• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
get_fifosize_arm(struct amba_device * dev)93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
get_fifosize_st(struct amba_device * dev)171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
get_fifosize_zte(struct amba_device * dev)207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_dmabuf {
226 	dma_addr_t		dma;
227 	size_t			len;
228 	char			*buf;
229 };
230 
231 struct pl011_dmarx_data {
232 	struct dma_chan		*chan;
233 	struct completion	complete;
234 	bool			use_buf_b;
235 	struct pl011_dmabuf	dbuf_a;
236 	struct pl011_dmabuf	dbuf_b;
237 	dma_cookie_t		cookie;
238 	bool			running;
239 	struct timer_list	timer;
240 	unsigned int last_residue;
241 	unsigned long last_jiffies;
242 	bool auto_poll_rate;
243 	unsigned int poll_rate;
244 	unsigned int poll_timeout;
245 };
246 
247 struct pl011_dmatx_data {
248 	struct dma_chan		*chan;
249 	dma_addr_t		dma;
250 	size_t			len;
251 	char			*buf;
252 	bool			queued;
253 };
254 
255 /*
256  * We wrap our port structure around the generic uart_port.
257  */
258 struct uart_amba_port {
259 	struct uart_port	port;
260 	const u16		*reg_offset;
261 	struct clk		*clk;
262 	const struct vendor_data *vendor;
263 	unsigned int		dmacr;		/* dma control reg */
264 	unsigned int		im;		/* interrupt mask */
265 	unsigned int		old_status;
266 	unsigned int		fifosize;	/* vendor-specific */
267 	unsigned int		old_cr;		/* state during shutdown */
268 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
269 	char			type[12];
270 #ifdef CONFIG_DMA_ENGINE
271 	/* DMA stuff */
272 	bool			using_tx_dma;
273 	bool			using_rx_dma;
274 	struct pl011_dmarx_data dmarx;
275 	struct pl011_dmatx_data	dmatx;
276 	bool			dma_probed;
277 #endif
278 };
279 
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)280 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
281 	unsigned int reg)
282 {
283 	return uap->reg_offset[reg];
284 }
285 
pl011_read(const struct uart_amba_port * uap,unsigned int reg)286 static unsigned int pl011_read(const struct uart_amba_port *uap,
287 	unsigned int reg)
288 {
289 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
290 
291 	return (uap->port.iotype == UPIO_MEM32) ?
292 		readl_relaxed(addr) : readw_relaxed(addr);
293 }
294 
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)295 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
296 	unsigned int reg)
297 {
298 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
299 
300 	if (uap->port.iotype == UPIO_MEM32)
301 		writel_relaxed(val, addr);
302 	else
303 		writew_relaxed(val, addr);
304 }
305 
306 /*
307  * Reads up to 256 characters from the FIFO or until it's empty and
308  * inserts them into the TTY layer. Returns the number of characters
309  * read from the FIFO.
310  */
pl011_fifo_to_tty(struct uart_amba_port * uap)311 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
312 {
313 	unsigned int ch, flag, fifotaken;
314 	int sysrq;
315 	u16 status;
316 
317 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 		status = pl011_read(uap, REG_FR);
319 		if (status & UART01x_FR_RXFE)
320 			break;
321 
322 		/* Take chars from the FIFO and update status */
323 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 		flag = TTY_NORMAL;
325 		uap->port.icount.rx++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE)
334 				uap->port.icount.parity++;
335 			else if (ch & UART011_DR_FE)
336 				uap->port.icount.frame++;
337 			if (ch & UART011_DR_OE)
338 				uap->port.icount.overrun++;
339 
340 			ch &= uap->port.read_status_mask;
341 
342 			if (ch & UART011_DR_BE)
343 				flag = TTY_BREAK;
344 			else if (ch & UART011_DR_PE)
345 				flag = TTY_PARITY;
346 			else if (ch & UART011_DR_FE)
347 				flag = TTY_FRAME;
348 		}
349 
350 		spin_unlock(&uap->port.lock);
351 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
352 		spin_lock(&uap->port.lock);
353 
354 		if (!sysrq)
355 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 	}
357 
358 	return fifotaken;
359 }
360 
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370 
pl011_dmabuf_init(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)371 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372 	enum dma_data_direction dir)
373 {
374 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375 				     &db->dma, GFP_KERNEL);
376 	if (!db->buf)
377 		return -ENOMEM;
378 	db->len = PL011_DMA_BUFFER_SIZE;
379 
380 	return 0;
381 }
382 
pl011_dmabuf_free(struct dma_chan * chan,struct pl011_dmabuf * db,enum dma_data_direction dir)383 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384 	enum dma_data_direction dir)
385 {
386 	if (db->buf) {
387 		dma_free_coherent(chan->device->dev,
388 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389 	}
390 }
391 
pl011_dma_probe(struct uart_amba_port * uap)392 static void pl011_dma_probe(struct uart_amba_port *uap)
393 {
394 	/* DMA is the sole user of the platform data right now */
395 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396 	struct device *dev = uap->port.dev;
397 	struct dma_slave_config tx_conf = {
398 		.dst_addr = uap->port.mapbase +
399 				 pl011_reg_to_offset(uap, REG_DR),
400 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401 		.direction = DMA_MEM_TO_DEV,
402 		.dst_maxburst = uap->fifosize >> 1,
403 		.device_fc = false,
404 	};
405 	struct dma_chan *chan;
406 	dma_cap_mask_t mask;
407 
408 	uap->dma_probed = true;
409 	chan = dma_request_chan(dev, "tx");
410 	if (IS_ERR(chan)) {
411 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
412 			uap->dma_probed = false;
413 			return;
414 		}
415 
416 		/* We need platform data */
417 		if (!plat || !plat->dma_filter) {
418 			dev_info(uap->port.dev, "no DMA platform data\n");
419 			return;
420 		}
421 
422 		/* Try to acquire a generic DMA engine slave TX channel */
423 		dma_cap_zero(mask);
424 		dma_cap_set(DMA_SLAVE, mask);
425 
426 		chan = dma_request_channel(mask, plat->dma_filter,
427 						plat->dma_tx_param);
428 		if (!chan) {
429 			dev_err(uap->port.dev, "no TX DMA channel!\n");
430 			return;
431 		}
432 	}
433 
434 	dmaengine_slave_config(chan, &tx_conf);
435 	uap->dmatx.chan = chan;
436 
437 	dev_info(uap->port.dev, "DMA channel TX %s\n",
438 		 dma_chan_name(uap->dmatx.chan));
439 
440 	/* Optionally make use of an RX channel as well */
441 	chan = dma_request_slave_channel(dev, "rx");
442 
443 	if (!chan && plat && plat->dma_rx_param) {
444 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445 
446 		if (!chan) {
447 			dev_err(uap->port.dev, "no RX DMA channel!\n");
448 			return;
449 		}
450 	}
451 
452 	if (chan) {
453 		struct dma_slave_config rx_conf = {
454 			.src_addr = uap->port.mapbase +
455 				pl011_reg_to_offset(uap, REG_DR),
456 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457 			.direction = DMA_DEV_TO_MEM,
458 			.src_maxburst = uap->fifosize >> 2,
459 			.device_fc = false,
460 		};
461 		struct dma_slave_caps caps;
462 
463 		/*
464 		 * Some DMA controllers provide information on their capabilities.
465 		 * If the controller does, check for suitable residue processing
466 		 * otherwise assime all is well.
467 		 */
468 		if (0 == dma_get_slave_caps(chan, &caps)) {
469 			if (caps.residue_granularity ==
470 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471 				dma_release_channel(chan);
472 				dev_info(uap->port.dev,
473 					"RX DMA disabled - no residue processing\n");
474 				return;
475 			}
476 		}
477 		dmaengine_slave_config(chan, &rx_conf);
478 		uap->dmarx.chan = chan;
479 
480 		uap->dmarx.auto_poll_rate = false;
481 		if (plat && plat->dma_rx_poll_enable) {
482 			/* Set poll rate if specified. */
483 			if (plat->dma_rx_poll_rate) {
484 				uap->dmarx.auto_poll_rate = false;
485 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486 			} else {
487 				/*
488 				 * 100 ms defaults to poll rate if not
489 				 * specified. This will be adjusted with
490 				 * the baud rate at set_termios.
491 				 */
492 				uap->dmarx.auto_poll_rate = true;
493 				uap->dmarx.poll_rate =  100;
494 			}
495 			/* 3 secs defaults poll_timeout if not specified. */
496 			if (plat->dma_rx_poll_timeout)
497 				uap->dmarx.poll_timeout =
498 					plat->dma_rx_poll_timeout;
499 			else
500 				uap->dmarx.poll_timeout = 3000;
501 		} else if (!plat && dev->of_node) {
502 			uap->dmarx.auto_poll_rate = of_property_read_bool(
503 						dev->of_node, "auto-poll");
504 			if (uap->dmarx.auto_poll_rate) {
505 				u32 x;
506 
507 				if (0 == of_property_read_u32(dev->of_node,
508 						"poll-rate-ms", &x))
509 					uap->dmarx.poll_rate = x;
510 				else
511 					uap->dmarx.poll_rate = 100;
512 				if (0 == of_property_read_u32(dev->of_node,
513 						"poll-timeout-ms", &x))
514 					uap->dmarx.poll_timeout = x;
515 				else
516 					uap->dmarx.poll_timeout = 3000;
517 			}
518 		}
519 		dev_info(uap->port.dev, "DMA channel RX %s\n",
520 			 dma_chan_name(uap->dmarx.chan));
521 	}
522 }
523 
pl011_dma_remove(struct uart_amba_port * uap)524 static void pl011_dma_remove(struct uart_amba_port *uap)
525 {
526 	if (uap->dmatx.chan)
527 		dma_release_channel(uap->dmatx.chan);
528 	if (uap->dmarx.chan)
529 		dma_release_channel(uap->dmarx.chan);
530 }
531 
532 /* Forward declare these for the refill routine */
533 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
534 static void pl011_start_tx_pio(struct uart_amba_port *uap);
535 
536 /*
537  * The current DMA TX buffer has been sent.
538  * Try to queue up another DMA buffer.
539  */
pl011_dma_tx_callback(void * data)540 static void pl011_dma_tx_callback(void *data)
541 {
542 	struct uart_amba_port *uap = data;
543 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
544 	unsigned long flags;
545 	u16 dmacr;
546 
547 	spin_lock_irqsave(&uap->port.lock, flags);
548 	if (uap->dmatx.queued)
549 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
550 				dmatx->len, DMA_TO_DEVICE);
551 
552 	dmacr = uap->dmacr;
553 	uap->dmacr = dmacr & ~UART011_TXDMAE;
554 	pl011_write(uap->dmacr, uap, REG_DMACR);
555 
556 	/*
557 	 * If TX DMA was disabled, it means that we've stopped the DMA for
558 	 * some reason (eg, XOFF received, or we want to send an X-char.)
