err++;
118 return;
119 }
120
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
123 skb->ip_summed = CHECKSUM_UNNECESSARY;
124
125 adapter->hw_csum_good++;
126 }
127
128 /**
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
132 **/
igbvf_alloc_rx_buffers(struct igbvf_ring * rx_ring,int cleaned_count)133 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
134 int cleaned_count)
135 {
136 struct igbvf_adapter *adapter = rx_ring->adapter;
137 struct net_device *netdev = adapter->netdev;
138 struct pci_dev *pdev = adapter->pdev;
139 union e1000_adv_rx_desc *rx_desc;
140 struct igbvf_buffer *buffer_info;
141 struct sk_buff *skb;
142 unsigned int i;
143 int bufsz;
144
145 i = rx_ring->next_to_use;
146 buffer_info = &rx_ring->buffer_info[i];
147
148 if (adapter->rx_ps_hdr_size)
149 bufsz = adapter->rx_ps_hdr_size;
150 else
151 bufsz = adapter->rx_buffer_len;
152
153 while (cleaned_count--) {
154 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
155
156 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
157 if (!buffer_info->page) {
158 buffer_info->page = alloc_page(GFP_ATOMIC);
159 if (!buffer_info->page) {
160 adapter->alloc_rx_buff_failed++;
161 goto no_buffers;
162 }
163 buffer_info->page_offset = 0;
164 } else {
165 buffer_info->page_offset ^= PAGE_SIZE / 2;
166 }
167 buffer_info->page_dma =
168 dma_map_page(&pdev->dev, buffer_info->page,
169 buffer_info->page_offset,
170 PAGE_SIZE / 2,
171 DMA_FROM_DEVICE);
172 if (dma_mapping_error(&pdev->dev,
173 buffer_info->page_dma)) {
174 __free_page(buffer_info->page);
175 buffer_info->page = NULL;
176 dev_err(&pdev->dev, "RX DMA map failed\n");
177 break;
178 }
179 }
180
181 if (!buffer_info->skb) {
182 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183 if (!skb) {
184 adapter->alloc_rx_buff_failed++;
185 goto no_buffers;
186 }
187
188 buffer_info->skb = skb;
189 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190 bufsz,
191 DMA_FROM_DEVICE);
192 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
193 dev_kfree_skb(buffer_info->skb);
194 buffer_info->skb = NULL;
195 dev_err(&pdev->dev, "RX DMA map failed\n");
196 goto no_buffers;
197 }
198 }
199 /* Refresh the desc even if buffer_addrs didn't change because
200 * each write-back erases this info.
201 */
202 if (adapter->rx_ps_hdr_size) {
203 rx_desc->read.pkt_addr =
204 cpu_to_le64(buffer_info->page_dma);
205 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
206 } else {
207 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
208 rx_desc->read.hdr_addr = 0;
209 }
210
211 i++;
212 if (i == rx_ring->count)
213 i = 0;
214 buffer_info = &rx_ring->buffer_info[i];
215 }
216
217 no_buffers:
218 if (rx_ring->next_to_use != i) {
219 rx_ring->next_to_use = i;
220 if (i == 0)
221 i = (rx_ring->count - 1);
222 else
223 i--;
224
225 /* Force memory writes to complete before letting h/w
226 * know there are new descriptors to fetch. (Only
227 * applicable for weak-ordered memory model archs,
228 * such as IA-64).
229 */
230 wmb();
231 writel(i, adapter->hw.hw_addr + rx_ring->tail);
232 }
233 }
234
235 /**
236 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
237 * @adapter: board private structure
238 * @work_done: output parameter used to indicate completed work
239 * @work_to_do: input parameter setting limit of work
240 *
241 * the return value indicates whether actual cleaning was done, there
242 * is no guarantee that everything was cleaned
243 **/
igbvf_clean_rx_irq(struct igbvf_adapter * adapter,int * work_done,int work_to_do)244 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
245 int *work_done, int work_to_do)
246 {
247 struct igbvf_ring *rx_ring = adapter->rx_ring;
248 struct net_device *netdev = adapter->netdev;
249 struct pci_dev *pdev = adapter->pdev;
250 union e1000_adv_rx_desc *rx_desc, *next_rxd;
251 struct igbvf_buffer *buffer_info, *next_buffer;
252 struct sk_buff *skb;
253 bool cleaned = false;
254 int cleaned_count = 0;
255 unsigned int total_bytes = 0, total_packets = 0;
256 unsigned int i;
257 u32 length, hlen, staterr;
258
259 i = rx_ring->next_to_clean;
260 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
261 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
262
263 while (staterr & E1000_RXD_STAT_DD) {
264 if (*work_done >= work_to_do)
265 break;
266 (*work_done)++;
267 rmb(); /* read descriptor and rx_buffer_info after status DD */
268
269 buffer_info = &rx_ring->buffer_info[i];
270
271 /* HW will not DMA in data larger than the given buffer, even
272 * if it parses the (NFS, of course) header to be larger. In
273 * that case, it fills the header buffer and spills the rest
274 * into the page.
275 */
276 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
277 & E1000_RXDADV_HDRBUFLEN_MASK) >>
278 E1000_RXDADV_HDRBUFLEN_SHIFT;
279 if (hlen > adapter->rx_ps_hdr_size)
280 hlen = adapter->rx_ps_hdr_size;
281
282 length = le16_to_cpu(rx_desc->wb.upper.length);
283 cleaned = true;
284 cleaned_count++;
285
286 skb = buffer_info->skb;
287 prefetch(skb->data - NET_IP_ALIGN);
288 buffer_info->skb = NULL;
289 if (!adapter->rx_ps_hdr_size) {
290 dma_unmap_single(&pdev->dev, buffer_info->dma,
291 adapter->rx_buffer_len,
292 DMA_FROM_DEVICE);
293 buffer_info->dma = 0;
294 skb_put(skb, length);
295 goto send_up;
296 }
297
298 if (!skb_shinfo(skb)->nr_frags) {
299 dma_unmap_single(&pdev->dev, buffer_info->dma,
300 adapter->rx_ps_hdr_size,
301 DMA_FROM_DEVICE);
302 buffer_info->dma = 0;
303 skb_put(skb, hlen);
304 }
305
306 if (length) {
307 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
308 PAGE_SIZE / 2,
309 DMA_FROM_DEVICE);
310 buffer_info->page_dma = 0;
311
312 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
313 buffer_info->page,
314 buffer_info->page_offset,
315 length);
316
317 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
318 (page_count(buffer_info->page) != 1))
319 buffer_info->page = NULL;
320 else
321 get_page(buffer_info->page);
322
323 skb->len += length;
324 skb->data_len += length;
325 skb->truesize += PAGE_SIZE / 2;
326 }
327 send_up:
328 i++;
329 if (i == rx_ring->count)
330 i = 0;
331 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
332 prefetch(next_rxd);
333 next_buffer = &rx_ring->buffer_info[i];
334
335 if (!(staterr & E1000_RXD_STAT_EOP)) {
336 buffer_info->skb = next_buffer->skb;
337 buffer_info->dma = next_buffer->dma;
338 next_buffer->skb = skb;
339 next_buffer->dma = 0;
340 goto next_desc;
341 }
342
343 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
344 dev_kfree_skb_irq(skb);
345 goto next_desc;
346 }
347
348 total_bytes += skb->len;
349 total_packets++;
350
351 igbvf_rx_checksum_adv(adapter, staterr, skb);
352
353 skb->protocol = eth_type_trans(skb, netdev);
354
355 igbvf_receive_skb(adapter, netdev, skb, staterr,
356 rx_desc->wb.upper.vlan);
357
358 next_desc:
359 rx_desc->wb.upper.status_error = 0;
360
361 /* return some buffers to hardware, one at a time is too slow */
362 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
363 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
364 cleaned_count = 0;
365 }
366
367 /* use prefetched values */
368 rx_desc = next_rxd;
369 buffer_info = next_buffer;
370
371 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
372 }
373
374 rx_ring->next_to_clean = i;
375 cleaned_count = igbvf_desc_unused(rx_ring);
376
377 if (cleaned_count)
378 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
379
380 adapter->total_rx_packets += total_packets;
381 adapter->total_rx_bytes += total_bytes;
382 netdev->stats.rx_bytes += total_bytes;
383 netdev->stats.rx_packets += total_packets;
384 return cleaned;
385 }
386
igbvf_put_txbuf(struct igbvf_adapter * adapter,struct igbvf_buffer * buffer_info)387 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
388 struct igbvf_buffer *buffer_info)
389 {
390 if (buffer_info->dma) {
391 if (buffer_info->mapped_as_page)
392 dma_unmap_page(&adapter->pdev->dev,
393 buffer_info->dma,
394 buffer_info->length,
395 DMA_TO_DEVICE);
396 else
397 dma_unmap_single(&adapter->pdev->dev,
398 buffer_info->dma,
399 buffer_info->length,
400 DMA_TO_DEVICE);
401 buffer_info->dma = 0;
402 }
403 if (buffer_info->skb) {
404 dev_kfree_skb_any(buffer_info->skb);
405 buffer_info->skb = NULL;
406 }
407 buffer_info->time_stamp = 0;
408 }
409
410 /**
411 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
412 * @adapter: board private structure
413 * @tx_ring: ring being initialized
414 *
415 * Return 0 on success, negative on failure
416 **/
igbvf_setup_tx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring)417 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
418 struct igbvf_ring *tx_ring)
419 {
420 struct pci_dev *pdev = adapter->pdev;
421 int size;
422
423 size = sizeof(struct igbvf_buffer) * tx_ring->count;
424 tx_ring->buffer_info = vzalloc(size);
425 if (!tx_ring->buffer_info)
426 goto err;
427
428 /* round up to nearest 4K */
429 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
430 tx_ring->size = ALIGN(tx_ring->size, 4096);
431
432 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
433 &tx_ring->dma, GFP_KERNEL);
434 if (!tx_ring->desc)
435 goto err;
436
437 tx_ring->adapter = adapter;
438 tx_ring->next_to_use = 0;
439 tx_ring->next_to_clean = 0;
440
441 return 0;
442 err:
443 vfree(tx_ring->buffer_info);
444 dev_err(&adapter->pdev->dev,
445 "Unable to allocate memory for the transmit descriptor ring\n");
446 return -ENOMEM;
447 }
448
449 /**
450 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
451 * @adapter: board private structure
452 * @rx_ring: ring being initialized
453 *
454 * Returns 0 on success, negative on failure
455 **/
igbvf_setup_rx_resources(struct igbvf_adapter * adapter,struct igbvf_ring * rx_ring)456 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
457 struct igbvf_ring *rx_ring)
458 {
459 struct pci_dev *pdev = adapter->pdev;
460 int size, desc_len;
461
462 size = sizeof(struct igbvf_buffer) * rx_ring->count;
463 rx_ring->buffer_info = vzalloc(size);
464 if (!rx_ring->buffer_info)
465 goto err;
466
467 desc_len = sizeof(union e1000_adv_rx_desc);
468
469 /* Round up to nearest 4K */
470 rx_ring->size = rx_ring->count * desc_len;
471 rx_ring->size = ALIGN(rx_ring->size, 4096);
472
473 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
474 &rx_ring->dma, GFP_KERNEL);
475 if (!rx_ring->desc)
476 goto err;
477
478 rx_ring->next_to_clean = 0;
479 rx_ring->next_to_use = 0;
480
481 rx_ring->adapter = adapter;
482
483 return 0;
484
485 err:
486 vfree(rx_ring->buffer_info);
487 rx_ring->buffer_info = NULL;
488 dev_err(&adapter->pdev->dev,
489 "Unable to allocate memory for the receive descriptor ring\n");
490 return -ENOMEM;
491 }
492
493 /**
494 * igbvf_clean_tx_ring - Free Tx Buffers
495 * @tx_ring: ring to be cleaned
496 **/
igbvf_clean_tx_ring(struct igbvf_ring * tx_ring)497 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
498 {
499 struct igbvf_adapter *adapter = tx_ring->adapter;
500 struct igbvf_buffer *buffer_info;
501 unsigned long size;
502 unsigned int i;
503
504 if (!tx_ring->buffer_info)
505 return;
506
507 /* Free all the Tx ring sk_buffs */
508 for (i = 0; i < tx_ring->count; i++) {
509 buffer_info = &tx_ring->buffer_info[i];
510 igbvf_put_txbuf(adapter, buffer_info);
511 }
512
513 size = sizeof(struct igbvf_buffer) * tx_ring->count;
514 memset(tx_ring->buffer_info, 0, size);
515
516 /* Zero out the descriptor ring */
