1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[16];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125
126 int status; /* P: epfile->mutex */
127 };
128
129 struct ffs_epfile {
130 /* Protects ep->ep and ep->req. */
131 struct mutex mutex;
132
133 struct ffs_data *ffs;
134 struct ffs_ep *ep; /* P: ffs->eps_lock */
135
136 struct dentry *dentry;
137
138 /*
139 * Buffer for holding data from partial reads which may happen since
140 * we’re rounding user read requests to a multiple of a max packet size.
141 *
142 * The pointer is initialised with NULL value and may be set by
143 * __ffs_epfile_read_data function to point to a temporary buffer.
144 *
145 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 * data from said buffer and eventually free it. Importantly, while the
147 * function is using the buffer, it sets the pointer to NULL. This is
148 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 * can never run concurrently (they are synchronised by epfile->mutex)
150 * so the latter will not assign a new value to the pointer.
151 *
152 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
154 * value is crux of the synchronisation between ffs_func_eps_disable and
155 * __ffs_epfile_read_data.
156 *
157 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 * pointer back to its old value (as described above), but seeing as the
159 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 * the buffer.
161 *
162 * == State transitions ==
163 *
164 * • ptr == NULL: (initial state)
165 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 * ◦ __ffs_epfile_read_buffered: nop
167 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 * ◦ reading finishes: n/a, not in ‘and reading’ state
169 * • ptr == DROP:
170 * ◦ __ffs_epfile_read_buffer_free: nop
171 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
172 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 * ◦ reading finishes: n/a, not in ‘and reading’ state
174 * • ptr == buf:
175 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
177 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
178 * is always called first
179 * ◦ reading finishes: n/a, not in ‘and reading’ state
180 * • ptr == NULL and reading:
181 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
183 * ◦ __ffs_epfile_read_data: n/a, mutex is held
184 * ◦ reading finishes and …
185 * … all data read: free buf, go to ptr == NULL
186 * … otherwise: go to ptr == buf and reading
187 * • ptr == DROP and reading:
188 * ◦ __ffs_epfile_read_buffer_free: nop
189 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
190 * ◦ __ffs_epfile_read_data: n/a, mutex is held
191 * ◦ reading finishes: free buf, go to ptr == DROP
192 */
193 struct ffs_buffer *read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195
196 char name[5];
197
198 unsigned char in; /* P: ffs->eps_lock */
199 unsigned char isoc; /* P: ffs->eps_lock */
200
201 unsigned char _pad;
202 };
203
204 struct ffs_buffer {
205 size_t length;
206 char *data;
207 char storage[];
208 };
209
210 /* ffs_io_data structure ***************************************************/
211
212 struct ffs_io_data {
213 bool aio;
214 bool read;
215
216 struct kiocb *kiocb;
217 struct iov_iter data;
218 const void *to_free;
219 char *buf;
220
221 struct mm_struct *mm;
222 struct work_struct work;
223
224 struct usb_ep *ep;
225 struct usb_request *req;
226 struct sg_table sgt;
227 bool use_sg;
228
229 struct ffs_data *ffs;
230 };
231
232 struct ffs_desc_helper {
233 struct ffs_data *ffs;
234 unsigned interfaces_count;
235 unsigned eps_count;
236 };
237
238 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 const struct file_operations *fops);
244
245 /* Devices management *******************************************************/
246
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257
258 /* Misc helper functions ****************************************************/
259
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 __attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 __attribute__((warn_unused_result, nonnull));
264
265
266 /* Control file aka ep0 *****************************************************/
267
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 struct ffs_data *ffs = req->context;
271
272 complete(&ffs->ep0req_completion);
273 }
274
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 __releases(&ffs->ev.waitq.lock)
277 {
278 struct usb_request *req = ffs->ep0req;
279 int ret;
280
281 if (!req) {
282 spin_unlock_irq(&ffs->ev.waitq.lock);
283 return -EINVAL;
284 }
285
286 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
287
288 spin_unlock_irq(&ffs->ev.waitq.lock);
289
290 req->buf = data;
291 req->length = len;
292
293 /*
294 * UDC layer requires to provide a buffer even for ZLP, but should
295 * not use it at all. Let's provide some poisoned pointer to catch
296 * possible bug in the driver.
297 */
298 if (req->buf == NULL)
299 req->buf = (void *)0xDEADBABE;
300
301 reinit_completion(&ffs->ep0req_completion);
302
303 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
304 if (unlikely(ret < 0))
305 return ret;
306
307 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
308 if (unlikely(ret)) {
309 usb_ep_dequeue(ffs->gadget->ep0, req);
310 return -EINTR;
311 }
312
313 ffs->setup_state = FFS_NO_SETUP;
314 return req->status ? req->status : req->actual;
315 }
316
__ffs_ep0_stall(struct ffs_data * ffs)317 static int __ffs_ep0_stall(struct ffs_data *ffs)
318 {
319 if (ffs->ev.can_stall) {
320 pr_vdebug("ep0 stall\n");
321 usb_ep_set_halt(ffs->gadget->ep0);
322 ffs->setup_state = FFS_NO_SETUP;
323 return -EL2HLT;
324 } else {
325 pr_debug("bogus ep0 stall!\n");
326 return -ESRCH;
327 }
328 }
329
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)330 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
331 size_t len, loff_t *ptr)
332 {
333 struct ffs_data *ffs = file->private_data;
334 ssize_t ret;
335 char *data;
336
337 ENTER();
338
339 /* Fast check if setup was canceled */
340 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
341 return -EIDRM;
342
343 /* Acquire mutex */
344 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
345 if (unlikely(ret < 0))
346 return ret;
347
348 /* Check state */
349 switch (ffs->state) {
350 case FFS_READ_DESCRIPTORS:
351 case FFS_READ_STRINGS:
352 /* Copy data */
353 if (unlikely(len < 16)) {
354 ret = -EINVAL;
355 break;
356 }
357
358 data = ffs_prepare_buffer(buf, len);
359 if (IS_ERR(data)) {
360 ret = PTR_ERR(data);
361 break;
362 }
363
364 /* Handle data */
365 if (ffs->state == FFS_READ_DESCRIPTORS) {
366 pr_info("read descriptors\n");
367 ret = __ffs_data_got_descs(ffs, data, len);
368 if (unlikely(ret < 0))
369 break;
370
371 ffs->state = FFS_READ_STRINGS;
372 ret = len;
373 } else {
374 pr_info("read strings\n");
375 ret = __ffs_data_got_strings(ffs, data, len);
376 if (unlikely(ret < 0))
377 break;
378
379 ret = ffs_epfiles_create(ffs);
380 if (unlikely(ret)) {
381 ffs->state = FFS_CLOSING;
382 break;
383 }
384
385 ffs->state = FFS_ACTIVE;
386 mutex_unlock(&ffs->mutex);
387
388 ret = ffs_ready(ffs);
389 if (unlikely(ret < 0)) {
390 ffs->state = FFS_CLOSING;
391 return ret;
392 }
393
394 return len;
395 }
396 break;
397
398 case FFS_ACTIVE:
399 data = NULL;
400 /*
401 * We're called from user space, we can use _irq
402 * rather then _irqsave
403 */
404 spin_lock_irq(&ffs->ev.waitq.lock);
405 switch (ffs_setup_state_clear_cancelled(ffs)) {
406 case FFS_SETUP_CANCELLED:
407 ret = -EIDRM;
408 goto done_spin;
409
410 case FFS_NO_SETUP:
411 ret = -ESRCH;
412 goto done_spin;
413
414 case FFS_SETUP_PENDING:
415 break;
416 }
417
418 /* FFS_SETUP_PENDING */
419 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
420 spin_unlock_irq(&ffs->ev.waitq.lock);
421 ret = __ffs_ep0_stall(ffs);
422 break;
423 }
424
425 /* FFS_SETUP_PENDING and not stall */
426 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
427
428 spin_unlock_irq(&ffs->ev.waitq.lock);
429
430 data = ffs_prepare_buffer(buf, len);
431 if (IS_ERR(data)) {
432 ret = PTR_ERR(data);
433 break;
434 }
435
436 spin_lock_irq(&ffs->ev.waitq.lock);
437
438 /*
439 * We are guaranteed to be still in FFS_ACTIVE state
440 * but the state of setup could have changed from
441 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
442 * to check for that. If that happened we copied data
443 * from user space in vain but it's unlikely.
