• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4 
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi_bitbang.h>
22 #include <linux/types.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/property.h>
26 
27 #include <linux/platform_data/dma-imx.h>
28 
29 #define DRIVER_NAME "spi_imx"
30 
31 static bool use_dma = true;
32 module_param(use_dma, bool, 0644);
33 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
34 
35 #define MXC_RPM_TIMEOUT		2000 /* 2000ms */
36 
37 #define MXC_CSPIRXDATA		0x00
38 #define MXC_CSPITXDATA		0x04
39 #define MXC_CSPICTRL		0x08
40 #define MXC_CSPIINT		0x0c
41 #define MXC_RESET		0x1c
42 
43 /* generic defines to abstract from the different register layouts */
44 #define MXC_INT_RR	(1 << 0) /* Receive data ready interrupt */
45 #define MXC_INT_TE	(1 << 1) /* Transmit FIFO empty interrupt */
46 #define MXC_INT_RDR	BIT(4) /* Receive date threshold interrupt */
47 
48 /* The maximum bytes that a sdma BD can transfer. */
49 #define MAX_SDMA_BD_BYTES (1 << 15)
50 #define MX51_ECSPI_CTRL_MAX_BURST	512
51 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
52 #define MX53_MAX_TRANSFER_BYTES		512
53 
54 enum spi_imx_devtype {
55 	IMX1_CSPI,
56 	IMX21_CSPI,
57 	IMX27_CSPI,
58 	IMX31_CSPI,
59 	IMX35_CSPI,	/* CSPI on all i.mx except above */
60 	IMX51_ECSPI,	/* ECSPI on i.mx51 */
61 	IMX53_ECSPI,	/* ECSPI on i.mx53 and later */
62 };
63 
64 struct spi_imx_data;
65 
66 struct spi_imx_devtype_data {
67 	void (*intctrl)(struct spi_imx_data *, int);
68 	int (*prepare_message)(struct spi_imx_data *, struct spi_message *);
69 	int (*prepare_transfer)(struct spi_imx_data *, struct spi_device *);
70 	void (*trigger)(struct spi_imx_data *);
71 	int (*rx_available)(struct spi_imx_data *);
72 	void (*reset)(struct spi_imx_data *);
73 	void (*setup_wml)(struct spi_imx_data *);
74 	void (*disable)(struct spi_imx_data *);
75 	void (*disable_dma)(struct spi_imx_data *);
76 	bool has_dmamode;
77 	bool has_slavemode;
78 	unsigned int fifo_size;
79 	bool dynamic_burst;
80 	enum spi_imx_devtype devtype;
81 };
82 
83 struct spi_imx_data {
84 	struct spi_bitbang bitbang;
85 	struct device *dev;
86 
87 	struct completion xfer_done;
88 	void __iomem *base;
89 	unsigned long base_phys;
90 
91 	struct clk *clk_per;
92 	struct clk *clk_ipg;
93 	unsigned long spi_clk;
94 	unsigned int spi_bus_clk;
95 
96 	unsigned int bits_per_word;
97 	unsigned int spi_drctl;
98 
99 	unsigned int count, remainder;
100 	void (*tx)(struct spi_imx_data *);
101 	void (*rx)(struct spi_imx_data *);
102 	void *rx_buf;
103 	const void *tx_buf;
104 	unsigned int txfifo; /* number of words pushed in tx FIFO */
105 	unsigned int dynamic_burst;
106 
107 	/* Slave mode */
108 	bool slave_mode;
109 	bool slave_aborted;
110 	unsigned int slave_burst;
111 
112 	/* DMA */
113 	bool usedma;
114 	u32 wml;
115 	struct completion dma_rx_completion;
116 	struct completion dma_tx_completion;
117 
118 	const struct spi_imx_devtype_data *devtype_data;
119 };
120 
is_imx27_cspi(struct spi_imx_data * d)121 static inline int is_imx27_cspi(struct spi_imx_data *d)
122 {
123 	return d->devtype_data->devtype == IMX27_CSPI;
124 }
125 
is_imx35_cspi(struct spi_imx_data * d)126 static inline int is_imx35_cspi(struct spi_imx_data *d)
127 {
128 	return d->devtype_data->devtype == IMX35_CSPI;
129 }
130 
is_imx51_ecspi(struct spi_imx_data * d)131 static inline int is_imx51_ecspi(struct spi_imx_data *d)
132 {
133 	return d->devtype_data->devtype == IMX51_ECSPI;
134 }
135 
is_imx53_ecspi(struct spi_imx_data * d)136 static inline int is_imx53_ecspi(struct spi_imx_data *d)
137 {
138 	return d->devtype_data->devtype == IMX53_ECSPI;
139 }
140 
141 #define MXC_SPI_BUF_RX(type)						\
142 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx)		\
143 {									\
144 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);	\
145 									\
146 	if (spi_imx->rx_buf) {						\
147 		*(type *)spi_imx->rx_buf = val;				\
148 		spi_imx->rx_buf += sizeof(type);			\
149 	}								\
150 									\
151 	spi_imx->remainder -= sizeof(type);				\
152 }
153 
154 #define MXC_SPI_BUF_TX(type)						\
155 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx)		\
156 {									\
157 	type val = 0;							\
158 									\
159 	if (spi_imx->tx_buf) {						\
160 		val = *(type *)spi_imx->tx_buf;				\
161 		spi_imx->tx_buf += sizeof(type);			\
162 	}								\
163 									\
164 	spi_imx->count -= sizeof(type);					\
165 									\
166 	writel(val, spi_imx->base + MXC_CSPITXDATA);			\
167 }
168 
169 MXC_SPI_BUF_RX(u8)
170 MXC_SPI_BUF_TX(u8)
171 MXC_SPI_BUF_RX(u16)
172 MXC_SPI_BUF_TX(u16)
173 MXC_SPI_BUF_RX(u32)
174 MXC_SPI_BUF_TX(u32)
175 
176 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
177  * (which is currently not the case in this driver)
178  */
179 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
180 	256, 384, 512, 768, 1024};
181 
182 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)183 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
184 		unsigned int fspi, unsigned int max, unsigned int *fres)
185 {
186 	int i;
187 
188 	for (i = 2; i < max; i++)
189 		if (fspi * mxc_clkdivs[i] >= fin)
190 			break;
191 
192 	*fres = fin / mxc_clkdivs[i];
193 	return i;
194 }
195 
196 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)197 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
198 		unsigned int fspi, unsigned int *fres)
199 {
200 	int i, div = 4;
201 
202 	for (i = 0; i < 7; i++) {
203 		if (fspi * div >= fin)
204 			goto out;
205 		div <<= 1;
206 	}
207 
208 out:
209 	*fres = fin / div;
210 	return i;
211 }
212 
spi_imx_bytes_per_word(const int bits_per_word)213 static int spi_imx_bytes_per_word(const int bits_per_word)
214 {
215 	if (bits_per_word <= 8)
216 		return 1;
217 	else if (bits_per_word <= 16)
218 		return 2;
219 	else
220 		return 4;
221 }
222 
spi_imx_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * transfer)223 static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
224 			 struct spi_transfer *transfer)
225 {
226 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
227 
228 	if (!use_dma || master->fallback)
229 		return false;
230 
231 	if (!master->dma_rx)
232 		return false;
233 
234 	if (spi_imx->slave_mode)
235 		return false;
236 
237 	if (transfer->len < spi_imx->devtype_data->fifo_size)
238 		return false;
239 
240 	spi_imx->dynamic_burst = 0;
241 
242 	return true;
243 }
244 
245 /*
246  * Note the number of natively supported chip selects for MX51 is 4. Some
247  * devices may have less actual SS pins but the register map supports 4. When
248  * using gpio chip selects the cs values passed into the macros below can go
249  * outside the range 0 - 3. We therefore need to limit the cs value to avoid
250  * corrupting bits outside the allocated locations.
251  *
252  * The simplest way to do this is to just mask the cs bits to 2 bits. This
253  * still allows all 4 native chip selects to work as well as gpio chip selects
254  * (which can use any of the 4 chip select configurations).