559 	 *
560 	 * Note: we need to be careful here of a potential race between DMA
561 	 * and the rest of the driver - if the driver disables TX DMA while
562 	 * a TX buffer completing, we must update the tx queued status to
563 	 * get further refills (hence we check dmacr).
564 	 */
565 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
566 	    uart_circ_empty(&uap->port.state->xmit)) {
567 		uap->dmatx.queued = false;
568 		spin_unlock_irqrestore(&uap->port.lock, flags);
569 		return;
570 	}
571 
572 	if (pl011_dma_tx_refill(uap) <= 0)
573 		/*
574 		 * We didn't queue a DMA buffer for some reason, but we
575 		 * have data pending to be sent.  Re-enable the TX IRQ.
576 		 */
577 		pl011_start_tx_pio(uap);
578 
579 	spin_unlock_irqrestore(&uap->port.lock, flags);
580 }
581 
582 /*
583  * Try to refill the TX DMA buffer.
584  * Locking: called with port lock held and IRQs disabled.
585  * Returns:
586  *   1 if we queued up a TX DMA buffer.
587  *   0 if we didn't want to handle this by DMA
588  *  <0 on error
589  */
pl011_dma_tx_refill(struct uart_amba_port * uap)590 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
591 {
592 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
593 	struct dma_chan *chan = dmatx->chan;
594 	struct dma_device *dma_dev = chan->device;
595 	struct dma_async_tx_descriptor *desc;
596 	struct circ_buf *xmit = &uap->port.state->xmit;
597 	unsigned int count;
598 
599 	/*
600 	 * Try to avoid the overhead involved in using DMA if the
601 	 * transaction fits in the first half of the FIFO, by using
602 	 * the standard interrupt handling.  This ensures that we
603 	 * issue a uart_write_wakeup() at the appropriate time.
604 	 */
605 	count = uart_circ_chars_pending(xmit);
606 	if (count < (uap->fifosize >> 1)) {
607 		uap->dmatx.queued = false;
608 		return 0;
609 	}
610 
611 	/*
612 	 * Bodge: don't send the last character by DMA, as this
613 	 * will prevent XON from notifying us to restart DMA.
614 	 */
615 	count -= 1;
616 
617 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
618 	if (count > PL011_DMA_BUFFER_SIZE)
619 		count = PL011_DMA_BUFFER_SIZE;
620 
621 	if (xmit->tail < xmit->head)
622 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
623 	else {
624 		size_t first = UART_XMIT_SIZE - xmit->tail;
625 		size_t second;
626 
627 		if (first > count)
628 			first = count;
629 		second = count - first;
630 
631 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
632 		if (second)
633 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
634 	}
635 
636 	dmatx->len = count;
637 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
638 				    DMA_TO_DEVICE);
639 	if (dmatx->dma == DMA_MAPPING_ERROR) {
640 		uap->dmatx.queued = false;
641 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
642 		return -EBUSY;
643 	}
644 
645 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
646 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647 	if (!desc) {
648 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
649 		uap->dmatx.queued = false;
650 		/*
651 		 * If DMA cannot be used right now, we complete this
652 		 * transaction via IRQ and let the TTY layer retry.
653 		 */
654 		dev_dbg(uap->port.dev, "TX DMA busy\n");
655 		return -EBUSY;
656 	}
657 
658 	/* Some data to go along to the callback */
659 	desc->callback = pl011_dma_tx_callback;
660 	desc->callback_param = uap;
661 
662 	/* All errors should happen at prepare time */
663 	dmaengine_submit(desc);
664 
665 	/* Fire the DMA transaction */
666 	dma_dev->device_issue_pending(chan);
667 
668 	uap->dmacr |= UART011_TXDMAE;
669 	pl011_write(uap->dmacr, uap, REG_DMACR);
670 	uap->dmatx.queued = true;
671 
672 	/*
673 	 * Now we know that DMA will fire, so advance the ring buffer
674 	 * with the stuff we just dispatched.
675 	 */
676 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
677 	uap->port.icount.tx += count;
678 
679 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
680 		uart_write_wakeup(&uap->port);
681 
682 	return 1;
683 }
684 
685 /*
686  * We received a transmit interrupt without a pending X-char but with
687  * pending characters.
688  * Locking: called with port lock held and IRQs disabled.
689  * Returns:
690  *   false if we want to use PIO to transmit
691  *   true if we queued a DMA buffer
692  */
pl011_dma_tx_irq(struct uart_amba_port * uap)693 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
694 {
695 	if (!uap->using_tx_dma)
696 		return false;
697 
698 	/*
699 	 * If we already have a TX buffer queued, but received a
700 	 * TX interrupt, it will be because we've just sent an X-char.
701 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
702 	 */
703 	if (uap->dmatx.queued) {
704 		uap->dmacr |= UART011_TXDMAE;
705 		pl011_write(uap->dmacr, uap, REG_DMACR);
706 		uap->im &= ~UART011_TXIM;
707 		pl011_write(uap->im, uap, REG_IMSC);
708 		return true;
709 	}
710 
711 	/*
712 	 * We don't have a TX buffer queued, so try to queue one.
713 	 * If we successfully queued a buffer, mask the TX IRQ.
714 	 */
715 	if (pl011_dma_tx_refill(uap) > 0) {
716 		uap->im &= ~UART011_TXIM;
717 		pl011_write(uap->im, uap, REG_IMSC);
718 		return true;
719 	}
720 	return false;
721 }
722 
723 /*
724  * Stop the DMA transmit (eg, due to received XOFF).
725  * Locking: called with port lock held and IRQs disabled.
726  */
pl011_dma_tx_stop(struct uart_amba_port * uap)727 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
728 {
729 	if (uap->dmatx.queued) {
730 		uap->dmacr &= ~UART011_TXDMAE;
731 		pl011_write(uap->dmacr, uap, REG_DMACR);
732 	}
733 }
734 
735 /*
736  * Try to start a DMA transmit, or in the case of an XON/OFF
737  * character queued for send, try to get that character out ASAP.
738  * Locking: called with port lock held and IRQs disabled.
739  * Returns:
740  *   false if we want the TX IRQ to be enabled
741  *   true if we have a buffer queued
742  */
pl011_dma_tx_start(struct uart_amba_port * uap)743 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
744 {
745 	u16 dmacr;
746 
747 	if (!uap->using_tx_dma)
748 		return false;
749 
750 	if (!uap->port.x_char) {
751 		/* no X-char, try to push chars out in DMA mode */
752 		bool ret = true;
753 
754 		if (!uap->dmatx.queued) {
755 			if (pl011_dma_tx_refill(uap) > 0) {
756 				uap->im &= ~UART011_TXIM;
757 				pl011_write(uap->im, uap, REG_IMSC);
758 			} else
759 				ret = false;
760 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
761 			uap->dmacr |= UART011_TXDMAE;
762 			pl011_write(uap->dmacr, uap, REG_DMACR);
763 		}
764 		return ret;
765 	}
766 
767 	/*
768 	 * We have an X-char to send.  Disable DMA to prevent it loading
769 	 * the TX fifo, and then see if we can stuff it into the FIFO.
770 	 */
771 	dmacr = uap->dmacr;
772 	uap->dmacr &= ~UART011_TXDMAE;
773 	pl011_write(uap->dmacr, uap, REG_DMACR);
774 
775 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
776 		/*
777 		 * No space in the FIFO, so enable the transmit interrupt
778 		 * so we know when there is space.  Note that once we've
779 		 * loaded the character, we should just re-enable DMA.
780 		 */
781 		return false;
782 	}
783 
784 	pl011_write(uap->port.x_char, uap, REG_DR);
785 	uap->port.icount.tx++;
786 	uap->port.x_char = 0;
787 
788 	/* Success - restore the DMA state */
789 	uap->dmacr = dmacr;
790 	pl011_write(dmacr, uap, REG_DMACR);
791 
792 	return true;
793 }
794 
795 /*
796  * Flush the transmit buffer.
797  * Locking: called with port lock held and IRQs disabled.
798  */
pl011_dma_flush_buffer(struct uart_port * port)799 static void pl011_dma_flush_buffer(struct uart_port *port)
800 __releases(&uap->port.lock)
801 __acquires(&uap->port.lock)
802 {
803 	struct uart_amba_port *uap =
804 	    container_of(port, struct uart_amba_port, port);
805 
806 	if (!uap->using_tx_dma)
807 		return;
808 
809 	dmaengine_terminate_async(uap->dmatx.chan);
810 
811 	if (uap->dmatx.queued) {
812 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
813 				 uap->dmatx.len, DMA_TO_DEVICE);
814 		uap->dmatx.queued = false;
815 		uap->dmacr &= ~UART011_TXDMAE;
816 		pl011_write(uap->dmacr, uap, REG_DMACR);
817 	}
818 }
819 
820 static void pl011_dma_rx_callback(void *data);
821 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)822 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
823 {
824 	struct dma_chan *rxchan = uap->dmarx.chan;
825 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
826 	struct dma_async_tx_descriptor *desc;
827 	struct pl011_dmabuf *dbuf;
828 
829 	if (!rxchan)
830 		return -EIO;
831 
832 	/* Start the RX DMA job */
833 	dbuf = uap->dmarx.use_buf_b ?
834 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
835 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
836 					DMA_DEV_TO_MEM,
837 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
838 	/*
839 	 * If the DMA engine is busy and cannot prepare a
840 	 * channel, no big deal, the driver will fall back
841 	 * to interrupt mode as a result of this error code.
842 	 */
843 	if (!desc) {
844 		uap->dmarx.running = false;
845 		dmaengine_terminate_all(rxchan);
846 		return -EBUSY;
847 	}
848 
849 	/* Some data to go along to the callback */
850 	desc->callback = pl011_dma_rx_callback;
851 	desc->callback_param = uap;
852 	dmarx->cookie = dmaengine_submit(desc);
853 	dma_async_issue_pending(rxchan);
854 
855 	uap->dmacr |= UART011_RXDMAE;
856 	pl011_write(uap->dmacr, uap, REG_DMACR);
857 	uap->dmarx.running = true;
858 
859 	uap->im &= ~UART011_RXIM;
860 	pl011_write(uap->im, uap, REG_IMSC);
861 
862 	return 0;
863 }
864 
865 /*
866  * This is called when either the DMA job is complete, or
867  * the FIFO timeout interrupt occurred. This must be called
868  * with the port spinlock uap->port.lock held.
869  */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)870 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
871 			       u32 pending, bool use_buf_b,
872 			       bool readfifo)
873 {
874 	struct tty_port *port = &uap->port.state->port;
875 	struct pl011_dmabuf *dbuf = use_buf_b ?
