• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	if (!req) {
282 		spin_unlock_irq(&ffs->ev.waitq.lock);
283 		return -EINVAL;
284 	}
285 
286 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
287 
288 	spin_unlock_irq(&ffs->ev.waitq.lock);
289 
290 	req->buf      = data;
291 	req->length   = len;
292 
293 	/*
294 	 * UDC layer requires to provide a buffer even for ZLP, but should
295 	 * not use it at all. Let's provide some poisoned pointer to catch
296 	 * possible bug in the driver.
297 	 */
298 	if (req->buf == NULL)
299 		req->buf = (void *)0xDEADBABE;
300 
301 	reinit_completion(&ffs->ep0req_completion);
302 
303 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
304 	if (unlikely(ret < 0))
305 		return ret;
306 
307 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
308 	if (unlikely(ret)) {
309 		usb_ep_dequeue(ffs->gadget->ep0, req);
310 		return -EINTR;
311 	}
312 
313 	ffs->setup_state = FFS_NO_SETUP;
314 	return req->status ? req->status : req->actual;
315 }
316 
__ffs_ep0_stall(struct ffs_data * ffs)317 static int __ffs_ep0_stall(struct ffs_data *ffs)
318 {
319 	if (ffs->ev.can_stall) {
320 		pr_vdebug("ep0 stall\n");
321 		usb_ep_set_halt(ffs->gadget->ep0);
322 		ffs->setup_state = FFS_NO_SETUP;
323 		return -EL2HLT;
324 	} else {
325 		pr_debug("bogus ep0 stall!\n");
326 		return -ESRCH;
327 	}
328 }
329 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)330 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
331 			     size_t len, loff_t *ptr)
332 {
333 	struct ffs_data *ffs = file->private_data;
334 	ssize_t ret;
335 	char *data;
336 
337 	ENTER();
338 
339 	/* Fast check if setup was canceled */
340 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
341 		return -EIDRM;
342 
343 	/* Acquire mutex */
344 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
345 	if (unlikely(ret < 0))
346 		return ret;
347 
348 	/* Check state */
349 	switch (ffs->state) {
350 	case FFS_READ_DESCRIPTORS:
351 	case FFS_READ_STRINGS:
352 		/* Copy data */
353 		if (unlikely(len < 16)) {
354 			ret = -EINVAL;
355 			break;
356 		}
357 
358 		data = ffs_prepare_buffer(buf, len);
359 		if (IS_ERR(data)) {
360 			ret = PTR_ERR(data);
361 			break;
362 		}
363 
364 		/* Handle data */
365 		if (ffs->state == FFS_READ_DESCRIPTORS) {
366 			pr_info("read descriptors\n");
367 			ret = __ffs_data_got_descs(ffs, data, len);
368 			if (unlikely(ret < 0))
369 				break;
370 
371 			ffs->state = FFS_READ_STRINGS;
372 			ret = len;
373 		} else {
374 			pr_info("read strings\n");
375 			ret = __ffs_data_got_strings(ffs, data, len);
376 			if (unlikely(ret < 0))
377 				break;
378 
379 			ret = ffs_epfiles_create(ffs);
380 			if (unlikely(ret)) {
381 				ffs->state = FFS_CLOSING;
382 				break;
383 			}
384 
385 			ffs->state = FFS_ACTIVE;
386 			mutex_unlock(&ffs->mutex);
387 
388 			ret = ffs_ready(ffs);
389 			if (unlikely(ret < 0)) {
390 				ffs->state = FFS_CLOSING;
391 				return ret;
392 			}
393 
394 			return len;
395 		}
396 		break;
397 
398 	case FFS_ACTIVE:
399 		data = NULL;
400 		/*
401 		 * We're called from user space, we can use _irq
402 		 * rather then _irqsave
403 		 */
404 		spin_lock_irq(&ffs->ev.waitq.lock);
405 		switch (ffs_setup_state_clear_cancelled(ffs)) {
406 		case FFS_SETUP_CANCELLED:
407 			ret = -EIDRM;
408 			goto done_spin;
409 
410 		case FFS_NO_SETUP:
411 			ret = -ESRCH;
412 			goto done_spin;
413 
414 		case FFS_SETUP_PENDING:
415 			break;
416 		}
417 
418 		/* FFS_SETUP_PENDING */
419 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
420 			spin_unlock_irq(&ffs->ev.waitq.lock);
421 			ret = __ffs_ep0_stall(ffs);
422 			break;
423 		}
424 
425 		/* FFS_SETUP_PENDING and not stall */
426 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
427 
428 		spin_unlock_irq(&ffs->ev.waitq.lock);
429 
430 		data = ffs_prepare_buffer(buf, len);
431 		if (IS_ERR(data)) {
432 			ret = PTR_ERR(data);
433 			break;
434 		}
435 
436 		spin_lock_irq(&ffs->ev.waitq.lock);
437 
438 		/*
439 		 * We are guaranteed to be still in FFS_ACTIVE state
440 		 * but the state of setup could have changed from
441 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
442 		 * to check for that.  If that happened we copied data
443 		 * from user space in vain but it's unlikely.
444 		 *
445 		 * For sure we are not in FFS_NO_SETUP since this is
446 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
447 		 * transition can be performed and it's protected by
448 		 * mutex.
449 		 */
450 		if (ffs_setup_state_clear_cancelled(ffs) ==
451 		    FFS_SETUP_CANCELLED) {
452 			ret = -EIDRM;
453 done_spin:
454 			spin_unlock_irq(&ffs->ev.waitq.lock);
455 		} else {
456 			/* unlocks spinlock */
457 			ret = __ffs_ep0_queue_wait(ffs, data, len);
458 		}
459 		kfree(data);
460 		break;
461 
462 	default:
463 		ret = -EBADFD;
464 		break;
465 	}
466 
467 	mutex_unlock(&ffs->mutex);
468 	return ret;
469 }
470 
471 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)472 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
473 				     size_t n)
474 	__releases(&ffs->ev.waitq.lock)
475 {
476 	/*
477 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
478 	 * size of ffs->ev.types array (which is four) so that's how much space
479 	 * we reserve.
480 	 */
481 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
482 	const size_t size = n * sizeof *events;
483 	unsigned i = 0;
484 
485 	memset(events, 0, size);
486 
487 	do {
488 		events[i].type = ffs->ev.types[i];
489 		if (events[i].type == FUNCTIONFS_SETUP) {
490 			events[i].u.setup = ffs->ev.setup;
491 			ffs->setup_state = FFS_SETUP_PENDING;
492 		}
493 	} while (++i < n);
494 
495 	ffs->ev.count -= n;
496 	if (ffs->ev.count)
497 		memmove(ffs->ev.types, ffs->ev.types + n,
498 			ffs->ev.count * sizeof *ffs->ev.types);
499 
500 	spin_unlock_irq(&ffs->ev.waitq.lock);
501 	mutex_unlock(&ffs->mutex);
502 
503 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
504 }
505 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)506 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
507 			    size_t len, loff_t *ptr)
508 {
509 	struct ffs_data *ffs = file->private_data;
510 	char *data = NULL;
511 	size_t n;
512 	int ret;
513 
514 	ENTER();
515 
516 	/* Fast check if setup was canceled */
517 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
518 		return -EIDRM;
519 
520 	/* Acquire mutex */
521 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
522 	if (unlikely(ret < 0))
523 		return ret;
524 
525 	/* Check state */
526 	if (ffs->state != FFS_ACTIVE) {
527 		ret = -EBADFD;
528 		goto done_mutex;
529 	}
530 
531 	/*
532 	 * We're called from user space, we can use _irq rather then
533 	 * _irqsave
534 	 */
535 	spin_lock_irq(&ffs->ev.waitq.lock);
536 
537 	switch (ffs_setup_state_clear_cancelled(ffs)) {
538 	case FFS_SETUP_CANCELLED:
539 		ret = -EIDRM;
540 		break;
541 
542 	case FFS_NO_SETUP:
543 		n = len / sizeof(struct usb_functionfs_event);
544 		if (unlikely(!n)) {
545 			ret = -EINVAL;
546 			break;
547 		}
548 
549 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
550 			ret = -EAGAIN;
551 			break;
552 		}
553 
554 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
555 							ffs->ev.count)) {
556 			ret = -EINTR;
557 			break;
558 		}
559 
560 		/* unlocks spinlock */
561 		return __ffs_ep0_read_events(ffs, buf,
562 					     min(n, (size_t)ffs->ev.count));
563 
564 	case FFS_SETUP_PENDING:
565 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
566 			spin_unlock_irq(&ffs->ev.waitq.lock);
567 			ret = __ffs_ep0_stall(ffs);
568 			goto done_mutex;
569 		}
570 
571 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
572 
573 		spin_unlock_irq(&ffs->ev.waitq.lock);
574 
575 		if (likely(len)) {
576 			data = kmalloc(len, GFP_KERNEL);
577 			if (unlikely(!data)) {
578 				ret = -ENOMEM;
579 				goto done_mutex;
580 			}
581 		}
582 
583 		spin_lock_irq(&ffs->ev.waitq.lock);
584 
585 		/* See ffs_ep0_write() */
586 		if (ffs_setup_state_clear_cancelled(ffs) ==
587 		    FFS_SETUP_CANCELLED) {
588 			ret = -EIDRM;
589 			break;
590 		}
591 
592 		/* unlocks spinlock */
593 		ret = __ffs_ep0_queue_wait(ffs, data, len);
594 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
595 			ret = -EFAULT;
596 		goto done_mutex;
597 
598 	default:
599 		ret = -EBADFD;
600 		break;
601 	}
602 
603 	spin_unlock_irq(&ffs->ev.waitq.lock);
604 done_mutex:
605 	mutex_unlock(&ffs->mutex);
606 	kfree(data);
607 	return ret;
608 }
609 
ffs_ep0_open(struct inode * inode,struct file * file)610 static int ffs_ep0_open(struct inode *inode, struct file *file)
611 {
612 	struct ffs_data *ffs = inode->i_private;
613 
614 	ENTER();
615 
616 	if (unlikely(ffs->state == FFS_CLOSING))
617 		return -EBUSY;
618 
619 	file->private_data = ffs;
620 	ffs_data_opened(ffs);
621 
622 	return stream_open(inode, file);
623 }
624 
ffs_ep0_release(struct inode * inode,struct file * file)625 static int ffs_ep0_release(struct inode *inode, struct file *file)
626 {
627 	struct ffs_data *ffs = file->private_data;
628 
629 	ENTER();
630 
631 	ffs_data_closed(ffs);
632 
633 	return 0;
634 }
635 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)636 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
637 {
638 	struct ffs_data *ffs = file->private_data;
639 	struct usb_gadget *gadget = ffs->gadget;
640 	long ret;
641 
642 	ENTER();
643 
644 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
645 		struct ffs_function *func = ffs->func;
646 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
647 	} else if (gadget && gadget->ops->ioctl) {
648 		ret = gadget->ops->ioctl(gadget, code, value);
649 	} else {
650 		ret = -ENOTTY;
651 	}
652 
653 	return ret;
654 }
655 
ffs_ep0_poll(struct file * file,poll_table * wait)656 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
657 {
658 	struct ffs_data *ffs = file->private_data;
659 	__poll_t mask = EPOLLWRNORM;
660 	int ret;
661 
662 	poll_wait(file, &ffs->ev.waitq, wait);
663 
664 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
665 	if (unlikely(ret < 0))
666 		return mask;
667 
668 	switch (ffs->state) {
669 	case FFS_READ_DESCRIPTORS:
670 	case FFS_READ_STRINGS:
671 		mask |= EPOLLOUT;
672 		break;
673 
674 	case FFS_ACTIVE:
675 		switch (ffs->setup_state) {
676 		case FFS_NO_SETUP:
677 			if (ffs->ev.count)
678 				mask |= EPOLLIN;
679 			break;
680 
681 		case FFS_SETUP_PENDING:
682 		case FFS_SETUP_CANCELLED:
683 			mask |= (EPOLLIN | EPOLLOUT);
684 			break;
685 		}
686 	case FFS_CLOSING:
687 		break;
688 	case FFS_DEACTIVATED:
689 		break;
690 	}
691 
692 	mutex_unlock(&ffs->mutex);
693 
694 	return mask;
695 }
696 
697 static const struct file_operations ffs_ep0_operations = {
698 	.llseek =	no_llseek,
699 
700 	.open =		ffs_ep0_open,
701 	.write =	ffs_ep0_write,
702 	.read =		ffs_ep0_read,
703 	.release =	ffs_ep0_release,
704 	.unlocked_ioctl =	ffs_ep0_ioctl,
705 	.poll =		ffs_ep0_poll,
706 };
707 
708 
709 /* "Normal" endpoints operations ********************************************/
710 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)711 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
712 {
713 	ENTER();
714 	if (likely(req->context)) {
715 		struct ffs_ep *ep = _ep->driver_data;
716 		ep->status = req->status ? req->status : req->actual;
717 		complete(req->context);
718 	}
719 }
720 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)721 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
722 {
723 	ssize_t ret = copy_to_iter(data, data_len, iter);
724 	if (likely(ret == data_len))
725 		return ret;
726 
727 	if (unlikely(iov_iter_count(iter)))
728 		return -EFAULT;
729 
730 	/*
731 	 * Dear user space developer!
732 	 *
733 	 * TL;DR: To stop getting below error message in your kernel log, change
734 	 * user space code using functionfs to align read buffers to a max
735 	 * packet size.
736 	 *
737 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
738 	 * packet size.  When unaligned buffer is passed to functionfs, it
739 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
740 	 *
741 	 * Unfortunately, this means that host may send more data than was
742 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
743 	 * that excess data so it simply drops it.
744 	 *
745 	 * Was the buffer aligned in the first place, no such problem would
746 	 * happen.
747 	 *
748 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
749 	 * by splitting a request into multiple parts.  This splitting may still
750 	 * be a problem though so it’s likely best to align the buffer
751 	 * regardless of it being AIO or not..
752 	 *
753 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
754 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
755 	 * affected.
