1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49
50 /* As long as the interface is active, we keep the timestamping counter enabled
51 * with fine resolution and binary rollover. This avoid non-monotonic behavior
52 * (clock jumps) when changing timestamping settings at runtime.
53 */
54 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55 PTP_TCR_TSCTRLSSR)
56
57 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
75 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
76
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94
95 #define STMMAC_RX_COPYBREAK 256
96
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
109 */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115
116 #ifdef CONFIG_DEBUG_FS
117 static const struct net_device_ops stmmac_netdev_ops;
118 static void stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)124 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125 {
126 int ret = 0;
127
128 if (enabled) {
129 ret = clk_prepare_enable(priv->plat->stmmac_clk);
130 if (ret)
131 return ret;
132 ret = clk_prepare_enable(priv->plat->pclk);
133 if (ret) {
134 clk_disable_unprepare(priv->plat->stmmac_clk);
135 return ret;
136 }
137 } else {
138 clk_disable_unprepare(priv->plat->stmmac_clk);
139 clk_disable_unprepare(priv->plat->pclk);
140 }
141
142 return ret;
143 }
144 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145
146 /**
147 * stmmac_verify_args - verify the driver parameters.
148 * Description: it checks the driver parameters and set a default in case of
149 * errors.
150 */
stmmac_verify_args(void)151 static void stmmac_verify_args(void)
152 {
153 if (unlikely(watchdog < 0))
154 watchdog = TX_TIMEO;
155 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 buf_sz = DEFAULT_BUFSIZE;
157 if (unlikely(flow_ctrl > 1))
158 flow_ctrl = FLOW_AUTO;
159 else if (likely(flow_ctrl < 0))
160 flow_ctrl = FLOW_OFF;
161 if (unlikely((pause < 0) || (pause > 0xffff)))
162 pause = PAUSE_TIME;
163 if (eee_timer < 0)
164 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166
167 /**
168 * stmmac_disable_all_queues - Disable all queues
169 * @priv: driver private structure
170 */
stmmac_disable_all_queues(struct stmmac_priv * priv)171 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172 {
173 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176 u32 queue;
177
178 for (queue = 0; queue < maxq; queue++) {
179 struct stmmac_channel *ch = &priv->channel[queue];
180
181 if (queue < rx_queues_cnt)
182 napi_disable(&ch->rx_napi);
183 if (queue < tx_queues_cnt)
184 napi_disable(&ch->tx_napi);
185 }
186 }
187
188 /**
189 * stmmac_enable_all_queues - Enable all queues
190 * @priv: driver private structure
191 */
stmmac_enable_all_queues(struct stmmac_priv * priv)192 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193 {
194 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197 u32 queue;
198
199 for (queue = 0; queue < maxq; queue++) {
200 struct stmmac_channel *ch = &priv->channel[queue];
201
202 if (queue < rx_queues_cnt)
203 napi_enable(&ch->rx_napi);
204 if (queue < tx_queues_cnt)
205 napi_enable(&ch->tx_napi);
206 }
207 }
208
stmmac_service_event_schedule(struct stmmac_priv * priv)209 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210 {
211 if (!test_bit(STMMAC_DOWN, &priv->state) &&
212 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213 queue_work(priv->wq, &priv->service_task);
214 }
215
stmmac_global_err(struct stmmac_priv * priv)216 static void stmmac_global_err(struct stmmac_priv *priv)
217 {
218 netif_carrier_off(priv->dev);
219 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220 stmmac_service_event_schedule(priv);
221 }
222
223 /**
224 * stmmac_clk_csr_set - dynamically set the MDC clock
225 * @priv: driver private structure
226 * Description: this is to dynamically set the MDC clock according to the csr
227 * clock input.
228 * Note:
229 * If a specific clk_csr value is passed from the platform
230 * this means that the CSR Clock Range selection cannot be
231 * changed at run-time and it is fixed (as reported in the driver
232 * documentation). Viceversa the driver will try to set the MDC
233 * clock dynamically according to the actual clock input.
234 */
stmmac_clk_csr_set(struct stmmac_priv * priv)235 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236 {
237 u32 clk_rate;
238
239 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
240
241 /* Platform provided default clk_csr would be assumed valid
242 * for all other cases except for the below mentioned ones.
243 * For values higher than the IEEE 802.3 specified frequency
244 * we can not estimate the proper divider as it is not known
245 * the frequency of clk_csr_i. So we do not change the default
246 * divider.
247 */
248 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249 if (clk_rate < CSR_F_35M)
250 priv->clk_csr = STMMAC_CSR_20_35M;
251 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252 priv->clk_csr = STMMAC_CSR_35_60M;
253 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254 priv->clk_csr = STMMAC_CSR_60_100M;
255 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256 priv->clk_csr = STMMAC_CSR_100_150M;
257 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258 priv->clk_csr = STMMAC_CSR_150_250M;
259 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260 priv->clk_csr = STMMAC_CSR_250_300M;
261 }
262
263 if (priv->plat->has_sun8i) {
264 if (clk_rate > 160000000)
265 priv->clk_csr = 0x03;
266 else if (clk_rate > 80000000)
267 priv->clk_csr = 0x02;
268 else if (clk_rate > 40000000)
269 priv->clk_csr = 0x01;
270 else
271 priv->clk_csr = 0;
272 }
273
274 if (priv->plat->has_xgmac) {
275 if (clk_rate > 400000000)
276 priv->clk_csr = 0x5;
277 else if (clk_rate > 350000000)
278 priv->clk_csr = 0x4;
279 else if (clk_rate > 300000000)
280 priv->clk_csr = 0x3;
281 else if (clk_rate > 250000000)
282 priv->clk_csr = 0x2;
283 else if (clk_rate > 150000000)
284 priv->clk_csr = 0x1;
285 else
286 priv->clk_csr = 0x0;
287 }
288 }
289
print_pkt(unsigned char * buf,int len)290 static void print_pkt(unsigned char *buf, int len)
291 {
292 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294 }
295
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)296 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297 {
298 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299 u32 avail;
300
301 if (tx_q->dirty_tx > tx_q->cur_tx)
302 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303 else
304 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305
306 return avail;
307 }
308
309 /**
310 * stmmac_rx_dirty - Get RX queue dirty
311 * @priv: driver private structure
312 * @queue: RX queue index
313 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)314 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315 {
316 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317 u32 dirty;
318
319 if (rx_q->dirty_rx <= rx_q->cur_rx)
320 dirty = rx_q->cur_rx - rx_q->dirty_rx;
321 else
322 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323
324 return dirty;
325 }
326
327 /**
328 * stmmac_enable_eee_mode - check and enter in LPI mode
329 * @priv: driver private structure
330 * Description: this function is to verify and enter in LPI mode in case of
331 * EEE.
332 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)333 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334 {
335 u32 tx_cnt = priv->plat->tx_queues_to_use;
336 u32 queue;
337
338 /* check if all TX queues have the work finished */
339 for (queue = 0; queue < tx_cnt; queue++) {
340 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341
342 if (tx_q->dirty_tx != tx_q->cur_tx)
343 return; /* still unfinished work */
344 }
345
346 /* Check and enter in LPI mode */
347 if (!priv->tx_path_in_lpi_mode)
348 stmmac_set_eee_mode(priv, priv->hw,
349 priv->plat->en_tx_lpi_clockgating);
350 }
351
352 /**
353 * stmmac_disable_eee_mode - disable and exit from LPI mode
354 * @priv: driver private structure
355 * Description: this function is to exit and disable EEE in case of
356 * LPI state is true. This is called by the xmit.
357 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)358 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359 {
360 stmmac_reset_eee_mode(priv, priv->hw);
361 del_timer_sync(&priv->eee_ctrl_timer);
362 priv->tx_path_in_lpi_mode = false;
363 }
364
365 /**
366 * stmmac_eee_ctrl_timer - EEE TX SW timer.
367 * @t: timer_list struct containing private info
368 * Description:
369 * if there is no data transfer and if we are not in LPI state,
370 * then MAC Transmitter can be moved to LPI state.
371 */
stmmac_eee_ctrl_timer(struct timer_list * t)372 static void stmmac_eee_ctrl_timer(struct timer_list *t)
373 {
374 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375
376 stmmac_enable_eee_mode(priv);
377 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378 }
379
380 /**
381 * stmmac_eee_init - init EEE
382 * @priv: driver private structure
383 * Description:
384 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
385 * can also manage EEE, this function enable the LPI state and start related
386 * timer.
387 */
stmmac_eee_init(struct stmmac_priv * priv)388 bool stmmac_eee_init(struct stmmac_priv *priv)
389 {
390 int eee_tw_timer = priv->eee_tw_timer;
391
392 /* Using PCS we cannot dial with the phy registers at this stage
393 * so we do not support extra feature like EEE.
394 */
395 if (priv->hw->pcs == STMMAC_PCS_TBI ||
396 priv->hw->pcs == STMMAC_PCS_RTBI)
397 return false;
398
399 /* Check if MAC core supports the EEE feature. */
400 if (!priv->dma_cap.eee)
401 return false;
402
403 mutex_lock(&priv->lock);
404
405 /* Check if it needs to be deactivated */
406 if (!priv->eee_active) {
407 if (priv->eee_enabled) {
408 netdev_dbg(priv->dev, "disable EEE\n");
409 del_timer_sync(&priv->eee_ctrl_timer);
410 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411 }
412 mutex_unlock(&priv->lock);
413 return false;
414 }
415
416 if (priv->eee_active && !priv->eee_enabled) {
417 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 eee_tw_timer);
420 }
421
422 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423
424 mutex_unlock(&priv->lock);
425 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 return true;
427 }
428
429 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
430 * @priv: driver private structure
431 * @p : descriptor pointer
432 * @skb : the socket buffer
433 * Description :
434 * This function will read timestamp from the descriptor & pass it to stack.
435 * and also perform some sanity checks.
436 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)437 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438 struct dma_desc *p, struct sk_buff *skb)
439 {
440 struct skb_shared_hwtstamps shhwtstamp;
441 bool found = false;
442 u64 ns = 0;
443
444 if (!priv->hwts_tx_en)
445 return;
446
447 /* exit if skb doesn't support hw tstamp */
448 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449 return;
450
451 /* check tx tstamp status */
452 if (stmmac_get_tx_timestamp_status(priv, p)) {
453 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454 found = true;
455 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456 found = true;
457 }
458
459 if (found) {
460 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461 shhwtstamp.hwtstamp = ns_to_ktime(ns);
462
463 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464 /* pass tstamp to stack */
465 skb_tstamp_tx(skb, &shhwtstamp);
466 }
467 }
468
469 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
470 * @priv: driver private structure
471 * @p : descriptor pointer
472 * @np : next descriptor pointer
473 * @skb : the socket buffer
474 * Description :
475 * This function will read received packet's timestamp from the descriptor
476 * and pass it to stack. It also perform some sanity checks.
477 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)478 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479 struct dma_desc *np, struct sk_buff *skb)
480 {
481 struct skb_shared_hwtstamps *shhwtstamp = NULL;
482 struct dma_desc *desc = p;
483 u64 ns = 0;
484
485 if (!priv->hwts_rx_en)
486 return;
487 /* For GMAC4, the valid timestamp is from CTX next desc. */
488 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489 desc = np;
490
491 /* Check if timestamp is available */
492 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495 shhwtstamp = skb_hwtstamps(skb);
496 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497 shhwtstamp->hwtstamp = ns_to_ktime(ns);
498 } else {
499 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500 }
501 }
502
503 /**
504 * stmmac_hwtstamp_set - control hardware timestamping.
505 * @dev: device pointer.
506 * @ifr: An IOCTL specific structure, that can contain a pointer to
507 * a proprietary structure used to pass information to the driver.
508 * Description:
509 * This function configures the MAC to enable/disable both outgoing(TX)
510 * and incoming(RX) packets time stamping based on user input.
511 * Return Value:
512 * 0 on success and an appropriate -ve integer on failure.
513 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)514 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515 {
516 struct stmmac_priv *priv = netdev_priv(dev);
517 struct hwtstamp_config config;
518 u32 ptp_v2 = 0;
519 u32 tstamp_all = 0;
520 u32 ptp_over_ipv4_udp = 0;
521 u32 ptp_over_ipv6_udp = 0;
522 u32 ptp_over_ethernet = 0;
523 u32 snap_type_sel = 0;
524 u32 ts_master_en = 0;
525 u32 ts_event_en = 0;
526
527 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528 netdev_alert(priv->dev, "No support for HW time stamping\n");
529 priv->hwts_tx_en = 0;
530 priv->hwts_rx_en = 0;
531
532 return -EOPNOTSUPP;
533 }
534
535 if (copy_from_user(&config, ifr->ifr_data,
536 sizeof(config)))
537 return -EFAULT;
538
539 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540 __func__, config.flags, config.tx_type, config.rx_filter);
541
542 /* reserved for future extensions */
543 if (config.flags)
544 return -EINVAL;
545
546 if (config.tx_type != HWTSTAMP_TX_OFF &&
547 config.tx_type != HWTSTAMP_TX_ON)
548 return -ERANGE;
549
550 if (priv->adv_ts) {
551 switch (config.rx_filter) {
552 case HWTSTAMP_FILTER_NONE:
553 /* time stamp no incoming packet at all */
554 config.rx_filter = HWTSTAMP_FILTER_NONE;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558 /* PTP v1, UDP, any kind of event packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560 /* 'xmac' hardware can support Sync, Pdelay_Req and
561 * Pdelay_resp by setting bit14 and bits17/16 to 01
562 * This leaves Delay_Req timestamps out.
563 * Enable all events *and* general purpose message
564 * timestamping
565 */
566 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569 break;
570
571 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 /* PTP v1, UDP, Sync packet */
573 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574 /* take time stamp for SYNC messages only */
575 ts_event_en = PTP_TCR_TSEVNTENA;
576
577 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579 break;
580
581 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582 /* PTP v1, UDP, Delay_req packet */
583 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584 /* take time stamp for Delay_Req messages only */
585 ts_master_en = PTP_TCR_TSMSTRENA;
586 ts_event_en = PTP_TCR_TSEVNTENA;
587
588 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590 break;
591
592 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593 /* PTP v2, UDP, any kind of event packet */
594 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595 ptp_v2 = PTP_TCR_TSVER2ENA;
596 /* take time stamp for all event messages */
597 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598
599 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 break;
602
603 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 /* PTP v2, UDP, Sync packet */
605 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 ptp_v2 = PTP_TCR_TSVER2ENA;
607 /* take time stamp for SYNC messages only */
608 ts_event_en = PTP_TCR_TSEVNTENA;
609
610 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 break;
613
614 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 /* PTP v2, UDP, Delay_req packet */
616 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 ptp_v2 = PTP_TCR_TSVER2ENA;
618 /* take time stamp for Delay_Req messages only */
619 ts_master_en = PTP_TCR_TSMSTRENA;
620 ts_event_en = PTP_TCR_TSEVNTENA;
621
622 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 break;
625
626 case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 /* PTP v2/802.AS1 any layer, any kind of event packet */
628 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 ptp_v2 = PTP_TCR_TSVER2ENA;
630 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631 if (priv->synopsys_id < DWMAC_CORE_4_10)
632 ts_event_en = PTP_TCR_TSEVNTENA;
633 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 ptp_over_ethernet = PTP_TCR_TSIPENA;
636 break;
637
638 case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 /* PTP v2/802.AS1, any layer, Sync packet */
640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 ptp_v2 = PTP_TCR_TSVER2ENA;
642 /* take time stamp for SYNC messages only */
643 ts_event_en = PTP_TCR_TSEVNTENA;
644
645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 ptp_over_ethernet = PTP_TCR_TSIPENA;
648 break;
649
650 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 /* PTP v2/802.AS1, any layer, Delay_req packet */
652 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 ptp_v2 = PTP_TCR_TSVER2ENA;
654 /* take time stamp for Delay_Req messages only */
655 ts_master_en = PTP_TCR_TSMSTRENA;
656 ts_event_en = PTP_TCR_TSEVNTENA;
657
658 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 ptp_over_ethernet = PTP_TCR_TSIPENA;
661 break;
662
663 case HWTSTAMP_FILTER_NTP_ALL:
664 case HWTSTAMP_FILTER_ALL:
665 /* time stamp any incoming packet */
666 config.rx_filter = HWTSTAMP_FILTER_ALL;
667 tstamp_all = PTP_TCR_TSENALL;
668 break;
669
670 default:
671 return -ERANGE;
672 }
673 } else {
674 switch (config.rx_filter) {
675 case HWTSTAMP_FILTER_NONE:
676 config.rx_filter = HWTSTAMP_FILTER_NONE;
677 break;
678 default:
679 /* PTP v1, UDP, any kind of event packet */
680 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 break;
682 }
683 }
684 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687 priv->systime_flags = STMMAC_HWTS_ACTIVE;
688
689 if (priv->hwts_tx_en || priv->hwts_rx_en) {
690 priv->systime_flags |= tstamp_all | ptp_v2 |
691 ptp_over_ethernet | ptp_over_ipv6_udp |
692 ptp_over_ipv4_udp | ts_event_en |
693 ts_master_en | snap_type_sel;
694 }
695
696 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697
698 memcpy(&priv->tstamp_config, &config, sizeof(config));
699
700 return copy_to_user(ifr->ifr_data, &config,
701 sizeof(config)) ? -EFAULT : 0;
702 }
703
704 /**
705 * stmmac_hwtstamp_get - read hardware timestamping.
706 * @dev: device pointer.
707 * @ifr: An IOCTL specific structure, that can contain a pointer to
708 * a proprietary structure used to pass information to the driver.
709 * Description:
710 * This function obtain the current hardware timestamping settings
711 * as requested.
712 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)713 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714 {
715 struct stmmac_priv *priv = netdev_priv(dev);
716 struct hwtstamp_config *config = &priv->tstamp_config;
717
718 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719 return -EOPNOTSUPP;
720
721 return copy_to_user(ifr->ifr_data, config,
722 sizeof(*config)) ? -EFAULT : 0;
723 }
724
725 /**
726 * stmmac_init_tstamp_counter - init hardware timestamping counter
727 * @priv: driver private structure
728 * @systime_flags: timestamping flags
729 * Description:
730 * Initialize hardware counter for packet timestamping.
731 * This is valid as long as the interface is open and not suspended.
732 * Will be rerun after resuming from suspend, case in which the timestamping
733 * flags updated by stmmac_hwtstamp_set() also need to be restored.
734 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)735 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736 {
737 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738 struct timespec64 now;
739 u32 sec_inc = 0;
740 u64 temp = 0;
741
742 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 return -EOPNOTSUPP;
744
745 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
746 priv->systime_flags = systime_flags;
747
748 /* program Sub Second Increment reg */
749 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
750 priv->plat->clk_ptp_rate,
751 xmac, &sec_inc);
752 temp = div_u64(1000000000ULL, sec_inc);
753
754 /* Store sub second increment for later use */
755 priv->sub_second_inc = sec_inc;
756
757 /* calculate default added value:
758 * formula is :
759 * addend = (2^32)/freq_div_ratio;
760 * where, freq_div_ratio = 1e9ns/sec_inc
761 */
762 temp = (u64)(temp << 32);
763 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
764 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
765
766 /* initialize system time */
767 ktime_get_real_ts64(&now);
768
769 /* lower 32 bits of tv_sec are safe until y2106 */
770 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
771
772 return 0;
773 }
774 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
775
776 /**
777 * stmmac_init_ptp - init PTP
778 * @priv: driver private structure
779 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
780 * This is done by looking at the HW cap. register.
781 * This function also registers the ptp driver.