444 *
445 * For sure we are not in FFS_NO_SETUP since this is
446 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
447 * transition can be performed and it's protected by
448 * mutex.
449 */
450 if (ffs_setup_state_clear_cancelled(ffs) ==
451 FFS_SETUP_CANCELLED) {
452 ret = -EIDRM;
453 done_spin:
454 spin_unlock_irq(&ffs->ev.waitq.lock);
455 } else {
456 /* unlocks spinlock */
457 ret = __ffs_ep0_queue_wait(ffs, data, len);
458 }
459 kfree(data);
460 break;
461
462 default:
463 ret = -EBADFD;
464 break;
465 }
466
467 mutex_unlock(&ffs->mutex);
468 return ret;
469 }
470
471 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)472 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
473 size_t n)
474 __releases(&ffs->ev.waitq.lock)
475 {
476 /*
477 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
478 * size of ffs->ev.types array (which is four) so that's how much space
479 * we reserve.
480 */
481 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
482 const size_t size = n * sizeof *events;
483 unsigned i = 0;
484
485 memset(events, 0, size);
486
487 do {
488 events[i].type = ffs->ev.types[i];
489 if (events[i].type == FUNCTIONFS_SETUP) {
490 events[i].u.setup = ffs->ev.setup;
491 ffs->setup_state = FFS_SETUP_PENDING;
492 }
493 } while (++i < n);
494
495 ffs->ev.count -= n;
496 if (ffs->ev.count)
497 memmove(ffs->ev.types, ffs->ev.types + n,
498 ffs->ev.count * sizeof *ffs->ev.types);
499
500 spin_unlock_irq(&ffs->ev.waitq.lock);
501 mutex_unlock(&ffs->mutex);
502
503 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
504 }
505
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)506 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
507 size_t len, loff_t *ptr)
508 {
509 struct ffs_data *ffs = file->private_data;
510 char *data = NULL;
511 size_t n;
512 int ret;
513
514 ENTER();
515
516 /* Fast check if setup was canceled */
517 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
518 return -EIDRM;
519
520 /* Acquire mutex */
521 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
522 if (unlikely(ret < 0))
523 return ret;
524
525 /* Check state */
526 if (ffs->state != FFS_ACTIVE) {
527 ret = -EBADFD;
528 goto done_mutex;
529 }
530
531 /*
532 * We're called from user space, we can use _irq rather then
533 * _irqsave
534 */
535 spin_lock_irq(&ffs->ev.waitq.lock);
536
537 switch (ffs_setup_state_clear_cancelled(ffs)) {
538 case FFS_SETUP_CANCELLED:
539 ret = -EIDRM;
540 break;
541
542 case FFS_NO_SETUP:
543 n = len / sizeof(struct usb_functionfs_event);
544 if (unlikely(!n)) {
545 ret = -EINVAL;
546 break;
547 }
548
549 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
550 ret = -EAGAIN;
551 break;
552 }
553
554 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
555 ffs->ev.count)) {
556 ret = -EINTR;
557 break;
558 }
559
560 /* unlocks spinlock */
561 return __ffs_ep0_read_events(ffs, buf,
562 min(n, (size_t)ffs->ev.count));
563
564 case FFS_SETUP_PENDING:
565 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
566 spin_unlock_irq(&ffs->ev.waitq.lock);
567 ret = __ffs_ep0_stall(ffs);
568 goto done_mutex;
569 }
570
571 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
572
573 spin_unlock_irq(&ffs->ev.waitq.lock);
574
575 if (likely(len)) {
576 data = kmalloc(len, GFP_KERNEL);
577 if (unlikely(!data)) {
578 ret = -ENOMEM;
579 goto done_mutex;
580 }
581 }
582
583 spin_lock_irq(&ffs->ev.waitq.lock);
584
585 /* See ffs_ep0_write() */
586 if (ffs_setup_state_clear_cancelled(ffs) ==
587 FFS_SETUP_CANCELLED) {
588 ret = -EIDRM;
589 break;
590 }
591
592 /* unlocks spinlock */
593 ret = __ffs_ep0_queue_wait(ffs, data, len);
594 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
595 ret = -EFAULT;
596 goto done_mutex;
597
598 default:
599 ret = -EBADFD;
600 break;
601 }
602
603 spin_unlock_irq(&ffs->ev.waitq.lock);
604 done_mutex:
605 mutex_unlock(&ffs->mutex);
606 kfree(data);
607 return ret;
608 }
609
ffs_ep0_open(struct inode * inode,struct file * file)610 static int ffs_ep0_open(struct inode *inode, struct file *file)
611 {
612 struct ffs_data *ffs = inode->i_private;
613
614 ENTER();
615
616 if (unlikely(ffs->state == FFS_CLOSING))
617 return -EBUSY;
618
619 file->private_data = ffs;
620 ffs_data_opened(ffs);
621
622 return stream_open(inode, file);
623 }
624
ffs_ep0_release(struct inode * inode,struct file * file)625 static int ffs_ep0_release(struct inode *inode, struct file *file)
626 {
627 struct ffs_data *ffs = file->private_data;
628
629 ENTER();
630
631 ffs_data_closed(ffs);
632
633 return 0;
634 }
635
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)636 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
637 {
638 struct ffs_data *ffs = file->private_data;
639 struct usb_gadget *gadget = ffs->gadget;
640 long ret;
641
642 ENTER();
643
644 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
645 struct ffs_function *func = ffs->func;
646 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
647 } else if (gadget && gadget->ops->ioctl) {
648 ret = gadget->ops->ioctl(gadget, code, value);
649 } else {
650 ret = -ENOTTY;
651 }
652
653 return ret;
654 }
655
ffs_ep0_poll(struct file * file,poll_table * wait)656 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
657 {
658 struct ffs_data *ffs = file->private_data;
659 __poll_t mask = EPOLLWRNORM;
660 int ret;
661
662 poll_wait(file, &ffs->ev.waitq, wait);
663
664 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
665 if (unlikely(ret < 0))
666 return mask;
667
668 switch (ffs->state) {
669 case FFS_READ_DESCRIPTORS:
670 case FFS_READ_STRINGS:
671 mask |= EPOLLOUT;
672 break;
673
674 case FFS_ACTIVE:
675 switch (ffs->setup_state) {
676 case FFS_NO_SETUP:
677 if (ffs->ev.count)
678 mask |= EPOLLIN;
679 break;
680
681 case FFS_SETUP_PENDING:
682 case FFS_SETUP_CANCELLED:
683 mask |= (EPOLLIN | EPOLLOUT);
684 break;
685 }
686 case FFS_CLOSING:
687 break;
688 case FFS_DEACTIVATED:
689 break;
690 }
691
692 mutex_unlock(&ffs->mutex);
693
694 return mask;
695 }
696
697 static const struct file_operations ffs_ep0_operations = {
698 .llseek = no_llseek,
699
700 .open = ffs_ep0_open,
701 .write = ffs_ep0_write,
702 .read = ffs_ep0_read,
703 .release = ffs_ep0_release,
704 .unlocked_ioctl = ffs_ep0_ioctl,
705 .poll = ffs_ep0_poll,
706 };
707
708
709 /* "Normal" endpoints operations ********************************************/
710
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)711 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
712 {
713 ENTER();
714 if (likely(req->context)) {
715 struct ffs_ep *ep = _ep->driver_data;
716 ep->status = req->status ? req->status : req->actual;
717 complete(req->context);
718 }
719 }
720
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)721 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
722 {
723 ssize_t ret = copy_to_iter(data, data_len, iter);
724 if (likely(ret == data_len))
725 return ret;
726
727 if (unlikely(iov_iter_count(iter)))
728 return -EFAULT;
729
730 /*
731 * Dear user space developer!
