1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * drivers/of/property.c - Procedures for accessing and interpreting
4 * Devicetree properties and graphs.
5 *
6 * Initially created by copying procedures from drivers/of/base.c. This
7 * file contains the OF property as well as the OF graph interface
8 * functions.
9 *
10 * Paul Mackerras August 1996.
11 * Copyright (C) 1996-2005 Paul Mackerras.
12 *
13 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
14 * {engebret|bergner}@us.ibm.com
15 *
16 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
17 *
18 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
19 * Grant Likely.
20 */
21
22 #define pr_fmt(fmt) "OF: " fmt
23
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/string.h>
28 #include <linux/moduleparam.h>
29
30 #include "of_private.h"
31
32 /**
33 * of_graph_is_present() - check graph's presence
34 * @node: pointer to device_node containing graph port
35 *
36 * Return: True if @node has a port or ports (with a port) sub-node,
37 * false otherwise.
38 */
of_graph_is_present(const struct device_node * node)39 bool of_graph_is_present(const struct device_node *node)
40 {
41 struct device_node *ports, *port;
42
43 ports = of_get_child_by_name(node, "ports");
44 if (ports)
45 node = ports;
46
47 port = of_get_child_by_name(node, "port");
48 of_node_put(ports);
49 of_node_put(port);
50
51 return !!port;
52 }
53 EXPORT_SYMBOL(of_graph_is_present);
54
55 /**
56 * of_property_count_elems_of_size - Count the number of elements in a property
57 *
58 * @np: device node from which the property value is to be read.
59 * @propname: name of the property to be searched.
60 * @elem_size: size of the individual element
61 *
62 * Search for a property in a device node and count the number of elements of
63 * size elem_size in it.
64 *
65 * Return: The number of elements on sucess, -EINVAL if the property does not
66 * exist or its length does not match a multiple of elem_size and -ENODATA if
67 * the property does not have a value.
68 */
of_property_count_elems_of_size(const struct device_node * np,const char * propname,int elem_size)69 int of_property_count_elems_of_size(const struct device_node *np,
70 const char *propname, int elem_size)
71 {
72 struct property *prop = of_find_property(np, propname, NULL);
73
74 if (!prop)
75 return -EINVAL;
76 if (!prop->value)
77 return -ENODATA;
78
79 if (prop->length % elem_size != 0) {
80 pr_err("size of %s in node %pOF is not a multiple of %d\n",
81 propname, np, elem_size);
82 return -EINVAL;
83 }
84
85 return prop->length / elem_size;
86 }
87 EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
88
89 /**
90 * of_find_property_value_of_size
91 *
92 * @np: device node from which the property value is to be read.
93 * @propname: name of the property to be searched.
94 * @min: minimum allowed length of property value
95 * @max: maximum allowed length of property value (0 means unlimited)
96 * @len: if !=NULL, actual length is written to here
97 *
98 * Search for a property in a device node and valid the requested size.
99 *
100 * Return: The property value on success, -EINVAL if the property does not
101 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
102 * property data is too small or too large.
103 *
104 */
of_find_property_value_of_size(const struct device_node * np,const char * propname,u32 min,u32 max,size_t * len)105 static void *of_find_property_value_of_size(const struct device_node *np,
106 const char *propname, u32 min, u32 max, size_t *len)
107 {
108 struct property *prop = of_find_property(np, propname, NULL);
109
110 if (!prop)
111 return ERR_PTR(-EINVAL);
112 if (!prop->value)
113 return ERR_PTR(-ENODATA);
114 if (prop->length < min)
115 return ERR_PTR(-EOVERFLOW);
116 if (max && prop->length > max)
117 return ERR_PTR(-EOVERFLOW);
118
119 if (len)
120 *len = prop->length;
121
122 return prop->value;
123 }
124
125 /**
126 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
127 *
128 * @np: device node from which the property value is to be read.
129 * @propname: name of the property to be searched.
130 * @index: index of the u32 in the list of values
131 * @out_value: pointer to return value, modified only if no error.
132 *
133 * Search for a property in a device node and read nth 32-bit value from
134 * it.
135 *
136 * Return: 0 on success, -EINVAL if the property does not exist,
137 * -ENODATA if property does not have a value, and -EOVERFLOW if the
138 * property data isn't large enough.
139 *
140 * The out_value is modified only if a valid u32 value can be decoded.
141 */
of_property_read_u32_index(const struct device_node * np,const char * propname,u32 index,u32 * out_value)142 int of_property_read_u32_index(const struct device_node *np,
143 const char *propname,
144 u32 index, u32 *out_value)
145 {
146 const u32 *val = of_find_property_value_of_size(np, propname,
147 ((index + 1) * sizeof(*out_value)),
148 0,
149 NULL);
150
151 if (IS_ERR(val))
152 return PTR_ERR(val);
153
154 *out_value = be32_to_cpup(((__be32 *)val) + index);
155 return 0;
156 }
157 EXPORT_SYMBOL_GPL(of_property_read_u32_index);
158
159 /**
160 * of_property_read_u64_index - Find and read a u64 from a multi-value property.
161 *
162 * @np: device node from which the property value is to be read.
163 * @propname: name of the property to be searched.
164 * @index: index of the u64 in the list of values
165 * @out_value: pointer to return value, modified only if no error.
166 *
167 * Search for a property in a device node and read nth 64-bit value from
168 * it.
169 *
170 * Return: 0 on success, -EINVAL if the property does not exist,
171 * -ENODATA if property does not have a value, and -EOVERFLOW if the
172 * property data isn't large enough.
173 *
174 * The out_value is modified only if a valid u64 value can be decoded.
175 */
of_property_read_u64_index(const struct device_node * np,const char * propname,u32 index,u64 * out_value)176 int of_property_read_u64_index(const struct device_node *np,
177 const char *propname,
178 u32 index, u64 *out_value)
179 {
180 const u64 *val = of_find_property_value_of_size(np, propname,
181 ((index + 1) * sizeof(*out_value)),
182 0, NULL);
183
184 if (IS_ERR(val))
185 return PTR_ERR(val);
186
187 *out_value = be64_to_cpup(((__be64 *)val) + index);
188 return 0;
189 }
190 EXPORT_SYMBOL_GPL(of_property_read_u64_index);
191
192 /**
193 * of_property_read_variable_u8_array - Find and read an array of u8 from a
194 * property, with bounds on the minimum and maximum array size.
195 *
196 * @np: device node from which the property value is to be read.
197 * @propname: name of the property to be searched.
198 * @out_values: pointer to found values.
199 * @sz_min: minimum number of array elements to read
200 * @sz_max: maximum number of array elements to read, if zero there is no
201 * upper limit on the number of elements in the dts entry but only
202 * sz_min will be read.
203 *
204 * Search for a property in a device node and read 8-bit value(s) from
205 * it.
