• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
spi_get_device_id(const struct spi_device * sdev)330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
spi_match_device(struct device * dev,struct device_driver * drv)338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = acpi_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372 
373 struct bus_type spi_bus_type = {
374 	.name		= "spi",
375 	.dev_groups	= spi_dev_groups,
376 	.match		= spi_match_device,
377 	.uevent		= spi_uevent,
378 };
379 EXPORT_SYMBOL_GPL(spi_bus_type);
380 
381 
spi_drv_probe(struct device * dev)382 static int spi_drv_probe(struct device *dev)
383 {
384 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
385 	struct spi_device		*spi = to_spi_device(dev);
386 	int ret;
387 
388 	ret = of_clk_set_defaults(dev->of_node, false);
389 	if (ret)
390 		return ret;
391 
392 	if (dev->of_node) {
393 		spi->irq = of_irq_get(dev->of_node, 0);
394 		if (spi->irq == -EPROBE_DEFER)
395 			return -EPROBE_DEFER;
396 		if (spi->irq < 0)
397 			spi->irq = 0;
398 	}
399 
400 	ret = dev_pm_domain_attach(dev, true);
401 	if (ret)
402 		return ret;
403 
404 	if (sdrv->probe) {
405 		ret = sdrv->probe(spi);
406 		if (ret)
407 			dev_pm_domain_detach(dev, true);
408 	}
409 
410 	return ret;
411 }
412 
spi_drv_remove(struct device * dev)413 static int spi_drv_remove(struct device *dev)
414 {
415 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
416 	int ret = 0;
417 
418 	if (sdrv->remove)
419 		ret = sdrv->remove(to_spi_device(dev));
420 	dev_pm_domain_detach(dev, true);
421 
422 	return ret;
423 }
424 
spi_drv_shutdown(struct device * dev)425 static void spi_drv_shutdown(struct device *dev)
426 {
427 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
428 
429 	sdrv->shutdown(to_spi_device(dev));
430 }
431 
432 /**
433  * __spi_register_driver - register a SPI driver
434  * @owner: owner module of the driver to register
435  * @sdrv: the driver to register
436  * Context: can sleep
437  *
438  * Return: zero on success, else a negative error code.
439  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)440 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 {
442 	sdrv->driver.owner = owner;
443 	sdrv->driver.bus = &spi_bus_type;
444 	sdrv->driver.probe = spi_drv_probe;
445 	sdrv->driver.remove = spi_drv_remove;
446 	if (sdrv->shutdown)
447 		sdrv->driver.shutdown = spi_drv_shutdown;
448 	return driver_register(&sdrv->driver);
449 }
450 EXPORT_SYMBOL_GPL(__spi_register_driver);
451 
452 /*-------------------------------------------------------------------------*/
453 
454 /* SPI devices should normally not be created by SPI device drivers; that
455  * would make them board-specific.  Similarly with SPI controller drivers.
456  * Device registration normally goes into like arch/.../mach.../board-YYY.c
457  * with other readonly (flashable) information about mainboard devices.
458  */
459 
460 struct boardinfo {
461 	struct list_head	list;
462 	struct spi_board_info	board_info;
463 };
464 
465 static LIST_HEAD(board_list);
466 static LIST_HEAD(spi_controller_list);
467 
468 /*
469  * Used to protect add/del operation for board_info list and
470  * spi_controller list, and their matching process
471  * also used to protect object of type struct idr
472  */
473 static DEFINE_MUTEX(board_lock);
474 
475 /**
476  * spi_alloc_device - Allocate a new SPI device
477  * @ctlr: Controller to which device is connected
478  * Context: can sleep
479  *
480  * Allows a driver to allocate and initialize a spi_device without
481  * registering it immediately.  This allows a driver to directly
482  * fill the spi_device with device parameters before calling
483  * spi_add_device() on it.
484  *
485  * Caller is responsible to call spi_add_device() on the returned
486  * spi_device structure to add it to the SPI controller.  If the caller
487  * needs to discard the spi_device without adding it, then it should
488  * call spi_dev_put() on it.
489  *
490  * Return: a pointer to the new device, or NULL.
491  */
spi_alloc_device(struct spi_controller * ctlr)492 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
493 {
494 	struct spi_device	*spi;
495 
496 	if (!spi_controller_get(ctlr))
497 		return NULL;
498 
499 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
500 	if (!spi) {
501 		spi_controller_put(ctlr);
502 		return NULL;
503 	}
504 
505 	spi->master = spi->controller = ctlr;
506 	spi->dev.parent = &ctlr->dev;
507 	spi->dev.bus = &spi_bus_type;
508 	spi->dev.release = spidev_release;
509 	spi->cs_gpio = -ENOENT;
510 	spi->mode = ctlr->buswidth_override_bits;
511 
512 	spin_lock_init(&spi->statistics.lock);
513 
514 	device_initialize(&spi->dev);
515 	return spi;
516 }
517 EXPORT_SYMBOL_GPL(spi_alloc_device);
518 
spi_dev_set_name(struct spi_device * spi)519 static void spi_dev_set_name(struct spi_device *spi)
520 {
521 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
522 
523 	if (adev) {
524 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
525 		return;
526 	}
527 
528 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
529 		     spi->chip_select);
530 }
531 
spi_dev_check(struct device * dev,void * data)532 static int spi_dev_check(struct device *dev, void *data)
533 {
534 	struct spi_device *spi = to_spi_device(dev);
535 	struct spi_device *new_spi = data;
536 
537 	if (spi->controller == new_spi->controller &&
538 	    spi->chip_select == new_spi->chip_select)
539 		return -EBUSY;
540 	return 0;
541 }
542 
spi_cleanup(struct spi_device * spi)543 static void spi_cleanup(struct spi_device *spi)
544 {
545 	if (spi->controller->cleanup)
546 		spi->controller->cleanup(spi);
547 }
548 
549 /**
550  * spi_add_device - Add spi_device allocated with spi_alloc_device
551  * @spi: spi_device to register
552  *
553  * Companion function to spi_alloc_device.  Devices allocated with
554  * spi_alloc_device can be added onto the spi bus with this function.
555  *
556  * Return: 0 on success; negative errno on failure
557  */
spi_add_device(struct spi_device * spi)558 int spi_add_device(struct spi_device *spi)
559 {
560 	struct spi_controller *ctlr = spi->controller;
561 	struct device *dev = ctlr->dev.parent;
562 	int status;
563 
564 	/* Chipselects are numbered 0..max; validate. */
565 	if (spi->chip_select >= ctlr->num_chipselect) {
566 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
567 			ctlr->num_chipselect);
568 		return -EINVAL;
569 	}
570 
571 	/* Set the bus ID string */
572 	spi_dev_set_name(spi);
573 
574 	/* We need to make sure there's no other device with this
575 	 * chipselect **BEFORE** we call setup(), else we'll trash
576 	 * its configuration.  Lock against concurrent add() calls.
577 	 */
578 	mutex_lock(&ctlr->add_lock);
579 
580 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
581 	if (status) {
582 		dev_err(dev, "chipselect %d already in use\n",
583 				spi->chip_select);
584 		goto done;
585 	}
586 
587 	/* Controller may unregister concurrently */
588 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
589 	    !device_is_registered(&ctlr->dev)) {
590 		status = -ENODEV;
591 		goto done;
592 	}
593 
594 	/* Descriptors take precedence */
595 	if (ctlr->cs_gpiods)
596 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
597 	else if (ctlr->cs_gpios)
598 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
599 
600 	/* Drivers may modify this initial i/o setup, but will
601 	 * normally rely on the device being setup.  Devices
602 	 * using SPI_CS_HIGH can't coexist well otherwise...
603 	 */
604 	status = spi_setup(spi);
605 	if (status < 0) {
606 		dev_err(dev, "can't setup %s, status %d\n",
607 				dev_name(&spi->dev), status);
608 		goto done;
609 	}
610 
611 	/* Device may be bound to an active driver when this returns */
612 	status = device_add(&spi->dev);
613 	if (status < 0) {
614 		dev_err(dev, "can't add %s, status %d\n",
615 				dev_name(&spi->dev), status);
616 		spi_cleanup(spi);
617 	} else {
618 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
619 	}
620 
621 done:
622 	mutex_unlock(&ctlr->add_lock);
623 	return status;
624 }
625 EXPORT_SYMBOL_GPL(spi_add_device);
626 
627 /**
628  * spi_new_device - instantiate one new SPI device
629  * @ctlr: Controller to which device is connected
630  * @chip: Describes the SPI device
631  * Context: can sleep
632  *
633  * On typical mainboards, this is purely internal; and it's not needed
634  * after board init creates the hard-wired devices.  Some development
635  * platforms may not be able to use spi_register_board_info though, and
636  * this is exported so that for example a USB or parport based adapter
637  * driver could add devices (which it would learn about out-of-band).
638  *
639  * Return: the new device, or NULL.
640  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)641 struct spi_device *spi_new_device(struct spi_controller *ctlr,
642 				  struct spi_board_info *chip)
643 {
644 	struct spi_device	*proxy;
645 	int			status;
646 
647 	/* NOTE:  caller did any chip->bus_num checks necessary.
648 	 *
649 	 * Also, unless we change the return value convention to use
650 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
651 	 * suggests syslogged diagnostics are best here (ugh).
652 	 */
653 
654 	proxy = spi_alloc_device(ctlr);
655 	if (!proxy)
656 		return NULL;
657 
658 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
659 
660 	proxy->chip_select = chip->chip_select;
661 	proxy->max_speed_hz = chip->max_speed_hz;
662 	proxy->mode = chip->mode;
663 	proxy->irq = chip->irq;
664 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
665 	proxy->dev.platform_data = (void *) chip->platform_data;
666 	proxy->controller_data = chip->controller_data;
667 	proxy->controller_state = NULL;
668 
669 	if (chip->properties) {
670 		status = device_add_properties(&proxy->dev, chip->properties);
671 		if (status) {
672 			dev_err(&ctlr->dev,
673 				"failed to add properties to '%s': %d\n",
674 				chip->modalias, status);
675 			goto err_dev_put;
676 		}
677 	}
678 
679 	status = spi_add_device(proxy);
680 	if (status < 0)
681 		goto err_remove_props;
682 
683 	return proxy;
684 
685 err_remove_props:
686 	if (chip->properties)
687 		device_remove_properties(&proxy->dev);
688 err_dev_put:
689 	spi_dev_put(proxy);
690 	return NULL;
691 }
692 EXPORT_SYMBOL_GPL(spi_new_device);
693 
694 /**
695  * spi_unregister_device - unregister a single SPI device
696  * @spi: spi_device to unregister
697  *
698  * Start making the passed SPI device vanish. Normally this would be handled
699  * by spi_unregister_controller().
700  */
spi_unregister_device(struct spi_device * spi)701 void spi_unregister_device(struct spi_device *spi)
702 {
703 	if (!spi)
704 		return;
705 
706 	if (spi->dev.of_node) {
707 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
708 		of_node_put(spi->dev.of_node);
709 	}
710 	if (ACPI_COMPANION(&spi->dev))
711 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
712 	device_del(&spi->dev);
713 	spi_cleanup(spi);
714 	put_device(&spi->dev);
715 }
716 EXPORT_SYMBOL_GPL(spi_unregister_device);
717 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)718 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
719 					      struct spi_board_info *bi)
720 {
721 	struct spi_device *dev;
722 
723 	if (ctlr->bus_num != bi->bus_num)
724 		return;
725 
726 	dev = spi_new_device(ctlr, bi);
727 	if (!dev)
728 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
729 			bi->modalias);
730 }
731 
732 /**
733  * spi_register_board_info - register SPI devices for a given board
734  * @info: array of chip descriptors
735  * @n: how many descriptors are provided
736  * Context: can sleep
737  *
738  * Board-specific early init code calls this (probably during arch_initcall)
739  * with segments of the SPI device table.  Any device nodes are created later,
740  * after the relevant parent SPI controller (bus_num) is defined.  We keep
741  * this table of devices forever, so that reloading a controller driver will
742  * not make Linux forget about these hard-wired devices.
743  *
744  * Other code can also call this, e.g. a particular add-on board might provide
745  * SPI devices through its expansion connector, so code initializing that board
746  * would naturally declare its SPI devices.
747  *
748  * The board info passed can safely be __initdata ... but be careful of
749  * any embedded pointers (platform_data, etc), they're copied as-is.
750  * Device properties are deep-copied though.
751  *
752  * Return: zero on success, else a negative error code.
753  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)754 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
755 {
756 	struct boardinfo *bi;
757 	int i;
758 
759 	if (!n)
760 		return 0;
761 
762 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
763 	if (!bi)
764 		return -ENOMEM;
765 
766 	for (i = 0; i < n; i++, bi++, info++) {
767 		struct spi_controller *ctlr;
768 
769 		memcpy(&bi->board_info, info, sizeof(*info));
770 		if (info->properties) {
771 			bi->board_info.properties =
772 					property_entries_dup(info->properties);
773 			if (IS_ERR(bi->board_info.properties))
774 				return PTR_ERR(bi->board_info.properties);
775 		}
776 
777 		mutex_lock(&board_lock);
778 		list_add_tail(&bi->list, &board_list);
779 		list_for_each_entry(ctlr, &spi_controller_list, list)
780 			spi_match_controller_to_boardinfo(ctlr,
781 							  &bi->board_info);
782 		mutex_unlock(&board_lock);
783 	}
784 
785 	return 0;
786 }
787 
788 /*-------------------------------------------------------------------------*/
789 
spi_set_cs(struct spi_device * spi,bool enable,bool force)790 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
791 {
792 	bool enable1 = enable;
793 
794 	/*
795 	 * Avoid calling into the driver (or doing delays) if the chip select
796 	 * isn't actually changing from the last time this was called.
797 	 */
798 	if (!force && (spi->controller->last_cs_enable == enable) &&
799 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
800 		return;
801 
802 	spi->controller->last_cs_enable = enable;
803 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
804 
805 	if (!spi->controller->set_cs_timing) {
806 		if (enable1)
807 			spi_delay_exec(&spi->controller->cs_setup, NULL);
808 		else
809 			spi_delay_exec(&spi->controller->cs_hold, NULL);
810 	}
811 
812 	if (spi->mode & SPI_CS_HIGH)
813 		enable = !enable;
814 
815 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
816 		if (!(spi->mode & SPI_NO_CS)) {
817 			if (spi->cs_gpiod) {
818 				/*
819 				 * Historically ACPI has no means of the GPIO polarity and
820 				 * thus the SPISerialBus() resource defines it on the per-chip
821 				 * basis. In order to avoid a chain of negations, the GPIO
822 				 * polarity is considered being Active High. Even for the cases
823 				 * when _DSD() is involved (in the updated versions of ACPI)
824 				 * the GPIO CS polarity must be defined Active High to avoid
825 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
826 				 * into account.
827 				 */
828 				if (has_acpi_companion(&spi->dev))
829 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
830 				else
831 					/* Polarity handled by GPIO library */
832 					gpiod_set_value_cansleep(spi->cs_gpiod, enable1);
833 			} else {
834 				/*
835 				 * invert the enable line, as active low is
836 				 * default for SPI.