732 *
733 * TL;DR: To stop getting below error message in your kernel log, change
734 * user space code using functionfs to align read buffers to a max
735 * packet size.
736 *
737 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
738 * packet size. When unaligned buffer is passed to functionfs, it
739 * internally uses a larger, aligned buffer so that such UDCs are happy.
740 *
741 * Unfortunately, this means that host may send more data than was
742 * requested in read(2) system call. f_fs doesn’t know what to do with
743 * that excess data so it simply drops it.
744 *
745 * Was the buffer aligned in the first place, no such problem would
746 * happen.
747 *
748 * Data may be dropped only in AIO reads. Synchronous reads are handled
749 * by splitting a request into multiple parts. This splitting may still
750 * be a problem though so it’s likely best to align the buffer
751 * regardless of it being AIO or not..
752 *
753 * This only affects OUT endpoints, i.e. reading data with a read(2),
754 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
755 * affected.
756 */
757 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
758 "Align read buffer size to max packet size to avoid the problem.\n",
759 data_len, ret);
760
761 return ret;
762 }
763
764 /*
765 * allocate a virtually contiguous buffer and create a scatterlist describing it
766 * @sg_table - pointer to a place to be filled with sg_table contents
767 * @size - required buffer size
768 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)769 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
770 {
771 struct page **pages;
772 void *vaddr, *ptr;
773 unsigned int n_pages;
774 int i;
775
776 vaddr = vmalloc(sz);
777 if (!vaddr)
778 return NULL;
779
780 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
781 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
782 if (!pages) {
783 vfree(vaddr);
784
785 return NULL;
786 }
787 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
788 pages[i] = vmalloc_to_page(ptr);
789
790 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
791 kvfree(pages);
792 vfree(vaddr);
793
794 return NULL;
795 }
796 kvfree(pages);
797
798 return vaddr;
799 }
800
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)801 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
802 size_t data_len)
803 {
804 if (io_data->use_sg)
805 return ffs_build_sg_list(&io_data->sgt, data_len);
806
807 return kmalloc(data_len, GFP_KERNEL);
808 }
809
ffs_free_buffer(struct ffs_io_data * io_data)810 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
811 {
812 if (!io_data->buf)
813 return;
814
815 if (io_data->use_sg) {
816 sg_free_table(&io_data->sgt);
817 vfree(io_data->buf);
818 } else {
819 kfree(io_data->buf);
820 }
821 }
822
ffs_user_copy_worker(struct work_struct * work)823 static void ffs_user_copy_worker(struct work_struct *work)
824 {
825 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
826 work);
827 int ret = io_data->req->status ? io_data->req->status :
828 io_data->req->actual;
829 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
830 unsigned long flags;
831
832 if (io_data->read && ret > 0) {
833 kthread_use_mm(io_data->mm);
834 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
835 kthread_unuse_mm(io_data->mm);
836 }
837
838 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
839
840 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
841 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
842
843 spin_lock_irqsave(&io_data->ffs->eps_lock, flags);
844 usb_ep_free_request(io_data->ep, io_data->req);
845 io_data->req = NULL;
846 spin_unlock_irqrestore(&io_data->ffs->eps_lock, flags);
847
848 if (io_data->read)
849 kfree(io_data->to_free);
850 ffs_free_buffer(io_data);
851 kfree(io_data);
852 }
853
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)854 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
855 struct usb_request *req)
856 {
857 struct ffs_io_data *io_data = req->context;
858 struct ffs_data *ffs = io_data->ffs;
859
860 ENTER();
861
862 INIT_WORK(&io_data->work, ffs_user_copy_worker);
863 queue_work(ffs->io_completion_wq, &io_data->work);
864 }
865
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)866 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
867 {
868 /*
869 * See comment in struct ffs_epfile for full read_buffer pointer
870 * synchronisation story.
871 */
872 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
873 if (buf && buf != READ_BUFFER_DROP)
874 kfree(buf);
875 }
876
877 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)878 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
879 struct iov_iter *iter)
880 {
881 /*
882 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
883 * the buffer while we are using it. See comment in struct ffs_epfile
884 * for full read_buffer pointer synchronisation story.
885 */
886 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
887 ssize_t ret;
888 if (!buf || buf == READ_BUFFER_DROP)
889 return 0;
890
891 ret = copy_to_iter(buf->data, buf->length, iter);
892 if (buf->length == ret) {
893 kfree(buf);
894 return ret;
895 }
896
897 if (unlikely(iov_iter_count(iter))) {
898 ret = -EFAULT;
899 } else {
900 buf->length -= ret;
901 buf->data += ret;
902 }
903
904 if (cmpxchg(&epfile->read_buffer, NULL, buf))
905 kfree(buf);
906
907 return ret;
908 }
909
910 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)911 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
912 void *data, int data_len,
913 struct iov_iter *iter)
914 {
915 struct ffs_buffer *buf;
916
917 ssize_t ret = copy_to_iter(data, data_len, iter);
918 if (likely(data_len == ret))
919 return ret;
920
921 if (unlikely(iov_iter_count(iter)))
922 return -EFAULT;
923
924 /* See ffs_copy_to_iter for more context. */
925 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
926 data_len, ret);
927
928 data_len -= ret;
929 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
930 if (!buf)
931 return -ENOMEM;
932 buf->length = data_len;
933 buf->data = buf->storage;
934 memcpy(buf->storage, data + ret, data_len);
935
936 /*
937 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
938 * ffs_func_eps_disable has been called in the meanwhile). See comment
939 * in struct ffs_epfile for full read_buffer pointer synchronisation
940 * story.