782 */
stmmac_init_ptp(struct stmmac_priv * priv)783 static int stmmac_init_ptp(struct stmmac_priv *priv)
784 {
785 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
786 int ret;
787
788 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
789 if (ret)
790 return ret;
791
792 priv->adv_ts = 0;
793 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
794 if (xmac && priv->dma_cap.atime_stamp)
795 priv->adv_ts = 1;
796 /* Dwmac 3.x core with extend_desc can support adv_ts */
797 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
798 priv->adv_ts = 1;
799
800 if (priv->dma_cap.time_stamp)
801 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
802
803 if (priv->adv_ts)
804 netdev_info(priv->dev,
805 "IEEE 1588-2008 Advanced Timestamp supported\n");
806
807 priv->hwts_tx_en = 0;
808 priv->hwts_rx_en = 0;
809
810 return 0;
811 }
812
stmmac_release_ptp(struct stmmac_priv * priv)813 static void stmmac_release_ptp(struct stmmac_priv *priv)
814 {
815 clk_disable_unprepare(priv->plat->clk_ptp_ref);
816 stmmac_ptp_unregister(priv);
817 }
818
819 /**
820 * stmmac_mac_flow_ctrl - Configure flow control in all queues
821 * @priv: driver private structure
822 * @duplex: duplex passed to the next function
823 * Description: It is used for configuring the flow control in all queues
824 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)825 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
826 {
827 u32 tx_cnt = priv->plat->tx_queues_to_use;
828
829 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
830 priv->pause, tx_cnt);
831 }
832
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)833 static void stmmac_validate(struct phylink_config *config,
834 unsigned long *supported,
835 struct phylink_link_state *state)
836 {
837 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
838 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
839 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
840 int tx_cnt = priv->plat->tx_queues_to_use;
841 int max_speed = priv->plat->max_speed;
842
843 phylink_set(mac_supported, 10baseT_Half);
844 phylink_set(mac_supported, 10baseT_Full);
845 phylink_set(mac_supported, 100baseT_Half);
846 phylink_set(mac_supported, 100baseT_Full);
847 phylink_set(mac_supported, 1000baseT_Half);
848 phylink_set(mac_supported, 1000baseT_Full);
849 phylink_set(mac_supported, 1000baseKX_Full);
850
851 phylink_set(mac_supported, Autoneg);
852 phylink_set(mac_supported, Pause);
853 phylink_set(mac_supported, Asym_Pause);
854 phylink_set_port_modes(mac_supported);
855
856 /* Cut down 1G if asked to */
857 if ((max_speed > 0) && (max_speed < 1000)) {
858 phylink_set(mask, 1000baseT_Full);
859 phylink_set(mask, 1000baseX_Full);
860 } else if (priv->plat->has_xgmac) {
861 if (!max_speed || (max_speed >= 2500)) {
862 phylink_set(mac_supported, 2500baseT_Full);
863 phylink_set(mac_supported, 2500baseX_Full);
864 }
865 if (!max_speed || (max_speed >= 5000)) {
866 phylink_set(mac_supported, 5000baseT_Full);
867 }
868 if (!max_speed || (max_speed >= 10000)) {
869 phylink_set(mac_supported, 10000baseSR_Full);
870 phylink_set(mac_supported, 10000baseLR_Full);
871 phylink_set(mac_supported, 10000baseER_Full);
872 phylink_set(mac_supported, 10000baseLRM_Full);
873 phylink_set(mac_supported, 10000baseT_Full);
874 phylink_set(mac_supported, 10000baseKX4_Full);
875 phylink_set(mac_supported, 10000baseKR_Full);
876 }
877 if (!max_speed || (max_speed >= 25000)) {
878 phylink_set(mac_supported, 25000baseCR_Full);
879 phylink_set(mac_supported, 25000baseKR_Full);
880 phylink_set(mac_supported, 25000baseSR_Full);
881 }
882 if (!max_speed || (max_speed >= 40000)) {
883 phylink_set(mac_supported, 40000baseKR4_Full);
884 phylink_set(mac_supported, 40000baseCR4_Full);
885 phylink_set(mac_supported, 40000baseSR4_Full);
886 phylink_set(mac_supported, 40000baseLR4_Full);
887 }
888 if (!max_speed || (max_speed >= 50000)) {
889 phylink_set(mac_supported, 50000baseCR2_Full);
890 phylink_set(mac_supported, 50000baseKR2_Full);
891 phylink_set(mac_supported, 50000baseSR2_Full);
892 phylink_set(mac_supported, 50000baseKR_Full);
893 phylink_set(mac_supported, 50000baseSR_Full);
894 phylink_set(mac_supported, 50000baseCR_Full);
895 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
896 phylink_set(mac_supported, 50000baseDR_Full);
897 }
898 if (!max_speed || (max_speed >= 100000)) {
899 phylink_set(mac_supported, 100000baseKR4_Full);
900 phylink_set(mac_supported, 100000baseSR4_Full);
901 phylink_set(mac_supported, 100000baseCR4_Full);
902 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
903 phylink_set(mac_supported, 100000baseKR2_Full);
904 phylink_set(mac_supported, 100000baseSR2_Full);
905 phylink_set(mac_supported, 100000baseCR2_Full);
906 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
907 phylink_set(mac_supported, 100000baseDR2_Full);
908 }
909 }
910
911 /* Half-Duplex can only work with single queue */
912 if (tx_cnt > 1) {
913 phylink_set(mask, 10baseT_Half);
914 phylink_set(mask, 100baseT_Half);
915 phylink_set(mask, 1000baseT_Half);
916 }
917
918 linkmode_and(supported, supported, mac_supported);
919 linkmode_andnot(supported, supported, mask);
920
921 linkmode_and(state->advertising, state->advertising, mac_supported);
922 linkmode_andnot(state->advertising, state->advertising, mask);
923
924 /* If PCS is supported, check which modes it supports. */
925 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
926 }
927
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)928 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
929 struct phylink_link_state *state)
930 {
931 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
932
933 state->link = 0;
934 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
935 }
936
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)937 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
938 const struct phylink_link_state *state)
939 {
940 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
941
942 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
943 }
944
stmmac_mac_an_restart(struct phylink_config * config)945 static void stmmac_mac_an_restart(struct phylink_config *config)
946 {
947 /* Not Supported */
948 }
949
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)950 static void stmmac_mac_link_down(struct phylink_config *config,
951 unsigned int mode, phy_interface_t interface)
952 {
953 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
954
955 stmmac_mac_set(priv, priv->ioaddr, false);
956 priv->eee_active = false;
957 priv->tx_lpi_enabled = false;
958 stmmac_eee_init(priv);
959 stmmac_set_eee_pls(priv, priv->hw, false);
960 }
961
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)962 static void stmmac_mac_link_up(struct phylink_config *config,
963 struct phy_device *phy,
964 unsigned int mode, phy_interface_t interface,
965 int speed, int duplex,
966 bool tx_pause, bool rx_pause)
967 {
968 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
969 u32 ctrl;
970
971 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
972
973 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
974 ctrl &= ~priv->hw->link.speed_mask;
975
976 if (interface == PHY_INTERFACE_MODE_USXGMII) {
977 switch (speed) {
978 case SPEED_10000:
979 ctrl |= priv->hw->link.xgmii.speed10000;
980 break;
981 case SPEED_5000:
982 ctrl |= priv->hw->link.xgmii.speed5000;
983 break;
984 case SPEED_2500:
985 ctrl |= priv->hw->link.xgmii.speed2500;
986 break;
987 default:
988 return;
989 }
990 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
991 switch (speed) {
992 case SPEED_100000:
993 ctrl |= priv->hw->link.xlgmii.speed100000;
994 break;
995 case SPEED_50000:
996 ctrl |= priv->hw->link.xlgmii.speed50000;
997 break;
998 case SPEED_40000:
999 ctrl |= priv->hw->link.xlgmii.speed40000;
1000 break;
1001 case SPEED_25000:
1002 ctrl |= priv->hw->link.xlgmii.speed25000;
1003 break;
1004 case SPEED_10000:
1005 ctrl |= priv->hw->link.xgmii.speed10000;
1006 break;
1007 case SPEED_2500:
1008 ctrl |= priv->hw->link.speed2500;
1009 break;
1010 case SPEED_1000:
1011 ctrl |= priv->hw->link.speed1000;
1012 break;
1013 default:
1014 return;
1015 }
1016 } else {
1017 switch (speed) {
1018 case SPEED_2500:
1019 ctrl |= priv->hw->link.speed2500;
1020 break;
1021 case SPEED_1000:
1022 ctrl |= priv->hw->link.speed1000;
1023 break;
1024 case SPEED_100:
1025 ctrl |= priv->hw->link.speed100;
1026 break;
1027 case SPEED_10:
1028 ctrl |= priv->hw->link.speed10;
1029 break;
1030 default:
1031 return;
1032 }
1033 }
1034
1035 priv->speed = speed;
1036
1037 if (priv->plat->fix_mac_speed)
1038 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1039
1040 if (!duplex)
1041 ctrl &= ~priv->hw->link.duplex;
1042 else
1043 ctrl |= priv->hw->link.duplex;
1044
1045 /* Flow Control operation */
1046 if (rx_pause && tx_pause)
1047 priv->flow_ctrl = FLOW_AUTO;
1048 else if (rx_pause && !tx_pause)
1049 priv->flow_ctrl = FLOW_RX;
1050 else if (!rx_pause && tx_pause)
1051 priv->flow_ctrl = FLOW_TX;
1052 else
1053 priv->flow_ctrl = FLOW_OFF;
1054
1055 stmmac_mac_flow_ctrl(priv, duplex);
1056
1057 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1058
1059 stmmac_mac_set(priv, priv->ioaddr, true);
1060 if (phy && priv->dma_cap.eee) {
1061 priv->eee_active =
1062 phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1063 priv->eee_enabled = stmmac_eee_init(priv);
1064 priv->tx_lpi_enabled = priv->eee_enabled;
1065 stmmac_set_eee_pls(priv, priv->hw, true);
1066 }
1067 }
1068
1069 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1070 .validate = stmmac_validate,
1071 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1072 .mac_config = stmmac_mac_config,
1073 .mac_an_restart = stmmac_mac_an_restart,
1074 .mac_link_down = stmmac_mac_link_down,
1075 .mac_link_up = stmmac_mac_link_up,
1076 };
1077
1078 /**
1079 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1080 * @priv: driver private structure
1081 * Description: this is to verify if the HW supports the PCS.
1082 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1083 * configured for the TBI, RTBI, or SGMII PHY interface.
1084 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1085 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1086 {
1087 int interface = priv->plat->interface;
1088
1089 if (priv->dma_cap.pcs) {
1090 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1091 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1092 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1093 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1094 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1095 priv->hw->pcs = STMMAC_PCS_RGMII;
1096 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1097 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1098 priv->hw->pcs = STMMAC_PCS_SGMII;
1099 }
1100 }
1101 }
1102
1103 /**
1104 * stmmac_init_phy - PHY initialization
1105 * @dev: net device structure
1106 * Description: it initializes the driver's PHY state, and attaches the PHY
1107 * to the mac driver.
1108 * Return value:
1109 * 0 on success
1110 */
stmmac_init_phy(struct net_device * dev)1111 static int stmmac_init_phy(struct net_device *dev)
1112 {
1113 struct stmmac_priv *priv = netdev_priv(dev);
1114 struct device_node *node;
1115 int ret;
1116
1117 node = priv->plat->phylink_node;
1118
1119 if (node)
1120 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1121
1122 /* Some DT bindings do not set-up the PHY handle. Let's try to
1123 * manually parse it
1124 */
1125 if (!node || ret) {
1126 int addr = priv->plat->phy_addr;
1127 struct phy_device *phydev;
1128
1129 if (addr < 0) {
1130 netdev_err(priv->dev, "no phy found\n");
1131 return -ENODEV;
1132 }
1133
1134 phydev = mdiobus_get_phy(priv->mii, addr);
1135 if (!phydev) {
1136 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1137 return -ENODEV;
1138 }
1139
1140 ret = phylink_connect_phy(priv->phylink, phydev);
1141 }
1142
1143 if (!priv->plat->pmt) {
1144 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1145
1146 phylink_ethtool_get_wol(priv->phylink, &wol);
1147 device_set_wakeup_capable(priv->device, !!wol.supported);
1148 device_set_wakeup_enable(priv->device, !!wol.wolopts);
1149 }
1150
1151 return ret;
1152 }
1153
stmmac_phy_setup(struct stmmac_priv * priv)1154 static int stmmac_phy_setup(struct stmmac_priv *priv)
1155 {
1156 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1157 int mode = priv->plat->phy_interface;
1158 struct phylink *phylink;
1159
1160 priv->phylink_config.dev = &priv->dev->dev;
1161 priv->phylink_config.type = PHYLINK_NETDEV;
1162 priv->phylink_config.pcs_poll = true;
1163
1164 if (!fwnode)
1165 fwnode = dev_fwnode(priv->device);
1166
1167 phylink = phylink_create(&priv->phylink_config, fwnode,
1168 mode, &stmmac_phylink_mac_ops);
1169 if (IS_ERR(phylink))
1170 return PTR_ERR(phylink);
1171
1172 priv->phylink = phylink;
1173 return 0;
1174 }
1175
stmmac_display_rx_rings(struct stmmac_priv * priv)1176 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1177 {
1178 u32 rx_cnt = priv->plat->rx_queues_to_use;
1179 unsigned int desc_size;
1180 void *head_rx;
1181 u32 queue;
1182
1183 /* Display RX rings */
1184 for (queue = 0; queue < rx_cnt; queue++) {
1185 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1186
1187 pr_info("\tRX Queue %u rings\n", queue);
1188
1189 if (priv->extend_desc) {
1190 head_rx = (void *)rx_q->dma_erx;
1191 desc_size = sizeof(struct dma_extended_desc);
1192 } else {
1193 head_rx = (void *)rx_q->dma_rx;
1194 desc_size = sizeof(struct dma_desc);
1195 }
1196
1197 /* Display RX ring */
1198 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1199 rx_q->dma_rx_phy, desc_size);
1200 }
1201 }
1202
stmmac_display_tx_rings(struct stmmac_priv * priv)1203 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1204 {
1205 u32 tx_cnt = priv->plat->tx_queues_to_use;
1206 unsigned int desc_size;
1207 void *head_tx;
1208 u32 queue;
1209
1210 /* Display TX rings */
1211 for (queue = 0; queue < tx_cnt; queue++) {
1212 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1213
1214 pr_info("\tTX Queue %d rings\n", queue);
1215
1216 if (priv->extend_desc) {
1217 head_tx = (void *)tx_q->dma_etx;
1218 desc_size = sizeof(struct dma_extended_desc);
1219 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1220 head_tx = (void *)tx_q->dma_entx;
1221 desc_size = sizeof(struct dma_edesc);
1222 } else {
1223 head_tx = (void *)tx_q->dma_tx;
1224 desc_size = sizeof(struct dma_desc);
1225 }
1226
1227 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1228 tx_q->dma_tx_phy, desc_size);
1229 }
1230 }
1231
stmmac_display_rings(struct stmmac_priv * priv)1232 static void stmmac_display_rings(struct stmmac_priv *priv)
1233 {
1234 /* Display RX ring */
1235 stmmac_display_rx_rings(priv);
1236
1237 /* Display TX ring */
1238 stmmac_display_tx_rings(priv);
1239 }
1240
stmmac_set_bfsize(int mtu,int bufsize)1241 static int stmmac_set_bfsize(int mtu, int bufsize)
1242 {
1243 int ret = bufsize;
1244
1245 if (mtu >= BUF_SIZE_8KiB)
1246 ret = BUF_SIZE_16KiB;
1247 else if (mtu >= BUF_SIZE_4KiB)
1248 ret = BUF_SIZE_8KiB;
1249 else if (mtu >= BUF_SIZE_2KiB)
1250 ret = BUF_SIZE_4KiB;
1251 else if (mtu > DEFAULT_BUFSIZE)
1252 ret = BUF_SIZE_2KiB;
1253 else
1254 ret = DEFAULT_BUFSIZE;
1255
1256 return ret;
1257 }
1258
1259 /**
1260 * stmmac_clear_rx_descriptors - clear RX descriptors
1261 * @priv: driver private structure
1262 * @queue: RX queue index
1263 * Description: this function is called to clear the RX descriptors
1264 * in case of both basic and extended descriptors are used.
1265 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1266 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1267 {
1268 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1269 int i;
1270
1271 /* Clear the RX descriptors */
1272 for (i = 0; i < priv->dma_rx_size; i++)
1273 if (priv->extend_desc)
1274 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1275 priv->use_riwt, priv->mode,
1276 (i == priv->dma_rx_size - 1),
1277 priv->dma_buf_sz);
1278 else
1279 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1280 priv->use_riwt, priv->mode,
1281 (i == priv->dma_rx_size - 1),
1282 priv->dma_buf_sz);
1283 }
1284
1285 /**
1286 * stmmac_clear_tx_descriptors - clear tx descriptors
1287 * @priv: driver private structure
1288 * @queue: TX queue index.
1289 * Description: this function is called to clear the TX descriptors
1290 * in case of both basic and extended descriptors are used.
1291 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1292 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1293 {
1294 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1295 int i;
1296
1297 /* Clear the TX descriptors */
1298 for (i = 0; i < priv->dma_tx_size; i++) {
1299 int last = (i == (priv->dma_tx_size - 1));
1300 struct dma_desc *p;
1301
1302 if (priv->extend_desc)
1303 p = &tx_q->dma_etx[i].basic;
1304 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1305 p = &tx_q->dma_entx[i].basic;
1306 else
1307 p = &tx_q->dma_tx[i];
1308
1309 stmmac_init_tx_desc(priv, p, priv->mode, last);
1310 }
1311 }
1312
1313 /**
1314 * stmmac_clear_descriptors - clear descriptors
1315 * @priv: driver private structure
1316 * Description: this function is called to clear the TX and RX descriptors
1317 * in case of both basic and extended descriptors are used.
1318 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1319 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1320 {
1321 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1322 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1323 u32 queue;
1324
1325 /* Clear the RX descriptors */
1326 for (queue = 0; queue < rx_queue_cnt; queue++)
1327 stmmac_clear_rx_descriptors(priv, queue);
1328
1329 /* Clear the TX descriptors */
1330 for (queue = 0; queue < tx_queue_cnt; queue++)
1331 stmmac_clear_tx_descriptors(priv, queue);
1332 }
1333
1334 /**
1335 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1336 * @priv: driver private structure
1337 * @p: descriptor pointer
1338 * @i: descriptor index
1339 * @flags: gfp flag
1340 * @queue: RX queue index
1341 * Description: this function is called to allocate a receive buffer, perform
1342 * the DMA mapping and init the descriptor.
1343 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1344 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1345 int i, gfp_t flags, u32 queue)
1346 {
1347 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1348 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1349
1350 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1351 if (!buf->page)
1352 return -ENOMEM;
1353
1354 if (priv->sph) {
1355 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1356 if (!buf->sec_page)
1357 return -ENOMEM;
1358
1359 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1360 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1361 } else {
1362 buf->sec_page = NULL;
1363 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1364 }
1365
1366 buf->addr = page_pool_get_dma_addr(buf->page);
1367 stmmac_set_desc_addr(priv, p, buf->addr);
1368 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1369 stmmac_init_desc3(priv, p);
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * stmmac_free_rx_buffer - free RX dma buffers
1376 * @priv: private structure
1377 * @queue: RX queue index
1378 * @i: buffer index.
1379 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1380 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1381 {
1382 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1383 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1384
1385 if (buf->page)
1386 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1387 buf->page = NULL;
1388
1389 if (buf->sec_page)
1390 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1391 buf->sec_page = NULL;
1392 }
1393
1394 /**
1395 * stmmac_free_tx_buffer - free RX dma buffers
1396 * @priv: private structure
1397 * @queue: RX queue index
1398 * @i: buffer index.
1399 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1400 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1401 {
1402 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1403
1404 if (tx_q->tx_skbuff_dma[i].buf) {
1405 if (tx_q->tx_skbuff_dma[i].map_as_page)
1406 dma_unmap_page(priv->device,
1407 tx_q->tx_skbuff_dma[i].buf,
1408 tx_q->tx_skbuff_dma[i].len,
1409 DMA_TO_DEVICE);
1410 else
1411 dma_unmap_single(priv->device,
1412 tx_q->tx_skbuff_dma[i].buf,
1413 tx_q->tx_skbuff_dma[i].len,
1414 DMA_TO_DEVICE);
1415 }
1416
1417 if (tx_q->tx_skbuff[i]) {
1418 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1419 tx_q->tx_skbuff[i] = NULL;
1420 tx_q->tx_skbuff_dma[i].buf = 0;
1421 tx_q->tx_skbuff_dma[i].map_as_page = false;
1422 }
1423 }
1424
1425 /**
1426 * init_dma_rx_desc_rings - init the RX descriptor rings
1427 * @dev: net device structure
1428 * @flags: gfp flag.
1429 * Description: this function initializes the DMA RX descriptors
1430 * and allocates the socket buffers. It supports the chained and ring
1431 * modes.