876 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
877 	int dma_count = 0;
878 	u32 fifotaken = 0; /* only used for vdbg() */
879 
880 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
881 	int dmataken = 0;
882 
883 	if (uap->dmarx.poll_rate) {
884 		/* The data can be taken by polling */
885 		dmataken = dbuf->len - dmarx->last_residue;
886 		/* Recalculate the pending size */
887 		if (pending >= dmataken)
888 			pending -= dmataken;
889 	}
890 
891 	/* Pick the remain data from the DMA */
892 	if (pending) {
893 
894 		/*
895 		 * First take all chars in the DMA pipe, then look in the FIFO.
896 		 * Note that tty_insert_flip_buf() tries to take as many chars
897 		 * as it can.
898 		 */
899 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
900 				pending);
901 
902 		uap->port.icount.rx += dma_count;
903 		if (dma_count < pending)
904 			dev_warn(uap->port.dev,
905 				 "couldn't insert all characters (TTY is full?)\n");
906 	}
907 
908 	/* Reset the last_residue for Rx DMA poll */
909 	if (uap->dmarx.poll_rate)
910 		dmarx->last_residue = dbuf->len;
911 
912 	/*
913 	 * Only continue with trying to read the FIFO if all DMA chars have
914 	 * been taken first.
915 	 */
916 	if (dma_count == pending && readfifo) {
917 		/* Clear any error flags */
918 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
919 			    UART011_FEIS, uap, REG_ICR);
920 
921 		/*
922 		 * If we read all the DMA'd characters, and we had an
923 		 * incomplete buffer, that could be due to an rx error, or
924 		 * maybe we just timed out. Read any pending chars and check
925 		 * the error status.
926 		 *
927 		 * Error conditions will only occur in the FIFO, these will
928 		 * trigger an immediate interrupt and stop the DMA job, so we
929 		 * will always find the error in the FIFO, never in the DMA
930 		 * buffer.
931 		 */
932 		fifotaken = pl011_fifo_to_tty(uap);
933 	}
934 
935 	spin_unlock(&uap->port.lock);
936 	dev_vdbg(uap->port.dev,
937 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
938 		 dma_count, fifotaken);
939 	tty_flip_buffer_push(port);
940 	spin_lock(&uap->port.lock);
941 }
942 
pl011_dma_rx_irq(struct uart_amba_port * uap)943 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
944 {
945 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
946 	struct dma_chan *rxchan = dmarx->chan;
947 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
948 		&dmarx->dbuf_b : &dmarx->dbuf_a;
949 	size_t pending;
950 	struct dma_tx_state state;
951 	enum dma_status dmastat;
952 
953 	/*
954 	 * Pause the transfer so we can trust the current counter,
955 	 * do this before we pause the PL011 block, else we may
956 	 * overflow the FIFO.
957 	 */
958 	if (dmaengine_pause(rxchan))
959 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
960 	dmastat = rxchan->device->device_tx_status(rxchan,
961 						   dmarx->cookie, &state);
962 	if (dmastat != DMA_PAUSED)
963 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
964 
965 	/* Disable RX DMA - incoming data will wait in the FIFO */
966 	uap->dmacr &= ~UART011_RXDMAE;
967 	pl011_write(uap->dmacr, uap, REG_DMACR);
968 	uap->dmarx.running = false;
969 
970 	pending = dbuf->len - state.residue;
971 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
972 	/* Then we terminate the transfer - we now know our residue */
973 	dmaengine_terminate_all(rxchan);
974 
975 	/*
976 	 * This will take the chars we have so far and insert
977 	 * into the framework.
978 	 */
979 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
980 
981 	/* Switch buffer & re-trigger DMA job */
982 	dmarx->use_buf_b = !dmarx->use_buf_b;
983 	if (pl011_dma_rx_trigger_dma(uap)) {
984 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
985 			"fall back to interrupt mode\n");
986 		uap->im |= UART011_RXIM;
987 		pl011_write(uap->im, uap, REG_IMSC);
988 	}
989 }
990 
pl011_dma_rx_callback(void * data)991 static void pl011_dma_rx_callback(void *data)
992 {
993 	struct uart_amba_port *uap = data;
994 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
995 	struct dma_chan *rxchan = dmarx->chan;
996 	bool lastbuf = dmarx->use_buf_b;
997 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
998 		&dmarx->dbuf_b : &dmarx->dbuf_a;
999 	size_t pending;
1000 	struct dma_tx_state state;
1001 	int ret;
1002 
1003 	/*
1004 	 * This completion interrupt occurs typically when the
1005 	 * RX buffer is totally stuffed but no timeout has yet
1006 	 * occurred. When that happens, we just want the RX
1007 	 * routine to flush out the secondary DMA buffer while
1008 	 * we immediately trigger the next DMA job.
1009 	 */
1010 	spin_lock_irq(&uap->port.lock);
1011 	/*
1012 	 * Rx data can be taken by the UART interrupts during
1013 	 * the DMA irq handler. So we check the residue here.
1014 	 */
1015 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1016 	pending = dbuf->len - state.residue;
1017 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1018 	/* Then we terminate the transfer - we now know our residue */
1019 	dmaengine_terminate_all(rxchan);
1020 
1021 	uap->dmarx.running = false;
1022 	dmarx->use_buf_b = !lastbuf;
1023 	ret = pl011_dma_rx_trigger_dma(uap);
1024 
1025 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1026 	spin_unlock_irq(&uap->port.lock);
1027 	/*
1028 	 * Do this check after we picked the DMA chars so we don't
1029 	 * get some IRQ immediately from RX.
1030 	 */
1031 	if (ret) {
1032 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1033 			"fall back to interrupt mode\n");
1034 		uap->im |= UART011_RXIM;
1035 		pl011_write(uap->im, uap, REG_IMSC);
1036 	}
1037 }
1038 
1039 /*
1040  * Stop accepting received characters, when we're shutting down or
1041  * suspending this port.
1042  * Locking: called with port lock held and IRQs disabled.
1043  */
pl011_dma_rx_stop(struct uart_amba_port * uap)1044 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1045 {
1046 	if (!uap->using_rx_dma)
1047 		return;
1048 
1049 	/* FIXME.  Just disable the DMA enable */
1050 	uap->dmacr &= ~UART011_RXDMAE;
1051 	pl011_write(uap->dmacr, uap, REG_DMACR);
1052 }
1053 
1054 /*
1055  * Timer handler for Rx DMA polling.
1056  * Every polling, It checks the residue in the dma buffer and transfer
1057  * data to the tty. Also, last_residue is updated for the next polling.
1058  */
pl011_dma_rx_poll(struct timer_list * t)1059 static void pl011_dma_rx_poll(struct timer_list *t)
1060 {
1061 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1062 	struct tty_port *port = &uap->port.state->port;
1063 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1064 	struct dma_chan *rxchan = uap->dmarx.chan;
1065 	unsigned long flags = 0;
1066 	unsigned int dmataken = 0;
1067 	unsigned int size = 0;
1068 	struct pl011_dmabuf *dbuf;
1069 	int dma_count;
1070 	struct dma_tx_state state;
1071 
1072 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1073 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1074 	if (likely(state.residue < dmarx->last_residue)) {
1075 		dmataken = dbuf->len - dmarx->last_residue;
1076 		size = dmarx->last_residue - state.residue;
1077 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1078 				size);
1079 		if (dma_count == size)
1080 			dmarx->last_residue =  state.residue;
1081 		dmarx->last_jiffies = jiffies;
1082 	}
1083 	tty_flip_buffer_push(port);
1084 
1085 	/*
1086 	 * If no data is received in poll_timeout, the driver will fall back
1087 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1088 	 */
1089 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1090 			> uap->dmarx.poll_timeout) {
1091 
1092 		spin_lock_irqsave(&uap->port.lock, flags);
1093 		pl011_dma_rx_stop(uap);
1094 		uap->im |= UART011_RXIM;
1095 		pl011_write(uap->im, uap, REG_IMSC);
1096 		spin_unlock_irqrestore(&uap->port.lock, flags);
1097 
1098 		uap->dmarx.running = false;
1099 		dmaengine_terminate_all(rxchan);
1100 		del_timer(&uap->dmarx.timer);
1101 	} else {
1102 		mod_timer(&uap->dmarx.timer,
1103 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1104 	}
1105 }
1106 
pl011_dma_startup(struct uart_amba_port * uap)1107 static void pl011_dma_startup(struct uart_amba_port *uap)
1108 {
1109 	int ret;
1110 
1111 	if (!uap->dma_probed)
1112 		pl011_dma_probe(uap);
1113 
1114 	if (!uap->dmatx.chan)
1115 		return;
1116 
1117 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1118 	if (!uap->dmatx.buf) {
1119 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1120 		uap->port.fifosize = uap->fifosize;
1121 		return;
1122 	}
1123 
1124 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1125 
1126 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1127 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1128 	uap->using_tx_dma = true;
1129 
1130 	if (!uap->dmarx.chan)
1131 		goto skip_rx;
1132 
1133 	/* Allocate and map DMA RX buffers */
1134 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1135 			       DMA_FROM_DEVICE);
1136 	if (ret) {
1137 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138 			"RX buffer A", ret);
1139 		goto skip_rx;
1140 	}
1141 
1142 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1143 			       DMA_FROM_DEVICE);
1144 	if (ret) {
1145 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1146 			"RX buffer B", ret);
1147 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1148 				 DMA_FROM_DEVICE);
1149 		goto skip_rx;
1150 	}
1151 
1152 	uap->using_rx_dma = true;
1153 
1154 skip_rx:
1155 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1156 	uap->dmacr |= UART011_DMAONERR;
1157 	pl011_write(uap->dmacr, uap, REG_DMACR);
1158 
1159 	/*
1160 	 * ST Micro variants has some specific dma burst threshold
1161 	 * compensation. Set this to 16 bytes, so burst will only
1162 	 * be issued above/below 16 bytes.
