1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 #include <linux/random.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 #include "of_private.h"
33
34 /*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
of_fdt_limit_memory(int limit)42 void __init of_fdt_limit_memory(int limit)
43 {
44 int memory;
45 int len;
46 const void *val;
47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 const __be32 *addr_prop;
50 const __be32 *size_prop;
51 int root_offset;
52 int cell_size;
53
54 root_offset = fdt_path_offset(initial_boot_params, "/");
55 if (root_offset < 0)
56 return;
57
58 addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 "#address-cells", NULL);
60 if (addr_prop)
61 nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63 size_prop = fdt_getprop(initial_boot_params, root_offset,
64 "#size-cells", NULL);
65 if (size_prop)
66 nr_size_cells = fdt32_to_cpu(*size_prop);
67
68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70 memory = fdt_path_offset(initial_boot_params, "/memory");
71 if (memory > 0) {
72 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 if (len > limit*cell_size) {
74 len = limit*cell_size;
75 pr_debug("Limiting number of entries to %d\n", limit);
76 fdt_setprop(initial_boot_params, memory, "reg", val,
77 len);
78 }
79 }
80 }
81
of_fdt_device_is_available(const void * blob,unsigned long node)82 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83 {
84 const char *status = fdt_getprop(blob, node, "status", NULL);
85
86 if (!status)
87 return true;
88
89 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90 return true;
91
92 return false;
93 }
94
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)95 static void *unflatten_dt_alloc(void **mem, unsigned long size,
96 unsigned long align)
97 {
98 void *res;
99
100 *mem = PTR_ALIGN(*mem, align);
101 res = *mem;
102 *mem += size;
103
104 return res;
105 }
106
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)107 static void populate_properties(const void *blob,
108 int offset,
109 void **mem,
110 struct device_node *np,
111 const char *nodename,
112 bool dryrun)
113 {
114 struct property *pp, **pprev = NULL;
115 int cur;
116 bool has_name = false;
117
118 pprev = &np->properties;
119 for (cur = fdt_first_property_offset(blob, offset);
120 cur >= 0;
121 cur = fdt_next_property_offset(blob, cur)) {
122 const __be32 *val;
123 const char *pname;
124 u32 sz;
125
126 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127 if (!val) {
128 pr_warn("Cannot locate property at 0x%x\n", cur);
129 continue;
130 }
131
132 if (!pname) {
133 pr_warn("Cannot find property name at 0x%x\n", cur);
134 continue;
135 }
136
137 if (!strcmp(pname, "name"))
138 has_name = true;
139
140 pp = unflatten_dt_alloc(mem, sizeof(struct property),
141 __alignof__(struct property));
142 if (dryrun)
143 continue;
144
145 /* We accept flattened tree phandles either in
146 * ePAPR-style "phandle" properties, or the
147 * legacy "linux,phandle" properties. If both
148 * appear and have different values, things
149 * will get weird. Don't do that.
150 */
151 if (!strcmp(pname, "phandle") ||
152 !strcmp(pname, "linux,phandle")) {
153 if (!np->phandle)
154 np->phandle = be32_to_cpup(val);
155 }
156
157 /* And we process the "ibm,phandle" property
158 * used in pSeries dynamic device tree
159 * stuff
160 */
161 if (!strcmp(pname, "ibm,phandle"))
162 np->phandle = be32_to_cpup(val);
163
164 pp->name = (char *)pname;
165 pp->length = sz;
166 pp->value = (__be32 *)val;
167 *pprev = pp;
168 pprev = &pp->next;
169 }
170
171 /* With version 0x10 we may not have the name property,
172 * recreate it here from the unit name if absent
173 */
174 if (!has_name) {
175 const char *p = nodename, *ps = p, *pa = NULL;
176 int len;
177
178 while (*p) {
179 if ((*p) == '@')
180 pa = p;
181 else if ((*p) == '/')
182 ps = p + 1;
183 p++;
184 }
185
186 if (pa < ps)
187 pa = p;
188 len = (pa - ps) + 1;
189 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190 __alignof__(struct property));
191 if (!dryrun) {
192 pp->name = "name";
193 pp->length = len;
194 pp->value = pp + 1;
195 *pprev = pp;
196 pprev = &pp->next;
197 memcpy(pp->value, ps, len - 1);
198 ((char *)pp->value)[len - 1] = 0;
199 pr_debug("fixed up name for %s -> %s\n",
200 nodename, (char *)pp->value);