1432 */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1433 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1434 {
1435 struct stmmac_priv *priv = netdev_priv(dev);
1436 u32 rx_count = priv->plat->rx_queues_to_use;
1437 int ret = -ENOMEM;
1438 int queue;
1439 int i;
1440
1441 /* RX INITIALIZATION */
1442 netif_dbg(priv, probe, priv->dev,
1443 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1444
1445 for (queue = 0; queue < rx_count; queue++) {
1446 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1447
1448 netif_dbg(priv, probe, priv->dev,
1449 "(%s) dma_rx_phy=0x%08x\n", __func__,
1450 (u32)rx_q->dma_rx_phy);
1451
1452 stmmac_clear_rx_descriptors(priv, queue);
1453
1454 for (i = 0; i < priv->dma_rx_size; i++) {
1455 struct dma_desc *p;
1456
1457 if (priv->extend_desc)
1458 p = &((rx_q->dma_erx + i)->basic);
1459 else
1460 p = rx_q->dma_rx + i;
1461
1462 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1463 queue);
1464 if (ret)
1465 goto err_init_rx_buffers;
1466 }
1467
1468 rx_q->cur_rx = 0;
1469 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1470
1471 /* Setup the chained descriptor addresses */
1472 if (priv->mode == STMMAC_CHAIN_MODE) {
1473 if (priv->extend_desc)
1474 stmmac_mode_init(priv, rx_q->dma_erx,
1475 rx_q->dma_rx_phy,
1476 priv->dma_rx_size, 1);
1477 else
1478 stmmac_mode_init(priv, rx_q->dma_rx,
1479 rx_q->dma_rx_phy,
1480 priv->dma_rx_size, 0);
1481 }
1482 }
1483
1484 return 0;
1485
1486 err_init_rx_buffers:
1487 while (queue >= 0) {
1488 while (--i >= 0)
1489 stmmac_free_rx_buffer(priv, queue, i);
1490
1491 if (queue == 0)
1492 break;
1493
1494 i = priv->dma_rx_size;
1495 queue--;
1496 }
1497
1498 return ret;
1499 }
1500
1501 /**
1502 * init_dma_tx_desc_rings - init the TX descriptor rings
1503 * @dev: net device structure.
1504 * Description: this function initializes the DMA TX descriptors
1505 * and allocates the socket buffers. It supports the chained and ring
1506 * modes.
1507 */
init_dma_tx_desc_rings(struct net_device * dev)1508 static int init_dma_tx_desc_rings(struct net_device *dev)
1509 {
1510 struct stmmac_priv *priv = netdev_priv(dev);
1511 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1512 u32 queue;
1513 int i;
1514
1515 for (queue = 0; queue < tx_queue_cnt; queue++) {
1516 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1517
1518 netif_dbg(priv, probe, priv->dev,
1519 "(%s) dma_tx_phy=0x%08x\n", __func__,
1520 (u32)tx_q->dma_tx_phy);
1521
1522 /* Setup the chained descriptor addresses */
1523 if (priv->mode == STMMAC_CHAIN_MODE) {
1524 if (priv->extend_desc)
1525 stmmac_mode_init(priv, tx_q->dma_etx,
1526 tx_q->dma_tx_phy,
1527 priv->dma_tx_size, 1);
1528 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1529 stmmac_mode_init(priv, tx_q->dma_tx,
1530 tx_q->dma_tx_phy,
1531 priv->dma_tx_size, 0);
1532 }
1533
1534 for (i = 0; i < priv->dma_tx_size; i++) {
1535 struct dma_desc *p;
1536 if (priv->extend_desc)
1537 p = &((tx_q->dma_etx + i)->basic);
1538 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1539 p = &((tx_q->dma_entx + i)->basic);
1540 else
1541 p = tx_q->dma_tx + i;
1542
1543 stmmac_clear_desc(priv, p);
1544
1545 tx_q->tx_skbuff_dma[i].buf = 0;
1546 tx_q->tx_skbuff_dma[i].map_as_page = false;
1547 tx_q->tx_skbuff_dma[i].len = 0;
1548 tx_q->tx_skbuff_dma[i].last_segment = false;
1549 tx_q->tx_skbuff[i] = NULL;
1550 }
1551
1552 tx_q->dirty_tx = 0;
1553 tx_q->cur_tx = 0;
1554 tx_q->mss = 0;
1555
1556 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1557 }
1558
1559 return 0;
1560 }
1561
1562 /**
1563 * init_dma_desc_rings - init the RX/TX descriptor rings
1564 * @dev: net device structure
1565 * @flags: gfp flag.
1566 * Description: this function initializes the DMA RX/TX descriptors
1567 * and allocates the socket buffers. It supports the chained and ring
1568 * modes.
1569 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1570 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1571 {
1572 struct stmmac_priv *priv = netdev_priv(dev);
1573 int ret;
1574
1575 ret = init_dma_rx_desc_rings(dev, flags);
1576 if (ret)
1577 return ret;
1578
1579 ret = init_dma_tx_desc_rings(dev);
1580
1581 stmmac_clear_descriptors(priv);
1582
1583 if (netif_msg_hw(priv))
1584 stmmac_display_rings(priv);
1585
1586 return ret;
1587 }
1588
1589 /**
1590 * dma_free_rx_skbufs - free RX dma buffers
1591 * @priv: private structure
1592 * @queue: RX queue index
1593 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1594 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1595 {
1596 int i;
1597
1598 for (i = 0; i < priv->dma_rx_size; i++)
1599 stmmac_free_rx_buffer(priv, queue, i);
1600 }
1601
1602 /**
1603 * dma_free_tx_skbufs - free TX dma buffers
1604 * @priv: private structure
1605 * @queue: TX queue index
1606 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1607 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1608 {
1609 int i;
1610
1611 for (i = 0; i < priv->dma_tx_size; i++)
1612 stmmac_free_tx_buffer(priv, queue, i);
1613 }
1614
1615 /**
1616 * stmmac_free_tx_skbufs - free TX skb buffers
1617 * @priv: private structure
1618 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1619 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1620 {
1621 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1622 u32 queue;
1623
1624 for (queue = 0; queue < tx_queue_cnt; queue++)
1625 dma_free_tx_skbufs(priv, queue);
1626 }
1627
1628 /**
1629 * free_dma_rx_desc_resources - free RX dma desc resources
1630 * @priv: private structure
1631 */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1632 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1633 {
1634 u32 rx_count = priv->plat->rx_queues_to_use;
1635 u32 queue;
1636
1637 /* Free RX queue resources */
1638 for (queue = 0; queue < rx_count; queue++) {
1639 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1640
1641 /* Release the DMA RX socket buffers */
1642 dma_free_rx_skbufs(priv, queue);
1643
1644 /* Free DMA regions of consistent memory previously allocated */
1645 if (!priv->extend_desc)
1646 dma_free_coherent(priv->device, priv->dma_rx_size *
1647 sizeof(struct dma_desc),
1648 rx_q->dma_rx, rx_q->dma_rx_phy);
1649 else
1650 dma_free_coherent(priv->device, priv->dma_rx_size *
1651 sizeof(struct dma_extended_desc),
1652 rx_q->dma_erx, rx_q->dma_rx_phy);
1653
1654 kfree(rx_q->buf_pool);
1655 if (rx_q->page_pool)
1656 page_pool_destroy(rx_q->page_pool);
1657 }
1658 }
1659
1660 /**
1661 * free_dma_tx_desc_resources - free TX dma desc resources
1662 * @priv: private structure
1663 */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1664 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1665 {
1666 u32 tx_count = priv->plat->tx_queues_to_use;
1667 u32 queue;
1668
1669 /* Free TX queue resources */
1670 for (queue = 0; queue < tx_count; queue++) {
1671 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1672 size_t size;
1673 void *addr;
1674
1675 /* Release the DMA TX socket buffers */
1676 dma_free_tx_skbufs(priv, queue);
1677
1678 if (priv->extend_desc) {
1679 size = sizeof(struct dma_extended_desc);
1680 addr = tx_q->dma_etx;
1681 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1682 size = sizeof(struct dma_edesc);
1683 addr = tx_q->dma_entx;
1684 } else {
1685 size = sizeof(struct dma_desc);
1686 addr = tx_q->dma_tx;
1687 }
1688
1689 size *= priv->dma_tx_size;
1690
1691 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1692
1693 kfree(tx_q->tx_skbuff_dma);
1694 kfree(tx_q->tx_skbuff);
1695 }
1696 }
1697
1698 /**
1699 * alloc_dma_rx_desc_resources - alloc RX resources.
1700 * @priv: private structure
1701 * Description: according to which descriptor can be used (extend or basic)
1702 * this function allocates the resources for TX and RX paths. In case of
1703 * reception, for example, it pre-allocated the RX socket buffer in order to
1704 * allow zero-copy mechanism.
1705 */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1706 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1707 {
1708 u32 rx_count = priv->plat->rx_queues_to_use;
1709 int ret = -ENOMEM;
1710 u32 queue;
1711
1712 /* RX queues buffers and DMA */
1713 for (queue = 0; queue < rx_count; queue++) {
1714 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1715 struct page_pool_params pp_params = { 0 };
1716 unsigned int num_pages;
1717
1718 rx_q->queue_index = queue;
1719 rx_q->priv_data = priv;
1720
1721 pp_params.flags = PP_FLAG_DMA_MAP;
1722 pp_params.pool_size = priv->dma_rx_size;
1723 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1724 pp_params.order = ilog2(num_pages);
1725 pp_params.nid = dev_to_node(priv->device);
1726 pp_params.dev = priv->device;
1727 pp_params.dma_dir = DMA_FROM_DEVICE;
1728
1729 rx_q->page_pool = page_pool_create(&pp_params);
1730 if (IS_ERR(rx_q->page_pool)) {
1731 ret = PTR_ERR(rx_q->page_pool);
1732 rx_q->page_pool = NULL;
1733 goto err_dma;
1734 }
1735
1736 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1737 sizeof(*rx_q->buf_pool),
1738 GFP_KERNEL);
1739 if (!rx_q->buf_pool)
1740 goto err_dma;
1741
1742 if (priv->extend_desc) {
1743 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1744 priv->dma_rx_size *
1745 sizeof(struct dma_extended_desc),
1746 &rx_q->dma_rx_phy,
1747 GFP_KERNEL);
1748 if (!rx_q->dma_erx)
1749 goto err_dma;
1750
1751 } else {
1752 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1753 priv->dma_rx_size *
1754 sizeof(struct dma_desc),
1755 &rx_q->dma_rx_phy,
1756 GFP_KERNEL);
1757 if (!rx_q->dma_rx)
1758 goto err_dma;
1759 }
1760 }
1761
1762 return 0;
1763
1764 err_dma:
1765 free_dma_rx_desc_resources(priv);
1766
1767 return ret;
1768 }
1769
1770 /**
1771 * alloc_dma_tx_desc_resources - alloc TX resources.
1772 * @priv: private structure
1773 * Description: according to which descriptor can be used (extend or basic)
1774 * this function allocates the resources for TX and RX paths. In case of
1775 * reception, for example, it pre-allocated the RX socket buffer in order to
1776 * allow zero-copy mechanism.
1777 */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1778 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1779 {
1780 u32 tx_count = priv->plat->tx_queues_to_use;
1781 int ret = -ENOMEM;
1782 u32 queue;
1783
1784 /* TX queues buffers and DMA */
1785 for (queue = 0; queue < tx_count; queue++) {
1786 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1787 size_t size;
1788 void *addr;
1789
1790 tx_q->queue_index = queue;
1791 tx_q->priv_data = priv;
1792
1793 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1794 sizeof(*tx_q->tx_skbuff_dma),
1795 GFP_KERNEL);
1796 if (!tx_q->tx_skbuff_dma)
1797 goto err_dma;
1798
1799 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1800 sizeof(struct sk_buff *),
1801 GFP_KERNEL);
1802 if (!tx_q->tx_skbuff)
1803 goto err_dma;
1804
1805 if (priv->extend_desc)
1806 size = sizeof(struct dma_extended_desc);
1807 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1808 size = sizeof(struct dma_edesc);
1809 else
1810 size = sizeof(struct dma_desc);
1811
1812 size *= priv->dma_tx_size;
1813
1814 addr = dma_alloc_coherent(priv->device, size,
1815 &tx_q->dma_tx_phy, GFP_KERNEL);
1816 if (!addr)
1817 goto err_dma;
1818
1819 if (priv->extend_desc)
1820 tx_q->dma_etx = addr;
1821 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1822 tx_q->dma_entx = addr;
1823 else
1824 tx_q->dma_tx = addr;
1825 }
1826
1827 return 0;
1828
1829 err_dma:
1830 free_dma_tx_desc_resources(priv);
1831 return ret;
1832 }
1833
1834 /**
1835 * alloc_dma_desc_resources - alloc TX/RX resources.
1836 * @priv: private structure
1837 * Description: according to which descriptor can be used (extend or basic)
1838 * this function allocates the resources for TX and RX paths. In case of
1839 * reception, for example, it pre-allocated the RX socket buffer in order to
1840 * allow zero-copy mechanism.
1841 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1842 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1843 {
1844 /* RX Allocation */
1845 int ret = alloc_dma_rx_desc_resources(priv);
1846
1847 if (ret)
1848 return ret;
1849
1850 ret = alloc_dma_tx_desc_resources(priv);
1851
1852 return ret;
1853 }
1854
1855 /**
1856 * free_dma_desc_resources - free dma desc resources
1857 * @priv: private structure
1858 */
free_dma_desc_resources(struct stmmac_priv * priv)1859 static void free_dma_desc_resources(struct stmmac_priv *priv)
1860 {
1861 /* Release the DMA RX socket buffers */
1862 free_dma_rx_desc_resources(priv);
1863
1864 /* Release the DMA TX socket buffers */
1865 free_dma_tx_desc_resources(priv);
1866 }
1867
1868 /**
1869 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1870 * @priv: driver private structure
1871 * Description: It is used for enabling the rx queues in the MAC
1872 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1873 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1874 {
1875 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1876 int queue;
1877 u8 mode;
1878
1879 for (queue = 0; queue < rx_queues_count; queue++) {
1880 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1881 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1882 }
1883 }
1884
1885 /**
1886 * stmmac_start_rx_dma - start RX DMA channel
1887 * @priv: driver private structure
1888 * @chan: RX channel index
1889 * Description:
1890 * This starts a RX DMA channel
1891 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1892 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1893 {
1894 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1895 stmmac_start_rx(priv, priv->ioaddr, chan);
1896 }
1897
1898 /**
1899 * stmmac_start_tx_dma - start TX DMA channel
1900 * @priv: driver private structure
1901 * @chan: TX channel index
1902 * Description:
1903 * This starts a TX DMA channel
1904 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1905 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1906 {
1907 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1908 stmmac_start_tx(priv, priv->ioaddr, chan);
1909 }
1910
1911 /**
1912 * stmmac_stop_rx_dma - stop RX DMA channel
1913 * @priv: driver private structure
1914 * @chan: RX channel index
1915 * Description:
1916 * This stops a RX DMA channel
1917 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1918 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1919 {
1920 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1921 stmmac_stop_rx(priv, priv->ioaddr, chan);
1922 }
1923
1924 /**
1925 * stmmac_stop_tx_dma - stop TX DMA channel
1926 * @priv: driver private structure
1927 * @chan: TX channel index
1928 * Description:
1929 * This stops a TX DMA channel
1930 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1931 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1932 {
1933 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1934 stmmac_stop_tx(priv, priv->ioaddr, chan);
1935 }
1936
1937 /**
1938 * stmmac_start_all_dma - start all RX and TX DMA channels
1939 * @priv: driver private structure
1940 * Description:
1941 * This starts all the RX and TX DMA channels
1942 */
stmmac_start_all_dma(struct stmmac_priv * priv)1943 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1944 {
1945 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1946 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1947 u32 chan = 0;
1948
1949 for (chan = 0; chan < rx_channels_count; chan++)
1950 stmmac_start_rx_dma(priv, chan);
1951
1952 for (chan = 0; chan < tx_channels_count; chan++)
1953 stmmac_start_tx_dma(priv, chan);
1954 }
1955
1956 /**
1957 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1958 * @priv: driver private structure
1959 * Description:
1960 * This stops the RX and TX DMA channels
1961 */
stmmac_stop_all_dma(struct stmmac_priv * priv)1962 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1963 {
1964 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1965 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1966 u32 chan = 0;
1967
1968 for (chan = 0; chan < rx_channels_count; chan++)
1969 stmmac_stop_rx_dma(priv, chan);
1970
1971 for (chan = 0; chan < tx_channels_count; chan++)
1972 stmmac_stop_tx_dma(priv, chan);
1973 }
1974
1975 /**
1976 * stmmac_dma_operation_mode - HW DMA operation mode
1977 * @priv: driver private structure
1978 * Description: it is used for configuring the DMA operation mode register in
1979 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1980 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1981 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1982 {
1983 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1984 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1985 int rxfifosz = priv->plat->rx_fifo_size;
1986 int txfifosz = priv->plat->tx_fifo_size;
1987 u32 txmode = 0;
1988 u32 rxmode = 0;
1989 u32 chan = 0;
1990 u8 qmode = 0;
1991
1992 if (rxfifosz == 0)
1993 rxfifosz = priv->dma_cap.rx_fifo_size;
1994 if (txfifosz == 0)
1995 txfifosz = priv->dma_cap.tx_fifo_size;
1996
1997 /* Adjust for real per queue fifo size */
1998 rxfifosz /= rx_channels_count;
1999 txfifosz /= tx_channels_count;
2000
2001 if (priv->plat->force_thresh_dma_mode) {
2002 txmode = tc;
2003 rxmode = tc;
2004 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2005 /*
2006 * In case of GMAC, SF mode can be enabled
2007 * to perform the TX COE in HW. This depends on:
2008 * 1) TX COE if actually supported
2009 * 2) There is no bugged Jumbo frame support
2010 * that needs to not insert csum in the TDES.
2011 */
2012 txmode = SF_DMA_MODE;
2013 rxmode = SF_DMA_MODE;
2014 priv->xstats.threshold = SF_DMA_MODE;
2015 } else {
2016 txmode = tc;
2017 rxmode = SF_DMA_MODE;
2018 }
2019
2020 /* configure all channels */
2021 for (chan = 0; chan < rx_channels_count; chan++) {
2022 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2023
2024 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2025 rxfifosz, qmode);
2026 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2027 chan);
2028 }
2029
2030 for (chan = 0; chan < tx_channels_count; chan++) {
2031 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2032
2033 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2034 txfifosz, qmode);
2035 }
2036 }
2037
2038 /**
2039 * stmmac_tx_clean - to manage the transmission completion
2040 * @priv: driver private structure
2041 * @budget: napi budget limiting this functions packet handling
2042 * @queue: TX queue index
2043 * Description: it reclaims the transmit resources after transmission completes.
2044 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2045 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2046 {
2047 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2048 unsigned int bytes_compl = 0, pkts_compl = 0;
2049 unsigned int entry, count = 0;
2050
2051 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2052
2053 priv->xstats.tx_clean++;
2054
2055 entry = tx_q->dirty_tx;
2056 while ((entry != tx_q->cur_tx) && (count < budget)) {
2057 struct sk_buff *skb = tx_q->tx_skbuff[entry];
2058 struct dma_desc *p;
2059 int status;
2060
2061 if (priv->extend_desc)
2062 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2063 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2064 p = &tx_q->dma_entx[entry].basic;
2065 else
2066 p = tx_q->dma_tx + entry;
2067
2068 status = stmmac_tx_status(priv, &priv->dev->stats,
2069 &priv->xstats, p, priv->ioaddr);
2070 /* Check if the descriptor is owned by the DMA */
2071 if (unlikely(status & tx_dma_own))
2072 break;
2073
2074 count++;
2075
2076 /* Make sure descriptor fields are read after reading
2077 * the own bit.
2078 */
2079 dma_rmb();
2080
2081 /* Just consider the last segment and ...*/
2082 if (likely(!(status & tx_not_ls))) {
2083 /* ... verify the status error condition */
2084 if (unlikely(status & tx_err)) {
2085 priv->dev->stats.tx_errors++;
2086 } else {
2087 priv->dev->stats.tx_packets++;
2088 priv->xstats.tx_pkt_n++;
2089 }
2090 stmmac_get_tx_hwtstamp(priv, p, skb);
2091 }
2092
2093 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2094 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2095 dma_unmap_page(priv->device,
2096 tx_q->tx_skbuff_dma[entry].buf,
2097 tx_q->tx_skbuff_dma[entry].len,
2098 DMA_TO_DEVICE);
2099 else
2100 dma_unmap_single(priv->device,
2101 tx_q->tx_skbuff_dma[entry].buf,
2102 tx_q->tx_skbuff_dma[entry].len,
2103 DMA_TO_DEVICE);
2104 tx_q->tx_skbuff_dma[entry].buf = 0;
2105 tx_q->tx_skbuff_dma[entry].len = 0;
2106 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2107 }
2108
2109 stmmac_clean_desc3(priv, tx_q, p);
2110
2111 tx_q->tx_skbuff_dma[entry].last_segment = false;
2112 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2113
2114 if (likely(skb != NULL)) {
2115 pkts_compl++;
2116 bytes_compl += skb->len;
2117 dev_consume_skb_any(skb);
2118 tx_q->tx_skbuff[entry] = NULL;
2119 }
2120
2121 stmmac_release_tx_desc(priv, p, priv->mode);
2122
2123 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2124 }
2125 tx_q->dirty_tx = entry;
2126
2127 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2128 pkts_compl, bytes_compl);
2129
2130 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2131 queue))) &&
2132 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2133
2134 netif_dbg(priv, tx_done, priv->dev,
2135 "%s: restart transmit\n", __func__);
2136 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2137 }
2138
2139 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2140 stmmac_enable_eee_mode(priv);
2141 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2142 }
2143
2144 /* We still have pending packets, let's call for a new scheduling */
2145 if (tx_q->dirty_tx != tx_q->cur_tx)
2146 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2147
2148 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2149
2150 return count;
2151 }
2152
2153 /**
2154 * stmmac_tx_err - to manage the tx error
2155 * @priv: driver private structure
2156 * @chan: channel index
2157 * Description: it cleans the descriptors and restarts the transmission
2158 * in case of transmission errors.