756 	 */
757 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
758 	       "Align read buffer size to max packet size to avoid the problem.\n",
759 	       data_len, ret);
760 
761 	return ret;
762 }
763 
764 /*
765  * allocate a virtually contiguous buffer and create a scatterlist describing it
766  * @sg_table	- pointer to a place to be filled with sg_table contents
767  * @size	- required buffer size
768  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)769 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
770 {
771 	struct page **pages;
772 	void *vaddr, *ptr;
773 	unsigned int n_pages;
774 	int i;
775 
776 	vaddr = vmalloc(sz);
777 	if (!vaddr)
778 		return NULL;
779 
780 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
781 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
782 	if (!pages) {
783 		vfree(vaddr);
784 
785 		return NULL;
786 	}
787 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
788 		pages[i] = vmalloc_to_page(ptr);
789 
790 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
791 		kvfree(pages);
792 		vfree(vaddr);
793 
794 		return NULL;
795 	}
796 	kvfree(pages);
797 
798 	return vaddr;
799 }
800 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)801 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
802 	size_t data_len)
803 {
804 	if (io_data->use_sg)
805 		return ffs_build_sg_list(&io_data->sgt, data_len);
806 
807 	return kmalloc(data_len, GFP_KERNEL);
808 }
809 
ffs_free_buffer(struct ffs_io_data * io_data)810 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
811 {
812 	if (!io_data->buf)
813 		return;
814 
815 	if (io_data->use_sg) {
816 		sg_free_table(&io_data->sgt);
817 		vfree(io_data->buf);
818 	} else {
819 		kfree(io_data->buf);
820 	}
821 }
822 
ffs_user_copy_worker(struct work_struct * work)823 static void ffs_user_copy_worker(struct work_struct *work)
824 {
825 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
826 						   work);
827 	int ret = io_data->req->status ? io_data->req->status :
828 					 io_data->req->actual;
829 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
830 	unsigned long flags;
831 
832 	if (io_data->read && ret > 0) {
833 		kthread_use_mm(io_data->mm);
834 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
835 		kthread_unuse_mm(io_data->mm);
836 	}
837 
838 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
839 
840 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
841 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
842 
843 	spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
844 	usb_ep_free_request(io_data->ep, io_data->req);
845 	io_data->req = NULL;
846 	spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
847 
848 	if (io_data->read)
849 		kfree(io_data->to_free);
850 	ffs_free_buffer(io_data);
851 	kfree(io_data);
852 }
853 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)854 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
855 					 struct usb_request *req)
856 {
857 	struct ffs_io_data *io_data = req->context;
858 	struct ffs_data *ffs = io_data->ffs;
859 
860 	ENTER();
861 
862 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
863 	queue_work(ffs->io_completion_wq, &io_data->work);
864 }
865 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)866 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
867 {
868 	/*
869 	 * See comment in struct ffs_epfile for full read_buffer pointer
870 	 * synchronisation story.
871 	 */
872 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
873 	if (buf && buf != READ_BUFFER_DROP)
874 		kfree(buf);
875 }
876 
877 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)878 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
879 					  struct iov_iter *iter)
880 {
881 	/*
882 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
883 	 * the buffer while we are using it.  See comment in struct ffs_epfile
884 	 * for full read_buffer pointer synchronisation story.
885 	 */
886 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
887 	ssize_t ret;
888 	if (!buf || buf == READ_BUFFER_DROP)
889 		return 0;
890 
891 	ret = copy_to_iter(buf->data, buf->length, iter);
892 	if (buf->length == ret) {
893 		kfree(buf);
894 		return ret;
895 	}
896 
897 	if (unlikely(iov_iter_count(iter))) {
898 		ret = -EFAULT;
899 	} else {
900 		buf->length -= ret;
901 		buf->data += ret;
902 	}
903 
904 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
905 		kfree(buf);
906 
907 	return ret;
908 }
909 
910 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)911 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
912 				      void *data, int data_len,
913 				      struct iov_iter *iter)
914 {
915 	struct ffs_buffer *buf;
916 
917 	ssize_t ret = copy_to_iter(data, data_len, iter);
918 	if (likely(data_len == ret))
919 		return ret;
920 
921 	if (unlikely(iov_iter_count(iter)))
922 		return -EFAULT;
923 
924 	/* See ffs_copy_to_iter for more context. */
925 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
926 		data_len, ret);
927 
928 	data_len -= ret;
929 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
930 	if (!buf)
931 		return -ENOMEM;
932 	buf->length = data_len;
933 	buf->data = buf->storage;
934 	memcpy(buf->storage, data + ret, data_len);
935 
936 	/*
937 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
938 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
939 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
940 	 * story.
941 	 */
942 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
943 		kfree(buf);
944 
945 	return ret;
946 }
947 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)948 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
949 {
950 	struct ffs_epfile *epfile = file->private_data;
951 	struct usb_request *req;
952 	struct ffs_ep *ep;
953 	char *data = NULL;
954 	ssize_t ret, data_len = -EINVAL;
955 	int halt;
956 
957 	/* Are we still active? */
958 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
959 		return -ENODEV;
960 
961 	/* Wait for endpoint to be enabled */
962 	ep = epfile->ep;
963 	if (!ep) {
964 		if (file->f_flags & O_NONBLOCK)
965 			return -EAGAIN;
966 
967 		ret = wait_event_interruptible(
968 				epfile->ffs->wait, (ep = epfile->ep));
969 		if (ret)
970 			return -EINTR;
971 	}
972 
973 	/* Do we halt? */
974 	halt = (!io_data->read == !epfile->in);
975 	if (halt && epfile->isoc)
976 		return -EINVAL;
977 
978 	/* We will be using request and read_buffer */
979 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
980 	if (unlikely(ret))
981 		goto error;
982 
983 	/* Allocate & copy */
984 	if (!halt) {
985 		struct usb_gadget *gadget;
986 
987 		/*
988 		 * Do we have buffered data from previous partial read?  Check
989 		 * that for synchronous case only because we do not have
990 		 * facility to ‘wake up’ a pending asynchronous read and push
991 		 * buffered data to it which we would need to make things behave
992 		 * consistently.
993 		 */
994 		if (!io_data->aio && io_data->read) {
995 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
996 			if (ret)
997 				goto error_mutex;
998 		}
999 
1000 		/*
1001 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1002 		 * before the waiting completes, so do not assign to 'gadget'
1003 		 * earlier
1004 		 */
1005 		gadget = epfile->ffs->gadget;
1006 
1007 		spin_lock_irq(&epfile->ffs->eps_lock);
1008 		/* In the meantime, endpoint got disabled or changed. */
1009 		if (epfile->ep != ep) {
1010 			ret = -ESHUTDOWN;
1011 			goto error_lock;
1012 		}
1013 		data_len = iov_iter_count(&io_data->data);
1014 		/*
1015 		 * Controller may require buffer size to be aligned to
1016 		 * maxpacketsize of an out endpoint.
1017 		 */
1018 		if (io_data->read)
1019 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1020 
1021 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1022 		spin_unlock_irq(&epfile->ffs->eps_lock);
1023 
1024 		data = ffs_alloc_buffer(io_data, data_len);
1025 		if (unlikely(!data)) {
1026 			ret = -ENOMEM;
1027 			goto error_mutex;
1028 		}
1029 		if (!io_data->read &&
1030 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1031 			ret = -EFAULT;
1032 			goto error_mutex;
1033 		}
1034 	}
1035 
1036 	spin_lock_irq(&epfile->ffs->eps_lock);
1037 
1038 	if (epfile->ep != ep) {
1039 		/* In the meantime, endpoint got disabled or changed. */
1040 		ret = -ESHUTDOWN;
1041 	} else if (halt) {
1042 		ret = usb_ep_set_halt(ep->ep);
1043 		if (!ret)
1044 			ret = -EBADMSG;
1045 	} else if (unlikely(data_len == -EINVAL)) {
1046 		/*
1047 		 * Sanity Check: even though data_len can't be used
1048 		 * uninitialized at the time I write this comment, some
1049 		 * compilers complain about this situation.
1050 		 * In order to keep the code clean from warnings, data_len is
1051 		 * being initialized to -EINVAL during its declaration, which
1052 		 * means we can't rely on compiler anymore to warn no future
1053 		 * changes won't result in data_len being used uninitialized.
1054 		 * For such reason, we're adding this redundant sanity check
1055 		 * here.
1056 		 */
1057 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1058 		ret = -EINVAL;
1059 	} else if (!io_data->aio) {
1060 		DECLARE_COMPLETION_ONSTACK(done);
1061 		bool interrupted = false;
1062 
1063 		req = ep->req;
1064 		if (io_data->use_sg) {
1065 			req->buf = NULL;
1066 			req->sg	= io_data->sgt.sgl;
1067 			req->num_sgs = io_data->sgt.nents;
1068 		} else {
1069 			req->buf = data;
1070 			req->num_sgs = 0;
1071 		}
1072 		req->length = data_len;
1073 
1074 		io_data->buf = data;
1075 
1076 		req->context  = &done;
1077 		req->complete = ffs_epfile_io_complete;
1078 
1079 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1080 		if (unlikely(ret < 0))
1081 			goto error_lock;
1082 
1083 		spin_unlock_irq(&epfile->ffs->eps_lock);
1084 
1085 		if (unlikely(wait_for_completion_interruptible(&done))) {
1086 			/*
1087 			 * To avoid race condition with ffs_epfile_io_complete,
1088 			 * dequeue the request first then check
1089 			 * status. usb_ep_dequeue API should guarantee no race
1090 			 * condition with req->complete callback.
1091 			 */
1092 			usb_ep_dequeue(ep->ep, req);
1093 			wait_for_completion(&done);
1094 			interrupted = ep->status < 0;
1095 		}
1096 
1097 		if (interrupted)
1098 			ret = -EINTR;
1099 		else if (io_data->read && ep->status > 0)
1100 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1101 						     &io_data->data);
1102 		else
1103 			ret = ep->status;
1104 		goto error_mutex;
1105 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1106 		ret = -ENOMEM;
1107 	} else {
1108 		if (io_data->use_sg) {
1109 			req->buf = NULL;
1110 			req->sg	= io_data->sgt.sgl;
1111 			req->num_sgs = io_data->sgt.nents;
1112 		} else {
1113 			req->buf = data;
1114 			req->num_sgs = 0;
1115 		}
1116 		req->length = data_len;
1117 
1118 		io_data->buf = data;
1119 		io_data->ep = ep->ep;
1120 		io_data->req = req;
1121 		io_data->ffs = epfile->ffs;
1122 
1123 		req->context  = io_data;
1124 		req->complete = ffs_epfile_async_io_complete;
1125 
1126 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1127 		if (unlikely(ret)) {
1128 			io_data->req = NULL;
1129 			usb_ep_free_request(ep->ep, req);
1130 			goto error_lock;
1131 		}
1132 
1133 		ret = -EIOCBQUEUED;
1134 		/*
1135 		 * Do not kfree the buffer in this function.  It will be freed
1136 		 * by ffs_user_copy_worker.
