• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/memblock.h>
15 #include <linux/mutex.h>
16 #include <linux/of.h>
17 #include <linux/of_fdt.h>
18 #include <linux/of_reserved_mem.h>
19 #include <linux/sizes.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/libfdt.h>
24 #include <linux/debugfs.h>
25 #include <linux/serial_core.h>
26 #include <linux/sysfs.h>
27 #include <linux/random.h>
28 
29 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31 
32 #include "of_private.h"
33 
34 /*
35  * of_fdt_limit_memory - limit the number of regions in the /memory node
36  * @limit: maximum entries
37  *
38  * Adjust the flattened device tree to have at most 'limit' number of
39  * memory entries in the /memory node. This function may be called
40  * any time after initial_boot_param is set.
41  */
of_fdt_limit_memory(int limit)42 void __init of_fdt_limit_memory(int limit)
43 {
44 	int memory;
45 	int len;
46 	const void *val;
47 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 	const __be32 *addr_prop;
50 	const __be32 *size_prop;
51 	int root_offset;
52 	int cell_size;
53 
54 	root_offset = fdt_path_offset(initial_boot_params, "/");
55 	if (root_offset < 0)
56 		return;
57 
58 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 				"#address-cells", NULL);
60 	if (addr_prop)
61 		nr_address_cells = fdt32_to_cpu(*addr_prop);
62 
63 	size_prop = fdt_getprop(initial_boot_params, root_offset,
64 				"#size-cells", NULL);
65 	if (size_prop)
66 		nr_size_cells = fdt32_to_cpu(*size_prop);
67 
68 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69 
70 	memory = fdt_path_offset(initial_boot_params, "/memory");
71 	if (memory > 0) {
72 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 		if (len > limit*cell_size) {
74 			len = limit*cell_size;
75 			pr_debug("Limiting number of entries to %d\n", limit);
76 			fdt_setprop(initial_boot_params, memory, "reg", val,
77 					len);
78 		}
79 	}
80 }
81 
of_fdt_device_is_available(const void * blob,unsigned long node)82 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
83 {
84 	const char *status = fdt_getprop(blob, node, "status", NULL);
85 
86 	if (!status)
87 		return true;
88 
89 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
90 		return true;
91 
92 	return false;
93 }
94 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)95 static void *unflatten_dt_alloc(void **mem, unsigned long size,
96 				       unsigned long align)
97 {
98 	void *res;
99 
100 	*mem = PTR_ALIGN(*mem, align);
101 	res = *mem;
102 	*mem += size;
103 
104 	return res;
105 }
106 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)107 static void populate_properties(const void *blob,
108 				int offset,
109 				void **mem,
110 				struct device_node *np,
111 				const char *nodename,
112 				bool dryrun)
113 {
114 	struct property *pp, **pprev = NULL;
115 	int cur;
116 	bool has_name = false;
117 
118 	pprev = &np->properties;
119 	for (cur = fdt_first_property_offset(blob, offset);
120 	     cur >= 0;
121 	     cur = fdt_next_property_offset(blob, cur)) {
122 		const __be32 *val;
123 		const char *pname;
124 		u32 sz;
125 
126 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
127 		if (!val) {
128 			pr_warn("Cannot locate property at 0x%x\n", cur);
129 			continue;
130 		}
131 
132 		if (!pname) {
133 			pr_warn("Cannot find property name at 0x%x\n", cur);
134 			continue;
135 		}
136 
137 		if (!strcmp(pname, "name"))
138 			has_name = true;
139 
140 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
141 					__alignof__(struct property));
142 		if (dryrun)
143 			continue;
144 
145 		/* We accept flattened tree phandles either in
146 		 * ePAPR-style "phandle" properties, or the
147 		 * legacy "linux,phandle" properties.  If both
148 		 * appear and have different values, things
149 		 * will get weird. Don't do that.