941 */
942 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
943 kfree(buf);
944
945 return ret;
946 }
947
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)948 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
949 {
950 struct ffs_epfile *epfile = file->private_data;
951 struct usb_request *req;
952 struct ffs_ep *ep;
953 char *data = NULL;
954 ssize_t ret, data_len = -EINVAL;
955 int halt;
956
957 /* Are we still active? */
958 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
959 return -ENODEV;
960
961 /* Wait for endpoint to be enabled */
962 ep = epfile->ep;
963 if (!ep) {
964 if (file->f_flags & O_NONBLOCK)
965 return -EAGAIN;
966
967 ret = wait_event_interruptible(
968 epfile->ffs->wait, (ep = epfile->ep));
969 if (ret)
970 return -EINTR;
971 }
972
973 /* Do we halt? */
974 halt = (!io_data->read == !epfile->in);
975 if (halt && epfile->isoc)
976 return -EINVAL;
977
978 /* We will be using request and read_buffer */
979 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
980 if (unlikely(ret))
981 goto error;
982
983 /* Allocate & copy */
984 if (!halt) {
985 struct usb_gadget *gadget;
986
987 /*
988 * Do we have buffered data from previous partial read? Check
989 * that for synchronous case only because we do not have
990 * facility to ‘wake up’ a pending asynchronous read and push
991 * buffered data to it which we would need to make things behave
992 * consistently.
993 */
994 if (!io_data->aio && io_data->read) {
995 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
996 if (ret)
997 goto error_mutex;
998 }
999
1000 /*
1001 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1002 * before the waiting completes, so do not assign to 'gadget'
1003 * earlier
1004 */
1005 gadget = epfile->ffs->gadget;
1006
1007 spin_lock_irq(&epfile->ffs->eps_lock);
1008 /* In the meantime, endpoint got disabled or changed. */
1009 if (epfile->ep != ep) {
1010 ret = -ESHUTDOWN;
1011 goto error_lock;
1012 }
1013 data_len = iov_iter_count(&io_data->data);
1014 /*
1015 * Controller may require buffer size to be aligned to
1016 * maxpacketsize of an out endpoint.
1017 */
1018 if (io_data->read)
1019 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1020
1021 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1022 spin_unlock_irq(&epfile->ffs->eps_lock);
1023
1024 data = ffs_alloc_buffer(io_data, data_len);
1025 if (unlikely(!data)) {
1026 ret = -ENOMEM;
1027 goto error_mutex;
1028 }
1029 if (!io_data->read &&
1030 !copy_from_iter_full(data, data_len, &io_data->data)) {
1031 ret = -EFAULT;
1032 goto error_mutex;
1033 }
1034 }
1035
1036 spin_lock_irq(&epfile->ffs->eps_lock);
1037
1038 if (epfile->ep != ep) {
1039 /* In the meantime, endpoint got disabled or changed. */
1040 ret = -ESHUTDOWN;
1041 } else if (halt) {
1042 ret = usb_ep_set_halt(ep->ep);
1043 if (!ret)
1044 ret = -EBADMSG;
1045 } else if (unlikely(data_len == -EINVAL)) {
1046 /*
1047 * Sanity Check: even though data_len can't be used
1048 * uninitialized at the time I write this comment, some
1049 * compilers complain about this situation.
1050 * In order to keep the code clean from warnings, data_len is
1051 * being initialized to -EINVAL during its declaration, which
1052 * means we can't rely on compiler anymore to warn no future
1053 * changes won't result in data_len being used uninitialized.
1054 * For such reason, we're adding this redundant sanity check
1055 * here.
1056 */
1057 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1058 ret = -EINVAL;
1059 } else if (!io_data->aio) {
1060 DECLARE_COMPLETION_ONSTACK(done);
1061 bool interrupted = false;
1062
1063 req = ep->req;
1064 if (io_data->use_sg) {
1065 req->buf = NULL;
1066 req->sg = io_data->sgt.sgl;
1067 req->num_sgs = io_data->sgt.nents;
1068 } else {
1069 req->buf = data;
1070 req->num_sgs = 0;
1071 }
1072 req->length = data_len;
1073
1074 io_data->buf = data;
1075
1076 req->context = &done;
1077 req->complete = ffs_epfile_io_complete;
1078
1079 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1080 if (unlikely(ret < 0))
1081 goto error_lock;
1082
1083 spin_unlock_irq(&epfile->ffs->eps_lock);
1084
1085 if (unlikely(wait_for_completion_interruptible(&done))) {
1086 /*
1087 * To avoid race condition with ffs_epfile_io_complete,
1088 * dequeue the request first then check
1089 * status. usb_ep_dequeue API should guarantee no race
1090 * condition with req->complete callback.
1091 */
1092 usb_ep_dequeue(ep->ep, req);
1093 wait_for_completion(&done);
1094 interrupted = ep->status < 0;
1095 }
1096
1097 if (interrupted)
1098 ret = -EINTR;
1099 else if (io_data->read && ep->status > 0)
1100 ret = __ffs_epfile_read_data(epfile, data, ep->status,
1101 &io_data->data);
1102 else
1103 ret = ep->status;
1104 goto error_mutex;
1105 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1106 ret = -ENOMEM;
1107 } else {
1108 if (io_data->use_sg) {
1109 req->buf = NULL;
1110 req->sg = io_data->sgt.sgl;
1111 req->num_sgs = io_data->sgt.nents;
1112 } else {
1113 req->buf = data;
1114 req->num_sgs = 0;
1115 }
1116 req->length = data_len;
1117
1118 io_data->buf = data;
1119 io_data->ep = ep->ep;
1120 io_data->req = req;
1121 io_data->ffs = epfile->ffs;
1122
1123 req->context = io_data;
1124 req->complete = ffs_epfile_async_io_complete;
1125
1126 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1127 if (unlikely(ret)) {
1128 io_data->req = NULL;
1129 usb_ep_free_request(ep->ep, req);
1130 goto error_lock;
1131 }
1132
1133 ret = -EIOCBQUEUED;
1134 /*
1135 * Do not kfree the buffer in this function. It will be freed
1136 * by ffs_user_copy_worker.