255  */
256 
257 #define MX51_ECSPI_CTRL		0x08
258 #define MX51_ECSPI_CTRL_ENABLE		(1 <<  0)
259 #define MX51_ECSPI_CTRL_XCH		(1 <<  2)
260 #define MX51_ECSPI_CTRL_SMC		(1 << 3)
261 #define MX51_ECSPI_CTRL_MODE_MASK	(0xf << 4)
262 #define MX51_ECSPI_CTRL_DRCTL(drctl)	((drctl) << 16)
263 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET	8
264 #define MX51_ECSPI_CTRL_PREDIV_OFFSET	12
265 #define MX51_ECSPI_CTRL_CS(cs)		((cs & 3) << 18)
266 #define MX51_ECSPI_CTRL_BL_OFFSET	20
267 #define MX51_ECSPI_CTRL_BL_MASK		(0xfff << 20)
268 
269 #define MX51_ECSPI_CONFIG	0x0c
270 #define MX51_ECSPI_CONFIG_SCLKPHA(cs)	(1 << ((cs & 3) +  0))
271 #define MX51_ECSPI_CONFIG_SCLKPOL(cs)	(1 << ((cs & 3) +  4))
272 #define MX51_ECSPI_CONFIG_SBBCTRL(cs)	(1 << ((cs & 3) +  8))
273 #define MX51_ECSPI_CONFIG_SSBPOL(cs)	(1 << ((cs & 3) + 12))
274 #define MX51_ECSPI_CONFIG_SCLKCTL(cs)	(1 << ((cs & 3) + 20))
275 
276 #define MX51_ECSPI_INT		0x10
277 #define MX51_ECSPI_INT_TEEN		(1 <<  0)
278 #define MX51_ECSPI_INT_RREN		(1 <<  3)
279 #define MX51_ECSPI_INT_RDREN		(1 <<  4)
280 
281 #define MX51_ECSPI_DMA		0x14
282 #define MX51_ECSPI_DMA_TX_WML(wml)	((wml) & 0x3f)
283 #define MX51_ECSPI_DMA_RX_WML(wml)	(((wml) & 0x3f) << 16)
284 #define MX51_ECSPI_DMA_RXT_WML(wml)	(((wml) & 0x3f) << 24)
285 
286 #define MX51_ECSPI_DMA_TEDEN		(1 << 7)
287 #define MX51_ECSPI_DMA_RXDEN		(1 << 23)
288 #define MX51_ECSPI_DMA_RXTDEN		(1 << 31)
289 
290 #define MX51_ECSPI_STAT		0x18
291 #define MX51_ECSPI_STAT_RR		(1 <<  3)
292 
293 #define MX51_ECSPI_TESTREG	0x20
294 #define MX51_ECSPI_TESTREG_LBC	BIT(31)
295 
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)296 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
297 {
298 	unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
299 #ifdef __LITTLE_ENDIAN
300 	unsigned int bytes_per_word;
301 #endif
302 
303 	if (spi_imx->rx_buf) {
304 #ifdef __LITTLE_ENDIAN
305 		bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
306 		if (bytes_per_word == 1)
307 			val = cpu_to_be32(val);
308 		else if (bytes_per_word == 2)
309 			val = (val << 16) | (val >> 16);
310 #endif
311 		*(u32 *)spi_imx->rx_buf = val;
312 		spi_imx->rx_buf += sizeof(u32);
313 	}
314 
315 	spi_imx->remainder -= sizeof(u32);
316 }
317 
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)318 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
319 {
320 	int unaligned;
321 	u32 val;
322 
323 	unaligned = spi_imx->remainder % 4;
324 
325 	if (!unaligned) {
326 		spi_imx_buf_rx_swap_u32(spi_imx);
327 		return;
328 	}
329 
330 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
331 		spi_imx_buf_rx_u16(spi_imx);
332 		return;
333 	}
334 
335 	val = readl(spi_imx->base + MXC_CSPIRXDATA);
336 
337 	while (unaligned--) {
338 		if (spi_imx->rx_buf) {
339 			*(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
340 			spi_imx->rx_buf++;
341 		}
342 		spi_imx->remainder--;
343 	}
344 }
345 
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)346 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
347 {
348 	u32 val = 0;
349 #ifdef __LITTLE_ENDIAN
350 	unsigned int bytes_per_word;
351 #endif
352 
353 	if (spi_imx->tx_buf) {
354 		val = *(u32 *)spi_imx->tx_buf;
355 		spi_imx->tx_buf += sizeof(u32);
356 	}
357 
358 	spi_imx->count -= sizeof(u32);
359 #ifdef __LITTLE_ENDIAN
360 	bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
361 
362 	if (bytes_per_word == 1)
363 		val = cpu_to_be32(val);
364 	else if (bytes_per_word == 2)
365 		val = (val << 16) | (val >> 16);
366 #endif
367 	writel(val, spi_imx->base + MXC_CSPITXDATA);
368 }
369 
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)370 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
371 {
372 	int unaligned;
373 	u32 val = 0;
374 
375 	unaligned = spi_imx->count % 4;
376 
377 	if (!unaligned) {
378 		spi_imx_buf_tx_swap_u32(spi_imx);
379 		return;
380 	}
381 
382 	if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
383 		spi_imx_buf_tx_u16(spi_imx);
384 		return;
385 	}
386 
387 	while (unaligned--) {
388 		if (spi_imx->tx_buf) {
389 			val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
390 			spi_imx->tx_buf++;
391 		}
392 		spi_imx->count--;
393 	}
394 
395 	writel(val, spi_imx->base + MXC_CSPITXDATA);
396 }
397 
mx53_ecspi_rx_slave(struct spi_imx_data * spi_imx)398 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
399 {
400 	u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
401 
402 	if (spi_imx->rx_buf) {
403 		int n_bytes = spi_imx->slave_burst % sizeof(val);
404 
405 		if (!n_bytes)
406 			n_bytes = sizeof(val);
407 
408 		memcpy(spi_imx->rx_buf,
409 		       ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
410 
411 		spi_imx->rx_buf += n_bytes;
412 		spi_imx->slave_burst -= n_bytes;
413 	}
414 
415 	spi_imx->remainder -= sizeof(u32);
416 }
417 
mx53_ecspi_tx_slave(struct spi_imx_data * spi_imx)418 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
419 {
420 	u32 val = 0;
421 	int n_bytes = spi_imx->count % sizeof(val);
422 
423 	if (!n_bytes)
424 		n_bytes = sizeof(val);
425 
426 	if (spi_imx->tx_buf) {
427 		memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
428 		       spi_imx->tx_buf, n_bytes);
429 		val = cpu_to_be32(val);
430 		spi_imx->tx_buf += n_bytes;
431 	}
432 
433 	spi_imx->count -= n_bytes;
434 
435 	writel(val, spi_imx->base + MXC_CSPITXDATA);
436 }
437 
438 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)439 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
440 				      unsigned int fspi, unsigned int *fres)
441 {
442 	/*
443 	 * there are two 4-bit dividers, the pre-divider divides by
444 	 * $pre, the post-divider by 2^$post
445 	 */
446 	unsigned int pre, post;
447 	unsigned int fin = spi_imx->spi_clk;
448 
449 	fspi = min(fspi, fin);
450 
451 	post = fls(fin) - fls(fspi);
452 	if (fin > fspi << post)
453 		post++;
454 
455 	/* now we have: (fin <= fspi << post) with post being minimal */
456 
457 	post = max(4U, post) - 4;
458 	if (unlikely(post > 0xf)) {
459 		dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
460 				fspi, fin);
461 		return 0xff;
462 	}
463 
464 	pre = DIV_ROUND_UP(fin, fspi << post) - 1;
465 
466 	dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
467 			__func__, fin, fspi, post, pre);
468 
469 	/* Resulting frequency for the SCLK line. */
470 	*fres = (fin / (pre + 1)) >> post;
471 
472 	return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
473 		(post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
474 }
475 
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)476 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
477 {
478 	unsigned val = 0;
479 
480 	if (enable & MXC_INT_TE)
481 		val |= MX51_ECSPI_INT_TEEN;
482 
483 	if (enable & MXC_INT_RR)
484 		val |= MX51_ECSPI_INT_RREN;
485 
486 	if (enable & MXC_INT_RDR)
487 		val |= MX51_ECSPI_INT_RDREN;
488 
489 	writel(val, spi_imx->base + MX51_ECSPI_INT);
490 }
491 
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)492 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
493 {
494 	u32 reg;
495 
496 	reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
497 	reg |= MX51_ECSPI_CTRL_XCH;
498 	writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
499 }
500 
mx51_disable_dma(struct spi_imx_data * spi_imx)501 static void mx51_disable_dma(struct spi_imx_data *spi_imx)
502 {
503 	writel(0, spi_imx->base + MX51_ECSPI_DMA);
504 }
505 
mx51_ecspi_disable(struct spi_imx_data * spi_imx)506 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
507 {
508 	u32 ctrl;
509 
510 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
511 	ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
512 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
513 }
514 
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)515 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
516 				      struct spi_message *msg)
517 {
518 	struct spi_device *spi = msg->spi;
519 	struct spi_transfer *xfer;
520 	u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
521 	u32 min_speed_hz = ~0U;
522 	u32 testreg, delay;
523 	u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
524 
525 	/* set Master or Slave mode */
526 	if (spi_imx->slave_mode)
527 		ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
528 	else
529 		ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
530 
531 	/*
532 	 * Enable SPI_RDY handling (falling edge/level triggered).