837 				 */
838 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
839 			}
840 		}
841 		/* Some SPI masters need both GPIO CS & slave_select */
842 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
843 		    spi->controller->set_cs)
844 			spi->controller->set_cs(spi, !enable);
845 	} else if (spi->controller->set_cs) {
846 		spi->controller->set_cs(spi, !enable);
847 	}
848 
849 	if (!spi->controller->set_cs_timing) {
850 		if (!enable1)
851 			spi_delay_exec(&spi->controller->cs_inactive, NULL);
852 	}
853 }
854 
855 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)856 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
857 		struct sg_table *sgt, void *buf, size_t len,
858 		enum dma_data_direction dir)
859 {
860 	const bool vmalloced_buf = is_vmalloc_addr(buf);
861 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
862 #ifdef CONFIG_HIGHMEM
863 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
864 				(unsigned long)buf < (PKMAP_BASE +
865 					(LAST_PKMAP * PAGE_SIZE)));
866 #else
867 	const bool kmap_buf = false;
868 #endif
869 	int desc_len;
870 	int sgs;
871 	struct page *vm_page;
872 	struct scatterlist *sg;
873 	void *sg_buf;
874 	size_t min;
875 	int i, ret;
876 
877 	if (vmalloced_buf || kmap_buf) {
878 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
879 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
880 	} else if (virt_addr_valid(buf)) {
881 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
882 		sgs = DIV_ROUND_UP(len, desc_len);
883 	} else {
884 		return -EINVAL;
885 	}
886 
887 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
888 	if (ret != 0)
889 		return ret;
890 
891 	sg = &sgt->sgl[0];
892 	for (i = 0; i < sgs; i++) {
893 
894 		if (vmalloced_buf || kmap_buf) {
895 			/*
896 			 * Next scatterlist entry size is the minimum between
897 			 * the desc_len and the remaining buffer length that
898 			 * fits in a page.
899 			 */
900 			min = min_t(size_t, desc_len,
901 				    min_t(size_t, len,
902 					  PAGE_SIZE - offset_in_page(buf)));
903 			if (vmalloced_buf)
904 				vm_page = vmalloc_to_page(buf);
905 			else
906 				vm_page = kmap_to_page(buf);
907 			if (!vm_page) {
908 				sg_free_table(sgt);
909 				return -ENOMEM;
910 			}
911 			sg_set_page(sg, vm_page,
912 				    min, offset_in_page(buf));
913 		} else {
914 			min = min_t(size_t, len, desc_len);
915 			sg_buf = buf;
916 			sg_set_buf(sg, sg_buf, min);
917 		}
918 
919 		buf += min;
920 		len -= min;
921 		sg = sg_next(sg);
922 	}
923 
924 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
925 	if (!ret)
926 		ret = -ENOMEM;
927 	if (ret < 0) {
928 		sg_free_table(sgt);
929 		return ret;
930 	}
931 
932 	sgt->nents = ret;
933 
934 	return 0;
935 }
936 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)937 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
938 		   struct sg_table *sgt, enum dma_data_direction dir)
939 {
940 	if (sgt->orig_nents) {
941 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
942 		sg_free_table(sgt);
943 		sgt->orig_nents = 0;
944 		sgt->nents = 0;
945 	}
946 }
947 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)948 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
949 {
950 	struct device *tx_dev, *rx_dev;
951 	struct spi_transfer *xfer;
952 	int ret;
953 
954 	if (!ctlr->can_dma)
955 		return 0;
956 
957 	if (ctlr->dma_tx)
958 		tx_dev = ctlr->dma_tx->device->dev;
959 	else
960 		tx_dev = ctlr->dev.parent;
961 
962 	if (ctlr->dma_rx)
963 		rx_dev = ctlr->dma_rx->device->dev;
964 	else
965 		rx_dev = ctlr->dev.parent;
966 
967 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
968 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
969 			continue;
970 
971 		if (xfer->tx_buf != NULL) {
972 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
973 					  (void *)xfer->tx_buf, xfer->len,
974 					  DMA_TO_DEVICE);
975 			if (ret != 0)
976 				return ret;
977 		}
978 
979 		if (xfer->rx_buf != NULL) {
980 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
981 					  xfer->rx_buf, xfer->len,
982 					  DMA_FROM_DEVICE);
983 			if (ret != 0) {
984 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
985 					      DMA_TO_DEVICE);
986 				return ret;
987 			}
988 		}
989 	}
990 
991 	ctlr->cur_msg_mapped = true;
992 
993 	return 0;
994 }
995 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)996 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
997 {
998 	struct spi_transfer *xfer;
999 	struct device *tx_dev, *rx_dev;
1000 
1001 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1002 		return 0;
1003 
1004 	if (ctlr->dma_tx)
1005 		tx_dev = ctlr->dma_tx->device->dev;
1006 	else
1007 		tx_dev = ctlr->dev.parent;
1008 
1009 	if (ctlr->dma_rx)
1010 		rx_dev = ctlr->dma_rx->device->dev;
1011 	else
1012 		rx_dev = ctlr->dev.parent;
1013 
1014 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1015 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1016 			continue;
1017 
1018 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1019 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1020 	}
1021 
1022 	ctlr->cur_msg_mapped = false;
1023 
1024 	return 0;
1025 }
1026 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1027 static inline int __spi_map_msg(struct spi_controller *ctlr,
1028 				struct spi_message *msg)
1029 {
1030 	return 0;
1031 }
1032 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1033 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1034 				  struct spi_message *msg)
1035 {
1036 	return 0;
1037 }
1038 #endif /* !CONFIG_HAS_DMA */
1039 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1040 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1041 				struct spi_message *msg)
1042 {
1043 	struct spi_transfer *xfer;
1044 
1045 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1046 		/*
1047 		 * Restore the original value of tx_buf or rx_buf if they are
1048 		 * NULL.
1049 		 */
1050 		if (xfer->tx_buf == ctlr->dummy_tx)
1051 			xfer->tx_buf = NULL;
1052 		if (xfer->rx_buf == ctlr->dummy_rx)
1053 			xfer->rx_buf = NULL;
1054 	}
1055 
1056 	return __spi_unmap_msg(ctlr, msg);
1057 }
1058 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1059 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1060 {
1061 	struct spi_transfer *xfer;
1062 	void *tmp;
1063 	unsigned int max_tx, max_rx;
1064 
1065 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1066 		&& !(msg->spi->mode & SPI_3WIRE)) {
1067 		max_tx = 0;
1068 		max_rx = 0;
1069 
1070 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1071 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1072 			    !xfer->tx_buf)
1073 				max_tx = max(xfer->len, max_tx);
1074 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1075 			    !xfer->rx_buf)
1076 				max_rx = max(xfer->len, max_rx);
1077 		}
1078 
1079 		if (max_tx) {
1080 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1081 				       GFP_KERNEL | GFP_DMA);
1082 			if (!tmp)
1083 				return -ENOMEM;
1084 			ctlr->dummy_tx = tmp;
1085 			memset(tmp, 0, max_tx);
1086 		}
1087 
1088 		if (max_rx) {
1089 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1090 				       GFP_KERNEL | GFP_DMA);
1091 			if (!tmp)
1092 				return -ENOMEM;
1093 			ctlr->dummy_rx = tmp;
1094 		}
1095 
1096 		if (max_tx || max_rx) {
1097 			list_for_each_entry(xfer, &msg->transfers,
1098 					    transfer_list) {
1099 				if (!xfer->len)
1100 					continue;
1101 				if (!xfer->tx_buf)
1102 					xfer->tx_buf = ctlr->dummy_tx;
1103 				if (!xfer->rx_buf)
1104 					xfer->rx_buf = ctlr->dummy_rx;
1105 			}
1106 		}
1107 	}
1108 
1109 	return __spi_map_msg(ctlr, msg);
1110 }
1111 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1112 static int spi_transfer_wait(struct spi_controller *ctlr,
1113 			     struct spi_message *msg,
1114 			     struct spi_transfer *xfer)
1115 {
1116 	struct spi_statistics *statm = &ctlr->statistics;
1117 	struct spi_statistics *stats = &msg->spi->statistics;
1118 	u32 speed_hz = xfer->speed_hz;
1119 	unsigned long long ms;
1120 
1121 	if (spi_controller_is_slave(ctlr)) {
1122 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1123 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1124 			return -EINTR;
1125 		}
1126 	} else {
1127 		if (!speed_hz)
1128 			speed_hz = 100000;
1129 
1130 		ms = 8LL * 1000LL * xfer->len;
1131 		do_div(ms, speed_hz);
1132 		ms += ms + 200; /* some tolerance */
1133 
1134 		if (ms > UINT_MAX)
1135 			ms = UINT_MAX;
1136 
1137 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1138 						 msecs_to_jiffies(ms));
1139 
1140 		if (ms == 0) {
1141 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1142 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1143 			dev_err(&msg->spi->dev,
1144 				"SPI transfer timed out\n");
1145 			return -ETIMEDOUT;
1146 		}
1147 	}
1148 
1149 	return 0;
1150 }
1151 
_spi_transfer_delay_ns(u32 ns)1152 static void _spi_transfer_delay_ns(u32 ns)
1153 {
1154 	if (!ns)
1155 		return;
1156 	if (ns <= 1000) {
1157 		ndelay(ns);
1158 	} else {
1159 		u32 us = DIV_ROUND_UP(ns, 1000);
1160 
1161 		if (us <= 10)
1162 			udelay(us);
1163 		else
1164 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1165 	}
1166 }
1167 
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1168 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1169 {
1170 	u32 delay = _delay->value;
1171 	u32 unit = _delay->unit;
1172 	u32 hz;
1173 
1174 	if (!delay)
1175 		return 0;
1176 
1177 	switch (unit) {
1178 	case SPI_DELAY_UNIT_USECS:
1179 		delay *= 1000;
1180 		break;
1181 	case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1182 		break;
1183 	case SPI_DELAY_UNIT_SCK:
1184 		/* clock cycles need to be obtained from spi_transfer */
1185 		if (!xfer)
1186 			return -EINVAL;
1187 		/* if there is no effective speed know, then approximate
1188 		 * by underestimating with half the requested hz
1189 		 */
1190 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1191 		if (!hz)
1192 			return -EINVAL;
1193 		delay *= DIV_ROUND_UP(1000000000, hz);
1194 		break;
1195 	default:
1196 		return -EINVAL;
1197 	}
1198 
1199 	return delay;
1200 }
1201 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1202 
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1203 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1204 {
1205 	int delay;
1206 
1207 	might_sleep();
1208 
1209 	if (!_delay)
1210 		return -EINVAL;
1211 
1212 	delay = spi_delay_to_ns(_delay, xfer);
1213 	if (delay < 0)
1214 		return delay;
1215 
1216 	_spi_transfer_delay_ns(delay);
1217 
1218 	return 0;
1219 }
1220 EXPORT_SYMBOL_GPL(spi_delay_exec);
1221 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1222 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1223 					  struct spi_transfer *xfer)
1224 {
1225 	u32 delay = xfer->cs_change_delay.value;
1226 	u32 unit = xfer->cs_change_delay.unit;
1227 	int ret;
1228 
1229 	/* return early on "fast" mode - for everything but USECS */
1230 	if (!delay) {
1231 		if (unit == SPI_DELAY_UNIT_USECS)
1232 			_spi_transfer_delay_ns(10000);
1233 		return;
1234 	}
1235 
1236 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1237 	if (ret) {
1238 		dev_err_once(&msg->spi->dev,
1239 			     "Use of unsupported delay unit %i, using default of 10us\n",
1240 			     unit);
1241 		_spi_transfer_delay_ns(10000);
1242 	}
1243 }
1244 
1245 /*
1246  * spi_transfer_one_message - Default implementation of transfer_one_message()
1247  *
1248  * This is a standard implementation of transfer_one_message() for
1249  * drivers which implement a transfer_one() operation.  It provides
1250  * standard handling of delays and chip select management.
1251  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1252 static int spi_transfer_one_message(struct spi_controller *ctlr,
1253 				    struct spi_message *msg)
1254 {
1255 	struct spi_transfer *xfer;
1256 	bool keep_cs = false;
1257 	int ret = 0;
1258 	struct spi_statistics *statm = &ctlr->statistics;
1259 	struct spi_statistics *stats = &msg->spi->statistics;
1260 
1261 	spi_set_cs(msg->spi, true, false);
1262 
1263 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1264 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1265 
1266 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1267 		trace_spi_transfer_start(msg, xfer);
1268 
1269 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1270 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1271 
1272 		if (!ctlr->ptp_sts_supported) {
1273 			xfer->ptp_sts_word_pre = 0;
1274 			ptp_read_system_prets(xfer->ptp_sts);
1275 		}
1276 
1277 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1278 			reinit_completion(&ctlr->xfer_completion);
1279 
1280 fallback_pio:
1281 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1282 			if (ret < 0) {
1283 				if (ctlr->cur_msg_mapped &&
1284 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1285 					__spi_unmap_msg(ctlr, msg);
1286 					ctlr->fallback = true;
1287 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1288 					goto fallback_pio;
1289 				}
1290 
1291 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1292 							       errors);
1293 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1294 							       errors);
1295 				dev_err(&msg->spi->dev,
1296 					"SPI transfer failed: %d\n", ret);
1297 				goto out;
1298 			}
1299 
1300 			if (ret > 0) {
1301 				ret = spi_transfer_wait(ctlr, msg, xfer);
1302 				if (ret < 0)
1303 					msg->status = ret;
1304 			}
1305 		} else {
1306 			if (xfer->len)
1307 				dev_err(&msg->spi->dev,
1308 					"Bufferless transfer has length %u\n",
1309 					xfer->len);
1310 		}
1311 
1312 		if (!ctlr->ptp_sts_supported) {
1313 			ptp_read_system_postts(xfer->ptp_sts);
1314 			xfer->ptp_sts_word_post = xfer->len;
1315 		}
1316 
1317 		trace_spi_transfer_stop(msg, xfer);
1318 
1319 		if (msg->status != -EINPROGRESS)
1320 			goto out;
1321 
1322 		spi_transfer_delay_exec(xfer);
1323 
1324 		if (xfer->cs_change) {
1325 			if (list_is_last(&xfer->transfer_list,
1326 					 &msg->transfers)) {
1327 				keep_cs = true;
1328 			} else {
1329 				spi_set_cs(msg->spi, false, false);
1330 				_spi_transfer_cs_change_delay(msg, xfer);
1331 				spi_set_cs(msg->spi, true, false);
1332 			}
1333 		}
1334 
1335 		msg->actual_length += xfer->len;
1336 	}
1337 
1338 out:
1339 	if (ret != 0 || !keep_cs)
1340 		spi_set_cs(msg->spi, false, false);
1341 
1342 	if (msg->status == -EINPROGRESS)
1343 		msg->status = ret;
1344 
1345 	if (msg->status && ctlr->handle_err)
1346 		ctlr->handle_err(ctlr, msg);
1347 
1348 	spi_finalize_current_message(ctlr);
1349 
1350 	return ret;
1351 }
1352 
1353 /**
1354  * spi_finalize_current_transfer - report completion of a transfer
1355  * @ctlr: the controller reporting completion
1356  *
1357  * Called by SPI drivers using the core transfer_one_message()
1358  * implementation to notify it that the current interrupt driven
1359  * transfer has finished and the next one may be scheduled.