2159 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2160 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2161 {
2162 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2163
2164 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2165
2166 stmmac_stop_tx_dma(priv, chan);
2167 dma_free_tx_skbufs(priv, chan);
2168 stmmac_clear_tx_descriptors(priv, chan);
2169 tx_q->dirty_tx = 0;
2170 tx_q->cur_tx = 0;
2171 tx_q->mss = 0;
2172 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2173 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2174 tx_q->dma_tx_phy, chan);
2175 stmmac_start_tx_dma(priv, chan);
2176
2177 priv->dev->stats.tx_errors++;
2178 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2179 }
2180
2181 /**
2182 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2183 * @priv: driver private structure
2184 * @txmode: TX operating mode
2185 * @rxmode: RX operating mode
2186 * @chan: channel index
2187 * Description: it is used for configuring of the DMA operation mode in
2188 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2189 * mode.
2190 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2191 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2192 u32 rxmode, u32 chan)
2193 {
2194 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2195 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2196 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2197 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2198 int rxfifosz = priv->plat->rx_fifo_size;
2199 int txfifosz = priv->plat->tx_fifo_size;
2200
2201 if (rxfifosz == 0)
2202 rxfifosz = priv->dma_cap.rx_fifo_size;
2203 if (txfifosz == 0)
2204 txfifosz = priv->dma_cap.tx_fifo_size;
2205
2206 /* Adjust for real per queue fifo size */
2207 rxfifosz /= rx_channels_count;
2208 txfifosz /= tx_channels_count;
2209
2210 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2211 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2212 }
2213
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2214 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2215 {
2216 int ret;
2217
2218 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2219 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2220 if (ret && (ret != -EINVAL)) {
2221 stmmac_global_err(priv);
2222 return true;
2223 }
2224
2225 return false;
2226 }
2227
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2228 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2229 {
2230 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2231 &priv->xstats, chan);
2232 struct stmmac_channel *ch = &priv->channel[chan];
2233 unsigned long flags;
2234
2235 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2236 if (napi_schedule_prep(&ch->rx_napi)) {
2237 spin_lock_irqsave(&ch->lock, flags);
2238 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2239 spin_unlock_irqrestore(&ch->lock, flags);
2240 __napi_schedule(&ch->rx_napi);
2241 }
2242 }
2243
2244 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2245 if (napi_schedule_prep(&ch->tx_napi)) {
2246 spin_lock_irqsave(&ch->lock, flags);
2247 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2248 spin_unlock_irqrestore(&ch->lock, flags);
2249 __napi_schedule(&ch->tx_napi);
2250 }
2251 }
2252
2253 return status;
2254 }
2255
2256 /**
2257 * stmmac_dma_interrupt - DMA ISR
2258 * @priv: driver private structure
2259 * Description: this is the DMA ISR. It is called by the main ISR.
2260 * It calls the dwmac dma routine and schedule poll method in case of some
2261 * work can be done.
2262 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2263 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2264 {
2265 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2266 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2267 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2268 tx_channel_count : rx_channel_count;
2269 u32 chan;
2270 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2271
2272 /* Make sure we never check beyond our status buffer. */
2273 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2274 channels_to_check = ARRAY_SIZE(status);
2275
2276 for (chan = 0; chan < channels_to_check; chan++)
2277 status[chan] = stmmac_napi_check(priv, chan);
2278
2279 for (chan = 0; chan < tx_channel_count; chan++) {
2280 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2281 /* Try to bump up the dma threshold on this failure */
2282 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2283 (tc <= 256)) {
2284 tc += 64;
2285 if (priv->plat->force_thresh_dma_mode)
2286 stmmac_set_dma_operation_mode(priv,
2287 tc,
2288 tc,
2289 chan);
2290 else
2291 stmmac_set_dma_operation_mode(priv,
2292 tc,
2293 SF_DMA_MODE,
2294 chan);
2295 priv->xstats.threshold = tc;
2296 }
2297 } else if (unlikely(status[chan] == tx_hard_error)) {
2298 stmmac_tx_err(priv, chan);
2299 }
2300 }
2301 }
2302
2303 /**
2304 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2305 * @priv: driver private structure
2306 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2307 */
stmmac_mmc_setup(struct stmmac_priv * priv)2308 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2309 {
2310 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2311 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2312
2313 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2314
2315 if (priv->dma_cap.rmon) {
2316 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2317 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2318 } else
2319 netdev_info(priv->dev, "No MAC Management Counters available\n");
2320 }
2321
2322 /**
2323 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2324 * @priv: driver private structure
2325 * Description:
2326 * new GMAC chip generations have a new register to indicate the
2327 * presence of the optional feature/functions.
2328 * This can be also used to override the value passed through the
2329 * platform and necessary for old MAC10/100 and GMAC chips.
2330 */
stmmac_get_hw_features(struct stmmac_priv * priv)2331 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2332 {
2333 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2334 }
2335
2336 /**
2337 * stmmac_check_ether_addr - check if the MAC addr is valid
2338 * @priv: driver private structure
2339 * Description:
2340 * it is to verify if the MAC address is valid, in case of failures it
2341 * generates a random MAC address
2342 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2343 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2344 {
2345 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2346 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2347 if (!is_valid_ether_addr(priv->dev->dev_addr))
2348 eth_hw_addr_random(priv->dev);
2349 dev_info(priv->device, "device MAC address %pM\n",
2350 priv->dev->dev_addr);
2351 }
2352 }
2353
2354 /**
2355 * stmmac_init_dma_engine - DMA init.
2356 * @priv: driver private structure
2357 * Description:
2358 * It inits the DMA invoking the specific MAC/GMAC callback.
2359 * Some DMA parameters can be passed from the platform;
2360 * in case of these are not passed a default is kept for the MAC or GMAC.
2361 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2362 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2363 {
2364 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2365 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2366 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2367 struct stmmac_rx_queue *rx_q;
2368 struct stmmac_tx_queue *tx_q;
2369 u32 chan = 0;
2370 int atds = 0;
2371 int ret = 0;
2372
2373 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2374 dev_err(priv->device, "Invalid DMA configuration\n");
2375 return -EINVAL;
2376 }
2377
2378 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2379 atds = 1;
2380
2381 ret = stmmac_reset(priv, priv->ioaddr);
2382 if (ret) {
2383 dev_err(priv->device, "Failed to reset the dma\n");
2384 return ret;
2385 }
2386
2387 /* DMA Configuration */
2388 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2389
2390 if (priv->plat->axi)
2391 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2392
2393 /* DMA CSR Channel configuration */
2394 for (chan = 0; chan < dma_csr_ch; chan++)
2395 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2396
2397 /* DMA RX Channel Configuration */
2398 for (chan = 0; chan < rx_channels_count; chan++) {
2399 rx_q = &priv->rx_queue[chan];
2400
2401 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2402 rx_q->dma_rx_phy, chan);
2403
2404 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2405 (priv->dma_rx_size *
2406 sizeof(struct dma_desc));
2407 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2408 rx_q->rx_tail_addr, chan);
2409 }
2410
2411 /* DMA TX Channel Configuration */
2412 for (chan = 0; chan < tx_channels_count; chan++) {
2413 tx_q = &priv->tx_queue[chan];
2414
2415 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2416 tx_q->dma_tx_phy, chan);
2417
2418 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2419 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2420 tx_q->tx_tail_addr, chan);
2421 }
2422
2423 return ret;
2424 }
2425
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2426 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2427 {
2428 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2429
2430 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2431 }
2432
2433 /**
2434 * stmmac_tx_timer - mitigation sw timer for tx.
2435 * @t: data pointer
2436 * Description:
2437 * This is the timer handler to directly invoke the stmmac_tx_clean.
2438 */
stmmac_tx_timer(struct timer_list * t)2439 static void stmmac_tx_timer(struct timer_list *t)
2440 {
2441 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2442 struct stmmac_priv *priv = tx_q->priv_data;
2443 struct stmmac_channel *ch;
2444
2445 ch = &priv->channel[tx_q->queue_index];
2446
2447 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2448 unsigned long flags;
2449
2450 spin_lock_irqsave(&ch->lock, flags);
2451 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2452 spin_unlock_irqrestore(&ch->lock, flags);
2453 __napi_schedule(&ch->tx_napi);
2454 }
2455 }
2456
2457 /**
2458 * stmmac_init_coalesce - init mitigation options.
2459 * @priv: driver private structure
2460 * Description:
2461 * This inits the coalesce parameters: i.e. timer rate,
2462 * timer handler and default threshold used for enabling the
2463 * interrupt on completion bit.
2464 */
stmmac_init_coalesce(struct stmmac_priv * priv)2465 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2466 {
2467 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2468 u32 chan;
2469
2470 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2471 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2472 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2473
2474 for (chan = 0; chan < tx_channel_count; chan++) {
2475 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2476
2477 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2478 }
2479 }
2480
stmmac_set_rings_length(struct stmmac_priv * priv)2481 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2482 {
2483 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2484 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2485 u32 chan;
2486
2487 /* set TX ring length */
2488 for (chan = 0; chan < tx_channels_count; chan++)
2489 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2490 (priv->dma_tx_size - 1), chan);
2491
2492 /* set RX ring length */
2493 for (chan = 0; chan < rx_channels_count; chan++)
2494 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2495 (priv->dma_rx_size - 1), chan);
2496 }
2497
2498 /**
2499 * stmmac_set_tx_queue_weight - Set TX queue weight
2500 * @priv: driver private structure
2501 * Description: It is used for setting TX queues weight
2502 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2503 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2504 {
2505 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2506 u32 weight;
2507 u32 queue;
2508
2509 for (queue = 0; queue < tx_queues_count; queue++) {
2510 weight = priv->plat->tx_queues_cfg[queue].weight;
2511 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2512 }
2513 }
2514
2515 /**
2516 * stmmac_configure_cbs - Configure CBS in TX queue
2517 * @priv: driver private structure
2518 * Description: It is used for configuring CBS in AVB TX queues
2519 */
stmmac_configure_cbs(struct stmmac_priv * priv)2520 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2521 {
2522 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2523 u32 mode_to_use;
2524 u32 queue;
2525
2526 /* queue 0 is reserved for legacy traffic */
2527 for (queue = 1; queue < tx_queues_count; queue++) {
2528 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2529 if (mode_to_use == MTL_QUEUE_DCB)
2530 continue;
2531
2532 stmmac_config_cbs(priv, priv->hw,
2533 priv->plat->tx_queues_cfg[queue].send_slope,
2534 priv->plat->tx_queues_cfg[queue].idle_slope,
2535 priv->plat->tx_queues_cfg[queue].high_credit,
2536 priv->plat->tx_queues_cfg[queue].low_credit,
2537 queue);
2538 }
2539 }
2540
2541 /**
2542 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2543 * @priv: driver private structure
2544 * Description: It is used for mapping RX queues to RX dma channels
2545 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2546 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2547 {
2548 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2549 u32 queue;
2550 u32 chan;
2551
2552 for (queue = 0; queue < rx_queues_count; queue++) {
2553 chan = priv->plat->rx_queues_cfg[queue].chan;
2554 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2555 }
2556 }
2557
2558 /**
2559 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2560 * @priv: driver private structure
2561 * Description: It is used for configuring the RX Queue Priority
2562 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2563 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2564 {
2565 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2566 u32 queue;
2567 u32 prio;
2568
2569 for (queue = 0; queue < rx_queues_count; queue++) {
2570 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2571 continue;
2572
2573 prio = priv->plat->rx_queues_cfg[queue].prio;
2574 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2575 }
2576 }
2577
2578 /**
2579 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2580 * @priv: driver private structure
2581 * Description: It is used for configuring the TX Queue Priority
2582 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2583 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2584 {
2585 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2586 u32 queue;
2587 u32 prio;
2588
2589 for (queue = 0; queue < tx_queues_count; queue++) {
2590 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2591 continue;
2592
2593 prio = priv->plat->tx_queues_cfg[queue].prio;
2594 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2595 }
2596 }
2597
2598 /**
2599 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2600 * @priv: driver private structure
2601 * Description: It is used for configuring the RX queue routing
2602 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2603 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2604 {
2605 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2606 u32 queue;
2607 u8 packet;
2608
2609 for (queue = 0; queue < rx_queues_count; queue++) {
2610 /* no specific packet type routing specified for the queue */
2611 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2612 continue;
2613
2614 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2615 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2616 }
2617 }
2618
stmmac_mac_config_rss(struct stmmac_priv * priv)2619 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2620 {
2621 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2622 priv->rss.enable = false;
2623 return;
2624 }
2625
2626 if (priv->dev->features & NETIF_F_RXHASH)
2627 priv->rss.enable = true;
2628 else
2629 priv->rss.enable = false;
2630
2631 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2632 priv->plat->rx_queues_to_use);
2633 }
2634
2635 /**
2636 * stmmac_mtl_configuration - Configure MTL
2637 * @priv: driver private structure
2638 * Description: It is used for configurring MTL
2639 */
stmmac_mtl_configuration(struct stmmac_priv * priv)2640 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2641 {
2642 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2643 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2644
2645 if (tx_queues_count > 1)
2646 stmmac_set_tx_queue_weight(priv);
2647
2648 /* Configure MTL RX algorithms */
2649 if (rx_queues_count > 1)
2650 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2651 priv->plat->rx_sched_algorithm);
2652
2653 /* Configure MTL TX algorithms */
2654 if (tx_queues_count > 1)
2655 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2656 priv->plat->tx_sched_algorithm);
2657
2658 /* Configure CBS in AVB TX queues */
2659 if (tx_queues_count > 1)
2660 stmmac_configure_cbs(priv);
2661
2662 /* Map RX MTL to DMA channels */
2663 stmmac_rx_queue_dma_chan_map(priv);
2664
2665 /* Enable MAC RX Queues */
2666 stmmac_mac_enable_rx_queues(priv);
2667
2668 /* Set RX priorities */
2669 if (rx_queues_count > 1)
2670 stmmac_mac_config_rx_queues_prio(priv);
2671
2672 /* Set TX priorities */
2673 if (tx_queues_count > 1)
2674 stmmac_mac_config_tx_queues_prio(priv);
2675
2676 /* Set RX routing */
2677 if (rx_queues_count > 1)
2678 stmmac_mac_config_rx_queues_routing(priv);
2679
2680 /* Receive Side Scaling */
2681 if (rx_queues_count > 1)
2682 stmmac_mac_config_rss(priv);
2683 }
2684
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2685 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2686 {
2687 if (priv->dma_cap.asp) {
2688 netdev_info(priv->dev, "Enabling Safety Features\n");
2689 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2690 } else {
2691 netdev_info(priv->dev, "No Safety Features support found\n");
2692 }
2693 }
2694
2695 /**
2696 * stmmac_hw_setup - setup mac in a usable state.
2697 * @dev : pointer to the device structure.
2698 * @ptp_register: register PTP if set
2699 * Description:
2700 * this is the main function to setup the HW in a usable state because the
2701 * dma engine is reset, the core registers are configured (e.g. AXI,
2702 * Checksum features, timers). The DMA is ready to start receiving and
2703 * transmitting.
2704 * Return value:
2705 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2706 * file on failure.
2707 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)2708 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2709 {
2710 struct stmmac_priv *priv = netdev_priv(dev);
2711 u32 rx_cnt = priv->plat->rx_queues_to_use;
2712 u32 tx_cnt = priv->plat->tx_queues_to_use;
2713 u32 chan;
2714 int ret;
2715
2716 /* DMA initialization and SW reset */
2717 ret = stmmac_init_dma_engine(priv);
2718 if (ret < 0) {
2719 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2720 __func__);
2721 return ret;
2722 }
2723
2724 /* Copy the MAC addr into the HW */
2725 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2726
2727 /* PS and related bits will be programmed according to the speed */
2728 if (priv->hw->pcs) {
2729 int speed = priv->plat->mac_port_sel_speed;
2730
2731 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2732 (speed == SPEED_1000)) {
2733 priv->hw->ps = speed;
2734 } else {
2735 dev_warn(priv->device, "invalid port speed\n");
2736 priv->hw->ps = 0;
2737 }
2738 }
2739
2740 /* Initialize the MAC Core */
2741 stmmac_core_init(priv, priv->hw, dev);
2742
2743 /* Initialize MTL*/
2744 stmmac_mtl_configuration(priv);
2745
2746 /* Initialize Safety Features */
2747 stmmac_safety_feat_configuration(priv);
2748
2749 ret = stmmac_rx_ipc(priv, priv->hw);
2750 if (!ret) {
2751 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2752 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2753 priv->hw->rx_csum = 0;
2754 }
2755
2756 /* Enable the MAC Rx/Tx */
2757 stmmac_mac_set(priv, priv->ioaddr, true);
2758
2759 /* Set the HW DMA mode and the COE */
2760 stmmac_dma_operation_mode(priv);
2761
2762 stmmac_mmc_setup(priv);
2763
2764 if (ptp_register) {
2765 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2766 if (ret < 0)
2767 netdev_warn(priv->dev,
2768 "failed to enable PTP reference clock: %pe\n",
2769 ERR_PTR(ret));
2770 }
2771
2772 ret = stmmac_init_ptp(priv);
2773 if (ret == -EOPNOTSUPP)
2774 netdev_warn(priv->dev, "PTP not supported by HW\n");
2775 else if (ret)
2776 netdev_warn(priv->dev, "PTP init failed\n");
2777 else if (ptp_register)
2778 stmmac_ptp_register(priv);
2779
2780 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2781
2782 /* Convert the timer from msec to usec */
2783 if (!priv->tx_lpi_timer)
2784 priv->tx_lpi_timer = eee_timer * 1000;
2785
2786 if (priv->use_riwt) {
2787 if (!priv->rx_riwt)
2788 priv->rx_riwt = DEF_DMA_RIWT;
2789
2790 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2791 }
2792
2793 if (priv->hw->pcs)
2794 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2795
2796 /* set TX and RX rings length */
2797 stmmac_set_rings_length(priv);
2798
2799 /* Enable TSO */
2800 if (priv->tso) {
2801 for (chan = 0; chan < tx_cnt; chan++) {
2802 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2803
2804 /* TSO and TBS cannot co-exist */
2805 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2806 continue;
2807
2808 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2809 }
2810 }
2811
2812 /* Enable Split Header */
2813 if (priv->sph && priv->hw->rx_csum) {
2814 for (chan = 0; chan < rx_cnt; chan++)
2815 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2816 }
2817
2818 /* VLAN Tag Insertion */
2819 if (priv->dma_cap.vlins)
2820 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2821
2822 /* TBS */
2823 for (chan = 0; chan < tx_cnt; chan++) {
2824 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2825 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2826
2827 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2828 }
2829
2830 /* Configure real RX and TX queues */
2831 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2832 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2833
2834 /* Start the ball rolling... */
2835 stmmac_start_all_dma(priv);
2836
2837 return 0;
2838 }
2839
stmmac_hw_teardown(struct net_device * dev)2840 static void stmmac_hw_teardown(struct net_device *dev)
2841 {
2842 struct stmmac_priv *priv = netdev_priv(dev);
2843
2844 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2845 }
2846
2847 /**
2848 * stmmac_open - open entry point of the driver
2849 * @dev : pointer to the device structure.
2850 * Description:
2851 * This function is the open entry point of the driver.
2852 * Return value:
2853 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2854 * file on failure.