150 		 */
151 		if (!strcmp(pname, "phandle") ||
152 		    !strcmp(pname, "linux,phandle")) {
153 			if (!np->phandle)
154 				np->phandle = be32_to_cpup(val);
155 		}
156 
157 		/* And we process the "ibm,phandle" property
158 		 * used in pSeries dynamic device tree
159 		 * stuff
160 		 */
161 		if (!strcmp(pname, "ibm,phandle"))
162 			np->phandle = be32_to_cpup(val);
163 
164 		pp->name   = (char *)pname;
165 		pp->length = sz;
166 		pp->value  = (__be32 *)val;
167 		*pprev     = pp;
168 		pprev      = &pp->next;
169 	}
170 
171 	/* With version 0x10 we may not have the name property,
172 	 * recreate it here from the unit name if absent
173 	 */
174 	if (!has_name) {
175 		const char *p = nodename, *ps = p, *pa = NULL;
176 		int len;
177 
178 		while (*p) {
179 			if ((*p) == '@')
180 				pa = p;
181 			else if ((*p) == '/')
182 				ps = p + 1;
183 			p++;
184 		}
185 
186 		if (pa < ps)
187 			pa = p;
188 		len = (pa - ps) + 1;
189 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
190 					__alignof__(struct property));
191 		if (!dryrun) {
192 			pp->name   = "name";
193 			pp->length = len;
194 			pp->value  = pp + 1;
195 			*pprev     = pp;
196 			pprev      = &pp->next;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 
204 	if (!dryrun)
205 		*pprev = NULL;
206 }
207 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)208 static bool populate_node(const void *blob,
209 			  int offset,
210 			  void **mem,
211 			  struct device_node *dad,
212 			  struct device_node **pnp,
213 			  bool dryrun)
214 {
215 	struct device_node *np;
216 	const char *pathp;
217 	unsigned int l, allocl;
218 
219 	pathp = fdt_get_name(blob, offset, &l);
220 	if (!pathp) {
221 		*pnp = NULL;
222 		return false;
223 	}
224 
225 	allocl = ++l;
226 
227 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
228 				__alignof__(struct device_node));
229 	if (!dryrun) {
230 		char *fn;
231 		of_node_init(np);
232 		np->full_name = fn = ((char *)np) + sizeof(*np);
233 
234 		memcpy(fn, pathp, l);
235 
236 		if (dad != NULL) {
237 			np->parent = dad;
238 			np->sibling = dad->child;
239 			dad->child = np;
240 		}
241 	}
242 
243 	populate_properties(blob, offset, mem, np, pathp, dryrun);
244 	if (!dryrun) {
245 		np->name = of_get_property(np, "name", NULL);
246 		if (!np->name)
247 			np->name = "<NULL>";
248 	}
249 
250 	*pnp = np;
251 	return true;
252 }
253 
reverse_nodes(struct device_node * parent)254 static void reverse_nodes(struct device_node *parent)
255 {
256 	struct device_node *child, *next;
257 
258 	/* In-depth first */
259 	child = parent->child;
260 	while (child) {
261 		reverse_nodes(child);
262 
263 		child = child->sibling;
264 	}
265 
266 	/* Reverse the nodes in the child list */
267 	child = parent->child;
268 	parent->child = NULL;
269 	while (child) {
270 		next = child->sibling;
271 
272 		child->sibling = parent->child;
273 		parent->child = child;
274 		child = next;
275 	}
276 }
277 
278 /**
279  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
280  * @blob: The parent device tree blob
281  * @mem: Memory chunk to use for allocating device nodes and properties
282  * @dad: Parent struct device_node
283  * @nodepp: The device_node tree created by the call
284  *
285  * Return: The size of unflattened device tree or error code
286  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)287 static int unflatten_dt_nodes(const void *blob,
288 			      void *mem,
289 			      struct device_node *dad,
290 			      struct device_node **nodepp)
291 {
292 	struct device_node *root;
293 	int offset = 0, depth = 0, initial_depth = 0;
294 #define FDT_MAX_DEPTH	64
295 	struct device_node *nps[FDT_MAX_DEPTH];
296 	void *base = mem;
297 	bool dryrun = !base;
298 
299 	if (nodepp)
300 		*nodepp = NULL;
301 
302 	/*
303 	 * We're unflattening device sub-tree if @dad is valid. There are
304 	 * possibly multiple nodes in the first level of depth. We need
305 	 * set @depth to 1 to make fdt_next_node() happy as it bails
306 	 * immediately when negative @depth is found. Otherwise, the device
307 	 * nodes except the first one won't be unflattened successfully.