533 	 */
534 	if (spi->mode & SPI_READY)
535 		ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
536 
537 	/* set chip select to use */
538 	ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
539 
540 	/*
541 	 * The ctrl register must be written first, with the EN bit set other
542 	 * registers must not be written to.
543 	 */
544 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
545 
546 	testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
547 	if (spi->mode & SPI_LOOP)
548 		testreg |= MX51_ECSPI_TESTREG_LBC;
549 	else
550 		testreg &= ~MX51_ECSPI_TESTREG_LBC;
551 	writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
552 
553 	/*
554 	 * eCSPI burst completion by Chip Select signal in Slave mode
555 	 * is not functional for imx53 Soc, config SPI burst completed when
556 	 * BURST_LENGTH + 1 bits are received
557 	 */
558 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
559 		cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
560 	else
561 		cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
562 
563 	if (spi->mode & SPI_CPHA)
564 		cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
565 	else
566 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
567 
568 	if (spi->mode & SPI_CPOL) {
569 		cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
570 		cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
571 	} else {
572 		cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
573 		cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
574 	}
575 
576 	if (spi->mode & SPI_CS_HIGH)
577 		cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
578 	else
579 		cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
580 
581 	writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
582 
583 	/*
584 	 * Wait until the changes in the configuration register CONFIGREG
585 	 * propagate into the hardware. It takes exactly one tick of the
586 	 * SCLK clock, but we will wait two SCLK clock just to be sure. The
587 	 * effect of the delay it takes for the hardware to apply changes
588 	 * is noticable if the SCLK clock run very slow. In such a case, if
589 	 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
590 	 * be asserted before the SCLK polarity changes, which would disrupt
591 	 * the SPI communication as the device on the other end would consider
592 	 * the change of SCLK polarity as a clock tick already.
593 	 *
594 	 * Because spi_imx->spi_bus_clk is only set in bitbang prepare_message
595 	 * callback, iterate over all the transfers in spi_message, find the
596 	 * one with lowest bus frequency, and use that bus frequency for the
597 	 * delay calculation. In case all transfers have speed_hz == 0, then
598 	 * min_speed_hz is ~0 and the resulting delay is zero.
599 	 */
600 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
601 		if (!xfer->speed_hz)
602 			continue;
603 		min_speed_hz = min(xfer->speed_hz, min_speed_hz);
604 	}
605 
606 	delay = (2 * 1000000) / min_speed_hz;
607 	if (likely(delay < 10))	/* SCLK is faster than 100 kHz */
608 		udelay(delay);
609 	else			/* SCLK is _very_ slow */
610 		usleep_range(delay, delay + 10);
611 
612 	return 0;
613 }
614 
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)615 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
616 				       struct spi_device *spi)
617 {
618 	u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
619 	u32 clk;
620 
621 	/* Clear BL field and set the right value */
622 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
623 	if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
624 		ctrl |= (spi_imx->slave_burst * 8 - 1)
625 			<< MX51_ECSPI_CTRL_BL_OFFSET;
626 	else
627 		ctrl |= (spi_imx->bits_per_word - 1)
628 			<< MX51_ECSPI_CTRL_BL_OFFSET;
629 
630 	/* set clock speed */
631 	ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
632 		  0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
633 	ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
634 	spi_imx->spi_bus_clk = clk;
635 
636 	if (spi_imx->usedma)
637 		ctrl |= MX51_ECSPI_CTRL_SMC;
638 
639 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
640 
641 	return 0;
642 }
643 
mx51_setup_wml(struct spi_imx_data * spi_imx)644 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
645 {
646 	/*
647 	 * Configure the DMA register: setup the watermark
648 	 * and enable DMA request.
649 	 */
650 	writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
651 		MX51_ECSPI_DMA_TX_WML(spi_imx->wml) |
652 		MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
653 		MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
654 		MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
655 }
656 
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)657 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
658 {
659 	return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
660 }
661 
mx51_ecspi_reset(struct spi_imx_data * spi_imx)662 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
663 {
664 	/* drain receive buffer */
665 	while (mx51_ecspi_rx_available(spi_imx))
666 		readl(spi_imx->base + MXC_CSPIRXDATA);
667 }
668 
669 #define MX31_INTREG_TEEN	(1 << 0)
670 #define MX31_INTREG_RREN	(1 << 3)
671 
672 #define MX31_CSPICTRL_ENABLE	(1 << 0)
673 #define MX31_CSPICTRL_MASTER	(1 << 1)
674 #define MX31_CSPICTRL_XCH	(1 << 2)
675 #define MX31_CSPICTRL_SMC	(1 << 3)
676 #define MX31_CSPICTRL_POL	(1 << 4)
677 #define MX31_CSPICTRL_PHA	(1 << 5)
678 #define MX31_CSPICTRL_SSCTL	(1 << 6)
679 #define MX31_CSPICTRL_SSPOL	(1 << 7)
680 #define MX31_CSPICTRL_BC_SHIFT	8
681 #define MX35_CSPICTRL_BL_SHIFT	20
682 #define MX31_CSPICTRL_CS_SHIFT	24
683 #define MX35_CSPICTRL_CS_SHIFT	12
684 #define MX31_CSPICTRL_DR_SHIFT	16
685 
686 #define MX31_CSPI_DMAREG	0x10
687 #define MX31_DMAREG_RH_DEN	(1<<4)
688 #define MX31_DMAREG_TH_DEN	(1<<1)
689 
690 #define MX31_CSPISTATUS		0x14
691 #define MX31_STATUS_RR		(1 << 3)
692 
693 #define MX31_CSPI_TESTREG	0x1C
694 #define MX31_TEST_LBC		(1 << 14)
695 
696 /* These functions also work for the i.MX35, but be aware that
697  * the i.MX35 has a slightly different register layout for bits
698  * we do not use here.