2855 */
stmmac_open(struct net_device * dev)2856 static int stmmac_open(struct net_device *dev)
2857 {
2858 struct stmmac_priv *priv = netdev_priv(dev);
2859 int bfsize = 0;
2860 u32 chan;
2861 int ret;
2862
2863 ret = pm_runtime_get_sync(priv->device);
2864 if (ret < 0) {
2865 pm_runtime_put_noidle(priv->device);
2866 return ret;
2867 }
2868
2869 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2870 priv->hw->pcs != STMMAC_PCS_RTBI &&
2871 priv->hw->xpcs == NULL) {
2872 ret = stmmac_init_phy(dev);
2873 if (ret) {
2874 netdev_err(priv->dev,
2875 "%s: Cannot attach to PHY (error: %d)\n",
2876 __func__, ret);
2877 goto init_phy_error;
2878 }
2879 }
2880
2881 /* Extra statistics */
2882 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2883 priv->xstats.threshold = tc;
2884
2885 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2886 if (bfsize < 0)
2887 bfsize = 0;
2888
2889 if (bfsize < BUF_SIZE_16KiB)
2890 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2891
2892 priv->dma_buf_sz = bfsize;
2893 buf_sz = bfsize;
2894
2895 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2896
2897 if (!priv->dma_tx_size)
2898 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2899 if (!priv->dma_rx_size)
2900 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2901
2902 /* Earlier check for TBS */
2903 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2904 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2905 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2906
2907 /* Setup per-TXQ tbs flag before TX descriptor alloc */
2908 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2909 }
2910
2911 ret = alloc_dma_desc_resources(priv);
2912 if (ret < 0) {
2913 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2914 __func__);
2915 goto dma_desc_error;
2916 }
2917
2918 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2919 if (ret < 0) {
2920 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2921 __func__);
2922 goto init_error;
2923 }
2924
2925 if (priv->plat->serdes_powerup) {
2926 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
2927 if (ret < 0) {
2928 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
2929 __func__);
2930 goto init_error;
2931 }
2932 }
2933
2934 ret = stmmac_hw_setup(dev, true);
2935 if (ret < 0) {
2936 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2937 goto init_error;
2938 }
2939
2940 stmmac_init_coalesce(priv);
2941
2942 phylink_start(priv->phylink);
2943 /* We may have called phylink_speed_down before */
2944 phylink_speed_up(priv->phylink);
2945
2946 /* Request the IRQ lines */
2947 ret = request_irq(dev->irq, stmmac_interrupt,
2948 IRQF_SHARED, dev->name, dev);
2949 if (unlikely(ret < 0)) {
2950 netdev_err(priv->dev,
2951 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2952 __func__, dev->irq, ret);
2953 goto irq_error;
2954 }
2955
2956 /* Request the Wake IRQ in case of another line is used for WoL */
2957 if (priv->wol_irq != dev->irq) {
2958 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2959 IRQF_SHARED, dev->name, dev);
2960 if (unlikely(ret < 0)) {
2961 netdev_err(priv->dev,
2962 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2963 __func__, priv->wol_irq, ret);
2964 goto wolirq_error;
2965 }
2966 }
2967
2968 /* Request the IRQ lines */
2969 if (priv->lpi_irq > 0) {
2970 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2971 dev->name, dev);
2972 if (unlikely(ret < 0)) {
2973 netdev_err(priv->dev,
2974 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2975 __func__, priv->lpi_irq, ret);
2976 goto lpiirq_error;
2977 }
2978 }
2979
2980 stmmac_enable_all_queues(priv);
2981 netif_tx_start_all_queues(priv->dev);
2982
2983 return 0;
2984
2985 lpiirq_error:
2986 if (priv->wol_irq != dev->irq)
2987 free_irq(priv->wol_irq, dev);
2988 wolirq_error:
2989 free_irq(dev->irq, dev);
2990 irq_error:
2991 phylink_stop(priv->phylink);
2992
2993 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2994 del_timer_sync(&priv->tx_queue[chan].txtimer);
2995
2996 stmmac_hw_teardown(dev);
2997 init_error:
2998 free_dma_desc_resources(priv);
2999 dma_desc_error:
3000 phylink_disconnect_phy(priv->phylink);
3001 init_phy_error:
3002 pm_runtime_put(priv->device);
3003 return ret;
3004 }
3005
3006 /**
3007 * stmmac_release - close entry point of the driver
3008 * @dev : device pointer.
3009 * Description:
3010 * This is the stop entry point of the driver.
3011 */
stmmac_release(struct net_device * dev)3012 static int stmmac_release(struct net_device *dev)
3013 {
3014 struct stmmac_priv *priv = netdev_priv(dev);
3015 u32 chan;
3016
3017 netif_tx_disable(dev);
3018
3019 if (device_may_wakeup(priv->device))
3020 phylink_speed_down(priv->phylink, false);
3021 /* Stop and disconnect the PHY */
3022 phylink_stop(priv->phylink);
3023 phylink_disconnect_phy(priv->phylink);
3024
3025 stmmac_disable_all_queues(priv);
3026
3027 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3028 del_timer_sync(&priv->tx_queue[chan].txtimer);
3029
3030 /* Free the IRQ lines */
3031 free_irq(dev->irq, dev);
3032 if (priv->wol_irq != dev->irq)
3033 free_irq(priv->wol_irq, dev);
3034 if (priv->lpi_irq > 0)
3035 free_irq(priv->lpi_irq, dev);
3036
3037 if (priv->eee_enabled) {
3038 priv->tx_path_in_lpi_mode = false;
3039 del_timer_sync(&priv->eee_ctrl_timer);
3040 }
3041
3042 /* Stop TX/RX DMA and clear the descriptors */
3043 stmmac_stop_all_dma(priv);
3044
3045 /* Release and free the Rx/Tx resources */
3046 free_dma_desc_resources(priv);
3047
3048 /* Disable the MAC Rx/Tx */
3049 stmmac_mac_set(priv, priv->ioaddr, false);
3050
3051 /* Powerdown Serdes if there is */
3052 if (priv->plat->serdes_powerdown)
3053 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3054
3055 netif_carrier_off(dev);
3056
3057 stmmac_release_ptp(priv);
3058
3059 pm_runtime_put(priv->device);
3060
3061 return 0;
3062 }
3063
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3064 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3065 struct stmmac_tx_queue *tx_q)
3066 {
3067 u16 tag = 0x0, inner_tag = 0x0;
3068 u32 inner_type = 0x0;
3069 struct dma_desc *p;
3070
3071 if (!priv->dma_cap.vlins)
3072 return false;
3073 if (!skb_vlan_tag_present(skb))
3074 return false;
3075 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3076 inner_tag = skb_vlan_tag_get(skb);
3077 inner_type = STMMAC_VLAN_INSERT;
3078 }
3079
3080 tag = skb_vlan_tag_get(skb);
3081
3082 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3083 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3084 else
3085 p = &tx_q->dma_tx[tx_q->cur_tx];
3086
3087 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3088 return false;
3089
3090 stmmac_set_tx_owner(priv, p);
3091 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3092 return true;
3093 }
3094
3095 /**
3096 * stmmac_tso_allocator - close entry point of the driver
3097 * @priv: driver private structure
3098 * @des: buffer start address
3099 * @total_len: total length to fill in descriptors
3100 * @last_segment: condition for the last descriptor
3101 * @queue: TX queue index
3102 * Description:
3103 * This function fills descriptor and request new descriptors according to
3104 * buffer length to fill
3105 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3106 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3107 int total_len, bool last_segment, u32 queue)
3108 {
3109 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3110 struct dma_desc *desc;
3111 u32 buff_size;
3112 int tmp_len;
3113
3114 tmp_len = total_len;
3115
3116 while (tmp_len > 0) {
3117 dma_addr_t curr_addr;
3118
3119 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3120 priv->dma_tx_size);
3121 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3122
3123 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3124 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3125 else
3126 desc = &tx_q->dma_tx[tx_q->cur_tx];
3127
3128 curr_addr = des + (total_len - tmp_len);
3129 if (priv->dma_cap.addr64 <= 32)
3130 desc->des0 = cpu_to_le32(curr_addr);
3131 else
3132 stmmac_set_desc_addr(priv, desc, curr_addr);
3133
3134 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3135 TSO_MAX_BUFF_SIZE : tmp_len;
3136
3137 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3138 0, 1,
3139 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3140 0, 0);
3141
3142 tmp_len -= TSO_MAX_BUFF_SIZE;
3143 }
3144 }
3145
3146 /**
3147 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3148 * @skb : the socket buffer
3149 * @dev : device pointer
3150 * Description: this is the transmit function that is called on TSO frames
3151 * (support available on GMAC4 and newer chips).
3152 * Diagram below show the ring programming in case of TSO frames:
3153 *
3154 * First Descriptor
3155 * --------
3156 * | DES0 |---> buffer1 = L2/L3/L4 header
3157 * | DES1 |---> TCP Payload (can continue on next descr...)
3158 * | DES2 |---> buffer 1 and 2 len
3159 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3160 * --------
3161 * |
3162 * ...
3163 * |
3164 * --------
3165 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3166 * | DES1 | --|
3167 * | DES2 | --> buffer 1 and 2 len
3168 * | DES3 |
3169 * --------
3170 *
3171 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3172 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3173 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3174 {
3175 struct dma_desc *desc, *first, *mss_desc = NULL;
3176 struct stmmac_priv *priv = netdev_priv(dev);
3177 int desc_size, tmp_pay_len = 0, first_tx;
3178 int nfrags = skb_shinfo(skb)->nr_frags;
3179 u32 queue = skb_get_queue_mapping(skb);
3180 unsigned int first_entry, tx_packets;
3181 struct stmmac_tx_queue *tx_q;
3182 bool has_vlan, set_ic;
3183 u8 proto_hdr_len, hdr;
3184 u32 pay_len, mss;
3185 dma_addr_t des;
3186 int i;
3187
3188 tx_q = &priv->tx_queue[queue];
3189 first_tx = tx_q->cur_tx;
3190
3191 /* Compute header lengths */
3192 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3193 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3194 hdr = sizeof(struct udphdr);
3195 } else {
3196 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3197 hdr = tcp_hdrlen(skb);
3198 }
3199
3200 /* Desc availability based on threshold should be enough safe */
3201 if (unlikely(stmmac_tx_avail(priv, queue) <
3202 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3203 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3204 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3205 queue));
3206 /* This is a hard error, log it. */
3207 netdev_err(priv->dev,
3208 "%s: Tx Ring full when queue awake\n",
3209 __func__);
3210 }
3211 return NETDEV_TX_BUSY;
3212 }
3213
3214 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3215
3216 mss = skb_shinfo(skb)->gso_size;
3217
3218 /* set new MSS value if needed */
3219 if (mss != tx_q->mss) {
3220 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3221 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3222 else
3223 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3224
3225 stmmac_set_mss(priv, mss_desc, mss);
3226 tx_q->mss = mss;
3227 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3228 priv->dma_tx_size);
3229 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3230 }
3231
3232 if (netif_msg_tx_queued(priv)) {
3233 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3234 __func__, hdr, proto_hdr_len, pay_len, mss);
3235 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3236 skb->data_len);
3237 }
3238
3239 /* Check if VLAN can be inserted by HW */
3240 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3241
3242 first_entry = tx_q->cur_tx;
3243 WARN_ON(tx_q->tx_skbuff[first_entry]);
3244
3245 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3246 desc = &tx_q->dma_entx[first_entry].basic;
3247 else
3248 desc = &tx_q->dma_tx[first_entry];
3249 first = desc;
3250
3251 if (has_vlan)
3252 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3253
3254 /* first descriptor: fill Headers on Buf1 */
3255 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3256 DMA_TO_DEVICE);
3257 if (dma_mapping_error(priv->device, des))
3258 goto dma_map_err;
3259
3260 if (priv->dma_cap.addr64 <= 32) {
3261 first->des0 = cpu_to_le32(des);
3262
3263 /* Fill start of payload in buff2 of first descriptor */
3264 if (pay_len)
3265 first->des1 = cpu_to_le32(des + proto_hdr_len);
3266
3267 /* If needed take extra descriptors to fill the remaining payload */
3268 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3269 } else {
3270 stmmac_set_desc_addr(priv, first, des);
3271 tmp_pay_len = pay_len;
3272 des += proto_hdr_len;
3273 pay_len = 0;
3274 }
3275
3276 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3277
3278 /* In case two or more DMA transmit descriptors are allocated for this
3279 * non-paged SKB data, the DMA buffer address should be saved to
3280 * tx_q->tx_skbuff_dma[].buf corresponding to the last descriptor,
3281 * and leave the other tx_q->tx_skbuff_dma[].buf as NULL to guarantee
3282 * that stmmac_tx_clean() does not unmap the entire DMA buffer too early
3283 * since the tail areas of the DMA buffer can be accessed by DMA engine
3284 * sooner or later.
3285 * By saving the DMA buffer address to tx_q->tx_skbuff_dma[].buf
3286 * corresponding to the last descriptor, stmmac_tx_clean() will unmap
3287 * this DMA buffer right after the DMA engine completely finishes the
3288 * full buffer transmission.
3289 */
3290 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3291 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_headlen(skb);
3292
3293 /* Prepare fragments */
3294 for (i = 0; i < nfrags; i++) {
3295 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3296
3297 des = skb_frag_dma_map(priv->device, frag, 0,
3298 skb_frag_size(frag),
3299 DMA_TO_DEVICE);
3300 if (dma_mapping_error(priv->device, des))
3301 goto dma_map_err;
3302
3303 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3304 (i == nfrags - 1), queue);
3305
3306 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3307 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3308 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3309 }
3310
3311 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3312
3313 /* Only the last descriptor gets to point to the skb. */
3314 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3315
3316 /* Manage tx mitigation */
3317 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3318 tx_q->tx_count_frames += tx_packets;
3319
3320 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3321 set_ic = true;
3322 else if (!priv->tx_coal_frames)
3323 set_ic = false;
3324 else if (tx_packets > priv->tx_coal_frames)
3325 set_ic = true;
3326 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3327 set_ic = true;
3328 else
3329 set_ic = false;
3330
3331 if (set_ic) {
3332 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3333 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3334 else
3335 desc = &tx_q->dma_tx[tx_q->cur_tx];
3336
3337 tx_q->tx_count_frames = 0;
3338 stmmac_set_tx_ic(priv, desc);
3339 priv->xstats.tx_set_ic_bit++;
3340 }
3341
3342 /* We've used all descriptors we need for this skb, however,
3343 * advance cur_tx so that it references a fresh descriptor.
3344 * ndo_start_xmit will fill this descriptor the next time it's
3345 * called and stmmac_tx_clean may clean up to this descriptor.
3346 */
3347 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3348
3349 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3350 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3351 __func__);
3352 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3353 }
3354
3355 dev->stats.tx_bytes += skb->len;
3356 priv->xstats.tx_tso_frames++;
3357 priv->xstats.tx_tso_nfrags += nfrags;
3358
3359 if (priv->sarc_type)
3360 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3361
3362 skb_tx_timestamp(skb);
3363
3364 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3365 priv->hwts_tx_en)) {
3366 /* declare that device is doing timestamping */
3367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3368 stmmac_enable_tx_timestamp(priv, first);
3369 }
3370
3371 /* Complete the first descriptor before granting the DMA */
3372 stmmac_prepare_tso_tx_desc(priv, first, 1,
3373 proto_hdr_len,
3374 pay_len,
3375 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3376 hdr / 4, (skb->len - proto_hdr_len));
3377
3378 /* If context desc is used to change MSS */
3379 if (mss_desc) {
3380 /* Make sure that first descriptor has been completely
3381 * written, including its own bit. This is because MSS is
3382 * actually before first descriptor, so we need to make
3383 * sure that MSS's own bit is the last thing written.
3384 */
3385 dma_wmb();
3386 stmmac_set_tx_owner(priv, mss_desc);
3387 }
3388
3389 /* The own bit must be the latest setting done when prepare the
3390 * descriptor and then barrier is needed to make sure that
3391 * all is coherent before granting the DMA engine.
3392 */
3393 wmb();
3394
3395 if (netif_msg_pktdata(priv)) {
3396 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3397 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3398 tx_q->cur_tx, first, nfrags);
3399 pr_info(">>> frame to be transmitted: ");
3400 print_pkt(skb->data, skb_headlen(skb));
3401 }
3402
3403 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3404
3405 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3406 desc_size = sizeof(struct dma_edesc);
3407 else
3408 desc_size = sizeof(struct dma_desc);
3409
3410 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3411 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3412 stmmac_tx_timer_arm(priv, queue);
3413
3414 return NETDEV_TX_OK;
3415
3416 dma_map_err:
3417 dev_err(priv->device, "Tx dma map failed\n");
3418 dev_kfree_skb(skb);
3419 priv->dev->stats.tx_dropped++;
3420 return NETDEV_TX_OK;
3421 }
3422
3423 /**
3424 * stmmac_xmit - Tx entry point of the driver
3425 * @skb : the socket buffer
3426 * @dev : device pointer
3427 * Description : this is the tx entry point of the driver.
3428 * It programs the chain or the ring and supports oversized frames
3429 * and SG feature.
3430 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3431 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3432 {
3433 unsigned int first_entry, tx_packets, enh_desc;
3434 struct stmmac_priv *priv = netdev_priv(dev);
3435 unsigned int nopaged_len = skb_headlen(skb);
3436 int i, csum_insertion = 0, is_jumbo = 0;
3437 u32 queue = skb_get_queue_mapping(skb);
3438 int nfrags = skb_shinfo(skb)->nr_frags;
3439 int gso = skb_shinfo(skb)->gso_type;
3440 struct dma_edesc *tbs_desc = NULL;
3441 int entry, desc_size, first_tx;
3442 struct dma_desc *desc, *first;
3443 struct stmmac_tx_queue *tx_q;
3444 bool has_vlan, set_ic;
3445 dma_addr_t des;
3446
3447 tx_q = &priv->tx_queue[queue];
3448 first_tx = tx_q->cur_tx;
3449
3450 if (priv->tx_path_in_lpi_mode)
3451 stmmac_disable_eee_mode(priv);
3452
3453 /* Manage oversized TCP frames for GMAC4 device */
3454 if (skb_is_gso(skb) && priv->tso) {
3455 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3456 return stmmac_tso_xmit(skb, dev);
3457 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3458 return stmmac_tso_xmit(skb, dev);
3459 }
3460
3461 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3462 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3463 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3464 queue));
3465 /* This is a hard error, log it. */
3466 netdev_err(priv->dev,
3467 "%s: Tx Ring full when queue awake\n",
3468 __func__);
3469 }
3470 return NETDEV_TX_BUSY;
3471 }
3472
3473 /* Check if VLAN can be inserted by HW */
3474 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3475
3476 entry = tx_q->cur_tx;
3477 first_entry = entry;
3478 WARN_ON(tx_q->tx_skbuff[first_entry]);
3479
3480 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3481
3482 if (likely(priv->extend_desc))
3483 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3484 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3485 desc = &tx_q->dma_entx[entry].basic;
3486 else
3487 desc = tx_q->dma_tx + entry;
3488
3489 first = desc;
3490
3491 if (has_vlan)
3492 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3493
3494 enh_desc = priv->plat->enh_desc;
3495 /* To program the descriptors according to the size of the frame */
3496 if (enh_desc)
3497 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3498
3499 if (unlikely(is_jumbo)) {
3500 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3501 if (unlikely(entry < 0) && (entry != -EINVAL))
3502 goto dma_map_err;
3503 }
3504
3505 for (i = 0; i < nfrags; i++) {
3506 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3507 int len = skb_frag_size(frag);
3508 bool last_segment = (i == (nfrags - 1));
3509
3510 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3511 WARN_ON(tx_q->tx_skbuff[entry]);
3512
3513 if (likely(priv->extend_desc))
3514 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3515 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3516 desc = &tx_q->dma_entx[entry].basic;
3517 else
3518 desc = tx_q->dma_tx + entry;
3519
3520 des = skb_frag_dma_map(priv->device, frag, 0, len,
3521 DMA_TO_DEVICE);
3522 if (dma_mapping_error(priv->device, des))
3523 goto dma_map_err; /* should reuse desc w/o issues */
3524
3525 tx_q->tx_skbuff_dma[entry].buf = des;
3526
3527 stmmac_set_desc_addr(priv, desc, des);
3528
3529 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3530 tx_q->tx_skbuff_dma[entry].len = len;
3531 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3532
3533 /* Prepare the descriptor and set the own bit too */
3534 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3535 priv->mode, 1, last_segment, skb->len);
3536 }
3537
3538 /* Only the last descriptor gets to point to the skb. */
3539 tx_q->tx_skbuff[entry] = skb;
3540
3541 /* According to the coalesce parameter the IC bit for the latest
3542 * segment is reset and the timer re-started to clean the tx status.
3543 * This approach takes care about the fragments: desc is the first
3544 * element in case of no SG.
3545 */
3546 tx_packets = (entry + 1) - first_tx;
3547 tx_q->tx_count_frames += tx_packets;
3548
3549 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3550 set_ic = true;
3551 else if (!priv->tx_coal_frames)
3552 set_ic = false;
3553 else if (tx_packets > priv->tx_coal_frames)
3554 set_ic = true;
3555 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3556 set_ic = true;
3557 else
3558 set_ic = false;
3559
3560 if (set_ic) {
3561 if (likely(priv->extend_desc))
3562 desc = &tx_q->dma_etx[entry].basic;
3563 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3564 desc = &tx_q->dma_entx[entry].basic;
3565 else
3566 desc = &tx_q->dma_tx[entry];
3567
3568 tx_q->tx_count_frames = 0;
3569 stmmac_set_tx_ic(priv, desc);
3570 priv->xstats.tx_set_ic_bit++;
3571 }
3572
3573 /* We've used all descriptors we need for this skb, however,
3574 * advance cur_tx so that it references a fresh descriptor.