308 	 */
309 	if (dad)
310 		depth = initial_depth = 1;
311 
312 	root = dad;
313 	nps[depth] = dad;
314 
315 	for (offset = 0;
316 	     offset >= 0 && depth >= initial_depth;
317 	     offset = fdt_next_node(blob, offset, &depth)) {
318 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
319 			continue;
320 
321 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
322 		    !of_fdt_device_is_available(blob, offset))
323 			continue;
324 
325 		if (!populate_node(blob, offset, &mem, nps[depth],
326 				   &nps[depth+1], dryrun))
327 			return mem - base;
328 
329 		if (!dryrun && nodepp && !*nodepp)
330 			*nodepp = nps[depth+1];
331 		if (!dryrun && !root)
332 			root = nps[depth+1];
333 	}
334 
335 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
336 		pr_err("Error %d processing FDT\n", offset);
337 		return -EINVAL;
338 	}
339 
340 	/*
341 	 * Reverse the child list. Some drivers assumes node order matches .dts
342 	 * node order
343 	 */
344 	if (!dryrun)
345 		reverse_nodes(root);
346 
347 	return mem - base;
348 }
349 
350 /**
351  * __unflatten_device_tree - create tree of device_nodes from flat blob
352  * @blob: The blob to expand
353  * @dad: Parent device node
354  * @mynodes: The device_node tree created by the call
355  * @dt_alloc: An allocator that provides a virtual address to memory
356  * for the resulting tree
357  * @detached: if true set OF_DETACHED on @mynodes
358  *
359  * unflattens a device-tree, creating the tree of struct device_node. It also
360  * fills the "name" and "type" pointers of the nodes so the normal device-tree
361  * walking functions can be used.
362  *
363  * Return: NULL on failure or the memory chunk containing the unflattened
364  * device tree on success.
365  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)366 void *__unflatten_device_tree(const void *blob,
367 			      struct device_node *dad,
368 			      struct device_node **mynodes,
369 			      void *(*dt_alloc)(u64 size, u64 align),
370 			      bool detached)
371 {
372 	int size;
373 	void *mem;
374 
375 	pr_debug(" -> unflatten_device_tree()\n");
376 
377 	if (!blob) {
378 		pr_debug("No device tree pointer\n");
379 		return NULL;
380 	}
381 
382 	pr_debug("Unflattening device tree:\n");
383 	pr_debug("magic: %08x\n", fdt_magic(blob));
384 	pr_debug("size: %08x\n", fdt_totalsize(blob));
385 	pr_debug("version: %08x\n", fdt_version(blob));
386 
387 	if (fdt_check_header(blob)) {
388 		pr_err("Invalid device tree blob header\n");
389 		return NULL;
390 	}
391 
392 	/* First pass, scan for size */
393 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
394 	if (size < 0)
395 		return NULL;
396 
397 	size = ALIGN(size, 4);
398 	pr_debug("  size is %d, allocating...\n", size);
399 
400 	/* Allocate memory for the expanded device tree */
401 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
402 	if (!mem)
403 		return NULL;
404 
405 	memset(mem, 0, size);
406 
407 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
408 
409 	pr_debug("  unflattening %p...\n", mem);
410 
411 	/* Second pass, do actual unflattening */
412 	unflatten_dt_nodes(blob, mem, dad, mynodes);
413 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
414 		pr_warn("End of tree marker overwritten: %08x\n",
415 			be32_to_cpup(mem + size));
416 
417 	if (detached && mynodes) {
418 		of_node_set_flag(*mynodes, OF_DETACHED);
419 		pr_debug("unflattened tree is detached\n");
420 	}
421 
422 	pr_debug(" <- unflatten_device_tree()\n");
423 	return mem;
424 }
425 
kernel_tree_alloc(u64 size,u64 align)426 static void *kernel_tree_alloc(u64 size, u64 align)
427 {
428 	return kzalloc(size, GFP_KERNEL);
429 }
430 
431 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
432 
433 /**
434  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
435  * @blob: Flat device tree blob
436  * @dad: Parent device node
437  * @mynodes: The device tree created by the call
438  *
439  * unflattens the device-tree passed by the firmware, creating the
440  * tree of struct device_node. It also fills the "name" and "type"
441  * pointers of the nodes so the normal device-tree walking functions
442  * can be used.
443  *
444  * Return: NULL on failure or the memory chunk containing the unflattened
445  * device tree on success.
