• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
armpmu_free_pmuirq(unsigned int irq,int cpu,void __percpu * devid)37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
armpmu_free_pmunmi(unsigned int irq,int cpu,void __percpu * devid)48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
armpmu_enable_percpu_pmuirq(unsigned int irq)59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
armpmu_free_percpu_pmuirq(unsigned int irq,int cpu,void __percpu * devid)64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
armpmu_enable_percpu_pmunmi(unsigned int irq)77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
armpmu_disable_percpu_pmunmi(unsigned int irq)83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
armpmu_free_percpu_pmunmi(unsigned int irq,int cpu,void __percpu * devid)89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
arm_pmu_event_max_period(struct perf_event * event)108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else
113 		return GENMASK_ULL(31, 0);
114 }
115 
116 static int
armpmu_map_cache_event(const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u64 config)117 armpmu_map_cache_event(const unsigned (*cache_map)
118 				      [PERF_COUNT_HW_CACHE_MAX]
119 				      [PERF_COUNT_HW_CACHE_OP_MAX]
120 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
121 		       u64 config)
122 {
123 	unsigned int cache_type, cache_op, cache_result, ret;
124 
125 	cache_type = (config >>  0) & 0xff;
126 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
127 		return -EINVAL;
128 
129 	cache_op = (config >>  8) & 0xff;
130 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
131 		return -EINVAL;
132 
133 	cache_result = (config >> 16) & 0xff;
134 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
135 		return -EINVAL;
136 
137 	if (!cache_map)
138 		return -ENOENT;
139 
140 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
141 
142 	if (ret == CACHE_OP_UNSUPPORTED)
143 		return -ENOENT;
144 
145 	return ret;
146 }
147 
148 static int
armpmu_map_hw_event(const unsigned (* event_map)[PERF_COUNT_HW_MAX],u64 config)149 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
150 {
151 	int mapping;
152 
153 	if (config >= PERF_COUNT_HW_MAX)
154 		return -EINVAL;
155 
156 	if (!event_map)
157 		return -ENOENT;
158 
159 	mapping = (*event_map)[config];
160 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
161 }
162 
163 static int
armpmu_map_raw_event(u32 raw_event_mask,u64 config)164 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
165 {
166 	return (int)(config & raw_event_mask);
167 }
168 
169 int
armpmu_map_event(struct perf_event * event,const unsigned (* event_map)[PERF_COUNT_HW_MAX],const unsigned (* cache_map)[PERF_COUNT_HW_CACHE_MAX][PERF_COUNT_HW_CACHE_OP_MAX][PERF_COUNT_HW_CACHE_RESULT_MAX],u32 raw_event_mask)170 armpmu_map_event(struct perf_event *event,
171 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
172 		 const unsigned (*cache_map)
173 				[PERF_COUNT_HW_CACHE_MAX]
174 				[PERF_COUNT_HW_CACHE_OP_MAX]
175 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
176 		 u32 raw_event_mask)
177 {
178 	u64 config = event->attr.config;
179 	int type = event->attr.type;
180 
181 	if (type == event->pmu->type)
182 		return armpmu_map_raw_event(raw_event_mask, config);
183 
184 	switch (type) {
185 	case PERF_TYPE_HARDWARE:
186 		return armpmu_map_hw_event(event_map, config);
187 	case PERF_TYPE_HW_CACHE:
188 		return armpmu_map_cache_event(cache_map, config);
189 	case PERF_TYPE_RAW:
190 		return armpmu_map_raw_event(raw_event_mask, config);
191 	}
192 
193 	return -ENOENT;
194 }
195 
armpmu_event_set_period(struct perf_event * event)196 int armpmu_event_set_period(struct perf_event *event)
197 {
198 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
199 	struct hw_perf_event *hwc = &event->hw;
200 	s64 left = local64_read(&hwc->period_left);
201 	s64 period = hwc->sample_period;
202 	u64 max_period;
203 	int ret = 0;
204 
205 	max_period = arm_pmu_event_max_period(event);
206 	if (unlikely(left <= -period)) {
207 		left = period;
208 		local64_set(&hwc->period_left, left);
209 		hwc->last_period = period;
210 		ret = 1;
211 	}
212 
213 	if (unlikely(left <= 0)) {
214 		left += period;
215 		local64_set(&hwc->period_left, left);
216 		hwc->last_period = period;
217 		ret = 1;
218 	}
219 
220 	/*
221 	 * Limit the maximum period to prevent the counter value
222 	 * from overtaking the one we are about to program. In
223 	 * effect we are reducing max_period to account for
224 	 * interrupt latency (and we are being very conservative).