517 memset(tx_ring->desc, 0, tx_ring->size);
518
519 tx_ring->next_to_use = 0;
520 tx_ring->next_to_clean = 0;
521
522 writel(0, adapter->hw.hw_addr + tx_ring->head);
523 writel(0, adapter->hw.hw_addr + tx_ring->tail);
524 }
525
526 /**
527 * igbvf_free_tx_resources - Free Tx Resources per Queue
528 * @tx_ring: ring to free resources from
529 *
530 * Free all transmit software resources
531 **/
igbvf_free_tx_resources(struct igbvf_ring * tx_ring)532 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
533 {
534 struct pci_dev *pdev = tx_ring->adapter->pdev;
535
536 igbvf_clean_tx_ring(tx_ring);
537
538 vfree(tx_ring->buffer_info);
539 tx_ring->buffer_info = NULL;
540
541 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
542 tx_ring->dma);
543
544 tx_ring->desc = NULL;
545 }
546
547 /**
548 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
549 * @rx_ring: ring structure pointer to free buffers from
550 **/
igbvf_clean_rx_ring(struct igbvf_ring * rx_ring)551 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
552 {
553 struct igbvf_adapter *adapter = rx_ring->adapter;
554 struct igbvf_buffer *buffer_info;
555 struct pci_dev *pdev = adapter->pdev;
556 unsigned long size;
557 unsigned int i;
558
559 if (!rx_ring->buffer_info)
560 return;
561
562 /* Free all the Rx ring sk_buffs */
563 for (i = 0; i < rx_ring->count; i++) {
564 buffer_info = &rx_ring->buffer_info[i];
565 if (buffer_info->dma) {
566 if (adapter->rx_ps_hdr_size) {
567 dma_unmap_single(&pdev->dev, buffer_info->dma,
568 adapter->rx_ps_hdr_size,
569 DMA_FROM_DEVICE);
570 } else {
571 dma_unmap_single(&pdev->dev, buffer_info->dma,
572 adapter->rx_buffer_len,
573 DMA_FROM_DEVICE);
574 }
575 buffer_info->dma = 0;
576 }
577
578 if (buffer_info->skb) {
579 dev_kfree_skb(buffer_info->skb);
580 buffer_info->skb = NULL;
581 }
582
583 if (buffer_info->page) {
584 if (buffer_info->page_dma)
585 dma_unmap_page(&pdev->dev,
586 buffer_info->page_dma,
587 PAGE_SIZE / 2,
588 DMA_FROM_DEVICE);
589 put_page(buffer_info->page);
590 buffer_info->page = NULL;
591 buffer_info->page_dma = 0;
592 buffer_info->page_offset = 0;
593 }
594 }
595
596 size = sizeof(struct igbvf_buffer) * rx_ring->count;
597 memset(rx_ring->buffer_info, 0, size);
598
599 /* Zero out the descriptor ring */
600 memset(rx_ring->desc, 0, rx_ring->size);
601
602 rx_ring->next_to_clean = 0;
603 rx_ring->next_to_use = 0;
604
605 writel(0, adapter->hw.hw_addr + rx_ring->head);
606 writel(0, adapter->hw.hw_addr + rx_ring->tail);
607 }
608
609 /**
610 * igbvf_free_rx_resources - Free Rx Resources
611 * @rx_ring: ring to clean the resources from
612 *
613 * Free all receive software resources
614 **/
615
igbvf_free_rx_resources(struct igbvf_ring * rx_ring)616 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
617 {
618 struct pci_dev *pdev = rx_ring->adapter->pdev;
619
620 igbvf_clean_rx_ring(rx_ring);
621
622 vfree(rx_ring->buffer_info);
623 rx_ring->buffer_info = NULL;
624
625 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
626 rx_ring->dma);
627 rx_ring->desc = NULL;
628 }
629
630 /**
631 * igbvf_update_itr - update the dynamic ITR value based on statistics
632 * @adapter: pointer to adapter
633 * @itr_setting: current adapter->itr
634 * @packets: the number of packets during this measurement interval
635 * @bytes: the number of bytes during this measurement interval
636 *
637 * Stores a new ITR value based on packets and byte counts during the last
638 * interrupt. The advantage of per interrupt computation is faster updates
639 * and more accurate ITR for the current traffic pattern. Constants in this
640 * function were computed based on theoretical maximum wire speed and thresholds
641 * were set based on testing data as well as attempting to minimize response
642 * time while increasing bulk throughput.
643 **/
igbvf_update_itr(struct igbvf_adapter * adapter,enum latency_range itr_setting,int packets,int bytes)644 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
645 enum latency_range itr_setting,
646 int packets, int bytes)
647 {
648 enum latency_range retval = itr_setting;
649
650 if (packets == 0)
651 goto update_itr_done;
652
653 switch (itr_setting) {
654 case lowest_latency:
655 /* handle TSO and jumbo frames */
656 if (bytes/packets > 8000)
657 retval = bulk_latency;
658 else if ((packets < 5) && (bytes > 512))
659 retval = low_latency;
660 break;
661 case low_latency: /* 50 usec aka 20000 ints/s */
662 if (bytes > 10000) {
663 /* this if handles the TSO accounting */
664 if (bytes/packets > 8000)
665 retval = bulk_latency;
666 else if ((packets < 10) || ((bytes/packets) > 1200))
667 retval = bulk_latency;
668 else if ((packets > 35))
669 retval = lowest_latency;
670 } else if (bytes/packets > 2000) {
671 retval = bulk_latency;
672 } else if (packets <= 2 && bytes < 512) {
673 retval = lowest_latency;
674 }
675 break;
676 case bulk_latency: /* 250 usec aka 4000 ints/s */
677 if (bytes > 25000) {
678 if (packets > 35)
679 retval = low_latency;
680 } else if (bytes < 6000) {
681 retval = low_latency;
682 }
683 break;
684 default:
685 break;
686 }
687
688 update_itr_done:
689 return retval;
690 }
691
igbvf_range_to_itr(enum latency_range current_range)692 static int igbvf_range_to_itr(enum latency_range current_range)
693 {
694 int new_itr;
695
696 switch (current_range) {
697 /* counts and packets in update_itr are dependent on these numbers */
698 case lowest_latency:
699 new_itr = IGBVF_70K_ITR;
700 break;
701 case low_latency:
702 new_itr = IGBVF_20K_ITR;
703 break;
704 case bulk_latency:
705 new_itr = IGBVF_4K_ITR;
706 break;
707 default:
708 new_itr = IGBVF_START_ITR;
709 break;
710 }
711 return new_itr;
712 }
713
igbvf_set_itr(struct igbvf_adapter * adapter)714 static void igbvf_set_itr(struct igbvf_adapter *adapter)
715 {
716 u32 new_itr;
717
718 adapter->tx_ring->itr_range =
719 igbvf_update_itr(adapter,
720 adapter->tx_ring->itr_val,
721 adapter->total_tx_packets,
722 adapter->total_tx_bytes);
723
724 /* conservative mode (itr 3) eliminates the lowest_latency setting */
725 if (adapter->requested_itr == 3 &&
726 adapter->tx_ring->itr_range == lowest_latency)
727 adapter->tx_ring->itr_range = low_latency;
728
729 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
730
731 if (new_itr != adapter->tx_ring->itr_val) {
732 u32 current_itr = adapter->tx_ring->itr_val;
733 /* this attempts to bias the interrupt rate towards Bulk
734 * by adding intermediate steps when interrupt rate is
735 * increasing
736 */
737 new_itr = new_itr > current_itr ?
738 min(current_itr + (new_itr >> 2), new_itr) :
739 new_itr;
740 adapter->tx_ring->itr_val = new_itr;
741
742 adapter->tx_ring->set_itr = 1;
743 }
744
745 adapter->rx_ring->itr_range =
746 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
747 adapter->total_rx_packets,
748 adapter->total_rx_bytes);
749 if (adapter->requested_itr == 3 &&
750 adapter->rx_ring->itr_range == lowest_latency)
751 adapter->rx_ring->itr_range = low_latency;
752
753 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
754
755 if (new_itr != adapter->rx_ring->itr_val) {
756 u32 current_itr = adapter->rx_ring->itr_val;
757
758 new_itr = new_itr > current_itr ?
759 min(current_itr + (new_itr >> 2), new_itr) :
760 new_itr;
761 adapter->rx_ring->itr_val = new_itr;
762
763 adapter->rx_ring->set_itr = 1;
764 }
765 }
766
767 /**
768 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
769 * @tx_ring: ring structure to clean descriptors from
770 *
771 * returns true if ring is completely cleaned
772 **/
igbvf_clean_tx_irq(struct igbvf_ring * tx_ring)773 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
774 {
775 struct igbvf_adapter *adapter = tx_ring->adapter;
776 struct net_device *netdev = adapter->netdev;
777 struct igbvf_buffer *buffer_info;
778 struct sk_buff *skb;
779 union e1000_adv_tx_desc *tx_desc, *eop_desc;
780 unsigned int total_bytes = 0, total_packets = 0;
781 unsigned int i, count = 0;
782 bool cleaned = false;
783
784 i = tx_ring->next_to_clean;
785 buffer_info = &tx_ring->buffer_info[i];
786 eop_desc = buffer_info->next_to_watch;
787
788 do {
789 /* if next_to_watch is not set then there is no work pending */
790 if (!eop_desc)
791 break;
792
793 /* prevent any other reads prior to eop_desc */
794 smp_rmb();
795
796 /* if DD is not set pending work has not been completed */
797 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
798 break;
799
800 /* clear next_to_watch to prevent false hangs */
801 buffer_info->next_to_watch = NULL;
802
803 for (cleaned = false; !cleaned; count++) {
804 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
805 cleaned = (tx_desc == eop_desc);
806 skb = buffer_info->skb;
807
808 if (skb) {
809 unsigned int segs, bytecount;
810
811 /* gso_segs is currently only valid for tcp */
812 segs = skb_shinfo(skb)->gso_segs ?: 1;
813 /* multiply data chunks by size of headers */
814 bytecount = ((segs - 1) * skb_headlen(skb)) +
815 skb->len;
816 total_packets += segs;
817 total_bytes += bytecount;
818 }
819
820 igbvf_put_txbuf(adapter, buffer_info);
821 tx_desc->wb.status = 0;
822
823 i++;
824 if (i == tx_ring->count)
825 i = 0;
826
827 buffer_info = &tx_ring->buffer_info[i];
828 }
829
830 eop_desc = buffer_info->next_to_watch;
831 } while (count < tx_ring->count);
832
833 tx_ring->next_to_clean = i;
834
835 if (unlikely(count && netif_carrier_ok(netdev) &&
836 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (netif_queue_stopped(netdev) &&
842 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
843 netif_wake_queue(netdev);
844 ++adapter->restart_queue;
845 }
846 }
847
848 netdev->stats.tx_bytes += total_bytes;
849 netdev->stats.tx_packets += total_packets;
850 return count < tx_ring->count;
851 }
852
igbvf_msix_other(int irq,void * data)853 static irqreturn_t igbvf_msix_other(int irq, void *data)
854 {
855 struct net_device *netdev = data;
856 struct igbvf_adapter *adapter = netdev_priv(netdev);
857 struct e1000_hw *hw = &adapter->hw;
858
859 adapter->int_counter1++;
860
861 hw->mac.get_link_status = 1;
862 if (!test_bit(__IGBVF_DOWN, &adapter->state))
863 mod_timer(&adapter->watchdog_timer, jiffies + 1);
864
865 ew32(EIMS, adapter->eims_other);
866
867 return IRQ_HANDLED;
868 }
869
igbvf_intr_msix_tx(int irq,void * data)870 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
871 {
872 struct net_device *netdev = data;
873 struct igbvf_adapter *adapter = netdev_priv(netdev);
874 struct e1000_hw *hw = &adapter->hw;
875 struct igbvf_ring *tx_ring = adapter->tx_ring;
876
877 if (tx_ring->set_itr) {
878 writel(tx_ring->itr_val,
879 adapter->hw.hw_addr + tx_ring->itr_register);
880 adapter->tx_ring->set_itr = 0;
881 }
882
883 adapter->total_tx_bytes = 0;
884 adapter->total_tx_packets = 0;
885
886 /* auto mask will automatically re-enable the interrupt when we write
887 * EICS
888 */
889 if (!igbvf_clean_tx_irq(tx_ring))
890 /* Ring was not completely cleaned, so fire another interrupt */
891 ew32(EICS, tx_ring->eims_value);
892 else
893 ew32(EIMS, tx_ring->eims_value);
894
895 return IRQ_HANDLED;
896 }
897
igbvf_intr_msix_rx(int irq,void * data)898 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
899 {
900 struct net_device *netdev = data;
901 struct igbvf_adapter *adapter = netdev_priv(netdev);
902
903 adapter->int_counter0++;
904
905 /* Write the ITR value calculated at the end of the
906 * previous interrupt.