1137 		 */
1138 		data = NULL;
1139 	}
1140 
1141 error_lock:
1142 	spin_unlock_irq(&epfile->ffs->eps_lock);
1143 error_mutex:
1144 	mutex_unlock(&epfile->mutex);
1145 error:
1146 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1147 		ffs_free_buffer(io_data);
1148 	return ret;
1149 }
1150 
1151 static int
ffs_epfile_open(struct inode * inode,struct file * file)1152 ffs_epfile_open(struct inode *inode, struct file *file)
1153 {
1154 	struct ffs_epfile *epfile = inode->i_private;
1155 
1156 	ENTER();
1157 
1158 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1159 		return -ENODEV;
1160 
1161 	file->private_data = epfile;
1162 	ffs_data_opened(epfile->ffs);
1163 
1164 	return stream_open(inode, file);
1165 }
1166 
ffs_aio_cancel(struct kiocb * kiocb)1167 static int ffs_aio_cancel(struct kiocb *kiocb)
1168 {
1169 	struct ffs_io_data *io_data = kiocb->private;
1170 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1171 	unsigned long flags;
1172 	int value;
1173 
1174 	ENTER();
1175 
1176 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1177 
1178 	if (likely(io_data && io_data->ep && io_data->req))
1179 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1180 	else
1181 		value = -EINVAL;
1182 
1183 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1184 
1185 	return value;
1186 }
1187 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1188 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1189 {
1190 	struct ffs_io_data io_data, *p = &io_data;
1191 	ssize_t res;
1192 
1193 	ENTER();
1194 
1195 	if (!is_sync_kiocb(kiocb)) {
1196 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1197 		if (unlikely(!p))
1198 			return -ENOMEM;
1199 		p->aio = true;
1200 	} else {
1201 		memset(p, 0, sizeof(*p));
1202 		p->aio = false;
1203 	}
1204 
1205 	p->read = false;
1206 	p->kiocb = kiocb;
1207 	p->data = *from;
1208 	p->mm = current->mm;
1209 
1210 	kiocb->private = p;
1211 
1212 	if (p->aio)
1213 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1214 
1215 	res = ffs_epfile_io(kiocb->ki_filp, p);
1216 	if (res == -EIOCBQUEUED)
1217 		return res;
1218 	if (p->aio)
1219 		kfree(p);
1220 	else
1221 		*from = p->data;
1222 	return res;
1223 }
1224 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1225 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1226 {
1227 	struct ffs_io_data io_data, *p = &io_data;
1228 	ssize_t res;
1229 
1230 	ENTER();
1231 
1232 	if (!is_sync_kiocb(kiocb)) {
1233 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1234 		if (unlikely(!p))
1235 			return -ENOMEM;
1236 		p->aio = true;
1237 	} else {
1238 		memset(p, 0, sizeof(*p));
1239 		p->aio = false;
1240 	}
1241 
1242 	p->read = true;
1243 	p->kiocb = kiocb;
1244 	if (p->aio) {
1245 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1246 		if (!p->to_free) {
1247 			kfree(p);
1248 			return -ENOMEM;
1249 		}
1250 	} else {
1251 		p->data = *to;
1252 		p->to_free = NULL;
1253 	}
1254 	p->mm = current->mm;
1255 
1256 	kiocb->private = p;
1257 
1258 	if (p->aio)
1259 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1260 
1261 	res = ffs_epfile_io(kiocb->ki_filp, p);
1262 	if (res == -EIOCBQUEUED)
1263 		return res;
1264 
1265 	if (p->aio) {
1266 		kfree(p->to_free);
1267 		kfree(p);
1268 	} else {
1269 		*to = p->data;
1270 	}
1271 	return res;
1272 }
1273 
1274 static int
ffs_epfile_release(struct inode * inode,struct file * file)1275 ffs_epfile_release(struct inode *inode, struct file *file)
1276 {
1277 	struct ffs_epfile *epfile = inode->i_private;
1278 
1279 	ENTER();
1280 
1281 	__ffs_epfile_read_buffer_free(epfile);
1282 	ffs_data_closed(epfile->ffs);
1283 
1284 	return 0;
1285 }
1286 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1287 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1288 			     unsigned long value)
1289 {
1290 	struct ffs_epfile *epfile = file->private_data;
1291 	struct ffs_ep *ep;
1292 	int ret;
1293 
1294 	ENTER();
1295 
1296 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1297 		return -ENODEV;
1298 
1299 	/* Wait for endpoint to be enabled */
1300 	ep = epfile->ep;
1301 	if (!ep) {
1302 		if (file->f_flags & O_NONBLOCK)
1303 			return -EAGAIN;
1304 
1305 		ret = wait_event_interruptible(
1306 				epfile->ffs->wait, (ep = epfile->ep));
1307 		if (ret)
1308 			return -EINTR;
1309 	}
1310 
1311 	spin_lock_irq(&epfile->ffs->eps_lock);
1312 
1313 	/* In the meantime, endpoint got disabled or changed. */
1314 	if (epfile->ep != ep) {
1315 		spin_unlock_irq(&epfile->ffs->eps_lock);
1316 		return -ESHUTDOWN;
1317 	}
1318 
1319 	switch (code) {
1320 	case FUNCTIONFS_FIFO_STATUS:
1321 		ret = usb_ep_fifo_status(epfile->ep->ep);
1322 		break;
1323 	case FUNCTIONFS_FIFO_FLUSH:
1324 		usb_ep_fifo_flush(epfile->ep->ep);
1325 		ret = 0;
1326 		break;
1327 	case FUNCTIONFS_CLEAR_HALT:
1328 		ret = usb_ep_clear_halt(epfile->ep->ep);
1329 		break;
1330 	case FUNCTIONFS_ENDPOINT_REVMAP:
1331 		ret = epfile->ep->num;
1332 		break;
1333 	case FUNCTIONFS_ENDPOINT_DESC:
1334 	{
1335 		int desc_idx;
1336 		struct usb_endpoint_descriptor desc1, *desc;
1337 
1338 		switch (epfile->ffs->gadget->speed) {
1339 		case USB_SPEED_SUPER:
1340 		case USB_SPEED_SUPER_PLUS:
1341 			desc_idx = 2;
1342 			break;
1343 		case USB_SPEED_HIGH:
1344 			desc_idx = 1;
1345 			break;
1346 		default:
1347 			desc_idx = 0;
1348 		}
1349 
1350 		desc = epfile->ep->descs[desc_idx];
1351 		memcpy(&desc1, desc, desc->bLength);
1352 
1353 		spin_unlock_irq(&epfile->ffs->eps_lock);
1354 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1355 		if (ret)
1356 			ret = -EFAULT;
1357 		return ret;
1358 	}
1359 	default:
1360 		ret = -ENOTTY;
1361 	}
1362 	spin_unlock_irq(&epfile->ffs->eps_lock);
1363 
1364 	return ret;
1365 }
1366 
1367 static const struct file_operations ffs_epfile_operations = {
1368 	.llseek =	no_llseek,
1369 
1370 	.open =		ffs_epfile_open,
1371 	.write_iter =	ffs_epfile_write_iter,
1372 	.read_iter =	ffs_epfile_read_iter,
1373 	.release =	ffs_epfile_release,
1374 	.unlocked_ioctl =	ffs_epfile_ioctl,
1375 	.compat_ioctl = compat_ptr_ioctl,
1376 };
1377 
1378 
1379 /* File system and super block operations ***********************************/
1380 
1381 /*
1382  * Mounting the file system creates a controller file, used first for
1383  * function configuration then later for event monitoring.
1384  */
1385 
1386 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1387 ffs_sb_make_inode(struct super_block *sb, void *data,
1388 		  const struct file_operations *fops,
1389 		  const struct inode_operations *iops,
1390 		  struct ffs_file_perms *perms)
1391 {
1392 	struct inode *inode;
1393 
1394 	ENTER();
1395 
1396 	inode = new_inode(sb);
1397 
1398 	if (likely(inode)) {
1399 		struct timespec64 ts = current_time(inode);
1400 
1401 		inode->i_ino	 = get_next_ino();
1402 		inode->i_mode    = perms->mode;
1403 		inode->i_uid     = perms->uid;
1404 		inode->i_gid     = perms->gid;
1405 		inode->i_atime   = ts;
1406 		inode->i_mtime   = ts;
1407 		inode->i_ctime   = ts;
1408 		inode->i_private = data;
1409 		if (fops)
1410 			inode->i_fop = fops;
1411 		if (iops)
1412 			inode->i_op  = iops;
1413 	}
1414 
1415 	return inode;
1416 }
1417 
1418 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1419 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1420 					const char *name, void *data,
1421 					const struct file_operations *fops)
1422 {
1423 	struct ffs_data	*ffs = sb->s_fs_info;
1424 	struct dentry	*dentry;
1425 	struct inode	*inode;
1426 
1427 	ENTER();
1428 
1429 	dentry = d_alloc_name(sb->s_root, name);
1430 	if (unlikely(!dentry))
1431 		return NULL;
1432 
1433 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1434 	if (unlikely(!inode)) {
1435 		dput(dentry);
1436 		return NULL;
1437 	}
1438 
1439 	d_add(dentry, inode);
1440 	return dentry;
1441 }
1442 
1443 /* Super block */
1444 static const struct super_operations ffs_sb_operations = {
1445 	.statfs =	simple_statfs,
1446 	.drop_inode =	generic_delete_inode,
1447 };
1448 
1449 struct ffs_sb_fill_data {
1450 	struct ffs_file_perms perms;
1451 	umode_t root_mode;
1452 	const char *dev_name;
1453 	bool no_disconnect;
1454 	struct ffs_data *ffs_data;
1455 };
1456 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1457 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1458 {
1459 	struct ffs_sb_fill_data *data = fc->fs_private;
1460 	struct inode	*inode;
1461 	struct ffs_data	*ffs = data->ffs_data;
1462 
1463 	ENTER();
1464 
1465 	ffs->sb              = sb;
1466 	data->ffs_data       = NULL;
1467 	sb->s_fs_info        = ffs;
1468 	sb->s_blocksize      = PAGE_SIZE;
1469 	sb->s_blocksize_bits = PAGE_SHIFT;
1470 	sb->s_magic          = FUNCTIONFS_MAGIC;
1471 	sb->s_op             = &ffs_sb_operations;
1472 	sb->s_time_gran      = 1;
1473 
1474 	/* Root inode */
1475 	data->perms.mode = data->root_mode;
1476 	inode = ffs_sb_make_inode(sb, NULL,
1477 				  &simple_dir_operations,
1478 				  &simple_dir_inode_operations,
1479 				  &data->perms);
1480 	sb->s_root = d_make_root(inode);
1481 	if (unlikely(!sb->s_root))
1482 		return -ENOMEM;
1483 
1484 	/* EP0 file */
1485 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1486 					 &ffs_ep0_operations)))
1487 		return -ENOMEM;
1488 
1489 	return 0;
1490 }
1491 
1492 enum {
1493 	Opt_no_disconnect,
1494 	Opt_rmode,
1495 	Opt_fmode,
1496 	Opt_mode,
1497 	Opt_uid,
1498 	Opt_gid,
1499 };
1500 
1501 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1502 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1503 	fsparam_u32	("rmode",		Opt_rmode),
1504 	fsparam_u32	("fmode",		Opt_fmode),
1505 	fsparam_u32	("mode",		Opt_mode),
1506 	fsparam_u32	("uid",			Opt_uid),
1507 	fsparam_u32	("gid",			Opt_gid),
1508 	{}
1509 };
1510 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1511 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1512 {
1513 	struct ffs_sb_fill_data *data = fc->fs_private;
1514 	struct fs_parse_result result;
1515 	int opt;
1516 
1517 	ENTER();
1518 
1519 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1520 	if (opt < 0)
1521 		return opt;
1522 
1523 	switch (opt) {
1524 	case Opt_no_disconnect:
1525 		data->no_disconnect = result.boolean;
1526 		break;
1527 	case Opt_rmode:
1528 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1529 		break;
1530 	case Opt_fmode:
1531 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1532 		break;
1533 	case Opt_mode:
1534 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1535 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1536 		break;
1537 
1538 	case Opt_uid:
1539 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1540 		if (!uid_valid(data->perms.uid))
1541 			goto unmapped_value;
1542 		break;
1543 	case Opt_gid:
1544 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1545 		if (!gid_valid(data->perms.gid))
1546 			goto unmapped_value;
1547 		break;
1548 
1549 	default:
1550 		return -ENOPARAM;
1551 	}
1552 
1553 	return 0;
1554 
1555 unmapped_value:
1556 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1557 }
1558 
1559 /*
1560  * Set up the superblock for a mount.
1561  */
ffs_fs_get_tree(struct fs_context * fc)1562 static int ffs_fs_get_tree(struct fs_context *fc)
1563 {
1564 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1565 	struct ffs_data	*ffs;
1566 	int ret;
1567 
1568 	ENTER();
1569 
1570 	if (!fc->source)
1571 		return invalf(fc, "No source specified");
1572 
1573 	ffs = ffs_data_new(fc->source);
1574 	if (unlikely(!ffs))
1575 		return -ENOMEM;
1576 	ffs->file_perms = ctx->perms;
1577 	ffs->no_disconnect = ctx->no_disconnect;
1578 
1579 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1580 	if (unlikely(!ffs->dev_name)) {
1581 		ffs_data_put(ffs);
1582 		return -ENOMEM;
1583 	}
1584 
1585 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1586 	if (ret) {
1587 		ffs_data_put(ffs);
1588 		return ret;
1589 	}
1590 
1591 	ctx->ffs_data = ffs;
1592 	return get_tree_nodev(fc, ffs_sb_fill);
1593 }
1594 
ffs_fs_free_fc(struct fs_context * fc)1595 static void ffs_fs_free_fc(struct fs_context *fc)
1596 {
1597 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1598 
1599 	if (ctx) {
1600 		if (ctx->ffs_data) {
1601 			ffs_data_put(ctx->ffs_data);
1602 		}
1603 
1604 		kfree(ctx);
1605 	}
1606 }
1607 
1608 static const struct fs_context_operations ffs_fs_context_ops = {
1609 	.free		= ffs_fs_free_fc,
1610 	.parse_param	= ffs_fs_parse_param,
1611 	.get_tree	= ffs_fs_get_tree,
1612 };
1613 
ffs_fs_init_fs_context(struct fs_context * fc)1614 static int ffs_fs_init_fs_context(struct fs_context *fc)
1615 {
1616 	struct ffs_sb_fill_data *ctx;
1617 
1618 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1619 	if (!ctx)
1620 		return -ENOMEM;
1621 
1622 	ctx->perms.mode = S_IFREG | 0600;
1623 	ctx->perms.uid = GLOBAL_ROOT_UID;
1624 	ctx->perms.gid = GLOBAL_ROOT_GID;
1625 	ctx->root_mode = S_IFDIR | 0500;
1626 	ctx->no_disconnect = false;
1627 
1628 	fc->fs_private = ctx;
1629 	fc->ops = &ffs_fs_context_ops;
1630 	return 0;
1631 }
1632 
1633 static void
ffs_fs_kill_sb(struct super_block * sb)1634 ffs_fs_kill_sb(struct super_block *sb)
1635 {
1636 	ENTER();
1637 
1638 	kill_litter_super(sb);
1639 	if (sb->s_fs_info)
1640 		ffs_data_closed(sb->s_fs_info);
1641 }
1642 
1643 static struct file_system_type ffs_fs_type = {
1644 	.owner		= THIS_MODULE,
1645 	.name		= "functionfs",
1646 	.init_fs_context = ffs_fs_init_fs_context,
1647 	.parameters	= ffs_fs_fs_parameters,
1648 	.kill_sb	= ffs_fs_kill_sb,
1649 };
1650 MODULE_ALIAS_FS("functionfs");
1651 
1652 
1653 /* Driver's main init/cleanup functions *************************************/
1654 
functionfs_init(void)1655 static int functionfs_init(void)
1656 {
1657 	int ret;
1658 
1659 	ENTER();
1660 
1661 	ret = register_filesystem(&ffs_fs_type);
1662 	if (likely(!ret))
1663 		pr_info("file system registered\n");
1664 	else
1665 		pr_err("failed registering file system (%d)\n", ret);
1666 
1667 	return ret;
1668 }
1669 
functionfs_cleanup(void)1670 static void functionfs_cleanup(void)
1671 {
1672 	ENTER();
1673 
1674 	pr_info("unloading\n");
1675 	unregister_filesystem(&ffs_fs_type);
1676 }
1677 
1678 
1679 /* ffs_data and ffs_function construction and destruction code **************/
1680 
1681 static void ffs_data_clear(struct ffs_data *ffs);
1682 static void ffs_data_reset(struct ffs_data *ffs);
1683 
ffs_data_get(struct ffs_data * ffs)1684 static void ffs_data_get(struct ffs_data *ffs)
1685 {
1686 	ENTER();
1687 
1688 	refcount_inc(&ffs->ref);
1689 }
1690 
ffs_data_opened(struct ffs_data * ffs)1691 static void ffs_data_opened(struct ffs_data *ffs)
1692 {
1693 	ENTER();
1694 
1695 	refcount_inc(&ffs->ref);
1696 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1697 			ffs->state == FFS_DEACTIVATED) {
1698 		ffs->state = FFS_CLOSING;
1699 		ffs_data_reset(ffs);
1700 	}
1701 }
1702 
ffs_data_put(struct ffs_data * ffs)1703 static void ffs_data_put(struct ffs_data *ffs)
1704 {
1705 	ENTER();
1706 
1707 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1708 		pr_info("%s(): freeing\n", __func__);
1709 		ffs_data_clear(ffs);
1710 		ffs_release_dev(ffs->private_data);
1711 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1712 		       swait_active(&ffs->ep0req_completion.wait) ||
1713 		       waitqueue_active(&ffs->wait));
1714 		destroy_workqueue(ffs->io_completion_wq);
1715 		kfree(ffs->dev_name);
1716 		kfree(ffs);
1717 	}
1718 }
1719 
ffs_data_closed(struct ffs_data * ffs)1720 static void ffs_data_closed(struct ffs_data *ffs)
1721 {
1722 	struct ffs_epfile *epfiles;
1723 	unsigned long flags;
1724 
1725 	ENTER();
1726 
1727 	if (atomic_dec_and_test(&ffs->opened)) {
1728 		if (ffs->no_disconnect) {
1729 			ffs->state = FFS_DEACTIVATED;
1730 			spin_lock_irqsave(&ffs->eps_lock, flags);
1731 			epfiles = ffs->epfiles;
1732 			ffs->epfiles = NULL;
1733 			spin_unlock_irqrestore(&ffs->eps_lock,
1734 							flags);
1735 
1736 			if (epfiles)
1737 				ffs_epfiles_destroy(epfiles,
1738 						 ffs->eps_count);
1739 
1740 			if (ffs->setup_state == FFS_SETUP_PENDING)
1741 				__ffs_ep0_stall(ffs);
1742 		} else {
1743 			ffs->state = FFS_CLOSING;
1744 			ffs_data_reset(ffs);
1745 		}
1746 	}
1747 	if (atomic_read(&ffs->opened) < 0) {
1748 		ffs->state = FFS_CLOSING;
1749 		ffs_data_reset(ffs);
1750 	}
1751 
1752 	ffs_data_put(ffs);
1753 }
1754 
ffs_data_new(const char * dev_name)1755 static struct ffs_data *ffs_data_new(const char *dev_name)
1756 {
1757 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1758 	if (unlikely(!ffs))
1759 		return NULL;
1760 
1761 	ENTER();
1762 
1763 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1764 	if (!ffs->io_completion_wq) {
1765 		kfree(ffs);
1766 		return NULL;
1767 	}
1768 
1769 	refcount_set(&ffs->ref, 1);
1770 	atomic_set(&ffs->opened, 0);
1771 	ffs->state = FFS_READ_DESCRIPTORS;
1772 	mutex_init(&ffs->mutex);
1773 	spin_lock_init(&ffs->eps_lock);
1774 	init_waitqueue_head(&ffs->ev.waitq);
1775 	init_waitqueue_head(&ffs->wait);
1776 	init_completion(&ffs->ep0req_completion);
1777 
1778 	/* XXX REVISIT need to update it in some places, or do we? */
1779 	ffs->ev.can_stall = 1;
1780 
1781 	return ffs;
1782 }
1783 
ffs_data_clear(struct ffs_data * ffs)1784 static void ffs_data_clear(struct ffs_data *ffs)
1785 {
1786 	struct ffs_epfile *epfiles;
1787 	unsigned long flags;
1788 
1789 	ENTER();
1790 
1791 	ffs_closed(ffs);
1792 
1793 	BUG_ON(ffs->gadget);
1794 
1795 	spin_lock_irqsave(&ffs->eps_lock, flags);
1796 	epfiles = ffs->epfiles;
1797 	ffs->epfiles = NULL;
1798 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1799 
1800 	/*
1801 	 * potential race possible between ffs_func_eps_disable
1802 	 * & ffs_epfile_release therefore maintaining a local
1803 	 * copy of epfile will save us from use-after-free.