225 	 */
226 	if (left > (max_period >> 1))
227 		left = (max_period >> 1);
228 
229 	local64_set(&hwc->prev_count, (u64)-left);
230 
231 	armpmu->write_counter(event, (u64)(-left) & max_period);
232 
233 	perf_event_update_userpage(event);
234 
235 	return ret;
236 }
237 
armpmu_event_update(struct perf_event * event)238 u64 armpmu_event_update(struct perf_event *event)
239 {
240 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 	struct hw_perf_event *hwc = &event->hw;
242 	u64 delta, prev_raw_count, new_raw_count;
243 	u64 max_period = arm_pmu_event_max_period(event);
244 
245 again:
246 	prev_raw_count = local64_read(&hwc->prev_count);
247 	new_raw_count = armpmu->read_counter(event);
248 
249 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
250 			     new_raw_count) != prev_raw_count)
251 		goto again;
252 
253 	delta = (new_raw_count - prev_raw_count) & max_period;
254 
255 	local64_add(delta, &event->count);
256 	local64_sub(delta, &hwc->period_left);
257 
258 	return new_raw_count;
259 }
260 
261 static void
armpmu_read(struct perf_event * event)262 armpmu_read(struct perf_event *event)
263 {
264 	armpmu_event_update(event);
265 }
266 
267 static void
armpmu_stop(struct perf_event * event,int flags)268 armpmu_stop(struct perf_event *event, int flags)
269 {
270 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
271 	struct hw_perf_event *hwc = &event->hw;
272 
273 	/*
274 	 * ARM pmu always has to update the counter, so ignore
275 	 * PERF_EF_UPDATE, see comments in armpmu_start().
276 	 */
277 	if (!(hwc->state & PERF_HES_STOPPED)) {
278 		armpmu->disable(event);
279 		armpmu_event_update(event);
280 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
281 	}
282 }
283 
armpmu_start(struct perf_event * event,int flags)284 static void armpmu_start(struct perf_event *event, int flags)
285 {
286 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
287 	struct hw_perf_event *hwc = &event->hw;
288 
289 	/*
290 	 * ARM pmu always has to reprogram the period, so ignore
291 	 * PERF_EF_RELOAD, see the comment below.
292 	 */
293 	if (flags & PERF_EF_RELOAD)
294 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
295 
296 	hwc->state = 0;
297 	/*
298 	 * Set the period again. Some counters can't be stopped, so when we
299 	 * were stopped we simply disabled the IRQ source and the counter
300 	 * may have been left counting. If we don't do this step then we may
301 	 * get an interrupt too soon or *way* too late if the overflow has
302 	 * happened since disabling.
303 	 */
304 	armpmu_event_set_period(event);
305 	armpmu->enable(event);
306 }
307 
308 static void
armpmu_del(struct perf_event * event,int flags)309 armpmu_del(struct perf_event *event, int flags)
310 {
311 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
312 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
313 	struct hw_perf_event *hwc = &event->hw;
314 	int idx = hwc->idx;
315 
316 	armpmu_stop(event, PERF_EF_UPDATE);
317 	hw_events->events[idx] = NULL;
318 	armpmu->clear_event_idx(hw_events, event);
319 	perf_event_update_userpage(event);
320 	/* Clear the allocated counter */
321 	hwc->idx = -1;
322 }
323 
324 static int
armpmu_add(struct perf_event * event,int flags)325 armpmu_add(struct perf_event *event, int flags)
326 {
327 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
328 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
329 	struct hw_perf_event *hwc = &event->hw;
330 	int idx;
331 
332 	/* An event following a process won't be stopped earlier */
333 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
334 		return -ENOENT;
335 
336 	/* If we don't have a space for the counter then finish early. */
337 	idx = armpmu->get_event_idx(hw_events, event);
338 	if (idx < 0)
339 		return idx;
340 
341 	/*
342 	 * If there is an event in the counter we are going to use then make
343 	 * sure it is disabled.