907 */
908 if (adapter->rx_ring->set_itr) {
909 writel(adapter->rx_ring->itr_val,
910 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
911 adapter->rx_ring->set_itr = 0;
912 }
913
914 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
915 adapter->total_rx_bytes = 0;
916 adapter->total_rx_packets = 0;
917 __napi_schedule(&adapter->rx_ring->napi);
918 }
919
920 return IRQ_HANDLED;
921 }
922
923 #define IGBVF_NO_QUEUE -1
924
igbvf_assign_vector(struct igbvf_adapter * adapter,int rx_queue,int tx_queue,int msix_vector)925 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
926 int tx_queue, int msix_vector)
927 {
928 struct e1000_hw *hw = &adapter->hw;
929 u32 ivar, index;
930
931 /* 82576 uses a table-based method for assigning vectors.
932 * Each queue has a single entry in the table to which we write
933 * a vector number along with a "valid" bit. Sadly, the layout
934 * of the table is somewhat counterintuitive.
935 */
936 if (rx_queue > IGBVF_NO_QUEUE) {
937 index = (rx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (rx_queue & 0x1) {
940 /* vector goes into third byte of register */
941 ivar = ivar & 0xFF00FFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
943 } else {
944 /* vector goes into low byte of register */
945 ivar = ivar & 0xFFFFFF00;
946 ivar |= msix_vector | E1000_IVAR_VALID;
947 }
948 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
949 array_ew32(IVAR0, index, ivar);
950 }
951 if (tx_queue > IGBVF_NO_QUEUE) {
952 index = (tx_queue >> 1);
953 ivar = array_er32(IVAR0, index);
954 if (tx_queue & 0x1) {
955 /* vector goes into high byte of register */
956 ivar = ivar & 0x00FFFFFF;
957 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
958 } else {
959 /* vector goes into second byte of register */
960 ivar = ivar & 0xFFFF00FF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
962 }
963 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
964 array_ew32(IVAR0, index, ivar);
965 }
966 }
967
968 /**
969 * igbvf_configure_msix - Configure MSI-X hardware
970 * @adapter: board private structure
971 *
972 * igbvf_configure_msix sets up the hardware to properly
973 * generate MSI-X interrupts.
974 **/
igbvf_configure_msix(struct igbvf_adapter * adapter)975 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
976 {
977 u32 tmp;
978 struct e1000_hw *hw = &adapter->hw;
979 struct igbvf_ring *tx_ring = adapter->tx_ring;
980 struct igbvf_ring *rx_ring = adapter->rx_ring;
981 int vector = 0;
982
983 adapter->eims_enable_mask = 0;
984
985 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
986 adapter->eims_enable_mask |= tx_ring->eims_value;
987 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
988 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
989 adapter->eims_enable_mask |= rx_ring->eims_value;
990 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
991
992 /* set vector for other causes, i.e. link changes */
993
994 tmp = (vector++ | E1000_IVAR_VALID);
995
996 ew32(IVAR_MISC, tmp);
997
998 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
999 adapter->eims_other = BIT(vector - 1);
1000 e1e_flush();
1001 }
1002
igbvf_reset_interrupt_capability(struct igbvf_adapter * adapter)1003 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1004 {
1005 if (adapter->msix_entries) {
1006 pci_disable_msix(adapter->pdev);
1007 kfree(adapter->msix_entries);
1008 adapter->msix_entries = NULL;
1009 }
1010 }
1011
1012 /**
1013 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1014 * @adapter: board private structure
1015 *
1016 * Attempt to configure interrupts using the best available
1017 * capabilities of the hardware and kernel.
1018 **/
igbvf_set_interrupt_capability(struct igbvf_adapter * adapter)1019 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 int err = -ENOMEM;
1022 int i;
1023
1024 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1025 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1026 GFP_KERNEL);
1027 if (adapter->msix_entries) {
1028 for (i = 0; i < 3; i++)
1029 adapter->msix_entries[i].entry = i;
1030
1031 err = pci_enable_msix_range(adapter->pdev,
1032 adapter->msix_entries, 3, 3);
1033 }
1034
1035 if (err < 0) {
1036 /* MSI-X failed */
1037 dev_err(&adapter->pdev->dev,
1038 "Failed to initialize MSI-X interrupts.\n");
1039 igbvf_reset_interrupt_capability(adapter);
1040 }
1041 }
1042
1043 /**
1044 * igbvf_request_msix - Initialize MSI-X interrupts
1045 * @adapter: board private structure
1046 *
1047 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1048 * kernel.
1049 **/
igbvf_request_msix(struct igbvf_adapter * adapter)1050 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1051 {
1052 struct net_device *netdev = adapter->netdev;
1053 int err = 0, vector = 0;
1054
1055 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1056 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1057 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1058 } else {
1059 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1060 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1061 }
1062
1063 err = request_irq(adapter->msix_entries[vector].vector,
1064 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1065 netdev);
1066 if (err)
1067 goto out;
1068
1069 adapter->tx_ring->itr_register = E1000_EITR(vector);
1070 adapter->tx_ring->itr_val = adapter->current_itr;
1071 vector++;
1072
1073 err = request_irq(adapter->msix_entries[vector].vector,
1074 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1075 netdev);
1076 if (err)
1077 goto free_irq_tx;
1078
1079 adapter->rx_ring->itr_register = E1000_EITR(vector);
1080 adapter->rx_ring->itr_val = adapter->current_itr;
1081 vector++;
1082
1083 err = request_irq(adapter->msix_entries[vector].vector,
1084 igbvf_msix_other, 0, netdev->name, netdev);
1085 if (err)
1086 goto free_irq_rx;
1087
1088 igbvf_configure_msix(adapter);
1089 return 0;
1090 free_irq_rx:
1091 free_irq(adapter->msix_entries[--vector].vector, netdev);
1092 free_irq_tx:
1093 free_irq(adapter->msix_entries[--vector].vector, netdev);
1094 out:
1095 return err;
1096 }
1097
1098 /**
1099 * igbvf_alloc_queues - Allocate memory for all rings
1100 * @adapter: board private structure to initialize
1101 **/
igbvf_alloc_queues(struct igbvf_adapter * adapter)1102 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1103 {
1104 struct net_device *netdev = adapter->netdev;
1105
1106 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1107 if (!adapter->tx_ring)
1108 return -ENOMEM;
1109
1110 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1111 if (!adapter->rx_ring) {
1112 kfree(adapter->tx_ring);
1113 return -ENOMEM;
1114 }
1115
1116 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1117
1118 return 0;
1119 }
1120
1121 /**
1122 * igbvf_request_irq - initialize interrupts
1123 * @adapter: board private structure
1124 *
1125 * Attempts to configure interrupts using the best available
1126 * capabilities of the hardware and kernel.
1127 **/
igbvf_request_irq(struct igbvf_adapter * adapter)1128 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1129 {
1130 int err = -1;
1131
1132 /* igbvf supports msi-x only */
1133 if (adapter->msix_entries)
1134 err = igbvf_request_msix(adapter);
1135
1136 if (!err)
1137 return err;
1138
1139 dev_err(&adapter->pdev->dev,
1140 "Unable to allocate interrupt, Error: %d\n", err);
1141
1142 return err;
1143 }
1144
igbvf_free_irq(struct igbvf_adapter * adapter)1145 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1146 {
1147 struct net_device *netdev = adapter->netdev;
1148 int vector;
1149
1150 if (adapter->msix_entries) {
1151 for (vector = 0; vector < 3; vector++)
1152 free_irq(adapter->msix_entries[vector].vector, netdev);
1153 }
1154 }
1155
1156 /**
1157 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1158 * @adapter: board private structure
1159 **/
igbvf_irq_disable(struct igbvf_adapter * adapter)1160 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1161 {
1162 struct e1000_hw *hw = &adapter->hw;
1163
1164 ew32(EIMC, ~0);
1165
1166 if (adapter->msix_entries)
1167 ew32(EIAC, 0);
1168 }
1169
1170 /**
1171 * igbvf_irq_enable - Enable default interrupt generation settings
1172 * @adapter: board private structure
1173 **/
igbvf_irq_enable(struct igbvf_adapter * adapter)1174 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1175 {
1176 struct e1000_hw *hw = &adapter->hw;
1177
1178 ew32(EIAC, adapter->eims_enable_mask);
1179 ew32(EIAM, adapter->eims_enable_mask);
1180 ew32(EIMS, adapter->eims_enable_mask);
1181 }
1182
1183 /**
1184 * igbvf_poll - NAPI Rx polling callback
1185 * @napi: struct associated with this polling callback
1186 * @budget: amount of packets driver is allowed to process this poll
1187 **/
igbvf_poll(struct napi_struct * napi,int budget)1188 static int igbvf_poll(struct napi_struct *napi, int budget)
1189 {
1190 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1191 struct igbvf_adapter *adapter = rx_ring->adapter;
1192 struct e1000_hw *hw = &adapter->hw;
1193 int work_done = 0;
1194
1195 igbvf_clean_rx_irq(adapter, &work_done, budget);
1196
1197 if (work_done == budget)
1198 return budget;
1199
1200 /* Exit the polling mode, but don't re-enable interrupts if stack might
1201 * poll us due to busy-polling
1202 */
1203 if (likely(napi_complete_done(napi, work_done))) {
1204 if (adapter->requested_itr & 3)
1205 igbvf_set_itr(adapter);
1206
1207 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1208 ew32(EIMS, adapter->rx_ring->eims_value);
1209 }
1210
1211 return work_done;
1212 }
1213
1214 /**
1215 * igbvf_set_rlpml - set receive large packet maximum length
1216 * @adapter: board private structure
1217 *
1218 * Configure the maximum size of packets that will be received
1219 */
igbvf_set_rlpml(struct igbvf_adapter * adapter)1220 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1221 {
1222 int max_frame_size;
1223 struct e1000_hw *hw = &adapter->hw;
1224
1225 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1226
1227 spin_lock_bh(&hw->mbx_lock);
1228
1229 e1000_rlpml_set_vf(hw, max_frame_size);
1230
1231 spin_unlock_bh(&hw->mbx_lock);
1232 }
1233
igbvf_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)1234 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1235 __be16 proto, u16 vid)
1236 {
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 struct e1000_hw *hw = &adapter->hw;
1239
1240 spin_lock_bh(&hw->mbx_lock);
1241
1242 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1243 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1244 spin_unlock_bh(&hw->mbx_lock);
1245 return -EINVAL;
1246 }
1247
1248 spin_unlock_bh(&hw->mbx_lock);
1249
1250 set_bit(vid, adapter->active_vlans);
1251 return 0;
1252 }
1253
igbvf_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)1254 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1255 __be16 proto, u16 vid)
1256 {
1257 struct igbvf_adapter *adapter = netdev_priv(netdev);
1258 struct e1000_hw *hw = &adapter->hw;
1259
1260 spin_lock_bh(&hw->mbx_lock);
1261
1262 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1263 dev_err(&adapter->pdev->dev,
1264 "Failed to remove vlan id %d\n", vid);
1265 spin_unlock_bh(&hw->mbx_lock);
1266 return -EINVAL;
1267 }
1268
1269 spin_unlock_bh(&hw->mbx_lock);
1270
1271 clear_bit(vid, adapter->active_vlans);
1272 return 0;
1273 }
1274
igbvf_restore_vlan(struct igbvf_adapter * adapter)1275 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1276 {
1277 u16 vid;
1278
1279 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1280 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1281 }
1282
1283 /**
1284 * igbvf_configure_tx - Configure Transmit Unit after Reset
1285 * @adapter: board private structure
1286 *
1287 * Configure the Tx unit of the MAC after a reset.