699  */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)700 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
701 {
702 	unsigned int val = 0;
703 
704 	if (enable & MXC_INT_TE)
705 		val |= MX31_INTREG_TEEN;
706 	if (enable & MXC_INT_RR)
707 		val |= MX31_INTREG_RREN;
708 
709 	writel(val, spi_imx->base + MXC_CSPIINT);
710 }
711 
mx31_trigger(struct spi_imx_data * spi_imx)712 static void mx31_trigger(struct spi_imx_data *spi_imx)
713 {
714 	unsigned int reg;
715 
716 	reg = readl(spi_imx->base + MXC_CSPICTRL);
717 	reg |= MX31_CSPICTRL_XCH;
718 	writel(reg, spi_imx->base + MXC_CSPICTRL);
719 }
720 
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)721 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
722 				struct spi_message *msg)
723 {
724 	return 0;
725 }
726 
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)727 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
728 				 struct spi_device *spi)
729 {
730 	unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
731 	unsigned int clk;
732 
733 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
734 		MX31_CSPICTRL_DR_SHIFT;
735 	spi_imx->spi_bus_clk = clk;
736 
737 	if (is_imx35_cspi(spi_imx)) {
738 		reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
739 		reg |= MX31_CSPICTRL_SSCTL;
740 	} else {
741 		reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
742 	}
743 
744 	if (spi->mode & SPI_CPHA)
745 		reg |= MX31_CSPICTRL_PHA;
746 	if (spi->mode & SPI_CPOL)
747 		reg |= MX31_CSPICTRL_POL;
748 	if (spi->mode & SPI_CS_HIGH)
749 		reg |= MX31_CSPICTRL_SSPOL;
750 	if (!spi->cs_gpiod)
751 		reg |= (spi->chip_select) <<
752 			(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
753 						  MX31_CSPICTRL_CS_SHIFT);
754 
755 	if (spi_imx->usedma)
756 		reg |= MX31_CSPICTRL_SMC;
757 
758 	writel(reg, spi_imx->base + MXC_CSPICTRL);
759 
760 	reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
761 	if (spi->mode & SPI_LOOP)
762 		reg |= MX31_TEST_LBC;
763 	else
764 		reg &= ~MX31_TEST_LBC;
765 	writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
766 
767 	if (spi_imx->usedma) {
768 		/*
769 		 * configure DMA requests when RXFIFO is half full and
770 		 * when TXFIFO is half empty
771 		 */
772 		writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
773 			spi_imx->base + MX31_CSPI_DMAREG);
774 	}
775 
776 	return 0;
777 }
778 
mx31_rx_available(struct spi_imx_data * spi_imx)779 static int mx31_rx_available(struct spi_imx_data *spi_imx)
780 {
781 	return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
782 }
783 
mx31_reset(struct spi_imx_data * spi_imx)784 static void mx31_reset(struct spi_imx_data *spi_imx)
785 {
786 	/* drain receive buffer */
787 	while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
788 		readl(spi_imx->base + MXC_CSPIRXDATA);
789 }
790 
791 #define MX21_INTREG_RR		(1 << 4)
792 #define MX21_INTREG_TEEN	(1 << 9)
793 #define MX21_INTREG_RREN	(1 << 13)
794 
795 #define MX21_CSPICTRL_POL	(1 << 5)
796 #define MX21_CSPICTRL_PHA	(1 << 6)
797 #define MX21_CSPICTRL_SSPOL	(1 << 8)
798 #define MX21_CSPICTRL_XCH	(1 << 9)
799 #define MX21_CSPICTRL_ENABLE	(1 << 10)
800 #define MX21_CSPICTRL_MASTER	(1 << 11)
801 #define MX21_CSPICTRL_DR_SHIFT	14
802 #define MX21_CSPICTRL_CS_SHIFT	19
803 
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)804 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
805 {
806 	unsigned int val = 0;
807 
808 	if (enable & MXC_INT_TE)
809 		val |= MX21_INTREG_TEEN;
810 	if (enable & MXC_INT_RR)
811 		val |= MX21_INTREG_RREN;
812 
813 	writel(val, spi_imx->base + MXC_CSPIINT);
814 }
815 
mx21_trigger(struct spi_imx_data * spi_imx)816 static void mx21_trigger(struct spi_imx_data *spi_imx)
817 {
818 	unsigned int reg;
819 
820 	reg = readl(spi_imx->base + MXC_CSPICTRL);
821 	reg |= MX21_CSPICTRL_XCH;
822 	writel(reg, spi_imx->base + MXC_CSPICTRL);
823 }
824 
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)825 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
826 				struct spi_message *msg)
827 {
828 	return 0;
829 }
830 
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)831 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
832 				 struct spi_device *spi)
833 {
834 	unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
835 	unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
836 	unsigned int clk;
837 
838 	reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
839 		<< MX21_CSPICTRL_DR_SHIFT;
840 	spi_imx->spi_bus_clk = clk;
841 
842 	reg |= spi_imx->bits_per_word - 1;
843 
844 	if (spi->mode & SPI_CPHA)
845 		reg |= MX21_CSPICTRL_PHA;
846 	if (spi->mode & SPI_CPOL)
847 		reg |= MX21_CSPICTRL_POL;
848 	if (spi->mode & SPI_CS_HIGH)
849 		reg |= MX21_CSPICTRL_SSPOL;
850 	if (!spi->cs_gpiod)
851 		reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
852 
853 	writel(reg, spi_imx->base + MXC_CSPICTRL);
854 
855 	return 0;
856 }
857 
mx21_rx_available(struct spi_imx_data * spi_imx)858 static int mx21_rx_available(struct spi_imx_data *spi_imx)
859 {
860 	return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
861 }
862 
mx21_reset(struct spi_imx_data * spi_imx)863 static void mx21_reset(struct spi_imx_data *spi_imx)
864 {
865 	writel(1, spi_imx->base + MXC_RESET);
866 }
867 
868 #define MX1_INTREG_RR		(1 << 3)
869 #define MX1_INTREG_TEEN		(1 << 8)
870 #define MX1_INTREG_RREN		(1 << 11)
871 
872 #define MX1_CSPICTRL_POL	(1 << 4)
873 #define MX1_CSPICTRL_PHA	(1 << 5)
874 #define MX1_CSPICTRL_XCH	(1 << 8)
875 #define MX1_CSPICTRL_ENABLE	(1 << 9)
876 #define MX1_CSPICTRL_MASTER	(1 << 10)
877 #define MX1_CSPICTRL_DR_SHIFT	13
878 
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)879 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
880 {
881 	unsigned int val = 0;
882 
883 	if (enable & MXC_INT_TE)
884 		val |= MX1_INTREG_TEEN;
885 	if (enable & MXC_INT_RR)
886 		val |= MX1_INTREG_RREN;
887 
888 	writel(val, spi_imx->base + MXC_CSPIINT);
889 }
890 
mx1_trigger(struct spi_imx_data * spi_imx)891 static void mx1_trigger(struct spi_imx_data *spi_imx)
892 {
893 	unsigned int reg;
894 
895 	reg = readl(spi_imx->base + MXC_CSPICTRL);
896 	reg |= MX1_CSPICTRL_XCH;
897 	writel(reg, spi_imx->base + MXC_CSPICTRL);
898 }
899 
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)900 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
901 			       struct spi_message *msg)
902 {
903 	return 0;
904 }
905 
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)906 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
907 				struct spi_device *spi)
908 {
909 	unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
910 	unsigned int clk;
911 
912 	reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
913 		MX1_CSPICTRL_DR_SHIFT;
914 	spi_imx->spi_bus_clk = clk;
915 
916 	reg |= spi_imx->bits_per_word - 1;
917 
918 	if (spi->mode & SPI_CPHA)
919 		reg |= MX1_CSPICTRL_PHA;
920 	if (spi->mode & SPI_CPOL)
921 		reg |= MX1_CSPICTRL_POL;
922 
923 	writel(reg, spi_imx->base + MXC_CSPICTRL);
924 
925 	return 0;
926 }
927 
mx1_rx_available(struct spi_imx_data * spi_imx)928 static int mx1_rx_available(struct spi_imx_data *spi_imx)
929 {
930 	return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
931 }
932 