344 	 */
345 	event->hw.idx = idx;
346 	armpmu->disable(event);
347 	hw_events->events[idx] = event;
348 
349 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
350 	if (flags & PERF_EF_START)
351 		armpmu_start(event, PERF_EF_RELOAD);
352 
353 	/* Propagate our changes to the userspace mapping. */
354 	perf_event_update_userpage(event);
355 
356 	return 0;
357 }
358 
359 static int
validate_event(struct pmu * pmu,struct pmu_hw_events * hw_events,struct perf_event * event)360 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
361 			       struct perf_event *event)
362 {
363 	struct arm_pmu *armpmu;
364 
365 	if (is_software_event(event))
366 		return 1;
367 
368 	/*
369 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
370 	 * core perf code won't check that the pmu->ctx == leader->ctx
371 	 * until after pmu->event_init(event).
372 	 */
373 	if (event->pmu != pmu)
374 		return 0;
375 
376 	if (event->state < PERF_EVENT_STATE_OFF)
377 		return 1;
378 
379 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
380 		return 1;
381 
382 	armpmu = to_arm_pmu(event->pmu);
383 	return armpmu->get_event_idx(hw_events, event) >= 0;
384 }
385 
386 static int
validate_group(struct perf_event * event)387 validate_group(struct perf_event *event)
388 {
389 	struct perf_event *sibling, *leader = event->group_leader;
390 	struct pmu_hw_events fake_pmu;
391 
392 	/*
393 	 * Initialise the fake PMU. We only need to populate the
394 	 * used_mask for the purposes of validation.
395 	 */
396 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
397 
398 	if (!validate_event(event->pmu, &fake_pmu, leader))
399 		return -EINVAL;
400 
401 	if (event == leader)
402 		return 0;
403 
404 	for_each_sibling_event(sibling, leader) {
405 		if (!validate_event(event->pmu, &fake_pmu, sibling))
406 			return -EINVAL;
407 	}
408 
409 	if (!validate_event(event->pmu, &fake_pmu, event))
410 		return -EINVAL;
411 
412 	return 0;
413 }
414 
armpmu_dispatch_irq(int irq,void * dev)415 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
416 {
417 	struct arm_pmu *armpmu;
418 	int ret;
419 	u64 start_clock, finish_clock;
420 
421 	/*
422 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
423 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
424 	 * do any necessary shifting, we just need to perform the first
425 	 * dereference.
426 	 */
427 	armpmu = *(void **)dev;
428 	if (WARN_ON_ONCE(!armpmu))
429 		return IRQ_NONE;
430 
431 	start_clock = sched_clock();
432 	ret = armpmu->handle_irq(armpmu);
433 	finish_clock = sched_clock();
434 
435 	perf_sample_event_took(finish_clock - start_clock);
436 	return ret;
437 }
438 
439 static int
__hw_perf_event_init(struct perf_event * event)440 __hw_perf_event_init(struct perf_event *event)
441 {
442 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
443 	struct hw_perf_event *hwc = &event->hw;
444 	int mapping;
445 
446 	hwc->flags = 0;
447 	mapping = armpmu->map_event(event);
448 
449 	if (mapping < 0) {
450 		pr_debug("event %x:%llx not supported\n", event->attr.type,
451 			 event->attr.config);
452 		return mapping;
453 	}
454 
455 	/*
456 	 * We don't assign an index until we actually place the event onto
457 	 * hardware. Use -1 to signify that we haven't decided where to put it
458 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
459 	 * clever allocation or constraints checking at this point.