1288 **/
igbvf_configure_tx(struct igbvf_adapter * adapter)1289 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1290 {
1291 struct e1000_hw *hw = &adapter->hw;
1292 struct igbvf_ring *tx_ring = adapter->tx_ring;
1293 u64 tdba;
1294 u32 txdctl, dca_txctrl;
1295
1296 /* disable transmits */
1297 txdctl = er32(TXDCTL(0));
1298 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1299 e1e_flush();
1300 msleep(10);
1301
1302 /* Setup the HW Tx Head and Tail descriptor pointers */
1303 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1304 tdba = tx_ring->dma;
1305 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1306 ew32(TDBAH(0), (tdba >> 32));
1307 ew32(TDH(0), 0);
1308 ew32(TDT(0), 0);
1309 tx_ring->head = E1000_TDH(0);
1310 tx_ring->tail = E1000_TDT(0);
1311
1312 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1313 * MUST be delivered in order or it will completely screw up
1314 * our bookkeeping.
1315 */
1316 dca_txctrl = er32(DCA_TXCTRL(0));
1317 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1318 ew32(DCA_TXCTRL(0), dca_txctrl);
1319
1320 /* enable transmits */
1321 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1322 ew32(TXDCTL(0), txdctl);
1323
1324 /* Setup Transmit Descriptor Settings for eop descriptor */
1325 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1326
1327 /* enable Report Status bit */
1328 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1329 }
1330
1331 /**
1332 * igbvf_setup_srrctl - configure the receive control registers
1333 * @adapter: Board private structure
1334 **/
igbvf_setup_srrctl(struct igbvf_adapter * adapter)1335 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1336 {
1337 struct e1000_hw *hw = &adapter->hw;
1338 u32 srrctl = 0;
1339
1340 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1341 E1000_SRRCTL_BSIZEHDR_MASK |
1342 E1000_SRRCTL_BSIZEPKT_MASK);
1343
1344 /* Enable queue drop to avoid head of line blocking */
1345 srrctl |= E1000_SRRCTL_DROP_EN;
1346
1347 /* Setup buffer sizes */
1348 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1349 E1000_SRRCTL_BSIZEPKT_SHIFT;
1350
1351 if (adapter->rx_buffer_len < 2048) {
1352 adapter->rx_ps_hdr_size = 0;
1353 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1354 } else {
1355 adapter->rx_ps_hdr_size = 128;
1356 srrctl |= adapter->rx_ps_hdr_size <<
1357 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1358 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1359 }
1360
1361 ew32(SRRCTL(0), srrctl);
1362 }
1363
1364 /**
1365 * igbvf_configure_rx - Configure Receive Unit after Reset
1366 * @adapter: board private structure
1367 *
1368 * Configure the Rx unit of the MAC after a reset.
1369 **/
igbvf_configure_rx(struct igbvf_adapter * adapter)1370 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1371 {
1372 struct e1000_hw *hw = &adapter->hw;
1373 struct igbvf_ring *rx_ring = adapter->rx_ring;
1374 u64 rdba;
1375 u32 rxdctl;
1376
1377 /* disable receives */
1378 rxdctl = er32(RXDCTL(0));
1379 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1380 e1e_flush();
1381 msleep(10);
1382
1383 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1384 * the Base and Length of the Rx Descriptor Ring
1385 */
1386 rdba = rx_ring->dma;
1387 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1388 ew32(RDBAH(0), (rdba >> 32));
1389 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1390 rx_ring->head = E1000_RDH(0);
1391 rx_ring->tail = E1000_RDT(0);
1392 ew32(RDH(0), 0);
1393 ew32(RDT(0), 0);
1394
1395 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1396 rxdctl &= 0xFFF00000;
1397 rxdctl |= IGBVF_RX_PTHRESH;
1398 rxdctl |= IGBVF_RX_HTHRESH << 8;
1399 rxdctl |= IGBVF_RX_WTHRESH << 16;
1400
1401 igbvf_set_rlpml(adapter);
1402
1403 /* enable receives */
1404 ew32(RXDCTL(0), rxdctl);
1405 }
1406
1407 /**
1408 * igbvf_set_multi - Multicast and Promiscuous mode set
1409 * @netdev: network interface device structure
1410 *
1411 * The set_multi entry point is called whenever the multicast address
1412 * list or the network interface flags are updated. This routine is
1413 * responsible for configuring the hardware for proper multicast,
1414 * promiscuous mode, and all-multi behavior.
1415 **/
igbvf_set_multi(struct net_device * netdev)1416 static void igbvf_set_multi(struct net_device *netdev)
1417 {
1418 struct igbvf_adapter *adapter = netdev_priv(netdev);
1419 struct e1000_hw *hw = &adapter->hw;
1420 struct netdev_hw_addr *ha;
1421 u8 *mta_list = NULL;
1422 int i;
1423
1424 if (!netdev_mc_empty(netdev)) {
1425 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1426 GFP_ATOMIC);
1427 if (!mta_list)
1428 return;
1429 }
1430
1431 /* prepare a packed array of only addresses. */
1432 i = 0;
1433 netdev_for_each_mc_addr(ha, netdev)
1434 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1435
1436 spin_lock_bh(&hw->mbx_lock);
1437
1438 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1439
1440 spin_unlock_bh(&hw->mbx_lock);
1441 kfree(mta_list);
1442 }
1443
1444 /**
1445 * igbvf_set_uni - Configure unicast MAC filters
1446 * @netdev: network interface device structure
1447 *
1448 * This routine is responsible for configuring the hardware for proper
1449 * unicast filters.
1450 **/
igbvf_set_uni(struct net_device * netdev)1451 static int igbvf_set_uni(struct net_device *netdev)
1452 {
1453 struct igbvf_adapter *adapter = netdev_priv(netdev);
1454 struct e1000_hw *hw = &adapter->hw;
1455
1456 if (netdev_uc_count(netdev) > IGBVF_MAX_MAC_FILTERS) {
1457 pr_err("Too many unicast filters - No Space\n");
1458 return -ENOSPC;
1459 }
1460
1461 spin_lock_bh(&hw->mbx_lock);
1462
1463 /* Clear all unicast MAC filters */
1464 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_CLR, NULL);
1465
1466 spin_unlock_bh(&hw->mbx_lock);
1467
1468 if (!netdev_uc_empty(netdev)) {
1469 struct netdev_hw_addr *ha;
1470
1471 /* Add MAC filters one by one */
1472 netdev_for_each_uc_addr(ha, netdev) {
1473 spin_lock_bh(&hw->mbx_lock);
1474
1475 hw->mac.ops.set_uc_addr(hw, E1000_VF_MAC_FILTER_ADD,
1476 ha->addr);
1477
1478 spin_unlock_bh(&hw->mbx_lock);
1479 udelay(200);
1480 }
1481 }
1482
1483 return 0;
1484 }
1485
igbvf_set_rx_mode(struct net_device * netdev)1486 static void igbvf_set_rx_mode(struct net_device *netdev)
1487 {
1488 igbvf_set_multi(netdev);
1489 igbvf_set_uni(netdev);
1490 }
1491
1492 /**
1493 * igbvf_configure - configure the hardware for Rx and Tx
1494 * @adapter: private board structure
1495 **/
igbvf_configure(struct igbvf_adapter * adapter)1496 static void igbvf_configure(struct igbvf_adapter *adapter)
1497 {
1498 igbvf_set_rx_mode(adapter->netdev);
1499
1500 igbvf_restore_vlan(adapter);
1501
1502 igbvf_configure_tx(adapter);
1503 igbvf_setup_srrctl(adapter);
1504 igbvf_configure_rx(adapter);
1505 igbvf_alloc_rx_buffers(adapter->rx_ring,
1506 igbvf_desc_unused(adapter->rx_ring));
1507 }
1508
1509 /* igbvf_reset - bring the hardware into a known good state
1510 * @adapter: private board structure
1511 *
1512 * This function boots the hardware and enables some settings that
1513 * require a configuration cycle of the hardware - those cannot be
1514 * set/changed during runtime. After reset the device needs to be
1515 * properly configured for Rx, Tx etc.