1360  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1361 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1362 {
1363 	complete(&ctlr->xfer_completion);
1364 }
1365 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1366 
spi_idle_runtime_pm(struct spi_controller * ctlr)1367 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1368 {
1369 	if (ctlr->auto_runtime_pm) {
1370 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1371 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1372 	}
1373 }
1374 
1375 /**
1376  * __spi_pump_messages - function which processes spi message queue
1377  * @ctlr: controller to process queue for
1378  * @in_kthread: true if we are in the context of the message pump thread
1379  *
1380  * This function checks if there is any spi message in the queue that
1381  * needs processing and if so call out to the driver to initialize hardware
1382  * and transfer each message.
1383  *
1384  * Note that it is called both from the kthread itself and also from
1385  * inside spi_sync(); the queue extraction handling at the top of the
1386  * function should deal with this safely.
1387  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1388 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1389 {
1390 	struct spi_transfer *xfer;
1391 	struct spi_message *msg;
1392 	bool was_busy = false;
1393 	unsigned long flags;
1394 	int ret;
1395 
1396 	/* Lock queue */
1397 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1398 
1399 	/* Make sure we are not already running a message */
1400 	if (ctlr->cur_msg) {
1401 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1402 		return;
1403 	}
1404 
1405 	/* If another context is idling the device then defer */
1406 	if (ctlr->idling) {
1407 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1408 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1409 		return;
1410 	}
1411 
1412 	/* Check if the queue is idle */
1413 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1414 		if (!ctlr->busy) {
1415 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1416 			return;
1417 		}
1418 
1419 		/* Defer any non-atomic teardown to the thread */
1420 		if (!in_kthread) {
1421 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1422 			    !ctlr->unprepare_transfer_hardware) {
1423 				spi_idle_runtime_pm(ctlr);
1424 				ctlr->busy = false;
1425 				trace_spi_controller_idle(ctlr);
1426 			} else {
1427 				kthread_queue_work(ctlr->kworker,
1428 						   &ctlr->pump_messages);
1429 			}
1430 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1431 			return;
1432 		}
1433 
1434 		ctlr->busy = false;
1435 		ctlr->idling = true;
1436 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437 
1438 		kfree(ctlr->dummy_rx);
1439 		ctlr->dummy_rx = NULL;
1440 		kfree(ctlr->dummy_tx);
1441 		ctlr->dummy_tx = NULL;
1442 		if (ctlr->unprepare_transfer_hardware &&
1443 		    ctlr->unprepare_transfer_hardware(ctlr))
1444 			dev_err(&ctlr->dev,
1445 				"failed to unprepare transfer hardware\n");
1446 		spi_idle_runtime_pm(ctlr);
1447 		trace_spi_controller_idle(ctlr);
1448 
1449 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1450 		ctlr->idling = false;
1451 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1452 		return;
1453 	}
1454 
1455 	/* Extract head of queue */
1456 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1457 	ctlr->cur_msg = msg;
1458 
1459 	list_del_init(&msg->queue);
1460 	if (ctlr->busy)
1461 		was_busy = true;
1462 	else
1463 		ctlr->busy = true;
1464 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1465 
1466 	mutex_lock(&ctlr->io_mutex);
1467 
1468 	if (!was_busy && ctlr->auto_runtime_pm) {
1469 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1470 		if (ret < 0) {
1471 			pm_runtime_put_noidle(ctlr->dev.parent);
1472 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1473 				ret);
1474 			mutex_unlock(&ctlr->io_mutex);
1475 			return;
1476 		}
1477 	}
1478 
1479 	if (!was_busy)
1480 		trace_spi_controller_busy(ctlr);
1481 
1482 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1483 		ret = ctlr->prepare_transfer_hardware(ctlr);
1484 		if (ret) {
1485 			dev_err(&ctlr->dev,
1486 				"failed to prepare transfer hardware: %d\n",
1487 				ret);
1488 
1489 			if (ctlr->auto_runtime_pm)
1490 				pm_runtime_put(ctlr->dev.parent);
1491 
1492 			msg->status = ret;
1493 			spi_finalize_current_message(ctlr);
1494 
1495 			mutex_unlock(&ctlr->io_mutex);
1496 			return;
1497 		}
1498 	}
1499 
1500 	trace_spi_message_start(msg);
1501 
1502 	if (ctlr->prepare_message) {
1503 		ret = ctlr->prepare_message(ctlr, msg);
1504 		if (ret) {
1505 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1506 				ret);
1507 			msg->status = ret;
1508 			spi_finalize_current_message(ctlr);
1509 			goto out;
1510 		}
1511 		ctlr->cur_msg_prepared = true;
1512 	}
1513 
1514 	ret = spi_map_msg(ctlr, msg);
1515 	if (ret) {
1516 		msg->status = ret;
1517 		spi_finalize_current_message(ctlr);
1518 		goto out;
1519 	}
1520 
1521 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1522 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1523 			xfer->ptp_sts_word_pre = 0;
1524 			ptp_read_system_prets(xfer->ptp_sts);
1525 		}
1526 	}
1527 
1528 	ret = ctlr->transfer_one_message(ctlr, msg);
1529 	if (ret) {
1530 		dev_err(&ctlr->dev,
1531 			"failed to transfer one message from queue\n");
1532 		goto out;
1533 	}
1534 
1535 out:
1536 	mutex_unlock(&ctlr->io_mutex);
1537 
1538 	/* Prod the scheduler in case transfer_one() was busy waiting */
1539 	if (!ret)
1540 		cond_resched();
1541 }
1542 
1543 /**
1544  * spi_pump_messages - kthread work function which processes spi message queue
1545  * @work: pointer to kthread work struct contained in the controller struct
1546  */
spi_pump_messages(struct kthread_work * work)1547 static void spi_pump_messages(struct kthread_work *work)
1548 {
1549 	struct spi_controller *ctlr =
1550 		container_of(work, struct spi_controller, pump_messages);
1551 
1552 	__spi_pump_messages(ctlr, true);
1553 }
1554 
1555 /**
1556  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1557  *			    TX timestamp for the requested byte from the SPI
1558  *			    transfer. The frequency with which this function
1559  *			    must be called (once per word, once for the whole
1560  *			    transfer, once per batch of words etc) is arbitrary
1561  *			    as long as the @tx buffer offset is greater than or
1562  *			    equal to the requested byte at the time of the
1563  *			    call. The timestamp is only taken once, at the
1564  *			    first such call. It is assumed that the driver
1565  *			    advances its @tx buffer pointer monotonically.
1566  * @ctlr: Pointer to the spi_controller structure of the driver
1567  * @xfer: Pointer to the transfer being timestamped
1568  * @progress: How many words (not bytes) have been transferred so far
1569  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1570  *	      transfer, for less jitter in time measurement. Only compatible
1571  *	      with PIO drivers. If true, must follow up with
1572  *	      spi_take_timestamp_post or otherwise system will crash.
1573  *	      WARNING: for fully predictable results, the CPU frequency must
1574  *	      also be under control (governor).
1575  */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1576 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1577 			    struct spi_transfer *xfer,
1578 			    size_t progress, bool irqs_off)
1579 {
1580 	if (!xfer->ptp_sts)
1581 		return;
1582 
1583 	if (xfer->timestamped)
1584 		return;
1585 
1586 	if (progress > xfer->ptp_sts_word_pre)
1587 		return;
1588 
1589 	/* Capture the resolution of the timestamp */
1590 	xfer->ptp_sts_word_pre = progress;
1591 
1592 	if (irqs_off) {
1593 		local_irq_save(ctlr->irq_flags);
1594 		preempt_disable();
1595 	}
1596 
1597 	ptp_read_system_prets(xfer->ptp_sts);
1598 }
1599 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1600 
1601 /**
1602  * spi_take_timestamp_post - helper for drivers to collect the end of the
1603  *			     TX timestamp for the requested byte from the SPI
1604  *			     transfer. Can be called with an arbitrary
1605  *			     frequency: only the first call where @tx exceeds
1606  *			     or is equal to the requested word will be
1607  *			     timestamped.
1608  * @ctlr: Pointer to the spi_controller structure of the driver
1609  * @xfer: Pointer to the transfer being timestamped
1610  * @progress: How many words (not bytes) have been transferred so far
1611  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1612  */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1613 void spi_take_timestamp_post(struct spi_controller *ctlr,
1614 			     struct spi_transfer *xfer,
1615 			     size_t progress, bool irqs_off)
1616 {
1617 	if (!xfer->ptp_sts)
1618 		return;
1619 
1620 	if (xfer->timestamped)
1621 		return;
1622 
1623 	if (progress < xfer->ptp_sts_word_post)
1624 		return;
1625 
1626 	ptp_read_system_postts(xfer->ptp_sts);
1627 
1628 	if (irqs_off) {
1629 		local_irq_restore(ctlr->irq_flags);
1630 		preempt_enable();
1631 	}
1632 
1633 	/* Capture the resolution of the timestamp */
1634 	xfer->ptp_sts_word_post = progress;
1635 
1636 	xfer->timestamped = true;
1637 }
1638 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1639 
1640 /**
1641  * spi_set_thread_rt - set the controller to pump at realtime priority
1642  * @ctlr: controller to boost priority of
1643  *
1644  * This can be called because the controller requested realtime priority
1645  * (by setting the ->rt value before calling spi_register_controller()) or
1646  * because a device on the bus said that its transfers needed realtime
1647  * priority.
1648  *
1649  * NOTE: at the moment if any device on a bus says it needs realtime then
1650  * the thread will be at realtime priority for all transfers on that
1651  * controller.  If this eventually becomes a problem we may see if we can
1652  * find a way to boost the priority only temporarily during relevant
1653  * transfers.
1654  */
spi_set_thread_rt(struct spi_controller * ctlr)1655 static void spi_set_thread_rt(struct spi_controller *ctlr)
1656 {
1657 	dev_info(&ctlr->dev,
1658 		"will run message pump with realtime priority\n");
1659 	sched_set_fifo(ctlr->kworker->task);
1660 }
1661 
spi_init_queue(struct spi_controller * ctlr)1662 static int spi_init_queue(struct spi_controller *ctlr)
1663 {
1664 	ctlr->running = false;
1665 	ctlr->busy = false;
1666 
1667 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1668 	if (IS_ERR(ctlr->kworker)) {
1669 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1670 		return PTR_ERR(ctlr->kworker);
1671 	}
1672 
1673 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1674 
1675 	/*
1676 	 * Controller config will indicate if this controller should run the
1677 	 * message pump with high (realtime) priority to reduce the transfer
1678 	 * latency on the bus by minimising the delay between a transfer
1679 	 * request and the scheduling of the message pump thread. Without this
1680 	 * setting the message pump thread will remain at default priority.
1681 	 */
1682 	if (ctlr->rt)
1683 		spi_set_thread_rt(ctlr);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  * spi_get_next_queued_message() - called by driver to check for queued
1690  * messages
1691  * @ctlr: the controller to check for queued messages
1692  *
1693  * If there are more messages in the queue, the next message is returned from
1694  * this call.
1695  *
1696  * Return: the next message in the queue, else NULL if the queue is empty.
1697  */
spi_get_next_queued_message(struct spi_controller * ctlr)1698 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1699 {
1700 	struct spi_message *next;
1701 	unsigned long flags;
1702 
1703 	/* get a pointer to the next message, if any */
1704 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1705 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1706 					queue);
1707 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1708 
1709 	return next;
1710 }
1711 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1712 
1713 /**
1714  * spi_finalize_current_message() - the current message is complete
1715  * @ctlr: the controller to return the message to
1716  *
1717  * Called by the driver to notify the core that the message in the front of the
1718  * queue is complete and can be removed from the queue.
1719  */
spi_finalize_current_message(struct spi_controller * ctlr)1720 void spi_finalize_current_message(struct spi_controller *ctlr)
1721 {
1722 	struct spi_transfer *xfer;
1723 	struct spi_message *mesg;
1724 	unsigned long flags;
1725 	int ret;
1726 
1727 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1728 	mesg = ctlr->cur_msg;
1729 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1730 
1731 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1732 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1733 			ptp_read_system_postts(xfer->ptp_sts);
1734 			xfer->ptp_sts_word_post = xfer->len;
1735 		}
1736 	}
1737 
1738 	if (unlikely(ctlr->ptp_sts_supported))
1739 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1740 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1741 
1742 	spi_unmap_msg(ctlr, mesg);
1743 
1744 	/* In the prepare_messages callback the spi bus has the opportunity to
1745 	 * split a transfer to smaller chunks.
1746 	 * Release splited transfers here since spi_map_msg is done on the
1747 	 * splited transfers.
1748 	 */
1749 	spi_res_release(ctlr, mesg);
1750 
1751 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1752 		ret = ctlr->unprepare_message(ctlr, mesg);
1753 		if (ret) {
1754 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1755 				ret);
1756 		}
1757 	}
1758 
1759 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1760 	ctlr->cur_msg = NULL;
1761 	ctlr->cur_msg_prepared = false;
1762 	ctlr->fallback = false;
1763 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1764 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1765 
1766 	trace_spi_message_done(mesg);
1767 
1768 	mesg->state = NULL;
1769 	if (mesg->complete)
1770 		mesg->complete(mesg->context);
1771 }
1772 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1773 
spi_start_queue(struct spi_controller * ctlr)1774 static int spi_start_queue(struct spi_controller *ctlr)
1775 {
1776 	unsigned long flags;
1777 
1778 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1779 
1780 	if (ctlr->running || ctlr->busy) {
1781 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1782 		return -EBUSY;
1783 	}
1784 
1785 	ctlr->running = true;
1786 	ctlr->cur_msg = NULL;
1787 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1788 
1789 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1790 
1791 	return 0;
1792 }
1793 
spi_stop_queue(struct spi_controller * ctlr)1794 static int spi_stop_queue(struct spi_controller *ctlr)
1795 {
1796 	unsigned long flags;
1797 	unsigned limit = 500;
1798 	int ret = 0;
1799 
1800 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1801 
1802 	/*
1803 	 * This is a bit lame, but is optimized for the common execution path.
1804 	 * A wait_queue on the ctlr->busy could be used, but then the common
1805 	 * execution path (pump_messages) would be required to call wake_up or
1806 	 * friends on every SPI message. Do this instead.
1807 	 */
1808 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1809 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1810 		usleep_range(10000, 11000);
1811 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1812 	}
1813 
1814 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1815 		ret = -EBUSY;
1816 	else
1817 		ctlr->running = false;
1818 
1819 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820 
1821 	if (ret) {
1822 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1823 		return ret;
1824 	}
1825 	return ret;
1826 }
1827 
spi_destroy_queue(struct spi_controller * ctlr)1828 static int spi_destroy_queue(struct spi_controller *ctlr)
1829 {
1830 	int ret;
1831 
1832 	ret = spi_stop_queue(ctlr);
1833 
1834 	/*
1835 	 * kthread_flush_worker will block until all work is done.
1836 	 * If the reason that stop_queue timed out is that the work will never
1837 	 * finish, then it does no good to call flush/stop thread, so
1838 	 * return anyway.
1839 	 */
1840 	if (ret) {
1841 		dev_err(&ctlr->dev, "problem destroying queue\n");
1842 		return ret;
1843 	}
1844 
1845 	kthread_destroy_worker(ctlr->kworker);
1846 
1847 	return 0;
1848 }
1849 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1850 static int __spi_queued_transfer(struct spi_device *spi,
1851 				 struct spi_message *msg,
1852 				 bool need_pump)
1853 {
1854 	struct spi_controller *ctlr = spi->controller;
1855 	unsigned long flags;
1856 
1857 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1858 
1859 	if (!ctlr->running) {
1860 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1861 		return -ESHUTDOWN;
1862 	}
1863 	msg->actual_length = 0;
1864 	msg->status = -EINPROGRESS;
1865 
1866 	list_add_tail(&msg->queue, &ctlr->queue);
1867 	if (!ctlr->busy && need_pump)
1868 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1869 
1870 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1871 	return 0;
1872 }
1873 
1874 /**
1875  * spi_queued_transfer - transfer function for queued transfers
1876  * @spi: spi device which is requesting transfer
1877  * @msg: spi message which is to handled is queued to driver queue
1878  *
1879  * Return: zero on success, else a negative error code.