460 	 */
461 	hwc->idx		= -1;
462 	hwc->config_base	= 0;
463 	hwc->config		= 0;
464 	hwc->event_base		= 0;
465 
466 	/*
467 	 * Check whether we need to exclude the counter from certain modes.
468 	 */
469 	if (armpmu->set_event_filter &&
470 	    armpmu->set_event_filter(hwc, &event->attr)) {
471 		pr_debug("ARM performance counters do not support "
472 			 "mode exclusion\n");
473 		return -EOPNOTSUPP;
474 	}
475 
476 	/*
477 	 * Store the event encoding into the config_base field.
478 	 */
479 	hwc->config_base	    |= (unsigned long)mapping;
480 
481 	if (!is_sampling_event(event)) {
482 		/*
483 		 * For non-sampling runs, limit the sample_period to half
484 		 * of the counter width. That way, the new counter value
485 		 * is far less likely to overtake the previous one unless
486 		 * you have some serious IRQ latency issues.
487 		 */
488 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
489 		hwc->last_period    = hwc->sample_period;
490 		local64_set(&hwc->period_left, hwc->sample_period);
491 	}
492 
493 	return validate_group(event);
494 }
495 
armpmu_event_init(struct perf_event * event)496 static int armpmu_event_init(struct perf_event *event)
497 {
498 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
499 
500 	/*
501 	 * Reject CPU-affine events for CPUs that are of a different class to
502 	 * that which this PMU handles. Process-following events (where
503 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
504 	 * reject them later (in armpmu_add) if they're scheduled on a
505 	 * different class of CPU.
506 	 */
507 	if (event->cpu != -1 &&
508 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
509 		return -ENOENT;
510 
511 	/* does not support taken branch sampling */
512 	if (has_branch_stack(event))
513 		return -EOPNOTSUPP;
514 
515 	if (armpmu->map_event(event) == -ENOENT)
516 		return -ENOENT;
517 
518 	return __hw_perf_event_init(event);
519 }
520 
armpmu_enable(struct pmu * pmu)521 static void armpmu_enable(struct pmu *pmu)
522 {
523 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
524 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
526 
527 	/* For task-bound events we may be called on other CPUs */
528 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529 		return;
530 
531 	if (enabled)
532 		armpmu->start(armpmu);
533 }
534 
armpmu_disable(struct pmu * pmu)535 static void armpmu_disable(struct pmu *pmu)
536 {
537 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
538 
539 	/* For task-bound events we may be called on other CPUs */
540 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541 		return;
542 
543 	armpmu->stop(armpmu);
544 }
545 
546 /*
547  * In heterogeneous systems, events are specific to a particular
548  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549  * the same microarchitecture.
550  */
armpmu_filter_match(struct perf_event * event)551 static int armpmu_filter_match(struct perf_event *event)
552 {
553 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
554 	unsigned int cpu = smp_processor_id();
555 	int ret;
556 
557 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
558 	if (ret && armpmu->filter_match)
559 		return armpmu->filter_match(event);
560 
561 	return ret;
562 }
563 
armpmu_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)564 static ssize_t armpmu_cpumask_show(struct device *dev,
565 				   struct device_attribute *attr, char *buf)
566 {
567 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
568 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
569 }
570 
571 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
572 
573 static struct attribute *armpmu_common_attrs[] = {
574 	&dev_attr_cpus.attr,
575 	NULL,
576 };
577 
578 static struct attribute_group armpmu_common_attr_group = {
579 	.attrs = armpmu_common_attrs,
580 };
581 
582 /* Set at runtime when we know what CPU type we are. */
583 static struct arm_pmu *__oprofile_cpu_pmu;
584 
585 /*
586  * Despite the names, these two functions are CPU-specific and are used
587  * by the OProfile/perf code.