1163 	 */
1164 	if (uap->vendor->dma_threshold)
1165 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1166 			    uap, REG_ST_DMAWM);
1167 
1168 	if (uap->using_rx_dma) {
1169 		if (pl011_dma_rx_trigger_dma(uap))
1170 			dev_dbg(uap->port.dev, "could not trigger initial "
1171 				"RX DMA job, fall back to interrupt mode\n");
1172 		if (uap->dmarx.poll_rate) {
1173 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1174 			mod_timer(&uap->dmarx.timer,
1175 				jiffies +
1176 				msecs_to_jiffies(uap->dmarx.poll_rate));
1177 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1178 			uap->dmarx.last_jiffies = jiffies;
1179 		}
1180 	}
1181 }
1182 
pl011_dma_shutdown(struct uart_amba_port * uap)1183 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1184 {
1185 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1186 		return;
1187 
1188 	/* Disable RX and TX DMA */
1189 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1190 		cpu_relax();
1191 
1192 	spin_lock_irq(&uap->port.lock);
1193 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1194 	pl011_write(uap->dmacr, uap, REG_DMACR);
1195 	spin_unlock_irq(&uap->port.lock);
1196 
1197 	if (uap->using_tx_dma) {
1198 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1199 		dmaengine_terminate_all(uap->dmatx.chan);
1200 		if (uap->dmatx.queued) {
1201 			dma_unmap_single(uap->dmatx.chan->device->dev,
1202 					 uap->dmatx.dma, uap->dmatx.len,
1203 					 DMA_TO_DEVICE);
1204 			uap->dmatx.queued = false;
1205 		}
1206 
1207 		kfree(uap->dmatx.buf);
1208 		uap->using_tx_dma = false;
1209 	}
1210 
1211 	if (uap->using_rx_dma) {
1212 		dmaengine_terminate_all(uap->dmarx.chan);
1213 		/* Clean up the RX DMA */
1214 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1215 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1216 		if (uap->dmarx.poll_rate)
1217 			del_timer_sync(&uap->dmarx.timer);
1218 		uap->using_rx_dma = false;
1219 	}
1220 }
1221 
pl011_dma_rx_available(struct uart_amba_port * uap)1222 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1223 {
1224 	return uap->using_rx_dma;
1225 }
1226 
pl011_dma_rx_running(struct uart_amba_port * uap)1227 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1228 {
1229 	return uap->using_rx_dma && uap->dmarx.running;
1230 }
1231 
1232 #else
1233 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1234 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1235 {
1236 }
1237 
pl011_dma_startup(struct uart_amba_port * uap)1238 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1239 {
1240 }
1241 
pl011_dma_shutdown(struct uart_amba_port * uap)1242 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1243 {
1244 }
1245 
pl011_dma_tx_irq(struct uart_amba_port * uap)1246 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1247 {
1248 	return false;
1249 }
1250 
pl011_dma_tx_stop(struct uart_amba_port * uap)1251 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1252 {
1253 }
1254 
pl011_dma_tx_start(struct uart_amba_port * uap)1255 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1256 {
1257 	return false;
1258 }
1259 
pl011_dma_rx_irq(struct uart_amba_port * uap)1260 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1261 {
1262 }
1263 
pl011_dma_rx_stop(struct uart_amba_port * uap)1264 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1265 {
1266 }
1267 
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1268 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1269 {
1270 	return -EIO;
1271 }
1272 
pl011_dma_rx_available(struct uart_amba_port * uap)1273 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1274 {
1275 	return false;
1276 }
1277 
pl011_dma_rx_running(struct uart_amba_port * uap)1278 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1279 {
1280 	return false;
1281 }
1282 
1283 #define pl011_dma_flush_buffer	NULL
1284 #endif
1285 
pl011_stop_tx(struct uart_port * port)1286 static void pl011_stop_tx(struct uart_port *port)
1287 {
1288 	struct uart_amba_port *uap =
1289 	    container_of(port, struct uart_amba_port, port);
1290 
1291 	uap->im &= ~UART011_TXIM;
1292 	pl011_write(uap->im, uap, REG_IMSC);
1293 	pl011_dma_tx_stop(uap);
1294 }
1295 
1296 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1297 
1298 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1299 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1300 {
1301 	if (pl011_tx_chars(uap, false)) {
1302 		uap->im |= UART011_TXIM;
1303 		pl011_write(uap->im, uap, REG_IMSC);
1304 	}
1305 }
1306 
pl011_start_tx(struct uart_port * port)1307 static void pl011_start_tx(struct uart_port *port)
1308 {
1309 	struct uart_amba_port *uap =
1310 	    container_of(port, struct uart_amba_port, port);
1311 
1312 	if (!pl011_dma_tx_start(uap))
1313 		pl011_start_tx_pio(uap);
1314 }
1315 
pl011_stop_rx(struct uart_port * port)1316 static void pl011_stop_rx(struct uart_port *port)
1317 {
1318 	struct uart_amba_port *uap =
1319 	    container_of(port, struct uart_amba_port, port);
1320 
1321 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1322 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1323 	pl011_write(uap->im, uap, REG_IMSC);
1324 
1325 	pl011_dma_rx_stop(uap);
1326 }
1327 
pl011_throttle_rx(struct uart_port * port)1328 static void pl011_throttle_rx(struct uart_port *port)
1329 {
1330 	unsigned long flags;
1331 
1332 	spin_lock_irqsave(&port->lock, flags);
1333 	pl011_stop_rx(port);
1334 	spin_unlock_irqrestore(&port->lock, flags);
1335 }
1336 
pl011_enable_ms(struct uart_port * port)1337 static void pl011_enable_ms(struct uart_port *port)
1338 {
1339 	struct uart_amba_port *uap =
1340 	    container_of(port, struct uart_amba_port, port);
1341 
1342 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343 	pl011_write(uap->im, uap, REG_IMSC);
1344 }
1345 
pl011_rx_chars(struct uart_amba_port * uap)1346 static void pl011_rx_chars(struct uart_amba_port *uap)
1347 __releases(&uap->port.lock)
1348 __acquires(&uap->port.lock)
1349 {
1350 	pl011_fifo_to_tty(uap);
1351 
1352 	spin_unlock(&uap->port.lock);
1353 	tty_flip_buffer_push(&uap->port.state->port);
1354 	/*
1355 	 * If we were temporarily out of DMA mode for a while,
1356 	 * attempt to switch back to DMA mode again.
1357 	 */
1358 	if (pl011_dma_rx_available(uap)) {
1359 		if (pl011_dma_rx_trigger_dma(uap)) {
1360 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361 				"fall back to interrupt mode again\n");
1362 			uap->im |= UART011_RXIM;
1363 			pl011_write(uap->im, uap, REG_IMSC);
1364 		} else {
1365 #ifdef CONFIG_DMA_ENGINE
1366 			/* Start Rx DMA poll */
1367 			if (uap->dmarx.poll_rate) {
1368 				uap->dmarx.last_jiffies = jiffies;
1369 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370 				mod_timer(&uap->dmarx.timer,
1371 					jiffies +
1372 					msecs_to_jiffies(uap->dmarx.poll_rate));
1373 			}
1374 #endif
1375 		}
1376 	}
1377 	spin_lock(&uap->port.lock);
1378 }
1379 
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1380 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381 			  bool from_irq)
1382 {
1383 	if (unlikely(!from_irq) &&
1384 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385 		return false; /* unable to transmit character */
1386 
1387 	pl011_write(c, uap, REG_DR);
1388 	uap->port.icount.tx++;
1389 
1390 	return true;
1391 }
1392 
1393 /* Returns true if tx interrupts have to be (kept) enabled  */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1394 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395 {
1396 	struct circ_buf *xmit = &uap->port.state->xmit;
1397 	int count = uap->fifosize >> 1;
1398 
1399 	if (uap->port.x_char) {
1400 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401 			return true;
1402 		uap->port.x_char = 0;
1403 		--count;
1404 	}
1405 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406 		pl011_stop_tx(&uap->port);
1407 		return false;
1408 	}
1409 
1410 	/* If we are using DMA mode, try to send some characters. */
1411 	if (pl011_dma_tx_irq(uap))
1412 		return true;
1413 
1414 	do {
1415 		if (likely(from_irq) && count-- == 0)
1416 			break;
1417 
1418 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419 			break;
1420 
1421 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422 	} while (!uart_circ_empty(xmit));
1423 
1424 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425 		uart_write_wakeup(&uap->port);
1426 
1427 	if (uart_circ_empty(xmit)) {
1428 		pl011_stop_tx(&uap->port);
1429 		return false;
1430 	}
1431 	return true;
1432 }
1433 
pl011_modem_status(struct uart_amba_port * uap)1434 static void pl011_modem_status(struct uart_amba_port *uap)
1435 {
1436 	unsigned int status, delta;
1437 
1438 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439 
1440 	delta = status ^ uap->old_status;
1441 	uap->old_status = status;
1442 
1443 	if (!delta)
1444 		return;
1445 
1446 	if (delta & UART01x_FR_DCD)
1447 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448 
1449 	if (delta & uap->vendor->fr_dsr)
1450 		uap->port.icount.dsr++;
1451 
1452 	if (delta & uap->vendor->fr_cts)
1453 		uart_handle_cts_change(&uap->port,
1454 				       status & uap->vendor->fr_cts);
1455 
1456 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457 }
1458 
check_apply_cts_event_workaround(struct uart_amba_port * uap)1459 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460 {
1461 	if (!uap->vendor->cts_event_workaround)
1462 		return;
1463 
1464 	/* workaround to make sure that all bits are unlocked.. */
1465 	pl011_write(0x00, uap, REG_ICR);
1466 
1467 	/*
1468 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1469 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1470 	 * so add 2 dummy reads
1471 	 */
1472 	pl011_read(uap, REG_ICR);
1473 	pl011_read(uap, REG_ICR);
1474 }
1475 
pl011_int(int irq,void * dev_id)1476 static irqreturn_t pl011_int(int irq, void *dev_id)
1477 {
1478 	struct uart_amba_port *uap = dev_id;
1479 	unsigned long flags;
1480 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1481 	int handled = 0;
1482 
1483 	spin_lock_irqsave(&uap->port.lock, flags);
1484 	status = pl011_read(uap, REG_RIS) & uap->im;
1485 	if (status) {
1486 		do {
1487 			check_apply_cts_event_workaround(uap);
1488 
1489 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1490 					       UART011_RXIS),
1491 				    uap, REG_ICR);
1492 
1493 			if (status & (UART011_RTIS|UART011_RXIS)) {
1494 				if (pl011_dma_rx_running(uap))
1495 					pl011_dma_rx_irq(uap);
1496 				else
1497 					pl011_rx_chars(uap);
1498 			}
1499 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1500 				      UART011_CTSMIS|UART011_RIMIS))
1501 				pl011_modem_status(uap);
1502 			if (status & UART011_TXIS)
1503 				pl011_tx_chars(uap, true);
1504 
1505 			if (pass_counter-- == 0)
1506 				break;
1507 
1508 			status = pl011_read(uap, REG_RIS) & uap->im;
1509 		} while (status != 0);
1510 		handled = 1;
1511 	}
1512 
1513 	spin_unlock_irqrestore(&uap->port.lock, flags);
1514 
1515 	return IRQ_RETVAL(handled);
1516 }
1517 
pl011_tx_empty(struct uart_port * port)1518 static unsigned int pl011_tx_empty(struct uart_port *port)
1519 {
1520 	struct uart_amba_port *uap =
1521 	    container_of(port, struct uart_amba_port, port);
1522 
1523 	/* Allow feature register bits to be inverted to work around errata */
1524 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1525 
1526 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1527 							0 : TIOCSER_TEMT;
1528 }
1529 
pl011_get_mctrl(struct uart_port * port)1530 static unsigned int pl011_get_mctrl(struct uart_port *port)
1531 {
1532 	struct uart_amba_port *uap =
1533 	    container_of(port, struct uart_amba_port, port);
1534 	unsigned int result = 0;
1535 	unsigned int status = pl011_read(uap, REG_FR);
1536 
1537 #define TIOCMBIT(uartbit, tiocmbit)	\
1538 	if (status & uartbit)		\
1539 		result |= tiocmbit
1540 
1541 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1542 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1543 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1544 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1545 #undef TIOCMBIT
1546 	return result;
1547 }
1548 
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1549 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1550 {
1551 	struct uart_amba_port *uap =
1552 	    container_of(port, struct uart_amba_port, port);
1553 	unsigned int cr;
1554 
1555 	cr = pl011_read(uap, REG_CR);
1556 
1557 #define	TIOCMBIT(tiocmbit, uartbit)		\
1558 	if (mctrl & tiocmbit)		\
1559 		cr |= uartbit;		\
1560 	else				\
1561 		cr &= ~uartbit
1562 
1563 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1564 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1565 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1566 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1567 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1568 
1569 	if (port->status & UPSTAT_AUTORTS) {
1570 		/* We need to disable auto-RTS if we want to turn RTS off */
1571 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1572 	}
1573 #undef TIOCMBIT
1574 
1575 	pl011_write(cr, uap, REG_CR);
1576 }
1577 
pl011_break_ctl(struct uart_port * port,int break_state)1578 static void pl011_break_ctl(struct uart_port *port, int break_state)
1579 {
1580 	struct uart_amba_port *uap =
1581 	    container_of(port, struct uart_amba_port, port);
1582 	unsigned long flags;
1583 	unsigned int lcr_h;
1584 
1585 	spin_lock_irqsave(&uap->port.lock, flags);
1586 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1587 	if (break_state == -1)
1588 		lcr_h |= UART01x_LCRH_BRK;
1589 	else
1590 		lcr_h &= ~UART01x_LCRH_BRK;
1591 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1592 	spin_unlock_irqrestore(&uap->port.lock, flags);
1593 }
1594 
1595 #ifdef CONFIG_CONSOLE_POLL
1596 
pl011_quiesce_irqs(struct uart_port * port)1597 static void pl011_quiesce_irqs(struct uart_port *port)
1598 {
1599 	struct uart_amba_port *uap =
1600 	    container_of(port, struct uart_amba_port, port);
1601 
1602 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1603 	/*
1604 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1605 	 * we simply mask it. start_tx() will unmask it.