201 }
202 }
203
204 if (!dryrun)
205 *pprev = NULL;
206 }
207
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)208 static bool populate_node(const void *blob,
209 int offset,
210 void **mem,
211 struct device_node *dad,
212 struct device_node **pnp,
213 bool dryrun)
214 {
215 struct device_node *np;
216 const char *pathp;
217 unsigned int l, allocl;
218
219 pathp = fdt_get_name(blob, offset, &l);
220 if (!pathp) {
221 *pnp = NULL;
222 return false;
223 }
224
225 allocl = ++l;
226
227 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
228 __alignof__(struct device_node));
229 if (!dryrun) {
230 char *fn;
231 of_node_init(np);
232 np->full_name = fn = ((char *)np) + sizeof(*np);
233
234 memcpy(fn, pathp, l);
235
236 if (dad != NULL) {
237 np->parent = dad;
238 np->sibling = dad->child;
239 dad->child = np;
240 }
241 }
242
243 populate_properties(blob, offset, mem, np, pathp, dryrun);
244 if (!dryrun) {
245 np->name = of_get_property(np, "name", NULL);
246 if (!np->name)
247 np->name = "<NULL>";
248 }
249
250 *pnp = np;
251 return true;
252 }
253
reverse_nodes(struct device_node * parent)254 static void reverse_nodes(struct device_node *parent)
255 {
256 struct device_node *child, *next;
257
258 /* In-depth first */
259 child = parent->child;
260 while (child) {
261 reverse_nodes(child);
262
263 child = child->sibling;
264 }
265
266 /* Reverse the nodes in the child list */
267 child = parent->child;
268 parent->child = NULL;
269 while (child) {
270 next = child->sibling;
271
272 child->sibling = parent->child;
273 parent->child = child;
274 child = next;
275 }
276 }
277
278 /**
279 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280 * @blob: The parent device tree blob
281 * @mem: Memory chunk to use for allocating device nodes and properties
282 * @dad: Parent struct device_node
283 * @nodepp: The device_node tree created by the call
284 *
285 * Return: The size of unflattened device tree or error code
286 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)287 static int unflatten_dt_nodes(const void *blob,
288 void *mem,
289 struct device_node *dad,
290 struct device_node **nodepp)
291 {
292 struct device_node *root;
293 int offset = 0, depth = 0, initial_depth = 0;
294 #define FDT_MAX_DEPTH 64
295 struct device_node *nps[FDT_MAX_DEPTH];
296 void *base = mem;
297 bool dryrun = !base;
298
299 if (nodepp)
300 *nodepp = NULL;
301
302 /*
303 * We're unflattening device sub-tree if @dad is valid. There are
304 * possibly multiple nodes in the first level of depth. We need
305 * set @depth to 1 to make fdt_next_node() happy as it bails
306 * immediately when negative @depth is found. Otherwise, the device
307 * nodes except the first one won't be unflattened successfully.
308 */
309 if (dad)
310 depth = initial_depth = 1;
311
312 root = dad;
313 nps[depth] = dad;
314
315 for (offset = 0;
316 offset >= 0 && depth >= initial_depth;
317 offset = fdt_next_node(blob, offset, &depth)) {
318 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
319 continue;
320
321 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
322 !of_fdt_device_is_available(blob, offset))
323 continue;
324
325 if (!populate_node(blob, offset, &mem, nps[depth],
326 &nps[depth+1], dryrun))
327 return mem - base;
328
329 if (!dryrun && nodepp && !*nodepp)
330 *nodepp = nps[depth+1];
331 if (!dryrun && !root)
332 root = nps[depth+1];
333 }
334
335 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336 pr_err("Error %d processing FDT\n", offset);
337 return -EINVAL;
338 }
339
340 /*
341 * Reverse the child list. Some drivers assumes node order matches .dts
342 * node order
343 */
344 if (!dryrun)
345 reverse_nodes(root);
346
347 return mem - base;
348 }
349
350 /**
351 * __unflatten_device_tree - create tree of device_nodes from flat blob
352 * @blob: The blob to expand
353 * @dad: Parent device node
354 * @mynodes: The device_node tree created by the call
355 * @dt_alloc: An allocator that provides a virtual address to memory
356 * for the resulting tree
357 * @detached: if true set OF_DETACHED on @mynodes
358 *
359 * unflattens a device-tree, creating the tree of struct device_node. It also
360 * fills the "name" and "type" pointers of the nodes so the normal device-tree
361 * walking functions can be used.