588  */
perf_pmu_name(void)589 const char *perf_pmu_name(void)
590 {
591 	if (!__oprofile_cpu_pmu)
592 		return NULL;
593 
594 	return __oprofile_cpu_pmu->name;
595 }
596 EXPORT_SYMBOL_GPL(perf_pmu_name);
597 
perf_num_counters(void)598 int perf_num_counters(void)
599 {
600 	int max_events = 0;
601 
602 	if (__oprofile_cpu_pmu != NULL)
603 		max_events = __oprofile_cpu_pmu->num_events;
604 
605 	return max_events;
606 }
607 EXPORT_SYMBOL_GPL(perf_num_counters);
608 
armpmu_count_irq_users(const int irq)609 static int armpmu_count_irq_users(const int irq)
610 {
611 	int cpu, count = 0;
612 
613 	for_each_possible_cpu(cpu) {
614 		if (per_cpu(cpu_irq, cpu) == irq)
615 			count++;
616 	}
617 
618 	return count;
619 }
620 
armpmu_find_irq_ops(int irq)621 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
622 {
623 	const struct pmu_irq_ops *ops = NULL;
624 	int cpu;
625 
626 	for_each_possible_cpu(cpu) {
627 		if (per_cpu(cpu_irq, cpu) != irq)
628 			continue;
629 
630 		ops = per_cpu(cpu_irq_ops, cpu);
631 		if (ops)
632 			break;
633 	}
634 
635 	return ops;
636 }
637 
armpmu_free_irq(int irq,int cpu)638 void armpmu_free_irq(int irq, int cpu)
639 {
640 	if (per_cpu(cpu_irq, cpu) == 0)
641 		return;
642 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
643 		return;
644 
645 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
646 
647 	per_cpu(cpu_irq, cpu) = 0;
648 	per_cpu(cpu_irq_ops, cpu) = NULL;
649 }
650 
armpmu_request_irq(int irq,int cpu)651 int armpmu_request_irq(int irq, int cpu)
652 {
653 	int err = 0;
654 	const irq_handler_t handler = armpmu_dispatch_irq;
655 	const struct pmu_irq_ops *irq_ops;
656 
657 	if (!irq)
658 		return 0;
659 
660 	if (!irq_is_percpu_devid(irq)) {
661 		unsigned long irq_flags;
662 
663 		err = irq_force_affinity(irq, cpumask_of(cpu));
664 
665 		if (err && num_possible_cpus() > 1) {
666 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
667 				irq, cpu);
668 			goto err_out;
669 		}
670 
671 		irq_flags = IRQF_PERCPU |
672 			    IRQF_NOBALANCING |
673 			    IRQF_NO_THREAD;
674 
675 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
676 
677 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
678 				  per_cpu_ptr(&cpu_armpmu, cpu));
679 
680 		/* If cannot get an NMI, get a normal interrupt */
681 		if (err) {
682 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
683 					  per_cpu_ptr(&cpu_armpmu, cpu));
684 			irq_ops = &pmuirq_ops;
685 		} else {
686 			has_nmi = true;
687 			irq_ops = &pmunmi_ops;
688 		}
689 	} else if (armpmu_count_irq_users(irq) == 0) {
690 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
691 
692 		/* If cannot get an NMI, get a normal interrupt */
693 		if (err) {
694 			err = request_percpu_irq(irq, handler, "arm-pmu",
695 						 &cpu_armpmu);
696 			irq_ops = &percpu_pmuirq_ops;
697 		} else {
698 			has_nmi= true;
699 			irq_ops = &percpu_pmunmi_ops;
700 		}
701 	} else {
702 		/* Per cpudevid irq was already requested by another CPU */
703 		irq_ops = armpmu_find_irq_ops(irq);
704 
705 		if (WARN_ON(!irq_ops))
706 			err = -EINVAL;
707 	}
708 
709 	if (err)
710 		goto err_out;
711 
712 	per_cpu(cpu_irq, cpu) = irq;
713 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
714 	return 0;
715 
716 err_out:
717 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
718 	return err;
719 }
720 
armpmu_get_cpu_irq(struct arm_pmu * pmu,int cpu)721 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
722 {
723 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
724 	return per_cpu(hw_events->irq, cpu);
725 }
726 
727 /*
728  * PMU hardware loses all context when a CPU goes offline.