206 *
207 * dts entry of array should be like:
208 * ``property = /bits/ 8 <0x50 0x60 0x70>;``
209 *
210 * Return: The number of elements read on success, -EINVAL if the property
211 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
212 * if the property data is smaller than sz_min or longer than sz_max.
213 *
214 * The out_values is modified only if a valid u8 value can be decoded.
215 */
of_property_read_variable_u8_array(const struct device_node * np,const char * propname,u8 * out_values,size_t sz_min,size_t sz_max)216 int of_property_read_variable_u8_array(const struct device_node *np,
217 const char *propname, u8 *out_values,
218 size_t sz_min, size_t sz_max)
219 {
220 size_t sz, count;
221 const u8 *val = of_find_property_value_of_size(np, propname,
222 (sz_min * sizeof(*out_values)),
223 (sz_max * sizeof(*out_values)),
224 &sz);
225
226 if (IS_ERR(val))
227 return PTR_ERR(val);
228
229 if (!sz_max)
230 sz = sz_min;
231 else
232 sz /= sizeof(*out_values);
233
234 count = sz;
235 while (count--)
236 *out_values++ = *val++;
237
238 return sz;
239 }
240 EXPORT_SYMBOL_GPL(of_property_read_variable_u8_array);
241
242 /**
243 * of_property_read_variable_u16_array - Find and read an array of u16 from a
244 * property, with bounds on the minimum and maximum array size.
245 *
246 * @np: device node from which the property value is to be read.
247 * @propname: name of the property to be searched.
248 * @out_values: pointer to found values.
249 * @sz_min: minimum number of array elements to read
250 * @sz_max: maximum number of array elements to read, if zero there is no
251 * upper limit on the number of elements in the dts entry but only
252 * sz_min will be read.
253 *
254 * Search for a property in a device node and read 16-bit value(s) from
255 * it.
256 *
257 * dts entry of array should be like:
258 * ``property = /bits/ 16 <0x5000 0x6000 0x7000>;``
259 *
260 * Return: The number of elements read on success, -EINVAL if the property
261 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
262 * if the property data is smaller than sz_min or longer than sz_max.
263 *
264 * The out_values is modified only if a valid u16 value can be decoded.
265 */
of_property_read_variable_u16_array(const struct device_node * np,const char * propname,u16 * out_values,size_t sz_min,size_t sz_max)266 int of_property_read_variable_u16_array(const struct device_node *np,
267 const char *propname, u16 *out_values,
268 size_t sz_min, size_t sz_max)
269 {
270 size_t sz, count;
271 const __be16 *val = of_find_property_value_of_size(np, propname,
272 (sz_min * sizeof(*out_values)),
273 (sz_max * sizeof(*out_values)),
274 &sz);
275
276 if (IS_ERR(val))
277 return PTR_ERR(val);
278
279 if (!sz_max)
280 sz = sz_min;
281 else
282 sz /= sizeof(*out_values);
283
284 count = sz;
285 while (count--)
286 *out_values++ = be16_to_cpup(val++);
287
288 return sz;
289 }
290 EXPORT_SYMBOL_GPL(of_property_read_variable_u16_array);
291
292 /**
293 * of_property_read_variable_u32_array - Find and read an array of 32 bit
294 * integers from a property, with bounds on the minimum and maximum array size.
295 *
296 * @np: device node from which the property value is to be read.
297 * @propname: name of the property to be searched.
298 * @out_values: pointer to return found values.
299 * @sz_min: minimum number of array elements to read
300 * @sz_max: maximum number of array elements to read, if zero there is no
301 * upper limit on the number of elements in the dts entry but only
302 * sz_min will be read.
303 *
304 * Search for a property in a device node and read 32-bit value(s) from
305 * it.
306 *
307 * Return: The number of elements read on success, -EINVAL if the property
308 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
309 * if the property data is smaller than sz_min or longer than sz_max.
310 *
311 * The out_values is modified only if a valid u32 value can be decoded.
312 */
of_property_read_variable_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz_min,size_t sz_max)313 int of_property_read_variable_u32_array(const struct device_node *np,
314 const char *propname, u32 *out_values,
315 size_t sz_min, size_t sz_max)
316 {
317 size_t sz, count;
318 const __be32 *val = of_find_property_value_of_size(np, propname,
319 (sz_min * sizeof(*out_values)),
320 (sz_max * sizeof(*out_values)),
321 &sz);
322
323 if (IS_ERR(val))
324 return PTR_ERR(val);
325
326 if (!sz_max)
327 sz = sz_min;
328 else
329 sz /= sizeof(*out_values);
330
331 count = sz;
332 while (count--)
333 *out_values++ = be32_to_cpup(val++);
334
335 return sz;
336 }
337 EXPORT_SYMBOL_GPL(of_property_read_variable_u32_array);
338
339 /**
340 * of_property_read_u64 - Find and read a 64 bit integer from a property
341 * @np: device node from which the property value is to be read.
342 * @propname: name of the property to be searched.
343 * @out_value: pointer to return value, modified only if return value is 0.
344 *
345 * Search for a property in a device node and read a 64-bit value from
346 * it.
347 *
348 * Return: 0 on success, -EINVAL if the property does not exist,
349 * -ENODATA if property does not have a value, and -EOVERFLOW if the
350 * property data isn't large enough.
351 *
352 * The out_value is modified only if a valid u64 value can be decoded.
353 */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)354 int of_property_read_u64(const struct device_node *np, const char *propname,
355 u64 *out_value)
356 {
357 const __be32 *val = of_find_property_value_of_size(np, propname,
358 sizeof(*out_value),
359 0,
360 NULL);
361
362 if (IS_ERR(val))
363 return PTR_ERR(val);
364
365 *out_value = of_read_number(val, 2);
366 return 0;
367 }
368 EXPORT_SYMBOL_GPL(of_property_read_u64);
369
370 /**
371 * of_property_read_variable_u64_array - Find and read an array of 64 bit
372 * integers from a property, with bounds on the minimum and maximum array size.
373 *
374 * @np: device node from which the property value is to be read.
375 * @propname: name of the property to be searched.
376 * @out_values: pointer to found values.
377 * @sz_min: minimum number of array elements to read
378 * @sz_max: maximum number of array elements to read, if zero there is no
379 * upper limit on the number of elements in the dts entry but only
380 * sz_min will be read.
381 *
382 * Search for a property in a device node and read 64-bit value(s) from
383 * it.
384 *
385 * Return: The number of elements read on success, -EINVAL if the property
386 * does not exist, -ENODATA if property does not have a value, and -EOVERFLOW
387 * if the property data is smaller than sz_min or longer than sz_max.
388 *
389 * The out_values is modified only if a valid u64 value can be decoded.