446  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)447 void *of_fdt_unflatten_tree(const unsigned long *blob,
448 			    struct device_node *dad,
449 			    struct device_node **mynodes)
450 {
451 	void *mem;
452 
453 	mutex_lock(&of_fdt_unflatten_mutex);
454 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
455 				      true);
456 	mutex_unlock(&of_fdt_unflatten_mutex);
457 
458 	return mem;
459 }
460 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
461 
462 /* Everything below here references initial_boot_params directly. */
463 int __initdata dt_root_addr_cells;
464 int __initdata dt_root_size_cells;
465 
466 void *initial_boot_params __ro_after_init;
467 
468 #ifdef CONFIG_OF_EARLY_FLATTREE
469 
470 static u32 of_fdt_crc32;
471 
472 /**
473  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
474  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)475 static int __init __reserved_mem_reserve_reg(unsigned long node,
476 					     const char *uname)
477 {
478 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
479 	phys_addr_t base, size;
480 	int len;
481 	const __be32 *prop;
482 	int first = 1;
483 	bool nomap;
484 
485 	prop = of_get_flat_dt_prop(node, "reg", &len);
486 	if (!prop)
487 		return -ENOENT;
488 
489 	if (len && len % t_len != 0) {
490 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
491 		       uname);
492 		return -EINVAL;
493 	}
494 
495 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
496 
497 	while (len >= t_len) {
498 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
499 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
500 
501 		if (size &&
502 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
503 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
504 				uname, &base, (unsigned long)(size / SZ_1M));
505 		else
506 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
507 				uname, &base, (unsigned long)(size / SZ_1M));
508 
509 		len -= t_len;
510 		if (first) {
511 			fdt_reserved_mem_save_node(node, uname, base, size);
512 			first = 0;
513 		}
514 	}
515 	return 0;
516 }
517 
518 /**
519  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
520  * in /reserved-memory matches the values supported by the current implementation,
521  * also check if ranges property has been provided
522  */
__reserved_mem_check_root(unsigned long node)523 static int __init __reserved_mem_check_root(unsigned long node)
524 {
525 	const __be32 *prop;
526 
527 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
528 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
529 		return -EINVAL;
530 
531 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
532 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
533 		return -EINVAL;
534 
535 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
536 	if (!prop)
537 		return -EINVAL;
538 	return 0;
539 }
540 
541 /**
542  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
543  */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)544 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
545 					  int depth, void *data)
546 {
547 	static int found;
548 	int err;
549 
550 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
551 		if (__reserved_mem_check_root(node) != 0) {
552 			pr_err("Reserved memory: unsupported node format, ignoring\n");
553 			/* break scan */
554 			return 1;
555 		}
556 		found = 1;
557 		/* scan next node */
558 		return 0;
559 	} else if (!found) {
560 		/* scan next node */
561 		return 0;
562 	} else if (found && depth < 2) {
563 		/* scanning of /reserved-memory has been finished */
564 		return 1;
565 	}
566 
567 	if (!of_fdt_device_is_available(initial_boot_params, node))
568 		return 0;
569 
570 	err = __reserved_mem_reserve_reg(node, uname);
571 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
572 		fdt_reserved_mem_save_node(node, uname, 0, 0);
573 
574 	/* scan next node */
575 	return 0;
576 }
577 
578 /**
579  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
580  *
581  * This function grabs memory from early allocator for device exclusive use
582  * defined in device tree structures. It should be called by arch specific code
583  * once the early allocator (i.e. memblock) has been fully activated.
584  */
early_init_fdt_scan_reserved_mem(void)585 void __init early_init_fdt_scan_reserved_mem(void)
586 {
587 	int n;
588 	u64 base, size;
589 
590 	if (!initial_boot_params)
591 		return;
592 
593 	/* Process header /memreserve/ fields */
594 	for (n = 0; ; n++) {
595 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
596 		if (!size)
597 			break;
598 		early_init_dt_reserve_memory_arch(base, size, false);
599 	}
600 
601 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
602 	fdt_init_reserved_mem();
603 }
604 
605 /**
606  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
607  */
early_init_fdt_reserve_self(void)608 void __init early_init_fdt_reserve_self(void)
609 {
610 	if (!initial_boot_params)
611 		return;
612 
613 	/* Reserve the dtb region */
614 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
615 					  fdt_totalsize(initial_boot_params),
616 					  false);
617 }
618 
619 /**
620  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
621  * @it: callback function
622  * @data: context data pointer
623  *
624  * This function is used to scan the flattened device-tree, it is
625  * used to extract the memory information at boot before we can
626  * unflatten the tree
627  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)628 int __init of_scan_flat_dt(int (*it)(unsigned long node,
629 				     const char *uname, int depth,
630 				     void *data),
631 			   void *data)
632 {
633 	const void *blob = initial_boot_params;
634 	const char *pathp;
635 	int offset, rc = 0, depth = -1;
636 
637 	if (!blob)
638 		return 0;
639 
640 	for (offset = fdt_next_node(blob, -1, &depth);
641 	     offset >= 0 && depth >= 0 && !rc;
642 	     offset = fdt_next_node(blob, offset, &depth)) {
643 
644 		pathp = fdt_get_name(blob, offset, NULL);
645 		rc = it(offset, pathp, depth, data);
646 	}
647 	return rc;
648 }
649 
650 /**
651  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
652  * @it: callback function
653  * @data: context data pointer
654  *
655  * This function is used to scan sub-nodes of a node.