3575 * ndo_start_xmit will fill this descriptor the next time it's
3576 * called and stmmac_tx_clean may clean up to this descriptor.
3577 */
3578 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3579 tx_q->cur_tx = entry;
3580
3581 if (netif_msg_pktdata(priv)) {
3582 netdev_dbg(priv->dev,
3583 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3584 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3585 entry, first, nfrags);
3586
3587 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3588 print_pkt(skb->data, skb->len);
3589 }
3590
3591 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3592 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3593 __func__);
3594 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3595 }
3596
3597 dev->stats.tx_bytes += skb->len;
3598
3599 if (priv->sarc_type)
3600 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3601
3602 skb_tx_timestamp(skb);
3603
3604 /* Ready to fill the first descriptor and set the OWN bit w/o any
3605 * problems because all the descriptors are actually ready to be
3606 * passed to the DMA engine.
3607 */
3608 if (likely(!is_jumbo)) {
3609 bool last_segment = (nfrags == 0);
3610
3611 des = dma_map_single(priv->device, skb->data,
3612 nopaged_len, DMA_TO_DEVICE);
3613 if (dma_mapping_error(priv->device, des))
3614 goto dma_map_err;
3615
3616 tx_q->tx_skbuff_dma[first_entry].buf = des;
3617
3618 stmmac_set_desc_addr(priv, first, des);
3619
3620 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3621 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3622
3623 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3624 priv->hwts_tx_en)) {
3625 /* declare that device is doing timestamping */
3626 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3627 stmmac_enable_tx_timestamp(priv, first);
3628 }
3629
3630 /* Prepare the first descriptor setting the OWN bit too */
3631 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3632 csum_insertion, priv->mode, 0, last_segment,
3633 skb->len);
3634 }
3635
3636 if (tx_q->tbs & STMMAC_TBS_EN) {
3637 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3638
3639 tbs_desc = &tx_q->dma_entx[first_entry];
3640 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3641 }
3642
3643 stmmac_set_tx_owner(priv, first);
3644
3645 /* The own bit must be the latest setting done when prepare the
3646 * descriptor and then barrier is needed to make sure that
3647 * all is coherent before granting the DMA engine.
3648 */
3649 wmb();
3650
3651 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3652
3653 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3654
3655 if (likely(priv->extend_desc))
3656 desc_size = sizeof(struct dma_extended_desc);
3657 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3658 desc_size = sizeof(struct dma_edesc);
3659 else
3660 desc_size = sizeof(struct dma_desc);
3661
3662 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3663 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3664 stmmac_tx_timer_arm(priv, queue);
3665
3666 return NETDEV_TX_OK;
3667
3668 dma_map_err:
3669 netdev_err(priv->dev, "Tx DMA map failed\n");
3670 dev_kfree_skb(skb);
3671 priv->dev->stats.tx_dropped++;
3672 return NETDEV_TX_OK;
3673 }
3674
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3675 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3676 {
3677 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
3678 __be16 vlan_proto = veth->h_vlan_proto;
3679 u16 vlanid;
3680
3681 if ((vlan_proto == htons(ETH_P_8021Q) &&
3682 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3683 (vlan_proto == htons(ETH_P_8021AD) &&
3684 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3685 /* pop the vlan tag */
3686 vlanid = ntohs(veth->h_vlan_TCI);
3687 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3688 skb_pull(skb, VLAN_HLEN);
3689 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3690 }
3691 }
3692
3693 /**
3694 * stmmac_rx_refill - refill used skb preallocated buffers
3695 * @priv: driver private structure
3696 * @queue: RX queue index
3697 * Description : this is to reallocate the skb for the reception process
3698 * that is based on zero-copy.
3699 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3700 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3701 {
3702 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3703 int len, dirty = stmmac_rx_dirty(priv, queue);
3704 unsigned int entry = rx_q->dirty_rx;
3705
3706 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3707
3708 while (dirty-- > 0) {
3709 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3710 struct dma_desc *p;
3711 bool use_rx_wd;
3712
3713 if (priv->extend_desc)
3714 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3715 else
3716 p = rx_q->dma_rx + entry;
3717
3718 if (!buf->page) {
3719 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3720 if (!buf->page)
3721 break;
3722 }
3723
3724 if (priv->sph && !buf->sec_page) {
3725 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3726 if (!buf->sec_page)
3727 break;
3728
3729 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3730
3731 dma_sync_single_for_device(priv->device, buf->sec_addr,
3732 len, DMA_FROM_DEVICE);
3733 }
3734
3735 buf->addr = page_pool_get_dma_addr(buf->page);
3736
3737 /* Sync whole allocation to device. This will invalidate old
3738 * data.
3739 */
3740 dma_sync_single_for_device(priv->device, buf->addr, len,
3741 DMA_FROM_DEVICE);
3742
3743 stmmac_set_desc_addr(priv, p, buf->addr);
3744 if (priv->sph)
3745 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3746 else
3747 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3748 stmmac_refill_desc3(priv, rx_q, p);
3749
3750 rx_q->rx_count_frames++;
3751 rx_q->rx_count_frames += priv->rx_coal_frames;
3752 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3753 rx_q->rx_count_frames = 0;
3754
3755 use_rx_wd = !priv->rx_coal_frames;
3756 use_rx_wd |= rx_q->rx_count_frames > 0;
3757 if (!priv->use_riwt)
3758 use_rx_wd = false;
3759
3760 dma_wmb();
3761 stmmac_set_rx_owner(priv, p, use_rx_wd);
3762
3763 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3764 }
3765 rx_q->dirty_rx = entry;
3766 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3767 (rx_q->dirty_rx * sizeof(struct dma_desc));
3768 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3769 }
3770
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3771 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3772 struct dma_desc *p,
3773 int status, unsigned int len)
3774 {
3775 unsigned int plen = 0, hlen = 0;
3776 int coe = priv->hw->rx_csum;
3777
3778 /* Not first descriptor, buffer is always zero */
3779 if (priv->sph && len)
3780 return 0;
3781
3782 /* First descriptor, get split header length */
3783 stmmac_get_rx_header_len(priv, p, &hlen);
3784 if (priv->sph && hlen) {
3785 priv->xstats.rx_split_hdr_pkt_n++;
3786 return hlen;
3787 }
3788
3789 /* First descriptor, not last descriptor and not split header */
3790 if (status & rx_not_ls)
3791 return priv->dma_buf_sz;
3792
3793 plen = stmmac_get_rx_frame_len(priv, p, coe);
3794
3795 /* First descriptor and last descriptor and not split header */
3796 return min_t(unsigned int, priv->dma_buf_sz, plen);
3797 }
3798
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3799 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3800 struct dma_desc *p,
3801 int status, unsigned int len)
3802 {
3803 int coe = priv->hw->rx_csum;
3804 unsigned int plen = 0;
3805
3806 /* Not split header, buffer is not available */
3807 if (!priv->sph)
3808 return 0;
3809
3810 /* Not last descriptor */
3811 if (status & rx_not_ls)
3812 return priv->dma_buf_sz;
3813
3814 plen = stmmac_get_rx_frame_len(priv, p, coe);
3815
3816 /* Last descriptor */
3817 return plen - len;
3818 }
3819
3820 /**
3821 * stmmac_rx - manage the receive process
3822 * @priv: driver private structure
3823 * @limit: napi bugget
3824 * @queue: RX queue index.
3825 * Description : this the function called by the napi poll method.
3826 * It gets all the frames inside the ring.
3827 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3828 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3829 {
3830 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3831 struct stmmac_channel *ch = &priv->channel[queue];
3832 unsigned int count = 0, error = 0, len = 0;
3833 int status = 0, coe = priv->hw->rx_csum;
3834 unsigned int next_entry = rx_q->cur_rx;
3835 unsigned int desc_size;
3836 struct sk_buff *skb = NULL;
3837
3838 if (netif_msg_rx_status(priv)) {
3839 void *rx_head;
3840
3841 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3842 if (priv->extend_desc) {
3843 rx_head = (void *)rx_q->dma_erx;
3844 desc_size = sizeof(struct dma_extended_desc);
3845 } else {
3846 rx_head = (void *)rx_q->dma_rx;
3847 desc_size = sizeof(struct dma_desc);
3848 }
3849
3850 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3851 rx_q->dma_rx_phy, desc_size);
3852 }
3853 while (count < limit) {
3854 unsigned int buf1_len = 0, buf2_len = 0;
3855 enum pkt_hash_types hash_type;
3856 struct stmmac_rx_buffer *buf;
3857 struct dma_desc *np, *p;
3858 int entry;
3859 u32 hash;
3860
3861 if (!count && rx_q->state_saved) {
3862 skb = rx_q->state.skb;
3863 error = rx_q->state.error;
3864 len = rx_q->state.len;
3865 } else {
3866 rx_q->state_saved = false;
3867 skb = NULL;
3868 error = 0;
3869 len = 0;
3870 }
3871
3872 read_again:
3873 if (count >= limit)
3874 break;
3875
3876 buf1_len = 0;
3877 buf2_len = 0;
3878 entry = next_entry;
3879 buf = &rx_q->buf_pool[entry];
3880
3881 if (priv->extend_desc)
3882 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3883 else
3884 p = rx_q->dma_rx + entry;
3885
3886 /* read the status of the incoming frame */
3887 status = stmmac_rx_status(priv, &priv->dev->stats,
3888 &priv->xstats, p);
3889 /* check if managed by the DMA otherwise go ahead */
3890 if (unlikely(status & dma_own))
3891 break;
3892
3893 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3894 priv->dma_rx_size);
3895 next_entry = rx_q->cur_rx;
3896
3897 if (priv->extend_desc)
3898 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3899 else
3900 np = rx_q->dma_rx + next_entry;
3901
3902 prefetch(np);
3903
3904 if (priv->extend_desc)
3905 stmmac_rx_extended_status(priv, &priv->dev->stats,
3906 &priv->xstats, rx_q->dma_erx + entry);
3907 if (unlikely(status == discard_frame)) {
3908 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3909 buf->page = NULL;
3910 error = 1;
3911 if (!priv->hwts_rx_en)
3912 priv->dev->stats.rx_errors++;
3913 }
3914
3915 if (unlikely(error && (status & rx_not_ls)))
3916 goto read_again;
3917 if (unlikely(error)) {
3918 dev_kfree_skb(skb);
3919 skb = NULL;
3920 count++;
3921 continue;
3922 }
3923
3924 /* Buffer is good. Go on. */
3925
3926 prefetch(page_address(buf->page));
3927 if (buf->sec_page)
3928 prefetch(page_address(buf->sec_page));
3929
3930 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3931 len += buf1_len;
3932 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3933 len += buf2_len;
3934
3935 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3936 * Type frames (LLC/LLC-SNAP)
3937 *
3938 * llc_snap is never checked in GMAC >= 4, so this ACS
3939 * feature is always disabled and packets need to be
3940 * stripped manually.
3941 */
3942 if (likely(!(status & rx_not_ls)) &&
3943 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3944 unlikely(status != llc_snap))) {
3945 if (buf2_len)
3946 buf2_len -= ETH_FCS_LEN;
3947 else
3948 buf1_len -= ETH_FCS_LEN;
3949
3950 len -= ETH_FCS_LEN;
3951 }
3952
3953 if (!skb) {
3954 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3955 if (!skb) {
3956 priv->dev->stats.rx_dropped++;
3957 count++;
3958 goto drain_data;
3959 }
3960
3961 dma_sync_single_for_cpu(priv->device, buf->addr,
3962 buf1_len, DMA_FROM_DEVICE);
3963 skb_copy_to_linear_data(skb, page_address(buf->page),
3964 buf1_len);
3965 skb_put(skb, buf1_len);
3966
3967 /* Data payload copied into SKB, page ready for recycle */
3968 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3969 buf->page = NULL;
3970 } else if (buf1_len) {
3971 dma_sync_single_for_cpu(priv->device, buf->addr,
3972 buf1_len, DMA_FROM_DEVICE);
3973 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3974 buf->page, 0, buf1_len,
3975 priv->dma_buf_sz);
3976
3977 /* Data payload appended into SKB */
3978 page_pool_release_page(rx_q->page_pool, buf->page);
3979 buf->page = NULL;
3980 }
3981
3982 if (buf2_len) {
3983 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3984 buf2_len, DMA_FROM_DEVICE);
3985 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3986 buf->sec_page, 0, buf2_len,
3987 priv->dma_buf_sz);
3988
3989 /* Data payload appended into SKB */
3990 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3991 buf->sec_page = NULL;
3992 }
3993
3994 drain_data:
3995 if (likely(status & rx_not_ls))
3996 goto read_again;
3997 if (!skb)
3998 continue;
3999
4000 /* Got entire packet into SKB. Finish it. */
4001
4002 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4003 stmmac_rx_vlan(priv->dev, skb);
4004 skb->protocol = eth_type_trans(skb, priv->dev);
4005
4006 if (unlikely(!coe))
4007 skb_checksum_none_assert(skb);
4008 else
4009 skb->ip_summed = CHECKSUM_UNNECESSARY;
4010
4011 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4012 skb_set_hash(skb, hash, hash_type);
4013
4014 skb_record_rx_queue(skb, queue);
4015 napi_gro_receive(&ch->rx_napi, skb);
4016 skb = NULL;
4017
4018 priv->dev->stats.rx_packets++;
4019 priv->dev->stats.rx_bytes += len;
4020 count++;
4021 }
4022
4023 if (status & rx_not_ls || skb) {
4024 rx_q->state_saved = true;
4025 rx_q->state.skb = skb;
4026 rx_q->state.error = error;
4027 rx_q->state.len = len;
4028 }
4029
4030 stmmac_rx_refill(priv, queue);
4031
4032 priv->xstats.rx_pkt_n += count;
4033
4034 return count;
4035 }
4036
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)4037 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4038 {
4039 struct stmmac_channel *ch =
4040 container_of(napi, struct stmmac_channel, rx_napi);
4041 struct stmmac_priv *priv = ch->priv_data;
4042 u32 chan = ch->index;
4043 int work_done;
4044
4045 priv->xstats.napi_poll++;
4046
4047 work_done = stmmac_rx(priv, budget, chan);
4048 if (work_done < budget && napi_complete_done(napi, work_done)) {
4049 unsigned long flags;
4050
4051 spin_lock_irqsave(&ch->lock, flags);
4052 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4053 spin_unlock_irqrestore(&ch->lock, flags);
4054 }
4055
4056 return work_done;
4057 }
4058
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)4059 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4060 {
4061 struct stmmac_channel *ch =
4062 container_of(napi, struct stmmac_channel, tx_napi);
4063 struct stmmac_priv *priv = ch->priv_data;
4064 u32 chan = ch->index;
4065 int work_done;
4066
4067 priv->xstats.napi_poll++;
4068
4069 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4070 work_done = min(work_done, budget);
4071
4072 if (work_done < budget && napi_complete_done(napi, work_done)) {
4073 unsigned long flags;
4074
4075 spin_lock_irqsave(&ch->lock, flags);
4076 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4077 spin_unlock_irqrestore(&ch->lock, flags);
4078 }
4079
4080 return work_done;
4081 }
4082
4083 /**
4084 * stmmac_tx_timeout
4085 * @dev : Pointer to net device structure
4086 * @txqueue: the index of the hanging transmit queue
4087 * Description: this function is called when a packet transmission fails to
4088 * complete within a reasonable time. The driver will mark the error in the
4089 * netdev structure and arrange for the device to be reset to a sane state
4090 * in order to transmit a new packet.
4091 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)4092 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4093 {
4094 struct stmmac_priv *priv = netdev_priv(dev);
4095
4096 stmmac_global_err(priv);
4097 }
4098
4099 /**
4100 * stmmac_set_rx_mode - entry point for multicast addressing
4101 * @dev : pointer to the device structure
4102 * Description:
4103 * This function is a driver entry point which gets called by the kernel
4104 * whenever multicast addresses must be enabled/disabled.
4105 * Return value:
4106 * void.
4107 */
stmmac_set_rx_mode(struct net_device * dev)4108 static void stmmac_set_rx_mode(struct net_device *dev)
4109 {
4110 struct stmmac_priv *priv = netdev_priv(dev);
4111
4112 stmmac_set_filter(priv, priv->hw, dev);
4113 }
4114
4115 /**
4116 * stmmac_change_mtu - entry point to change MTU size for the device.
4117 * @dev : device pointer.
4118 * @new_mtu : the new MTU size for the device.
4119 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
4120 * to drive packet transmission. Ethernet has an MTU of 1500 octets
4121 * (ETH_DATA_LEN). This value can be changed with ifconfig.
4122 * Return value:
4123 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4124 * file on failure.
4125 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4126 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4127 {
4128 struct stmmac_priv *priv = netdev_priv(dev);
4129 int txfifosz = priv->plat->tx_fifo_size;
4130 const int mtu = new_mtu;
4131
4132 if (txfifosz == 0)
4133 txfifosz = priv->dma_cap.tx_fifo_size;
4134
4135 txfifosz /= priv->plat->tx_queues_to_use;
4136
4137 if (netif_running(dev)) {
4138 netdev_err(priv->dev, "must be stopped to change its MTU\n");
4139 return -EBUSY;
4140 }
4141
4142 new_mtu = STMMAC_ALIGN(new_mtu);
4143
4144 /* If condition true, FIFO is too small or MTU too large */
4145 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4146 return -EINVAL;
4147
4148 dev->mtu = mtu;
4149
4150 netdev_update_features(dev);
4151
4152 return 0;
4153 }
4154
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4155 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4156 netdev_features_t features)
4157 {
4158 struct stmmac_priv *priv = netdev_priv(dev);
4159
4160 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4161 features &= ~NETIF_F_RXCSUM;
4162
4163 if (!priv->plat->tx_coe)
4164 features &= ~NETIF_F_CSUM_MASK;
4165
4166 /* Some GMAC devices have a bugged Jumbo frame support that
4167 * needs to have the Tx COE disabled for oversized frames
4168 * (due to limited buffer sizes). In this case we disable
4169 * the TX csum insertion in the TDES and not use SF.
4170 */
4171 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4172 features &= ~NETIF_F_CSUM_MASK;
4173
4174 /* Disable tso if asked by ethtool */
4175 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4176 if (features & NETIF_F_TSO)
4177 priv->tso = true;
4178 else
4179 priv->tso = false;
4180 }
4181
4182 return features;
4183 }
4184
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4185 static int stmmac_set_features(struct net_device *netdev,
4186 netdev_features_t features)
4187 {
4188 struct stmmac_priv *priv = netdev_priv(netdev);
4189 bool sph_en;
4190 u32 chan;
4191
4192 /* Keep the COE Type in case of csum is supporting */
4193 if (features & NETIF_F_RXCSUM)
4194 priv->hw->rx_csum = priv->plat->rx_coe;
4195 else
4196 priv->hw->rx_csum = 0;
4197 /* No check needed because rx_coe has been set before and it will be
4198 * fixed in case of issue.
4199 */
4200 stmmac_rx_ipc(priv, priv->hw);
4201
4202 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4203 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4204 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4205
4206 return 0;
4207 }
4208
4209 /**
4210 * stmmac_interrupt - main ISR
4211 * @irq: interrupt number.
4212 * @dev_id: to pass the net device pointer (must be valid).
4213 * Description: this is the main driver interrupt service routine.
4214 * It can call:
4215 * o DMA service routine (to manage incoming frame reception and transmission
4216 * status)
4217 * o Core interrupts to manage: remote wake-up, management counter, LPI
4218 * interrupts.