1516 */
igbvf_reset(struct igbvf_adapter * adapter)1517 static void igbvf_reset(struct igbvf_adapter *adapter)
1518 {
1519 struct e1000_mac_info *mac = &adapter->hw.mac;
1520 struct net_device *netdev = adapter->netdev;
1521 struct e1000_hw *hw = &adapter->hw;
1522
1523 spin_lock_bh(&hw->mbx_lock);
1524
1525 /* Allow time for pending master requests to run */
1526 if (mac->ops.reset_hw(hw))
1527 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1528
1529 mac->ops.init_hw(hw);
1530
1531 spin_unlock_bh(&hw->mbx_lock);
1532
1533 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1534 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1535 netdev->addr_len);
1536 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1537 netdev->addr_len);
1538 }
1539
1540 adapter->last_reset = jiffies;
1541 }
1542
igbvf_up(struct igbvf_adapter * adapter)1543 int igbvf_up(struct igbvf_adapter *adapter)
1544 {
1545 struct e1000_hw *hw = &adapter->hw;
1546
1547 /* hardware has been reset, we need to reload some things */
1548 igbvf_configure(adapter);
1549
1550 clear_bit(__IGBVF_DOWN, &adapter->state);
1551
1552 napi_enable(&adapter->rx_ring->napi);
1553 if (adapter->msix_entries)
1554 igbvf_configure_msix(adapter);
1555
1556 /* Clear any pending interrupts. */
1557 er32(EICR);
1558 igbvf_irq_enable(adapter);
1559
1560 /* start the watchdog */
1561 hw->mac.get_link_status = 1;
1562 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1563
1564 return 0;
1565 }
1566
igbvf_down(struct igbvf_adapter * adapter)1567 void igbvf_down(struct igbvf_adapter *adapter)
1568 {
1569 struct net_device *netdev = adapter->netdev;
1570 struct e1000_hw *hw = &adapter->hw;
1571 u32 rxdctl, txdctl;
1572
1573 /* signal that we're down so the interrupt handler does not
1574 * reschedule our watchdog timer
1575 */
1576 set_bit(__IGBVF_DOWN, &adapter->state);
1577
1578 /* disable receives in the hardware */
1579 rxdctl = er32(RXDCTL(0));
1580 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1581
1582 netif_carrier_off(netdev);
1583 netif_stop_queue(netdev);
1584
1585 /* disable transmits in the hardware */
1586 txdctl = er32(TXDCTL(0));
1587 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1588
1589 /* flush both disables and wait for them to finish */
1590 e1e_flush();
1591 msleep(10);
1592
1593 napi_disable(&adapter->rx_ring->napi);
1594
1595 igbvf_irq_disable(adapter);
1596
1597 del_timer_sync(&adapter->watchdog_timer);
1598
1599 /* record the stats before reset*/
1600 igbvf_update_stats(adapter);
1601
1602 adapter->link_speed = 0;
1603 adapter->link_duplex = 0;
1604
1605 igbvf_reset(adapter);
1606 igbvf_clean_tx_ring(adapter->tx_ring);
1607 igbvf_clean_rx_ring(adapter->rx_ring);
1608 }
1609
igbvf_reinit_locked(struct igbvf_adapter * adapter)1610 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1611 {
1612 might_sleep();
1613 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1614 usleep_range(1000, 2000);
1615 igbvf_down(adapter);
1616 igbvf_up(adapter);
1617 clear_bit(__IGBVF_RESETTING, &adapter->state);
1618 }
1619
1620 /**
1621 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1622 * @adapter: board private structure to initialize
1623 *
1624 * igbvf_sw_init initializes the Adapter private data structure.
1625 * Fields are initialized based on PCI device information and
1626 * OS network device settings (MTU size).
1627 **/
igbvf_sw_init(struct igbvf_adapter * adapter)1628 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1629 {
1630 struct net_device *netdev = adapter->netdev;
1631 s32 rc;
1632
1633 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1634 adapter->rx_ps_hdr_size = 0;
1635 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1636 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1637
1638 adapter->tx_int_delay = 8;
1639 adapter->tx_abs_int_delay = 32;
1640 adapter->rx_int_delay = 0;
1641 adapter->rx_abs_int_delay = 8;
1642 adapter->requested_itr = 3;
1643 adapter->current_itr = IGBVF_START_ITR;
1644
1645 /* Set various function pointers */
1646 adapter->ei->init_ops(&adapter->hw);
1647
1648 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1649 if (rc)
1650 return rc;
1651
1652 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1653 if (rc)
1654 return rc;
1655
1656 igbvf_set_interrupt_capability(adapter);
1657
1658 if (igbvf_alloc_queues(adapter))
1659 return -ENOMEM;
1660
1661 spin_lock_init(&adapter->tx_queue_lock);
1662
1663 /* Explicitly disable IRQ since the NIC can be in any state. */
1664 igbvf_irq_disable(adapter);
1665
1666 spin_lock_init(&adapter->stats_lock);
1667 spin_lock_init(&adapter->hw.mbx_lock);
1668
1669 set_bit(__IGBVF_DOWN, &adapter->state);
1670 return 0;
1671 }
1672
igbvf_initialize_last_counter_stats(struct igbvf_adapter * adapter)1673 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1674 {
1675 struct e1000_hw *hw = &adapter->hw;
1676
1677 adapter->stats.last_gprc = er32(VFGPRC);
1678 adapter->stats.last_gorc = er32(VFGORC);
1679 adapter->stats.last_gptc = er32(VFGPTC);
1680 adapter->stats.last_gotc = er32(VFGOTC);
1681 adapter->stats.last_mprc = er32(VFMPRC);
1682 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1683 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1684 adapter->stats.last_gorlbc = er32(VFGORLBC);
1685 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1686
1687 adapter->stats.base_gprc = er32(VFGPRC);
1688 adapter->stats.base_gorc = er32(VFGORC);
1689 adapter->stats.base_gptc = er32(VFGPTC);
1690 adapter->stats.base_gotc = er32(VFGOTC);
1691 adapter->stats.base_mprc = er32(VFMPRC);
1692 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1693 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1694 adapter->stats.base_gorlbc = er32(VFGORLBC);
1695 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1696 }
1697
1698 /**
1699 * igbvf_open - Called when a network interface is made active
1700 * @netdev: network interface device structure
1701 *
1702 * Returns 0 on success, negative value on failure
1703 *
1704 * The open entry point is called when a network interface is made
1705 * active by the system (IFF_UP). At this point all resources needed
1706 * for transmit and receive operations are allocated, the interrupt
1707 * handler is registered with the OS, the watchdog timer is started,
1708 * and the stack is notified that the interface is ready.
1709 **/
igbvf_open(struct net_device * netdev)1710 static int igbvf_open(struct net_device *netdev)
1711 {
1712 struct igbvf_adapter *adapter = netdev_priv(netdev);
1713 struct e1000_hw *hw = &adapter->hw;
1714 int err;
1715
1716 /* disallow open during test */
1717 if (test_bit(__IGBVF_TESTING, &adapter->state))
1718 return -EBUSY;
1719
1720 /* allocate transmit descriptors */
1721 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1722 if (err)
1723 goto err_setup_tx;
1724
1725 /* allocate receive descriptors */
1726 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1727 if (err)
1728 goto err_setup_rx;
1729
1730 /* before we allocate an interrupt, we must be ready to handle it.
1731 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1732 * as soon as we call pci_request_irq, so we have to setup our
1733 * clean_rx handler before we do so.
1734 */
1735 igbvf_configure(adapter);
1736
1737 err = igbvf_request_irq(adapter);
1738 if (err)
1739 goto err_req_irq;
1740
1741 /* From here on the code is the same as igbvf_up() */
1742 clear_bit(__IGBVF_DOWN, &adapter->state);
1743
1744 napi_enable(&adapter->rx_ring->napi);
1745
1746 /* clear any pending interrupts */
1747 er32(EICR);
1748
1749 igbvf_irq_enable(adapter);
1750
1751 /* start the watchdog */
1752 hw->mac.get_link_status = 1;
1753 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1754
1755 return 0;
1756
1757 err_req_irq:
1758 igbvf_free_rx_resources(adapter->rx_ring);
1759 err_setup_rx:
1760 igbvf_free_tx_resources(adapter->tx_ring);
1761 err_setup_tx:
1762 igbvf_reset(adapter);
1763
1764 return err;
1765 }
1766
1767 /**
1768 * igbvf_close - Disables a network interface
1769 * @netdev: network interface device structure
1770 *
1771 * Returns 0, this is not allowed to fail
1772 *
1773 * The close entry point is called when an interface is de-activated
1774 * by the OS. The hardware is still under the drivers control, but
1775 * needs to be disabled. A global MAC reset is issued to stop the
1776 * hardware, and all transmit and receive resources are freed.
1777 **/
igbvf_close(struct net_device * netdev)1778 static int igbvf_close(struct net_device *netdev)
1779 {
1780 struct igbvf_adapter *adapter = netdev_priv(netdev);
1781
1782 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1783 igbvf_down(adapter);
1784
1785 igbvf_free_irq(adapter);
1786
1787 igbvf_free_tx_resources(adapter->tx_ring);
1788 igbvf_free_rx_resources(adapter->rx_ring);
1789
1790 return 0;
1791 }
1792
1793 /**
1794 * igbvf_set_mac - Change the Ethernet Address of the NIC
1795 * @netdev: network interface device structure
1796 * @p: pointer to an address structure
1797 *
1798 * Returns 0 on success, negative on failure
1799 **/
igbvf_set_mac(struct net_device * netdev,void * p)1800 static int igbvf_set_mac(struct net_device *netdev, void *p)
1801 {
1802 struct igbvf_adapter *adapter = netdev_priv(netdev);
1803 struct e1000_hw *hw = &adapter->hw;
1804 struct sockaddr *addr = p;
1805
1806 if (!is_valid_ether_addr(addr->sa_data))
1807 return -EADDRNOTAVAIL;
1808
1809 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1810
1811 spin_lock_bh(&hw->mbx_lock);
1812
1813 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1814
1815 spin_unlock_bh(&hw->mbx_lock);
1816
1817 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1818 return -EADDRNOTAVAIL;
1819
1820 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1821
1822 return 0;
1823 }
1824
1825 #define UPDATE_VF_COUNTER(reg, name) \
1826 { \
1827 u32 current_counter = er32(reg); \
1828 if (current_counter < adapter->stats.last_##name) \
1829 adapter->stats.name += 0x100000000LL; \
1830 adapter->stats.last_##name = current_counter; \
1831 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1832 adapter->stats.name |= current_counter; \
1833 }
1834
1835 /**
1836 * igbvf_update_stats - Update the board statistics counters
1837 * @adapter: board private structure
1838 **/
igbvf_update_stats(struct igbvf_adapter * adapter)1839 void igbvf_update_stats(struct igbvf_adapter *adapter)
1840 {
1841 struct e1000_hw *hw = &adapter->hw;
1842 struct pci_dev *pdev = adapter->pdev;
1843
1844 /* Prevent stats update while adapter is being reset, link is down
1845 * or if the pci connection is down.
1846 */
1847 if (adapter->link_speed == 0)
1848 return;
1849
1850 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1851 return;
1852
1853 if (pci_channel_offline(pdev))
1854 return;
1855
1856 UPDATE_VF_COUNTER(VFGPRC, gprc);
1857 UPDATE_VF_COUNTER(VFGORC, gorc);
1858 UPDATE_VF_COUNTER(VFGPTC, gptc);
1859 UPDATE_VF_COUNTER(VFGOTC, gotc);
1860 UPDATE_VF_COUNTER(VFMPRC, mprc);
1861 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1862 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1863 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1864 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1865
1866 /* Fill out the OS statistics structure */
1867 adapter->netdev->stats.multicast = adapter->stats.mprc;
1868 }
1869
igbvf_print_link_info(struct igbvf_adapter * adapter)1870 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1871 {
1872 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1873 adapter->link_speed,
1874 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1875 }
1876
igbvf_has_link(struct igbvf_adapter * adapter)1877 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1878 {
1879 struct e1000_hw *hw = &adapter->hw;
1880 s32 ret_val = E1000_SUCCESS;
1881 bool link_active;
1882
1883 /* If interface is down, stay link down */
1884 if (test_bit(__IGBVF_DOWN, &adapter->state))
1885 return false;
1886
1887 spin_lock_bh(&hw->mbx_lock);
1888
1889 ret_val = hw->mac.ops.check_for_link(hw);
1890
1891 spin_unlock_bh(&hw->mbx_lock);
1892
1893 link_active = !hw->mac.get_link_status;
1894
1895 /* if check for link returns error we will need to reset */
1896 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1897 schedule_work(&adapter->reset_task);
1898
1899 return link_active;
1900 }
1901
1902 /**
1903 * igbvf_watchdog - Timer Call-back
1904 * @t: timer list pointer containing private struct
1905 **/
igbvf_watchdog(struct timer_list * t)1906 static void igbvf_watchdog(struct timer_list *t)
1907 {
1908 struct igbvf_adapter *adapter = from_timer(adapter, t, watchdog_timer);
1909
1910 /* Do the rest outside of interrupt context */
1911 schedule_work(&adapter->watchdog_task);
1912 }
1913
igbvf_watchdog_task(struct work_struct * work)1914 static void igbvf_watchdog_task(struct work_struct *work)
1915 {
1916 struct igbvf_adapter *adapter = container_of(work,
1917 struct igbvf_adapter,
1918 watchdog_task);
1919 struct net_device *netdev = adapter->netdev;
1920 struct e1000_mac_info *mac = &adapter->hw.mac;
1921 struct igbvf_ring *tx_ring = adapter->tx_ring;
1922 struct e1000_hw *hw = &adapter->hw;
1923 u32 link;
1924 int tx_pending = 0;
1925
1926 link = igbvf_has_link(adapter);
1927
1928 if (link) {
1929 if (!netif_carrier_ok(netdev)) {
1930 mac->ops.get_link_up_info(&adapter->hw,
1931 &adapter->link_speed,
1932 &adapter->link_duplex);
1933 igbvf_print_link_info(adapter);
1934
1935 netif_carrier_on(netdev);
1936 netif_wake_queue(netdev);
1937 }
1938 } else {
1939 if (netif_carrier_ok(netdev)) {
1940 adapter->link_speed = 0;
1941 adapter->link_duplex = 0;
1942 dev_info(&adapter->pdev->dev, "Link is Down\n");
1943 netif_carrier_off(netdev);
1944 netif_stop_queue(netdev);
1945 }
1946 }
1947
1948 if (netif_carrier_ok(netdev)) {
1949 igbvf_update_stats(adapter);
1950 } else {
1951 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1952 tx_ring->count);
1953 if (tx_pending) {
1954 /* We've lost link, so the controller stops DMA,
1955 * but we've got queued Tx work that's never going
1956 * to get done, so reset controller to flush Tx.