362 *
363 * Return: NULL on failure or the memory chunk containing the unflattened
364 * device tree on success.
365 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)366 void *__unflatten_device_tree(const void *blob,
367 struct device_node *dad,
368 struct device_node **mynodes,
369 void *(*dt_alloc)(u64 size, u64 align),
370 bool detached)
371 {
372 int size;
373 void *mem;
374
375 pr_debug(" -> unflatten_device_tree()\n");
376
377 if (!blob) {
378 pr_debug("No device tree pointer\n");
379 return NULL;
380 }
381
382 pr_debug("Unflattening device tree:\n");
383 pr_debug("magic: %08x\n", fdt_magic(blob));
384 pr_debug("size: %08x\n", fdt_totalsize(blob));
385 pr_debug("version: %08x\n", fdt_version(blob));
386
387 if (fdt_check_header(blob)) {
388 pr_err("Invalid device tree blob header\n");
389 return NULL;
390 }
391
392 /* First pass, scan for size */
393 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
394 if (size < 0)
395 return NULL;
396
397 size = ALIGN(size, 4);
398 pr_debug(" size is %d, allocating...\n", size);
399
400 /* Allocate memory for the expanded device tree */
401 mem = dt_alloc(size + 4, __alignof__(struct device_node));
402 if (!mem)
403 return NULL;
404
405 memset(mem, 0, size);
406
407 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
408
409 pr_debug(" unflattening %p...\n", mem);
410
411 /* Second pass, do actual unflattening */
412 unflatten_dt_nodes(blob, mem, dad, mynodes);
413 if (be32_to_cpup(mem + size) != 0xdeadbeef)
414 pr_warn("End of tree marker overwritten: %08x\n",
415 be32_to_cpup(mem + size));
416
417 if (detached && mynodes) {
418 of_node_set_flag(*mynodes, OF_DETACHED);
419 pr_debug("unflattened tree is detached\n");
420 }
421
422 pr_debug(" <- unflatten_device_tree()\n");
423 return mem;
424 }
425
kernel_tree_alloc(u64 size,u64 align)426 static void *kernel_tree_alloc(u64 size, u64 align)
427 {
428 return kzalloc(size, GFP_KERNEL);
429 }
430
431 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
432
433 /**
434 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
435 * @blob: Flat device tree blob
436 * @dad: Parent device node
437 * @mynodes: The device tree created by the call
438 *
439 * unflattens the device-tree passed by the firmware, creating the
440 * tree of struct device_node. It also fills the "name" and "type"
441 * pointers of the nodes so the normal device-tree walking functions
442 * can be used.
443 *
444 * Return: NULL on failure or the memory chunk containing the unflattened
445 * device tree on success.