mx1_reset(struct spi_imx_data * spi_imx)933 static void mx1_reset(struct spi_imx_data *spi_imx)
934 {
935 	writel(1, spi_imx->base + MXC_RESET);
936 }
937 
938 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
939 	.intctrl = mx1_intctrl,
940 	.prepare_message = mx1_prepare_message,
941 	.prepare_transfer = mx1_prepare_transfer,
942 	.trigger = mx1_trigger,
943 	.rx_available = mx1_rx_available,
944 	.reset = mx1_reset,
945 	.fifo_size = 8,
946 	.has_dmamode = false,
947 	.dynamic_burst = false,
948 	.has_slavemode = false,
949 	.devtype = IMX1_CSPI,
950 };
951 
952 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
953 	.intctrl = mx21_intctrl,
954 	.prepare_message = mx21_prepare_message,
955 	.prepare_transfer = mx21_prepare_transfer,
956 	.trigger = mx21_trigger,
957 	.rx_available = mx21_rx_available,
958 	.reset = mx21_reset,
959 	.fifo_size = 8,
960 	.has_dmamode = false,
961 	.dynamic_burst = false,
962 	.has_slavemode = false,
963 	.devtype = IMX21_CSPI,
964 };
965 
966 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
967 	/* i.mx27 cspi shares the functions with i.mx21 one */
968 	.intctrl = mx21_intctrl,
969 	.prepare_message = mx21_prepare_message,
970 	.prepare_transfer = mx21_prepare_transfer,
971 	.trigger = mx21_trigger,
972 	.rx_available = mx21_rx_available,
973 	.reset = mx21_reset,
974 	.fifo_size = 8,
975 	.has_dmamode = false,
976 	.dynamic_burst = false,
977 	.has_slavemode = false,
978 	.devtype = IMX27_CSPI,
979 };
980 
981 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
982 	.intctrl = mx31_intctrl,
983 	.prepare_message = mx31_prepare_message,
984 	.prepare_transfer = mx31_prepare_transfer,
985 	.trigger = mx31_trigger,
986 	.rx_available = mx31_rx_available,
987 	.reset = mx31_reset,
988 	.fifo_size = 8,
989 	.has_dmamode = false,
990 	.dynamic_burst = false,
991 	.has_slavemode = false,
992 	.devtype = IMX31_CSPI,
993 };
994 
995 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
996 	/* i.mx35 and later cspi shares the functions with i.mx31 one */
997 	.intctrl = mx31_intctrl,
998 	.prepare_message = mx31_prepare_message,
999 	.prepare_transfer = mx31_prepare_transfer,
1000 	.trigger = mx31_trigger,
1001 	.rx_available = mx31_rx_available,
1002 	.reset = mx31_reset,
1003 	.fifo_size = 8,
1004 	.has_dmamode = true,
1005 	.dynamic_burst = false,
1006 	.has_slavemode = false,
1007 	.devtype = IMX35_CSPI,
1008 };
1009 
1010 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1011 	.intctrl = mx51_ecspi_intctrl,
1012 	.prepare_message = mx51_ecspi_prepare_message,
1013 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1014 	.trigger = mx51_ecspi_trigger,
1015 	.rx_available = mx51_ecspi_rx_available,
1016 	.reset = mx51_ecspi_reset,
1017 	.setup_wml = mx51_setup_wml,
1018 	.disable_dma = mx51_disable_dma,
1019 	.fifo_size = 64,
1020 	.has_dmamode = true,
1021 	.dynamic_burst = true,
1022 	.has_slavemode = true,
1023 	.disable = mx51_ecspi_disable,
1024 	.devtype = IMX51_ECSPI,
1025 };
1026 
1027 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1028 	.intctrl = mx51_ecspi_intctrl,
1029 	.prepare_message = mx51_ecspi_prepare_message,
1030 	.prepare_transfer = mx51_ecspi_prepare_transfer,
1031 	.trigger = mx51_ecspi_trigger,
1032 	.rx_available = mx51_ecspi_rx_available,
1033 	.disable_dma = mx51_disable_dma,
1034 	.reset = mx51_ecspi_reset,
1035 	.fifo_size = 64,
1036 	.has_dmamode = true,
1037 	.has_slavemode = true,
1038 	.disable = mx51_ecspi_disable,
1039 	.devtype = IMX53_ECSPI,
1040 };
1041 
1042 static const struct platform_device_id spi_imx_devtype[] = {
1043 	{
1044 		.name = "imx1-cspi",
1045 		.driver_data = (kernel_ulong_t) &imx1_cspi_devtype_data,
1046 	}, {
1047 		.name = "imx21-cspi",
1048 		.driver_data = (kernel_ulong_t) &imx21_cspi_devtype_data,
1049 	}, {
1050 		.name = "imx27-cspi",
1051 		.driver_data = (kernel_ulong_t) &imx27_cspi_devtype_data,
1052 	}, {
1053 		.name = "imx31-cspi",
1054 		.driver_data = (kernel_ulong_t) &imx31_cspi_devtype_data,
1055 	}, {
1056 		.name = "imx35-cspi",
1057 		.driver_data = (kernel_ulong_t) &imx35_cspi_devtype_data,
1058 	}, {
1059 		.name = "imx51-ecspi",
1060 		.driver_data = (kernel_ulong_t) &imx51_ecspi_devtype_data,
1061 	}, {
1062 		.name = "imx53-ecspi",
1063 		.driver_data = (kernel_ulong_t) &imx53_ecspi_devtype_data,
1064 	}, {
1065 		/* sentinel */
1066 	}
1067 };
1068 
1069 static const struct of_device_id spi_imx_dt_ids[] = {
1070 	{ .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1071 	{ .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1072 	{ .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1073 	{ .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1074 	{ .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1075 	{ .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1076 	{ .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1077 	{ /* sentinel */ }
1078 };
1079 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1080 
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1081 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1082 {
1083 	u32 ctrl;
1084 
1085 	ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1086 	ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1087 	ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1088 	writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1089 }
1090 
spi_imx_push(struct spi_imx_data * spi_imx)1091 static void spi_imx_push(struct spi_imx_data *spi_imx)
1092 {
1093 	unsigned int burst_len, fifo_words;
1094 
1095 	if (spi_imx->dynamic_burst)
1096 		fifo_words = 4;
1097 	else
1098 		fifo_words = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1099 	/*
1100 	 * Reload the FIFO when the remaining bytes to be transferred in the
1101 	 * current burst is 0. This only applies when bits_per_word is a
1102 	 * multiple of 8.
1103 	 */
1104 	if (!spi_imx->remainder) {
1105 		if (spi_imx->dynamic_burst) {
1106 
1107 			/* We need to deal unaligned data first */
1108 			burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1109 
1110 			if (!burst_len)
1111 				burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1112 
1113 			spi_imx_set_burst_len(spi_imx, burst_len * 8);
1114 
1115 			spi_imx->remainder = burst_len;
1116 		} else {
1117 			spi_imx->remainder = fifo_words;
1118 		}
1119 	}
1120 
1121 	while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1122 		if (!spi_imx->count)
1123 			break;
1124 		if (spi_imx->dynamic_burst &&
1125 		    spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder,
1126 						     fifo_words))
1127 			break;
1128 		spi_imx->tx(spi_imx);
1129 		spi_imx->txfifo++;
1130 	}
1131 
1132 	if (!spi_imx->slave_mode)
1133 		spi_imx->devtype_data->trigger(spi_imx);
1134 }
1135 
spi_imx_isr(int irq,void * dev_id)1136 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1137 {
1138 	struct spi_imx_data *spi_imx = dev_id;
1139 
1140 	while (spi_imx->txfifo &&
1141 	       spi_imx->devtype_data->rx_available(spi_imx)) {
1142 		spi_imx->rx(spi_imx);
1143 		spi_imx->txfifo--;
1144 	}
1145 
1146 	if (spi_imx->count) {
1147 		spi_imx_push(spi_imx);
1148 		return IRQ_HANDLED;
1149 	}
1150 
1151 	if (spi_imx->txfifo) {
1152 		/* No data left to push, but still waiting for rx data,
1153 		 * enable receive data available interrupt.