1957 * (Do the reset outside of interrupt context).
1958 */
1959 adapter->tx_timeout_count++;
1960 schedule_work(&adapter->reset_task);
1961 }
1962 }
1963
1964 /* Cause software interrupt to ensure Rx ring is cleaned */
1965 ew32(EICS, adapter->rx_ring->eims_value);
1966
1967 /* Reset the timer */
1968 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1969 mod_timer(&adapter->watchdog_timer,
1970 round_jiffies(jiffies + (2 * HZ)));
1971 }
1972
1973 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1974 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1975 #define IGBVF_TX_FLAGS_TSO 0x00000004
1976 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1977 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1978 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1979
igbvf_tx_ctxtdesc(struct igbvf_ring * tx_ring,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1980 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1981 u32 type_tucmd, u32 mss_l4len_idx)
1982 {
1983 struct e1000_adv_tx_context_desc *context_desc;
1984 struct igbvf_buffer *buffer_info;
1985 u16 i = tx_ring->next_to_use;
1986
1987 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1988 buffer_info = &tx_ring->buffer_info[i];
1989
1990 i++;
1991 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1992
1993 /* set bits to identify this as an advanced context descriptor */
1994 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1995
1996 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1997 context_desc->seqnum_seed = 0;
1998 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1999 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2000
2001 buffer_info->time_stamp = jiffies;
2002 buffer_info->dma = 0;
2003 }
2004
igbvf_tso(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u8 * hdr_len)2005 static int igbvf_tso(struct igbvf_ring *tx_ring,
2006 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2007 {
2008 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
2009 union {
2010 struct iphdr *v4;
2011 struct ipv6hdr *v6;
2012 unsigned char *hdr;
2013 } ip;
2014 union {
2015 struct tcphdr *tcp;
2016 unsigned char *hdr;
2017 } l4;
2018 u32 paylen, l4_offset;
2019 int err;
2020
2021 if (skb->ip_summed != CHECKSUM_PARTIAL)
2022 return 0;
2023
2024 if (!skb_is_gso(skb))
2025 return 0;
2026
2027 err = skb_cow_head(skb, 0);
2028 if (err < 0)
2029 return err;
2030
2031 ip.hdr = skb_network_header(skb);
2032 l4.hdr = skb_checksum_start(skb);
2033
2034 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2035 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2036
2037 /* initialize outer IP header fields */
2038 if (ip.v4->version == 4) {
2039 unsigned char *csum_start = skb_checksum_start(skb);
2040 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
2041
2042 /* IP header will have to cancel out any data that
2043 * is not a part of the outer IP header
2044 */
2045 ip.v4->check = csum_fold(csum_partial(trans_start,
2046 csum_start - trans_start,
2047 0));
2048 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
2049
2050 ip.v4->tot_len = 0;
2051 } else {
2052 ip.v6->payload_len = 0;
2053 }
2054
2055 /* determine offset of inner transport header */
2056 l4_offset = l4.hdr - skb->data;
2057
2058 /* compute length of segmentation header */
2059 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2060
2061 /* remove payload length from inner checksum */
2062 paylen = skb->len - l4_offset;
2063 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2064
2065 /* MSS L4LEN IDX */
2066 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
2067 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
2068
2069 /* VLAN MACLEN IPLEN */
2070 vlan_macip_lens = l4.hdr - ip.hdr;
2071 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
2072 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2073
2074 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2075
2076 return 1;
2077 }
2078
igbvf_ipv6_csum_is_sctp(struct sk_buff * skb)2079 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2080 {
2081 unsigned int offset = 0;
2082
2083 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2084
2085 return offset == skb_checksum_start_offset(skb);
2086 }
2087
igbvf_tx_csum(struct igbvf_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,__be16 protocol)2088 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2089 u32 tx_flags, __be16 protocol)
2090 {
2091 u32 vlan_macip_lens = 0;
2092 u32 type_tucmd = 0;
2093
2094 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2095 csum_failed:
2096 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2097 return false;
2098 goto no_csum;
2099 }
2100
2101 switch (skb->csum_offset) {
2102 case offsetof(struct tcphdr, check):
2103 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2104 fallthrough;
2105 case offsetof(struct udphdr, check):
2106 break;
2107 case offsetof(struct sctphdr, checksum):
2108 /* validate that this is actually an SCTP request */
2109 if (((protocol == htons(ETH_P_IP)) &&
2110 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2111 ((protocol == htons(ETH_P_IPV6)) &&
2112 igbvf_ipv6_csum_is_sctp(skb))) {
2113 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2114 break;
2115 }
2116 fallthrough;
2117 default:
2118 skb_checksum_help(skb);
2119 goto csum_failed;
2120 }
2121
2122 vlan_macip_lens = skb_checksum_start_offset(skb) -
2123 skb_network_offset(skb);
2124 no_csum:
2125 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2126 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2127
2128 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2129 return true;
2130 }
2131
igbvf_maybe_stop_tx(struct net_device * netdev,int size)2132 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2133 {
2134 struct igbvf_adapter *adapter = netdev_priv(netdev);
2135
2136 /* there is enough descriptors then we don't need to worry */
2137 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2138 return 0;
2139
2140 netif_stop_queue(netdev);
2141
2142 /* Herbert's original patch had:
2143 * smp_mb__after_netif_stop_queue();
2144 * but since that doesn't exist yet, just open code it.
2145 */
2146 smp_mb();
2147
2148 /* We need to check again just in case room has been made available */
2149 if (igbvf_desc_unused(adapter->tx_ring) < size)
2150 return -EBUSY;
2151
2152 netif_wake_queue(netdev);
2153
2154 ++adapter->restart_queue;
2155 return 0;
2156 }
2157
2158 #define IGBVF_MAX_TXD_PWR 16
2159 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2160
igbvf_tx_map_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,struct sk_buff * skb)2161 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2162 struct igbvf_ring *tx_ring,
2163 struct sk_buff *skb)
2164 {
2165 struct igbvf_buffer *buffer_info;
2166 struct pci_dev *pdev = adapter->pdev;
2167 unsigned int len = skb_headlen(skb);
2168 unsigned int count = 0, i;
2169 unsigned int f;
2170
2171 i = tx_ring->next_to_use;
2172
2173 buffer_info = &tx_ring->buffer_info[i];
2174 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2175 buffer_info->length = len;
2176 /* set time_stamp *before* dma to help avoid a possible race */
2177 buffer_info->time_stamp = jiffies;
2178 buffer_info->mapped_as_page = false;
2179 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2180 DMA_TO_DEVICE);
2181 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2182 goto dma_error;
2183
2184 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2185 const skb_frag_t *frag;
2186
2187 count++;
2188 i++;
2189 if (i == tx_ring->count)
2190 i = 0;
2191
2192 frag = &skb_shinfo(skb)->frags[f];
2193 len = skb_frag_size(frag);
2194
2195 buffer_info = &tx_ring->buffer_info[i];
2196 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2197 buffer_info->length = len;
2198 buffer_info->time_stamp = jiffies;
2199 buffer_info->mapped_as_page = true;
2200 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2201 DMA_TO_DEVICE);
2202 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2203 goto dma_error;
2204 }
2205
2206 tx_ring->buffer_info[i].skb = skb;
2207
2208 return ++count;
2209
2210 dma_error:
2211 dev_err(&pdev->dev, "TX DMA map failed\n");
2212
2213 /* clear timestamp and dma mappings for failed buffer_info mapping */
2214 buffer_info->dma = 0;
2215 buffer_info->time_stamp = 0;
2216 buffer_info->length = 0;
2217 buffer_info->mapped_as_page = false;
2218 if (count)
2219 count--;
2220
2221 /* clear timestamp and dma mappings for remaining portion of packet */
2222 while (count--) {
2223 if (i == 0)
2224 i += tx_ring->count;
2225 i--;
2226 buffer_info = &tx_ring->buffer_info[i];
2227 igbvf_put_txbuf(adapter, buffer_info);
2228 }
2229
2230 return 0;
2231 }
2232
igbvf_tx_queue_adv(struct igbvf_adapter * adapter,struct igbvf_ring * tx_ring,int tx_flags,int count,unsigned int first,u32 paylen,u8 hdr_len)2233 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2234 struct igbvf_ring *tx_ring,
2235 int tx_flags, int count,
2236 unsigned int first, u32 paylen,
2237 u8 hdr_len)
2238 {
2239 union e1000_adv_tx_desc *tx_desc = NULL;
2240 struct igbvf_buffer *buffer_info;
2241 u32 olinfo_status = 0, cmd_type_len;
2242 unsigned int i;
2243
2244 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2245 E1000_ADVTXD_DCMD_DEXT);
2246
2247 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2248 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2249
2250 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2251 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2252
2253 /* insert tcp checksum */
2254 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2255
2256 /* insert ip checksum */
2257 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2258 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2259
2260 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2261 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2262 }
2263
2264 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2265
2266 i = tx_ring->next_to_use;
2267 while (count--) {
2268 buffer_info = &tx_ring->buffer_info[i];
2269 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2270 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2271 tx_desc->read.cmd_type_len =
2272 cpu_to_le32(cmd_type_len | buffer_info->length);
2273 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2274 i++;
2275 if (i == tx_ring->count)
2276 i = 0;
2277 }
2278
2279 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2280 /* Force memory writes to complete before letting h/w
2281 * know there are new descriptors to fetch. (Only
2282 * applicable for weak-ordered memory model archs,
2283 * such as IA-64).