390 */
of_property_read_variable_u64_array(const struct device_node * np,const char * propname,u64 * out_values,size_t sz_min,size_t sz_max)391 int of_property_read_variable_u64_array(const struct device_node *np,
392 const char *propname, u64 *out_values,
393 size_t sz_min, size_t sz_max)
394 {
395 size_t sz, count;
396 const __be32 *val = of_find_property_value_of_size(np, propname,
397 (sz_min * sizeof(*out_values)),
398 (sz_max * sizeof(*out_values)),
399 &sz);
400
401 if (IS_ERR(val))
402 return PTR_ERR(val);
403
404 if (!sz_max)
405 sz = sz_min;
406 else
407 sz /= sizeof(*out_values);
408
409 count = sz;
410 while (count--) {
411 *out_values++ = of_read_number(val, 2);
412 val += 2;
413 }
414
415 return sz;
416 }
417 EXPORT_SYMBOL_GPL(of_property_read_variable_u64_array);
418
419 /**
420 * of_property_read_string - Find and read a string from a property
421 * @np: device node from which the property value is to be read.
422 * @propname: name of the property to be searched.
423 * @out_string: pointer to null terminated return string, modified only if
424 * return value is 0.
425 *
426 * Search for a property in a device tree node and retrieve a null
427 * terminated string value (pointer to data, not a copy).
428 *
429 * Return: 0 on success, -EINVAL if the property does not exist, -ENODATA if
430 * property does not have a value, and -EILSEQ if the string is not
431 * null-terminated within the length of the property data.
432 *
433 * The out_string pointer is modified only if a valid string can be decoded.
434 */
of_property_read_string(const struct device_node * np,const char * propname,const char ** out_string)435 int of_property_read_string(const struct device_node *np, const char *propname,
436 const char **out_string)
437 {
438 const struct property *prop = of_find_property(np, propname, NULL);
439 if (!prop)
440 return -EINVAL;
441 if (!prop->value)
442 return -ENODATA;
443 if (strnlen(prop->value, prop->length) >= prop->length)
444 return -EILSEQ;
445 *out_string = prop->value;
446 return 0;
447 }
448 EXPORT_SYMBOL_GPL(of_property_read_string);
449
450 /**
451 * of_property_match_string() - Find string in a list and return index
452 * @np: pointer to node containing string list property
453 * @propname: string list property name
454 * @string: pointer to string to search for in string list
455 *
456 * This function searches a string list property and returns the index
457 * of a specific string value.
458 */
of_property_match_string(const struct device_node * np,const char * propname,const char * string)459 int of_property_match_string(const struct device_node *np, const char *propname,
460 const char *string)
461 {
462 const struct property *prop = of_find_property(np, propname, NULL);
463 size_t l;
464 int i;
465 const char *p, *end;
466
467 if (!prop)
468 return -EINVAL;
469 if (!prop->value)
470 return -ENODATA;
471
472 p = prop->value;
473 end = p + prop->length;
474
475 for (i = 0; p < end; i++, p += l) {
476 l = strnlen(p, end - p) + 1;
477 if (p + l > end)
478 return -EILSEQ;
479 pr_debug("comparing %s with %s\n", string, p);
480 if (strcmp(string, p) == 0)
481 return i; /* Found it; return index */
482 }
483 return -ENODATA;
484 }
485 EXPORT_SYMBOL_GPL(of_property_match_string);
486
487 /**
488 * of_property_read_string_helper() - Utility helper for parsing string properties
489 * @np: device node from which the property value is to be read.
490 * @propname: name of the property to be searched.
491 * @out_strs: output array of string pointers.
492 * @sz: number of array elements to read.
493 * @skip: Number of strings to skip over at beginning of list.
494 *
495 * Don't call this function directly. It is a utility helper for the
496 * of_property_read_string*() family of functions.
497 */
of_property_read_string_helper(const struct device_node * np,const char * propname,const char ** out_strs,size_t sz,int skip)498 int of_property_read_string_helper(const struct device_node *np,
499 const char *propname, const char **out_strs,
500 size_t sz, int skip)
501 {
502 const struct property *prop = of_find_property(np, propname, NULL);
503 int l = 0, i = 0;
504 const char *p, *end;
505
506 if (!prop)
507 return -EINVAL;
508 if (!prop->value)
509 return -ENODATA;
510 p = prop->value;
511 end = p + prop->length;
512
513 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
514 l = strnlen(p, end - p) + 1;
515 if (p + l > end)
516 return -EILSEQ;
517 if (out_strs && i >= skip)
518 *out_strs++ = p;
519 }
520 i -= skip;
521 return i <= 0 ? -ENODATA : i;
522 }
523 EXPORT_SYMBOL_GPL(of_property_read_string_helper);
524
of_prop_next_u32(struct property * prop,const __be32 * cur,u32 * pu)525 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
526 u32 *pu)
527 {
528 const void *curv = cur;
529
530 if (!prop)
531 return NULL;
532
533 if (!cur) {
534 curv = prop->value;
535 goto out_val;
536 }
537
538 curv += sizeof(*cur);
539 if (curv >= prop->value + prop->length)
540 return NULL;
541
542 out_val:
543 *pu = be32_to_cpup(curv);
544 return curv;
545 }
546 EXPORT_SYMBOL_GPL(of_prop_next_u32);
547
of_prop_next_string(struct property * prop,const char * cur)548 const char *of_prop_next_string(struct property *prop, const char *cur)
549 {
550 const void *curv = cur;
551
552 if (!prop)
553 return NULL;
554
555 if (!cur)
556 return prop->value;
557
558 curv += strlen(cur) + 1;
559 if (curv >= prop->value + prop->length)
560 return NULL;
561
562 return curv;
563 }
564 EXPORT_SYMBOL_GPL(of_prop_next_string);
565
566 /**
567 * of_graph_parse_endpoint() - parse common endpoint node properties
568 * @node: pointer to endpoint device_node
569 * @endpoint: pointer to the OF endpoint data structure
570 *
571 * The caller should hold a reference to @node.
572 */
of_graph_parse_endpoint(const struct device_node * node,struct of_endpoint * endpoint)573 int of_graph_parse_endpoint(const struct device_node *node,
574 struct of_endpoint *endpoint)
575 {
576 struct device_node *port_node = of_get_parent(node);
577
578 WARN_ONCE(!port_node, "%s(): endpoint %pOF has no parent node\n",
579 __func__, node);
580
581 memset(endpoint, 0, sizeof(*endpoint));
582
583 endpoint->local_node = node;
584 /*
585 * It doesn't matter whether the two calls below succeed.
586 * If they don't then the default value 0 is used.
587 */
588 of_property_read_u32(port_node, "reg", &endpoint->port);
589 of_property_read_u32(node, "reg", &endpoint->id);
590
591 of_node_put(port_node);
592
593 return 0;
594 }
595 EXPORT_SYMBOL(of_graph_parse_endpoint);
596
597 /**
598 * of_graph_get_port_by_id() - get the port matching a given id
599 * @parent: pointer to the parent device node
600 * @id: id of the port
601 *
602 * Return: A 'port' node pointer with refcount incremented. The caller
603 * has to use of_node_put() on it when done.