1137 */
1138 data = NULL;
1139 }
1140
1141 error_lock:
1142 spin_unlock_irq(&epfile->ffs->eps_lock);
1143 error_mutex:
1144 mutex_unlock(&epfile->mutex);
1145 error:
1146 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1147 ffs_free_buffer(io_data);
1148 return ret;
1149 }
1150
1151 static int
ffs_epfile_open(struct inode * inode,struct file * file)1152 ffs_epfile_open(struct inode *inode, struct file *file)
1153 {
1154 struct ffs_epfile *epfile = inode->i_private;
1155
1156 ENTER();
1157
1158 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1159 return -ENODEV;
1160
1161 file->private_data = epfile;
1162 ffs_data_opened(epfile->ffs);
1163
1164 return stream_open(inode, file);
1165 }
1166
ffs_aio_cancel(struct kiocb * kiocb)1167 static int ffs_aio_cancel(struct kiocb *kiocb)
1168 {
1169 struct ffs_io_data *io_data = kiocb->private;
1170 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1171 unsigned long flags;
1172 int value;
1173
1174 ENTER();
1175
1176 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1177
1178 if (likely(io_data && io_data->ep && io_data->req))
1179 value = usb_ep_dequeue(io_data->ep, io_data->req);
1180 else
1181 value = -EINVAL;
1182
1183 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1184
1185 return value;
1186 }
1187
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1188 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1189 {
1190 struct ffs_io_data io_data, *p = &io_data;
1191 ssize_t res;
1192
1193 ENTER();
1194
1195 if (!is_sync_kiocb(kiocb)) {
1196 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1197 if (unlikely(!p))
1198 return -ENOMEM;
1199 p->aio = true;
1200 } else {
1201 memset(p, 0, sizeof(*p));
1202 p->aio = false;
1203 }
1204
1205 p->read = false;
1206 p->kiocb = kiocb;
1207 p->data = *from;
1208 p->mm = current->mm;
1209
1210 kiocb->private = p;
1211
1212 if (p->aio)
1213 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1214
1215 res = ffs_epfile_io(kiocb->ki_filp, p);
1216 if (res == -EIOCBQUEUED)
1217 return res;
1218 if (p->aio)
1219 kfree(p);
1220 else
1221 *from = p->data;
1222 return res;
1223 }
1224
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1225 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1226 {
1227 struct ffs_io_data io_data, *p = &io_data;
1228 ssize_t res;
1229
1230 ENTER();
1231
1232 if (!is_sync_kiocb(kiocb)) {
1233 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1234 if (unlikely(!p))
1235 return -ENOMEM;
1236 p->aio = true;
1237 } else {
1238 memset(p, 0, sizeof(*p));
1239 p->aio = false;
1240 }
1241
1242 p->read = true;
1243 p->kiocb = kiocb;
1244 if (p->aio) {
1245 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1246 if (!p->to_free) {
1247 kfree(p);
1248 return -ENOMEM;
1249 }
1250 } else {
1251 p->data = *to;
1252 p->to_free = NULL;
1253 }
1254 p->mm = current->mm;
1255
1256 kiocb->private = p;
1257
1258 if (p->aio)
1259 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1260
1261 res = ffs_epfile_io(kiocb->ki_filp, p);
1262 if (res == -EIOCBQUEUED)
1263 return res;
1264
1265 if (p->aio) {
1266 kfree(p->to_free);
1267 kfree(p);
1268 } else {
1269 *to = p->data;
1270 }
1271 return res;
1272 }
1273
1274 static int
ffs_epfile_release(struct inode * inode,struct file * file)1275 ffs_epfile_release(struct inode *inode, struct file *file)
1276 {
1277 struct ffs_epfile *epfile = inode->i_private;
1278
1279 ENTER();
1280
1281 __ffs_epfile_read_buffer_free(epfile);
1282 ffs_data_closed(epfile->ffs);
1283
1284 return 0;
1285 }
1286
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1287 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1288 unsigned long value)
1289 {
1290 struct ffs_epfile *epfile = file->private_data;
1291 struct ffs_ep *ep;
1292 int ret;
1293
1294 ENTER();
1295
1296 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1297 return -ENODEV;
1298
1299 /* Wait for endpoint to be enabled */
1300 ep = epfile->ep;
1301 if (!ep) {
1302 if (file->f_flags & O_NONBLOCK)
1303 return -EAGAIN;
1304
1305 ret = wait_event_interruptible(
1306 epfile->ffs->wait, (ep = epfile->ep));
1307 if (ret)
1308 return -EINTR;
1309 }
1310
1311 spin_lock_irq(&epfile->ffs->eps_lock);
1312
1313 /* In the meantime, endpoint got disabled or changed. */
1314 if (epfile->ep != ep) {
1315 spin_unlock_irq(&epfile->ffs->eps_lock);
1316 return -ESHUTDOWN;
1317 }
1318
1319 switch (code) {
1320 case FUNCTIONFS_FIFO_STATUS:
1321 ret = usb_ep_fifo_status(epfile->ep->ep);
1322 break;
1323 case FUNCTIONFS_FIFO_FLUSH:
1324 usb_ep_fifo_flush(epfile->ep->ep);
1325 ret = 0;
1326 break;
1327 case FUNCTIONFS_CLEAR_HALT:
1328 ret = usb_ep_clear_halt(epfile->ep->ep);
1329 break;
1330 case FUNCTIONFS_ENDPOINT_REVMAP:
1331 ret = epfile->ep->num;
1332 break;
1333 case FUNCTIONFS_ENDPOINT_DESC:
1334 {
1335 int desc_idx;
1336 struct usb_endpoint_descriptor desc1, *desc;
1337
1338 switch (epfile->ffs->gadget->speed) {
1339 case USB_SPEED_SUPER:
1340 case USB_SPEED_SUPER_PLUS:
1341 desc_idx = 2;
1342 break;
1343 case USB_SPEED_HIGH:
1344 desc_idx = 1;
1345 break;
1346 default:
1347 desc_idx = 0;
1348 }
1349
1350 desc = epfile->ep->descs[desc_idx];
1351 memcpy(&desc1, desc, desc->bLength);
1352
1353 spin_unlock_irq(&epfile->ffs->eps_lock);
1354 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1355 if (ret)
1356 ret = -EFAULT;
1357 return ret;
1358 }
1359 default:
1360 ret = -ENOTTY;
1361 }
1362 spin_unlock_irq(&epfile->ffs->eps_lock);
1363
1364 return ret;
1365 }
1366
1367 static const struct file_operations ffs_epfile_operations = {
1368 .llseek = no_llseek,
1369
1370 .open = ffs_epfile_open,
1371 .write_iter = ffs_epfile_write_iter,
1372 .read_iter = ffs_epfile_read_iter,
1373 .release = ffs_epfile_release,
1374 .unlocked_ioctl = ffs_epfile_ioctl,
1375 .compat_ioctl = compat_ptr_ioctl,
1376 };
1377
1378
1379 /* File system and super block operations ***********************************/
1380
1381 /*
1382 * Mounting the file system creates a controller file, used first for
1383 * function configuration then later for event monitoring.