1880  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1881 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1882 {
1883 	return __spi_queued_transfer(spi, msg, true);
1884 }
1885 
spi_controller_initialize_queue(struct spi_controller * ctlr)1886 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1887 {
1888 	int ret;
1889 
1890 	ctlr->transfer = spi_queued_transfer;
1891 	if (!ctlr->transfer_one_message)
1892 		ctlr->transfer_one_message = spi_transfer_one_message;
1893 
1894 	/* Initialize and start queue */
1895 	ret = spi_init_queue(ctlr);
1896 	if (ret) {
1897 		dev_err(&ctlr->dev, "problem initializing queue\n");
1898 		goto err_init_queue;
1899 	}
1900 	ctlr->queued = true;
1901 	ret = spi_start_queue(ctlr);
1902 	if (ret) {
1903 		dev_err(&ctlr->dev, "problem starting queue\n");
1904 		goto err_start_queue;
1905 	}
1906 
1907 	return 0;
1908 
1909 err_start_queue:
1910 	spi_destroy_queue(ctlr);
1911 err_init_queue:
1912 	return ret;
1913 }
1914 
1915 /**
1916  * spi_flush_queue - Send all pending messages in the queue from the callers'
1917  *		     context
1918  * @ctlr: controller to process queue for
1919  *
1920  * This should be used when one wants to ensure all pending messages have been
1921  * sent before doing something. Is used by the spi-mem code to make sure SPI
1922  * memory operations do not preempt regular SPI transfers that have been queued
1923  * before the spi-mem operation.
1924  */
spi_flush_queue(struct spi_controller * ctlr)1925 void spi_flush_queue(struct spi_controller *ctlr)
1926 {
1927 	if (ctlr->transfer == spi_queued_transfer)
1928 		__spi_pump_messages(ctlr, false);
1929 }
1930 
1931 /*-------------------------------------------------------------------------*/
1932 
1933 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)1934 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1935 			   struct device_node *nc)
1936 {
1937 	u32 value;
1938 	int rc;
1939 
1940 	/* Mode (clock phase/polarity/etc.) */
1941 	if (of_property_read_bool(nc, "spi-cpha"))
1942 		spi->mode |= SPI_CPHA;
1943 	if (of_property_read_bool(nc, "spi-cpol"))
1944 		spi->mode |= SPI_CPOL;
1945 	if (of_property_read_bool(nc, "spi-3wire"))
1946 		spi->mode |= SPI_3WIRE;
1947 	if (of_property_read_bool(nc, "spi-lsb-first"))
1948 		spi->mode |= SPI_LSB_FIRST;
1949 	if (of_property_read_bool(nc, "spi-cs-high"))
1950 		spi->mode |= SPI_CS_HIGH;
1951 
1952 	/* Device DUAL/QUAD mode */
1953 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1954 		switch (value) {
1955 		case 1:
1956 			break;
1957 		case 2:
1958 			spi->mode |= SPI_TX_DUAL;
1959 			break;
1960 		case 4:
1961 			spi->mode |= SPI_TX_QUAD;
1962 			break;
1963 		case 8:
1964 			spi->mode |= SPI_TX_OCTAL;
1965 			break;
1966 		default:
1967 			dev_warn(&ctlr->dev,
1968 				"spi-tx-bus-width %d not supported\n",
1969 				value);
1970 			break;
1971 		}
1972 	}
1973 
1974 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1975 		switch (value) {
1976 		case 1:
1977 			break;
1978 		case 2:
1979 			spi->mode |= SPI_RX_DUAL;
1980 			break;
1981 		case 4:
1982 			spi->mode |= SPI_RX_QUAD;
1983 			break;
1984 		case 8:
1985 			spi->mode |= SPI_RX_OCTAL;
1986 			break;
1987 		default:
1988 			dev_warn(&ctlr->dev,
1989 				"spi-rx-bus-width %d not supported\n",
1990 				value);
1991 			break;
1992 		}
1993 	}
1994 
1995 	if (spi_controller_is_slave(ctlr)) {
1996 		if (!of_node_name_eq(nc, "slave")) {
1997 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1998 				nc);
1999 			return -EINVAL;
2000 		}
2001 		return 0;
2002 	}
2003 
2004 	/* Device address */
2005 	rc = of_property_read_u32(nc, "reg", &value);
2006 	if (rc) {
2007 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2008 			nc, rc);
2009 		return rc;
2010 	}
2011 	spi->chip_select = value;
2012 
2013 	/* Device speed */
2014 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2015 		spi->max_speed_hz = value;
2016 
2017 	return 0;
2018 }
2019 
2020 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2021 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2022 {
2023 	struct spi_device *spi;
2024 	int rc;
2025 
2026 	/* Alloc an spi_device */
2027 	spi = spi_alloc_device(ctlr);
2028 	if (!spi) {
2029 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2030 		rc = -ENOMEM;
2031 		goto err_out;
2032 	}
2033 
2034 	/* Select device driver */
2035 	rc = of_modalias_node(nc, spi->modalias,
2036 				sizeof(spi->modalias));
2037 	if (rc < 0) {
2038 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2039 		goto err_out;
2040 	}
2041 
2042 	rc = of_spi_parse_dt(ctlr, spi, nc);
2043 	if (rc)
2044 		goto err_out;
2045 
2046 	/* Store a pointer to the node in the device structure */
2047 	of_node_get(nc);
2048 	spi->dev.of_node = nc;
2049 	spi->dev.fwnode = of_fwnode_handle(nc);
2050 
2051 	/* Register the new device */
2052 	rc = spi_add_device(spi);
2053 	if (rc) {
2054 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2055 		goto err_of_node_put;
2056 	}
2057 
2058 	return spi;
2059 
2060 err_of_node_put:
2061 	of_node_put(nc);
2062 err_out:
2063 	spi_dev_put(spi);
2064 	return ERR_PTR(rc);
2065 }
2066 
2067 /**
2068  * of_register_spi_devices() - Register child devices onto the SPI bus
2069  * @ctlr:	Pointer to spi_controller device
2070  *
2071  * Registers an spi_device for each child node of controller node which
2072  * represents a valid SPI slave.
2073  */
of_register_spi_devices(struct spi_controller * ctlr)2074 static void of_register_spi_devices(struct spi_controller *ctlr)
2075 {
2076 	struct spi_device *spi;
2077 	struct device_node *nc;
2078 
2079 	if (!ctlr->dev.of_node)
2080 		return;
2081 
2082 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2083 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2084 			continue;
2085 		spi = of_register_spi_device(ctlr, nc);
2086 		if (IS_ERR(spi)) {
2087 			dev_warn(&ctlr->dev,
2088 				 "Failed to create SPI device for %pOF\n", nc);
2089 			of_node_clear_flag(nc, OF_POPULATED);
2090 		}
2091 	}
2092 }
2093 #else
of_register_spi_devices(struct spi_controller * ctlr)2094 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2095 #endif
2096 
2097 #ifdef CONFIG_ACPI
2098 struct acpi_spi_lookup {
2099 	struct spi_controller 	*ctlr;
2100 	u32			max_speed_hz;
2101 	u32			mode;
2102 	int			irq;
2103 	u8			bits_per_word;
2104 	u8			chip_select;
2105 };
2106 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2107 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2108 					    struct acpi_spi_lookup *lookup)
2109 {
2110 	const union acpi_object *obj;
2111 
2112 	if (!x86_apple_machine)
2113 		return;
2114 
2115 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2116 	    && obj->buffer.length >= 4)
2117 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2118 
2119 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2120 	    && obj->buffer.length == 8)
2121 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2122 
2123 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2124 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2125 		lookup->mode |= SPI_LSB_FIRST;
2126 
2127 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2128 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2129 		lookup->mode |= SPI_CPOL;
2130 
2131 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2132 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2133 		lookup->mode |= SPI_CPHA;
2134 }
2135 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2136 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2137 {
2138 	struct acpi_spi_lookup *lookup = data;
2139 	struct spi_controller *ctlr = lookup->ctlr;
2140 
2141 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2142 		struct acpi_resource_spi_serialbus *sb;
2143 		acpi_handle parent_handle;
2144 		acpi_status status;
2145 
2146 		sb = &ares->data.spi_serial_bus;
2147 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2148 
2149 			status = acpi_get_handle(NULL,
2150 						 sb->resource_source.string_ptr,
2151 						 &parent_handle);
2152 
2153 			if (ACPI_FAILURE(status) ||
2154 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2155 				return -ENODEV;
2156 
2157 			/*
2158 			 * ACPI DeviceSelection numbering is handled by the
2159 			 * host controller driver in Windows and can vary
2160 			 * from driver to driver. In Linux we always expect
2161 			 * 0 .. max - 1 so we need to ask the driver to
2162 			 * translate between the two schemes.
2163 			 */
2164 			if (ctlr->fw_translate_cs) {
2165 				int cs = ctlr->fw_translate_cs(ctlr,
2166 						sb->device_selection);
2167 				if (cs < 0)
2168 					return cs;
2169 				lookup->chip_select = cs;
2170 			} else {
2171 				lookup->chip_select = sb->device_selection;
2172 			}
2173 
2174 			lookup->max_speed_hz = sb->connection_speed;
2175 			lookup->bits_per_word = sb->data_bit_length;
2176 
2177 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2178 				lookup->mode |= SPI_CPHA;
2179 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2180 				lookup->mode |= SPI_CPOL;
2181 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2182 				lookup->mode |= SPI_CS_HIGH;
2183 		}
2184 	} else if (lookup->irq < 0) {
2185 		struct resource r;
2186 
2187 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2188 			lookup->irq = r.start;
2189 	}
2190 
2191 	/* Always tell the ACPI core to skip this resource */
2192 	return 1;
2193 }
2194 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2195 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2196 					    struct acpi_device *adev)
2197 {
2198 	acpi_handle parent_handle = NULL;
2199 	struct list_head resource_list;
2200 	struct acpi_spi_lookup lookup = {};
2201 	struct spi_device *spi;
2202 	int ret;
2203 
2204 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2205 	    acpi_device_enumerated(adev))
2206 		return AE_OK;
2207 
2208 	lookup.ctlr		= ctlr;
2209 	lookup.irq		= -1;
2210 
2211 	INIT_LIST_HEAD(&resource_list);
2212 	ret = acpi_dev_get_resources(adev, &resource_list,
2213 				     acpi_spi_add_resource, &lookup);
2214 	acpi_dev_free_resource_list(&resource_list);
2215 
2216 	if (ret < 0)
2217 		/* found SPI in _CRS but it points to another controller */
2218 		return AE_OK;
2219 
2220 	if (!lookup.max_speed_hz &&
2221 	    !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2222 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2223 		/* Apple does not use _CRS but nested devices for SPI slaves */
2224 		acpi_spi_parse_apple_properties(adev, &lookup);
2225 	}
2226 
2227 	if (!lookup.max_speed_hz)
2228 		return AE_OK;
2229 
2230 	spi = spi_alloc_device(ctlr);
2231 	if (!spi) {
2232 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2233 			dev_name(&adev->dev));
2234 		return AE_NO_MEMORY;
2235 	}
2236 
2237 
2238 	ACPI_COMPANION_SET(&spi->dev, adev);
2239 	spi->max_speed_hz	= lookup.max_speed_hz;
2240 	spi->mode		|= lookup.mode;
2241 	spi->irq		= lookup.irq;
2242 	spi->bits_per_word	= lookup.bits_per_word;
2243 	spi->chip_select	= lookup.chip_select;
2244 
2245 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2246 			  sizeof(spi->modalias));
2247 
2248 	if (spi->irq < 0)
2249 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2250 
2251 	acpi_device_set_enumerated(adev);
2252 
2253 	adev->power.flags.ignore_parent = true;
2254 	if (spi_add_device(spi)) {
2255 		adev->power.flags.ignore_parent = false;
2256 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2257 			dev_name(&adev->dev));
2258 		spi_dev_put(spi);
2259 	}
2260 
2261 	return AE_OK;
2262 }
2263 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2264 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2265 				       void *data, void **return_value)
2266 {
2267 	struct spi_controller *ctlr = data;
2268 	struct acpi_device *adev;
2269 
2270 	if (acpi_bus_get_device(handle, &adev))
2271 		return AE_OK;
2272 
2273 	return acpi_register_spi_device(ctlr, adev);
2274 }
2275 
2276 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2277 
acpi_register_spi_devices(struct spi_controller * ctlr)2278 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2279 {
2280 	acpi_status status;
2281 	acpi_handle handle;
2282 
2283 	handle = ACPI_HANDLE(ctlr->dev.parent);
2284 	if (!handle)
2285 		return;
2286 
2287 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2288 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2289 				     acpi_spi_add_device, NULL, ctlr, NULL);
2290 	if (ACPI_FAILURE(status))
2291 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2292 }
2293 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2294 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2295 #endif /* CONFIG_ACPI */
2296 
spi_controller_release(struct device * dev)2297 static void spi_controller_release(struct device *dev)
2298 {
2299 	struct spi_controller *ctlr;
2300 
2301 	ctlr = container_of(dev, struct spi_controller, dev);
2302 	kfree(ctlr);
2303 }
2304 
2305 static struct class spi_master_class = {
2306 	.name		= "spi_master",
2307 	.owner		= THIS_MODULE,
2308 	.dev_release	= spi_controller_release,
2309 	.dev_groups	= spi_master_groups,
2310 };
2311 
2312 #ifdef CONFIG_SPI_SLAVE
2313 /**
2314  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2315  *		     controller
2316  * @spi: device used for the current transfer
2317  */
spi_slave_abort(struct spi_device * spi)2318 int spi_slave_abort(struct spi_device *spi)
2319 {
2320 	struct spi_controller *ctlr = spi->controller;
2321 
2322 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2323 		return ctlr->slave_abort(ctlr);
2324 
2325 	return -ENOTSUPP;
2326 }
2327 EXPORT_SYMBOL_GPL(spi_slave_abort);
2328 
match_true(struct device * dev,void * data)2329 static int match_true(struct device *dev, void *data)
2330 {
2331 	return 1;
2332 }
2333 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2334 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2335 			  char *buf)
2336 {
2337 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2338 						   dev);
2339 	struct device *child;
2340 
2341 	child = device_find_child(&ctlr->dev, NULL, match_true);
2342 	return sprintf(buf, "%s\n",
2343 		       child ? to_spi_device(child)->modalias : NULL);
2344 }
2345 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2346 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2347 			   const char *buf, size_t count)
2348 {
2349 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2350 						   dev);
2351 	struct spi_device *spi;
2352 	struct device *child;
2353 	char name[32];
2354 	int rc;
2355 
2356 	rc = sscanf(buf, "%31s", name);
2357 	if (rc != 1 || !name[0])
2358 		return -EINVAL;
2359 
2360 	child = device_find_child(&ctlr->dev, NULL, match_true);
2361 	if (child) {
2362 		/* Remove registered slave */
2363 		device_unregister(child);
2364 		put_device(child);
2365 	}
2366 
2367 	if (strcmp(name, "(null)")) {
2368 		/* Register new slave */
2369 		spi = spi_alloc_device(ctlr);
2370 		if (!spi)
2371 			return -ENOMEM;
2372 
2373 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2374 
2375 		rc = spi_add_device(spi);
2376 		if (rc) {
2377 			spi_dev_put(spi);
2378 			return rc;
2379 		}
2380 	}
2381 
2382 	return count;
2383 }
2384 
2385 static DEVICE_ATTR_RW(slave);
2386 
2387 static struct attribute *spi_slave_attrs[] = {
2388 	&dev_attr_slave.attr,
2389 	NULL,
2390 };
2391 
2392 static const struct attribute_group spi_slave_group = {
2393 	.attrs = spi_slave_attrs,
2394 };
2395 
2396 static const struct attribute_group *spi_slave_groups[] = {
2397 	&spi_controller_statistics_group,
2398 	&spi_slave_group,
2399 	NULL,
2400 };
2401 
2402 static struct class spi_slave_class = {
2403 	.name		= "spi_slave",
2404 	.owner		= THIS_MODULE,
2405 	.dev_release	= spi_controller_release,
2406 	.dev_groups	= spi_slave_groups,
2407 };
2408 #else
2409 extern struct class spi_slave_class;	/* dummy */
2410 #endif
2411 
2412 /**
2413  * __spi_alloc_controller - allocate an SPI master or slave controller
2414  * @dev: the controller, possibly using the platform_bus
2415  * @size: how much zeroed driver-private data to allocate; the pointer to this
2416  *	memory is in the driver_data field of the returned device, accessible
2417  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2418  *	drivers granting DMA access to portions of their private data need to
2419  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2420  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2421  *	slave (true) controller
2422  * Context: can sleep
2423  *
2424  * This call is used only by SPI controller drivers, which are the
2425  * only ones directly touching chip registers.  It's how they allocate
2426  * an spi_controller structure, prior to calling spi_register_controller().