729  * When a CPU is hotplugged back in, since some hardware registers are
730  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
731  * junk values out of them.
732  */
arm_perf_starting_cpu(unsigned int cpu,struct hlist_node * node)733 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
734 {
735 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
736 	int irq;
737 
738 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
739 		return 0;
740 	if (pmu->reset)
741 		pmu->reset(pmu);
742 
743 	per_cpu(cpu_armpmu, cpu) = pmu;
744 
745 	irq = armpmu_get_cpu_irq(pmu, cpu);
746 	if (irq)
747 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
748 
749 	return 0;
750 }
751 
arm_perf_teardown_cpu(unsigned int cpu,struct hlist_node * node)752 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
753 {
754 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
755 	int irq;
756 
757 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
758 		return 0;
759 
760 	irq = armpmu_get_cpu_irq(pmu, cpu);
761 	if (irq)
762 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
763 
764 	per_cpu(cpu_armpmu, cpu) = NULL;
765 
766 	return 0;
767 }
768 
769 #ifdef CONFIG_CPU_PM
cpu_pm_pmu_setup(struct arm_pmu * armpmu,unsigned long cmd)770 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
771 {
772 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
773 	struct perf_event *event;
774 	int idx;
775 
776 	for (idx = 0; idx < armpmu->num_events; idx++) {
777 		event = hw_events->events[idx];
778 		if (!event)
779 			continue;
780 
781 		switch (cmd) {
782 		case CPU_PM_ENTER:
783 			/*
784 			 * Stop and update the counter
785 			 */
786 			armpmu_stop(event, PERF_EF_UPDATE);
787 			break;
788 		case CPU_PM_EXIT:
789 		case CPU_PM_ENTER_FAILED:
790 			 /*
791 			  * Restore and enable the counter.
792 			  * armpmu_start() indirectly calls
793 			  *
794 			  * perf_event_update_userpage()
795 			  *
796 			  * that requires RCU read locking to be functional,
797 			  * wrap the call within RCU_NONIDLE to make the
798 			  * RCU subsystem aware this cpu is not idle from
799 			  * an RCU perspective for the armpmu_start() call
800 			  * duration.
801 			  */
802 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
803 			break;
804 		default:
805 			break;
806 		}
807 	}
808 }
809 
cpu_pm_pmu_notify(struct notifier_block * b,unsigned long cmd,void * v)810 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
811 			     void *v)
812 {
813 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
814 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
815 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
816 
817 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
818 		return NOTIFY_DONE;
819 
820 	/*
821 	 * Always reset the PMU registers on power-up even if
822 	 * there are no events running.
823 	 */
824 	if (cmd == CPU_PM_EXIT && armpmu->reset)
825 		armpmu->reset(armpmu);
826 
827 	if (!enabled)
828 		return NOTIFY_OK;
829 
830 	switch (cmd) {
831 	case CPU_PM_ENTER:
832 		armpmu->stop(armpmu);
833 		cpu_pm_pmu_setup(armpmu, cmd);
834 		break;
835 	case CPU_PM_EXIT:
836 	case CPU_PM_ENTER_FAILED:
837 		cpu_pm_pmu_setup(armpmu, cmd);
838 		armpmu->start(armpmu);
839 		break;
840 	default:
841 		return NOTIFY_DONE;
842 	}
843 
844 	return NOTIFY_OK;
845 }
846 
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)847 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
848 {
849 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
850 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
851 }
852 
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)853 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
854 {
855 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
856 }
857 #else
cpu_pm_pmu_register(struct arm_pmu * cpu_pmu)858 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