656  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)657 int __init of_scan_flat_dt_subnodes(unsigned long parent,
658 				    int (*it)(unsigned long node,
659 					      const char *uname,
660 					      void *data),
661 				    void *data)
662 {
663 	const void *blob = initial_boot_params;
664 	int node;
665 
666 	fdt_for_each_subnode(node, blob, parent) {
667 		const char *pathp;
668 		int rc;
669 
670 		pathp = fdt_get_name(blob, node, NULL);
671 		rc = it(node, pathp, data);
672 		if (rc)
673 			return rc;
674 	}
675 	return 0;
676 }
677 
678 /**
679  * of_get_flat_dt_subnode_by_name - get the subnode by given name
680  *
681  * @node: the parent node
682  * @uname: the name of subnode
683  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
684  */
685 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)686 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
687 {
688 	return fdt_subnode_offset(initial_boot_params, node, uname);
689 }
690 
691 /**
692  * of_get_flat_dt_root - find the root node in the flat blob
693  */
of_get_flat_dt_root(void)694 unsigned long __init of_get_flat_dt_root(void)
695 {
696 	return 0;
697 }
698 
699 /**
700  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
701  *
702  * This function can be used within scan_flattened_dt callback to get
703  * access to properties
704  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)705 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
706 				       int *size)
707 {
708 	return fdt_getprop(initial_boot_params, node, name, size);
709 }
710 
711 /**
712  * of_fdt_is_compatible - Return true if given node from the given blob has
713  * compat in its compatible list
714  * @blob: A device tree blob
715  * @node: node to test
716  * @compat: compatible string to compare with compatible list.
717  *
718  * Return: a non-zero value on match with smaller values returned for more
719  * specific compatible values.
720  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)721 static int of_fdt_is_compatible(const void *blob,
722 		      unsigned long node, const char *compat)
723 {
724 	const char *cp;
725 	int cplen;
726 	unsigned long l, score = 0;
727 
728 	cp = fdt_getprop(blob, node, "compatible", &cplen);
729 	if (cp == NULL)
730 		return 0;
731 	while (cplen > 0) {
732 		score++;
733 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
734 			return score;
735 		l = strlen(cp) + 1;
736 		cp += l;
737 		cplen -= l;
738 	}
739 
740 	return 0;
741 }
742 
743 /**
744  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
745  * @node: node to test
746  * @compat: compatible string to compare with compatible list.
747  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)748 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
749 {
750 	return of_fdt_is_compatible(initial_boot_params, node, compat);
751 }
752 
753 /**
754  * of_flat_dt_match - Return true if node matches a list of compatible values
755  */
of_flat_dt_match(unsigned long node,const char * const * compat)756 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
757 {
758 	unsigned int tmp, score = 0;
759 
760 	if (!compat)
761 		return 0;
762 
763 	while (*compat) {
764 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
765 		if (tmp && (score == 0 || (tmp < score)))
766 			score = tmp;
767 		compat++;
768 	}
769 
770 	return score;
771 }
772 
773 /**
774  * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
775  */
of_get_flat_dt_phandle(unsigned long node)776 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
777 {
778 	return fdt_get_phandle(initial_boot_params, node);
779 }
780 
781 struct fdt_scan_status {
782 	const char *name;
783 	int namelen;
784 	int depth;
785 	int found;
786 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
787 	void *data;
788 };
789 
of_flat_dt_get_machine_name(void)790 const char * __init of_flat_dt_get_machine_name(void)
791 {
792 	const char *name;
793 	unsigned long dt_root = of_get_flat_dt_root();
794 
795 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
796 	if (!name)
797 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
798 	return name;
799 }
800 
801 /**
802  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
803  *
804  * @default_match: A machine specific ptr to return in case of no match.
805  * @get_next_compat: callback function to return next compatible match table.
806  *
807  * Iterate through machine match tables to find the best match for the machine
808  * compatible string in the FDT.