1804 	 */
1805 	if (epfiles) {
1806 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1807 		ffs->epfiles = NULL;
1808 	}
1809 
1810 	if (ffs->ffs_eventfd) {
1811 		eventfd_ctx_put(ffs->ffs_eventfd);
1812 		ffs->ffs_eventfd = NULL;
1813 	}
1814 
1815 	kfree(ffs->raw_descs_data);
1816 	kfree(ffs->raw_strings);
1817 	kfree(ffs->stringtabs);
1818 }
1819 
ffs_data_reset(struct ffs_data * ffs)1820 static void ffs_data_reset(struct ffs_data *ffs)
1821 {
1822 	ENTER();
1823 
1824 	ffs_data_clear(ffs);
1825 
1826 	ffs->raw_descs_data = NULL;
1827 	ffs->raw_descs = NULL;
1828 	ffs->raw_strings = NULL;
1829 	ffs->stringtabs = NULL;
1830 
1831 	ffs->raw_descs_length = 0;
1832 	ffs->fs_descs_count = 0;
1833 	ffs->hs_descs_count = 0;
1834 	ffs->ss_descs_count = 0;
1835 
1836 	ffs->strings_count = 0;
1837 	ffs->interfaces_count = 0;
1838 	ffs->eps_count = 0;
1839 
1840 	ffs->ev.count = 0;
1841 
1842 	ffs->state = FFS_READ_DESCRIPTORS;
1843 	ffs->setup_state = FFS_NO_SETUP;
1844 	ffs->flags = 0;
1845 
1846 	ffs->ms_os_descs_ext_prop_count = 0;
1847 	ffs->ms_os_descs_ext_prop_name_len = 0;
1848 	ffs->ms_os_descs_ext_prop_data_len = 0;
1849 }
1850 
1851 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1852 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1853 {
1854 	struct usb_gadget_strings **lang;
1855 	int first_id;
1856 
1857 	ENTER();
1858 
1859 	if (WARN_ON(ffs->state != FFS_ACTIVE
1860 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1861 		return -EBADFD;
1862 
1863 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1864 	if (unlikely(first_id < 0))
1865 		return first_id;
1866 
1867 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1868 	if (unlikely(!ffs->ep0req))
1869 		return -ENOMEM;
1870 	ffs->ep0req->complete = ffs_ep0_complete;
1871 	ffs->ep0req->context = ffs;
1872 
1873 	lang = ffs->stringtabs;
1874 	if (lang) {
1875 		for (; *lang; ++lang) {
1876 			struct usb_string *str = (*lang)->strings;
1877 			int id = first_id;
1878 			for (; str->s; ++id, ++str)
1879 				str->id = id;
1880 		}
1881 	}
1882 
1883 	ffs->gadget = cdev->gadget;
1884 	ffs_data_get(ffs);
1885 	return 0;
1886 }
1887 
functionfs_unbind(struct ffs_data * ffs)1888 static void functionfs_unbind(struct ffs_data *ffs)
1889 {
1890 	ENTER();
1891 
1892 	if (!WARN_ON(!ffs->gadget)) {
1893 		/* dequeue before freeing ep0req */
1894 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1895 		mutex_lock(&ffs->mutex);
1896 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1897 		ffs->ep0req = NULL;
1898 		ffs->gadget = NULL;
1899 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1900 		mutex_unlock(&ffs->mutex);
1901 		ffs_data_put(ffs);
1902 	}
1903 }
1904 
ffs_epfiles_create(struct ffs_data * ffs)1905 static int ffs_epfiles_create(struct ffs_data *ffs)
1906 {
1907 	struct ffs_epfile *epfile, *epfiles;
1908 	unsigned i, count;
1909 
1910 	ENTER();
1911 
1912 	count = ffs->eps_count;
1913 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1914 	if (!epfiles)
1915 		return -ENOMEM;
1916 
1917 	epfile = epfiles;
1918 	for (i = 1; i <= count; ++i, ++epfile) {
1919 		epfile->ffs = ffs;
1920 		mutex_init(&epfile->mutex);
1921 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1922 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1923 		else
1924 			sprintf(epfile->name, "ep%u", i);
1925 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1926 						 epfile,
1927 						 &ffs_epfile_operations);
1928 		if (unlikely(!epfile->dentry)) {
1929 			ffs_epfiles_destroy(epfiles, i - 1);
1930 			return -ENOMEM;
1931 		}
1932 	}
1933 
1934 	ffs->epfiles = epfiles;
1935 	return 0;
1936 }
1937 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1938 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1939 {
1940 	struct ffs_epfile *epfile = epfiles;
1941 
1942 	ENTER();
1943 
1944 	for (; count; --count, ++epfile) {
1945 		BUG_ON(mutex_is_locked(&epfile->mutex));
1946 		if (epfile->dentry) {
1947 			d_delete(epfile->dentry);
1948 			dput(epfile->dentry);
1949 			epfile->dentry = NULL;
1950 		}
1951 	}
1952 
1953 	kfree(epfiles);
1954 }
1955 
ffs_func_eps_disable(struct ffs_function * func)1956 static void ffs_func_eps_disable(struct ffs_function *func)
1957 {
1958 	struct ffs_ep *ep;
1959 	struct ffs_epfile *epfile;
1960 	unsigned short count;
1961 	unsigned long flags;
1962 
1963 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1964 	count = func->ffs->eps_count;
1965 	epfile = func->ffs->epfiles;
1966 	ep = func->eps;
1967 	while (count--) {
1968 		/* pending requests get nuked */
1969 		if (likely(ep->ep))
1970 			usb_ep_disable(ep->ep);
1971 		++ep;
1972 
1973 		if (epfile) {
1974 			epfile->ep = NULL;
1975 			__ffs_epfile_read_buffer_free(epfile);
1976 			++epfile;
1977 		}
1978 	}
1979 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1980 }
1981 
ffs_func_eps_enable(struct ffs_function * func)1982 static int ffs_func_eps_enable(struct ffs_function *func)
1983 {
1984 	struct ffs_data *ffs;
1985 	struct ffs_ep *ep;
1986 	struct ffs_epfile *epfile;
1987 	unsigned short count;
1988 	unsigned long flags;
1989 	int ret = 0;
1990 
1991 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1992 	ffs = func->ffs;
1993 	ep = func->eps;
1994 	epfile = ffs->epfiles;
1995 	count = ffs->eps_count;
1996 	while(count--) {
1997 		ep->ep->driver_data = ep;
1998 
1999 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2000 		if (ret) {
2001 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2002 					__func__, ep->ep->name, ret);
2003 			break;
2004 		}
2005 
2006 		ret = usb_ep_enable(ep->ep);
2007 		if (likely(!ret)) {
2008 			epfile->ep = ep;
2009 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2010 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2011 		} else {
2012 			break;
2013 		}
2014 
2015 		++ep;
2016 		++epfile;
2017 	}
2018 
2019 	wake_up_interruptible(&ffs->wait);
2020 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2021 
2022 	return ret;
2023 }
2024 
2025 
2026 /* Parsing and building descriptors and strings *****************************/
2027 
2028 /*
2029  * This validates if data pointed by data is a valid USB descriptor as
2030  * well as record how many interfaces, endpoints and strings are
2031  * required by given configuration.  Returns address after the
2032  * descriptor or NULL if data is invalid.