446 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)447 void *of_fdt_unflatten_tree(const unsigned long *blob,
448 struct device_node *dad,
449 struct device_node **mynodes)
450 {
451 void *mem;
452
453 mutex_lock(&of_fdt_unflatten_mutex);
454 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
455 true);
456 mutex_unlock(&of_fdt_unflatten_mutex);
457
458 return mem;
459 }
460 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
461
462 /* Everything below here references initial_boot_params directly. */
463 int __initdata dt_root_addr_cells;
464 int __initdata dt_root_size_cells;
465
466 void *initial_boot_params __ro_after_init;
467
468 #ifdef CONFIG_OF_EARLY_FLATTREE
469
470 static u32 of_fdt_crc32;
471
472 /**
473 * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
474 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)475 static int __init __reserved_mem_reserve_reg(unsigned long node,
476 const char *uname)
477 {
478 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
479 phys_addr_t base, size;
480 int len;
481 const __be32 *prop;
482 int first = 1;
483 bool nomap;
484
485 prop = of_get_flat_dt_prop(node, "reg", &len);
486 if (!prop)
487 return -ENOENT;
488
489 if (len && len % t_len != 0) {
490 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
491 uname);
492 return -EINVAL;
493 }
494
495 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
496
497 while (len >= t_len) {
498 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
499 size = dt_mem_next_cell(dt_root_size_cells, &prop);
500
501 if (size &&
502 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
503 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
504 uname, &base, (unsigned long)(size / SZ_1M));
505 else
506 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
507 uname, &base, (unsigned long)(size / SZ_1M));
508
509 len -= t_len;
510 if (first) {
511 fdt_reserved_mem_save_node(node, uname, base, size);
512 first = 0;
513 }
514 }
515 return 0;
516 }
517
518 /**
519 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
520 * in /reserved-memory matches the values supported by the current implementation,
521 * also check if ranges property has been provided
522 */
__reserved_mem_check_root(unsigned long node)523 static int __init __reserved_mem_check_root(unsigned long node)
524 {
525 const __be32 *prop;
526
527 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
528 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
529 return -EINVAL;
530
531 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
532 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
533 return -EINVAL;
534
535 prop = of_get_flat_dt_prop(node, "ranges", NULL);
536 if (!prop)
537 return -EINVAL;
538 return 0;
539 }
540
541 /**
542 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
543 */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)544 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
545 int depth, void *data)
546 {
547 static int found;
548 int err;
549
550 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
551 if (__reserved_mem_check_root(node) != 0) {
552 pr_err("Reserved memory: unsupported node format, ignoring\n");
553 /* break scan */
554 return 1;
555 }
556 found = 1;
557 /* scan next node */
558 return 0;
559 } else if (!found) {
560 /* scan next node */
561 return 0;
562 } else if (found && depth < 2) {
563 /* scanning of /reserved-memory has been finished */
564 return 1;
565 }
566
567 if (!of_fdt_device_is_available(initial_boot_params, node))
568 return 0;
569
570 err = __reserved_mem_reserve_reg(node, uname);
571 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
572 fdt_reserved_mem_save_node(node, uname, 0, 0);
573
574 /* scan next node */
575 return 0;
576 }
577
578 /**
579 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
580 *
581 * This function grabs memory from early allocator for device exclusive use
582 * defined in device tree structures. It should be called by arch specific code
583 * once the early allocator (i.e. memblock) has been fully activated.
584 */
early_init_fdt_scan_reserved_mem(void)585 void __init early_init_fdt_scan_reserved_mem(void)
586 {
587 int n;
588 u64 base, size;
589
590 if (!initial_boot_params)
591 return;
592
593 /* Process header /memreserve/ fields */
594 for (n = 0; ; n++) {
595 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
596 if (!size)
597 break;
598 early_init_dt_reserve_memory_arch(base, size, false);
599 }
600
601 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
602 fdt_init_reserved_mem();
603 }
604
605 /**
606 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
607 */
early_init_fdt_reserve_self(void)608 void __init early_init_fdt_reserve_self(void)
609 {
610 if (!initial_boot_params)
611 return;
612
613 /* Reserve the dtb region */
614 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
615 fdt_totalsize(initial_boot_params),
616 false);
617 }
618
619 /**
620 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
621 * @it: callback function
622 * @data: context data pointer
623 *
624 * This function is used to scan the flattened device-tree, it is
625 * used to extract the memory information at boot before we can
626 * unflatten the tree
627 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)628 int __init of_scan_flat_dt(int (*it)(unsigned long node,
629 const char *uname, int depth,
630 void *data),
631 void *data)
632 {
633 const void *blob = initial_boot_params;
634 const char *pathp;
635 int offset, rc = 0, depth = -1;
636
637 if (!blob)
638 return 0;
639
640 for (offset = fdt_next_node(blob, -1, &depth);
641 offset >= 0 && depth >= 0 && !rc;
642 offset = fdt_next_node(blob, offset, &depth)) {
643
644 pathp = fdt_get_name(blob, offset, NULL);
645 rc = it(offset, pathp, depth, data);
646 }
647 return rc;
648 }
649
650 /**
651 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
652 * @it: callback function
653 * @data: context data pointer
654 *
655 * This function is used to scan sub-nodes of a node.