604 */
of_graph_get_port_by_id(struct device_node * parent,u32 id)605 struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
606 {
607 struct device_node *node, *port;
608
609 node = of_get_child_by_name(parent, "ports");
610 if (node)
611 parent = node;
612
613 for_each_child_of_node(parent, port) {
614 u32 port_id = 0;
615
616 if (!of_node_name_eq(port, "port"))
617 continue;
618 of_property_read_u32(port, "reg", &port_id);
619 if (id == port_id)
620 break;
621 }
622
623 of_node_put(node);
624
625 return port;
626 }
627 EXPORT_SYMBOL(of_graph_get_port_by_id);
628
629 /**
630 * of_graph_get_next_endpoint() - get next endpoint node
631 * @parent: pointer to the parent device node
632 * @prev: previous endpoint node, or NULL to get first
633 *
634 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
635 * of the passed @prev node is decremented.
636 */
of_graph_get_next_endpoint(const struct device_node * parent,struct device_node * prev)637 struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
638 struct device_node *prev)
639 {
640 struct device_node *endpoint;
641 struct device_node *port;
642
643 if (!parent)
644 return NULL;
645
646 /*
647 * Start by locating the port node. If no previous endpoint is specified
648 * search for the first port node, otherwise get the previous endpoint
649 * parent port node.
650 */
651 if (!prev) {
652 struct device_node *node;
653
654 node = of_get_child_by_name(parent, "ports");
655 if (node)
656 parent = node;
657
658 port = of_get_child_by_name(parent, "port");
659 of_node_put(node);
660
661 if (!port) {
662 pr_err("graph: no port node found in %pOF\n", parent);
663 return NULL;
664 }
665 } else {
666 port = of_get_parent(prev);
667 if (WARN_ONCE(!port, "%s(): endpoint %pOF has no parent node\n",
668 __func__, prev))
669 return NULL;
670 }
671
672 while (1) {
673 /*
674 * Now that we have a port node, get the next endpoint by
675 * getting the next child. If the previous endpoint is NULL this
676 * will return the first child.
677 */
678 endpoint = of_get_next_child(port, prev);
679 if (endpoint) {
680 of_node_put(port);
681 return endpoint;
682 }
683
684 /* No more endpoints under this port, try the next one. */
685 prev = NULL;
686
687 do {
688 port = of_get_next_child(parent, port);
689 if (!port)
690 return NULL;
691 } while (!of_node_name_eq(port, "port"));
692 }
693 }
694 EXPORT_SYMBOL(of_graph_get_next_endpoint);
695
696 /**
697 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
698 * @parent: pointer to the parent device node
699 * @port_reg: identifier (value of reg property) of the parent port node
700 * @reg: identifier (value of reg property) of the endpoint node
701 *
702 * Return: An 'endpoint' node pointer which is identified by reg and at the same
703 * is the child of a port node identified by port_reg. reg and port_reg are
704 * ignored when they are -1. Use of_node_put() on the pointer when done.
705 */
of_graph_get_endpoint_by_regs(const struct device_node * parent,int port_reg,int reg)706 struct device_node *of_graph_get_endpoint_by_regs(
707 const struct device_node *parent, int port_reg, int reg)
708 {
709 struct of_endpoint endpoint;
710 struct device_node *node = NULL;
711
712 for_each_endpoint_of_node(parent, node) {
713 of_graph_parse_endpoint(node, &endpoint);
714 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
715 ((reg == -1) || (endpoint.id == reg)))
716 return node;
717 }
718
719 return NULL;
720 }
721 EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
722
723 /**
724 * of_graph_get_remote_endpoint() - get remote endpoint node
725 * @node: pointer to a local endpoint device_node
726 *
727 * Return: Remote endpoint node associated with remote endpoint node linked
728 * to @node. Use of_node_put() on it when done.
729 */
of_graph_get_remote_endpoint(const struct device_node * node)730 struct device_node *of_graph_get_remote_endpoint(const struct device_node *node)
731 {
732 /* Get remote endpoint node. */
733 return of_parse_phandle(node, "remote-endpoint", 0);
734 }
735 EXPORT_SYMBOL(of_graph_get_remote_endpoint);
736
737 /**
738 * of_graph_get_port_parent() - get port's parent node
739 * @node: pointer to a local endpoint device_node
740 *
741 * Return: device node associated with endpoint node linked
742 * to @node. Use of_node_put() on it when done.
743 */
of_graph_get_port_parent(struct device_node * node)744 struct device_node *of_graph_get_port_parent(struct device_node *node)
745 {
746 unsigned int depth;
747
748 if (!node)
749 return NULL;
750
751 /*
752 * Preserve usecount for passed in node as of_get_next_parent()
753 * will do of_node_put() on it.
754 */
755 of_node_get(node);
756
757 /* Walk 3 levels up only if there is 'ports' node. */
758 for (depth = 3; depth && node; depth--) {
759 node = of_get_next_parent(node);
760 if (depth == 2 && !of_node_name_eq(node, "ports"))
761 break;
762 }
763 return node;
764 }
765 EXPORT_SYMBOL(of_graph_get_port_parent);
766
767 /**
768 * of_graph_get_remote_port_parent() - get remote port's parent node
769 * @node: pointer to a local endpoint device_node
770 *
771 * Return: Remote device node associated with remote endpoint node linked
772 * to @node. Use of_node_put() on it when done.
773 */
of_graph_get_remote_port_parent(const struct device_node * node)774 struct device_node *of_graph_get_remote_port_parent(
775 const struct device_node *node)
776 {
777 struct device_node *np, *pp;
778
779 /* Get remote endpoint node. */
780 np = of_graph_get_remote_endpoint(node);
781
782 pp = of_graph_get_port_parent(np);
783
784 of_node_put(np);
785
786 return pp;
787 }
788 EXPORT_SYMBOL(of_graph_get_remote_port_parent);
789
790 /**
791 * of_graph_get_remote_port() - get remote port node
792 * @node: pointer to a local endpoint device_node
793 *
794 * Return: Remote port node associated with remote endpoint node linked
795 * to @node. Use of_node_put() on it when done.
796 */
of_graph_get_remote_port(const struct device_node * node)797 struct device_node *of_graph_get_remote_port(const struct device_node *node)
798 {
799 struct device_node *np;
800
801 /* Get remote endpoint node. */
802 np = of_graph_get_remote_endpoint(node);
803 if (!np)
804 return NULL;
805 return of_get_next_parent(np);
806 }
807 EXPORT_SYMBOL(of_graph_get_remote_port);
808
of_graph_get_endpoint_count(const struct device_node * np)809 int of_graph_get_endpoint_count(const struct device_node *np)
810 {
811 struct device_node *endpoint;
812 int num = 0;
813
814 for_each_endpoint_of_node(np, endpoint)
815 num++;
816
817 return num;
818 }
819 EXPORT_SYMBOL(of_graph_get_endpoint_count);
820
821 /**
822 * of_graph_get_remote_node() - get remote parent device_node for given port/endpoint
823 * @node: pointer to parent device_node containing graph port/endpoint
824 * @port: identifier (value of reg property) of the parent port node
825 * @endpoint: identifier (value of reg property) of the endpoint node
826 *
827 * Return: Remote device node associated with remote endpoint node linked
828 * to @node. Use of_node_put() on it when done.