1384 */
1385
1386 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1387 ffs_sb_make_inode(struct super_block *sb, void *data,
1388 const struct file_operations *fops,
1389 const struct inode_operations *iops,
1390 struct ffs_file_perms *perms)
1391 {
1392 struct inode *inode;
1393
1394 ENTER();
1395
1396 inode = new_inode(sb);
1397
1398 if (likely(inode)) {
1399 struct timespec64 ts = current_time(inode);
1400
1401 inode->i_ino = get_next_ino();
1402 inode->i_mode = perms->mode;
1403 inode->i_uid = perms->uid;
1404 inode->i_gid = perms->gid;
1405 inode->i_atime = ts;
1406 inode->i_mtime = ts;
1407 inode->i_ctime = ts;
1408 inode->i_private = data;
1409 if (fops)
1410 inode->i_fop = fops;
1411 if (iops)
1412 inode->i_op = iops;
1413 }
1414
1415 return inode;
1416 }
1417
1418 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1419 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1420 const char *name, void *data,
1421 const struct file_operations *fops)
1422 {
1423 struct ffs_data *ffs = sb->s_fs_info;
1424 struct dentry *dentry;
1425 struct inode *inode;
1426
1427 ENTER();
1428
1429 dentry = d_alloc_name(sb->s_root, name);
1430 if (unlikely(!dentry))
1431 return NULL;
1432
1433 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1434 if (unlikely(!inode)) {
1435 dput(dentry);
1436 return NULL;
1437 }
1438
1439 d_add(dentry, inode);
1440 return dentry;
1441 }
1442
1443 /* Super block */
1444 static const struct super_operations ffs_sb_operations = {
1445 .statfs = simple_statfs,
1446 .drop_inode = generic_delete_inode,
1447 };
1448
1449 struct ffs_sb_fill_data {
1450 struct ffs_file_perms perms;
1451 umode_t root_mode;
1452 const char *dev_name;
1453 bool no_disconnect;
1454 struct ffs_data *ffs_data;
1455 };
1456
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1457 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1458 {
1459 struct ffs_sb_fill_data *data = fc->fs_private;
1460 struct inode *inode;
1461 struct ffs_data *ffs = data->ffs_data;
1462
1463 ENTER();
1464
1465 ffs->sb = sb;
1466 data->ffs_data = NULL;
1467 sb->s_fs_info = ffs;
1468 sb->s_blocksize = PAGE_SIZE;
1469 sb->s_blocksize_bits = PAGE_SHIFT;
1470 sb->s_magic = FUNCTIONFS_MAGIC;
1471 sb->s_op = &ffs_sb_operations;
1472 sb->s_time_gran = 1;
1473
1474 /* Root inode */
1475 data->perms.mode = data->root_mode;
1476 inode = ffs_sb_make_inode(sb, NULL,
1477 &simple_dir_operations,
1478 &simple_dir_inode_operations,
1479 &data->perms);
1480 sb->s_root = d_make_root(inode);
1481 if (unlikely(!sb->s_root))
1482 return -ENOMEM;
1483
1484 /* EP0 file */
1485 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1486 &ffs_ep0_operations)))
1487 return -ENOMEM;
1488
1489 return 0;
1490 }
1491
1492 enum {
1493 Opt_no_disconnect,
1494 Opt_rmode,
1495 Opt_fmode,
1496 Opt_mode,
1497 Opt_uid,
1498 Opt_gid,
1499 };
1500
1501 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1502 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1503 fsparam_u32 ("rmode", Opt_rmode),
1504 fsparam_u32 ("fmode", Opt_fmode),
1505 fsparam_u32 ("mode", Opt_mode),
1506 fsparam_u32 ("uid", Opt_uid),
1507 fsparam_u32 ("gid", Opt_gid),
1508 {}
1509 };
1510
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1511 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1512 {
1513 struct ffs_sb_fill_data *data = fc->fs_private;
1514 struct fs_parse_result result;
1515 int opt;
1516
1517 ENTER();
1518
1519 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1520 if (opt < 0)
1521 return opt;
1522
1523 switch (opt) {
1524 case Opt_no_disconnect:
1525 data->no_disconnect = result.boolean;
1526 break;
1527 case Opt_rmode:
1528 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1529 break;
1530 case Opt_fmode:
1531 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1532 break;
1533 case Opt_mode:
1534 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1535 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1536 break;
1537
1538 case Opt_uid:
1539 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1540 if (!uid_valid(data->perms.uid))
1541 goto unmapped_value;
1542 break;
1543 case Opt_gid:
1544 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1545 if (!gid_valid(data->perms.gid))
1546 goto unmapped_value;
1547 break;
1548
1549 default:
1550 return -ENOPARAM;
1551 }
1552
1553 return 0;
1554
1555 unmapped_value:
1556 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1557 }
1558
1559 /*
1560 * Set up the superblock for a mount.
1561 */
ffs_fs_get_tree(struct fs_context * fc)1562 static int ffs_fs_get_tree(struct fs_context *fc)
1563 {
1564 struct ffs_sb_fill_data *ctx = fc->fs_private;
1565 struct ffs_data *ffs;
1566 int ret;
1567
1568 ENTER();
1569
1570 if (!fc->source)
1571 return invalf(fc, "No source specified");
1572
1573 ffs = ffs_data_new(fc->source);
1574 if (unlikely(!ffs))
1575 return -ENOMEM;
1576 ffs->file_perms = ctx->perms;
1577 ffs->no_disconnect = ctx->no_disconnect;
1578
1579 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1580 if (unlikely(!ffs->dev_name)) {
1581 ffs_data_put(ffs);
1582 return -ENOMEM;
1583 }
1584
1585 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1586 if (ret) {
1587 ffs_data_put(ffs);
1588 return ret;
1589 }
1590
1591 ctx->ffs_data = ffs;
1592 return get_tree_nodev(fc, ffs_sb_fill);
1593 }
1594
ffs_fs_free_fc(struct fs_context * fc)1595 static void ffs_fs_free_fc(struct fs_context *fc)
1596 {
1597 struct ffs_sb_fill_data *ctx = fc->fs_private;
1598
1599 if (ctx) {
1600 if (ctx->ffs_data) {
1601 ffs_data_put(ctx->ffs_data);
1602 }
1603
1604 kfree(ctx);
1605 }
1606 }
1607
1608 static const struct fs_context_operations ffs_fs_context_ops = {
1609 .free = ffs_fs_free_fc,
1610 .parse_param = ffs_fs_parse_param,
1611 .get_tree = ffs_fs_get_tree,
1612 };
1613
ffs_fs_init_fs_context(struct fs_context * fc)1614 static int ffs_fs_init_fs_context(struct fs_context *fc)
1615 {
1616 struct ffs_sb_fill_data *ctx;
1617
1618 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1619 if (!ctx)
1620 return -ENOMEM;
1621
1622 ctx->perms.mode = S_IFREG | 0600;
1623 ctx->perms.uid = GLOBAL_ROOT_UID;
1624 ctx->perms.gid = GLOBAL_ROOT_GID;
1625 ctx->root_mode = S_IFDIR | 0500;
1626 ctx->no_disconnect = false;
1627
1628 fc->fs_private = ctx;
1629 fc->ops = &ffs_fs_context_ops;
1630 return 0;
1631 }
1632
1633 static void
ffs_fs_kill_sb(struct super_block * sb)1634 ffs_fs_kill_sb(struct super_block *sb)
1635 {
1636 ENTER();
1637
1638 kill_litter_super(sb);
1639 if (sb->s_fs_info)
1640 ffs_data_closed(sb->s_fs_info);
1641 }
1642
1643 static struct file_system_type ffs_fs_type = {
1644 .owner = THIS_MODULE,
1645 .name = "functionfs",
1646 .init_fs_context = ffs_fs_init_fs_context,
1647 .parameters = ffs_fs_fs_parameters,
1648 .kill_sb = ffs_fs_kill_sb,