4219 */
stmmac_interrupt(int irq,void * dev_id)4220 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4221 {
4222 struct net_device *dev = (struct net_device *)dev_id;
4223 struct stmmac_priv *priv = netdev_priv(dev);
4224 u32 rx_cnt = priv->plat->rx_queues_to_use;
4225 u32 tx_cnt = priv->plat->tx_queues_to_use;
4226 u32 queues_count;
4227 u32 queue;
4228 bool xmac;
4229
4230 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4231 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4232
4233 if (priv->irq_wake)
4234 pm_wakeup_event(priv->device, 0);
4235
4236 /* Check if adapter is up */
4237 if (test_bit(STMMAC_DOWN, &priv->state))
4238 return IRQ_HANDLED;
4239 /* Check if a fatal error happened */
4240 if (stmmac_safety_feat_interrupt(priv))
4241 return IRQ_HANDLED;
4242
4243 /* To handle GMAC own interrupts */
4244 if ((priv->plat->has_gmac) || xmac) {
4245 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4246
4247 if (unlikely(status)) {
4248 /* For LPI we need to save the tx status */
4249 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4250 priv->tx_path_in_lpi_mode = true;
4251 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4252 priv->tx_path_in_lpi_mode = false;
4253 }
4254
4255 for (queue = 0; queue < queues_count; queue++) {
4256 status = stmmac_host_mtl_irq_status(priv, priv->hw,
4257 queue);
4258 }
4259
4260 /* PCS link status */
4261 if (priv->hw->pcs) {
4262 if (priv->xstats.pcs_link)
4263 netif_carrier_on(dev);
4264 else
4265 netif_carrier_off(dev);
4266 }
4267 }
4268
4269 /* To handle DMA interrupts */
4270 stmmac_dma_interrupt(priv);
4271
4272 return IRQ_HANDLED;
4273 }
4274
4275 #ifdef CONFIG_NET_POLL_CONTROLLER
4276 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4277 * to allow network I/O with interrupts disabled.
4278 */
stmmac_poll_controller(struct net_device * dev)4279 static void stmmac_poll_controller(struct net_device *dev)
4280 {
4281 disable_irq(dev->irq);
4282 stmmac_interrupt(dev->irq, dev);
4283 enable_irq(dev->irq);
4284 }
4285 #endif
4286
4287 /**
4288 * stmmac_ioctl - Entry point for the Ioctl
4289 * @dev: Device pointer.
4290 * @rq: An IOCTL specefic structure, that can contain a pointer to
4291 * a proprietary structure used to pass information to the driver.
4292 * @cmd: IOCTL command
4293 * Description:
4294 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4295 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4296 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4297 {
4298 struct stmmac_priv *priv = netdev_priv (dev);
4299 int ret = -EOPNOTSUPP;
4300
4301 if (!netif_running(dev))
4302 return -EINVAL;
4303
4304 switch (cmd) {
4305 case SIOCGMIIPHY:
4306 case SIOCGMIIREG:
4307 case SIOCSMIIREG:
4308 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4309 break;
4310 case SIOCSHWTSTAMP:
4311 ret = stmmac_hwtstamp_set(dev, rq);
4312 break;
4313 case SIOCGHWTSTAMP:
4314 ret = stmmac_hwtstamp_get(dev, rq);
4315 break;
4316 default:
4317 break;
4318 }
4319
4320 return ret;
4321 }
4322
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4323 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4324 void *cb_priv)
4325 {
4326 struct stmmac_priv *priv = cb_priv;
4327 int ret = -EOPNOTSUPP;
4328
4329 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4330 return ret;
4331
4332 stmmac_disable_all_queues(priv);
4333
4334 switch (type) {
4335 case TC_SETUP_CLSU32:
4336 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4337 break;
4338 case TC_SETUP_CLSFLOWER:
4339 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4340 break;
4341 default:
4342 break;
4343 }
4344
4345 stmmac_enable_all_queues(priv);
4346 return ret;
4347 }
4348
4349 static LIST_HEAD(stmmac_block_cb_list);
4350
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4351 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4352 void *type_data)
4353 {
4354 struct stmmac_priv *priv = netdev_priv(ndev);
4355
4356 switch (type) {
4357 case TC_SETUP_BLOCK:
4358 return flow_block_cb_setup_simple(type_data,
4359 &stmmac_block_cb_list,
4360 stmmac_setup_tc_block_cb,
4361 priv, priv, true);
4362 case TC_SETUP_QDISC_CBS:
4363 return stmmac_tc_setup_cbs(priv, priv, type_data);
4364 case TC_SETUP_QDISC_TAPRIO:
4365 return stmmac_tc_setup_taprio(priv, priv, type_data);
4366 case TC_SETUP_QDISC_ETF:
4367 return stmmac_tc_setup_etf(priv, priv, type_data);
4368 default:
4369 return -EOPNOTSUPP;
4370 }
4371 }
4372
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4373 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4374 struct net_device *sb_dev)
4375 {
4376 int gso = skb_shinfo(skb)->gso_type;
4377
4378 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4379 /*
4380 * There is no way to determine the number of TSO/USO
4381 * capable Queues. Let's use always the Queue 0
4382 * because if TSO/USO is supported then at least this
4383 * one will be capable.
4384 */
4385 return 0;
4386 }
4387
4388 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4389 }
4390
stmmac_set_mac_address(struct net_device * ndev,void * addr)4391 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4392 {
4393 struct stmmac_priv *priv = netdev_priv(ndev);
4394 int ret = 0;
4395
4396 ret = pm_runtime_get_sync(priv->device);
4397 if (ret < 0) {
4398 pm_runtime_put_noidle(priv->device);
4399 return ret;
4400 }
4401
4402 ret = eth_mac_addr(ndev, addr);
4403 if (ret)
4404 goto set_mac_error;
4405
4406 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4407
4408 set_mac_error:
4409 pm_runtime_put(priv->device);
4410
4411 return ret;
4412 }
4413
4414 #ifdef CONFIG_DEBUG_FS
4415 static struct dentry *stmmac_fs_dir;
4416
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4417 static void sysfs_display_ring(void *head, int size, int extend_desc,
4418 struct seq_file *seq, dma_addr_t dma_phy_addr)
4419 {
4420 int i;
4421 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4422 struct dma_desc *p = (struct dma_desc *)head;
4423 dma_addr_t dma_addr;
4424
4425 for (i = 0; i < size; i++) {
4426 if (extend_desc) {
4427 dma_addr = dma_phy_addr + i * sizeof(*ep);
4428 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4429 i, &dma_addr,
4430 le32_to_cpu(ep->basic.des0),
4431 le32_to_cpu(ep->basic.des1),
4432 le32_to_cpu(ep->basic.des2),
4433 le32_to_cpu(ep->basic.des3));
4434 ep++;
4435 } else {
4436 dma_addr = dma_phy_addr + i * sizeof(*p);
4437 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4438 i, &dma_addr,
4439 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4440 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4441 p++;
4442 }
4443 seq_printf(seq, "\n");
4444 }
4445 }
4446
stmmac_rings_status_show(struct seq_file * seq,void * v)4447 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4448 {
4449 struct net_device *dev = seq->private;
4450 struct stmmac_priv *priv = netdev_priv(dev);
4451 u32 rx_count = priv->plat->rx_queues_to_use;
4452 u32 tx_count = priv->plat->tx_queues_to_use;
4453 u32 queue;
4454
4455 if ((dev->flags & IFF_UP) == 0)
4456 return 0;
4457
4458 for (queue = 0; queue < rx_count; queue++) {
4459 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4460
4461 seq_printf(seq, "RX Queue %d:\n", queue);
4462
4463 if (priv->extend_desc) {
4464 seq_printf(seq, "Extended descriptor ring:\n");
4465 sysfs_display_ring((void *)rx_q->dma_erx,
4466 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4467 } else {
4468 seq_printf(seq, "Descriptor ring:\n");
4469 sysfs_display_ring((void *)rx_q->dma_rx,
4470 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4471 }
4472 }
4473
4474 for (queue = 0; queue < tx_count; queue++) {
4475 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4476
4477 seq_printf(seq, "TX Queue %d:\n", queue);
4478
4479 if (priv->extend_desc) {
4480 seq_printf(seq, "Extended descriptor ring:\n");
4481 sysfs_display_ring((void *)tx_q->dma_etx,
4482 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4483 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4484 seq_printf(seq, "Descriptor ring:\n");
4485 sysfs_display_ring((void *)tx_q->dma_tx,
4486 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4487 }
4488 }
4489
4490 return 0;
4491 }
4492 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4493
stmmac_dma_cap_show(struct seq_file * seq,void * v)4494 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4495 {
4496 struct net_device *dev = seq->private;
4497 struct stmmac_priv *priv = netdev_priv(dev);
4498
4499 if (!priv->hw_cap_support) {
4500 seq_printf(seq, "DMA HW features not supported\n");
4501 return 0;
4502 }
4503
4504 seq_printf(seq, "==============================\n");
4505 seq_printf(seq, "\tDMA HW features\n");
4506 seq_printf(seq, "==============================\n");
4507
4508 seq_printf(seq, "\t10/100 Mbps: %s\n",
4509 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4510 seq_printf(seq, "\t1000 Mbps: %s\n",
4511 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4512 seq_printf(seq, "\tHalf duplex: %s\n",
4513 (priv->dma_cap.half_duplex) ? "Y" : "N");
4514 seq_printf(seq, "\tHash Filter: %s\n",
4515 (priv->dma_cap.hash_filter) ? "Y" : "N");
4516 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4517 (priv->dma_cap.multi_addr) ? "Y" : "N");
4518 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4519 (priv->dma_cap.pcs) ? "Y" : "N");
4520 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4521 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4522 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4523 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4524 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4525 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4526 seq_printf(seq, "\tRMON module: %s\n",
4527 (priv->dma_cap.rmon) ? "Y" : "N");
4528 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4529 (priv->dma_cap.time_stamp) ? "Y" : "N");
4530 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4531 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4532 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4533 (priv->dma_cap.eee) ? "Y" : "N");
4534 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4535 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4536 (priv->dma_cap.tx_coe) ? "Y" : "N");
4537 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4538 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4539 (priv->dma_cap.rx_coe) ? "Y" : "N");
4540 } else {
4541 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4542 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4543 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4544 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4545 }
4546 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4547 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4548 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4549 priv->dma_cap.number_rx_channel);
4550 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4551 priv->dma_cap.number_tx_channel);
4552 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4553 priv->dma_cap.number_rx_queues);
4554 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4555 priv->dma_cap.number_tx_queues);
4556 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4557 (priv->dma_cap.enh_desc) ? "Y" : "N");
4558 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4559 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4560 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4561 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4562 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4563 priv->dma_cap.pps_out_num);
4564 seq_printf(seq, "\tSafety Features: %s\n",
4565 priv->dma_cap.asp ? "Y" : "N");
4566 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4567 priv->dma_cap.frpsel ? "Y" : "N");
4568 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4569 priv->dma_cap.addr64);
4570 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4571 priv->dma_cap.rssen ? "Y" : "N");
4572 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4573 priv->dma_cap.vlhash ? "Y" : "N");
4574 seq_printf(seq, "\tSplit Header: %s\n",
4575 priv->dma_cap.sphen ? "Y" : "N");
4576 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4577 priv->dma_cap.vlins ? "Y" : "N");
4578 seq_printf(seq, "\tDouble VLAN: %s\n",
4579 priv->dma_cap.dvlan ? "Y" : "N");
4580 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4581 priv->dma_cap.l3l4fnum);
4582 seq_printf(seq, "\tARP Offloading: %s\n",
4583 priv->dma_cap.arpoffsel ? "Y" : "N");
4584 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4585 priv->dma_cap.estsel ? "Y" : "N");
4586 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4587 priv->dma_cap.fpesel ? "Y" : "N");
4588 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4589 priv->dma_cap.tbssel ? "Y" : "N");
4590 return 0;
4591 }
4592 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4593
4594 /* Use network device events to rename debugfs file entries.
4595 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4596 static int stmmac_device_event(struct notifier_block *unused,
4597 unsigned long event, void *ptr)
4598 {
4599 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4600 struct stmmac_priv *priv = netdev_priv(dev);
4601
4602 if (dev->netdev_ops != &stmmac_netdev_ops)
4603 goto done;
4604
4605 switch (event) {
4606 case NETDEV_CHANGENAME:
4607 if (priv->dbgfs_dir)
4608 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4609 priv->dbgfs_dir,
4610 stmmac_fs_dir,
4611 dev->name);
4612 break;
4613 }
4614 done:
4615 return NOTIFY_DONE;
4616 }
4617
4618 static struct notifier_block stmmac_notifier = {
4619 .notifier_call = stmmac_device_event,
4620 };
4621
stmmac_init_fs(struct net_device * dev)4622 static void stmmac_init_fs(struct net_device *dev)
4623 {
4624 struct stmmac_priv *priv = netdev_priv(dev);
4625
4626 rtnl_lock();
4627
4628 /* Create per netdev entries */
4629 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4630
4631 /* Entry to report DMA RX/TX rings */
4632 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4633 &stmmac_rings_status_fops);
4634
4635 /* Entry to report the DMA HW features */
4636 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4637 &stmmac_dma_cap_fops);
4638
4639 rtnl_unlock();
4640 }
4641
stmmac_exit_fs(struct net_device * dev)4642 static void stmmac_exit_fs(struct net_device *dev)
4643 {
4644 struct stmmac_priv *priv = netdev_priv(dev);
4645
4646 debugfs_remove_recursive(priv->dbgfs_dir);
4647 }
4648 #endif /* CONFIG_DEBUG_FS */
4649
stmmac_vid_crc32_le(__le16 vid_le)4650 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4651 {
4652 unsigned char *data = (unsigned char *)&vid_le;
4653 unsigned char data_byte = 0;
4654 u32 crc = ~0x0;
4655 u32 temp = 0;
4656 int i, bits;
4657
4658 bits = get_bitmask_order(VLAN_VID_MASK);
4659 for (i = 0; i < bits; i++) {
4660 if ((i % 8) == 0)
4661 data_byte = data[i / 8];
4662
4663 temp = ((crc & 1) ^ data_byte) & 1;
4664 crc >>= 1;
4665 data_byte >>= 1;
4666
4667 if (temp)
4668 crc ^= 0xedb88320;
4669 }
4670
4671 return crc;
4672 }
4673
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4674 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4675 {
4676 u32 crc, hash = 0;
4677 __le16 pmatch = 0;
4678 int count = 0;
4679 u16 vid = 0;
4680
4681 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4682 __le16 vid_le = cpu_to_le16(vid);
4683 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4684 hash |= (1 << crc);
4685 count++;
4686 }
4687
4688 if (!priv->dma_cap.vlhash) {
4689 if (count > 2) /* VID = 0 always passes filter */
4690 return -EOPNOTSUPP;
4691
4692 pmatch = cpu_to_le16(vid);
4693 hash = 0;
4694 }
4695
4696 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4697 }
4698
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4699 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4700 {
4701 struct stmmac_priv *priv = netdev_priv(ndev);
4702 bool is_double = false;
4703 int ret;
4704
4705 if (be16_to_cpu(proto) == ETH_P_8021AD)
4706 is_double = true;
4707
4708 set_bit(vid, priv->active_vlans);
4709 ret = stmmac_vlan_update(priv, is_double);
4710 if (ret) {
4711 clear_bit(vid, priv->active_vlans);
4712 return ret;
4713 }
4714
4715 if (priv->hw->num_vlan) {
4716 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4717 if (ret)
4718 return ret;
4719 }
4720
4721 return 0;
4722 }
4723
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4724 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4725 {
4726 struct stmmac_priv *priv = netdev_priv(ndev);
4727 bool is_double = false;
4728 int ret;
4729
4730 ret = pm_runtime_get_sync(priv->device);
4731 if (ret < 0) {
4732 pm_runtime_put_noidle(priv->device);
4733 return ret;
4734 }
4735
4736 if (be16_to_cpu(proto) == ETH_P_8021AD)
4737 is_double = true;
4738
4739 clear_bit(vid, priv->active_vlans);
4740
4741 if (priv->hw->num_vlan) {
4742 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4743 if (ret)
4744 goto del_vlan_error;
4745 }
4746
4747 ret = stmmac_vlan_update(priv, is_double);
4748
4749 del_vlan_error:
4750 pm_runtime_put(priv->device);
4751
4752 return ret;
4753 }
4754
4755 static const struct net_device_ops stmmac_netdev_ops = {
4756 .ndo_open = stmmac_open,
4757 .ndo_start_xmit = stmmac_xmit,
4758 .ndo_stop = stmmac_release,
4759 .ndo_change_mtu = stmmac_change_mtu,
4760 .ndo_fix_features = stmmac_fix_features,
4761 .ndo_set_features = stmmac_set_features,
4762 .ndo_set_rx_mode = stmmac_set_rx_mode,
4763 .ndo_tx_timeout = stmmac_tx_timeout,
4764 .ndo_do_ioctl = stmmac_ioctl,
4765 .ndo_setup_tc = stmmac_setup_tc,
4766 .ndo_select_queue = stmmac_select_queue,
4767 #ifdef CONFIG_NET_POLL_CONTROLLER
4768 .ndo_poll_controller = stmmac_poll_controller,
4769 #endif
4770 .ndo_set_mac_address = stmmac_set_mac_address,
4771 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4772 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4773 };
4774
stmmac_reset_subtask(struct stmmac_priv * priv)4775 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4776 {
4777 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4778 return;
4779 if (test_bit(STMMAC_DOWN, &priv->state))
4780 return;
4781
4782 netdev_err(priv->dev, "Reset adapter.\n");
4783
4784 rtnl_lock();
4785 netif_trans_update(priv->dev);
4786 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4787 usleep_range(1000, 2000);
4788
4789 set_bit(STMMAC_DOWN, &priv->state);
4790 dev_close(priv->dev);
4791 dev_open(priv->dev, NULL);
4792 clear_bit(STMMAC_DOWN, &priv->state);
4793 clear_bit(STMMAC_RESETING, &priv->state);
4794 rtnl_unlock();
4795 }
4796
stmmac_service_task(struct work_struct * work)4797 static void stmmac_service_task(struct work_struct *work)
4798 {
4799 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4800 service_task);
4801
4802 stmmac_reset_subtask(priv);
4803 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4804 }
4805
4806 /**
4807 * stmmac_hw_init - Init the MAC device
4808 * @priv: driver private structure
4809 * Description: this function is to configure the MAC device according to
4810 * some platform parameters or the HW capability register. It prepares the
4811 * driver to use either ring or chain modes and to setup either enhanced or
4812 * normal descriptors.
4813 */
stmmac_hw_init(struct stmmac_priv * priv)4814 static int stmmac_hw_init(struct stmmac_priv *priv)
4815 {
4816 int ret;
4817
4818 /* dwmac-sun8i only work in chain mode */
4819 if (priv->plat->has_sun8i)
4820 chain_mode = 1;
4821 priv->chain_mode = chain_mode;
4822
4823 /* Initialize HW Interface */
4824 ret = stmmac_hwif_init(priv);
4825 if (ret)
4826 return ret;
4827
4828 /* Get the HW capability (new GMAC newer than 3.50a) */
4829 priv->hw_cap_support = stmmac_get_hw_features(priv);
4830 if (priv->hw_cap_support) {
4831 dev_info(priv->device, "DMA HW capability register supported\n");
4832
4833 /* We can override some gmac/dma configuration fields: e.g.
4834 * enh_desc, tx_coe (e.g. that are passed through the
4835 * platform) with the values from the HW capability
4836 * register (if supported).
4837 */
4838 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4839 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4840 priv->hw->pmt = priv->plat->pmt;
4841 if (priv->dma_cap.hash_tb_sz) {
4842 priv->hw->multicast_filter_bins =
4843 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4844 priv->hw->mcast_bits_log2 =
4845 ilog2(priv->hw->multicast_filter_bins);
4846 }
4847
4848 /* TXCOE doesn't work in thresh DMA mode */
4849 if (priv->plat->force_thresh_dma_mode)
4850 priv->plat->tx_coe = 0;
4851 else
4852 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4853
4854 /* In case of GMAC4 rx_coe is from HW cap register. */
4855 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4856
4857 if (priv->dma_cap.rx_coe_type2)
4858 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4859 else if (priv->dma_cap.rx_coe_type1)
4860 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4861
4862 } else {
4863 dev_info(priv->device, "No HW DMA feature register supported\n");
4864 }
4865
4866 if (priv->plat->rx_coe) {
4867 priv->hw->rx_csum = priv->plat->rx_coe;
4868 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4869 if (priv->synopsys_id < DWMAC_CORE_4_00)
4870 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4871 }
4872 if (priv->plat->tx_coe)
4873 dev_info(priv->device, "TX Checksum insertion supported\n");
4874
4875 if (priv->plat->pmt) {
4876 dev_info(priv->device, "Wake-Up On Lan supported\n");
4877 device_set_wakeup_capable(priv->device, 1);
4878 }
4879
4880 if (priv->dma_cap.tsoen)
4881 dev_info(priv->device, "TSO supported\n");
4882
4883 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4884 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4885
4886 /* Run HW quirks, if any */
4887 if (priv->hwif_quirks) {
4888 ret = priv->hwif_quirks(priv);
4889 if (ret)
4890 return ret;
4891 }
4892
4893 /* Rx Watchdog is available in the COREs newer than the 3.40.
4894 * In some case, for example on bugged HW this feature
4895 * has to be disable and this can be done by passing the
4896 * riwt_off field from the platform.