829 */
of_graph_get_remote_node(const struct device_node * node,u32 port,u32 endpoint)830 struct device_node *of_graph_get_remote_node(const struct device_node *node,
831 u32 port, u32 endpoint)
832 {
833 struct device_node *endpoint_node, *remote;
834
835 endpoint_node = of_graph_get_endpoint_by_regs(node, port, endpoint);
836 if (!endpoint_node) {
837 pr_debug("no valid endpoint (%d, %d) for node %pOF\n",
838 port, endpoint, node);
839 return NULL;
840 }
841
842 remote = of_graph_get_remote_port_parent(endpoint_node);
843 of_node_put(endpoint_node);
844 if (!remote) {
845 pr_debug("no valid remote node\n");
846 return NULL;
847 }
848
849 if (!of_device_is_available(remote)) {
850 pr_debug("not available for remote node\n");
851 of_node_put(remote);
852 return NULL;
853 }
854
855 return remote;
856 }
857 EXPORT_SYMBOL(of_graph_get_remote_node);
858
of_fwnode_get(struct fwnode_handle * fwnode)859 static struct fwnode_handle *of_fwnode_get(struct fwnode_handle *fwnode)
860 {
861 return of_fwnode_handle(of_node_get(to_of_node(fwnode)));
862 }
863
of_fwnode_put(struct fwnode_handle * fwnode)864 static void of_fwnode_put(struct fwnode_handle *fwnode)
865 {
866 of_node_put(to_of_node(fwnode));
867 }
868
of_fwnode_device_is_available(const struct fwnode_handle * fwnode)869 static bool of_fwnode_device_is_available(const struct fwnode_handle *fwnode)
870 {
871 return of_device_is_available(to_of_node(fwnode));
872 }
873
of_fwnode_property_present(const struct fwnode_handle * fwnode,const char * propname)874 static bool of_fwnode_property_present(const struct fwnode_handle *fwnode,
875 const char *propname)
876 {
877 return of_property_read_bool(to_of_node(fwnode), propname);
878 }
879
of_fwnode_property_read_int_array(const struct fwnode_handle * fwnode,const char * propname,unsigned int elem_size,void * val,size_t nval)880 static int of_fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
881 const char *propname,
882 unsigned int elem_size, void *val,
883 size_t nval)
884 {
885 const struct device_node *node = to_of_node(fwnode);
886
887 if (!val)
888 return of_property_count_elems_of_size(node, propname,
889 elem_size);
890
891 switch (elem_size) {
892 case sizeof(u8):
893 return of_property_read_u8_array(node, propname, val, nval);
894 case sizeof(u16):
895 return of_property_read_u16_array(node, propname, val, nval);
896 case sizeof(u32):
897 return of_property_read_u32_array(node, propname, val, nval);
898 case sizeof(u64):
899 return of_property_read_u64_array(node, propname, val, nval);
900 }
901
902 return -ENXIO;
903 }
904
905 static int
of_fwnode_property_read_string_array(const struct fwnode_handle * fwnode,const char * propname,const char ** val,size_t nval)906 of_fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
907 const char *propname, const char **val,
908 size_t nval)
909 {
910 const struct device_node *node = to_of_node(fwnode);
911
912 return val ?
913 of_property_read_string_array(node, propname, val, nval) :
914 of_property_count_strings(node, propname);
915 }
916
of_fwnode_get_name(const struct fwnode_handle * fwnode)917 static const char *of_fwnode_get_name(const struct fwnode_handle *fwnode)
918 {
919 return kbasename(to_of_node(fwnode)->full_name);
920 }
921
of_fwnode_get_name_prefix(const struct fwnode_handle * fwnode)922 static const char *of_fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
923 {
924 /* Root needs no prefix here (its name is "/"). */
925 if (!to_of_node(fwnode)->parent)
926 return "";
927
928 return "/";
929 }
930
931 static struct fwnode_handle *
of_fwnode_get_parent(const struct fwnode_handle * fwnode)932 of_fwnode_get_parent(const struct fwnode_handle *fwnode)
933 {
934 return of_fwnode_handle(of_get_parent(to_of_node(fwnode)));
935 }
936
937 static struct fwnode_handle *
of_fwnode_get_next_child_node(const struct fwnode_handle * fwnode,struct fwnode_handle * child)938 of_fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
939 struct fwnode_handle *child)
940 {
941 return of_fwnode_handle(of_get_next_available_child(to_of_node(fwnode),
942 to_of_node(child)));
943 }
944
945 static struct fwnode_handle *
of_fwnode_get_named_child_node(const struct fwnode_handle * fwnode,const char * childname)946 of_fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
947 const char *childname)
948 {
949 const struct device_node *node = to_of_node(fwnode);
950 struct device_node *child;
951
952 for_each_available_child_of_node(node, child)
953 if (of_node_name_eq(child, childname))
954 return of_fwnode_handle(child);
955
956 return NULL;
957 }
958
959 static int
of_fwnode_get_reference_args(const struct fwnode_handle * fwnode,const char * prop,const char * nargs_prop,unsigned int nargs,unsigned int index,struct fwnode_reference_args * args)960 of_fwnode_get_reference_args(const struct fwnode_handle *fwnode,
961 const char *prop, const char *nargs_prop,
962 unsigned int nargs, unsigned int index,
963 struct fwnode_reference_args *args)
964 {
965 struct of_phandle_args of_args;
966 unsigned int i;
967 int ret;
968
969 if (nargs_prop)
970 ret = of_parse_phandle_with_args(to_of_node(fwnode), prop,
971 nargs_prop, index, &of_args);
972 else
973 ret = of_parse_phandle_with_fixed_args(to_of_node(fwnode), prop,
974 nargs, index, &of_args);
975 if (ret < 0)
976 return ret;
977 if (!args) {
978 of_node_put(of_args.np);
979 return 0;
980 }
981
982 args->nargs = of_args.args_count;
983 args->fwnode = of_fwnode_handle(of_args.np);
984
985 for (i = 0; i < NR_FWNODE_REFERENCE_ARGS; i++)
986 args->args[i] = i < of_args.args_count ? of_args.args[i] : 0;
987
988 return 0;
989 }
990
991 static struct fwnode_handle *
of_fwnode_graph_get_next_endpoint(const struct fwnode_handle * fwnode,struct fwnode_handle * prev)992 of_fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
993 struct fwnode_handle *prev)
994 {
995 return of_fwnode_handle(of_graph_get_next_endpoint(to_of_node(fwnode),
996 to_of_node(prev)));
997 }
998