1154 		 */
1155 		spi_imx->devtype_data->intctrl(
1156 				spi_imx, MXC_INT_RR);
1157 		return IRQ_HANDLED;
1158 	}
1159 
1160 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1161 	complete(&spi_imx->xfer_done);
1162 
1163 	return IRQ_HANDLED;
1164 }
1165 
spi_imx_dma_configure(struct spi_master * master)1166 static int spi_imx_dma_configure(struct spi_master *master)
1167 {
1168 	int ret;
1169 	enum dma_slave_buswidth buswidth;
1170 	struct dma_slave_config rx = {}, tx = {};
1171 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1172 
1173 	switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1174 	case 4:
1175 		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1176 		break;
1177 	case 2:
1178 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1179 		break;
1180 	case 1:
1181 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1182 		break;
1183 	default:
1184 		return -EINVAL;
1185 	}
1186 
1187 	tx.direction = DMA_MEM_TO_DEV;
1188 	tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1189 	tx.dst_addr_width = buswidth;
1190 	tx.dst_maxburst = spi_imx->wml;
1191 	ret = dmaengine_slave_config(master->dma_tx, &tx);
1192 	if (ret) {
1193 		dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1194 		return ret;
1195 	}
1196 
1197 	rx.direction = DMA_DEV_TO_MEM;
1198 	rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1199 	rx.src_addr_width = buswidth;
1200 	rx.src_maxburst = spi_imx->wml;
1201 	ret = dmaengine_slave_config(master->dma_rx, &rx);
1202 	if (ret) {
1203 		dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1204 		return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1210 static int spi_imx_setupxfer(struct spi_device *spi,
1211 				 struct spi_transfer *t)
1212 {
1213 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1214 
1215 	if (!t)
1216 		return 0;
1217 
1218 	if (!t->speed_hz) {
1219 		if (!spi->max_speed_hz) {
1220 			dev_err(&spi->dev, "no speed_hz provided!\n");
1221 			return -EINVAL;
1222 		}
1223 		dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1224 		spi_imx->spi_bus_clk = spi->max_speed_hz;
1225 	} else
1226 		spi_imx->spi_bus_clk = t->speed_hz;
1227 
1228 	spi_imx->bits_per_word = t->bits_per_word;
1229 
1230 	/*
1231 	 * Initialize the functions for transfer. To transfer non byte-aligned
1232 	 * words, we have to use multiple word-size bursts, we can't use
1233 	 * dynamic_burst in that case.
1234 	 */
1235 	if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1236 	    (spi_imx->bits_per_word == 8 ||
1237 	    spi_imx->bits_per_word == 16 ||
1238 	    spi_imx->bits_per_word == 32)) {
1239 
1240 		spi_imx->rx = spi_imx_buf_rx_swap;
1241 		spi_imx->tx = spi_imx_buf_tx_swap;
1242 		spi_imx->dynamic_burst = 1;
1243 
1244 	} else {
1245 		if (spi_imx->bits_per_word <= 8) {
1246 			spi_imx->rx = spi_imx_buf_rx_u8;
1247 			spi_imx->tx = spi_imx_buf_tx_u8;
1248 		} else if (spi_imx->bits_per_word <= 16) {
1249 			spi_imx->rx = spi_imx_buf_rx_u16;
1250 			spi_imx->tx = spi_imx_buf_tx_u16;
1251 		} else {
1252 			spi_imx->rx = spi_imx_buf_rx_u32;
1253 			spi_imx->tx = spi_imx_buf_tx_u32;
1254 		}
1255 		spi_imx->dynamic_burst = 0;
1256 	}
1257 
1258 	if (spi_imx_can_dma(spi_imx->bitbang.master, spi, t))
1259 		spi_imx->usedma = true;
1260 	else
1261 		spi_imx->usedma = false;
1262 
1263 	if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1264 		spi_imx->rx = mx53_ecspi_rx_slave;
1265 		spi_imx->tx = mx53_ecspi_tx_slave;
1266 		spi_imx->slave_burst = t->len;
1267 	}
1268 
1269 	spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1270 
1271 	return 0;
1272 }
1273 
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1274 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1275 {
1276 	struct spi_master *master = spi_imx->bitbang.master;
1277 
1278 	if (master->dma_rx) {
1279 		dma_release_channel(master->dma_rx);
1280 		master->dma_rx = NULL;
1281 	}
1282 
1283 	if (master->dma_tx) {
1284 		dma_release_channel(master->dma_tx);
1285 		master->dma_tx = NULL;
1286 	}
1287 }
1288 
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_master * master)1289 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1290 			     struct spi_master *master)
1291 {
1292 	int ret;
1293 
1294 	/* use pio mode for i.mx6dl chip TKT238285 */
1295 	if (of_machine_is_compatible("fsl,imx6dl"))
1296 		return 0;
1297 
1298 	spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1299 
1300 	/* Prepare for TX DMA: */
1301 	master->dma_tx = dma_request_chan(dev, "tx");
1302 	if (IS_ERR(master->dma_tx)) {
1303 		ret = PTR_ERR(master->dma_tx);
1304 		dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1305 		master->dma_tx = NULL;
1306 		goto err;
1307 	}
1308 
1309 	/* Prepare for RX : */
1310 	master->dma_rx = dma_request_chan(dev, "rx");
1311 	if (IS_ERR(master->dma_rx)) {
1312 		ret = PTR_ERR(master->dma_rx);
1313 		dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1314 		master->dma_rx = NULL;
1315 		goto err;
1316 	}
1317 
1318 	init_completion(&spi_imx->dma_rx_completion);
1319 	init_completion(&spi_imx->dma_tx_completion);
1320 	master->can_dma = spi_imx_can_dma;
1321 	master->max_dma_len = MAX_SDMA_BD_BYTES;
1322 	spi_imx->bitbang.master->flags = SPI_MASTER_MUST_RX |
1323 					 SPI_MASTER_MUST_TX;
1324 
1325 	return 0;
1326 err:
1327 	spi_imx_sdma_exit(spi_imx);
1328 	return ret;
1329 }
1330 
spi_imx_dma_rx_callback(void * cookie)1331 static void spi_imx_dma_rx_callback(void *cookie)
1332 {
1333 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1334 
1335 	complete(&spi_imx->dma_rx_completion);
1336 }
1337 
spi_imx_dma_tx_callback(void * cookie)1338 static void spi_imx_dma_tx_callback(void *cookie)
1339 {
1340 	struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1341 
1342 	complete(&spi_imx->dma_tx_completion);
1343 }
1344 
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1345 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1346 {
1347 	unsigned long timeout = 0;
1348 
1349 	/* Time with actual data transfer and CS change delay related to HW */
1350 	timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1351 
1352 	/* Add extra second for scheduler related activities */
1353 	timeout += 1;
1354 
1355 	/* Double calculated timeout */
1356 	return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1357 }
1358 
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1359 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1360 				struct spi_transfer *transfer)
1361 {
1362 	struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1363 	unsigned long transfer_timeout;
1364 	unsigned long timeout;
1365 	struct spi_master *master = spi_imx->bitbang.master;
1366 	struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1367 	struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1368 	unsigned int bytes_per_word, i;
1369 	int ret;
1370 
1371 	/* Get the right burst length from the last sg to ensure no tail data */
1372 	bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1373 	for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1374 		if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1375 			break;
1376 	}
1377 	/* Use 1 as wml in case no available burst length got */
1378 	if (i == 0)
1379 		i = 1;
1380 
1381 	spi_imx->wml =  i;
1382 
1383 	ret = spi_imx_dma_configure(master);
1384 	if (ret)
1385 		goto dma_failure_no_start;
1386 
1387 	if (!spi_imx->devtype_data->setup_wml) {
1388 		dev_err(spi_imx->dev, "No setup_wml()?\n");
1389 		ret = -EINVAL;
1390 		goto dma_failure_no_start;
1391 	}
1392 	spi_imx->devtype_data->setup_wml(spi_imx);
1393 
1394 	/*
1395 	 * The TX DMA setup starts the transfer, so make sure RX is configured
1396 	 * before TX.