656 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)657 int __init of_scan_flat_dt_subnodes(unsigned long parent,
658 int (*it)(unsigned long node,
659 const char *uname,
660 void *data),
661 void *data)
662 {
663 const void *blob = initial_boot_params;
664 int node;
665
666 fdt_for_each_subnode(node, blob, parent) {
667 const char *pathp;
668 int rc;
669
670 pathp = fdt_get_name(blob, node, NULL);
671 rc = it(node, pathp, data);
672 if (rc)
673 return rc;
674 }
675 return 0;
676 }
677
678 /**
679 * of_get_flat_dt_subnode_by_name - get the subnode by given name
680 *
681 * @node: the parent node
682 * @uname: the name of subnode
683 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
684 */
685
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)686 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
687 {
688 return fdt_subnode_offset(initial_boot_params, node, uname);
689 }
690
691 /**
692 * of_get_flat_dt_root - find the root node in the flat blob
693 */
of_get_flat_dt_root(void)694 unsigned long __init of_get_flat_dt_root(void)
695 {
696 return 0;
697 }
698
699 /**
700 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
701 *
702 * This function can be used within scan_flattened_dt callback to get
703 * access to properties
704 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)705 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
706 int *size)
707 {
708 return fdt_getprop(initial_boot_params, node, name, size);
709 }
710
711 /**
712 * of_fdt_is_compatible - Return true if given node from the given blob has
713 * compat in its compatible list
714 * @blob: A device tree blob
715 * @node: node to test
716 * @compat: compatible string to compare with compatible list.
717 *
718 * Return: a non-zero value on match with smaller values returned for more
719 * specific compatible values.
720 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)721 static int of_fdt_is_compatible(const void *blob,
722 unsigned long node, const char *compat)
723 {
724 const char *cp;
725 int cplen;
726 unsigned long l, score = 0;
727
728 cp = fdt_getprop(blob, node, "compatible", &cplen);
729 if (cp == NULL)
730 return 0;
731 while (cplen > 0) {
732 score++;
733 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
734 return score;
735 l = strlen(cp) + 1;
736 cp += l;
737 cplen -= l;
738 }
739
740 return 0;
741 }
742
743 /**
744 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
745 * @node: node to test
746 * @compat: compatible string to compare with compatible list.
747 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)748 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
749 {
750 return of_fdt_is_compatible(initial_boot_params, node, compat);
751 }
752
753 /**
754 * of_flat_dt_match - Return true if node matches a list of compatible values
755 */
of_flat_dt_match(unsigned long node,const char * const * compat)756 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
757 {
758 unsigned int tmp, score = 0;
759
760 if (!compat)
761 return 0;
762
763 while (*compat) {
764 tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
765 if (tmp && (score == 0 || (tmp < score)))
766 score = tmp;
767 compat++;
768 }
769
770 return score;
771 }
772
773 /**
774 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
775 */
of_get_flat_dt_phandle(unsigned long node)776 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
777 {
778 return fdt_get_phandle(initial_boot_params, node);
779 }
780
781 struct fdt_scan_status {
782 const char *name;
783 int namelen;
784 int depth;
785 int found;
786 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
787 void *data;
788 };
789
of_flat_dt_get_machine_name(void)790 const char * __init of_flat_dt_get_machine_name(void)
791 {
792 const char *name;
793 unsigned long dt_root = of_get_flat_dt_root();
794
795 name = of_get_flat_dt_prop(dt_root, "model", NULL);
796 if (!name)
797 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
798 return name;
799 }
800
801 /**
802 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
803 *
804 * @default_match: A machine specific ptr to return in case of no match.
805 * @get_next_compat: callback function to return next compatible match table.
806 *
807 * Iterate through machine match tables to find the best match for the machine
808 * compatible string in the FDT.