1606 	 *
1607 	 * Note we can race with start_tx(), and if the race happens, the
1608 	 * polling user might get another interrupt just after we clear it.
1609 	 * But it should be OK and can happen even w/o the race, e.g.
1610 	 * controller immediately got some new data and raised the IRQ.
1611 	 *
1612 	 * And whoever uses polling routines assumes that it manages the device
1613 	 * (including tx queue), so we're also fine with start_tx()'s caller
1614 	 * side.
1615 	 */
1616 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1617 		    REG_IMSC);
1618 }
1619 
pl011_get_poll_char(struct uart_port * port)1620 static int pl011_get_poll_char(struct uart_port *port)
1621 {
1622 	struct uart_amba_port *uap =
1623 	    container_of(port, struct uart_amba_port, port);
1624 	unsigned int status;
1625 
1626 	/*
1627 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1628 	 * debugger.
1629 	 */
1630 	pl011_quiesce_irqs(port);
1631 
1632 	status = pl011_read(uap, REG_FR);
1633 	if (status & UART01x_FR_RXFE)
1634 		return NO_POLL_CHAR;
1635 
1636 	return pl011_read(uap, REG_DR);
1637 }
1638 
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1639 static void pl011_put_poll_char(struct uart_port *port,
1640 			 unsigned char ch)
1641 {
1642 	struct uart_amba_port *uap =
1643 	    container_of(port, struct uart_amba_port, port);
1644 
1645 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1646 		cpu_relax();
1647 
1648 	pl011_write(ch, uap, REG_DR);
1649 }
1650 
1651 #endif /* CONFIG_CONSOLE_POLL */
1652 
pl011_hwinit(struct uart_port * port)1653 static int pl011_hwinit(struct uart_port *port)
1654 {
1655 	struct uart_amba_port *uap =
1656 	    container_of(port, struct uart_amba_port, port);
1657 	int retval;
1658 
1659 	/* Optionaly enable pins to be muxed in and configured */
1660 	pinctrl_pm_select_default_state(port->dev);
1661 
1662 	/*
1663 	 * Try to enable the clock producer.
1664 	 */
1665 	retval = clk_prepare_enable(uap->clk);
1666 	if (retval)
1667 		return retval;
1668 
1669 	uap->port.uartclk = clk_get_rate(uap->clk);
1670 
1671 	/* Clear pending error and receive interrupts */
1672 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1673 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1674 		    uap, REG_ICR);
1675 
1676 	/*
1677 	 * Save interrupts enable mask, and enable RX interrupts in case if
1678 	 * the interrupt is used for NMI entry.
1679 	 */
1680 	uap->im = pl011_read(uap, REG_IMSC);
1681 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1682 
1683 	if (dev_get_platdata(uap->port.dev)) {
1684 		struct amba_pl011_data *plat;
1685 
1686 		plat = dev_get_platdata(uap->port.dev);
1687 		if (plat->init)
1688 			plat->init();
1689 	}
1690 	return 0;
1691 }
1692 
pl011_split_lcrh(const struct uart_amba_port * uap)1693 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1694 {
1695 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1696 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1697 }
1698 
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1699 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1700 {
1701 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1702 	if (pl011_split_lcrh(uap)) {
1703 		int i;
1704 		/*
1705 		 * Wait 10 PCLKs before writing LCRH_TX register,
1706 		 * to get this delay write read only register 10 times
1707 		 */
1708 		for (i = 0; i < 10; ++i)
1709 			pl011_write(0xff, uap, REG_MIS);
1710 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1711 	}
1712 }
1713 
pl011_allocate_irq(struct uart_amba_port * uap)1714 static int pl011_allocate_irq(struct uart_amba_port *uap)
1715 {
1716 	pl011_write(uap->im, uap, REG_IMSC);
1717 
1718 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1719 }
1720 
1721 /*
1722  * Enable interrupts, only timeouts when using DMA
1723  * if initial RX DMA job failed, start in interrupt mode
1724  * as well.
1725  */
pl011_enable_interrupts(struct uart_amba_port * uap)1726 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1727 {
1728 	unsigned long flags;
1729 	unsigned int i;
1730 
1731 	spin_lock_irqsave(&uap->port.lock, flags);
1732 
1733 	/* Clear out any spuriously appearing RX interrupts */
1734 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1735 
1736 	/*
1737 	 * RXIS is asserted only when the RX FIFO transitions from below
1738 	 * to above the trigger threshold.  If the RX FIFO is already
1739 	 * full to the threshold this can't happen and RXIS will now be
1740 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1741 	 */
1742 	for (i = 0; i < uap->fifosize * 2; ++i) {
1743 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1744 			break;
1745 
1746 		pl011_read(uap, REG_DR);
1747 	}
1748 
1749 	uap->im = UART011_RTIM;
1750 	if (!pl011_dma_rx_running(uap))
1751 		uap->im |= UART011_RXIM;
1752 	pl011_write(uap->im, uap, REG_IMSC);
1753 	spin_unlock_irqrestore(&uap->port.lock, flags);
1754 }
1755 
pl011_unthrottle_rx(struct uart_port * port)1756 static void pl011_unthrottle_rx(struct uart_port *port)
1757 {
1758 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1759 	unsigned long flags;
1760 
1761 	spin_lock_irqsave(&uap->port.lock, flags);
1762 
1763 	uap->im = UART011_RTIM;
1764 	if (!pl011_dma_rx_running(uap))
1765 		uap->im |= UART011_RXIM;
1766 
1767 	pl011_write(uap->im, uap, REG_IMSC);
1768 
1769 	spin_unlock_irqrestore(&uap->port.lock, flags);
1770 }
1771 
pl011_startup(struct uart_port * port)1772 static int pl011_startup(struct uart_port *port)
1773 {
1774 	struct uart_amba_port *uap =
1775 	    container_of(port, struct uart_amba_port, port);
1776 	unsigned int cr;
1777 	int retval;
1778 
1779 	retval = pl011_hwinit(port);
1780 	if (retval)
1781 		goto clk_dis;
1782 
1783 	retval = pl011_allocate_irq(uap);
1784 	if (retval)
1785 		goto clk_dis;
1786 
1787 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1788 
1789 	spin_lock_irq(&uap->port.lock);
1790 
1791 	/* restore RTS and DTR */
1792 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1793 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1794 	pl011_write(cr, uap, REG_CR);
1795 
1796 	spin_unlock_irq(&uap->port.lock);
1797 
1798 	/*
1799 	 * initialise the old status of the modem signals
1800 	 */
1801 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1802 
1803 	/* Startup DMA */
1804 	pl011_dma_startup(uap);
1805 
1806 	pl011_enable_interrupts(uap);
1807 
1808 	return 0;
1809 
1810  clk_dis:
1811 	clk_disable_unprepare(uap->clk);
1812 	return retval;
1813 }
1814 
sbsa_uart_startup(struct uart_port * port)1815 static int sbsa_uart_startup(struct uart_port *port)
1816 {
1817 	struct uart_amba_port *uap =
1818 		container_of(port, struct uart_amba_port, port);
1819 	int retval;
1820 
1821 	retval = pl011_hwinit(port);
1822 	if (retval)
1823 		return retval;
1824 
1825 	retval = pl011_allocate_irq(uap);
1826 	if (retval)
1827 		return retval;
1828 
1829 	/* The SBSA UART does not support any modem status lines. */
1830 	uap->old_status = 0;
1831 
1832 	pl011_enable_interrupts(uap);
1833 
1834 	return 0;
1835 }
1836 
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1837 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1838 					unsigned int lcrh)
1839 {
1840       unsigned long val;
1841 
1842       val = pl011_read(uap, lcrh);
1843       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1844       pl011_write(val, uap, lcrh);
1845 }
1846 
1847 /*
1848  * disable the port. It should not disable RTS and DTR.
1849  * Also RTS and DTR state should be preserved to restore
1850  * it during startup().