2427  *
2428  * This must be called from context that can sleep.
2429  *
2430  * The caller is responsible for assigning the bus number and initializing the
2431  * controller's methods before calling spi_register_controller(); and (after
2432  * errors adding the device) calling spi_controller_put() to prevent a memory
2433  * leak.
2434  *
2435  * Return: the SPI controller structure on success, else NULL.
2436  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2437 struct spi_controller *__spi_alloc_controller(struct device *dev,
2438 					      unsigned int size, bool slave)
2439 {
2440 	struct spi_controller	*ctlr;
2441 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2442 
2443 	if (!dev)
2444 		return NULL;
2445 
2446 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2447 	if (!ctlr)
2448 		return NULL;
2449 
2450 	device_initialize(&ctlr->dev);
2451 	ctlr->bus_num = -1;
2452 	ctlr->num_chipselect = 1;
2453 	ctlr->slave = slave;
2454 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2455 		ctlr->dev.class = &spi_slave_class;
2456 	else
2457 		ctlr->dev.class = &spi_master_class;
2458 	ctlr->dev.parent = dev;
2459 	pm_suspend_ignore_children(&ctlr->dev, true);
2460 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2461 
2462 	return ctlr;
2463 }
2464 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2465 
devm_spi_release_controller(struct device * dev,void * ctlr)2466 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2467 {
2468 	spi_controller_put(*(struct spi_controller **)ctlr);
2469 }
2470 
2471 /**
2472  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2473  * @dev: physical device of SPI controller
2474  * @size: how much zeroed driver-private data to allocate
2475  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2476  * Context: can sleep
2477  *
2478  * Allocate an SPI controller and automatically release a reference on it
2479  * when @dev is unbound from its driver.  Drivers are thus relieved from
2480  * having to call spi_controller_put().
2481  *
2482  * The arguments to this function are identical to __spi_alloc_controller().
2483  *
2484  * Return: the SPI controller structure on success, else NULL.
2485  */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2486 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2487 						   unsigned int size,
2488 						   bool slave)
2489 {
2490 	struct spi_controller **ptr, *ctlr;
2491 
2492 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2493 			   GFP_KERNEL);
2494 	if (!ptr)
2495 		return NULL;
2496 
2497 	ctlr = __spi_alloc_controller(dev, size, slave);
2498 	if (ctlr) {
2499 		ctlr->devm_allocated = true;
2500 		*ptr = ctlr;
2501 		devres_add(dev, ptr);
2502 	} else {
2503 		devres_free(ptr);
2504 	}
2505 
2506 	return ctlr;
2507 }
2508 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2509 
2510 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2511 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2512 {
2513 	int nb, i, *cs;
2514 	struct device_node *np = ctlr->dev.of_node;
2515 
2516 	if (!np)
2517 		return 0;
2518 
2519 	nb = of_gpio_named_count(np, "cs-gpios");
2520 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2521 
2522 	/* Return error only for an incorrectly formed cs-gpios property */
2523 	if (nb == 0 || nb == -ENOENT)
2524 		return 0;
2525 	else if (nb < 0)
2526 		return nb;
2527 
2528 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2529 			  GFP_KERNEL);
2530 	ctlr->cs_gpios = cs;
2531 
2532 	if (!ctlr->cs_gpios)
2533 		return -ENOMEM;
2534 
2535 	for (i = 0; i < ctlr->num_chipselect; i++)
2536 		cs[i] = -ENOENT;
2537 
2538 	for (i = 0; i < nb; i++)
2539 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2540 
2541 	return 0;
2542 }
2543 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2544 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2545 {
2546 	return 0;
2547 }
2548 #endif
2549 
2550 /**
2551  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2552  * @ctlr: The SPI master to grab GPIO descriptors for
2553  */
spi_get_gpio_descs(struct spi_controller * ctlr)2554 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2555 {
2556 	int nb, i;
2557 	struct gpio_desc **cs;
2558 	struct device *dev = &ctlr->dev;
2559 	unsigned long native_cs_mask = 0;
2560 	unsigned int num_cs_gpios = 0;
2561 
2562 	nb = gpiod_count(dev, "cs");
2563 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2564 
2565 	/* No GPIOs at all is fine, else return the error */
2566 	if (nb == 0 || nb == -ENOENT)
2567 		return 0;
2568 	else if (nb < 0)
2569 		return nb;
2570 
2571 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2572 			  GFP_KERNEL);
2573 	if (!cs)
2574 		return -ENOMEM;
2575 	ctlr->cs_gpiods = cs;
2576 
2577 	for (i = 0; i < nb; i++) {
2578 		/*
2579 		 * Most chipselects are active low, the inverted
2580 		 * semantics are handled by special quirks in gpiolib,
2581 		 * so initializing them GPIOD_OUT_LOW here means
2582 		 * "unasserted", in most cases this will drive the physical
2583 		 * line high.
2584 		 */
2585 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2586 						      GPIOD_OUT_LOW);
2587 		if (IS_ERR(cs[i]))
2588 			return PTR_ERR(cs[i]);
2589 
2590 		if (cs[i]) {
2591 			/*
2592 			 * If we find a CS GPIO, name it after the device and
2593 			 * chip select line.
2594 			 */
2595 			char *gpioname;
2596 
2597 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2598 						  dev_name(dev), i);
2599 			if (!gpioname)
2600 				return -ENOMEM;
2601 			gpiod_set_consumer_name(cs[i], gpioname);
2602 			num_cs_gpios++;
2603 			continue;
2604 		}
2605 
2606 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2607 			dev_err(dev, "Invalid native chip select %d\n", i);
2608 			return -EINVAL;
2609 		}
2610 		native_cs_mask |= BIT(i);
2611 	}
2612 
2613 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2614 
2615 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2616 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2617 		dev_err(dev, "No unused native chip select available\n");
2618 		return -EINVAL;
2619 	}
2620 
2621 	return 0;
2622 }
2623 
spi_controller_check_ops(struct spi_controller * ctlr)2624 static int spi_controller_check_ops(struct spi_controller *ctlr)
2625 {
2626 	/*
2627 	 * The controller may implement only the high-level SPI-memory like
2628 	 * operations if it does not support regular SPI transfers, and this is
2629 	 * valid use case.
2630 	 * If ->mem_ops is NULL, we request that at least one of the
2631 	 * ->transfer_xxx() method be implemented.
2632 	 */
2633 	if (ctlr->mem_ops) {
2634 		if (!ctlr->mem_ops->exec_op)
2635 			return -EINVAL;
2636 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2637 		   !ctlr->transfer_one_message) {
2638 		return -EINVAL;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  * spi_register_controller - register SPI master or slave controller
2646  * @ctlr: initialized master, originally from spi_alloc_master() or
2647  *	spi_alloc_slave()
2648  * Context: can sleep
2649  *
2650  * SPI controllers connect to their drivers using some non-SPI bus,
2651  * such as the platform bus.  The final stage of probe() in that code
2652  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2653  *
2654  * SPI controllers use board specific (often SOC specific) bus numbers,
2655  * and board-specific addressing for SPI devices combines those numbers
2656  * with chip select numbers.  Since SPI does not directly support dynamic
2657  * device identification, boards need configuration tables telling which
2658  * chip is at which address.
2659  *
2660  * This must be called from context that can sleep.  It returns zero on
2661  * success, else a negative error code (dropping the controller's refcount).
2662  * After a successful return, the caller is responsible for calling
2663  * spi_unregister_controller().
2664  *
2665  * Return: zero on success, else a negative error code.
2666  */
spi_register_controller(struct spi_controller * ctlr)2667 int spi_register_controller(struct spi_controller *ctlr)
2668 {
2669 	struct device		*dev = ctlr->dev.parent;
2670 	struct boardinfo	*bi;
2671 	int			status;
2672 	int			id, first_dynamic;
2673 
2674 	if (!dev)
2675 		return -ENODEV;
2676 
2677 	/*
2678 	 * Make sure all necessary hooks are implemented before registering
2679 	 * the SPI controller.
2680 	 */
2681 	status = spi_controller_check_ops(ctlr);
2682 	if (status)
2683 		return status;
2684 
2685 	if (ctlr->bus_num >= 0) {
2686 		/* devices with a fixed bus num must check-in with the num */
2687 		mutex_lock(&board_lock);
2688 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2689 			ctlr->bus_num + 1, GFP_KERNEL);
2690 		mutex_unlock(&board_lock);
2691 		if (WARN(id < 0, "couldn't get idr"))
2692 			return id == -ENOSPC ? -EBUSY : id;
2693 		ctlr->bus_num = id;
2694 	} else if (ctlr->dev.of_node) {
2695 		/* allocate dynamic bus number using Linux idr */
2696 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2697 		if (id >= 0) {
2698 			ctlr->bus_num = id;
2699 			mutex_lock(&board_lock);
2700 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2701 				       ctlr->bus_num + 1, GFP_KERNEL);
2702 			mutex_unlock(&board_lock);
2703 			if (WARN(id < 0, "couldn't get idr"))
2704 				return id == -ENOSPC ? -EBUSY : id;
2705 		}
2706 	}
2707 	if (ctlr->bus_num < 0) {
2708 		first_dynamic = of_alias_get_highest_id("spi");
2709 		if (first_dynamic < 0)
2710 			first_dynamic = 0;
2711 		else
2712 			first_dynamic++;
2713 
2714 		mutex_lock(&board_lock);
2715 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2716 			       0, GFP_KERNEL);
2717 		mutex_unlock(&board_lock);
2718 		if (WARN(id < 0, "couldn't get idr"))
2719 			return id;
2720 		ctlr->bus_num = id;
2721 	}
2722 	INIT_LIST_HEAD(&ctlr->queue);
2723 	spin_lock_init(&ctlr->queue_lock);
2724 	spin_lock_init(&ctlr->bus_lock_spinlock);
2725 	mutex_init(&ctlr->bus_lock_mutex);
2726 	mutex_init(&ctlr->io_mutex);
2727 	mutex_init(&ctlr->add_lock);
2728 	ctlr->bus_lock_flag = 0;
2729 	init_completion(&ctlr->xfer_completion);
2730 	if (!ctlr->max_dma_len)
2731 		ctlr->max_dma_len = INT_MAX;
2732 
2733 	/* register the device, then userspace will see it.
2734 	 * registration fails if the bus ID is in use.
2735 	 */
2736 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2737 
2738 	if (!spi_controller_is_slave(ctlr)) {
2739 		if (ctlr->use_gpio_descriptors) {
2740 			status = spi_get_gpio_descs(ctlr);
2741 			if (status)
2742 				goto free_bus_id;
2743 			/*
2744 			 * A controller using GPIO descriptors always
2745 			 * supports SPI_CS_HIGH if need be.
2746 			 */
2747 			ctlr->mode_bits |= SPI_CS_HIGH;
2748 		} else {
2749 			/* Legacy code path for GPIOs from DT */
2750 			status = of_spi_get_gpio_numbers(ctlr);
2751 			if (status)
2752 				goto free_bus_id;
2753 		}
2754 	}
2755 
2756 	/*
2757 	 * Even if it's just one always-selected device, there must
2758 	 * be at least one chipselect.
2759 	 */
2760 	if (!ctlr->num_chipselect) {
2761 		status = -EINVAL;
2762 		goto free_bus_id;
2763 	}
2764 
2765 	status = device_add(&ctlr->dev);
2766 	if (status < 0)
2767 		goto free_bus_id;
2768 	dev_dbg(dev, "registered %s %s\n",
2769 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2770 			dev_name(&ctlr->dev));
2771 
2772 	/*
2773 	 * If we're using a queued driver, start the queue. Note that we don't
2774 	 * need the queueing logic if the driver is only supporting high-level
2775 	 * memory operations.
2776 	 */
2777 	if (ctlr->transfer) {
2778 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2779 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2780 		status = spi_controller_initialize_queue(ctlr);
2781 		if (status) {
2782 			device_del(&ctlr->dev);
2783 			goto free_bus_id;
2784 		}
2785 	}
2786 	/* add statistics */
2787 	spin_lock_init(&ctlr->statistics.lock);
2788 
2789 	mutex_lock(&board_lock);
2790 	list_add_tail(&ctlr->list, &spi_controller_list);
2791 	list_for_each_entry(bi, &board_list, list)
2792 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2793 	mutex_unlock(&board_lock);
2794 
2795 	/* Register devices from the device tree and ACPI */
2796 	of_register_spi_devices(ctlr);
2797 	acpi_register_spi_devices(ctlr);
2798 	return status;
2799 
2800 free_bus_id:
2801 	mutex_lock(&board_lock);
2802 	idr_remove(&spi_master_idr, ctlr->bus_num);
2803 	mutex_unlock(&board_lock);
2804 	return status;
2805 }
2806 EXPORT_SYMBOL_GPL(spi_register_controller);
2807 
devm_spi_unregister(struct device * dev,void * res)2808 static void devm_spi_unregister(struct device *dev, void *res)
2809 {
2810 	spi_unregister_controller(*(struct spi_controller **)res);
2811 }
2812 
2813 /**
2814  * devm_spi_register_controller - register managed SPI master or slave
2815  *	controller
2816  * @dev:    device managing SPI controller
2817  * @ctlr: initialized controller, originally from spi_alloc_master() or
2818  *	spi_alloc_slave()
2819  * Context: can sleep
2820  *
2821  * Register a SPI device as with spi_register_controller() which will
2822  * automatically be unregistered and freed.