2284 */
2285 wmb();
2286
2287 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2288 tx_ring->next_to_use = i;
2289 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2290 }
2291
igbvf_xmit_frame_ring_adv(struct sk_buff * skb,struct net_device * netdev,struct igbvf_ring * tx_ring)2292 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2293 struct net_device *netdev,
2294 struct igbvf_ring *tx_ring)
2295 {
2296 struct igbvf_adapter *adapter = netdev_priv(netdev);
2297 unsigned int first, tx_flags = 0;
2298 u8 hdr_len = 0;
2299 int count = 0;
2300 int tso = 0;
2301 __be16 protocol = vlan_get_protocol(skb);
2302
2303 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2304 dev_kfree_skb_any(skb);
2305 return NETDEV_TX_OK;
2306 }
2307
2308 if (skb->len <= 0) {
2309 dev_kfree_skb_any(skb);
2310 return NETDEV_TX_OK;
2311 }
2312
2313 /* need: count + 4 desc gap to keep tail from touching
2314 * + 2 desc gap to keep tail from touching head,
2315 * + 1 desc for skb->data,
2316 * + 1 desc for context descriptor,
2317 * head, otherwise try next time
2318 */
2319 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2320 /* this is a hard error */
2321 return NETDEV_TX_BUSY;
2322 }
2323
2324 if (skb_vlan_tag_present(skb)) {
2325 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2326 tx_flags |= (skb_vlan_tag_get(skb) <<
2327 IGBVF_TX_FLAGS_VLAN_SHIFT);
2328 }
2329
2330 if (protocol == htons(ETH_P_IP))
2331 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2332
2333 first = tx_ring->next_to_use;
2334
2335 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2336 if (unlikely(tso < 0)) {
2337 dev_kfree_skb_any(skb);
2338 return NETDEV_TX_OK;
2339 }
2340
2341 if (tso)
2342 tx_flags |= IGBVF_TX_FLAGS_TSO;
2343 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2344 (skb->ip_summed == CHECKSUM_PARTIAL))
2345 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2346
2347 /* count reflects descriptors mapped, if 0 then mapping error
2348 * has occurred and we need to rewind the descriptor queue
2349 */
2350 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2351
2352 if (count) {
2353 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2354 first, skb->len, hdr_len);
2355 /* Make sure there is space in the ring for the next send. */
2356 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2357 } else {
2358 dev_kfree_skb_any(skb);
2359 tx_ring->buffer_info[first].time_stamp = 0;
2360 tx_ring->next_to_use = first;
2361 }
2362
2363 return NETDEV_TX_OK;
2364 }
2365
igbvf_xmit_frame(struct sk_buff * skb,struct net_device * netdev)2366 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2367 struct net_device *netdev)
2368 {
2369 struct igbvf_adapter *adapter = netdev_priv(netdev);
2370 struct igbvf_ring *tx_ring;
2371
2372 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2373 dev_kfree_skb_any(skb);
2374 return NETDEV_TX_OK;
2375 }
2376
2377 tx_ring = &adapter->tx_ring[0];
2378
2379 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2380 }
2381
2382 /**
2383 * igbvf_tx_timeout - Respond to a Tx Hang
2384 * @netdev: network interface device structure
2385 * @txqueue: queue timing out (unused)
2386 **/
igbvf_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)2387 static void igbvf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
2388 {
2389 struct igbvf_adapter *adapter = netdev_priv(netdev);
2390
2391 /* Do the reset outside of interrupt context */
2392 adapter->tx_timeout_count++;
2393 schedule_work(&adapter->reset_task);
2394 }
2395
igbvf_reset_task(struct work_struct * work)2396 static void igbvf_reset_task(struct work_struct *work)
2397 {
2398 struct igbvf_adapter *adapter;
2399
2400 adapter = container_of(work, struct igbvf_adapter, reset_task);
2401
2402 igbvf_reinit_locked(adapter);
2403 }
2404
2405 /**
2406 * igbvf_change_mtu - Change the Maximum Transfer Unit
2407 * @netdev: network interface device structure
2408 * @new_mtu: new value for maximum frame size
2409 *
2410 * Returns 0 on success, negative on failure
2411 **/
igbvf_change_mtu(struct net_device * netdev,int new_mtu)2412 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2413 {
2414 struct igbvf_adapter *adapter = netdev_priv(netdev);
2415 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2416
2417 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2418 usleep_range(1000, 2000);
2419 /* igbvf_down has a dependency on max_frame_size */
2420 adapter->max_frame_size = max_frame;
2421 if (netif_running(netdev))
2422 igbvf_down(adapter);
2423
2424 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2425 * means we reserve 2 more, this pushes us to allocate from the next
2426 * larger slab size.
2427 * i.e. RXBUFFER_2048 --> size-4096 slab
2428 * However with the new *_jumbo_rx* routines, jumbo receives will use
2429 * fragmented skbs
2430 */
2431
2432 if (max_frame <= 1024)
2433 adapter->rx_buffer_len = 1024;
2434 else if (max_frame <= 2048)
2435 adapter->rx_buffer_len = 2048;
2436 else
2437 #if (PAGE_SIZE / 2) > 16384
2438 adapter->rx_buffer_len = 16384;
2439 #else
2440 adapter->rx_buffer_len = PAGE_SIZE / 2;
2441 #endif
2442
2443 /* adjust allocation if LPE protects us, and we aren't using SBP */
2444 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2445 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2446 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2447 ETH_FCS_LEN;
2448
2449 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2450 netdev->mtu, new_mtu);
2451 netdev->mtu = new_mtu;
2452
2453 if (netif_running(netdev))
2454 igbvf_up(adapter);
2455 else
2456 igbvf_reset(adapter);
2457
2458 clear_bit(__IGBVF_RESETTING, &adapter->state);
2459
2460 return 0;
2461 }
2462
igbvf_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2463 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2464 {
2465 switch (cmd) {
2466 default:
2467 return -EOPNOTSUPP;
2468 }
2469 }
2470
igbvf_suspend(struct device * dev_d)2471 static int igbvf_suspend(struct device *dev_d)
2472 {
2473 struct net_device *netdev = dev_get_drvdata(dev_d);
2474 struct igbvf_adapter *adapter = netdev_priv(netdev);
2475
2476 netif_device_detach(netdev);
2477
2478 if (netif_running(netdev)) {
2479 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2480 igbvf_down(adapter);
2481 igbvf_free_irq(adapter);
2482 }
2483
2484 return 0;
2485 }
2486
igbvf_resume(struct device * dev_d)2487 static int __maybe_unused igbvf_resume(struct device *dev_d)
2488 {
2489 struct pci_dev *pdev = to_pci_dev(dev_d);
2490 struct net_device *netdev = pci_get_drvdata(pdev);
2491 struct igbvf_adapter *adapter = netdev_priv(netdev);
2492 u32 err;
2493
2494 pci_set_master(pdev);
2495
2496 if (netif_running(netdev)) {
2497 err = igbvf_request_irq(adapter);
2498 if (err)
2499 return err;
2500 }
2501
2502 igbvf_reset(adapter);
2503
2504 if (netif_running(netdev))
2505 igbvf_up(adapter);
2506
2507 netif_device_attach(netdev);
2508
2509 return 0;
2510 }
2511
igbvf_shutdown(struct pci_dev * pdev)2512 static void igbvf_shutdown(struct pci_dev *pdev)
2513 {
2514 igbvf_suspend(&pdev->dev);
2515 }
2516
2517 #ifdef CONFIG_NET_POLL_CONTROLLER
2518 /* Polling 'interrupt' - used by things like netconsole to send skbs
2519 * without having to re-enable interrupts. It's not called while
2520 * the interrupt routine is executing.
2521 */
igbvf_netpoll(struct net_device * netdev)2522 static void igbvf_netpoll(struct net_device *netdev)
2523 {
2524 struct igbvf_adapter *adapter = netdev_priv(netdev);
2525
2526 disable_irq(adapter->pdev->irq);
2527
2528 igbvf_clean_tx_irq(adapter->tx_ring);
2529
2530 enable_irq(adapter->pdev->irq);
2531 }
2532 #endif
2533
2534 /**
2535 * igbvf_io_error_detected - called when PCI error is detected
2536 * @pdev: Pointer to PCI device
2537 * @state: The current pci connection state
2538 *
2539 * This function is called after a PCI bus error affecting
2540 * this device has been detected.
2541 */
igbvf_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)2542 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2543 pci_channel_state_t state)
2544 {
2545 struct net_device *netdev = pci_get_drvdata(pdev);
2546 struct igbvf_adapter *adapter = netdev_priv(netdev);
2547
2548 netif_device_detach(netdev);
2549
2550 if (state == pci_channel_io_perm_failure)
2551 return PCI_ERS_RESULT_DISCONNECT;
2552
2553 if (netif_running(netdev))
2554 igbvf_down(adapter);
2555 pci_disable_device(pdev);
2556
2557 /* Request a slot slot reset. */
2558 return PCI_ERS_RESULT_NEED_RESET;
2559 }
2560
2561 /**
2562 * igbvf_io_slot_reset - called after the pci bus has been reset.
2563 * @pdev: Pointer to PCI device
2564 *
2565 * Restart the card from scratch, as if from a cold-boot. Implementation
2566 * resembles the first-half of the igbvf_resume routine.
2567 */
igbvf_io_slot_reset(struct pci_dev * pdev)2568 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2569 {
2570 struct net_device *netdev = pci_get_drvdata(pdev);
2571 struct igbvf_adapter *adapter = netdev_priv(netdev);
2572
2573 if (pci_enable_device_mem(pdev)) {
2574 dev_err(&pdev->dev,
2575 "Cannot re-enable PCI device after reset.\n");
2576 return PCI_ERS_RESULT_DISCONNECT;
2577 }
2578 pci_set_master(pdev);
2579
2580 igbvf_reset(adapter);
2581
2582 return PCI_ERS_RESULT_RECOVERED;
2583 }
2584
2585 /**
2586 * igbvf_io_resume - called when traffic can start flowing again.
2587 * @pdev: Pointer to PCI device
2588 *
2589 * This callback is called when the error recovery driver tells us that
2590 * its OK to resume normal operation. Implementation resembles the
2591 * second-half of the igbvf_resume routine.
2592 */
igbvf_io_resume(struct pci_dev * pdev)2593 static void igbvf_io_resume(struct pci_dev *pdev)
2594 {
2595 struct net_device *netdev = pci_get_drvdata(pdev);
2596 struct igbvf_adapter *adapter = netdev_priv(netdev);
2597
2598 if (netif_running(netdev)) {
2599 if (igbvf_up(adapter)) {
2600 dev_err(&pdev->dev,
2601 "can't bring device back up after reset\n");
2602 return;
2603 }
2604 }
2605
2606 netif_device_attach(netdev);
2607 }
2608
igbvf_print_device_info(struct igbvf_adapter * adapter)2609 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2610 {
2611 struct e1000_hw *hw = &adapter->hw;
2612 struct net_device *netdev = adapter->netdev;
2613 struct pci_dev *pdev = adapter->pdev;
2614
2615 if (hw->mac.type == e1000_vfadapt_i350)
2616 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2617 else
2618 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2619 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2620 }
2621
igbvf_set_features(struct net_device * netdev,netdev_features_t features)2622 static int igbvf_set_features(struct net_device *netdev,
2623 netdev_features_t features)
2624 {
2625 struct igbvf_adapter *adapter = netdev_priv(netdev);
2626
2627 if (features & NETIF_F_RXCSUM)
2628 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2629 else
2630 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2631
2632 return 0;
2633 }
2634
2635 #define IGBVF_MAX_MAC_HDR_LEN 127
2636 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2637
2638 static netdev_features_t
igbvf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2639 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2640 netdev_features_t features)
2641 {
2642 unsigned int network_hdr_len, mac_hdr_len;
2643
2644 /* Make certain the headers can be described by a context descriptor */
2645 mac_hdr_len = skb_network_header(skb) - skb->data;
2646 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2647 return features & ~(NETIF_F_HW_CSUM |
2648 NETIF_F_SCTP_CRC |
2649 NETIF_F_HW_VLAN_CTAG_TX |
2650 NETIF_F_TSO |
2651 NETIF_F_TSO6);
2652
2653 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2654 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2655 return features & ~(NETIF_F_HW_CSUM |
2656 NETIF_F_SCTP_CRC |
2657 NETIF_F_TSO |
2658 NETIF_F_TSO6);
2659
2660 /* We can only support IPV4 TSO in tunnels if we can mangle the
2661 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2662 */
2663 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2664 features &= ~NETIF_F_TSO;
2665
2666 return features;
2667 }
2668
2669 static const struct net_device_ops igbvf_netdev_ops = {
2670 .ndo_open = igbvf_open,
2671 .ndo_stop = igbvf_close,
2672 .ndo_start_xmit = igbvf_xmit_frame,
2673 .ndo_set_rx_mode = igbvf_set_rx_mode,
2674 .ndo_set_mac_address = igbvf_set_mac,
2675 .ndo_change_mtu = igbvf_change_mtu,
2676 .ndo_do_ioctl = igbvf_ioctl,
2677 .ndo_tx_timeout = igbvf_tx_timeout,
2678 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2679 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2680 #ifdef CONFIG_NET_POLL_CONTROLLER
2681 .ndo_poll_controller = igbvf_netpoll,
2682 #endif
2683 .ndo_set_features = igbvf_set_features,
2684 .ndo_features_check = igbvf_features_check,
2685 };
2686
2687 /**
2688 * igbvf_probe - Device Initialization Routine
2689 * @pdev: PCI device information struct
2690 * @ent: entry in igbvf_pci_tbl
2691 *
2692 * Returns 0 on success, negative on failure
2693 *
2694 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2695 * The OS initialization, configuring of the adapter private structure,
2696 * and a hardware reset occur.