1851  */
pl011_disable_uart(struct uart_amba_port * uap)1852 static void pl011_disable_uart(struct uart_amba_port *uap)
1853 {
1854 	unsigned int cr;
1855 
1856 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1857 	spin_lock_irq(&uap->port.lock);
1858 	cr = pl011_read(uap, REG_CR);
1859 	uap->old_cr = cr;
1860 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1861 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1862 	pl011_write(cr, uap, REG_CR);
1863 	spin_unlock_irq(&uap->port.lock);
1864 
1865 	/*
1866 	 * disable break condition and fifos
1867 	 */
1868 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1869 	if (pl011_split_lcrh(uap))
1870 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1871 }
1872 
pl011_disable_interrupts(struct uart_amba_port * uap)1873 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1874 {
1875 	spin_lock_irq(&uap->port.lock);
1876 
1877 	/* mask all interrupts and clear all pending ones */
1878 	uap->im = 0;
1879 	pl011_write(uap->im, uap, REG_IMSC);
1880 	pl011_write(0xffff, uap, REG_ICR);
1881 
1882 	spin_unlock_irq(&uap->port.lock);
1883 }
1884 
pl011_shutdown(struct uart_port * port)1885 static void pl011_shutdown(struct uart_port *port)
1886 {
1887 	struct uart_amba_port *uap =
1888 		container_of(port, struct uart_amba_port, port);
1889 
1890 	pl011_disable_interrupts(uap);
1891 
1892 	pl011_dma_shutdown(uap);
1893 
1894 	free_irq(uap->port.irq, uap);
1895 
1896 	pl011_disable_uart(uap);
1897 
1898 	/*
1899 	 * Shut down the clock producer
1900 	 */
1901 	clk_disable_unprepare(uap->clk);
1902 	/* Optionally let pins go into sleep states */
1903 	pinctrl_pm_select_sleep_state(port->dev);
1904 
1905 	if (dev_get_platdata(uap->port.dev)) {
1906 		struct amba_pl011_data *plat;
1907 
1908 		plat = dev_get_platdata(uap->port.dev);
1909 		if (plat->exit)
1910 			plat->exit();
1911 	}
1912 
1913 	if (uap->port.ops->flush_buffer)
1914 		uap->port.ops->flush_buffer(port);
1915 }
1916 
sbsa_uart_shutdown(struct uart_port * port)1917 static void sbsa_uart_shutdown(struct uart_port *port)
1918 {
1919 	struct uart_amba_port *uap =
1920 		container_of(port, struct uart_amba_port, port);
1921 
1922 	pl011_disable_interrupts(uap);
1923 
1924 	free_irq(uap->port.irq, uap);
1925 
1926 	if (uap->port.ops->flush_buffer)
1927 		uap->port.ops->flush_buffer(port);
1928 }
1929 
1930 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)1931 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1932 {
1933 	port->read_status_mask = UART011_DR_OE | 255;
1934 	if (termios->c_iflag & INPCK)
1935 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1936 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1937 		port->read_status_mask |= UART011_DR_BE;
1938 
1939 	/*
1940 	 * Characters to ignore
1941 	 */
1942 	port->ignore_status_mask = 0;
1943 	if (termios->c_iflag & IGNPAR)
1944 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1945 	if (termios->c_iflag & IGNBRK) {
1946 		port->ignore_status_mask |= UART011_DR_BE;
1947 		/*
1948 		 * If we're ignoring parity and break indicators,
1949 		 * ignore overruns too (for real raw support).
1950 		 */
1951 		if (termios->c_iflag & IGNPAR)
1952 			port->ignore_status_mask |= UART011_DR_OE;
1953 	}
1954 
1955 	/*
1956 	 * Ignore all characters if CREAD is not set.
1957 	 */
1958 	if ((termios->c_cflag & CREAD) == 0)
1959 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1960 }
1961 
1962 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)1963 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1964 		     struct ktermios *old)
1965 {
1966 	struct uart_amba_port *uap =
1967 	    container_of(port, struct uart_amba_port, port);
1968 	unsigned int lcr_h, old_cr;
1969 	unsigned long flags;
1970 	unsigned int baud, quot, clkdiv;
1971 
1972 	if (uap->vendor->oversampling)
1973 		clkdiv = 8;
1974 	else
1975 		clkdiv = 16;
1976 
1977 	/*
1978 	 * Ask the core to calculate the divisor for us.
1979 	 */
1980 	baud = uart_get_baud_rate(port, termios, old, 0,
1981 				  port->uartclk / clkdiv);
1982 #ifdef CONFIG_DMA_ENGINE
1983 	/*
1984 	 * Adjust RX DMA polling rate with baud rate if not specified.
1985 	 */
1986 	if (uap->dmarx.auto_poll_rate)
1987 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1988 #endif
1989 
1990 	if (baud > port->uartclk/16)
1991 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1992 	else
1993 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1994 
1995 	switch (termios->c_cflag & CSIZE) {
1996 	case CS5:
1997 		lcr_h = UART01x_LCRH_WLEN_5;
1998 		break;
1999 	case CS6:
2000 		lcr_h = UART01x_LCRH_WLEN_6;
2001 		break;
2002 	case CS7:
2003 		lcr_h = UART01x_LCRH_WLEN_7;
2004 		break;
2005 	default: // CS8
2006 		lcr_h = UART01x_LCRH_WLEN_8;
2007 		break;
2008 	}
2009 	if (termios->c_cflag & CSTOPB)
2010 		lcr_h |= UART01x_LCRH_STP2;
2011 	if (termios->c_cflag & PARENB) {
2012 		lcr_h |= UART01x_LCRH_PEN;
2013 		if (!(termios->c_cflag & PARODD))
2014 			lcr_h |= UART01x_LCRH_EPS;
2015 		if (termios->c_cflag & CMSPAR)
2016 			lcr_h |= UART011_LCRH_SPS;
2017 	}
2018 	if (uap->fifosize > 1)
2019 		lcr_h |= UART01x_LCRH_FEN;
2020 
2021 	spin_lock_irqsave(&port->lock, flags);
2022 
2023 	/*
2024 	 * Update the per-port timeout.
2025 	 */
2026 	uart_update_timeout(port, termios->c_cflag, baud);
2027 
2028 	pl011_setup_status_masks(port, termios);
2029 
2030 	if (UART_ENABLE_MS(port, termios->c_cflag))
2031 		pl011_enable_ms(port);
2032 
2033 	/* first, disable everything */
2034 	old_cr = pl011_read(uap, REG_CR);
2035 	pl011_write(0, uap, REG_CR);
2036 
2037 	if (termios->c_cflag & CRTSCTS) {
2038 		if (old_cr & UART011_CR_RTS)
2039 			old_cr |= UART011_CR_RTSEN;
2040 
2041 		old_cr |= UART011_CR_CTSEN;
2042 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2043 	} else {
2044 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2045 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2046 	}
2047 
2048 	if (uap->vendor->oversampling) {
2049 		if (baud > port->uartclk / 16)
2050 			old_cr |= ST_UART011_CR_OVSFACT;
2051 		else
2052 			old_cr &= ~ST_UART011_CR_OVSFACT;
2053 	}
2054 
2055 	/*
2056 	 * Workaround for the ST Micro oversampling variants to
2057 	 * increase the bitrate slightly, by lowering the divisor,
2058 	 * to avoid delayed sampling of start bit at high speeds,
2059 	 * else we see data corruption.
2060 	 */
2061 	if (uap->vendor->oversampling) {
2062 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2063 			quot -= 1;
2064 		else if ((baud > 3250000) && (quot > 2))
2065 			quot -= 2;
2066 	}
2067 	/* Set baud rate */
2068 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2069 	pl011_write(quot >> 6, uap, REG_IBRD);
2070 
2071 	/*
2072 	 * ----------v----------v----------v----------v-----
2073 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2074 	 * REG_FBRD & REG_IBRD.
2075 	 * ----------^----------^----------^----------^-----
2076 	 */
2077 	pl011_write_lcr_h(uap, lcr_h);
2078 	pl011_write(old_cr, uap, REG_CR);
2079 
2080 	spin_unlock_irqrestore(&port->lock, flags);
2081 }
2082 
2083 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,struct ktermios * old)2084 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2085 		      struct ktermios *old)
2086 {
2087 	struct uart_amba_port *uap =
2088 	    container_of(port, struct uart_amba_port, port);
2089 	unsigned long flags;
2090 
2091 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2092 
2093 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2094 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2095 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2096 	termios->c_cflag |= CS8 | CLOCAL;
2097 
2098 	spin_lock_irqsave(&port->lock, flags);
2099 	uart_update_timeout(port, CS8, uap->fixed_baud);
2100 	pl011_setup_status_masks(port, termios);
2101 	spin_unlock_irqrestore(&port->lock, flags);
2102 }
2103 
pl011_type(struct uart_port * port)2104 static const char *pl011_type(struct uart_port *port)
2105 {
2106 	struct uart_amba_port *uap =
2107 	    container_of(port, struct uart_amba_port, port);
2108 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2109 }
2110 
2111 /*
2112  * Configure/autoconfigure the port.
2113  */
pl011_config_port(struct uart_port * port,int flags)2114 static void pl011_config_port(struct uart_port *port, int flags)
2115 {
2116 	if (flags & UART_CONFIG_TYPE)
2117 		port->type = PORT_AMBA;
2118 }
2119 
2120 /*
2121  * verify the new serial_struct (for TIOCSSERIAL).