2823  *
2824  * Return: zero on success, else a negative error code.
2825  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2826 int devm_spi_register_controller(struct device *dev,
2827 				 struct spi_controller *ctlr)
2828 {
2829 	struct spi_controller **ptr;
2830 	int ret;
2831 
2832 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2833 	if (!ptr)
2834 		return -ENOMEM;
2835 
2836 	ret = spi_register_controller(ctlr);
2837 	if (!ret) {
2838 		*ptr = ctlr;
2839 		devres_add(dev, ptr);
2840 	} else {
2841 		devres_free(ptr);
2842 	}
2843 
2844 	return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2847 
__unregister(struct device * dev,void * null)2848 static int __unregister(struct device *dev, void *null)
2849 {
2850 	spi_unregister_device(to_spi_device(dev));
2851 	return 0;
2852 }
2853 
2854 /**
2855  * spi_unregister_controller - unregister SPI master or slave controller
2856  * @ctlr: the controller being unregistered
2857  * Context: can sleep
2858  *
2859  * This call is used only by SPI controller drivers, which are the
2860  * only ones directly touching chip registers.
2861  *
2862  * This must be called from context that can sleep.
2863  *
2864  * Note that this function also drops a reference to the controller.
2865  */
spi_unregister_controller(struct spi_controller * ctlr)2866 void spi_unregister_controller(struct spi_controller *ctlr)
2867 {
2868 	struct spi_controller *found;
2869 	int id = ctlr->bus_num;
2870 
2871 	/* Prevent addition of new devices, unregister existing ones */
2872 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2873 		mutex_lock(&ctlr->add_lock);
2874 
2875 	device_for_each_child(&ctlr->dev, NULL, __unregister);
2876 
2877 	/* First make sure that this controller was ever added */
2878 	mutex_lock(&board_lock);
2879 	found = idr_find(&spi_master_idr, id);
2880 	mutex_unlock(&board_lock);
2881 	if (ctlr->queued) {
2882 		if (spi_destroy_queue(ctlr))
2883 			dev_err(&ctlr->dev, "queue remove failed\n");
2884 	}
2885 	mutex_lock(&board_lock);
2886 	list_del(&ctlr->list);
2887 	mutex_unlock(&board_lock);
2888 
2889 	device_del(&ctlr->dev);
2890 
2891 	/* Release the last reference on the controller if its driver
2892 	 * has not yet been converted to devm_spi_alloc_master/slave().
2893 	 */
2894 	if (!ctlr->devm_allocated)
2895 		put_device(&ctlr->dev);
2896 
2897 	/* free bus id */
2898 	mutex_lock(&board_lock);
2899 	if (found == ctlr)
2900 		idr_remove(&spi_master_idr, id);
2901 	mutex_unlock(&board_lock);
2902 
2903 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2904 		mutex_unlock(&ctlr->add_lock);
2905 }
2906 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2907 
spi_controller_suspend(struct spi_controller * ctlr)2908 int spi_controller_suspend(struct spi_controller *ctlr)
2909 {
2910 	int ret;
2911 
2912 	/* Basically no-ops for non-queued controllers */
2913 	if (!ctlr->queued)
2914 		return 0;
2915 
2916 	ret = spi_stop_queue(ctlr);
2917 	if (ret)
2918 		dev_err(&ctlr->dev, "queue stop failed\n");
2919 
2920 	return ret;
2921 }
2922 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2923 
spi_controller_resume(struct spi_controller * ctlr)2924 int spi_controller_resume(struct spi_controller *ctlr)
2925 {
2926 	int ret;
2927 
2928 	if (!ctlr->queued)
2929 		return 0;
2930 
2931 	ret = spi_start_queue(ctlr);
2932 	if (ret)
2933 		dev_err(&ctlr->dev, "queue restart failed\n");
2934 
2935 	return ret;
2936 }
2937 EXPORT_SYMBOL_GPL(spi_controller_resume);
2938 
__spi_controller_match(struct device * dev,const void * data)2939 static int __spi_controller_match(struct device *dev, const void *data)
2940 {
2941 	struct spi_controller *ctlr;
2942 	const u16 *bus_num = data;
2943 
2944 	ctlr = container_of(dev, struct spi_controller, dev);
2945 	return ctlr->bus_num == *bus_num;
2946 }
2947 
2948 /**
2949  * spi_busnum_to_master - look up master associated with bus_num
2950  * @bus_num: the master's bus number
2951  * Context: can sleep
2952  *
2953  * This call may be used with devices that are registered after
2954  * arch init time.  It returns a refcounted pointer to the relevant
2955  * spi_controller (which the caller must release), or NULL if there is
2956  * no such master registered.
2957  *
2958  * Return: the SPI master structure on success, else NULL.
2959  */
spi_busnum_to_master(u16 bus_num)2960 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2961 {
2962 	struct device		*dev;
2963 	struct spi_controller	*ctlr = NULL;
2964 
2965 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2966 				__spi_controller_match);
2967 	if (dev)
2968 		ctlr = container_of(dev, struct spi_controller, dev);
2969 	/* reference got in class_find_device */
2970 	return ctlr;
2971 }
2972 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2973 
2974 /*-------------------------------------------------------------------------*/
2975 
2976 /* Core methods for SPI resource management */
2977 
2978 /**
2979  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2980  *                 during the processing of a spi_message while using
2981  *                 spi_transfer_one
2982  * @spi:     the spi device for which we allocate memory
2983  * @release: the release code to execute for this resource
2984  * @size:    size to alloc and return
2985  * @gfp:     GFP allocation flags
2986  *
2987  * Return: the pointer to the allocated data
2988  *
2989  * This may get enhanced in the future to allocate from a memory pool
2990  * of the @spi_device or @spi_controller to avoid repeated allocations.
2991  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2992 void *spi_res_alloc(struct spi_device *spi,
2993 		    spi_res_release_t release,
2994 		    size_t size, gfp_t gfp)
2995 {
2996 	struct spi_res *sres;
2997 
2998 	sres = kzalloc(sizeof(*sres) + size, gfp);
2999 	if (!sres)
3000 		return NULL;
3001 
3002 	INIT_LIST_HEAD(&sres->entry);
3003 	sres->release = release;
3004 
3005 	return sres->data;
3006 }
3007 EXPORT_SYMBOL_GPL(spi_res_alloc);
3008 
3009 /**
3010  * spi_res_free - free an spi resource
3011  * @res: pointer to the custom data of a resource
3012  *
3013  */
spi_res_free(void * res)3014 void spi_res_free(void *res)
3015 {
3016 	struct spi_res *sres = container_of(res, struct spi_res, data);
3017 
3018 	if (!res)
3019 		return;
3020 
3021 	WARN_ON(!list_empty(&sres->entry));
3022 	kfree(sres);
3023 }
3024 EXPORT_SYMBOL_GPL(spi_res_free);
3025 
3026 /**
3027  * spi_res_add - add a spi_res to the spi_message
3028  * @message: the spi message
3029  * @res:     the spi_resource
3030  */
spi_res_add(struct spi_message * message,void * res)3031 void spi_res_add(struct spi_message *message, void *res)
3032 {
3033 	struct spi_res *sres = container_of(res, struct spi_res, data);
3034 
3035 	WARN_ON(!list_empty(&sres->entry));
3036 	list_add_tail(&sres->entry, &message->resources);
3037 }
3038 EXPORT_SYMBOL_GPL(spi_res_add);
3039 
3040 /**
3041  * spi_res_release - release all spi resources for this message
3042  * @ctlr:  the @spi_controller
3043  * @message: the @spi_message
3044  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)3045 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3046 {
3047 	struct spi_res *res, *tmp;
3048 
3049 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3050 		if (res->release)
3051 			res->release(ctlr, message, res->data);
3052 
3053 		list_del(&res->entry);
3054 
3055 		kfree(res);
3056 	}
3057 }
3058 EXPORT_SYMBOL_GPL(spi_res_release);
3059 
3060 /*-------------------------------------------------------------------------*/
3061 
3062 /* Core methods for spi_message alterations */
3063 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3064 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3065 					    struct spi_message *msg,
3066 					    void *res)
3067 {
3068 	struct spi_replaced_transfers *rxfer = res;
3069 	size_t i;
3070 
3071 	/* call extra callback if requested */
3072 	if (rxfer->release)
3073 		rxfer->release(ctlr, msg, res);
3074 
3075 	/* insert replaced transfers back into the message */
3076 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3077 
3078 	/* remove the formerly inserted entries */
3079 	for (i = 0; i < rxfer->inserted; i++)
3080 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3081 }
3082 
3083 /**
3084  * spi_replace_transfers - replace transfers with several transfers
3085  *                         and register change with spi_message.resources
3086  * @msg:           the spi_message we work upon
3087  * @xfer_first:    the first spi_transfer we want to replace
3088  * @remove:        number of transfers to remove
3089  * @insert:        the number of transfers we want to insert instead
3090  * @release:       extra release code necessary in some circumstances
3091  * @extradatasize: extra data to allocate (with alignment guarantees
3092  *                 of struct @spi_transfer)
3093  * @gfp:           gfp flags
3094  *
3095  * Returns: pointer to @spi_replaced_transfers,
3096  *          PTR_ERR(...) in case of errors.
3097  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3098 struct spi_replaced_transfers *spi_replace_transfers(
3099 	struct spi_message *msg,
3100 	struct spi_transfer *xfer_first,
3101 	size_t remove,
3102 	size_t insert,
3103 	spi_replaced_release_t release,
3104 	size_t extradatasize,
3105 	gfp_t gfp)
3106 {
3107 	struct spi_replaced_transfers *rxfer;
3108 	struct spi_transfer *xfer;
3109 	size_t i;
3110 
3111 	/* allocate the structure using spi_res */
3112 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3113 			      struct_size(rxfer, inserted_transfers, insert)
3114 			      + extradatasize,
3115 			      gfp);
3116 	if (!rxfer)
3117 		return ERR_PTR(-ENOMEM);
3118 
3119 	/* the release code to invoke before running the generic release */
3120 	rxfer->release = release;
3121 
3122 	/* assign extradata */
3123 	if (extradatasize)
3124 		rxfer->extradata =
3125 			&rxfer->inserted_transfers[insert];
3126 
3127 	/* init the replaced_transfers list */
3128 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3129 
3130 	/* assign the list_entry after which we should reinsert
3131 	 * the @replaced_transfers - it may be spi_message.messages!
3132 	 */
3133 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3134 
3135 	/* remove the requested number of transfers */
3136 	for (i = 0; i < remove; i++) {
3137 		/* if the entry after replaced_after it is msg->transfers
3138 		 * then we have been requested to remove more transfers
3139 		 * than are in the list
3140 		 */
3141 		if (rxfer->replaced_after->next == &msg->transfers) {
3142 			dev_err(&msg->spi->dev,
3143 				"requested to remove more spi_transfers than are available\n");
3144 			/* insert replaced transfers back into the message */
3145 			list_splice(&rxfer->replaced_transfers,
3146 				    rxfer->replaced_after);
3147 
3148 			/* free the spi_replace_transfer structure */
3149 			spi_res_free(rxfer);
3150 
3151 			/* and return with an error */
3152 			return ERR_PTR(-EINVAL);
3153 		}
3154 
3155 		/* remove the entry after replaced_after from list of
3156 		 * transfers and add it to list of replaced_transfers
3157 		 */
3158 		list_move_tail(rxfer->replaced_after->next,
3159 			       &rxfer->replaced_transfers);
3160 	}
3161 
3162 	/* create copy of the given xfer with identical settings
3163 	 * based on the first transfer to get removed
3164 	 */
3165 	for (i = 0; i < insert; i++) {
3166 		/* we need to run in reverse order */
3167 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3168 
3169 		/* copy all spi_transfer data */
3170 		memcpy(xfer, xfer_first, sizeof(*xfer));
3171 
3172 		/* add to list */
3173 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3174 
3175 		/* clear cs_change and delay for all but the last */
3176 		if (i) {
3177 			xfer->cs_change = false;
3178 			xfer->delay_usecs = 0;
3179 			xfer->delay.value = 0;
3180 		}
3181 	}
3182 
3183 	/* set up inserted */
3184 	rxfer->inserted = insert;
3185 
3186 	/* and register it with spi_res/spi_message */
3187 	spi_res_add(msg, rxfer);
3188 
3189 	return rxfer;
3190 }
3191 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3192 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3193 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3194 					struct spi_message *msg,
3195 					struct spi_transfer **xferp,
3196 					size_t maxsize,
3197 					gfp_t gfp)
3198 {
3199 	struct spi_transfer *xfer = *xferp, *xfers;
3200 	struct spi_replaced_transfers *srt;
3201 	size_t offset;
3202 	size_t count, i;
3203 
3204 	/* calculate how many we have to replace */
3205 	count = DIV_ROUND_UP(xfer->len, maxsize);
3206 
3207 	/* create replacement */
3208 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3209 	if (IS_ERR(srt))
3210 		return PTR_ERR(srt);
3211 	xfers = srt->inserted_transfers;
3212 
3213 	/* now handle each of those newly inserted spi_transfers
3214 	 * note that the replacements spi_transfers all are preset
3215 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3216 	 * are all identical (as well as most others)
3217 	 * so we just have to fix up len and the pointers.
3218 	 *
3219 	 * this also includes support for the depreciated
3220 	 * spi_message.is_dma_mapped interface
3221 	 */
3222 
3223 	/* the first transfer just needs the length modified, so we
3224 	 * run it outside the loop
3225 	 */
3226 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3227 
3228 	/* all the others need rx_buf/tx_buf also set */
3229 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3230 		/* update rx_buf, tx_buf and dma */
3231 		if (xfers[i].rx_buf)
3232 			xfers[i].rx_buf += offset;
3233 		if (xfers[i].rx_dma)
3234 			xfers[i].rx_dma += offset;
3235 		if (xfers[i].tx_buf)
3236 			xfers[i].tx_buf += offset;
3237 		if (xfers[i].tx_dma)
3238 			xfers[i].tx_dma += offset;
3239 
3240 		/* update length */
3241 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3242 	}
3243 
3244 	/* we set up xferp to the last entry we have inserted,
3245 	 * so that we skip those already split transfers
3246 	 */
3247 	*xferp = &xfers[count - 1];
3248 
3249 	/* increment statistics counters */
3250 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3251 				       transfers_split_maxsize);
3252 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3253 				       transfers_split_maxsize);
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3260  *                              when an individual transfer exceeds a
3261  *                              certain size
3262  * @ctlr:    the @spi_controller for this transfer
3263  * @msg:   the @spi_message to transform
3264  * @maxsize:  the maximum when to apply this
3265  * @gfp: GFP allocation flags
3266  *
3267  * Return: status of transformation
3268  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3269 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3270 				struct spi_message *msg,
3271 				size_t maxsize,
3272 				gfp_t gfp)
3273 {
3274 	struct spi_transfer *xfer;
3275 	int ret;
3276 
3277 	/* iterate over the transfer_list,
3278 	 * but note that xfer is advanced to the last transfer inserted
3279 	 * to avoid checking sizes again unnecessarily (also xfer does
3280 	 * potentiall belong to a different list by the time the
3281 	 * replacement has happened
3282 	 */
3283 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3284 		if (xfer->len > maxsize) {
3285 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3286 							   maxsize, gfp);
3287 			if (ret)
3288 				return ret;
3289 		}
3290 	}
3291 
3292 	return 0;
3293 }
3294 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3295 
3296 /*-------------------------------------------------------------------------*/
3297 
3298 /* Core methods for SPI controller protocol drivers.  Some of the
3299  * other core methods are currently defined as inline functions.