809 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))810 const void * __init of_flat_dt_match_machine(const void *default_match,
811 const void * (*get_next_compat)(const char * const**))
812 {
813 const void *data = NULL;
814 const void *best_data = default_match;
815 const char *const *compat;
816 unsigned long dt_root;
817 unsigned int best_score = ~1, score = 0;
818
819 dt_root = of_get_flat_dt_root();
820 while ((data = get_next_compat(&compat))) {
821 score = of_flat_dt_match(dt_root, compat);
822 if (score > 0 && score < best_score) {
823 best_data = data;
824 best_score = score;
825 }
826 }
827 if (!best_data) {
828 const char *prop;
829 int size;
830
831 pr_err("\n unrecognized device tree list:\n[ ");
832
833 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
834 if (prop) {
835 while (size > 0) {
836 printk("'%s' ", prop);
837 size -= strlen(prop) + 1;
838 prop += strlen(prop) + 1;
839 }
840 }
841 printk("]\n\n");
842 return NULL;
843 }
844
845 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
846
847 return best_data;
848 }
849
850 #ifdef CONFIG_BLK_DEV_INITRD
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)851 static void __early_init_dt_declare_initrd(unsigned long start,
852 unsigned long end)
853 {
854 /* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
855 * enabled since __va() is called too early. ARM64 does make use
856 * of phys_initrd_start/phys_initrd_size so we can skip this
857 * conversion.
858 */
859 if (!IS_ENABLED(CONFIG_ARM64)) {
860 initrd_start = (unsigned long)__va(start);
861 initrd_end = (unsigned long)__va(end);
862 initrd_below_start_ok = 1;
863 }
864 }
865
866 /**
867 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
868 * @node: reference to node containing initrd location ('chosen')
869 */
early_init_dt_check_for_initrd(unsigned long node)870 static void __init early_init_dt_check_for_initrd(unsigned long node)
871 {
872 u64 start, end;
873 int len;
874 const __be32 *prop;
875
876 pr_debug("Looking for initrd properties... ");
877
878 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
879 if (!prop)
880 return;
881 start = of_read_number(prop, len/4);
882
883 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
884 if (!prop)
885 return;
886 end = of_read_number(prop, len/4);
887
888 __early_init_dt_declare_initrd(start, end);
889 phys_initrd_start = start;
890 phys_initrd_size = end - start;
891
892 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
893 (unsigned long long)start, (unsigned long long)end);
894 }
895 #else
early_init_dt_check_for_initrd(unsigned long node)896 static inline void early_init_dt_check_for_initrd(unsigned long node)
897 {
898 }
899 #endif /* CONFIG_BLK_DEV_INITRD */
900
901 #ifdef CONFIG_SERIAL_EARLYCON
902
early_init_dt_scan_chosen_stdout(void)903 int __init early_init_dt_scan_chosen_stdout(void)
904 {
905 int offset;
906 const char *p, *q, *options = NULL;
907 int l;
908 const struct earlycon_id **p_match;
909 const void *fdt = initial_boot_params;
910
911 offset = fdt_path_offset(fdt, "/chosen");
912 if (offset < 0)
913 offset = fdt_path_offset(fdt, "/chosen@0");
914 if (offset < 0)
915 return -ENOENT;
916
917 p = fdt_getprop(fdt, offset, "stdout-path", &l);
918 if (!p)
919 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
920 if (!p || !l)
921 return -ENOENT;
922
923 q = strchrnul(p, ':');
924 if (*q != '\0')
925 options = q + 1;
926 l = q - p;
927
928 /* Get the node specified by stdout-path */
929 offset = fdt_path_offset_namelen(fdt, p, l);
930 if (offset < 0) {
931 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
932 return 0;
933 }
934
935 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
936 p_match++) {
937 const struct earlycon_id *match = *p_match;
938
939 if (!match->compatible[0])
940 continue;
941
942 if (fdt_node_check_compatible(fdt, offset, match->compatible))
943 continue;
944
945 if (of_setup_earlycon(match, offset, options) == 0)
946 return 0;
947 }
948 return -ENODEV;
949 }
950 #endif
951
952 /**
953 * early_init_dt_scan_root - fetch the top level address and size cells
954 */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)955 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
956 int depth, void *data)
957 {
958 const __be32 *prop;
959
960 if (depth != 0)
961 return 0;
962
963 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
964 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
965
966 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
967 if (prop)
968 dt_root_size_cells = be32_to_cpup(prop);
969 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
970
971 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
972 if (prop)
973 dt_root_addr_cells = be32_to_cpup(prop);
974 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
975
976 /* break now */
977 return 1;
978 }
979
dt_mem_next_cell(int s,const __be32 ** cellp)980 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
981 {
982 const __be32 *p = *cellp;
983
984 *cellp = p + s;
985 return of_read_number(p, s);
986 }
987
988 /**
989 * early_init_dt_scan_memory - Look for and parse memory nodes