2033  */
2034 
2035 enum ffs_entity_type {
2036 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2037 };
2038 
2039 enum ffs_os_desc_type {
2040 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2041 };
2042 
2043 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2044 				   u8 *valuep,
2045 				   struct usb_descriptor_header *desc,
2046 				   void *priv);
2047 
2048 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2049 				    struct usb_os_desc_header *h, void *data,
2050 				    unsigned len, void *priv);
2051 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2052 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2053 					   ffs_entity_callback entity,
2054 					   void *priv, int *current_class)
2055 {
2056 	struct usb_descriptor_header *_ds = (void *)data;
2057 	u8 length;
2058 	int ret;
2059 
2060 	ENTER();
2061 
2062 	/* At least two bytes are required: length and type */
2063 	if (len < 2) {
2064 		pr_vdebug("descriptor too short\n");
2065 		return -EINVAL;
2066 	}
2067 
2068 	/* If we have at least as many bytes as the descriptor takes? */
2069 	length = _ds->bLength;
2070 	if (len < length) {
2071 		pr_vdebug("descriptor longer then available data\n");
2072 		return -EINVAL;
2073 	}
2074 
2075 #define __entity_check_INTERFACE(val)  1
2076 #define __entity_check_STRING(val)     (val)
2077 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2078 #define __entity(type, val) do {					\
2079 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2080 		if (unlikely(!__entity_check_ ##type(val))) {		\
2081 			pr_vdebug("invalid entity's value\n");		\
2082 			return -EINVAL;					\
2083 		}							\
2084 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2085 		if (unlikely(ret < 0)) {				\
2086 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2087 				 (val), ret);				\
2088 			return ret;					\
2089 		}							\
2090 	} while (0)
2091 
2092 	/* Parse descriptor depending on type. */
2093 	switch (_ds->bDescriptorType) {
2094 	case USB_DT_DEVICE:
2095 	case USB_DT_CONFIG:
2096 	case USB_DT_STRING:
2097 	case USB_DT_DEVICE_QUALIFIER:
2098 		/* function can't have any of those */
2099 		pr_vdebug("descriptor reserved for gadget: %d\n",
2100 		      _ds->bDescriptorType);
2101 		return -EINVAL;
2102 
2103 	case USB_DT_INTERFACE: {
2104 		struct usb_interface_descriptor *ds = (void *)_ds;
2105 		pr_vdebug("interface descriptor\n");
2106 		if (length != sizeof *ds)
2107 			goto inv_length;
2108 
2109 		__entity(INTERFACE, ds->bInterfaceNumber);
2110 		if (ds->iInterface)
2111 			__entity(STRING, ds->iInterface);
2112 		*current_class = ds->bInterfaceClass;
2113 	}
2114 		break;
2115 
2116 	case USB_DT_ENDPOINT: {
2117 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2118 		pr_vdebug("endpoint descriptor\n");
2119 		if (length != USB_DT_ENDPOINT_SIZE &&
2120 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2121 			goto inv_length;
2122 		__entity(ENDPOINT, ds->bEndpointAddress);
2123 	}
2124 		break;
2125 
2126 	case USB_TYPE_CLASS | 0x01:
2127                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2128 			pr_vdebug("hid descriptor\n");
2129 			if (length != sizeof(struct hid_descriptor))
2130 				goto inv_length;
2131 			break;
2132 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2133 			pr_vdebug("ccid descriptor\n");
2134 			if (length != sizeof(struct ccid_descriptor))
2135 				goto inv_length;
2136 			break;
2137 		} else {
2138 			pr_vdebug("unknown descriptor: %d for class %d\n",
2139 			      _ds->bDescriptorType, *current_class);
2140 			return -EINVAL;
2141 		}
2142 
2143 	case USB_DT_OTG:
2144 		if (length != sizeof(struct usb_otg_descriptor))
2145 			goto inv_length;
2146 		break;
2147 
2148 	case USB_DT_INTERFACE_ASSOCIATION: {
2149 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2150 		pr_vdebug("interface association descriptor\n");
2151 		if (length != sizeof *ds)
2152 			goto inv_length;
2153 		if (ds->iFunction)
2154 			__entity(STRING, ds->iFunction);
2155 	}
2156 		break;
2157 
2158 	case USB_DT_SS_ENDPOINT_COMP:
2159 		pr_vdebug("EP SS companion descriptor\n");
2160 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2161 			goto inv_length;
2162 		break;
2163 
2164 	case USB_DT_OTHER_SPEED_CONFIG:
2165 	case USB_DT_INTERFACE_POWER:
2166 	case USB_DT_DEBUG:
2167 	case USB_DT_SECURITY:
2168 	case USB_DT_CS_RADIO_CONTROL:
2169 		/* TODO */
2170 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2171 		return -EINVAL;
2172 
2173 	default:
2174 		/* We should never be here */
2175 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2176 		return -EINVAL;
2177 
2178 inv_length:
2179 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2180 			  _ds->bLength, _ds->bDescriptorType);
2181 		return -EINVAL;
2182 	}
2183 
2184 #undef __entity
2185 #undef __entity_check_DESCRIPTOR
2186 #undef __entity_check_INTERFACE
2187 #undef __entity_check_STRING
2188 #undef __entity_check_ENDPOINT
2189 
2190 	return length;
2191 }
2192 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2193 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2194 				     ffs_entity_callback entity, void *priv)
2195 {
2196 	const unsigned _len = len;
2197 	unsigned long num = 0;
2198 	int current_class = -1;
2199 
2200 	ENTER();
2201 
2202 	for (;;) {
2203 		int ret;
2204 
2205 		if (num == count)
2206 			data = NULL;
2207 
2208 		/* Record "descriptor" entity */
2209 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2210 		if (unlikely(ret < 0)) {
2211 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2212 				 num, ret);
2213 			return ret;
2214 		}
2215 
2216 		if (!data)
2217 			return _len - len;
2218 
2219 		ret = ffs_do_single_desc(data, len, entity, priv,
2220 			&current_class);
2221 		if (unlikely(ret < 0)) {
2222 			pr_debug("%s returns %d\n", __func__, ret);
2223 			return ret;
2224 		}
2225 
2226 		len -= ret;
2227 		data += ret;
2228 		++num;
2229 	}
2230 }
2231 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2232 static int __ffs_data_do_entity(enum ffs_entity_type type,
2233 				u8 *valuep, struct usb_descriptor_header *desc,
2234 				void *priv)
2235 {
2236 	struct ffs_desc_helper *helper = priv;
2237 	struct usb_endpoint_descriptor *d;
2238 
2239 	ENTER();
2240 
2241 	switch (type) {
2242 	case FFS_DESCRIPTOR:
2243 		break;
2244 
2245 	case FFS_INTERFACE:
2246 		/*
2247 		 * Interfaces are indexed from zero so if we
2248 		 * encountered interface "n" then there are at least
2249 		 * "n+1" interfaces.
2250 		 */
2251 		if (*valuep >= helper->interfaces_count)
2252 			helper->interfaces_count = *valuep + 1;
2253 		break;
2254 
2255 	case FFS_STRING:
2256 		/*
2257 		 * Strings are indexed from 1 (0 is reserved
2258 		 * for languages list)
2259 		 */
2260 		if (*valuep > helper->ffs->strings_count)
2261 			helper->ffs->strings_count = *valuep;
2262 		break;
2263 
2264 	case FFS_ENDPOINT:
2265 		d = (void *)desc;
2266 		helper->eps_count++;
2267 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2268 			return -EINVAL;
2269 		/* Check if descriptors for any speed were already parsed */
2270 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2271 			helper->ffs->eps_addrmap[helper->eps_count] =
2272 				d->bEndpointAddress;
2273 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2274 				d->bEndpointAddress)
2275 			return -EINVAL;
2276 		break;
2277 	}
2278 
2279 	return 0;
2280 }
2281 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2282 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2283 				   struct usb_os_desc_header *desc)
2284 {
2285 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2286 	u16 w_index = le16_to_cpu(desc->wIndex);
2287 
2288 	if (bcd_version != 1) {
2289 		pr_vdebug("unsupported os descriptors version: %d",
2290 			  bcd_version);
2291 		return -EINVAL;
2292 	}
2293 	switch (w_index) {
2294 	case 0x4:
2295 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2296 		break;
2297 	case 0x5:
2298 		*next_type = FFS_OS_DESC_EXT_PROP;
2299 		break;
2300 	default:
2301 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2302 		return -EINVAL;
2303 	}
2304 
2305 	return sizeof(*desc);
2306 }
2307 
2308 /*
2309  * Process all extended compatibility/extended property descriptors
2310  * of a feature descriptor
2311  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2312 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2313 					      enum ffs_os_desc_type type,
2314 					      u16 feature_count,
2315 					      ffs_os_desc_callback entity,
2316 					      void *priv,
2317 					      struct usb_os_desc_header *h)
2318 {
2319 	int ret;
2320 	const unsigned _len = len;
2321 
2322 	ENTER();
2323 
2324 	/* loop over all ext compat/ext prop descriptors */
2325 	while (feature_count--) {
2326 		ret = entity(type, h, data, len, priv);
2327 		if (unlikely(ret < 0)) {
2328 			pr_debug("bad OS descriptor, type: %d\n", type);
2329 			return ret;
2330 		}
2331 		data += ret;
2332 		len -= ret;
2333 	}
2334 	return _len - len;
2335 }
2336 
2337 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2338 static int __must_check ffs_do_os_descs(unsigned count,
2339 					char *data, unsigned len,
2340 					ffs_os_desc_callback entity, void *priv)
2341 {
2342 	const unsigned _len = len;
2343 	unsigned long num = 0;
2344 
2345 	ENTER();
2346 
2347 	for (num = 0; num < count; ++num) {
2348 		int ret;
2349 		enum ffs_os_desc_type type;
2350 		u16 feature_count;
2351 		struct usb_os_desc_header *desc = (void *)data;
2352 
2353 		if (len < sizeof(*desc))
2354 			return -EINVAL;
2355 
2356 		/*
2357 		 * Record "descriptor" entity.
2358 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2359 		 * Move the data pointer to the beginning of extended
2360 		 * compatibilities proper or extended properties proper
2361 		 * portions of the data
2362 		 */
2363 		if (le32_to_cpu(desc->dwLength) > len)
2364 			return -EINVAL;
2365 
2366 		ret = __ffs_do_os_desc_header(&type, desc);
2367 		if (unlikely(ret < 0)) {
2368 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2369 				 num, ret);
2370 			return ret;
2371 		}
2372 		/*
2373 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2374 		 */
2375 		feature_count = le16_to_cpu(desc->wCount);
2376 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2377 		    (feature_count > 255 || desc->Reserved))
2378 				return -EINVAL;
2379 		len -= ret;
2380 		data += ret;
2381 
2382 		/*
2383 		 * Process all function/property descriptors
2384 		 * of this Feature Descriptor
2385 		 */
2386 		ret = ffs_do_single_os_desc(data, len, type,
2387 					    feature_count, entity, priv, desc);
2388 		if (unlikely(ret < 0)) {
2389 			pr_debug("%s returns %d\n", __func__, ret);
2390 			return ret;
2391 		}
2392 
2393 		len -= ret;
2394 		data += ret;
2395 	}
2396 	return _len - len;
2397 }
2398 
2399 /*
2400  * Validate contents of the buffer from userspace related to OS descriptors.
2401  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2402 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2403 				 struct usb_os_desc_header *h, void *data,
2404 				 unsigned len, void *priv)
2405 {
2406 	struct ffs_data *ffs = priv;
2407 	u8 length;
2408 
2409 	ENTER();
2410 
2411 	switch (type) {
2412 	case FFS_OS_DESC_EXT_COMPAT: {
2413 		struct usb_ext_compat_desc *d = data;
2414 		int i;
2415 
2416 		if (len < sizeof(*d) ||
2417 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2418 			return -EINVAL;
2419 		if (d->Reserved1 != 1) {
2420 			/*
2421 			 * According to the spec, Reserved1 must be set to 1
2422 			 * but older kernels incorrectly rejected non-zero
2423 			 * values.  We fix it here to avoid returning EINVAL
2424 			 * in response to values we used to accept.
2425 			 */
2426 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2427 			d->Reserved1 = 1;
2428 		}
2429 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2430 			if (d->Reserved2[i])
2431 				return -EINVAL;
2432 
2433 		length = sizeof(struct usb_ext_compat_desc);
2434 	}
2435 		break;
2436 	case FFS_OS_DESC_EXT_PROP: {
2437 		struct usb_ext_prop_desc *d = data;
2438 		u32 type, pdl;
2439 		u16 pnl;
2440 
2441 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2442 			return -EINVAL;
2443 		length = le32_to_cpu(d->dwSize);
2444 		if (len < length)
2445 			return -EINVAL;
2446 		type = le32_to_cpu(d->dwPropertyDataType);
2447 		if (type < USB_EXT_PROP_UNICODE ||
2448 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2449 			pr_vdebug("unsupported os descriptor property type: %d",
2450 				  type);
2451 			return -EINVAL;
2452 		}
2453 		pnl = le16_to_cpu(d->wPropertyNameLength);
2454 		if (length < 14 + pnl) {
2455 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2456 				  length, pnl, type);
2457 			return -EINVAL;
2458 		}
2459 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2460 		if (length != 14 + pnl + pdl) {
2461 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2462 				  length, pnl, pdl, type);
2463 			return -EINVAL;
2464 		}
2465 		++ffs->ms_os_descs_ext_prop_count;
2466 		/* property name reported to the host as "WCHAR"s */
2467 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2468 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2469 	}
2470 		break;
2471 	default:
2472 		pr_vdebug("unknown descriptor: %d\n", type);
2473 		return -EINVAL;
2474 	}
2475 	return length;
2476 }
2477 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2478 static int __ffs_data_got_descs(struct ffs_data *ffs,
2479 				char *const _data, size_t len)
2480 {
2481 	char *data = _data, *raw_descs;
2482 	unsigned os_descs_count = 0, counts[3], flags;
2483 	int ret = -EINVAL, i;
2484 	struct ffs_desc_helper helper;
2485 
2486 	ENTER();
2487 
2488 	if (get_unaligned_le32(data + 4) != len)
2489 		goto error;
2490 
2491 	switch (get_unaligned_le32(data)) {
2492 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2493 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2494 		data += 8;
2495 		len  -= 8;
2496 		break;
2497 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2498 		flags = get_unaligned_le32(data + 8);
2499 		ffs->user_flags = flags;
2500 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2501 			      FUNCTIONFS_HAS_HS_DESC |
2502 			      FUNCTIONFS_HAS_SS_DESC |
2503 			      FUNCTIONFS_HAS_MS_OS_DESC |
2504 			      FUNCTIONFS_VIRTUAL_ADDR |
2505 			      FUNCTIONFS_EVENTFD |
2506 			      FUNCTIONFS_ALL_CTRL_RECIP |
2507 			      FUNCTIONFS_CONFIG0_SETUP)) {
2508 			ret = -ENOSYS;
2509 			goto error;
2510 		}
2511 		data += 12;
2512 		len  -= 12;
2513 		break;
2514 	default:
2515 		goto error;
2516 	}
2517 
2518 	if (flags & FUNCTIONFS_EVENTFD) {
2519 		if (len < 4)
2520 			goto error;
2521 		ffs->ffs_eventfd =
2522 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2523 		if (IS_ERR(ffs->ffs_eventfd)) {
2524 			ret = PTR_ERR(ffs->ffs_eventfd);
2525 			ffs->ffs_eventfd = NULL;
2526 			goto error;
2527 		}
2528 		data += 4;
2529 		len  -= 4;
2530 	}
2531 
2532 	/* Read fs_count, hs_count and ss_count (if present) */
2533 	for (i = 0; i < 3; ++i) {
2534 		if (!(flags & (1 << i))) {
2535 			counts[i] = 0;
2536 		} else if (len < 4) {
2537 			goto error;
2538 		} else {
2539 			counts[i] = get_unaligned_le32(data);
2540 			data += 4;
2541 			len  -= 4;
2542 		}
2543 	}
2544 	if (flags & (1 << i)) {
2545 		if (len < 4) {
2546 			goto error;
2547 		}
2548 		os_descs_count = get_unaligned_le32(data);
2549 		data += 4;
2550 		len -= 4;
2551 	}
2552 
2553 	/* Read descriptors */
2554 	raw_descs = data;
2555 	helper.ffs = ffs;
2556 	for (i = 0; i < 3; ++i) {
2557 		if (!counts[i])
2558 			continue;
2559 		helper.interfaces_count = 0;
2560 		helper.eps_count = 0;
2561 		ret = ffs_do_descs(counts[i], data, len,
2562 				   __ffs_data_do_entity, &helper);
2563 		if (ret < 0)
2564 			goto error;
2565 		if (!ffs->eps_count && !ffs->interfaces_count) {
2566 			ffs->eps_count = helper.eps_count;
2567 			ffs->interfaces_count = helper.interfaces_count;
2568 		} else {
2569 			if (ffs->eps_count != helper.eps_count) {
2570 				ret = -EINVAL;
2571 				goto error;
2572 			}
2573 			if (ffs->interfaces_count != helper.interfaces_count) {
2574 				ret = -EINVAL;
2575 				goto error;
2576 			}
2577 		}
2578 		data += ret;
2579 		len  -= ret;
2580 	}
2581 	if (os_descs_count) {
2582 		ret = ffs_do_os_descs(os_descs_count, data, len,
2583 				      __ffs_data_do_os_desc, ffs);
2584 		if (ret < 0)
2585 			goto error;
2586 		data += ret;
2587 		len -= ret;
2588 	}
2589 
2590 	if (raw_descs == data || len) {
2591 		ret = -EINVAL;
2592 		goto error;
2593 	}
2594 
2595 	ffs->raw_descs_data	= _data;
2596 	ffs->raw_descs		= raw_descs;
2597 	ffs->raw_descs_length	= data - raw_descs;
2598 	ffs->fs_descs_count	= counts[0];
2599 	ffs->hs_descs_count	= counts[1];
2600 	ffs->ss_descs_count	= counts[2];
2601 	ffs->ms_os_descs_count	= os_descs_count;
2602 
2603 	return 0;
2604 
2605 error:
2606 	kfree(_data);
2607 	return ret;
2608 }
2609 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2610 static int __ffs_data_got_strings(struct ffs_data *ffs,
2611 				  char *const _data, size_t len)
2612 {
2613 	u32 str_count, needed_count, lang_count;
2614 	struct usb_gadget_strings **stringtabs, *t;
2615 	const char *data = _data;
2616 	struct usb_string *s;
2617 
2618 	ENTER();
2619 
2620 	if (unlikely(len < 16 ||
2621 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2622 		     get_unaligned_le32(data + 4) != len))
2623 		goto error;
2624 	str_count  = get_unaligned_le32(data + 8);
2625 	lang_count = get_unaligned_le32(data + 12);
2626 
2627 	/* if one is zero the other must be zero */
2628 	if (unlikely(!str_count != !lang_count))
2629 		goto error;
2630 
2631 	/* Do we have at least as many strings as descriptors need? */
2632 	needed_count = ffs->strings_count;
2633 	if (unlikely(str_count < needed_count))
2634 		goto error;
2635 
2636 	/*
2637 	 * If we don't need any strings just return and free all
2638 	 * memory.