cpu_pm_pmu_unregister(struct arm_pmu * cpu_pmu)859 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
860 #endif
861 
cpu_pmu_init(struct arm_pmu * cpu_pmu)862 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
863 {
864 	int err;
865 
866 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
867 				       &cpu_pmu->node);
868 	if (err)
869 		goto out;
870 
871 	err = cpu_pm_pmu_register(cpu_pmu);
872 	if (err)
873 		goto out_unregister;
874 
875 	return 0;
876 
877 out_unregister:
878 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
879 					    &cpu_pmu->node);
880 out:
881 	return err;
882 }
883 
cpu_pmu_destroy(struct arm_pmu * cpu_pmu)884 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885 {
886 	cpu_pm_pmu_unregister(cpu_pmu);
887 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888 					    &cpu_pmu->node);
889 }
890 
__armpmu_alloc(gfp_t flags)891 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
892 {
893 	struct arm_pmu *pmu;
894 	int cpu;
895 
896 	pmu = kzalloc(sizeof(*pmu), flags);
897 	if (!pmu) {
898 		pr_info("failed to allocate PMU device!\n");
899 		goto out;
900 	}
901 
902 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
903 	if (!pmu->hw_events) {
904 		pr_info("failed to allocate per-cpu PMU data.\n");
905 		goto out_free_pmu;
906 	}
907 
908 	pmu->pmu = (struct pmu) {
909 		.pmu_enable	= armpmu_enable,
910 		.pmu_disable	= armpmu_disable,
911 		.event_init	= armpmu_event_init,
912 		.add		= armpmu_add,
913 		.del		= armpmu_del,
914 		.start		= armpmu_start,
915 		.stop		= armpmu_stop,
916 		.read		= armpmu_read,
917 		.filter_match	= armpmu_filter_match,
918 		.attr_groups	= pmu->attr_groups,
919 		/*
920 		 * This is a CPU PMU potentially in a heterogeneous
921 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
922 		 * and we have taken ctx sharing into account (e.g. with our
923 		 * pmu::filter_match callback and pmu::event_init group
924 		 * validation).
925 		 */
926 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
927 	};
928 
929 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
930 		&armpmu_common_attr_group;
931 
932 	for_each_possible_cpu(cpu) {
933 		struct pmu_hw_events *events;
934 
935 		events = per_cpu_ptr(pmu->hw_events, cpu);
936 		raw_spin_lock_init(&events->pmu_lock);
937 		events->percpu_pmu = pmu;
938 	}
939 
940 	return pmu;
941 
942 out_free_pmu:
943 	kfree(pmu);
944 out:
945 	return NULL;
946 }
947 
armpmu_alloc(void)948 struct arm_pmu *armpmu_alloc(void)
949 {
950 	return __armpmu_alloc(GFP_KERNEL);
951 }
952 
armpmu_alloc_atomic(void)953 struct arm_pmu *armpmu_alloc_atomic(void)
954 {
955 	return __armpmu_alloc(GFP_ATOMIC);
956 }
957 
958 
armpmu_free(struct arm_pmu * pmu)959 void armpmu_free(struct arm_pmu *pmu)
960 {
961 	free_percpu(pmu->hw_events);
962 	kfree(pmu);
963 }
964 
armpmu_register(struct arm_pmu * pmu)965 int armpmu_register(struct arm_pmu *pmu)
966 {
967 	int ret;
968 
969 	ret = cpu_pmu_init(pmu);
970 	if (ret)
971 		return ret;
972 
973 	if (!pmu->set_event_filter)
974 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
975 
976 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
977 	if (ret)
978 		goto out_destroy;
979 
980 	if (!__oprofile_cpu_pmu)
981 		__oprofile_cpu_pmu = pmu;
982 
983 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
984 		pmu->name, pmu->num_events,
985 		has_nmi ? ", using NMIs" : "");
986 
987 	return 0;
988 
989 out_destroy:
990 	cpu_pmu_destroy(pmu);
991 	return ret;
992 }
993 
arm_pmu_hp_init(void)994 static int arm_pmu_hp_init(void)
995 {
996 	int ret;
997 
998 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
999 				      "perf/arm/pmu:starting",
1000 				      arm_perf_starting_cpu,
1001 				      arm_perf_teardown_cpu);
1002 	if (ret)
1003 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1004 		       ret);
1005 	return ret;
1006 }
1007 subsys_initcall(arm_pmu_hp_init);
1008