2122  */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2123 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2124 {
2125 	int ret = 0;
2126 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2127 		ret = -EINVAL;
2128 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2129 		ret = -EINVAL;
2130 	if (ser->baud_base < 9600)
2131 		ret = -EINVAL;
2132 	if (port->mapbase != (unsigned long) ser->iomem_base)
2133 		ret = -EINVAL;
2134 	return ret;
2135 }
2136 
2137 static const struct uart_ops amba_pl011_pops = {
2138 	.tx_empty	= pl011_tx_empty,
2139 	.set_mctrl	= pl011_set_mctrl,
2140 	.get_mctrl	= pl011_get_mctrl,
2141 	.stop_tx	= pl011_stop_tx,
2142 	.start_tx	= pl011_start_tx,
2143 	.stop_rx	= pl011_stop_rx,
2144 	.throttle	= pl011_throttle_rx,
2145 	.unthrottle	= pl011_unthrottle_rx,
2146 	.enable_ms	= pl011_enable_ms,
2147 	.break_ctl	= pl011_break_ctl,
2148 	.startup	= pl011_startup,
2149 	.shutdown	= pl011_shutdown,
2150 	.flush_buffer	= pl011_dma_flush_buffer,
2151 	.set_termios	= pl011_set_termios,
2152 	.type		= pl011_type,
2153 	.config_port	= pl011_config_port,
2154 	.verify_port	= pl011_verify_port,
2155 #ifdef CONFIG_CONSOLE_POLL
2156 	.poll_init     = pl011_hwinit,
2157 	.poll_get_char = pl011_get_poll_char,
2158 	.poll_put_char = pl011_put_poll_char,
2159 #endif
2160 };
2161 
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2162 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2163 {
2164 }
2165 
sbsa_uart_get_mctrl(struct uart_port * port)2166 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2167 {
2168 	return 0;
2169 }
2170 
2171 static const struct uart_ops sbsa_uart_pops = {
2172 	.tx_empty	= pl011_tx_empty,
2173 	.set_mctrl	= sbsa_uart_set_mctrl,
2174 	.get_mctrl	= sbsa_uart_get_mctrl,
2175 	.stop_tx	= pl011_stop_tx,
2176 	.start_tx	= pl011_start_tx,
2177 	.stop_rx	= pl011_stop_rx,
2178 	.startup	= sbsa_uart_startup,
2179 	.shutdown	= sbsa_uart_shutdown,
2180 	.set_termios	= sbsa_uart_set_termios,
2181 	.type		= pl011_type,
2182 	.config_port	= pl011_config_port,
2183 	.verify_port	= pl011_verify_port,
2184 #ifdef CONFIG_CONSOLE_POLL
2185 	.poll_init     = pl011_hwinit,
2186 	.poll_get_char = pl011_get_poll_char,
2187 	.poll_put_char = pl011_put_poll_char,
2188 #endif
2189 };
2190 
2191 static struct uart_amba_port *amba_ports[UART_NR];
2192 
2193 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2194 
pl011_console_putchar(struct uart_port * port,int ch)2195 static void pl011_console_putchar(struct uart_port *port, int ch)
2196 {
2197 	struct uart_amba_port *uap =
2198 	    container_of(port, struct uart_amba_port, port);
2199 
2200 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2201 		cpu_relax();
2202 	pl011_write(ch, uap, REG_DR);
2203 }
2204 
2205 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2206 pl011_console_write(struct console *co, const char *s, unsigned int count)
2207 {
2208 	struct uart_amba_port *uap = amba_ports[co->index];
2209 	unsigned int old_cr = 0, new_cr;
2210 	unsigned long flags;
2211 	int locked = 1;
2212 
2213 	clk_enable(uap->clk);
2214 
2215 	local_irq_save(flags);
2216 	if (uap->port.sysrq)
2217 		locked = 0;
2218 	else if (oops_in_progress)
2219 		locked = spin_trylock(&uap->port.lock);
2220 	else
2221 		spin_lock(&uap->port.lock);
2222 
2223 	/*
2224 	 *	First save the CR then disable the interrupts
2225 	 */
2226 	if (!uap->vendor->always_enabled) {
2227 		old_cr = pl011_read(uap, REG_CR);
2228 		new_cr = old_cr & ~UART011_CR_CTSEN;
2229 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2230 		pl011_write(new_cr, uap, REG_CR);
2231 	}
2232 
2233 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2234 
2235 	/*
2236 	 *	Finally, wait for transmitter to become empty and restore the
2237 	 *	TCR. Allow feature register bits to be inverted to work around
2238 	 *	errata.
2239 	 */
2240 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2241 						& uap->vendor->fr_busy)
2242 		cpu_relax();
2243 	if (!uap->vendor->always_enabled)
2244 		pl011_write(old_cr, uap, REG_CR);
2245 
2246 	if (locked)
2247 		spin_unlock(&uap->port.lock);
2248 	local_irq_restore(flags);
2249 
2250 	clk_disable(uap->clk);
2251 }
2252 
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2253 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2254 				      int *parity, int *bits)
2255 {
2256 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2257 		unsigned int lcr_h, ibrd, fbrd;
2258 
2259 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2260 
2261 		*parity = 'n';
2262 		if (lcr_h & UART01x_LCRH_PEN) {
2263 			if (lcr_h & UART01x_LCRH_EPS)
2264 				*parity = 'e';
2265 			else
2266 				*parity = 'o';
2267 		}
2268 
2269 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2270 			*bits = 7;
2271 		else
2272 			*bits = 8;
2273 
2274 		ibrd = pl011_read(uap, REG_IBRD);
2275 		fbrd = pl011_read(uap, REG_FBRD);
2276 
2277 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2278 
2279 		if (uap->vendor->oversampling) {
2280 			if (pl011_read(uap, REG_CR)
2281 				  & ST_UART011_CR_OVSFACT)
2282 				*baud *= 2;
2283 		}
2284 	}
2285 }
2286 
pl011_console_setup(struct console * co,char * options)2287 static int pl011_console_setup(struct console *co, char *options)
2288 {
2289 	struct uart_amba_port *uap;
2290 	int baud = 38400;
2291 	int bits = 8;
2292 	int parity = 'n';
2293 	int flow = 'n';
2294 	int ret;
2295 
2296 	/*
2297 	 * Check whether an invalid uart number has been specified, and
2298 	 * if so, search for the first available port that does have
2299 	 * console support.
2300 	 */
2301 	if (co->index >= UART_NR)
2302 		co->index = 0;
2303 	uap = amba_ports[co->index];
2304 	if (!uap)
2305 		return -ENODEV;
2306 
2307 	/* Allow pins to be muxed in and configured */
2308 	pinctrl_pm_select_default_state(uap->port.dev);
2309 
2310 	ret = clk_prepare(uap->clk);
2311 	if (ret)
2312 		return ret;
2313 
2314 	if (dev_get_platdata(uap->port.dev)) {
2315 		struct amba_pl011_data *plat;
2316 
2317 		plat = dev_get_platdata(uap->port.dev);
2318 		if (plat->init)
2319 			plat->init();
2320 	}
2321 
2322 	uap->port.uartclk = clk_get_rate(uap->clk);
2323 
2324 	if (uap->vendor->fixed_options) {
2325 		baud = uap->fixed_baud;
2326 	} else {
2327 		if (options)
2328 			uart_parse_options(options,
2329 					   &baud, &parity, &bits, &flow);
2330 		else
2331 			pl011_console_get_options(uap, &baud, &parity, &bits);
2332 	}
2333 
2334 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2335 }
2336 
2337 /**
2338  *	pl011_console_match - non-standard console matching
2339  *	@co:	  registering console
2340  *	@name:	  name from console command line
2341  *	@idx:	  index from console command line
2342  *	@options: ptr to option string from console command line
2343  *
2344  *	Only attempts to match console command lines of the form:
2345  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2346  *	    console=pl011,0x<addr>[,<options>]
2347  *	This form is used to register an initial earlycon boot console and
2348  *	replace it with the amba_console at pl011 driver init.
2349  *
2350  *	Performs console setup for a match (as required by interface)
2351  *	If no <options> are specified, then assume the h/w is already setup.
2352  *
2353  *	Returns 0 if console matches; otherwise non-zero to use default matching
2354  */
pl011_console_match(struct console * co,char * name,int idx,char * options)2355 static int pl011_console_match(struct console *co, char *name, int idx,
2356 			       char *options)
2357 {
2358 	unsigned char iotype;
2359 	resource_size_t addr;
2360 	int i;
2361 
2362 	/*
2363 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2364 	 * have a distinct console name, so make sure we check for that.
2365 	 * The actual implementation of the erratum occurs in the probe
2366 	 * function.
2367 	 */
2368 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2369 		return -ENODEV;
2370 
2371 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2372 		return -ENODEV;
2373 
2374 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2375 		return -ENODEV;
2376 
2377 	/* try to match the port specified on the command line */
2378 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2379 		struct uart_port *port;
2380 
2381 		if (!amba_ports[i])
2382 			continue;
2383 
2384 		port = &amba_ports[i]->port;
2385 
2386 		if (port->mapbase != addr)
2387 			continue;
2388 
2389 		co->index = i;
2390 		port->cons = co;
2391 		return pl011_console_setup(co, options);
2392 	}
2393 
2394 	return -ENODEV;
2395 }
2396 
2397 static struct uart_driver amba_reg;
2398 static struct console amba_console = {
2399 	.name		= "ttyAMA",
2400 	.write		= pl011_console_write,
2401 	.device		= uart_console_device,
2402 	.setup		= pl011_console_setup,
2403 	.match		= pl011_console_match,
2404 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2405 	.index		= -1,
2406 	.data		= &amba_reg,
2407 };
2408 
2409 #define AMBA_CONSOLE	(&amba_console)
2410 
qdf2400_e44_putc(struct uart_port * port,int c)2411 static void qdf2400_e44_putc(struct uart_port *port, int c)
2412 {
2413 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2414 		cpu_relax();
2415 	writel(c, port->membase + UART01x_DR);
2416 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2417 		cpu_relax();
2418 }
2419 
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2420 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2421 {
2422 	struct earlycon_device *dev = con->data;
2423 
2424 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2425 }
2426 
pl011_putc(struct uart_port * port,int c)2427 static void pl011_putc(struct uart_port *port, int c)
2428 {
2429 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2430 		cpu_relax();
2431 	if (port->iotype == UPIO_MEM32)
2432 		writel(c, port->membase + UART01x_DR);
2433 	else
2434 		writeb(c, port->membase + UART01x_DR);
2435 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2436 		cpu_relax();
2437 }
2438 
pl011_early_write(struct console * con,const char * s,unsigned n)2439 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2440 {
2441 	struct earlycon_device *dev = con->data;
2442 
2443 	uart_console_write(&dev->port, s, n, pl011_putc);
2444 }
2445 
2446 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2447 static int pl011_getc(struct uart_port *port)
2448 {
2449 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2450 		return NO_POLL_CHAR;
2451 
2452 	if (port->iotype == UPIO_MEM32)
2453 		return readl(port->membase + UART01x_DR);
2454 	else
2455 		return readb(port->membase + UART01x_DR);
2456 }
2457 
pl011_early_read(struct console * con,char * s,unsigned int n)2458 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2459 {
2460 	struct earlycon_device *dev = con->data;
2461 	int ch, num_read = 0;
2462 
2463 	while (num_read < n) {
2464 		ch = pl011_getc(&dev->port);
2465 		if (ch == NO_POLL_CHAR)
2466 			break;
2467 
2468 		s[num_read++] = ch;
2469 	}
2470 
2471 	return num_read;
2472 }
2473 #else
2474 #define pl011_early_read NULL
2475 #endif
2476 
2477 /*
2478  * On non-ACPI systems, earlycon is enabled by specifying
2479  * "earlycon=pl011,<address>" on the kernel command line.
2480  *
2481  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2482  * by specifying only "earlycon" on the command line.  Because it requires
2483  * SPCR, the console starts after ACPI is parsed, which is later than a
2484  * traditional early console.
2485  *
2486  * To get the traditional early console that starts before ACPI is parsed,
2487  * specify the full "earlycon=pl011,<address>" option.
2488  */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2489 static int __init pl011_early_console_setup(struct earlycon_device *device,
2490 					    const char *opt)
2491 {
2492 	if (!device->port.membase)
2493 		return -ENODEV;
2494 
2495 	device->con->write = pl011_early_write;
2496 	device->con->read = pl011_early_read;
2497 
2498 	return 0;
2499 }
2500 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2501 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2502 
2503 /*
2504  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2505  * Erratum 44, traditional earlycon can be enabled by specifying
2506  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2507  *
2508  * Alternatively, you can just specify "earlycon", and the early console
2509  * will be enabled with the information from the SPCR table.  In this
2510  * case, the SPCR code will detect the need for the E44 work-around,
2511  * and set the console name to "qdf2400_e44".