2639 	 */
2640 	if (!needed_count) {
2641 		kfree(_data);
2642 		return 0;
2643 	}
2644 
2645 	/* Allocate everything in one chunk so there's less maintenance. */
2646 	{
2647 		unsigned i = 0;
2648 		vla_group(d);
2649 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2650 			lang_count + 1);
2651 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2652 		vla_item(d, struct usb_string, strings,
2653 			lang_count*(needed_count+1));
2654 
2655 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2656 
2657 		if (unlikely(!vlabuf)) {
2658 			kfree(_data);
2659 			return -ENOMEM;
2660 		}
2661 
2662 		/* Initialize the VLA pointers */
2663 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2664 		t = vla_ptr(vlabuf, d, stringtab);
2665 		i = lang_count;
2666 		do {
2667 			*stringtabs++ = t++;
2668 		} while (--i);
2669 		*stringtabs = NULL;
2670 
2671 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2672 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2673 		t = vla_ptr(vlabuf, d, stringtab);
2674 		s = vla_ptr(vlabuf, d, strings);
2675 	}
2676 
2677 	/* For each language */
2678 	data += 16;
2679 	len -= 16;
2680 
2681 	do { /* lang_count > 0 so we can use do-while */
2682 		unsigned needed = needed_count;
2683 		u32 str_per_lang = str_count;
2684 
2685 		if (unlikely(len < 3))
2686 			goto error_free;
2687 		t->language = get_unaligned_le16(data);
2688 		t->strings  = s;
2689 		++t;
2690 
2691 		data += 2;
2692 		len -= 2;
2693 
2694 		/* For each string */
2695 		do { /* str_count > 0 so we can use do-while */
2696 			size_t length = strnlen(data, len);
2697 
2698 			if (unlikely(length == len))
2699 				goto error_free;
2700 
2701 			/*
2702 			 * User may provide more strings then we need,
2703 			 * if that's the case we simply ignore the
2704 			 * rest
2705 			 */
2706 			if (likely(needed)) {
2707 				/*
2708 				 * s->id will be set while adding
2709 				 * function to configuration so for
2710 				 * now just leave garbage here.
2711 				 */
2712 				s->s = data;
2713 				--needed;
2714 				++s;
2715 			}
2716 
2717 			data += length + 1;
2718 			len -= length + 1;
2719 		} while (--str_per_lang);
2720 
2721 		s->id = 0;   /* terminator */
2722 		s->s = NULL;
2723 		++s;
2724 
2725 	} while (--lang_count);
2726 
2727 	/* Some garbage left? */
2728 	if (unlikely(len))
2729 		goto error_free;
2730 
2731 	/* Done! */
2732 	ffs->stringtabs = stringtabs;
2733 	ffs->raw_strings = _data;
2734 
2735 	return 0;
2736 
2737 error_free:
2738 	kfree(stringtabs);
2739 error:
2740 	kfree(_data);
2741 	return -EINVAL;
2742 }
2743 
2744 
2745 /* Events handling and management *******************************************/
2746 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2747 static void __ffs_event_add(struct ffs_data *ffs,
2748 			    enum usb_functionfs_event_type type)
2749 {
2750 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2751 	int neg = 0;
2752 
2753 	/*
2754 	 * Abort any unhandled setup
2755 	 *
2756 	 * We do not need to worry about some cmpxchg() changing value
2757 	 * of ffs->setup_state without holding the lock because when
2758 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2759 	 * the source does nothing.
2760 	 */
2761 	if (ffs->setup_state == FFS_SETUP_PENDING)
2762 		ffs->setup_state = FFS_SETUP_CANCELLED;
2763 
2764 	/*
2765 	 * Logic of this function guarantees that there are at most four pending
2766 	 * evens on ffs->ev.types queue.  This is important because the queue
2767 	 * has space for four elements only and __ffs_ep0_read_events function
2768 	 * depends on that limit as well.  If more event types are added, those
2769 	 * limits have to be revisited or guaranteed to still hold.
2770 	 */
2771 	switch (type) {
2772 	case FUNCTIONFS_RESUME:
2773 		rem_type2 = FUNCTIONFS_SUSPEND;
2774 		fallthrough;
2775 	case FUNCTIONFS_SUSPEND:
2776 	case FUNCTIONFS_SETUP:
2777 		rem_type1 = type;
2778 		/* Discard all similar events */
2779 		break;
2780 
2781 	case FUNCTIONFS_BIND:
2782 	case FUNCTIONFS_UNBIND:
2783 	case FUNCTIONFS_DISABLE:
2784 	case FUNCTIONFS_ENABLE:
2785 		/* Discard everything other then power management. */
2786 		rem_type1 = FUNCTIONFS_SUSPEND;
2787 		rem_type2 = FUNCTIONFS_RESUME;
2788 		neg = 1;
2789 		break;
2790 
2791 	default:
2792 		WARN(1, "%d: unknown event, this should not happen\n", type);
2793 		return;
2794 	}
2795 
2796 	{
2797 		u8 *ev  = ffs->ev.types, *out = ev;
2798 		unsigned n = ffs->ev.count;
2799 		for (; n; --n, ++ev)
2800 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2801 				*out++ = *ev;
2802 			else
2803 				pr_vdebug("purging event %d\n", *ev);
2804 		ffs->ev.count = out - ffs->ev.types;
2805 	}
2806 
2807 	pr_vdebug("adding event %d\n", type);
2808 	ffs->ev.types[ffs->ev.count++] = type;
2809 	wake_up_locked(&ffs->ev.waitq);
2810 	if (ffs->ffs_eventfd)
2811 		eventfd_signal(ffs->ffs_eventfd, 1);
2812 }
2813 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2814 static void ffs_event_add(struct ffs_data *ffs,
2815 			  enum usb_functionfs_event_type type)
2816 {
2817 	unsigned long flags;
2818 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2819 	__ffs_event_add(ffs, type);
2820 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2821 }
2822 
2823 /* Bind/unbind USB function hooks *******************************************/
2824 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2825 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2826 {
2827 	int i;
2828 
2829 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2830 		if (ffs->eps_addrmap[i] == endpoint_address)
2831 			return i;
2832 	return -ENOENT;
2833 }
2834 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2835 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2836 				    struct usb_descriptor_header *desc,
2837 				    void *priv)
2838 {
2839 	struct usb_endpoint_descriptor *ds = (void *)desc;
2840 	struct ffs_function *func = priv;
2841 	struct ffs_ep *ffs_ep;
2842 	unsigned ep_desc_id;
2843 	int idx;
2844 	static const char *speed_names[] = { "full", "high", "super" };
2845 
2846 	if (type != FFS_DESCRIPTOR)
2847 		return 0;
2848 
2849 	/*
2850 	 * If ss_descriptors is not NULL, we are reading super speed
2851 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2852 	 * speed descriptors; otherwise, we are reading full speed
2853 	 * descriptors.
2854 	 */
2855 	if (func->function.ss_descriptors) {
2856 		ep_desc_id = 2;
2857 		func->function.ss_descriptors[(long)valuep] = desc;
2858 	} else if (func->function.hs_descriptors) {
2859 		ep_desc_id = 1;
2860 		func->function.hs_descriptors[(long)valuep] = desc;
2861 	} else {
2862 		ep_desc_id = 0;
2863 		func->function.fs_descriptors[(long)valuep]    = desc;
2864 	}
2865 
2866 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2867 		return 0;
2868 
2869 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2870 	if (idx < 0)
2871 		return idx;
2872 
2873 	ffs_ep = func->eps + idx;
2874 
2875 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2876 		pr_err("two %sspeed descriptors for EP %d\n",
2877 			  speed_names[ep_desc_id],
2878 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2879 		return -EINVAL;
2880 	}
2881 	ffs_ep->descs[ep_desc_id] = ds;
2882 
2883 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2884 	if (ffs_ep->ep) {
2885 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2886 		if (!ds->wMaxPacketSize)
2887 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2888 	} else {
2889 		struct usb_request *req;
2890 		struct usb_ep *ep;
2891 		u8 bEndpointAddress;
2892 		u16 wMaxPacketSize;
2893 
2894 		/*
2895 		 * We back up bEndpointAddress because autoconfig overwrites
2896 		 * it with physical endpoint address.
2897 		 */
2898 		bEndpointAddress = ds->bEndpointAddress;
2899 		/*
2900 		 * We back up wMaxPacketSize because autoconfig treats
2901 		 * endpoint descriptors as if they were full speed.
2902 		 */
2903 		wMaxPacketSize = ds->wMaxPacketSize;
2904 		pr_vdebug("autoconfig\n");
2905 		ep = usb_ep_autoconfig(func->gadget, ds);
2906 		if (unlikely(!ep))
2907 			return -ENOTSUPP;
2908 		ep->driver_data = func->eps + idx;
2909 
2910 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2911 		if (unlikely(!req))
2912 			return -ENOMEM;
2913 
2914 		ffs_ep->ep  = ep;
2915 		ffs_ep->req = req;
2916 		func->eps_revmap[ds->bEndpointAddress &
2917 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2918 		/*
2919 		 * If we use virtual address mapping, we restore
2920 		 * original bEndpointAddress value.
2921 		 */
2922 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2923 			ds->bEndpointAddress = bEndpointAddress;
2924 		/*
2925 		 * Restore wMaxPacketSize which was potentially
2926 		 * overwritten by autoconfig.
2927 		 */
2928 		ds->wMaxPacketSize = wMaxPacketSize;
2929 	}
2930 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2931 
2932 	return 0;
2933 }
2934 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2935 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2936 				   struct usb_descriptor_header *desc,
2937 				   void *priv)
2938 {
2939 	struct ffs_function *func = priv;
2940 	unsigned idx;
2941 	u8 newValue;
2942 
2943 	switch (type) {
2944 	default:
2945 	case FFS_DESCRIPTOR:
2946 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2947 		return 0;
2948 
2949 	case FFS_INTERFACE:
2950 		idx = *valuep;
2951 		if (func->interfaces_nums[idx] < 0) {
2952 			int id = usb_interface_id(func->conf, &func->function);
2953 			if (unlikely(id < 0))
2954 				return id;
2955 			func->interfaces_nums[idx] = id;
2956 		}
2957 		newValue = func->interfaces_nums[idx];
2958 		break;
2959 
2960 	case FFS_STRING:
2961 		/* String' IDs are allocated when fsf_data is bound to cdev */
2962 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2963 		break;
2964 
2965 	case FFS_ENDPOINT:
2966 		/*
2967 		 * USB_DT_ENDPOINT are handled in
2968 		 * __ffs_func_bind_do_descs().