990 */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)991 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
992 int depth, void *data)
993 {
994 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
995 const __be32 *reg, *endp;
996 int l;
997 bool hotpluggable;
998
999 /* We are scanning "memory" nodes only */
1000 if (type == NULL || strcmp(type, "memory") != 0)
1001 return 0;
1002
1003 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1004 if (reg == NULL)
1005 reg = of_get_flat_dt_prop(node, "reg", &l);
1006 if (reg == NULL)
1007 return 0;
1008
1009 endp = reg + (l / sizeof(__be32));
1010 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1011
1012 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1013
1014 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1015 u64 base, size;
1016
1017 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1018 size = dt_mem_next_cell(dt_root_size_cells, ®);
1019
1020 if (size == 0)
1021 continue;
1022 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1023 (unsigned long long)size);
1024
1025 early_init_dt_add_memory_arch(base, size);
1026
1027 if (!hotpluggable)
1028 continue;
1029
1030 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1031 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1032 base, base + size);
1033 }
1034
1035 return 0;
1036 }
1037
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1038 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1039 int depth, void *data)
1040 {
1041 int l;
1042 const char *p;
1043 const void *rng_seed;
1044
1045 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1046
1047 if (depth != 1 || !data ||
1048 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1049 return 0;
1050
1051 early_init_dt_check_for_initrd(node);
1052
1053 /* Retrieve command line */
1054 p = of_get_flat_dt_prop(node, "bootargs", &l);
1055 if (p != NULL && l > 0)
1056 strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1057
1058 /*
1059 * CONFIG_CMDLINE is meant to be a default in case nothing else
1060 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1061 * is set in which case we override whatever was found earlier.
1062 */
1063 #ifdef CONFIG_CMDLINE
1064 #if defined(CONFIG_CMDLINE_EXTEND)
1065 strlcat(data, " ", COMMAND_LINE_SIZE);
1066 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1067 #elif defined(CONFIG_CMDLINE_FORCE)
1068 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069 #else
1070 /* No arguments from boot loader, use kernel's cmdl*/
1071 if (!((char *)data)[0])
1072 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1073 #endif
1074 #endif /* CONFIG_CMDLINE */
1075
1076 pr_debug("Command line is: %s\n", (char *)data);
1077
1078 rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1079 if (rng_seed && l > 0) {
1080 add_bootloader_randomness(rng_seed, l);
1081
1082 /* try to clear seed so it won't be found. */
1083 fdt_nop_property(initial_boot_params, node, "rng-seed");
1084
1085 /* update CRC check value */
1086 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1087 fdt_totalsize(initial_boot_params));
1088 }
1089
1090 /* break now */
1091 return 1;
1092 }
1093
1094 #ifndef MIN_MEMBLOCK_ADDR
1095 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1096 #endif
1097 #ifndef MAX_MEMBLOCK_ADDR
1098 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1099 #endif
1100
early_init_dt_add_memory_arch(u64 base,u64 size)1101 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1102 {
1103 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1104
1105 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1106 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1107 base, base + size);
1108 return;
1109 }
1110
1111 if (!PAGE_ALIGNED(base)) {
1112 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1113 base = PAGE_ALIGN(base);
1114 }
1115 size &= PAGE_MASK;
1116
1117 if (base > MAX_MEMBLOCK_ADDR) {
1118 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1119 base, base + size);
1120 return;
1121 }
1122
1123 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1124 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1125 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1126 size = MAX_MEMBLOCK_ADDR - base + 1;
1127 }
1128
1129 if (base + size < phys_offset) {
1130 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1131 base, base + size);
1132 return;
1133 }
1134 if (base < phys_offset) {
1135 pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1136 base, phys_offset);
1137 size -= phys_offset - base;
1138 base = phys_offset;
1139 }
1140 memblock_add(base, size);
1141 }
1142
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1143 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1144 {
1145 return memblock_mark_hotplug(base, size);
1146 }
1147
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1148 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1149 phys_addr_t size, bool nomap)
1150 {
1151 if (nomap) {
1152 /*
1153 * If the memory is already reserved (by another region), we
1154 * should not allow it to be marked nomap.