1397 	 */
1398 	desc_rx = dmaengine_prep_slave_sg(master->dma_rx,
1399 				rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1400 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1401 	if (!desc_rx) {
1402 		ret = -EINVAL;
1403 		goto dma_failure_no_start;
1404 	}
1405 
1406 	desc_rx->callback = spi_imx_dma_rx_callback;
1407 	desc_rx->callback_param = (void *)spi_imx;
1408 	dmaengine_submit(desc_rx);
1409 	reinit_completion(&spi_imx->dma_rx_completion);
1410 	dma_async_issue_pending(master->dma_rx);
1411 
1412 	desc_tx = dmaengine_prep_slave_sg(master->dma_tx,
1413 				tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1414 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1415 	if (!desc_tx) {
1416 		dmaengine_terminate_all(master->dma_tx);
1417 		dmaengine_terminate_all(master->dma_rx);
1418 		return -EINVAL;
1419 	}
1420 
1421 	desc_tx->callback = spi_imx_dma_tx_callback;
1422 	desc_tx->callback_param = (void *)spi_imx;
1423 	dmaengine_submit(desc_tx);
1424 	reinit_completion(&spi_imx->dma_tx_completion);
1425 	dma_async_issue_pending(master->dma_tx);
1426 
1427 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1428 
1429 	/* Wait SDMA to finish the data transfer.*/
1430 	timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1431 						transfer_timeout);
1432 	if (!timeout) {
1433 		dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1434 		dmaengine_terminate_all(master->dma_tx);
1435 		dmaengine_terminate_all(master->dma_rx);
1436 		return -ETIMEDOUT;
1437 	}
1438 
1439 	timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1440 					      transfer_timeout);
1441 	if (!timeout) {
1442 		dev_err(&master->dev, "I/O Error in DMA RX\n");
1443 		spi_imx->devtype_data->reset(spi_imx);
1444 		dmaengine_terminate_all(master->dma_rx);
1445 		return -ETIMEDOUT;
1446 	}
1447 
1448 	return transfer->len;
1449 /* fallback to pio */
1450 dma_failure_no_start:
1451 	transfer->error |= SPI_TRANS_FAIL_NO_START;
1452 	return ret;
1453 }
1454 
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1455 static int spi_imx_pio_transfer(struct spi_device *spi,
1456 				struct spi_transfer *transfer)
1457 {
1458 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1459 	unsigned long transfer_timeout;
1460 	unsigned long timeout;
1461 
1462 	spi_imx->tx_buf = transfer->tx_buf;
1463 	spi_imx->rx_buf = transfer->rx_buf;
1464 	spi_imx->count = transfer->len;
1465 	spi_imx->txfifo = 0;
1466 	spi_imx->remainder = 0;
1467 
1468 	reinit_completion(&spi_imx->xfer_done);
1469 
1470 	spi_imx_push(spi_imx);
1471 
1472 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1473 
1474 	transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1475 
1476 	timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1477 					      transfer_timeout);
1478 	if (!timeout) {
1479 		dev_err(&spi->dev, "I/O Error in PIO\n");
1480 		spi_imx->devtype_data->reset(spi_imx);
1481 		return -ETIMEDOUT;
1482 	}
1483 
1484 	return transfer->len;
1485 }
1486 
spi_imx_pio_transfer_slave(struct spi_device * spi,struct spi_transfer * transfer)1487 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1488 				      struct spi_transfer *transfer)
1489 {
1490 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1491 	int ret = transfer->len;
1492 
1493 	if (is_imx53_ecspi(spi_imx) &&
1494 	    transfer->len > MX53_MAX_TRANSFER_BYTES) {
1495 		dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1496 			MX53_MAX_TRANSFER_BYTES);
1497 		return -EMSGSIZE;
1498 	}
1499 
1500 	spi_imx->tx_buf = transfer->tx_buf;
1501 	spi_imx->rx_buf = transfer->rx_buf;
1502 	spi_imx->count = transfer->len;
1503 	spi_imx->txfifo = 0;
1504 	spi_imx->remainder = 0;
1505 
1506 	reinit_completion(&spi_imx->xfer_done);
1507 	spi_imx->slave_aborted = false;
1508 
1509 	spi_imx_push(spi_imx);
1510 
1511 	spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1512 
1513 	if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1514 	    spi_imx->slave_aborted) {
1515 		dev_dbg(&spi->dev, "interrupted\n");
1516 		ret = -EINTR;
1517 	}
1518 
1519 	/* ecspi has a HW issue when works in Slave mode,
1520 	 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1521 	 * ECSPI_TXDATA keeps shift out the last word data,
1522 	 * so we have to disable ECSPI when in slave mode after the
1523 	 * transfer completes
1524 	 */
1525 	if (spi_imx->devtype_data->disable)
1526 		spi_imx->devtype_data->disable(spi_imx);
1527 
1528 	return ret;
1529 }
1530 
spi_imx_transfer(struct spi_device * spi,struct spi_transfer * transfer)1531 static int spi_imx_transfer(struct spi_device *spi,
1532 				struct spi_transfer *transfer)
1533 {
1534 	struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
1535 
1536 	transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1537 
1538 	/* flush rxfifo before transfer */
1539 	while (spi_imx->devtype_data->rx_available(spi_imx))
1540 		readl(spi_imx->base + MXC_CSPIRXDATA);
1541 
1542 	if (spi_imx->slave_mode)
1543 		return spi_imx_pio_transfer_slave(spi, transfer);
1544 
1545 	if (spi_imx->usedma)
1546 		return spi_imx_dma_transfer(spi_imx, transfer);
1547 
1548 	return spi_imx_pio_transfer(spi, transfer);
1549 }
1550 
spi_imx_setup(struct spi_device * spi)1551 static int spi_imx_setup(struct spi_device *spi)
1552 {
1553 	dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1554 		 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1555 
1556 	return 0;
1557 }
1558 
spi_imx_cleanup(struct spi_device * spi)1559 static void spi_imx_cleanup(struct spi_device *spi)
1560 {
1561 }
1562 
1563 static int
spi_imx_prepare_message(struct spi_master * master,struct spi_message * msg)1564 spi_imx_prepare_message(struct spi_master *master, struct spi_message *msg)
1565 {
1566 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1567 	int ret;
1568 
1569 	ret = pm_runtime_resume_and_get(spi_imx->dev);
1570 	if (ret < 0) {
1571 		dev_err(spi_imx->dev, "failed to enable clock\n");
1572 		return ret;
1573 	}
1574 
1575 	ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1576 	if (ret) {
1577 		pm_runtime_mark_last_busy(spi_imx->dev);
1578 		pm_runtime_put_autosuspend(spi_imx->dev);
1579 	}
1580 
1581 	return ret;
1582 }
1583 
1584 static int
spi_imx_unprepare_message(struct spi_master * master,struct spi_message * msg)1585 spi_imx_unprepare_message(struct spi_master *master, struct spi_message *msg)
1586 {
1587 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1588 
1589 	pm_runtime_mark_last_busy(spi_imx->dev);
1590 	pm_runtime_put_autosuspend(spi_imx->dev);
1591 	return 0;
1592 }
1593 
spi_imx_slave_abort(struct spi_master * master)1594 static int spi_imx_slave_abort(struct spi_master *master)
1595 {
1596 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1597 
1598 	spi_imx->slave_aborted = true;
1599 	complete(&spi_imx->xfer_done);
1600 
1601 	return 0;
1602 }
1603 
spi_imx_probe(struct platform_device * pdev)1604 static int spi_imx_probe(struct platform_device *pdev)
1605 {
1606 	struct device_node *np = pdev->dev.of_node;
1607 	const struct of_device_id *of_id =
1608 			of_match_device(spi_imx_dt_ids, &pdev->dev);
1609 	struct spi_master *master;
1610 	struct spi_imx_data *spi_imx;
1611 	struct resource *res;
1612 	int ret, irq, spi_drctl;
1613 	const struct spi_imx_devtype_data *devtype_data = of_id ? of_id->data :
1614 		(struct spi_imx_devtype_data *)pdev->id_entry->driver_data;
1615 	bool slave_mode;
1616 	u32 val;
1617 
1618 	slave_mode = devtype_data->has_slavemode &&
1619 			of_property_read_bool(np, "spi-slave");
1620 	if (slave_mode)
1621 		master = spi_alloc_slave(&pdev->dev,
1622 					 sizeof(struct spi_imx_data));
1623 	else
1624 		master = spi_alloc_master(&pdev->dev,
1625 					  sizeof(struct spi_imx_data));
1626 	if (!master)
1627 		return -ENOMEM;
1628 
1629 	ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1630 	if ((ret < 0) || (spi_drctl >= 0x3)) {
1631 		/* '11' is reserved */
1632 		spi_drctl = 0;
1633 	}
1634 
1635 	platform_set_drvdata(pdev, master);
1636 
1637 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1638 	master->bus_num = np ? -1 : pdev->id;
1639 	master->use_gpio_descriptors = true;
1640 
1641 	spi_imx = spi_master_get_devdata(master);
1642 	spi_imx->bitbang.master = master;
1643 	spi_imx->dev = &pdev->dev;
1644 	spi_imx->slave_mode = slave_mode;
1645 
1646 	spi_imx->devtype_data = devtype_data;
1647 
1648 	/*
1649 	 * Get number of chip selects from device properties. This can be
1650 	 * coming from device tree or boardfiles, if it is not defined,
1651 	 * a default value of 3 chip selects will be used, as all the legacy
1652 	 * board files have <= 3 chip selects.