4897 */
4898 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4899 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4900 priv->use_riwt = 1;
4901 dev_info(priv->device,
4902 "Enable RX Mitigation via HW Watchdog Timer\n");
4903 }
4904
4905 return 0;
4906 }
4907
stmmac_napi_add(struct net_device * dev)4908 static void stmmac_napi_add(struct net_device *dev)
4909 {
4910 struct stmmac_priv *priv = netdev_priv(dev);
4911 u32 queue, maxq;
4912
4913 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4914
4915 for (queue = 0; queue < maxq; queue++) {
4916 struct stmmac_channel *ch = &priv->channel[queue];
4917
4918 ch->priv_data = priv;
4919 ch->index = queue;
4920 spin_lock_init(&ch->lock);
4921
4922 if (queue < priv->plat->rx_queues_to_use) {
4923 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4924 NAPI_POLL_WEIGHT);
4925 }
4926 if (queue < priv->plat->tx_queues_to_use) {
4927 netif_tx_napi_add(dev, &ch->tx_napi,
4928 stmmac_napi_poll_tx,
4929 NAPI_POLL_WEIGHT);
4930 }
4931 }
4932 }
4933
stmmac_napi_del(struct net_device * dev)4934 static void stmmac_napi_del(struct net_device *dev)
4935 {
4936 struct stmmac_priv *priv = netdev_priv(dev);
4937 u32 queue, maxq;
4938
4939 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4940
4941 for (queue = 0; queue < maxq; queue++) {
4942 struct stmmac_channel *ch = &priv->channel[queue];
4943
4944 if (queue < priv->plat->rx_queues_to_use)
4945 netif_napi_del(&ch->rx_napi);
4946 if (queue < priv->plat->tx_queues_to_use)
4947 netif_napi_del(&ch->tx_napi);
4948 }
4949 }
4950
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4951 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4952 {
4953 struct stmmac_priv *priv = netdev_priv(dev);
4954 int ret = 0, i;
4955
4956 if (netif_running(dev))
4957 stmmac_release(dev);
4958
4959 stmmac_napi_del(dev);
4960
4961 priv->plat->rx_queues_to_use = rx_cnt;
4962 priv->plat->tx_queues_to_use = tx_cnt;
4963 if (!netif_is_rxfh_configured(dev))
4964 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4965 priv->rss.table[i] = ethtool_rxfh_indir_default(i,
4966 rx_cnt);
4967
4968 stmmac_napi_add(dev);
4969
4970 if (netif_running(dev))
4971 ret = stmmac_open(dev);
4972
4973 return ret;
4974 }
4975
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4976 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4977 {
4978 struct stmmac_priv *priv = netdev_priv(dev);
4979 int ret = 0;
4980
4981 if (netif_running(dev))
4982 stmmac_release(dev);
4983
4984 priv->dma_rx_size = rx_size;
4985 priv->dma_tx_size = tx_size;
4986
4987 if (netif_running(dev))
4988 ret = stmmac_open(dev);
4989
4990 return ret;
4991 }
4992
4993 /**
4994 * stmmac_dvr_probe
4995 * @device: device pointer
4996 * @plat_dat: platform data pointer
4997 * @res: stmmac resource pointer
4998 * Description: this is the main probe function used to
4999 * call the alloc_etherdev, allocate the priv structure.
5000 * Return:
5001 * returns 0 on success, otherwise errno.
5002 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)5003 int stmmac_dvr_probe(struct device *device,
5004 struct plat_stmmacenet_data *plat_dat,
5005 struct stmmac_resources *res)
5006 {
5007 struct net_device *ndev = NULL;
5008 struct stmmac_priv *priv;
5009 u32 rxq;
5010 int i, ret = 0;
5011
5012 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
5013 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
5014 if (!ndev)
5015 return -ENOMEM;
5016
5017 SET_NETDEV_DEV(ndev, device);
5018
5019 priv = netdev_priv(ndev);
5020 priv->device = device;
5021 priv->dev = ndev;
5022
5023 stmmac_set_ethtool_ops(ndev);
5024 priv->pause = pause;
5025 priv->plat = plat_dat;
5026 priv->ioaddr = res->addr;
5027 priv->dev->base_addr = (unsigned long)res->addr;
5028
5029 priv->dev->irq = res->irq;
5030 priv->wol_irq = res->wol_irq;
5031 priv->lpi_irq = res->lpi_irq;
5032
5033 if (!IS_ERR_OR_NULL(res->mac))
5034 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5035
5036 dev_set_drvdata(device, priv->dev);
5037
5038 /* Verify driver arguments */
5039 stmmac_verify_args();
5040
5041 /* Allocate workqueue */
5042 priv->wq = create_singlethread_workqueue("stmmac_wq");
5043 if (!priv->wq) {
5044 dev_err(priv->device, "failed to create workqueue\n");
5045 return -ENOMEM;
5046 }
5047
5048 INIT_WORK(&priv->service_task, stmmac_service_task);
5049
5050 /* Override with kernel parameters if supplied XXX CRS XXX
5051 * this needs to have multiple instances
5052 */
5053 if ((phyaddr >= 0) && (phyaddr <= 31))
5054 priv->plat->phy_addr = phyaddr;
5055
5056 if (priv->plat->stmmac_rst) {
5057 ret = reset_control_assert(priv->plat->stmmac_rst);
5058 reset_control_deassert(priv->plat->stmmac_rst);
5059 /* Some reset controllers have only reset callback instead of
5060 * assert + deassert callbacks pair.
5061 */
5062 if (ret == -ENOTSUPP)
5063 reset_control_reset(priv->plat->stmmac_rst);
5064 }
5065
5066 /* Init MAC and get the capabilities */
5067 ret = stmmac_hw_init(priv);
5068 if (ret)
5069 goto error_hw_init;
5070
5071 stmmac_check_ether_addr(priv);
5072
5073 ndev->netdev_ops = &stmmac_netdev_ops;
5074
5075 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5076 NETIF_F_RXCSUM;
5077
5078 ret = stmmac_tc_init(priv, priv);
5079 if (!ret) {
5080 ndev->hw_features |= NETIF_F_HW_TC;
5081 }
5082
5083 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5084 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5085 if (priv->plat->has_gmac4)
5086 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5087 priv->tso = true;
5088 dev_info(priv->device, "TSO feature enabled\n");
5089 }
5090
5091 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
5092 ndev->hw_features |= NETIF_F_GRO;
5093 priv->sph = true;
5094 dev_info(priv->device, "SPH feature enabled\n");
5095 }
5096
5097 /* The current IP register MAC_HW_Feature1[ADDR64] only define
5098 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5099 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5100 * So overwrite dma_cap.addr64 according to HW real design.
5101 */
5102 if (priv->plat->addr64)
5103 priv->dma_cap.addr64 = priv->plat->addr64;
5104
5105 if (priv->dma_cap.addr64) {
5106 ret = dma_set_mask_and_coherent(device,
5107 DMA_BIT_MASK(priv->dma_cap.addr64));
5108 if (!ret) {
5109 dev_info(priv->device, "Using %d bits DMA width\n",
5110 priv->dma_cap.addr64);
5111
5112 /*
5113 * If more than 32 bits can be addressed, make sure to
5114 * enable enhanced addressing mode.
5115 */
5116 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5117 priv->plat->dma_cfg->eame = true;
5118 } else {
5119 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5120 if (ret) {
5121 dev_err(priv->device, "Failed to set DMA Mask\n");
5122 goto error_hw_init;
5123 }
5124
5125 priv->dma_cap.addr64 = 32;
5126 }
5127 }
5128
5129 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5130 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5131 #ifdef STMMAC_VLAN_TAG_USED
5132 /* Both mac100 and gmac support receive VLAN tag detection */
5133 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5134 if (priv->dma_cap.vlhash) {
5135 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5136 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5137 }
5138 if (priv->dma_cap.vlins) {
5139 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5140 if (priv->dma_cap.dvlan)
5141 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5142 }
5143 #endif
5144 priv->msg_enable = netif_msg_init(debug, default_msg_level);
5145
5146 /* Initialize RSS */
5147 rxq = priv->plat->rx_queues_to_use;
5148 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5149 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5150 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5151
5152 if (priv->dma_cap.rssen && priv->plat->rss_en)
5153 ndev->features |= NETIF_F_RXHASH;
5154
5155 /* MTU range: 46 - hw-specific max */
5156 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5157 if (priv->plat->has_xgmac)
5158 ndev->max_mtu = XGMAC_JUMBO_LEN;
5159 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5160 ndev->max_mtu = JUMBO_LEN;
5161 else
5162 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5163 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5164 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5165 */
5166 if ((priv->plat->maxmtu < ndev->max_mtu) &&
5167 (priv->plat->maxmtu >= ndev->min_mtu))
5168 ndev->max_mtu = priv->plat->maxmtu;
5169 else if (priv->plat->maxmtu < ndev->min_mtu)
5170 dev_warn(priv->device,
5171 "%s: warning: maxmtu having invalid value (%d)\n",
5172 __func__, priv->plat->maxmtu);
5173
5174 if (flow_ctrl)
5175 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
5176
5177 /* Setup channels NAPI */
5178 stmmac_napi_add(ndev);
5179
5180 mutex_init(&priv->lock);
5181
5182 /* If a specific clk_csr value is passed from the platform
5183 * this means that the CSR Clock Range selection cannot be
5184 * changed at run-time and it is fixed. Viceversa the driver'll try to
5185 * set the MDC clock dynamically according to the csr actual
5186 * clock input.
5187 */
5188 if (priv->plat->clk_csr >= 0)
5189 priv->clk_csr = priv->plat->clk_csr;
5190 else
5191 stmmac_clk_csr_set(priv);
5192
5193 stmmac_check_pcs_mode(priv);
5194
5195 pm_runtime_get_noresume(device);
5196 pm_runtime_set_active(device);
5197 if (!pm_runtime_enabled(device))
5198 pm_runtime_enable(device);
5199
5200 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5201 priv->hw->pcs != STMMAC_PCS_RTBI) {
5202 /* MDIO bus Registration */
5203 ret = stmmac_mdio_register(ndev);
5204 if (ret < 0) {
5205 dev_err_probe(priv->device, ret,
5206 "%s: MDIO bus (id: %d) registration failed\n",
5207 __func__, priv->plat->bus_id);
5208 goto error_mdio_register;
5209 }
5210 }
5211
5212 ret = stmmac_phy_setup(priv);
5213 if (ret) {
5214 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5215 goto error_phy_setup;
5216 }
5217
5218 ret = register_netdev(ndev);
5219 if (ret) {
5220 dev_err(priv->device, "%s: ERROR %i registering the device\n",
5221 __func__, ret);
5222 goto error_netdev_register;
5223 }
5224
5225 #ifdef CONFIG_DEBUG_FS
5226 stmmac_init_fs(ndev);
5227 #endif
5228
5229 /* Let pm_runtime_put() disable the clocks.
5230 * If CONFIG_PM is not enabled, the clocks will stay powered.
5231 */
5232 pm_runtime_put(device);
5233
5234 return ret;
5235
5236 error_netdev_register:
5237 phylink_destroy(priv->phylink);
5238 error_phy_setup:
5239 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5240 priv->hw->pcs != STMMAC_PCS_RTBI)
5241 stmmac_mdio_unregister(ndev);
5242 error_mdio_register:
5243 stmmac_napi_del(ndev);
5244 error_hw_init:
5245 destroy_workqueue(priv->wq);
5246
5247 return ret;
5248 }
5249 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5250
5251 /**
5252 * stmmac_dvr_remove
5253 * @dev: device pointer
5254 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5255 * changes the link status, releases the DMA descriptor rings.
5256 */
stmmac_dvr_remove(struct device * dev)5257 int stmmac_dvr_remove(struct device *dev)
5258 {
5259 struct net_device *ndev = dev_get_drvdata(dev);
5260 struct stmmac_priv *priv = netdev_priv(ndev);
5261
5262 netdev_info(priv->dev, "%s: removing driver", __func__);
5263
5264 stmmac_stop_all_dma(priv);
5265 stmmac_mac_set(priv, priv->ioaddr, false);
5266 netif_carrier_off(ndev);
5267 unregister_netdev(ndev);
5268
5269 #ifdef CONFIG_DEBUG_FS
5270 stmmac_exit_fs(ndev);
5271 #endif
5272 phylink_destroy(priv->phylink);
5273 if (priv->plat->stmmac_rst)
5274 reset_control_assert(priv->plat->stmmac_rst);
5275 pm_runtime_put(dev);
5276 pm_runtime_disable(dev);
5277 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5278 priv->hw->pcs != STMMAC_PCS_RTBI)
5279 stmmac_mdio_unregister(ndev);
5280 destroy_workqueue(priv->wq);
5281 mutex_destroy(&priv->lock);
5282
5283 return 0;
5284 }
5285 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5286
5287 /**
5288 * stmmac_suspend - suspend callback
5289 * @dev: device pointer
5290 * Description: this is the function to suspend the device and it is called
5291 * by the platform driver to stop the network queue, release the resources,
5292 * program the PMT register (for WoL), clean and release driver resources.
5293 */
stmmac_suspend(struct device * dev)5294 int stmmac_suspend(struct device *dev)
5295 {
5296 struct net_device *ndev = dev_get_drvdata(dev);
5297 struct stmmac_priv *priv = netdev_priv(ndev);
5298 u32 chan;
5299
5300 if (!ndev || !netif_running(ndev))
5301 return 0;
5302
5303 phylink_mac_change(priv->phylink, false);
5304
5305 mutex_lock(&priv->lock);
5306
5307 netif_device_detach(ndev);
5308
5309 stmmac_disable_all_queues(priv);
5310
5311 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5312 del_timer_sync(&priv->tx_queue[chan].txtimer);
5313
5314 if (priv->eee_enabled) {
5315 priv->tx_path_in_lpi_mode = false;
5316 del_timer_sync(&priv->eee_ctrl_timer);
5317 }
5318
5319 /* Stop TX/RX DMA */
5320 stmmac_stop_all_dma(priv);
5321
5322 if (priv->plat->serdes_powerdown)
5323 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5324
5325 /* Enable Power down mode by programming the PMT regs */
5326 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5327 stmmac_pmt(priv, priv->hw, priv->wolopts);
5328 priv->irq_wake = 1;
5329 } else {
5330 mutex_unlock(&priv->lock);
5331 rtnl_lock();
5332 if (device_may_wakeup(priv->device))
5333 phylink_speed_down(priv->phylink, false);
5334 phylink_stop(priv->phylink);
5335 rtnl_unlock();
5336 mutex_lock(&priv->lock);
5337
5338 stmmac_mac_set(priv, priv->ioaddr, false);
5339 pinctrl_pm_select_sleep_state(priv->device);
5340 }
5341 mutex_unlock(&priv->lock);
5342
5343 priv->speed = SPEED_UNKNOWN;
5344 return 0;
5345 }
5346 EXPORT_SYMBOL_GPL(stmmac_suspend);
5347
5348 /**
5349 * stmmac_reset_queues_param - reset queue parameters
5350 * @priv: device pointer
5351 */
stmmac_reset_queues_param(struct stmmac_priv * priv)5352 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5353 {
5354 u32 rx_cnt = priv->plat->rx_queues_to_use;
5355 u32 tx_cnt = priv->plat->tx_queues_to_use;
5356 u32 queue;
5357
5358 for (queue = 0; queue < rx_cnt; queue++) {
5359 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5360
5361 rx_q->cur_rx = 0;
5362 rx_q->dirty_rx = 0;
5363 }
5364
5365 for (queue = 0; queue < tx_cnt; queue++) {
5366 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5367
5368 tx_q->cur_tx = 0;
5369 tx_q->dirty_tx = 0;
5370 tx_q->mss = 0;
5371
5372 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5373 }
5374 }
5375
5376 /**
5377 * stmmac_resume - resume callback
5378 * @dev: device pointer
5379 * Description: when resume this function is invoked to setup the DMA and CORE
5380 * in a usable state.
5381 */
stmmac_resume(struct device * dev)5382 int stmmac_resume(struct device *dev)
5383 {
5384 struct net_device *ndev = dev_get_drvdata(dev);
5385 struct stmmac_priv *priv = netdev_priv(ndev);
5386 int ret;
5387
5388 if (!netif_running(ndev))
5389 return 0;
5390
5391 /* Power Down bit, into the PM register, is cleared
5392 * automatically as soon as a magic packet or a Wake-up frame
5393 * is received. Anyway, it's better to manually clear
5394 * this bit because it can generate problems while resuming
5395 * from another devices (e.g. serial console).
5396 */
5397 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5398 mutex_lock(&priv->lock);
5399 stmmac_pmt(priv, priv->hw, 0);
5400 mutex_unlock(&priv->lock);
5401 priv->irq_wake = 0;
5402 } else {
5403 pinctrl_pm_select_default_state(priv->device);
5404 /* reset the phy so that it's ready */
5405 if (priv->mii)
5406 stmmac_mdio_reset(priv->mii);
5407 }
5408
5409 if (priv->plat->serdes_powerup) {
5410 ret = priv->plat->serdes_powerup(ndev,
5411 priv->plat->bsp_priv);
5412
5413 if (ret < 0)
5414 return ret;
5415 }
5416
5417 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5418 rtnl_lock();
5419 phylink_start(priv->phylink);
5420 /* We may have called phylink_speed_down before */
5421 phylink_speed_up(priv->phylink);
5422 rtnl_unlock();
5423 }
5424
5425 rtnl_lock();
5426 mutex_lock(&priv->lock);
5427
5428 stmmac_reset_queues_param(priv);
5429
5430 stmmac_free_tx_skbufs(priv);
5431 stmmac_clear_descriptors(priv);
5432
5433 stmmac_hw_setup(ndev, false);
5434 stmmac_init_coalesce(priv);
5435 stmmac_set_rx_mode(ndev);
5436
5437 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5438
5439 stmmac_enable_all_queues(priv);
5440
5441 mutex_unlock(&priv->lock);
5442 rtnl_unlock();
5443
5444 phylink_mac_change(priv->phylink, true);
5445
5446 netif_device_attach(ndev);
5447
5448 return 0;
5449 }
5450 EXPORT_SYMBOL_GPL(stmmac_resume);
5451
5452 #ifndef MODULE
stmmac_cmdline_opt(char * str)5453 static int __init stmmac_cmdline_opt(char *str)
5454 {
5455 char *opt;
5456
5457 if (!str || !*str)
5458 return 1;
5459 while ((opt = strsep(&str, ",")) != NULL) {
5460 if (!strncmp(opt, "debug:", 6)) {
5461 if (kstrtoint(opt + 6, 0, &debug))
5462 goto err;
5463 } else if (!strncmp(opt, "phyaddr:", 8)) {
5464 if (kstrtoint(opt + 8, 0, &phyaddr))
5465 goto err;
5466 } else if (!strncmp(opt, "buf_sz:", 7)) {
5467 if (kstrtoint(opt + 7, 0, &buf_sz))
5468 goto err;
5469 } else if (!strncmp(opt, "tc:", 3)) {
5470 if (kstrtoint(opt + 3, 0, &tc))
5471 goto err;
5472 } else if (!strncmp(opt, "watchdog:", 9)) {
5473 if (kstrtoint(opt + 9, 0, &watchdog))
5474 goto err;
5475 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5476 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5477 goto err;
5478 } else if (!strncmp(opt, "pause:", 6)) {
5479 if (kstrtoint(opt + 6, 0, &pause))
5480 goto err;
5481 } else if (!strncmp(opt, "eee_timer:", 10)) {
5482 if (kstrtoint(opt + 10, 0, &eee_timer))
5483 goto err;
5484 } else if (!strncmp(opt, "chain_mode:", 11)) {
5485 if (kstrtoint(opt + 11, 0, &chain_mode))
5486 goto err;
5487 }
5488 }
5489 return 1;
5490
5491 err:
5492 pr_err("%s: ERROR broken module parameter conversion", __func__);
5493 return 1;
5494 }
5495
5496 __setup("stmmaceth=", stmmac_cmdline_opt);
5497 #endif /* MODULE */
5498
stmmac_init(void)5499 static int __init stmmac_init(void)
5500 {
5501 #ifdef CONFIG_DEBUG_FS
5502 /* Create debugfs main directory if it doesn't exist yet */
5503 if (!stmmac_fs_dir)
5504 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5505 register_netdevice_notifier(&stmmac_notifier);
5506 #endif
5507
5508 return 0;
5509 }
5510
stmmac_exit(void)5511 static void __exit stmmac_exit(void)
5512 {
5513 #ifdef CONFIG_DEBUG_FS
5514 unregister_netdevice_notifier(&stmmac_notifier);
5515 debugfs_remove_recursive(stmmac_fs_dir);
5516 #endif
5517 }
5518
5519 module_init(stmmac_init)
5520 module_exit(stmmac_exit)
5521
5522 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5523 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5524 MODULE_LICENSE("GPL");
5525