999 static struct fwnode_handle *
of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle * fwnode)1000 of_fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1001 {
1002 return of_fwnode_handle(
1003 of_graph_get_remote_endpoint(to_of_node(fwnode)));
1004 }
1005
1006 static struct fwnode_handle *
of_fwnode_graph_get_port_parent(struct fwnode_handle * fwnode)1007 of_fwnode_graph_get_port_parent(struct fwnode_handle *fwnode)
1008 {
1009 struct device_node *np;
1010
1011 /* Get the parent of the port */
1012 np = of_get_parent(to_of_node(fwnode));
1013 if (!np)
1014 return NULL;
1015
1016 /* Is this the "ports" node? If not, it's the port parent. */
1017 if (!of_node_name_eq(np, "ports"))
1018 return of_fwnode_handle(np);
1019
1020 return of_fwnode_handle(of_get_next_parent(np));
1021 }
1022
of_fwnode_graph_parse_endpoint(const struct fwnode_handle * fwnode,struct fwnode_endpoint * endpoint)1023 static int of_fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1024 struct fwnode_endpoint *endpoint)
1025 {
1026 const struct device_node *node = to_of_node(fwnode);
1027 struct device_node *port_node = of_get_parent(node);
1028
1029 endpoint->local_fwnode = fwnode;
1030
1031 of_property_read_u32(port_node, "reg", &endpoint->port);
1032 of_property_read_u32(node, "reg", &endpoint->id);
1033
1034 of_node_put(port_node);
1035
1036 return 0;
1037 }
1038
1039 static const void *
of_fwnode_device_get_match_data(const struct fwnode_handle * fwnode,const struct device * dev)1040 of_fwnode_device_get_match_data(const struct fwnode_handle *fwnode,
1041 const struct device *dev)
1042 {
1043 return of_device_get_match_data(dev);
1044 }
1045
of_is_ancestor_of(struct device_node * test_ancestor,struct device_node * child)1046 static bool of_is_ancestor_of(struct device_node *test_ancestor,
1047 struct device_node *child)
1048 {
1049 of_node_get(child);
1050 while (child) {
1051 if (child == test_ancestor) {
1052 of_node_put(child);
1053 return true;
1054 }
1055 child = of_get_next_parent(child);
1056 }
1057 return false;
1058 }
1059
1060 /**
1061 * of_get_next_parent_dev - Add device link to supplier from supplier phandle
1062 * @np: device tree node
1063 *
1064 * Given a device tree node (@np), this function finds its closest ancestor
1065 * device tree node that has a corresponding struct device.
1066 *
1067 * The caller of this function is expected to call put_device() on the returned
1068 * device when they are done.
1069 */
of_get_next_parent_dev(struct device_node * np)1070 static struct device *of_get_next_parent_dev(struct device_node *np)
1071 {
1072 struct device *dev = NULL;
1073
1074 of_node_get(np);
1075 do {
1076 np = of_get_next_parent(np);
1077 if (np)
1078 dev = get_dev_from_fwnode(&np->fwnode);
1079 } while (np && !dev);
1080 of_node_put(np);
1081 return dev;
1082 }
1083
1084 /**
1085 * of_link_to_phandle - Add device link to supplier from supplier phandle
1086 * @dev: consumer device
1087 * @sup_np: phandle to supplier device tree node
1088 *
1089 * Given a phandle to a supplier device tree node (@sup_np), this function
1090 * finds the device that owns the supplier device tree node and creates a
1091 * device link from @dev consumer device to the supplier device. This function
1092 * doesn't create device links for invalid scenarios such as trying to create a
1093 * link with a parent device as the consumer of its child device. In such
1094 * cases, it returns an error.
1095 *
1096 * Returns:
1097 * - 0 if link successfully created to supplier
1098 * - -EAGAIN if linking to the supplier should be reattempted
1099 * - -EINVAL if the supplier link is invalid and should not be created
1100 * - -ENODEV if there is no device that corresponds to the supplier phandle
1101 */
of_link_to_phandle(struct device * dev,struct device_node * sup_np,u32 dl_flags)1102 static int of_link_to_phandle(struct device *dev, struct device_node *sup_np,
1103 u32 dl_flags)
1104 {
1105 struct device *sup_dev, *sup_par_dev;
1106 int ret = 0;
1107 struct device_node *tmp_np = sup_np;
1108
1109 of_node_get(sup_np);
1110 /*
1111 * Find the device node that contains the supplier phandle. It may be
1112 * @sup_np or it may be an ancestor of @sup_np.
1113 */
1114 while (sup_np) {
1115
1116 /* Don't allow linking to a disabled supplier */
1117 if (!of_device_is_available(sup_np)) {
1118 of_node_put(sup_np);
1119 sup_np = NULL;
1120 }
1121
1122 if (of_find_property(sup_np, "compatible", NULL))
1123 break;
1124
1125 sup_np = of_get_next_parent(sup_np);
1126 }
1127
1128 if (!sup_np) {
1129 dev_dbg(dev, "Not linking to %pOFP - No device\n", tmp_np);
1130 return -ENODEV;
1131 }
1132
1133 /*
1134 * Don't allow linking a device node as a consumer of one of its
1135 * descendant nodes. By definition, a child node can't be a functional
1136 * dependency for the parent node.
1137 */
1138 if (of_is_ancestor_of(dev->of_node, sup_np)) {
1139 dev_dbg(dev, "Not linking to %pOFP - is descendant\n", sup_np);
1140 of_node_put(sup_np);
1141 return -EINVAL;
1142 }
1143 sup_dev = get_dev_from_fwnode(&sup_np->fwnode);
1144 if (!sup_dev && of_node_check_flag(sup_np, OF_POPULATED)) {
1145 /* Early device without struct device. */
1146 dev_dbg(dev, "Not linking to %pOFP - No struct device\n",
1147 sup_np);
1148 of_node_put(sup_np);
1149 return -ENODEV;
1150 } else if (!sup_dev) {
1151 /*
1152 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1153 * cycles. So cycle detection isn't necessary and shouldn't be
1154 * done.
1155 */
1156 if (dl_flags & DL_FLAG_SYNC_STATE_ONLY) {
1157 of_node_put(sup_np);
1158 return -EAGAIN;
1159 }
1160
1161 sup_par_dev = of_get_next_parent_dev(sup_np);
1162
1163 if (sup_par_dev && device_is_dependent(dev, sup_par_dev)) {
1164 /* Cyclic dependency detected, don't try to link */
1165 dev_dbg(dev, "Not linking to %pOFP - cycle detected\n",
1166 sup_np);
1167 ret = -EINVAL;
1168 } else {
1169 /*
1170 * Can't check for cycles or no cycles. So let's try
1171 * again later.