1653 	 */
1654 	if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1655 		master->num_chipselect = val;
1656 	else
1657 		master->num_chipselect = 3;
1658 
1659 	spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
1660 	spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
1661 	spi_imx->bitbang.master->setup = spi_imx_setup;
1662 	spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
1663 	spi_imx->bitbang.master->prepare_message = spi_imx_prepare_message;
1664 	spi_imx->bitbang.master->unprepare_message = spi_imx_unprepare_message;
1665 	spi_imx->bitbang.master->slave_abort = spi_imx_slave_abort;
1666 	spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
1667 					     | SPI_NO_CS;
1668 	if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1669 	    is_imx53_ecspi(spi_imx))
1670 		spi_imx->bitbang.master->mode_bits |= SPI_LOOP | SPI_READY;
1671 
1672 	spi_imx->spi_drctl = spi_drctl;
1673 
1674 	init_completion(&spi_imx->xfer_done);
1675 
1676 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1677 	spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1678 	if (IS_ERR(spi_imx->base)) {
1679 		ret = PTR_ERR(spi_imx->base);
1680 		goto out_master_put;
1681 	}
1682 	spi_imx->base_phys = res->start;
1683 
1684 	irq = platform_get_irq(pdev, 0);
1685 	if (irq < 0) {
1686 		ret = irq;
1687 		goto out_master_put;
1688 	}
1689 
1690 	ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1691 			       dev_name(&pdev->dev), spi_imx);
1692 	if (ret) {
1693 		dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1694 		goto out_master_put;
1695 	}
1696 
1697 	spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1698 	if (IS_ERR(spi_imx->clk_ipg)) {
1699 		ret = PTR_ERR(spi_imx->clk_ipg);
1700 		goto out_master_put;
1701 	}
1702 
1703 	spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1704 	if (IS_ERR(spi_imx->clk_per)) {
1705 		ret = PTR_ERR(spi_imx->clk_per);
1706 		goto out_master_put;
1707 	}
1708 
1709 	ret = clk_prepare_enable(spi_imx->clk_per);
1710 	if (ret)
1711 		goto out_master_put;
1712 
1713 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1714 	if (ret)
1715 		goto out_put_per;
1716 
1717 	pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1718 	pm_runtime_use_autosuspend(spi_imx->dev);
1719 	pm_runtime_get_noresume(spi_imx->dev);
1720 	pm_runtime_set_active(spi_imx->dev);
1721 	pm_runtime_enable(spi_imx->dev);
1722 
1723 	spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1724 	/*
1725 	 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1726 	 * if validated on other chips.
1727 	 */
1728 	if (spi_imx->devtype_data->has_dmamode) {
1729 		ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
1730 		if (ret == -EPROBE_DEFER)
1731 			goto out_runtime_pm_put;
1732 
1733 		if (ret < 0)
1734 			dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1735 				ret);
1736 	}
1737 
1738 	spi_imx->devtype_data->reset(spi_imx);
1739 
1740 	spi_imx->devtype_data->intctrl(spi_imx, 0);
1741 
1742 	master->dev.of_node = pdev->dev.of_node;
1743 	ret = spi_bitbang_start(&spi_imx->bitbang);
1744 	if (ret) {
1745 		dev_err_probe(&pdev->dev, ret, "bitbang start failed\n");
1746 		goto out_bitbang_start;
1747 	}
1748 
1749 	pm_runtime_mark_last_busy(spi_imx->dev);
1750 	pm_runtime_put_autosuspend(spi_imx->dev);
1751 
1752 	return ret;
1753 
1754 out_bitbang_start:
1755 	if (spi_imx->devtype_data->has_dmamode)
1756 		spi_imx_sdma_exit(spi_imx);
1757 out_runtime_pm_put:
1758 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1759 	pm_runtime_set_suspended(&pdev->dev);
1760 	pm_runtime_disable(spi_imx->dev);
1761 
1762 	clk_disable_unprepare(spi_imx->clk_ipg);
1763 out_put_per:
1764 	clk_disable_unprepare(spi_imx->clk_per);
1765 out_master_put:
1766 	spi_master_put(master);
1767 
1768 	return ret;
1769 }
1770 
spi_imx_remove(struct platform_device * pdev)1771 static int spi_imx_remove(struct platform_device *pdev)
1772 {
1773 	struct spi_master *master = platform_get_drvdata(pdev);
1774 	struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
1775 	int ret;
1776 
1777 	spi_bitbang_stop(&spi_imx->bitbang);
1778 
1779 	ret = pm_runtime_get_sync(spi_imx->dev);
1780 	if (ret >= 0)
1781 		writel(0, spi_imx->base + MXC_CSPICTRL);
1782 	else
1783 		dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1784 
1785 	pm_runtime_dont_use_autosuspend(spi_imx->dev);
1786 	pm_runtime_put_sync(spi_imx->dev);
1787 	pm_runtime_disable(spi_imx->dev);
1788 
1789 	spi_imx_sdma_exit(spi_imx);
1790 	spi_master_put(master);
1791 
1792 	return 0;
1793 }
1794 
spi_imx_runtime_resume(struct device * dev)1795 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1796 {
1797 	struct spi_master *master = dev_get_drvdata(dev);
1798 	struct spi_imx_data *spi_imx;
1799 	int ret;
1800 
1801 	spi_imx = spi_master_get_devdata(master);
1802 
1803 	ret = clk_prepare_enable(spi_imx->clk_per);
1804 	if (ret)
1805 		return ret;
1806 
1807 	ret = clk_prepare_enable(spi_imx->clk_ipg);
1808 	if (ret) {
1809 		clk_disable_unprepare(spi_imx->clk_per);
1810 		return ret;
1811 	}
1812 
1813 	return 0;
1814 }
1815 
spi_imx_runtime_suspend(struct device * dev)1816 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1817 {
1818 	struct spi_master *master = dev_get_drvdata(dev);
1819 	struct spi_imx_data *spi_imx;
1820 
1821 	spi_imx = spi_master_get_devdata(master);
1822 
1823 	clk_disable_unprepare(spi_imx->clk_per);
1824 	clk_disable_unprepare(spi_imx->clk_ipg);
1825 
1826 	return 0;
1827 }
1828 
spi_imx_suspend(struct device * dev)1829 static int __maybe_unused spi_imx_suspend(struct device *dev)
1830 {
1831 	pinctrl_pm_select_sleep_state(dev);
1832 	return 0;
1833 }
1834 
spi_imx_resume(struct device * dev)1835 static int __maybe_unused spi_imx_resume(struct device *dev)
1836 {
1837 	pinctrl_pm_select_default_state(dev);
1838 	return 0;
1839 }
1840 
1841 static const struct dev_pm_ops imx_spi_pm = {
1842 	SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1843 				spi_imx_runtime_resume, NULL)
1844 	SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1845 };
1846 
1847 static struct platform_driver spi_imx_driver = {
1848 	.driver = {
1849 		   .name = DRIVER_NAME,
1850 		   .of_match_table = spi_imx_dt_ids,
1851 		   .pm = &imx_spi_pm,
1852 	},
1853 	.id_table = spi_imx_devtype,
1854 	.probe = spi_imx_probe,
1855 	.remove = spi_imx_remove,
1856 };
1857 module_platform_driver(spi_imx_driver);
1858 
1859 MODULE_DESCRIPTION("SPI Controller driver");
1860 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1861 MODULE_LICENSE("GPL");
1862 MODULE_ALIAS("platform:" DRIVER_NAME);
1863