1649 };
1650 MODULE_ALIAS_FS("functionfs");
1651
1652
1653 /* Driver's main init/cleanup functions *************************************/
1654
functionfs_init(void)1655 static int functionfs_init(void)
1656 {
1657 int ret;
1658
1659 ENTER();
1660
1661 ret = register_filesystem(&ffs_fs_type);
1662 if (likely(!ret))
1663 pr_info("file system registered\n");
1664 else
1665 pr_err("failed registering file system (%d)\n", ret);
1666
1667 return ret;
1668 }
1669
functionfs_cleanup(void)1670 static void functionfs_cleanup(void)
1671 {
1672 ENTER();
1673
1674 pr_info("unloading\n");
1675 unregister_filesystem(&ffs_fs_type);
1676 }
1677
1678
1679 /* ffs_data and ffs_function construction and destruction code **************/
1680
1681 static void ffs_data_clear(struct ffs_data *ffs);
1682 static void ffs_data_reset(struct ffs_data *ffs);
1683
ffs_data_get(struct ffs_data * ffs)1684 static void ffs_data_get(struct ffs_data *ffs)
1685 {
1686 ENTER();
1687
1688 refcount_inc(&ffs->ref);
1689 }
1690
ffs_data_opened(struct ffs_data * ffs)1691 static void ffs_data_opened(struct ffs_data *ffs)
1692 {
1693 ENTER();
1694
1695 refcount_inc(&ffs->ref);
1696 if (atomic_add_return(1, &ffs->opened) == 1 &&
1697 ffs->state == FFS_DEACTIVATED) {
1698 ffs->state = FFS_CLOSING;
1699 ffs_data_reset(ffs);
1700 }
1701 }
1702
ffs_data_put(struct ffs_data * ffs)1703 static void ffs_data_put(struct ffs_data *ffs)
1704 {
1705 ENTER();
1706
1707 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1708 pr_info("%s(): freeing\n", __func__);
1709 ffs_data_clear(ffs);
1710 ffs_release_dev(ffs->private_data);
1711 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1712 swait_active(&ffs->ep0req_completion.wait) ||
1713 waitqueue_active(&ffs->wait));
1714 destroy_workqueue(ffs->io_completion_wq);
1715 kfree(ffs->dev_name);
1716 kfree(ffs);
1717 }
1718 }
1719
ffs_data_closed(struct ffs_data * ffs)1720 static void ffs_data_closed(struct ffs_data *ffs)
1721 {
1722 struct ffs_epfile *epfiles;
1723 unsigned long flags;
1724
1725 ENTER();
1726
1727 if (atomic_dec_and_test(&ffs->opened)) {
1728 if (ffs->no_disconnect) {
1729 ffs->state = FFS_DEACTIVATED;
1730 spin_lock_irqsave(&ffs->eps_lock, flags);
1731 epfiles = ffs->epfiles;
1732 ffs->epfiles = NULL;
1733 spin_unlock_irqrestore(&ffs->eps_lock,
1734 flags);
1735
1736 if (epfiles)
1737 ffs_epfiles_destroy(epfiles,
1738 ffs->eps_count);
1739
1740 if (ffs->setup_state == FFS_SETUP_PENDING)
1741 __ffs_ep0_stall(ffs);
1742 } else {
1743 ffs->state = FFS_CLOSING;
1744 ffs_data_reset(ffs);
1745 }
1746 }
1747 if (atomic_read(&ffs->opened) < 0) {
1748 ffs->state = FFS_CLOSING;
1749 ffs_data_reset(ffs);
1750 }
1751
1752 ffs_data_put(ffs);
1753 }
1754
ffs_data_new(const char * dev_name)1755 static struct ffs_data *ffs_data_new(const char *dev_name)
1756 {
1757 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1758 if (unlikely(!ffs))
1759 return NULL;
1760
1761 ENTER();
1762
1763 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1764 if (!ffs->io_completion_wq) {
1765 kfree(ffs);
1766 return NULL;
1767 }
1768
1769 refcount_set(&ffs->ref, 1);
1770 atomic_set(&ffs->opened, 0);
1771 ffs->state = FFS_READ_DESCRIPTORS;
1772 mutex_init(&ffs->mutex);
1773 spin_lock_init(&ffs->eps_lock);
1774 init_waitqueue_head(&ffs->ev.waitq);
1775 init_waitqueue_head(&ffs->wait);
1776 init_completion(&ffs->ep0req_completion);
1777
1778 /* XXX REVISIT need to update it in some places, or do we? */
1779 ffs->ev.can_stall = 1;
1780
1781 return ffs;
1782 }
1783
ffs_data_clear(struct ffs_data * ffs)1784 static void ffs_data_clear(struct ffs_data *ffs)
1785 {
1786 struct ffs_epfile *epfiles;
1787 unsigned long flags;
1788
1789 ENTER();
1790
1791 ffs_closed(ffs);
1792
1793 BUG_ON(ffs->gadget);
1794
1795 spin_lock_irqsave(&ffs->eps_lock, flags);
1796 epfiles = ffs->epfiles;
1797 ffs->epfiles = NULL;
1798 spin_unlock_irqrestore(&ffs->eps_lock, flags);
1799
1800 /*
1801 * potential race possible between ffs_func_eps_disable
1802 * & ffs_epfile_release therefore maintaining a local
1803 * copy of epfile will save us from use-after-free.
1804 */
1805 if (epfiles) {
1806 ffs_epfiles_destroy(epfiles, ffs->eps_count);
1807 ffs->epfiles = NULL;
1808 }
1809
1810 if (ffs->ffs_eventfd) {
1811 eventfd_ctx_put(ffs->ffs_eventfd);
1812 ffs->ffs_eventfd = NULL;
1813 }
1814
1815 kfree(ffs->raw_descs_data);
1816 kfree(ffs->raw_strings);
1817 kfree(ffs->stringtabs);
1818 }
1819
ffs_data_reset(struct ffs_data * ffs)1820 static void ffs_data_reset(struct ffs_data *ffs)
1821 {
1822 ENTER();
1823
1824 ffs_data_clear(ffs);
1825
1826 ffs->raw_descs_data = NULL;
1827 ffs->raw_descs = NULL;
1828 ffs->raw_strings = NULL;
1829 ffs->stringtabs = NULL;
1830
1831 ffs->raw_descs_length = 0;
1832 ffs->fs_descs_count = 0;
1833 ffs->hs_descs_count = 0;
1834 ffs->ss_descs_count = 0;
1835
1836 ffs->strings_count = 0;
1837 ffs->interfaces_count = 0;
1838 ffs->eps_count = 0;
1839
1840 ffs->ev.count = 0;
1841
1842 ffs->state = FFS_READ_DESCRIPTORS;
1843 ffs->setup_state = FFS_NO_SETUP;
1844 ffs->flags = 0;
1845
1846 ffs->ms_os_descs_ext_prop_count = 0;
1847 ffs->ms_os_descs_ext_prop_name_len = 0;
1848 ffs->ms_os_descs_ext_prop_data_len = 0;
1849 }
1850
1851
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1852 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1853 {
1854 struct usb_gadget_strings **lang;
1855 int first_id;
1856
1857 ENTER();
1858
1859 if (WARN_ON(ffs->state != FFS_ACTIVE
1860 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1861 return -EBADFD;
1862
1863 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1864 if (unlikely(first_id < 0))
1865 return first_id;
1866
1867 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1868 if (unlikely(!ffs->ep0req))
1869 return -ENOMEM;
1870 ffs->ep0req->complete = ffs_ep0_complete;
1871 ffs->ep0req->context = ffs;
1872
1873 lang = ffs->stringtabs;
1874 if (lang) {
1875 for (; *lang; ++lang) {
1876 struct usb_string *str = (*lang)->strings;
1877 int id = first_id;
1878 for (; str->s; ++id, ++str)
1879 str->id = id;
1880 }
1881 }
1882
1883 ffs->gadget = cdev->gadget;
1884 ffs_data_get(ffs);
1885 return 0;
1886 }
1887
functionfs_unbind(struct ffs_data * ffs)1888 static void functionfs_unbind(struct ffs_data *ffs)
1889 {
1890 ENTER();
1891
1892 if (!WARN_ON(!ffs->gadget)) {
1893 /* dequeue before freeing ep0req */
1894 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1895 mutex_lock(&ffs->mutex);
1896 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1897 ffs->ep0req = NULL;
1898 ffs->gadget = NULL;
1899 clear_bit(FFS_FL_BOUND, &ffs->flags);
1900 mutex_unlock(&ffs->mutex);
1901 ffs_data_put(ffs);
1902 }
1903 }
1904
ffs_epfiles_create(struct ffs_data * ffs)1905 static int ffs_epfiles_create(struct ffs_data *ffs)