1172 */
1173 ret = -EAGAIN;
1174 }
1175
1176 of_node_put(sup_np);
1177 put_device(sup_par_dev);
1178 return ret;
1179 }
1180 of_node_put(sup_np);
1181 if (!device_link_add(dev, sup_dev, dl_flags))
1182 ret = -EINVAL;
1183 put_device(sup_dev);
1184 return ret;
1185 }
1186
1187 /**
1188 * parse_prop_cells - Property parsing function for suppliers
1189 *
1190 * @np: Pointer to device tree node containing a list
1191 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1192 * @index: For properties holding a list of phandles, this is the index
1193 * into the list.
1194 * @list_name: Property name that is known to contain list of phandle(s) to
1195 * supplier(s)
1196 * @cells_name: property name that specifies phandles' arguments count
1197 *
1198 * This is a helper function to parse properties that have a known fixed name
1199 * and are a list of phandles and phandle arguments.
1200 *
1201 * Returns:
1202 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1203 * on it when done.
1204 * - NULL if no phandle found at index
1205 */
parse_prop_cells(struct device_node * np,const char * prop_name,int index,const char * list_name,const char * cells_name)1206 static struct device_node *parse_prop_cells(struct device_node *np,
1207 const char *prop_name, int index,
1208 const char *list_name,
1209 const char *cells_name)
1210 {
1211 struct of_phandle_args sup_args;
1212
1213 if (strcmp(prop_name, list_name))
1214 return NULL;
1215
1216 if (of_parse_phandle_with_args(np, list_name, cells_name, index,
1217 &sup_args))
1218 return NULL;
1219
1220 return sup_args.np;
1221 }
1222
1223 #define DEFINE_SIMPLE_PROP(fname, name, cells) \
1224 static struct device_node *parse_##fname(struct device_node *np, \
1225 const char *prop_name, int index) \
1226 { \
1227 return parse_prop_cells(np, prop_name, index, name, cells); \
1228 }
1229
strcmp_suffix(const char * str,const char * suffix)1230 static int strcmp_suffix(const char *str, const char *suffix)
1231 {
1232 unsigned int len, suffix_len;
1233
1234 len = strlen(str);
1235 suffix_len = strlen(suffix);
1236 if (len <= suffix_len)
1237 return -1;
1238 return strcmp(str + len - suffix_len, suffix);
1239 }
1240
1241 /**
1242 * parse_suffix_prop_cells - Suffix property parsing function for suppliers
1243 *
1244 * @np: Pointer to device tree node containing a list
1245 * @prop_name: Name of property to be parsed. Expected to hold phandle values
1246 * @index: For properties holding a list of phandles, this is the index
1247 * into the list.
1248 * @suffix: Property suffix that is known to contain list of phandle(s) to
1249 * supplier(s)
1250 * @cells_name: property name that specifies phandles' arguments count
1251 *
1252 * This is a helper function to parse properties that have a known fixed suffix
1253 * and are a list of phandles and phandle arguments.
1254 *
1255 * Returns:
1256 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1257 * on it when done.
1258 * - NULL if no phandle found at index
1259 */
parse_suffix_prop_cells(struct device_node * np,const char * prop_name,int index,const char * suffix,const char * cells_name)1260 static struct device_node *parse_suffix_prop_cells(struct device_node *np,
1261 const char *prop_name, int index,
1262 const char *suffix,
1263 const char *cells_name)
1264 {
1265 struct of_phandle_args sup_args;
1266
1267 if (strcmp_suffix(prop_name, suffix))
1268 return NULL;
1269
1270 if (of_parse_phandle_with_args(np, prop_name, cells_name, index,
1271 &sup_args))
1272 return NULL;
1273
1274 return sup_args.np;
1275 }
1276
1277 #define DEFINE_SUFFIX_PROP(fname, suffix, cells) \
1278 static struct device_node *parse_##fname(struct device_node *np, \
1279 const char *prop_name, int index) \
1280 { \
1281 return parse_suffix_prop_cells(np, prop_name, index, suffix, cells); \
1282 }
1283
1284 /**
1285 * struct supplier_bindings - Property parsing functions for suppliers
1286 *
1287 * @parse_prop: function name
1288 * parse_prop() finds the node corresponding to a supplier phandle
1289 * @parse_prop.np: Pointer to device node holding supplier phandle property
1290 * @parse_prop.prop_name: Name of property holding a phandle value
1291 * @parse_prop.index: For properties holding a list of phandles, this is the
1292 * index into the list
1293 *
1294 * Returns:
1295 * parse_prop() return values are
1296 * - phandle node pointer with refcount incremented. Caller must of_node_put()
1297 * on it when done.
1298 * - NULL if no phandle found at index
1299 */
1300 struct supplier_bindings {
1301 struct device_node *(*parse_prop)(struct device_node *np,
1302 const char *prop_name, int index);
1303 };
1304
1305 DEFINE_SIMPLE_PROP(clocks, "clocks", "#clock-cells")
1306 DEFINE_SIMPLE_PROP(interconnects, "interconnects", "#interconnect-cells")
1307 DEFINE_SIMPLE_PROP(iommus, "iommus", "#iommu-cells")
1308 DEFINE_SIMPLE_PROP(mboxes, "mboxes", "#mbox-cells")
1309 DEFINE_SIMPLE_PROP(io_channels, "io-channels", "#io-channel-cells")
1310 DEFINE_SIMPLE_PROP(interrupt_parent, "interrupt-parent", NULL)
1311 DEFINE_SIMPLE_PROP(dmas, "dmas", "#dma-cells")
1312 DEFINE_SIMPLE_PROP(power_domains, "power-domains", "#power-domain-cells")
1313 DEFINE_SIMPLE_PROP(hwlocks, "hwlocks", "#hwlock-cells")
1314 DEFINE_SIMPLE_PROP(extcon, "extcon", NULL)
1315 DEFINE_SIMPLE_PROP(interrupts_extended, "interrupts-extended",
1316 "#interrupt-cells")
1317 DEFINE_SIMPLE_PROP(nvmem_cells, "nvmem-cells", NULL)
1318 DEFINE_SIMPLE_PROP(phys, "phys", "#phy-cells")
1319 DEFINE_SIMPLE_PROP(wakeup_parent, "wakeup-parent", NULL)
1320 DEFINE_SIMPLE_PROP(pinctrl0, "pinctrl-0", NULL)
1321 DEFINE_SIMPLE_PROP(pinctrl1, "pinctrl-1", NULL)
1322 DEFINE_SIMPLE_PROP(pinctrl2, "pinctrl-2", NULL)
1323 DEFINE_SIMPLE_PROP(pinctrl3, "pinctrl-3", NULL)
1324 DEFINE_SIMPLE_PROP(pinctrl4, "pinctrl-4", NULL)
1325 DEFINE_SIMPLE_PROP(pinctrl5, "pinctrl-5", NULL)
1326 DEFINE_SIMPLE_PROP(pinctrl6, "pinctrl-6", NULL)