1155 */
1156 if (memblock_is_region_reserved(base, size))
1157 return -EBUSY;
1158
1159 return memblock_mark_nomap(base, size);
1160 }
1161 return memblock_reserve(base, size);
1162 }
1163
early_init_dt_alloc_memory_arch(u64 size,u64 align)1164 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1165 {
1166 void *ptr = memblock_alloc(size, align);
1167
1168 if (!ptr)
1169 panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1170 __func__, size, align);
1171
1172 return ptr;
1173 }
1174
early_init_dt_verify(void * params)1175 bool __init early_init_dt_verify(void *params)
1176 {
1177 if (!params)
1178 return false;
1179
1180 /* check device tree validity */
1181 if (fdt_check_header(params))
1182 return false;
1183
1184 /* Setup flat device-tree pointer */
1185 initial_boot_params = params;
1186 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1187 fdt_totalsize(initial_boot_params));
1188 return true;
1189 }
1190
1191
early_init_dt_scan_nodes(void)1192 void __init early_init_dt_scan_nodes(void)
1193 {
1194 int rc = 0;
1195
1196 /* Retrieve various information from the /chosen node */
1197 rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1198 if (!rc)
1199 pr_warn("No chosen node found, continuing without\n");
1200
1201 /* Initialize {size,address}-cells info */
1202 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1203
1204 /* Setup memory, calling early_init_dt_add_memory_arch */
1205 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1206 }
1207
early_init_dt_scan(void * params)1208 bool __init early_init_dt_scan(void *params)
1209 {
1210 bool status;
1211
1212 status = early_init_dt_verify(params);
1213 if (!status)
1214 return false;
1215
1216 early_init_dt_scan_nodes();
1217 return true;
1218 }
1219
1220 /**
1221 * unflatten_device_tree - create tree of device_nodes from flat blob
1222 *
1223 * unflattens the device-tree passed by the firmware, creating the
1224 * tree of struct device_node. It also fills the "name" and "type"
1225 * pointers of the nodes so the normal device-tree walking functions
1226 * can be used.
1227 */
unflatten_device_tree(void)1228 void __init unflatten_device_tree(void)
1229 {
1230 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1231 early_init_dt_alloc_memory_arch, false);
1232
1233 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1234 of_alias_scan(early_init_dt_alloc_memory_arch);
1235
1236 unittest_unflatten_overlay_base();
1237 }
1238
1239 /**
1240 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1241 *
1242 * Copies and unflattens the device-tree passed by the firmware, creating the
1243 * tree of struct device_node. It also fills the "name" and "type"
1244 * pointers of the nodes so the normal device-tree walking functions
1245 * can be used. This should only be used when the FDT memory has not been
1246 * reserved such is the case when the FDT is built-in to the kernel init
1247 * section. If the FDT memory is reserved already then unflatten_device_tree
1248 * should be used instead.
1249 */
unflatten_and_copy_device_tree(void)1250 void __init unflatten_and_copy_device_tree(void)
1251 {
1252 int size;
1253 void *dt;
1254
1255 if (!initial_boot_params) {
1256 pr_warn("No valid device tree found, continuing without\n");
1257 return;
1258 }
1259
1260 size = fdt_totalsize(initial_boot_params);
1261 dt = early_init_dt_alloc_memory_arch(size,
1262 roundup_pow_of_two(FDT_V17_SIZE));
1263
1264 if (dt) {
1265 memcpy(dt, initial_boot_params, size);
1266 initial_boot_params = dt;
1267 }
1268 unflatten_device_tree();
1269 }
1270
1271 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1272 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1273 struct bin_attribute *bin_attr,
1274 char *buf, loff_t off, size_t count)
1275 {
1276 memcpy(buf, initial_boot_params + off, count);
1277 return count;
1278 }
1279
of_fdt_raw_init(void)1280 static int __init of_fdt_raw_init(void)
1281 {
1282 static struct bin_attribute of_fdt_raw_attr =
1283 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1284
1285 if (!initial_boot_params)
1286 return 0;
1287
1288 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1289 fdt_totalsize(initial_boot_params))) {
1290 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1291 return 0;
1292 }
1293 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1294 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1295 }
1296 late_initcall(of_fdt_raw_init);
1297 #endif
1298
1299 #endif /* CONFIG_OF_EARLY_FLATTREE */
1300