2512  */
2513 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2514 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2515 				const char *opt)
2516 {
2517 	if (!device->port.membase)
2518 		return -ENODEV;
2519 
2520 	device->con->write = qdf2400_e44_early_write;
2521 	return 0;
2522 }
2523 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2524 
2525 #else
2526 #define AMBA_CONSOLE	NULL
2527 #endif
2528 
2529 static struct uart_driver amba_reg = {
2530 	.owner			= THIS_MODULE,
2531 	.driver_name		= "ttyAMA",
2532 	.dev_name		= "ttyAMA",
2533 	.major			= SERIAL_AMBA_MAJOR,
2534 	.minor			= SERIAL_AMBA_MINOR,
2535 	.nr			= UART_NR,
2536 	.cons			= AMBA_CONSOLE,
2537 };
2538 
pl011_probe_dt_alias(int index,struct device * dev)2539 static int pl011_probe_dt_alias(int index, struct device *dev)
2540 {
2541 	struct device_node *np;
2542 	static bool seen_dev_with_alias = false;
2543 	static bool seen_dev_without_alias = false;
2544 	int ret = index;
2545 
2546 	if (!IS_ENABLED(CONFIG_OF))
2547 		return ret;
2548 
2549 	np = dev->of_node;
2550 	if (!np)
2551 		return ret;
2552 
2553 	ret = of_alias_get_id(np, "serial");
2554 	if (ret < 0) {
2555 		seen_dev_without_alias = true;
2556 		ret = index;
2557 	} else {
2558 		seen_dev_with_alias = true;
2559 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2560 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2561 			ret = index;
2562 		}
2563 	}
2564 
2565 	if (seen_dev_with_alias && seen_dev_without_alias)
2566 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2567 
2568 	return ret;
2569 }
2570 
2571 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2572 static void pl011_unregister_port(struct uart_amba_port *uap)
2573 {
2574 	int i;
2575 	bool busy = false;
2576 
2577 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2578 		if (amba_ports[i] == uap)
2579 			amba_ports[i] = NULL;
2580 		else if (amba_ports[i])
2581 			busy = true;
2582 	}
2583 	pl011_dma_remove(uap);
2584 	if (!busy)
2585 		uart_unregister_driver(&amba_reg);
2586 }
2587 
pl011_find_free_port(void)2588 static int pl011_find_free_port(void)
2589 {
2590 	int i;
2591 
2592 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2593 		if (amba_ports[i] == NULL)
2594 			return i;
2595 
2596 	return -EBUSY;
2597 }
2598 
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2599 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2600 			    struct resource *mmiobase, int index)
2601 {
2602 	void __iomem *base;
2603 
2604 	base = devm_ioremap_resource(dev, mmiobase);
2605 	if (IS_ERR(base))
2606 		return PTR_ERR(base);
2607 
2608 	index = pl011_probe_dt_alias(index, dev);
2609 
2610 	uap->old_cr = 0;
2611 	uap->port.dev = dev;
2612 	uap->port.mapbase = mmiobase->start;
2613 	uap->port.membase = base;
2614 	uap->port.fifosize = uap->fifosize;
2615 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2616 	uap->port.flags = UPF_BOOT_AUTOCONF;
2617 	uap->port.line = index;
2618 
2619 	amba_ports[index] = uap;
2620 
2621 	return 0;
2622 }
2623 
pl011_register_port(struct uart_amba_port * uap)2624 static int pl011_register_port(struct uart_amba_port *uap)
2625 {
2626 	int ret, i;
2627 
2628 	/* Ensure interrupts from this UART are masked and cleared */
2629 	pl011_write(0, uap, REG_IMSC);
2630 	pl011_write(0xffff, uap, REG_ICR);
2631 
2632 	if (!amba_reg.state) {
2633 		ret = uart_register_driver(&amba_reg);
2634 		if (ret < 0) {
2635 			dev_err(uap->port.dev,
2636 				"Failed to register AMBA-PL011 driver\n");
2637 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2638 				if (amba_ports[i] == uap)
2639 					amba_ports[i] = NULL;
2640 			return ret;
2641 		}
2642 	}
2643 
2644 	ret = uart_add_one_port(&amba_reg, &uap->port);
2645 	if (ret)
2646 		pl011_unregister_port(uap);
2647 
2648 	return ret;
2649 }
2650 
pl011_probe(struct amba_device * dev,const struct amba_id * id)2651 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2652 {
2653 	struct uart_amba_port *uap;
2654 	struct vendor_data *vendor = id->data;
2655 	int portnr, ret;
2656 
2657 	portnr = pl011_find_free_port();
2658 	if (portnr < 0)
2659 		return portnr;
2660 
2661 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2662 			   GFP_KERNEL);
2663 	if (!uap)
2664 		return -ENOMEM;
2665 
2666 	uap->clk = devm_clk_get(&dev->dev, NULL);
2667 	if (IS_ERR(uap->clk))
2668 		return PTR_ERR(uap->clk);
2669 
2670 	uap->reg_offset = vendor->reg_offset;
2671 	uap->vendor = vendor;
2672 	uap->fifosize = vendor->get_fifosize(dev);
2673 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2674 	uap->port.irq = dev->irq[0];
2675 	uap->port.ops = &amba_pl011_pops;
2676 
2677 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2678 
2679 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2680 	if (ret)
2681 		return ret;
2682 
2683 	amba_set_drvdata(dev, uap);
2684 
2685 	return pl011_register_port(uap);
2686 }
2687 
pl011_remove(struct amba_device * dev)2688 static void pl011_remove(struct amba_device *dev)
2689 {
2690 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2691 
2692 	uart_remove_one_port(&amba_reg, &uap->port);
2693 	pl011_unregister_port(uap);
2694 }
2695 
2696 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2697 static int pl011_suspend(struct device *dev)
2698 {
2699 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2700 
2701 	if (!uap)
2702 		return -EINVAL;
2703 
2704 	return uart_suspend_port(&amba_reg, &uap->port);
2705 }
2706 
pl011_resume(struct device * dev)2707 static int pl011_resume(struct device *dev)
2708 {
2709 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2710 
2711 	if (!uap)
2712 		return -EINVAL;
2713 
2714 	return uart_resume_port(&amba_reg, &uap->port);
2715 }
2716 #endif
2717 
2718 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2719 
sbsa_uart_probe(struct platform_device * pdev)2720 static int sbsa_uart_probe(struct platform_device *pdev)
2721 {
2722 	struct uart_amba_port *uap;
2723 	struct resource *r;
2724 	int portnr, ret;
2725 	int baudrate;
2726 
2727 	/*
2728 	 * Check the mandatory baud rate parameter in the DT node early
2729 	 * so that we can easily exit with the error.
2730 	 */
2731 	if (pdev->dev.of_node) {
2732 		struct device_node *np = pdev->dev.of_node;
2733 
2734 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2735 		if (ret)
2736 			return ret;
2737 	} else {
2738 		baudrate = 115200;
2739 	}
2740 
2741 	portnr = pl011_find_free_port();
2742 	if (portnr < 0)
2743 		return portnr;
2744 
2745 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2746 			   GFP_KERNEL);
2747 	if (!uap)
2748 		return -ENOMEM;
2749 
2750 	ret = platform_get_irq(pdev, 0);
2751 	if (ret < 0)
2752 		return ret;
2753 	uap->port.irq	= ret;
2754 
2755 #ifdef CONFIG_ACPI_SPCR_TABLE
2756 	if (qdf2400_e44_present) {
2757 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2758 		uap->vendor = &vendor_qdt_qdf2400_e44;
2759 	} else
2760 #endif
2761 		uap->vendor = &vendor_sbsa;
2762 
2763 	uap->reg_offset	= uap->vendor->reg_offset;
2764 	uap->fifosize	= 32;
2765 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2766 	uap->port.ops	= &sbsa_uart_pops;
2767 	uap->fixed_baud = baudrate;
2768 
2769 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2770 
2771 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2772 
2773 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2774 	if (ret)
2775 		return ret;
2776 
2777 	platform_set_drvdata(pdev, uap);
2778 
2779 	return pl011_register_port(uap);
2780 }
2781 
sbsa_uart_remove(struct platform_device * pdev)2782 static int sbsa_uart_remove(struct platform_device *pdev)
2783 {
2784 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2785 
2786 	uart_remove_one_port(&amba_reg, &uap->port);
2787 	pl011_unregister_port(uap);
2788 	return 0;
2789 }
2790 
2791 static const struct of_device_id sbsa_uart_of_match[] = {
2792 	{ .compatible = "arm,sbsa-uart", },
2793 	{},
2794 };
2795 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2796 
2797 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2798 	{ "ARMH0011", 0 },
2799 	{ "ARMHB000", 0 },
2800 	{},
2801 };
2802 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2803 
2804 static struct platform_driver arm_sbsa_uart_platform_driver = {
2805 	.probe		= sbsa_uart_probe,
2806 	.remove		= sbsa_uart_remove,
2807 	.driver	= {
2808 		.name	= "sbsa-uart",
2809 		.pm	= &pl011_dev_pm_ops,
2810 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2811 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2812 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2813 	},
2814 };
2815 
2816 static const struct amba_id pl011_ids[] = {
2817 	{
2818 		.id	= 0x00041011,
2819 		.mask	= 0x000fffff,
2820 		.data	= &vendor_arm,
2821 	},
2822 	{
2823 		.id	= 0x00380802,
2824 		.mask	= 0x00ffffff,
2825 		.data	= &vendor_st,
2826 	},
2827 	{
2828 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2829 		.mask	= 0x00ffffff,
2830 		.data	= &vendor_zte,
2831 	},
2832 	{ 0, 0 },
2833 };
2834 
2835 MODULE_DEVICE_TABLE(amba, pl011_ids);
2836 
2837 static struct amba_driver pl011_driver = {
2838 	.drv = {
2839 		.name	= "uart-pl011",
2840 		.pm	= &pl011_dev_pm_ops,
2841 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2842 	},
2843 	.id_table	= pl011_ids,
2844 	.probe		= pl011_probe,
2845 	.remove		= pl011_remove,
2846 };
2847 
pl011_init(void)2848 static int __init pl011_init(void)
2849 {
2850 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2851 
2852 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2853 		pr_warn("could not register SBSA UART platform driver\n");
2854 	return amba_driver_register(&pl011_driver);
2855 }
2856 
pl011_exit(void)2857 static void __exit pl011_exit(void)
2858 {
2859 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2860 	amba_driver_unregister(&pl011_driver);
2861 }
2862 
2863 /*
2864  * While this can be a module, if builtin it's most likely the console
2865  * So let's leave module_exit but move module_init to an earlier place
2866  */
2867 arch_initcall(pl011_init);
2868 module_exit(pl011_exit);
2869 
2870 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2871 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2872 MODULE_LICENSE("GPL");
2873