1327 DEFINE_SIMPLE_PROP(pinctrl7, "pinctrl-7", NULL)
1328 DEFINE_SIMPLE_PROP(pinctrl8, "pinctrl-8", NULL)
1329 DEFINE_SUFFIX_PROP(regulators, "-supply", NULL)
1330 DEFINE_SUFFIX_PROP(gpio, "-gpio", "#gpio-cells")
1331
parse_gpios(struct device_node * np,const char * prop_name,int index)1332 static struct device_node *parse_gpios(struct device_node *np,
1333 const char *prop_name, int index)
1334 {
1335 if (!strcmp_suffix(prop_name, ",nr-gpios"))
1336 return NULL;
1337
1338 return parse_suffix_prop_cells(np, prop_name, index, "-gpios",
1339 "#gpio-cells");
1340 }
1341
parse_iommu_maps(struct device_node * np,const char * prop_name,int index)1342 static struct device_node *parse_iommu_maps(struct device_node *np,
1343 const char *prop_name, int index)
1344 {
1345 if (strcmp(prop_name, "iommu-map"))
1346 return NULL;
1347
1348 return of_parse_phandle(np, prop_name, (index * 4) + 1);
1349 }
1350
1351 static const struct supplier_bindings of_supplier_bindings[] = {
1352 { .parse_prop = parse_clocks, },
1353 { .parse_prop = parse_interconnects, },
1354 { .parse_prop = parse_iommus, },
1355 { .parse_prop = parse_iommu_maps, },
1356 { .parse_prop = parse_mboxes, },
1357 { .parse_prop = parse_io_channels, },
1358 { .parse_prop = parse_interrupt_parent, },
1359 { .parse_prop = parse_dmas, },
1360 { .parse_prop = parse_power_domains, },
1361 { .parse_prop = parse_hwlocks, },
1362 { .parse_prop = parse_extcon, },
1363 { .parse_prop = parse_interrupts_extended, },
1364 { .parse_prop = parse_nvmem_cells, },
1365 { .parse_prop = parse_phys, },
1366 { .parse_prop = parse_wakeup_parent, },
1367 { .parse_prop = parse_pinctrl0, },
1368 { .parse_prop = parse_pinctrl1, },
1369 { .parse_prop = parse_pinctrl2, },
1370 { .parse_prop = parse_pinctrl3, },
1371 { .parse_prop = parse_pinctrl4, },
1372 { .parse_prop = parse_pinctrl5, },
1373 { .parse_prop = parse_pinctrl6, },
1374 { .parse_prop = parse_pinctrl7, },
1375 { .parse_prop = parse_pinctrl8, },
1376 { .parse_prop = parse_regulators, },
1377 { .parse_prop = parse_gpio, },
1378 { .parse_prop = parse_gpios, },
1379 {}
1380 };
1381
1382 /**
1383 * of_link_property - Create device links to suppliers listed in a property
1384 * @dev: Consumer device
1385 * @con_np: The consumer device tree node which contains the property
1386 * @prop_name: Name of property to be parsed
1387 *
1388 * This function checks if the property @prop_name that is present in the
1389 * @con_np device tree node is one of the known common device tree bindings
1390 * that list phandles to suppliers. If @prop_name isn't one, this function
1391 * doesn't do anything.
1392 *
1393 * If @prop_name is one, this function attempts to create device links from the
1394 * consumer device @dev to all the devices of the suppliers listed in
1395 * @prop_name.
1396 *
1397 * Any failed attempt to create a device link will NOT result in an immediate
1398 * return. of_link_property() must create links to all the available supplier
1399 * devices even when attempts to create a link to one or more suppliers fail.
1400 */
of_link_property(struct device * dev,struct device_node * con_np,const char * prop_name)1401 static int of_link_property(struct device *dev, struct device_node *con_np,
1402 const char *prop_name)
1403 {
1404 struct device_node *phandle;
1405 const struct supplier_bindings *s = of_supplier_bindings;
1406 unsigned int i = 0;
1407 bool matched = false;
1408 int ret = 0;
1409 u32 dl_flags;
1410
1411 if (dev->of_node == con_np)
1412 dl_flags = fw_devlink_get_flags();
1413 else
1414 dl_flags = DL_FLAG_SYNC_STATE_ONLY;
1415
1416 /* Do not stop at first failed link, link all available suppliers. */
1417 while (!matched && s->parse_prop) {
1418 while ((phandle = s->parse_prop(con_np, prop_name, i))) {
1419 matched = true;
1420 i++;
1421 if (of_link_to_phandle(dev, phandle, dl_flags)
1422 == -EAGAIN)
1423 ret = -EAGAIN;
1424 of_node_put(phandle);
1425 }
1426 s++;
1427 }
1428 return ret;
1429 }
1430
of_link_to_suppliers(struct device * dev,struct device_node * con_np)1431 static int of_link_to_suppliers(struct device *dev,
1432 struct device_node *con_np)
1433 {
1434 struct device_node *child;
1435 struct property *p;
1436 int ret = 0;
1437
1438 for_each_property_of_node(con_np, p)
1439 if (of_link_property(dev, con_np, p->name))
1440 ret = -ENODEV;
1441
1442 for_each_available_child_of_node(con_np, child)
1443 if (of_link_to_suppliers(dev, child) && !ret)
1444 ret = -EAGAIN;
1445
1446 return ret;
1447 }
1448
of_fwnode_add_links(const struct fwnode_handle * fwnode,struct device * dev)1449 static int of_fwnode_add_links(const struct fwnode_handle *fwnode,
1450 struct device *dev)
1451 {
1452 if (unlikely(!is_of_node(fwnode)))
1453 return 0;
1454
1455 return of_link_to_suppliers(dev, to_of_node(fwnode));
1456 }
1457
1458 const struct fwnode_operations of_fwnode_ops = {
1459 .get = of_fwnode_get,
1460 .put = of_fwnode_put,
1461 .device_is_available = of_fwnode_device_is_available,
1462 .device_get_match_data = of_fwnode_device_get_match_data,
1463 .property_present = of_fwnode_property_present,
1464 .property_read_int_array = of_fwnode_property_read_int_array,
1465 .property_read_string_array = of_fwnode_property_read_string_array,
1466 .get_name = of_fwnode_get_name,
1467 .get_name_prefix = of_fwnode_get_name_prefix,
1468 .get_parent = of_fwnode_get_parent,
1469 .get_next_child_node = of_fwnode_get_next_child_node,
1470 .get_named_child_node = of_fwnode_get_named_child_node,
1471 .get_reference_args = of_fwnode_get_reference_args,
1472 .graph_get_next_endpoint = of_fwnode_graph_get_next_endpoint,
1473 .graph_get_remote_endpoint = of_fwnode_graph_get_remote_endpoint,
1474 .graph_get_port_parent = of_fwnode_graph_get_port_parent,
1475 .graph_parse_endpoint = of_fwnode_graph_parse_endpoint,
1476 .add_links = of_fwnode_add_links,
1477 };
1478 EXPORT_SYMBOL_GPL(of_fwnode_ops);
1479