809  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))810 const void * __init of_flat_dt_match_machine(const void *default_match,
811 		const void * (*get_next_compat)(const char * const**))
812 {
813 	const void *data = NULL;
814 	const void *best_data = default_match;
815 	const char *const *compat;
816 	unsigned long dt_root;
817 	unsigned int best_score = ~1, score = 0;
818 
819 	dt_root = of_get_flat_dt_root();
820 	while ((data = get_next_compat(&compat))) {
821 		score = of_flat_dt_match(dt_root, compat);
822 		if (score > 0 && score < best_score) {
823 			best_data = data;
824 			best_score = score;
825 		}
826 	}
827 	if (!best_data) {
828 		const char *prop;
829 		int size;
830 
831 		pr_err("\n unrecognized device tree list:\n[ ");
832 
833 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
834 		if (prop) {
835 			while (size > 0) {
836 				printk("'%s' ", prop);
837 				size -= strlen(prop) + 1;
838 				prop += strlen(prop) + 1;
839 			}
840 		}
841 		printk("]\n\n");
842 		return NULL;
843 	}
844 
845 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
846 
847 	return best_data;
848 }
849 
850 #ifdef CONFIG_BLK_DEV_INITRD
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)851 static void __early_init_dt_declare_initrd(unsigned long start,
852 					   unsigned long end)
853 {
854 	/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
855 	 * enabled since __va() is called too early. ARM64 does make use
856 	 * of phys_initrd_start/phys_initrd_size so we can skip this
857 	 * conversion.
858 	 */
859 	if (!IS_ENABLED(CONFIG_ARM64)) {
860 		initrd_start = (unsigned long)__va(start);
861 		initrd_end = (unsigned long)__va(end);
862 		initrd_below_start_ok = 1;
863 	}
864 }
865 
866 /**
867  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
868  * @node: reference to node containing initrd location ('chosen')
869  */
early_init_dt_check_for_initrd(unsigned long node)870 static void __init early_init_dt_check_for_initrd(unsigned long node)
871 {
872 	u64 start, end;
873 	int len;
874 	const __be32 *prop;
875 
876 	pr_debug("Looking for initrd properties... ");
877 
878 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
879 	if (!prop)
880 		return;
881 	start = of_read_number(prop, len/4);
882 
883 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
884 	if (!prop)
885 		return;
886 	end = of_read_number(prop, len/4);
887 
888 	__early_init_dt_declare_initrd(start, end);
889 	phys_initrd_start = start;
890 	phys_initrd_size = end - start;
891 
892 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
893 		 (unsigned long long)start, (unsigned long long)end);
894 }
895 #else
early_init_dt_check_for_initrd(unsigned long node)896 static inline void early_init_dt_check_for_initrd(unsigned long node)
897 {
898 }
899 #endif /* CONFIG_BLK_DEV_INITRD */
900 
901 #ifdef CONFIG_SERIAL_EARLYCON
902 
early_init_dt_scan_chosen_stdout(void)903 int __init early_init_dt_scan_chosen_stdout(void)
904 {
905 	int offset;
906 	const char *p, *q, *options = NULL;
907 	int l;
908 	const struct earlycon_id **p_match;
909 	const void *fdt = initial_boot_params;
910 
911 	offset = fdt_path_offset(fdt, "/chosen");
912 	if (offset < 0)
913 		offset = fdt_path_offset(fdt, "/chosen@0");
914 	if (offset < 0)
915 		return -ENOENT;
916 
917 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
918 	if (!p)
919 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
920 	if (!p || !l)
921 		return -ENOENT;
922 
923 	q = strchrnul(p, ':');
924 	if (*q != '\0')
925 		options = q + 1;
926 	l = q - p;
927 
928 	/* Get the node specified by stdout-path */
929 	offset = fdt_path_offset_namelen(fdt, p, l);
930 	if (offset < 0) {
931 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
932 		return 0;
933 	}
934 
935 	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
936 	     p_match++) {
937 		const struct earlycon_id *match = *p_match;
938 
939 		if (!match->compatible[0])
940 			continue;
941 
942 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
943 			continue;
944 
945 		if (of_setup_earlycon(match, offset, options) == 0)
946 			return 0;
947 	}
948 	return -ENODEV;
949 }
950 #endif
951 
952 /**
953  * early_init_dt_scan_root - fetch the top level address and size cells
954  */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)955 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
956 				   int depth, void *data)
957 {
958 	const __be32 *prop;
959 
960 	if (depth != 0)
961 		return 0;
962 
963 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
964 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
965 
966 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
967 	if (prop)
968 		dt_root_size_cells = be32_to_cpup(prop);
969 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
970 
971 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
972 	if (prop)
973 		dt_root_addr_cells = be32_to_cpup(prop);
974 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
975 
976 	/* break now */
977 	return 1;
978 }
979 
dt_mem_next_cell(int s,const __be32 ** cellp)980 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
981 {
982 	const __be32 *p = *cellp;
983 
984 	*cellp = p + s;
985 	return of_read_number(p, s);
986 }
987 
988 /**