3300  */
3301 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3302 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3303 					u8 bits_per_word)
3304 {
3305 	if (ctlr->bits_per_word_mask) {
3306 		/* Only 32 bits fit in the mask */
3307 		if (bits_per_word > 32)
3308 			return -EINVAL;
3309 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3310 			return -EINVAL;
3311 	}
3312 
3313 	return 0;
3314 }
3315 
3316 /**
3317  * spi_setup - setup SPI mode and clock rate
3318  * @spi: the device whose settings are being modified
3319  * Context: can sleep, and no requests are queued to the device
3320  *
3321  * SPI protocol drivers may need to update the transfer mode if the
3322  * device doesn't work with its default.  They may likewise need
3323  * to update clock rates or word sizes from initial values.  This function
3324  * changes those settings, and must be called from a context that can sleep.
3325  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3326  * effect the next time the device is selected and data is transferred to
3327  * or from it.  When this function returns, the spi device is deselected.
3328  *
3329  * Note that this call will fail if the protocol driver specifies an option
3330  * that the underlying controller or its driver does not support.  For
3331  * example, not all hardware supports wire transfers using nine bit words,
3332  * LSB-first wire encoding, or active-high chipselects.
3333  *
3334  * Return: zero on success, else a negative error code.
3335  */
spi_setup(struct spi_device * spi)3336 int spi_setup(struct spi_device *spi)
3337 {
3338 	unsigned	bad_bits, ugly_bits;
3339 	int		status;
3340 
3341 	/* check mode to prevent that DUAL and QUAD set at the same time
3342 	 */
3343 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3344 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3345 		dev_err(&spi->dev,
3346 		"setup: can not select dual and quad at the same time\n");
3347 		return -EINVAL;
3348 	}
3349 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3350 	 */
3351 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3352 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3353 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3354 		return -EINVAL;
3355 	/* help drivers fail *cleanly* when they need options
3356 	 * that aren't supported with their current controller
3357 	 * SPI_CS_WORD has a fallback software implementation,
3358 	 * so it is ignored here.
3359 	 */
3360 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3361 	/* nothing prevents from working with active-high CS in case if it
3362 	 * is driven by GPIO.
3363 	 */
3364 	if (gpio_is_valid(spi->cs_gpio))
3365 		bad_bits &= ~SPI_CS_HIGH;
3366 	ugly_bits = bad_bits &
3367 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3368 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3369 	if (ugly_bits) {
3370 		dev_warn(&spi->dev,
3371 			 "setup: ignoring unsupported mode bits %x\n",
3372 			 ugly_bits);
3373 		spi->mode &= ~ugly_bits;
3374 		bad_bits &= ~ugly_bits;
3375 	}
3376 	if (bad_bits) {
3377 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3378 			bad_bits);
3379 		return -EINVAL;
3380 	}
3381 
3382 	if (!spi->bits_per_word)
3383 		spi->bits_per_word = 8;
3384 
3385 	status = __spi_validate_bits_per_word(spi->controller,
3386 					      spi->bits_per_word);
3387 	if (status)
3388 		return status;
3389 
3390 	if (!spi->max_speed_hz)
3391 		spi->max_speed_hz = spi->controller->max_speed_hz;
3392 
3393 	mutex_lock(&spi->controller->io_mutex);
3394 
3395 	if (spi->controller->setup)
3396 		status = spi->controller->setup(spi);
3397 
3398 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3399 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3400 		if (status < 0) {
3401 			mutex_unlock(&spi->controller->io_mutex);
3402 			pm_runtime_put_noidle(spi->controller->dev.parent);
3403 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3404 				status);
3405 			return status;
3406 		}
3407 
3408 		/*
3409 		 * We do not want to return positive value from pm_runtime_get,
3410 		 * there are many instances of devices calling spi_setup() and
3411 		 * checking for a non-zero return value instead of a negative
3412 		 * return value.
3413 		 */
3414 		status = 0;
3415 
3416 		spi_set_cs(spi, false, true);
3417 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3418 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3419 	} else {
3420 		spi_set_cs(spi, false, true);
3421 	}
3422 
3423 	mutex_unlock(&spi->controller->io_mutex);
3424 
3425 	if (spi->rt && !spi->controller->rt) {
3426 		spi->controller->rt = true;
3427 		spi_set_thread_rt(spi->controller);
3428 	}
3429 
3430 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3431 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3432 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3433 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3434 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3435 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3436 			spi->bits_per_word, spi->max_speed_hz,
3437 			status);
3438 
3439 	return status;
3440 }
3441 EXPORT_SYMBOL_GPL(spi_setup);
3442 
3443 /**
3444  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3445  * @spi: the device that requires specific CS timing configuration
3446  * @setup: CS setup time specified via @spi_delay
3447  * @hold: CS hold time specified via @spi_delay
3448  * @inactive: CS inactive delay between transfers specified via @spi_delay
3449  *
3450  * Return: zero on success, else a negative error code.
3451  */
spi_set_cs_timing(struct spi_device * spi,struct spi_delay * setup,struct spi_delay * hold,struct spi_delay * inactive)3452 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3453 		      struct spi_delay *hold, struct spi_delay *inactive)
3454 {
3455 	size_t len;
3456 
3457 	if (spi->controller->set_cs_timing)
3458 		return spi->controller->set_cs_timing(spi, setup, hold,
3459 						      inactive);
3460 
3461 	if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3462 	    (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3463 	    (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3464 		dev_err(&spi->dev,
3465 			"Clock-cycle delays for CS not supported in SW mode\n");
3466 		return -ENOTSUPP;
3467 	}
3468 
3469 	len = sizeof(struct spi_delay);
3470 
3471 	/* copy delays to controller */
3472 	if (setup)
3473 		memcpy(&spi->controller->cs_setup, setup, len);
3474 	else
3475 		memset(&spi->controller->cs_setup, 0, len);
3476 
3477 	if (hold)
3478 		memcpy(&spi->controller->cs_hold, hold, len);
3479 	else
3480 		memset(&spi->controller->cs_hold, 0, len);
3481 
3482 	if (inactive)
3483 		memcpy(&spi->controller->cs_inactive, inactive, len);
3484 	else
3485 		memset(&spi->controller->cs_inactive, 0, len);
3486 
3487 	return 0;
3488 }
3489 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3490 
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3491 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3492 				       struct spi_device *spi)
3493 {
3494 	int delay1, delay2;
3495 
3496 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3497 	if (delay1 < 0)
3498 		return delay1;
3499 
3500 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3501 	if (delay2 < 0)
3502 		return delay2;
3503 
3504 	if (delay1 < delay2)
3505 		memcpy(&xfer->word_delay, &spi->word_delay,
3506 		       sizeof(xfer->word_delay));
3507 
3508 	return 0;
3509 }
3510 
__spi_validate(struct spi_device * spi,struct spi_message * message)3511 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3512 {
3513 	struct spi_controller *ctlr = spi->controller;
3514 	struct spi_transfer *xfer;
3515 	int w_size;
3516 
3517 	if (list_empty(&message->transfers))
3518 		return -EINVAL;
3519 
3520 	/* If an SPI controller does not support toggling the CS line on each
3521 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3522 	 * for the CS line, we can emulate the CS-per-word hardware function by
3523 	 * splitting transfers into one-word transfers and ensuring that
3524 	 * cs_change is set for each transfer.
3525 	 */
3526 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3527 					  spi->cs_gpiod ||
3528 					  gpio_is_valid(spi->cs_gpio))) {
3529 		size_t maxsize;
3530 		int ret;
3531 
3532 		maxsize = (spi->bits_per_word + 7) / 8;
3533 
3534 		/* spi_split_transfers_maxsize() requires message->spi */
3535 		message->spi = spi;
3536 
3537 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3538 						  GFP_KERNEL);
3539 		if (ret)
3540 			return ret;
3541 
3542 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3543 			/* don't change cs_change on the last entry in the list */
3544 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3545 				break;
3546 			xfer->cs_change = 1;
3547 		}
3548 	}
3549 
3550 	/* Half-duplex links include original MicroWire, and ones with
3551 	 * only one data pin like SPI_3WIRE (switches direction) or where
3552 	 * either MOSI or MISO is missing.  They can also be caused by
3553 	 * software limitations.
3554 	 */
3555 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3556 	    (spi->mode & SPI_3WIRE)) {
3557 		unsigned flags = ctlr->flags;
3558 
3559 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3560 			if (xfer->rx_buf && xfer->tx_buf)
3561 				return -EINVAL;
3562 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3563 				return -EINVAL;
3564 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3565 				return -EINVAL;
3566 		}
3567 	}
3568 
3569 	/**
3570 	 * Set transfer bits_per_word and max speed as spi device default if
3571 	 * it is not set for this transfer.
3572 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3573 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3574 	 * Ensure transfer word_delay is at least as long as that required by
3575 	 * device itself.
3576 	 */
3577 	message->frame_length = 0;
3578 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3579 		xfer->effective_speed_hz = 0;
3580 		message->frame_length += xfer->len;
3581 		if (!xfer->bits_per_word)
3582 			xfer->bits_per_word = spi->bits_per_word;
3583 
3584 		if (!xfer->speed_hz)
3585 			xfer->speed_hz = spi->max_speed_hz;
3586 
3587 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3588 			xfer->speed_hz = ctlr->max_speed_hz;
3589 
3590 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3591 			return -EINVAL;
3592 
3593 		/*
3594 		 * SPI transfer length should be multiple of SPI word size
3595 		 * where SPI word size should be power-of-two multiple
3596 		 */
3597 		if (xfer->bits_per_word <= 8)
3598 			w_size = 1;
3599 		else if (xfer->bits_per_word <= 16)
3600 			w_size = 2;
3601 		else
3602 			w_size = 4;
3603 
3604 		/* No partial transfers accepted */
3605 		if (xfer->len % w_size)
3606 			return -EINVAL;
3607 
3608 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3609 		    xfer->speed_hz < ctlr->min_speed_hz)
3610 			return -EINVAL;
3611 
3612 		if (xfer->tx_buf && !xfer->tx_nbits)
3613 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3614 		if (xfer->rx_buf && !xfer->rx_nbits)
3615 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3616 		/* check transfer tx/rx_nbits:
3617 		 * 1. check the value matches one of single, dual and quad
3618 		 * 2. check tx/rx_nbits match the mode in spi_device
3619 		 */
3620 		if (xfer->tx_buf) {
3621 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3622 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3623 				xfer->tx_nbits != SPI_NBITS_QUAD)
3624 				return -EINVAL;
3625 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3626 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3627 				return -EINVAL;
3628 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3629 				!(spi->mode & SPI_TX_QUAD))
3630 				return -EINVAL;
3631 		}
3632 		/* check transfer rx_nbits */
3633 		if (xfer->rx_buf) {
3634 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3635 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3636 				xfer->rx_nbits != SPI_NBITS_QUAD)
3637 				return -EINVAL;
3638 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3639 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3640 				return -EINVAL;
3641 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3642 				!(spi->mode & SPI_RX_QUAD))
3643 				return -EINVAL;
3644 		}
3645 
3646 		if (_spi_xfer_word_delay_update(xfer, spi))
3647 			return -EINVAL;
3648 	}
3649 
3650 	message->status = -EINPROGRESS;
3651 
3652 	return 0;
3653 }
3654 
__spi_async(struct spi_device * spi,struct spi_message * message)3655 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3656 {
3657 	struct spi_controller *ctlr = spi->controller;
3658 	struct spi_transfer *xfer;
3659 
3660 	/*
3661 	 * Some controllers do not support doing regular SPI transfers. Return
3662 	 * ENOTSUPP when this is the case.
3663 	 */
3664 	if (!ctlr->transfer)
3665 		return -ENOTSUPP;
3666 
3667 	message->spi = spi;
3668 
3669 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3670 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3671 
3672 	trace_spi_message_submit(message);
3673 
3674 	if (!ctlr->ptp_sts_supported) {
3675 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3676 			xfer->ptp_sts_word_pre = 0;
3677 			ptp_read_system_prets(xfer->ptp_sts);
3678 		}
3679 	}
3680 
3681 	return ctlr->transfer(spi, message);
3682 }
3683 
3684 /**
3685  * spi_async - asynchronous SPI transfer
3686  * @spi: device with which data will be exchanged
3687  * @message: describes the data transfers, including completion callback
3688  * Context: any (irqs may be blocked, etc)
3689  *
3690  * This call may be used in_irq and other contexts which can't sleep,
3691  * as well as from task contexts which can sleep.
3692  *
3693  * The completion callback is invoked in a context which can't sleep.
3694  * Before that invocation, the value of message->status is undefined.
3695  * When the callback is issued, message->status holds either zero (to
3696  * indicate complete success) or a negative error code.  After that
3697  * callback returns, the driver which issued the transfer request may
3698  * deallocate the associated memory; it's no longer in use by any SPI
3699  * core or controller driver code.
3700  *
3701  * Note that although all messages to a spi_device are handled in
3702  * FIFO order, messages may go to different devices in other orders.
3703  * Some device might be higher priority, or have various "hard" access
3704  * time requirements, for example.
3705  *
3706  * On detection of any fault during the transfer, processing of
3707  * the entire message is aborted, and the device is deselected.
3708  * Until returning from the associated message completion callback,
3709  * no other spi_message queued to that device will be processed.
3710  * (This rule applies equally to all the synchronous transfer calls,
3711  * which are wrappers around this core asynchronous primitive.)
3712  *
3713  * Return: zero on success, else a negative error code.
3714  */
spi_async(struct spi_device * spi,struct spi_message * message)3715 int spi_async(struct spi_device *spi, struct spi_message *message)
3716 {
3717 	struct spi_controller *ctlr = spi->controller;
3718 	int ret;
3719 	unsigned long flags;
3720 
3721 	ret = __spi_validate(spi, message);
3722 	if (ret != 0)
3723 		return ret;
3724 
3725 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3726 
3727 	if (ctlr->bus_lock_flag)
3728 		ret = -EBUSY;
3729 	else
3730 		ret = __spi_async(spi, message);
3731 
3732 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3733 
3734 	return ret;
3735 }
3736 EXPORT_SYMBOL_GPL(spi_async);
3737 
3738 /**
3739  * spi_async_locked - version of spi_async with exclusive bus usage
3740  * @spi: device with which data will be exchanged
3741  * @message: describes the data transfers, including completion callback
3742  * Context: any (irqs may be blocked, etc)
3743  *
3744  * This call may be used in_irq and other contexts which can't sleep,
3745  * as well as from task contexts which can sleep.
3746  *
3747  * The completion callback is invoked in a context which can't sleep.
3748  * Before that invocation, the value of message->status is undefined.
3749  * When the callback is issued, message->status holds either zero (to
3750  * indicate complete success) or a negative error code.  After that
3751  * callback returns, the driver which issued the transfer request may
3752  * deallocate the associated memory; it's no longer in use by any SPI
3753  * core or controller driver code.
3754  *
3755  * Note that although all messages to a spi_device are handled in
3756  * FIFO order, messages may go to different devices in other orders.
3757  * Some device might be higher priority, or have various "hard" access
3758  * time requirements, for example.