2969 		 */
2970 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2971 			return 0;
2972 
2973 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2974 		if (unlikely(!func->eps[idx].ep))
2975 			return -EINVAL;
2976 
2977 		{
2978 			struct usb_endpoint_descriptor **descs;
2979 			descs = func->eps[idx].descs;
2980 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2981 		}
2982 		break;
2983 	}
2984 
2985 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2986 	*valuep = newValue;
2987 	return 0;
2988 }
2989 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2990 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2991 				      struct usb_os_desc_header *h, void *data,
2992 				      unsigned len, void *priv)
2993 {
2994 	struct ffs_function *func = priv;
2995 	u8 length = 0;
2996 
2997 	switch (type) {
2998 	case FFS_OS_DESC_EXT_COMPAT: {
2999 		struct usb_ext_compat_desc *desc = data;
3000 		struct usb_os_desc_table *t;
3001 
3002 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3003 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3004 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3005 		       ARRAY_SIZE(desc->CompatibleID) +
3006 		       ARRAY_SIZE(desc->SubCompatibleID));
3007 		length = sizeof(*desc);
3008 	}
3009 		break;
3010 	case FFS_OS_DESC_EXT_PROP: {
3011 		struct usb_ext_prop_desc *desc = data;
3012 		struct usb_os_desc_table *t;
3013 		struct usb_os_desc_ext_prop *ext_prop;
3014 		char *ext_prop_name;
3015 		char *ext_prop_data;
3016 
3017 		t = &func->function.os_desc_table[h->interface];
3018 		t->if_id = func->interfaces_nums[h->interface];
3019 
3020 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3021 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3022 
3023 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3024 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3025 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3026 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3027 		length = ext_prop->name_len + ext_prop->data_len + 14;
3028 
3029 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3030 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3031 			ext_prop->name_len;
3032 
3033 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3034 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3035 			ext_prop->data_len;
3036 		memcpy(ext_prop_data,
3037 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3038 		       ext_prop->data_len);
3039 		/* unicode data reported to the host as "WCHAR"s */
3040 		switch (ext_prop->type) {
3041 		case USB_EXT_PROP_UNICODE:
3042 		case USB_EXT_PROP_UNICODE_ENV:
3043 		case USB_EXT_PROP_UNICODE_LINK:
3044 		case USB_EXT_PROP_UNICODE_MULTI:
3045 			ext_prop->data_len *= 2;
3046 			break;
3047 		}
3048 		ext_prop->data = ext_prop_data;
3049 
3050 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3051 		       ext_prop->name_len);
3052 		/* property name reported to the host as "WCHAR"s */
3053 		ext_prop->name_len *= 2;
3054 		ext_prop->name = ext_prop_name;
3055 
3056 		t->os_desc->ext_prop_len +=
3057 			ext_prop->name_len + ext_prop->data_len + 14;
3058 		++t->os_desc->ext_prop_count;
3059 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3060 	}
3061 		break;
3062 	default:
3063 		pr_vdebug("unknown descriptor: %d\n", type);
3064 	}
3065 
3066 	return length;
3067 }
3068 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3069 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3070 						struct usb_configuration *c)
3071 {
3072 	struct ffs_function *func = ffs_func_from_usb(f);
3073 	struct f_fs_opts *ffs_opts =
3074 		container_of(f->fi, struct f_fs_opts, func_inst);
3075 	struct ffs_data *ffs_data;
3076 	int ret;
3077 
3078 	ENTER();
3079 
3080 	/*
3081 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3082 	 * which already uses locking; taking the same lock here would
3083 	 * cause a deadlock.
3084 	 *
3085 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3086 	 */
3087 	if (!ffs_opts->no_configfs)
3088 		ffs_dev_lock();
3089 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3090 	ffs_data = ffs_opts->dev->ffs_data;
3091 	if (!ffs_opts->no_configfs)
3092 		ffs_dev_unlock();
3093 	if (ret)
3094 		return ERR_PTR(ret);
3095 
3096 	func->ffs = ffs_data;
3097 	func->conf = c;
3098 	func->gadget = c->cdev->gadget;
3099 
3100 	/*
3101 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3102 	 * configurations are bound in sequence with list_for_each_entry,
3103 	 * in each configuration its functions are bound in sequence
3104 	 * with list_for_each_entry, so we assume no race condition
3105 	 * with regard to ffs_opts->bound access
3106 	 */
3107 	if (!ffs_opts->refcnt) {
3108 		ret = functionfs_bind(func->ffs, c->cdev);
3109 		if (ret)
3110 			return ERR_PTR(ret);
3111 	}
3112 	ffs_opts->refcnt++;
3113 	func->function.strings = func->ffs->stringtabs;
3114 
3115 	return ffs_opts;
3116 }
3117 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3118 static int _ffs_func_bind(struct usb_configuration *c,
3119 			  struct usb_function *f)
3120 {
3121 	struct ffs_function *func = ffs_func_from_usb(f);
3122 	struct ffs_data *ffs = func->ffs;
3123 
3124 	const int full = !!func->ffs->fs_descs_count;
3125 	const int high = !!func->ffs->hs_descs_count;
3126 	const int super = !!func->ffs->ss_descs_count;
3127 
3128 	int fs_len, hs_len, ss_len, ret, i;
3129 	struct ffs_ep *eps_ptr;
3130 
3131 	/* Make it a single chunk, less management later on */
3132 	vla_group(d);
3133 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3134 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3135 		full ? ffs->fs_descs_count + 1 : 0);
3136 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3137 		high ? ffs->hs_descs_count + 1 : 0);
3138 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3139 		super ? ffs->ss_descs_count + 1 : 0);
3140 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3141 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3142 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3143 	vla_item_with_sz(d, char[16], ext_compat,
3144 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3145 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3146 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3147 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3148 			 ffs->ms_os_descs_ext_prop_count);
3149 	vla_item_with_sz(d, char, ext_prop_name,
3150 			 ffs->ms_os_descs_ext_prop_name_len);
3151 	vla_item_with_sz(d, char, ext_prop_data,
3152 			 ffs->ms_os_descs_ext_prop_data_len);
3153 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3154 	char *vlabuf;
3155 
3156 	ENTER();
3157 
3158 	/* Has descriptors only for speeds gadget does not support */
3159 	if (unlikely(!(full | high | super)))
3160 		return -ENOTSUPP;
3161 
3162 	/* Allocate a single chunk, less management later on */
3163 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3164 	if (unlikely(!vlabuf))
3165 		return -ENOMEM;
3166 
3167 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3168 	ffs->ms_os_descs_ext_prop_name_avail =
3169 		vla_ptr(vlabuf, d, ext_prop_name);
3170 	ffs->ms_os_descs_ext_prop_data_avail =
3171 		vla_ptr(vlabuf, d, ext_prop_data);
3172 
3173 	/* Copy descriptors  */
3174 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3175 	       ffs->raw_descs_length);
3176 
3177 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3178 	eps_ptr = vla_ptr(vlabuf, d, eps);
3179 	for (i = 0; i < ffs->eps_count; i++)
3180 		eps_ptr[i].num = -1;
3181 
3182 	/* Save pointers
3183 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3184 	*/
3185 	func->eps             = vla_ptr(vlabuf, d, eps);
3186 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3187 
3188 	/*
3189 	 * Go through all the endpoint descriptors and allocate
3190 	 * endpoints first, so that later we can rewrite the endpoint
3191 	 * numbers without worrying that it may be described later on.
3192 	 */
3193 	if (likely(full)) {
3194 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3195 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3196 				      vla_ptr(vlabuf, d, raw_descs),
3197 				      d_raw_descs__sz,
3198 				      __ffs_func_bind_do_descs, func);
3199 		if (unlikely(fs_len < 0)) {
3200 			ret = fs_len;
3201 			goto error;
3202 		}
3203 	} else {
3204 		fs_len = 0;
3205 	}
3206 
3207 	if (likely(high)) {
3208 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3209 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3210 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3211 				      d_raw_descs__sz - fs_len,
3212 				      __ffs_func_bind_do_descs, func);
3213 		if (unlikely(hs_len < 0)) {
3214 			ret = hs_len;
3215 			goto error;
3216 		}
3217 	} else {
3218 		hs_len = 0;
3219 	}
3220 
3221 	if (likely(super)) {
3222 		func->function.ss_descriptors = func->function.ssp_descriptors =
3223 			vla_ptr(vlabuf, d, ss_descs);
3224 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3225 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3226 				d_raw_descs__sz - fs_len - hs_len,
3227 				__ffs_func_bind_do_descs, func);
3228 		if (unlikely(ss_len < 0)) {
3229 			ret = ss_len;
3230 			goto error;
3231 		}
3232 	} else {
3233 		ss_len = 0;
3234 	}
3235 
3236 	/*
3237 	 * Now handle interface numbers allocation and interface and
3238 	 * endpoint numbers rewriting.  We can do that in one go
3239 	 * now.
3240 	 */
3241 	ret = ffs_do_descs(ffs->fs_descs_count +
3242 			   (high ? ffs->hs_descs_count : 0) +
3243 			   (super ? ffs->ss_descs_count : 0),
3244 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3245 			   __ffs_func_bind_do_nums, func);
3246 	if (unlikely(ret < 0))
3247 		goto error;
3248 
3249 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3250 	if (c->cdev->use_os_string) {
3251 		for (i = 0; i < ffs->interfaces_count; ++i) {
3252 			struct usb_os_desc *desc;
3253 
3254 			desc = func->function.os_desc_table[i].os_desc =
3255 				vla_ptr(vlabuf, d, os_desc) +
3256 				i * sizeof(struct usb_os_desc);
3257 			desc->ext_compat_id =
3258 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3259 			INIT_LIST_HEAD(&desc->ext_prop);
3260 		}
3261 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3262 				      vla_ptr(vlabuf, d, raw_descs) +
3263 				      fs_len + hs_len + ss_len,
3264 				      d_raw_descs__sz - fs_len - hs_len -
3265 				      ss_len,
3266 				      __ffs_func_bind_do_os_desc, func);
3267 		if (unlikely(ret < 0))
3268 			goto error;
3269 	}
3270 	func->function.os_desc_n =
3271 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3272 
3273 	/* And we're done */
3274 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3275 	return 0;
3276 
3277 error:
3278 	/* XXX Do we need to release all claimed endpoints here? */
3279 	return ret;
3280 }
3281 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3282 static int ffs_func_bind(struct usb_configuration *c,
3283 			 struct usb_function *f)
3284 {
3285 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3286 	struct ffs_function *func = ffs_func_from_usb(f);
3287 	int ret;
3288 
3289 	if (IS_ERR(ffs_opts))
3290 		return PTR_ERR(ffs_opts);
3291 
3292 	ret = _ffs_func_bind(c, f);
3293 	if (ret && !--ffs_opts->refcnt)
3294 		functionfs_unbind(func->ffs);
3295 
3296 	return ret;
3297 }
3298 
3299 
3300 /* Other USB function hooks *************************************************/
3301 
ffs_reset_work(struct work_struct * work)3302 static void ffs_reset_work(struct work_struct *work)
3303 {
3304 	struct ffs_data *ffs = container_of(work,
3305 		struct ffs_data, reset_work);
3306 	ffs_data_reset(ffs);
3307 }
3308 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3309 static int ffs_func_set_alt(struct usb_function *f,
3310 			    unsigned interface, unsigned alt)
3311 {
3312 	struct ffs_function *func = ffs_func_from_usb(f);
3313 	struct ffs_data *ffs = func->ffs;
3314 	int ret = 0, intf;
3315 
3316 	if (alt != (unsigned)-1) {
3317 		intf = ffs_func_revmap_intf(func, interface);
3318 		if (unlikely(intf < 0))
3319 			return intf;
3320 	}
3321 
3322 	if (ffs->func)
3323 		ffs_func_eps_disable(ffs->func);
3324 
3325 	if (ffs->state == FFS_DEACTIVATED) {
3326 		ffs->state = FFS_CLOSING;
3327 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3328 		schedule_work(&ffs->reset_work);
3329 		return -ENODEV;
3330 	}
3331 
3332 	if (ffs->state != FFS_ACTIVE)
3333 		return -ENODEV;
3334 
3335 	if (alt == (unsigned)-1) {
3336 		ffs->func = NULL;
3337 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3338 		return 0;
3339 	}
3340 
3341 	ffs->func = func;
3342 	ret = ffs_func_eps_enable(func);
3343 	if (likely(ret >= 0))
3344 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3345 	return ret;
3346 }
3347 
ffs_func_disable(struct usb_function * f)3348 static void ffs_func_disable(struct usb_function *f)
3349 {
3350 	ffs_func_set_alt(f, 0, (unsigned)-1);
3351 }
3352 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3353 static int ffs_func_setup(struct usb_function *f,
3354 			  const struct usb_ctrlrequest *creq)
3355 {
3356 	struct ffs_function *func = ffs_func_from_usb(f);
3357 	struct ffs_data *ffs = func->ffs;
3358 	unsigned long flags;
3359 	int ret;
3360 
3361 	ENTER();
3362 
3363 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3364 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3365 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3366 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3367 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3368 
3369 	/*
3370 	 * Most requests directed to interface go through here
3371 	 * (notable exceptions are set/get interface) so we need to
3372 	 * handle them.  All other either handled by composite or
3373 	 * passed to usb_configuration->setup() (if one is set).  No
3374 	 * matter, we will handle requests directed to endpoint here
3375 	 * as well (as it's straightforward).  Other request recipient
3376 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3377 	 * is being used.