989  * early_init_dt_scan_memory - Look for and parse memory nodes
990  */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)991 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
992 				     int depth, void *data)
993 {
994 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
995 	const __be32 *reg, *endp;
996 	int l;
997 	bool hotpluggable;
998 
999 	/* We are scanning "memory" nodes only */
1000 	if (type == NULL || strcmp(type, "memory") != 0)
1001 		return 0;
1002 
1003 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1004 	if (reg == NULL)
1005 		reg = of_get_flat_dt_prop(node, "reg", &l);
1006 	if (reg == NULL)
1007 		return 0;
1008 
1009 	endp = reg + (l / sizeof(__be32));
1010 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1011 
1012 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1013 
1014 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1015 		u64 base, size;
1016 
1017 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1018 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1019 
1020 		if (size == 0)
1021 			continue;
1022 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1023 		    (unsigned long long)size);
1024 
1025 		early_init_dt_add_memory_arch(base, size);
1026 
1027 		if (!hotpluggable)
1028 			continue;
1029 
1030 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1031 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1032 				base, base + size);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1038 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1039 				     int depth, void *data)
1040 {
1041 	int l;
1042 	const char *p;
1043 	const void *rng_seed;
1044 
1045 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1046 
1047 	if (depth != 1 || !data ||
1048 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1049 		return 0;
1050 
1051 	early_init_dt_check_for_initrd(node);
1052 
1053 	/* Retrieve command line */
1054 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1055 	if (p != NULL && l > 0)
1056 		strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
1057 
1058 	/*
1059 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1060 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1061 	 * is set in which case we override whatever was found earlier.
1062 	 */
1063 #ifdef CONFIG_CMDLINE
1064 #if defined(CONFIG_CMDLINE_EXTEND)
1065 	strlcat(data, " ", COMMAND_LINE_SIZE);
1066 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1067 #elif defined(CONFIG_CMDLINE_FORCE)
1068 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1069 #else
1070 	/* No arguments from boot loader, use kernel's  cmdl*/
1071 	if (!((char *)data)[0])
1072 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1073 #endif
1074 #endif /* CONFIG_CMDLINE */
1075 
1076 	pr_debug("Command line is: %s\n", (char *)data);
1077 
1078 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1079 	if (rng_seed && l > 0) {
1080 		add_bootloader_randomness(rng_seed, l);
1081 
1082 		/* try to clear seed so it won't be found. */
1083 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1084 
1085 		/* update CRC check value */
1086 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1087 				fdt_totalsize(initial_boot_params));
1088 	}
1089 
1090 	/* break now */
1091 	return 1;
1092 }
1093 
1094 #ifndef MIN_MEMBLOCK_ADDR
1095 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1096 #endif
1097 #ifndef MAX_MEMBLOCK_ADDR
1098 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1099 #endif
1100 
early_init_dt_add_memory_arch(u64 base,u64 size)1101 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1102 {
1103 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1104 
1105 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1106 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1107 			base, base + size);
1108 		return;
1109 	}
1110 
1111 	if (!PAGE_ALIGNED(base)) {
1112 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1113 		base = PAGE_ALIGN(base);
1114 	}
1115 	size &= PAGE_MASK;
1116 
1117 	if (base > MAX_MEMBLOCK_ADDR) {
1118 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1119 			base, base + size);
1120 		return;
1121 	}
1122 
1123 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1124 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1125 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1126 		size = MAX_MEMBLOCK_ADDR - base + 1;
1127 	}
1128 
1129 	if (base + size < phys_offset) {
1130 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1131 			base, base + size);
1132 		return;
1133 	}
1134 	if (base < phys_offset) {
1135 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1136 			base, phys_offset);
1137 		size -= phys_offset - base;
1138 		base = phys_offset;
1139 	}
1140 	memblock_add(base, size);
1141 }
1142 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1143 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1144 {
1145 	return memblock_mark_hotplug(base, size);
1146 }
1147 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1148 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1149 					phys_addr_t size, bool nomap)
1150 {
1151 	if (nomap) {
1152 		/*
1153 		 * If the memory is already reserved (by another region), we
1154 		 * should not allow it to be marked nomap.