3759  *
3760  * On detection of any fault during the transfer, processing of
3761  * the entire message is aborted, and the device is deselected.
3762  * Until returning from the associated message completion callback,
3763  * no other spi_message queued to that device will be processed.
3764  * (This rule applies equally to all the synchronous transfer calls,
3765  * which are wrappers around this core asynchronous primitive.)
3766  *
3767  * Return: zero on success, else a negative error code.
3768  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3769 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3770 {
3771 	struct spi_controller *ctlr = spi->controller;
3772 	int ret;
3773 	unsigned long flags;
3774 
3775 	ret = __spi_validate(spi, message);
3776 	if (ret != 0)
3777 		return ret;
3778 
3779 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3780 
3781 	ret = __spi_async(spi, message);
3782 
3783 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3784 
3785 	return ret;
3786 
3787 }
3788 EXPORT_SYMBOL_GPL(spi_async_locked);
3789 
3790 /*-------------------------------------------------------------------------*/
3791 
3792 /* Utility methods for SPI protocol drivers, layered on
3793  * top of the core.  Some other utility methods are defined as
3794  * inline functions.
3795  */
3796 
spi_complete(void * arg)3797 static void spi_complete(void *arg)
3798 {
3799 	complete(arg);
3800 }
3801 
__spi_sync(struct spi_device * spi,struct spi_message * message)3802 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3803 {
3804 	DECLARE_COMPLETION_ONSTACK(done);
3805 	int status;
3806 	struct spi_controller *ctlr = spi->controller;
3807 	unsigned long flags;
3808 
3809 	status = __spi_validate(spi, message);
3810 	if (status != 0)
3811 		return status;
3812 
3813 	message->complete = spi_complete;
3814 	message->context = &done;
3815 	message->spi = spi;
3816 
3817 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3818 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3819 
3820 	/* If we're not using the legacy transfer method then we will
3821 	 * try to transfer in the calling context so special case.
3822 	 * This code would be less tricky if we could remove the
3823 	 * support for driver implemented message queues.
3824 	 */
3825 	if (ctlr->transfer == spi_queued_transfer) {
3826 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3827 
3828 		trace_spi_message_submit(message);
3829 
3830 		status = __spi_queued_transfer(spi, message, false);
3831 
3832 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3833 	} else {
3834 		status = spi_async_locked(spi, message);
3835 	}
3836 
3837 	if (status == 0) {
3838 		/* Push out the messages in the calling context if we
3839 		 * can.
3840 		 */
3841 		if (ctlr->transfer == spi_queued_transfer) {
3842 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3843 						       spi_sync_immediate);
3844 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3845 						       spi_sync_immediate);
3846 			__spi_pump_messages(ctlr, false);
3847 		}
3848 
3849 		wait_for_completion(&done);
3850 		status = message->status;
3851 	}
3852 	message->context = NULL;
3853 	return status;
3854 }
3855 
3856 /**
3857  * spi_sync - blocking/synchronous SPI data transfers
3858  * @spi: device with which data will be exchanged
3859  * @message: describes the data transfers
3860  * Context: can sleep
3861  *
3862  * This call may only be used from a context that may sleep.  The sleep
3863  * is non-interruptible, and has no timeout.  Low-overhead controller
3864  * drivers may DMA directly into and out of the message buffers.
3865  *
3866  * Note that the SPI device's chip select is active during the message,
3867  * and then is normally disabled between messages.  Drivers for some
3868  * frequently-used devices may want to minimize costs of selecting a chip,
3869  * by leaving it selected in anticipation that the next message will go
3870  * to the same chip.  (That may increase power usage.)
3871  *
3872  * Also, the caller is guaranteeing that the memory associated with the
3873  * message will not be freed before this call returns.
3874  *
3875  * Return: zero on success, else a negative error code.
3876  */
spi_sync(struct spi_device * spi,struct spi_message * message)3877 int spi_sync(struct spi_device *spi, struct spi_message *message)
3878 {
3879 	int ret;
3880 
3881 	mutex_lock(&spi->controller->bus_lock_mutex);
3882 	ret = __spi_sync(spi, message);
3883 	mutex_unlock(&spi->controller->bus_lock_mutex);
3884 
3885 	return ret;
3886 }
3887 EXPORT_SYMBOL_GPL(spi_sync);
3888 
3889 /**
3890  * spi_sync_locked - version of spi_sync with exclusive bus usage
3891  * @spi: device with which data will be exchanged
3892  * @message: describes the data transfers
3893  * Context: can sleep
3894  *
3895  * This call may only be used from a context that may sleep.  The sleep
3896  * is non-interruptible, and has no timeout.  Low-overhead controller
3897  * drivers may DMA directly into and out of the message buffers.
3898  *
3899  * This call should be used by drivers that require exclusive access to the
3900  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3901  * be released by a spi_bus_unlock call when the exclusive access is over.
3902  *
3903  * Return: zero on success, else a negative error code.
3904  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)3905 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3906 {
3907 	return __spi_sync(spi, message);
3908 }
3909 EXPORT_SYMBOL_GPL(spi_sync_locked);
3910 
3911 /**
3912  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3913  * @ctlr: SPI bus master that should be locked for exclusive bus access
3914  * Context: can sleep
3915  *
3916  * This call may only be used from a context that may sleep.  The sleep
3917  * is non-interruptible, and has no timeout.
3918  *
3919  * This call should be used by drivers that require exclusive access to the
3920  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3921  * exclusive access is over. Data transfer must be done by spi_sync_locked
3922  * and spi_async_locked calls when the SPI bus lock is held.
3923  *
3924  * Return: always zero.
3925  */
spi_bus_lock(struct spi_controller * ctlr)3926 int spi_bus_lock(struct spi_controller *ctlr)
3927 {
3928 	unsigned long flags;
3929 
3930 	mutex_lock(&ctlr->bus_lock_mutex);
3931 
3932 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3933 	ctlr->bus_lock_flag = 1;
3934 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3935 
3936 	/* mutex remains locked until spi_bus_unlock is called */
3937 
3938 	return 0;
3939 }
3940 EXPORT_SYMBOL_GPL(spi_bus_lock);
3941 
3942 /**
3943  * spi_bus_unlock - release the lock for exclusive SPI bus usage
3944  * @ctlr: SPI bus master that was locked for exclusive bus access
3945  * Context: can sleep
3946  *
3947  * This call may only be used from a context that may sleep.  The sleep
3948  * is non-interruptible, and has no timeout.
3949  *
3950  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3951  * call.
3952  *
3953  * Return: always zero.
3954  */
spi_bus_unlock(struct spi_controller * ctlr)3955 int spi_bus_unlock(struct spi_controller *ctlr)
3956 {
3957 	ctlr->bus_lock_flag = 0;
3958 
3959 	mutex_unlock(&ctlr->bus_lock_mutex);
3960 
3961 	return 0;
3962 }
3963 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3964 
3965 /* portable code must never pass more than 32 bytes */
3966 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3967 
3968 static u8	*buf;
3969 
3970 /**
3971  * spi_write_then_read - SPI synchronous write followed by read
3972  * @spi: device with which data will be exchanged
3973  * @txbuf: data to be written (need not be dma-safe)
3974  * @n_tx: size of txbuf, in bytes
3975  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3976  * @n_rx: size of rxbuf, in bytes
3977  * Context: can sleep
3978  *
3979  * This performs a half duplex MicroWire style transaction with the
3980  * device, sending txbuf and then reading rxbuf.  The return value
3981  * is zero for success, else a negative errno status code.
3982  * This call may only be used from a context that may sleep.
3983  *
3984  * Parameters to this routine are always copied using a small buffer.
3985  * Performance-sensitive or bulk transfer code should instead use
3986  * spi_{async,sync}() calls with dma-safe buffers.
3987  *
3988  * Return: zero on success, else a negative error code.
3989  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3990 int spi_write_then_read(struct spi_device *spi,
3991 		const void *txbuf, unsigned n_tx,
3992 		void *rxbuf, unsigned n_rx)
3993 {
3994 	static DEFINE_MUTEX(lock);
3995 
3996 	int			status;
3997 	struct spi_message	message;
3998 	struct spi_transfer	x[2];
3999 	u8			*local_buf;
4000 
4001 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4002 	 * copying here, (as a pure convenience thing), but we can
4003 	 * keep heap costs out of the hot path unless someone else is
4004 	 * using the pre-allocated buffer or the transfer is too large.
4005 	 */
4006 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4007 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4008 				    GFP_KERNEL | GFP_DMA);
4009 		if (!local_buf)
4010 			return -ENOMEM;
4011 	} else {
4012 		local_buf = buf;
4013 	}
4014 
4015 	spi_message_init(&message);
4016 	memset(x, 0, sizeof(x));
4017 	if (n_tx) {
4018 		x[0].len = n_tx;
4019 		spi_message_add_tail(&x[0], &message);
4020 	}
4021 	if (n_rx) {
4022 		x[1].len = n_rx;
4023 		spi_message_add_tail(&x[1], &message);
4024 	}
4025 
4026 	memcpy(local_buf, txbuf, n_tx);
4027 	x[0].tx_buf = local_buf;
4028 	x[1].rx_buf = local_buf + n_tx;
4029 
4030 	/* do the i/o */
4031 	status = spi_sync(spi, &message);
4032 	if (status == 0)
4033 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4034 
4035 	if (x[0].tx_buf == buf)
4036 		mutex_unlock(&lock);
4037 	else
4038 		kfree(local_buf);
4039 
4040 	return status;
4041 }
4042 EXPORT_SYMBOL_GPL(spi_write_then_read);
4043 
4044 /*-------------------------------------------------------------------------*/
4045 
4046 #if IS_ENABLED(CONFIG_OF)
4047 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4048 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4049 {
4050 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4051 
4052 	return dev ? to_spi_device(dev) : NULL;
4053 }
4054 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4055 #endif /* IS_ENABLED(CONFIG_OF) */
4056 
4057 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4058 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4059 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4060 {
4061 	struct device *dev;
4062 
4063 	dev = class_find_device_by_of_node(&spi_master_class, node);
4064 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4065 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4066 	if (!dev)
4067 		return NULL;
4068 
4069 	/* reference got in class_find_device */
4070 	return container_of(dev, struct spi_controller, dev);
4071 }
4072 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4073 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4074 			 void *arg)
4075 {
4076 	struct of_reconfig_data *rd = arg;
4077 	struct spi_controller *ctlr;
4078 	struct spi_device *spi;
4079 
4080 	switch (of_reconfig_get_state_change(action, arg)) {
4081 	case OF_RECONFIG_CHANGE_ADD:
4082 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4083 		if (ctlr == NULL)
4084 			return NOTIFY_OK;	/* not for us */
4085 
4086 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4087 			put_device(&ctlr->dev);
4088 			return NOTIFY_OK;
4089 		}
4090 
4091 		spi = of_register_spi_device(ctlr, rd->dn);
4092 		put_device(&ctlr->dev);
4093 
4094 		if (IS_ERR(spi)) {
4095 			pr_err("%s: failed to create for '%pOF'\n",
4096 					__func__, rd->dn);
4097 			of_node_clear_flag(rd->dn, OF_POPULATED);
4098 			return notifier_from_errno(PTR_ERR(spi));
4099 		}
4100 		break;
4101 
4102 	case OF_RECONFIG_CHANGE_REMOVE:
4103 		/* already depopulated? */
4104 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4105 			return NOTIFY_OK;
4106 
4107 		/* find our device by node */
4108 		spi = of_find_spi_device_by_node(rd->dn);
4109 		if (spi == NULL)
4110 			return NOTIFY_OK;	/* no? not meant for us */
4111 
4112 		/* unregister takes one ref away */
4113 		spi_unregister_device(spi);
4114 
4115 		/* and put the reference of the find */
4116 		put_device(&spi->dev);
4117 		break;
4118 	}
4119 
4120 	return NOTIFY_OK;
4121 }
4122 
4123 static struct notifier_block spi_of_notifier = {
4124 	.notifier_call = of_spi_notify,
4125 };
4126 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4127 extern struct notifier_block spi_of_notifier;
4128 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4129 
4130 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4131 static int spi_acpi_controller_match(struct device *dev, const void *data)
4132 {
4133 	return ACPI_COMPANION(dev->parent) == data;
4134 }
4135 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4136 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4137 {
4138 	struct device *dev;
4139 
4140 	dev = class_find_device(&spi_master_class, NULL, adev,
4141 				spi_acpi_controller_match);
4142 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4143 		dev = class_find_device(&spi_slave_class, NULL, adev,
4144 					spi_acpi_controller_match);
4145 	if (!dev)
4146 		return NULL;
4147 
4148 	return container_of(dev, struct spi_controller, dev);
4149 }
4150 
acpi_spi_find_device_by_adev(struct acpi_device * adev)4151 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4152 {
4153 	struct device *dev;
4154 
4155 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4156 	return to_spi_device(dev);
4157 }
4158 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4159 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4160 			   void *arg)
4161 {
4162 	struct acpi_device *adev = arg;
4163 	struct spi_controller *ctlr;
4164 	struct spi_device *spi;
4165 
4166 	switch (value) {
4167 	case ACPI_RECONFIG_DEVICE_ADD:
4168 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4169 		if (!ctlr)
4170 			break;
4171 
4172 		acpi_register_spi_device(ctlr, adev);
4173 		put_device(&ctlr->dev);
4174 		break;
4175 	case ACPI_RECONFIG_DEVICE_REMOVE:
4176 		if (!acpi_device_enumerated(adev))
4177 			break;
4178 
4179 		spi = acpi_spi_find_device_by_adev(adev);
4180 		if (!spi)
4181 			break;
4182 
4183 		spi_unregister_device(spi);
4184 		put_device(&spi->dev);
4185 		break;
4186 	}
4187 
4188 	return NOTIFY_OK;
4189 }
4190 
4191 static struct notifier_block spi_acpi_notifier = {
4192 	.notifier_call = acpi_spi_notify,
4193 };
4194 #else
4195 extern struct notifier_block spi_acpi_notifier;
4196 #endif
4197 
spi_init(void)4198 static int __init spi_init(void)
4199 {
4200 	int	status;
4201 
4202 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4203 	if (!buf) {
4204 		status = -ENOMEM;
4205 		goto err0;
4206 	}
4207 
4208 	status = bus_register(&spi_bus_type);
4209 	if (status < 0)
4210 		goto err1;
4211 
4212 	status = class_register(&spi_master_class);
4213 	if (status < 0)
4214 		goto err2;
4215 
4216 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4217 		status = class_register(&spi_slave_class);
4218 		if (status < 0)
4219 			goto err3;
4220 	}
4221 
4222 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4223 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4224 	if (IS_ENABLED(CONFIG_ACPI))
4225 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4226 
4227 	return 0;
4228 
4229 err3:
4230 	class_unregister(&spi_master_class);
4231 err2:
4232 	bus_unregister(&spi_bus_type);
4233 err1:
4234 	kfree(buf);
4235 	buf = NULL;
4236 err0:
4237 	return status;
4238 }
4239 
4240 /* board_info is normally registered in arch_initcall(),
4241  * but even essential drivers wait till later
4242  *
4243  * REVISIT only boardinfo really needs static linking. the rest (device and
4244  * driver registration) _could_ be dynamically linked (modular) ... costs
4245  * include needing to have boardinfo data structures be much more public.
4246  */
4247 postcore_initcall(spi_init);
4248