3378 	 */
3379 	if (ffs->state != FFS_ACTIVE)
3380 		return -ENODEV;
3381 
3382 	switch (creq->bRequestType & USB_RECIP_MASK) {
3383 	case USB_RECIP_INTERFACE:
3384 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3385 		if (unlikely(ret < 0))
3386 			return ret;
3387 		break;
3388 
3389 	case USB_RECIP_ENDPOINT:
3390 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3391 		if (unlikely(ret < 0))
3392 			return ret;
3393 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3394 			ret = func->ffs->eps_addrmap[ret];
3395 		break;
3396 
3397 	default:
3398 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3399 			ret = le16_to_cpu(creq->wIndex);
3400 		else
3401 			return -EOPNOTSUPP;
3402 	}
3403 
3404 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3405 	ffs->ev.setup = *creq;
3406 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3407 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3408 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3409 
3410 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3411 }
3412 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3413 static bool ffs_func_req_match(struct usb_function *f,
3414 			       const struct usb_ctrlrequest *creq,
3415 			       bool config0)
3416 {
3417 	struct ffs_function *func = ffs_func_from_usb(f);
3418 
3419 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3420 		return false;
3421 
3422 	switch (creq->bRequestType & USB_RECIP_MASK) {
3423 	case USB_RECIP_INTERFACE:
3424 		return (ffs_func_revmap_intf(func,
3425 					     le16_to_cpu(creq->wIndex)) >= 0);
3426 	case USB_RECIP_ENDPOINT:
3427 		return (ffs_func_revmap_ep(func,
3428 					   le16_to_cpu(creq->wIndex)) >= 0);
3429 	default:
3430 		return (bool) (func->ffs->user_flags &
3431 			       FUNCTIONFS_ALL_CTRL_RECIP);
3432 	}
3433 }
3434 
ffs_func_suspend(struct usb_function * f)3435 static void ffs_func_suspend(struct usb_function *f)
3436 {
3437 	ENTER();
3438 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3439 }
3440 
ffs_func_resume(struct usb_function * f)3441 static void ffs_func_resume(struct usb_function *f)
3442 {
3443 	ENTER();
3444 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3445 }
3446 
3447 
3448 /* Endpoint and interface numbers reverse mapping ***************************/
3449 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3450 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3451 {
3452 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3453 	return num ? num : -EDOM;
3454 }
3455 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3456 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3457 {
3458 	short *nums = func->interfaces_nums;
3459 	unsigned count = func->ffs->interfaces_count;
3460 
3461 	for (; count; --count, ++nums) {
3462 		if (*nums >= 0 && *nums == intf)
3463 			return nums - func->interfaces_nums;
3464 	}
3465 
3466 	return -EDOM;
3467 }
3468 
3469 
3470 /* Devices management *******************************************************/
3471 
3472 static LIST_HEAD(ffs_devices);
3473 
_ffs_do_find_dev(const char * name)3474 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3475 {
3476 	struct ffs_dev *dev;
3477 
3478 	if (!name)
3479 		return NULL;
3480 
3481 	list_for_each_entry(dev, &ffs_devices, entry) {
3482 		if (strcmp(dev->name, name) == 0)
3483 			return dev;
3484 	}
3485 
3486 	return NULL;
3487 }
3488 
3489 /*
3490  * ffs_lock must be taken by the caller of this function
3491  */
_ffs_get_single_dev(void)3492 static struct ffs_dev *_ffs_get_single_dev(void)
3493 {
3494 	struct ffs_dev *dev;
3495 
3496 	if (list_is_singular(&ffs_devices)) {
3497 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3498 		if (dev->single)
3499 			return dev;
3500 	}
3501 
3502 	return NULL;
3503 }
3504 
3505 /*
3506  * ffs_lock must be taken by the caller of this function
3507  */
_ffs_find_dev(const char * name)3508 static struct ffs_dev *_ffs_find_dev(const char *name)
3509 {
3510 	struct ffs_dev *dev;
3511 
3512 	dev = _ffs_get_single_dev();
3513 	if (dev)
3514 		return dev;
3515 
3516 	return _ffs_do_find_dev(name);
3517 }
3518 
3519 /* Configfs support *********************************************************/
3520 
to_ffs_opts(struct config_item * item)3521 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3522 {
3523 	return container_of(to_config_group(item), struct f_fs_opts,
3524 			    func_inst.group);
3525 }
3526 
ffs_attr_release(struct config_item * item)3527 static void ffs_attr_release(struct config_item *item)
3528 {
3529 	struct f_fs_opts *opts = to_ffs_opts(item);
3530 
3531 	usb_put_function_instance(&opts->func_inst);
3532 }
3533 
3534 static struct configfs_item_operations ffs_item_ops = {
3535 	.release	= ffs_attr_release,
3536 };
3537 
3538 static const struct config_item_type ffs_func_type = {
3539 	.ct_item_ops	= &ffs_item_ops,
3540 	.ct_owner	= THIS_MODULE,
3541 };
3542 
3543 
3544 /* Function registration interface ******************************************/
3545 
ffs_free_inst(struct usb_function_instance * f)3546 static void ffs_free_inst(struct usb_function_instance *f)
3547 {
3548 	struct f_fs_opts *opts;
3549 
3550 	opts = to_f_fs_opts(f);
3551 	ffs_release_dev(opts->dev);
3552 	ffs_dev_lock();
3553 	_ffs_free_dev(opts->dev);
3554 	ffs_dev_unlock();
3555 	kfree(opts);
3556 }
3557 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3558 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3559 {
3560 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3561 		return -ENAMETOOLONG;
3562 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3563 }
3564 
ffs_alloc_inst(void)3565 static struct usb_function_instance *ffs_alloc_inst(void)
3566 {
3567 	struct f_fs_opts *opts;
3568 	struct ffs_dev *dev;
3569 
3570 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3571 	if (!opts)
3572 		return ERR_PTR(-ENOMEM);
3573 
3574 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3575 	opts->func_inst.free_func_inst = ffs_free_inst;
3576 	ffs_dev_lock();
3577 	dev = _ffs_alloc_dev();
3578 	ffs_dev_unlock();
3579 	if (IS_ERR(dev)) {
3580 		kfree(opts);
3581 		return ERR_CAST(dev);
3582 	}
3583 	opts->dev = dev;
3584 	dev->opts = opts;
3585 
3586 	config_group_init_type_name(&opts->func_inst.group, "",
3587 				    &ffs_func_type);
3588 	return &opts->func_inst;
3589 }
3590 
ffs_free(struct usb_function * f)3591 static void ffs_free(struct usb_function *f)
3592 {
3593 	kfree(ffs_func_from_usb(f));
3594 }
3595 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3596 static void ffs_func_unbind(struct usb_configuration *c,
3597 			    struct usb_function *f)
3598 {
3599 	struct ffs_function *func = ffs_func_from_usb(f);
3600 	struct ffs_data *ffs = func->ffs;
3601 	struct f_fs_opts *opts =
3602 		container_of(f->fi, struct f_fs_opts, func_inst);
3603 	struct ffs_ep *ep = func->eps;
3604 	unsigned count = ffs->eps_count;
3605 	unsigned long flags;
3606 
3607 	ENTER();
3608 	if (ffs->func == func) {
3609 		ffs_func_eps_disable(func);
3610 		ffs->func = NULL;
3611 	}
3612 
3613 	/* Drain any pending AIO completions */
3614 	drain_workqueue(ffs->io_completion_wq);
3615 
3616 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3617 	if (!--opts->refcnt)
3618 		functionfs_unbind(ffs);
3619 
3620 	/* cleanup after autoconfig */
3621 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3622 	while (count--) {
3623 		if (ep->ep && ep->req)
3624 			usb_ep_free_request(ep->ep, ep->req);
3625 		ep->req = NULL;
3626 		++ep;
3627 	}
3628 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3629 	kfree(func->eps);
3630 	func->eps = NULL;
3631 	/*
3632 	 * eps, descriptors and interfaces_nums are allocated in the
3633 	 * same chunk so only one free is required.
3634 	 */
3635 	func->function.fs_descriptors = NULL;
3636 	func->function.hs_descriptors = NULL;
3637 	func->function.ss_descriptors = NULL;
3638 	func->function.ssp_descriptors = NULL;
3639 	func->interfaces_nums = NULL;
3640 
3641 }
3642 
ffs_alloc(struct usb_function_instance * fi)3643 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3644 {
3645 	struct ffs_function *func;
3646 
3647 	ENTER();
3648 
3649 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3650 	if (unlikely(!func))
3651 		return ERR_PTR(-ENOMEM);
3652 
3653 	func->function.name    = "Function FS Gadget";
3654 
3655 	func->function.bind    = ffs_func_bind;
3656 	func->function.unbind  = ffs_func_unbind;
3657 	func->function.set_alt = ffs_func_set_alt;
3658 	func->function.disable = ffs_func_disable;
3659 	func->function.setup   = ffs_func_setup;
3660 	func->function.req_match = ffs_func_req_match;
3661 	func->function.suspend = ffs_func_suspend;
3662 	func->function.resume  = ffs_func_resume;
3663 	func->function.free_func = ffs_free;
3664 
3665 	return &func->function;
3666 }
3667 
3668 /*
3669  * ffs_lock must be taken by the caller of this function
3670  */
_ffs_alloc_dev(void)3671 static struct ffs_dev *_ffs_alloc_dev(void)
3672 {
3673 	struct ffs_dev *dev;
3674 	int ret;
3675 
3676 	if (_ffs_get_single_dev())
3677 			return ERR_PTR(-EBUSY);
3678 
3679 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3680 	if (!dev)
3681 		return ERR_PTR(-ENOMEM);
3682 
3683 	if (list_empty(&ffs_devices)) {
3684 		ret = functionfs_init();
3685 		if (ret) {
3686 			kfree(dev);
3687 			return ERR_PTR(ret);
3688 		}
3689 	}
3690 
3691 	list_add(&dev->entry, &ffs_devices);
3692 
3693 	return dev;
3694 }
3695 
ffs_name_dev(struct ffs_dev * dev,const char * name)3696 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3697 {
3698 	struct ffs_dev *existing;
3699 	int ret = 0;
3700 
3701 	ffs_dev_lock();
3702 
3703 	existing = _ffs_do_find_dev(name);
3704 	if (!existing)
3705 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3706 	else if (existing != dev)
3707 		ret = -EBUSY;
3708 
3709 	ffs_dev_unlock();
3710 
3711 	return ret;
3712 }
3713 EXPORT_SYMBOL_GPL(ffs_name_dev);
3714 
ffs_single_dev(struct ffs_dev * dev)3715 int ffs_single_dev(struct ffs_dev *dev)
3716 {
3717 	int ret;
3718 
3719 	ret = 0;
3720 	ffs_dev_lock();
3721 
3722 	if (!list_is_singular(&ffs_devices))
3723 		ret = -EBUSY;
3724 	else
3725 		dev->single = true;
3726 
3727 	ffs_dev_unlock();
3728 	return ret;
3729 }
3730 EXPORT_SYMBOL_GPL(ffs_single_dev);
3731 
3732 /*
3733  * ffs_lock must be taken by the caller of this function
3734  */
_ffs_free_dev(struct ffs_dev * dev)3735 static void _ffs_free_dev(struct ffs_dev *dev)
3736 {
3737 	list_del(&dev->entry);
3738 
3739 	kfree(dev);
3740 	if (list_empty(&ffs_devices))
3741 		functionfs_cleanup();
3742 }
3743 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3744 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3745 {
3746 	int ret = 0;
3747 	struct ffs_dev *ffs_dev;
3748 
3749 	ENTER();
3750 	ffs_dev_lock();
3751 
3752 	ffs_dev = _ffs_find_dev(dev_name);
3753 	if (!ffs_dev) {
3754 		ret = -ENOENT;
3755 	} else if (ffs_dev->mounted) {
3756 		ret = -EBUSY;
3757 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3758 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3759 		ret = -ENOENT;
3760 	} else {
3761 		ffs_dev->mounted = true;
3762 		ffs_dev->ffs_data = ffs_data;
3763 		ffs_data->private_data = ffs_dev;
3764 	}
3765 
3766 	ffs_dev_unlock();
3767 	return ret;
3768 }
3769 
ffs_release_dev(struct ffs_dev * ffs_dev)3770 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3771 {
3772 	ENTER();
3773 	ffs_dev_lock();
3774 
3775 	if (ffs_dev && ffs_dev->mounted) {
3776 		ffs_dev->mounted = false;
3777 		if (ffs_dev->ffs_data) {
3778 			ffs_dev->ffs_data->private_data = NULL;
3779 			ffs_dev->ffs_data = NULL;
3780 		}
3781 
3782 		if (ffs_dev->ffs_release_dev_callback)
3783 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3784 	}
3785 
3786 	ffs_dev_unlock();
3787 }
3788 
ffs_ready(struct ffs_data * ffs)3789 static int ffs_ready(struct ffs_data *ffs)
3790 {
3791 	struct ffs_dev *ffs_obj;
3792 	int ret = 0;
3793 
3794 	ENTER();
3795 	ffs_dev_lock();
3796 
3797 	ffs_obj = ffs->private_data;
3798 	if (!ffs_obj) {
3799 		ret = -EINVAL;
3800 		goto done;
3801 	}
3802 	if (WARN_ON(ffs_obj->desc_ready)) {
3803 		ret = -EBUSY;
3804 		goto done;
3805 	}
3806 
3807 	ffs_obj->desc_ready = true;
3808 
3809 	if (ffs_obj->ffs_ready_callback) {
3810 		ret = ffs_obj->ffs_ready_callback(ffs);
3811 		if (ret)
3812 			goto done;
3813 	}
3814 
3815 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3816 done:
3817 	ffs_dev_unlock();
3818 	return ret;
3819 }
3820 
ffs_closed(struct ffs_data * ffs)3821 static void ffs_closed(struct ffs_data *ffs)
3822 {
3823 	struct ffs_dev *ffs_obj;
3824 	struct f_fs_opts *opts;
3825 	struct config_item *ci;
3826 
3827 	ENTER();
3828 	ffs_dev_lock();
3829 
3830 	ffs_obj = ffs->private_data;
3831 	if (!ffs_obj)
3832 		goto done;
3833 
3834 	ffs_obj->desc_ready = false;
3835 
3836 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3837 	    ffs_obj->ffs_closed_callback)
3838 		ffs_obj->ffs_closed_callback(ffs);
3839 
3840 	if (ffs_obj->opts)
3841 		opts = ffs_obj->opts;
3842 	else
3843 		goto done;
3844 
3845 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3846 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3847 		goto done;
3848 
3849 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3850 	ffs_dev_unlock();
3851 
3852 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3853 		unregister_gadget_item(ci);
3854 	return;
3855 done:
3856 	ffs_dev_unlock();
3857 }
3858 
3859 /* Misc helper functions ****************************************************/
3860 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3861 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3862 {
3863 	return nonblock
3864 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3865 		: mutex_lock_interruptible(mutex);
3866 }
3867 
ffs_prepare_buffer(const char __user * buf,size_t len)3868 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3869 {
3870 	char *data;
3871 
3872 	if (unlikely(!len))
3873 		return NULL;
3874 
3875 	data = kmalloc(len, GFP_KERNEL);
3876 	if (unlikely(!data))
3877 		return ERR_PTR(-ENOMEM);
3878 
3879 	if (unlikely(copy_from_user(data, buf, len))) {
3880 		kfree(data);
3881 		return ERR_PTR(-EFAULT);
3882 	}
3883 
3884 	pr_vdebug("Buffer from user space:\n");
3885 	ffs_dump_mem("", data, len);
3886 
3887 	return data;
3888 }
3889 
3890 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3891 MODULE_LICENSE("GPL");
3892 MODULE_AUTHOR("Michal Nazarewicz");
3893