1155 		 */
1156 		if (memblock_is_region_reserved(base, size))
1157 			return -EBUSY;
1158 
1159 		return memblock_mark_nomap(base, size);
1160 	}
1161 	return memblock_reserve(base, size);
1162 }
1163 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1164 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1165 {
1166 	void *ptr = memblock_alloc(size, align);
1167 
1168 	if (!ptr)
1169 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1170 		      __func__, size, align);
1171 
1172 	return ptr;
1173 }
1174 
early_init_dt_verify(void * params)1175 bool __init early_init_dt_verify(void *params)
1176 {
1177 	if (!params)
1178 		return false;
1179 
1180 	/* check device tree validity */
1181 	if (fdt_check_header(params))
1182 		return false;
1183 
1184 	/* Setup flat device-tree pointer */
1185 	initial_boot_params = params;
1186 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1187 				fdt_totalsize(initial_boot_params));
1188 	return true;
1189 }
1190 
1191 
early_init_dt_scan_nodes(void)1192 void __init early_init_dt_scan_nodes(void)
1193 {
1194 	int rc = 0;
1195 
1196 	/* Retrieve various information from the /chosen node */
1197 	rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1198 	if (!rc)
1199 		pr_warn("No chosen node found, continuing without\n");
1200 
1201 	/* Initialize {size,address}-cells info */
1202 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1203 
1204 	/* Setup memory, calling early_init_dt_add_memory_arch */
1205 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1206 }
1207 
early_init_dt_scan(void * params)1208 bool __init early_init_dt_scan(void *params)
1209 {
1210 	bool status;
1211 
1212 	status = early_init_dt_verify(params);
1213 	if (!status)
1214 		return false;
1215 
1216 	early_init_dt_scan_nodes();
1217 	return true;
1218 }
1219 
1220 /**
1221  * unflatten_device_tree - create tree of device_nodes from flat blob
1222  *
1223  * unflattens the device-tree passed by the firmware, creating the
1224  * tree of struct device_node. It also fills the "name" and "type"
1225  * pointers of the nodes so the normal device-tree walking functions
1226  * can be used.
1227  */
unflatten_device_tree(void)1228 void __init unflatten_device_tree(void)
1229 {
1230 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1231 				early_init_dt_alloc_memory_arch, false);
1232 
1233 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1234 	of_alias_scan(early_init_dt_alloc_memory_arch);
1235 
1236 	unittest_unflatten_overlay_base();
1237 }
1238 
1239 /**
1240  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1241  *
1242  * Copies and unflattens the device-tree passed by the firmware, creating the
1243  * tree of struct device_node. It also fills the "name" and "type"
1244  * pointers of the nodes so the normal device-tree walking functions
1245  * can be used. This should only be used when the FDT memory has not been
1246  * reserved such is the case when the FDT is built-in to the kernel init
1247  * section. If the FDT memory is reserved already then unflatten_device_tree
1248  * should be used instead.
1249  */
unflatten_and_copy_device_tree(void)1250 void __init unflatten_and_copy_device_tree(void)
1251 {
1252 	int size;
1253 	void *dt;
1254 
1255 	if (!initial_boot_params) {
1256 		pr_warn("No valid device tree found, continuing without\n");
1257 		return;
1258 	}
1259 
1260 	size = fdt_totalsize(initial_boot_params);
1261 	dt = early_init_dt_alloc_memory_arch(size,
1262 					     roundup_pow_of_two(FDT_V17_SIZE));
1263 
1264 	if (dt) {
1265 		memcpy(dt, initial_boot_params, size);
1266 		initial_boot_params = dt;
1267 	}
1268 	unflatten_device_tree();
1269 }
1270 
1271 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1272 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1273 			       struct bin_attribute *bin_attr,
1274 			       char *buf, loff_t off, size_t count)
1275 {
1276 	memcpy(buf, initial_boot_params + off, count);
1277 	return count;
1278 }
1279 
of_fdt_raw_init(void)1280 static int __init of_fdt_raw_init(void)
1281 {
1282 	static struct bin_attribute of_fdt_raw_attr =
1283 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1284 
1285 	if (!initial_boot_params)
1286 		return 0;
1287 
1288 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1289 				     fdt_totalsize(initial_boot_params))) {
1290 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1291 		return 0;
1292 	}
1293 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1294 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1295 }
1296 late_initcall(of_fdt_raw_init);
1297 #endif
1298 
1299 #endif /* CONFIG_OF_EARLY_FLATTREE */
1300