2697 **/
igbvf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2698 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2699 {
2700 struct net_device *netdev;
2701 struct igbvf_adapter *adapter;
2702 struct e1000_hw *hw;
2703 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2704
2705 static int cards_found;
2706 int err, pci_using_dac;
2707
2708 err = pci_enable_device_mem(pdev);
2709 if (err)
2710 return err;
2711
2712 pci_using_dac = 0;
2713 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2714 if (!err) {
2715 pci_using_dac = 1;
2716 } else {
2717 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2718 if (err) {
2719 dev_err(&pdev->dev,
2720 "No usable DMA configuration, aborting\n");
2721 goto err_dma;
2722 }
2723 }
2724
2725 err = pci_request_regions(pdev, igbvf_driver_name);
2726 if (err)
2727 goto err_pci_reg;
2728
2729 pci_set_master(pdev);
2730
2731 err = -ENOMEM;
2732 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2733 if (!netdev)
2734 goto err_alloc_etherdev;
2735
2736 SET_NETDEV_DEV(netdev, &pdev->dev);
2737
2738 pci_set_drvdata(pdev, netdev);
2739 adapter = netdev_priv(netdev);
2740 hw = &adapter->hw;
2741 adapter->netdev = netdev;
2742 adapter->pdev = pdev;
2743 adapter->ei = ei;
2744 adapter->pba = ei->pba;
2745 adapter->flags = ei->flags;
2746 adapter->hw.back = adapter;
2747 adapter->hw.mac.type = ei->mac;
2748 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2749
2750 /* PCI config space info */
2751
2752 hw->vendor_id = pdev->vendor;
2753 hw->device_id = pdev->device;
2754 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2755 hw->subsystem_device_id = pdev->subsystem_device;
2756 hw->revision_id = pdev->revision;
2757
2758 err = -EIO;
2759 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2760 pci_resource_len(pdev, 0));
2761
2762 if (!adapter->hw.hw_addr)
2763 goto err_ioremap;
2764
2765 if (ei->get_variants) {
2766 err = ei->get_variants(adapter);
2767 if (err)
2768 goto err_get_variants;
2769 }
2770
2771 /* setup adapter struct */
2772 err = igbvf_sw_init(adapter);
2773 if (err)
2774 goto err_sw_init;
2775
2776 /* construct the net_device struct */
2777 netdev->netdev_ops = &igbvf_netdev_ops;
2778
2779 igbvf_set_ethtool_ops(netdev);
2780 netdev->watchdog_timeo = 5 * HZ;
2781 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2782
2783 adapter->bd_number = cards_found++;
2784
2785 netdev->hw_features = NETIF_F_SG |
2786 NETIF_F_TSO |
2787 NETIF_F_TSO6 |
2788 NETIF_F_RXCSUM |
2789 NETIF_F_HW_CSUM |
2790 NETIF_F_SCTP_CRC;
2791
2792 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2793 NETIF_F_GSO_GRE_CSUM | \
2794 NETIF_F_GSO_IPXIP4 | \
2795 NETIF_F_GSO_IPXIP6 | \
2796 NETIF_F_GSO_UDP_TUNNEL | \
2797 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2798
2799 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2800 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2801 IGBVF_GSO_PARTIAL_FEATURES;
2802
2803 netdev->features = netdev->hw_features;
2804
2805 if (pci_using_dac)
2806 netdev->features |= NETIF_F_HIGHDMA;
2807
2808 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2809 netdev->mpls_features |= NETIF_F_HW_CSUM;
2810 netdev->hw_enc_features |= netdev->vlan_features;
2811
2812 /* set this bit last since it cannot be part of vlan_features */
2813 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2814 NETIF_F_HW_VLAN_CTAG_RX |
2815 NETIF_F_HW_VLAN_CTAG_TX;
2816
2817 /* MTU range: 68 - 9216 */
2818 netdev->min_mtu = ETH_MIN_MTU;
2819 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2820
2821 spin_lock_bh(&hw->mbx_lock);
2822
2823 /*reset the controller to put the device in a known good state */
2824 err = hw->mac.ops.reset_hw(hw);
2825 if (err) {
2826 dev_info(&pdev->dev,
2827 "PF still in reset state. Is the PF interface up?\n");
2828 } else {
2829 err = hw->mac.ops.read_mac_addr(hw);
2830 if (err)
2831 dev_info(&pdev->dev, "Error reading MAC address.\n");
2832 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2833 dev_info(&pdev->dev,
2834 "MAC address not assigned by administrator.\n");
2835 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2836 netdev->addr_len);
2837 }
2838
2839 spin_unlock_bh(&hw->mbx_lock);
2840
2841 if (!is_valid_ether_addr(netdev->dev_addr)) {
2842 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2843 eth_hw_addr_random(netdev);
2844 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2845 netdev->addr_len);
2846 }
2847
2848 timer_setup(&adapter->watchdog_timer, igbvf_watchdog, 0);
2849
2850 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2851 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2852
2853 /* ring size defaults */
2854 adapter->rx_ring->count = 1024;
2855 adapter->tx_ring->count = 1024;
2856
2857 /* reset the hardware with the new settings */
2858 igbvf_reset(adapter);
2859
2860 /* set hardware-specific flags */
2861 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2862 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2863
2864 strcpy(netdev->name, "eth%d");
2865 err = register_netdev(netdev);
2866 if (err)
2867 goto err_hw_init;
2868
2869 /* tell the stack to leave us alone until igbvf_open() is called */
2870 netif_carrier_off(netdev);
2871 netif_stop_queue(netdev);
2872
2873 igbvf_print_device_info(adapter);
2874
2875 igbvf_initialize_last_counter_stats(adapter);
2876
2877 return 0;
2878
2879 err_hw_init:
2880 netif_napi_del(&adapter->rx_ring->napi);
2881 kfree(adapter->tx_ring);
2882 kfree(adapter->rx_ring);
2883 err_sw_init:
2884 igbvf_reset_interrupt_capability(adapter);
2885 err_get_variants:
2886 iounmap(adapter->hw.hw_addr);
2887 err_ioremap:
2888 free_netdev(netdev);
2889 err_alloc_etherdev:
2890 pci_release_regions(pdev);
2891 err_pci_reg:
2892 err_dma:
2893 pci_disable_device(pdev);
2894 return err;
2895 }
2896
2897 /**
2898 * igbvf_remove - Device Removal Routine
2899 * @pdev: PCI device information struct
2900 *
2901 * igbvf_remove is called by the PCI subsystem to alert the driver
2902 * that it should release a PCI device. The could be caused by a
2903 * Hot-Plug event, or because the driver is going to be removed from
2904 * memory.
2905 **/
igbvf_remove(struct pci_dev * pdev)2906 static void igbvf_remove(struct pci_dev *pdev)
2907 {
2908 struct net_device *netdev = pci_get_drvdata(pdev);
2909 struct igbvf_adapter *adapter = netdev_priv(netdev);
2910 struct e1000_hw *hw = &adapter->hw;
2911
2912 /* The watchdog timer may be rescheduled, so explicitly
2913 * disable it from being rescheduled.
2914 */
2915 set_bit(__IGBVF_DOWN, &adapter->state);
2916 del_timer_sync(&adapter->watchdog_timer);
2917
2918 cancel_work_sync(&adapter->reset_task);
2919 cancel_work_sync(&adapter->watchdog_task);
2920
2921 unregister_netdev(netdev);
2922
2923 igbvf_reset_interrupt_capability(adapter);
2924
2925 /* it is important to delete the NAPI struct prior to freeing the
2926 * Rx ring so that you do not end up with null pointer refs
2927 */
2928 netif_napi_del(&adapter->rx_ring->napi);
2929 kfree(adapter->tx_ring);
2930 kfree(adapter->rx_ring);
2931
2932 iounmap(hw->hw_addr);
2933 if (hw->flash_address)
2934 iounmap(hw->flash_address);
2935 pci_release_regions(pdev);
2936
2937 free_netdev(netdev);
2938
2939 pci_disable_device(pdev);
2940 }
2941
2942 /* PCI Error Recovery (ERS) */
2943 static const struct pci_error_handlers igbvf_err_handler = {
2944 .error_detected = igbvf_io_error_detected,
2945 .slot_reset = igbvf_io_slot_reset,
2946 .resume = igbvf_io_resume,
2947 };
2948
2949 static const struct pci_device_id igbvf_pci_tbl[] = {
2950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2952 { } /* terminate list */
2953 };
2954 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2955
2956 static SIMPLE_DEV_PM_OPS(igbvf_pm_ops, igbvf_suspend, igbvf_resume);
2957
2958 /* PCI Device API Driver */
2959 static struct pci_driver igbvf_driver = {
2960 .name = igbvf_driver_name,
2961 .id_table = igbvf_pci_tbl,
2962 .probe = igbvf_probe,
2963 .remove = igbvf_remove,
2964 .driver.pm = &igbvf_pm_ops,
2965 .shutdown = igbvf_shutdown,
2966 .err_handler = &igbvf_err_handler
2967 };
2968
2969 /**
2970 * igbvf_init_module - Driver Registration Routine
2971 *
2972 * igbvf_init_module is the first routine called when the driver is
2973 * loaded. All it does is register with the PCI subsystem.
2974 **/
igbvf_init_module(void)2975 static int __init igbvf_init_module(void)
2976 {
2977 int ret;
2978
2979 pr_info("%s\n", igbvf_driver_string);
2980 pr_info("%s\n", igbvf_copyright);
2981
2982 ret = pci_register_driver(&igbvf_driver);
2983
2984 return ret;
2985 }
2986 module_init(igbvf_init_module);
2987
2988 /**
2989 * igbvf_exit_module - Driver Exit Cleanup Routine
2990 *
2991 * igbvf_exit_module is called just before the driver is removed
2992 * from memory.
2993 **/
igbvf_exit_module(void)2994 static void __exit igbvf_exit_module(void)
2995 {
2996 pci_unregister_driver(&igbvf_driver);
2997 }
2998 module_exit(igbvf_exit_module);
2999
3000 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
3001 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
3002 MODULE_LICENSE("GPL v2");
3003
3004 /* netdev.c */
3005