1906 {
1907 struct ffs_epfile *epfile, *epfiles;
1908 unsigned i, count;
1909
1910 ENTER();
1911
1912 count = ffs->eps_count;
1913 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1914 if (!epfiles)
1915 return -ENOMEM;
1916
1917 epfile = epfiles;
1918 for (i = 1; i <= count; ++i, ++epfile) {
1919 epfile->ffs = ffs;
1920 mutex_init(&epfile->mutex);
1921 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1922 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1923 else
1924 sprintf(epfile->name, "ep%u", i);
1925 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1926 epfile,
1927 &ffs_epfile_operations);
1928 if (unlikely(!epfile->dentry)) {
1929 ffs_epfiles_destroy(epfiles, i - 1);
1930 return -ENOMEM;
1931 }
1932 }
1933
1934 ffs->epfiles = epfiles;
1935 return 0;
1936 }
1937
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1938 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1939 {
1940 struct ffs_epfile *epfile = epfiles;
1941
1942 ENTER();
1943
1944 for (; count; --count, ++epfile) {
1945 BUG_ON(mutex_is_locked(&epfile->mutex));
1946 if (epfile->dentry) {
1947 d_delete(epfile->dentry);
1948 dput(epfile->dentry);
1949 epfile->dentry = NULL;
1950 }
1951 }
1952
1953 kfree(epfiles);
1954 }
1955
ffs_func_eps_disable(struct ffs_function * func)1956 static void ffs_func_eps_disable(struct ffs_function *func)
1957 {
1958 struct ffs_ep *ep;
1959 struct ffs_epfile *epfile;
1960 unsigned short count;
1961 unsigned long flags;
1962
1963 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1964 count = func->ffs->eps_count;
1965 epfile = func->ffs->epfiles;
1966 ep = func->eps;
1967 while (count--) {
1968 /* pending requests get nuked */
1969 if (likely(ep->ep))
1970 usb_ep_disable(ep->ep);
1971 ++ep;
1972
1973 if (epfile) {
1974 epfile->ep = NULL;
1975 __ffs_epfile_read_buffer_free(epfile);
1976 ++epfile;
1977 }
1978 }
1979 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1980 }
1981
ffs_func_eps_enable(struct ffs_function * func)1982 static int ffs_func_eps_enable(struct ffs_function *func)
1983 {
1984 struct ffs_data *ffs;
1985 struct ffs_ep *ep;
1986 struct ffs_epfile *epfile;
1987 unsigned short count;
1988 unsigned long flags;
1989 int ret = 0;
1990
1991 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1992 ffs = func->ffs;
1993 ep = func->eps;
1994 epfile = ffs->epfiles;
1995 count = ffs->eps_count;
1996 while(count--) {
1997 ep->ep->driver_data = ep;
1998
1999 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2000 if (ret) {
2001 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2002 __func__, ep->ep->name, ret);
2003 break;
2004 }
2005
2006 ret = usb_ep_enable(ep->ep);
2007 if (likely(!ret)) {
2008 epfile->ep = ep;
2009 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2010 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2011 } else {
2012 break;
2013 }
2014
2015 ++ep;
2016 ++epfile;
2017 }
2018
2019 wake_up_interruptible(&ffs->wait);
2020 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2021
2022 return ret;
2023 }
2024
2025
2026 /* Parsing and building descriptors and strings *****************************/
2027
2028 /*
2029 * This validates if data pointed by data is a valid USB descriptor as
2030 * well as record how many interfaces, endpoints and strings are
2031 * required by given configuration. Returns address after the
2032 * descriptor or NULL if data is invalid.
2033 */
2034
2035 enum ffs_entity_type {
2036 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2037 };
2038
2039 enum ffs_os_desc_type {
2040 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2041 };
2042
2043 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2044 u8 *valuep,
2045 struct usb_descriptor_header *desc,
2046 void *priv);
2047
2048 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2049 struct usb_os_desc_header *h, void *data,
2050 unsigned len, void *priv);
2051
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2052 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2053 ffs_entity_callback entity,
2054 void *priv, int *current_class)
2055 {
2056 struct usb_descriptor_header *_ds = (void *)data;
2057 u8 length;
2058 int ret;
2059
2060 ENTER();
2061
2062 /* At least two bytes are required: length and type */
2063 if (len < 2) {
2064 pr_vdebug("descriptor too short\n");
2065 return -EINVAL;
2066 }
2067
2068 /* If we have at least as many bytes as the descriptor takes? */
2069 length = _ds->bLength;
2070 if (len < length) {
2071 pr_vdebug("descriptor longer then available data\n");
2072 return -EINVAL;
2073 }
2074
2075 #define __entity_check_INTERFACE(val) 1
2076 #define __entity_check_STRING(val) (val)
2077 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2078 #define __entity(type, val) do { \
2079 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2080 if (unlikely(!__entity_check_ ##type(val))) { \
2081 pr_vdebug("invalid entity's value\n"); \
2082 return -EINVAL; \
2083 } \
2084 ret = entity(FFS_ ##type, &val, _ds, priv); \
2085 if (unlikely(ret < 0)) { \
2086 pr_debug("entity " #type "(%02x); ret = %d\n", \
2087 (val), ret); \
2088 return ret; \
2089 } \
2090 } while (0)
2091
2092 /* Parse descriptor depending on type. */
2093 switch (_ds->bDescriptorType) {
2094 case USB_DT_DEVICE:
2095 case USB_DT_CONFIG:
2096 case USB_DT_STRING:
2097 case USB_DT_DEVICE_QUALIFIER:
2098 /* function can't have any of those */
2099 pr_vdebug("descriptor reserved for gadget: %d\n",
2100 _ds->bDescriptorType);
2101 return -EINVAL;
2102
2103 case USB_DT_INTERFACE: {
2104 struct usb_interface_descriptor *ds = (void *)_ds;
2105 pr_vdebug("interface descriptor\n");
2106 if (length != sizeof *ds)
2107 goto inv_length;
2108
2109 __entity(INTERFACE, ds->bInterfaceNumber);
2110 if (ds->iInterface)
2111 __entity(STRING, ds->iInterface);
2112 *current_class = ds->bInterfaceClass;
2113 }
2114 break;
2115
2116 case USB_DT_ENDPOINT: {
2117 struct usb_endpoint_descriptor *ds = (void *)_ds;
2118 pr_vdebug("endpoint descriptor\n");
2119 if (length != USB_DT_ENDPOINT_SIZE &&
2120 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2121 goto inv_length;
2122 __entity(ENDPOINT, ds->bEndpointAddress);
2123 }
2124 break;
2125
2126 case USB_TYPE_CLASS | 0x01:
2127 if (*current_class == USB_INTERFACE_CLASS_HID) {
2128 pr_vdebug("hid descriptor\n");
2129 if (length != sizeof(struct hid_descriptor))
2130 goto inv_length;
2131 break;
2132 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2133 pr_vdebug("ccid descriptor\n");
2134 if (length != sizeof(struct ccid_descriptor))
2135 goto inv_length;
2136 break;
2137 } else {
2138 pr_vdebug("unknown descriptor: %d for class %d\n",
2139 _ds->bDescriptorType, *current_class);
2140 return -EINVAL;
2141 }
2142
2143 case USB_DT_OTG:
2144 if (length != sizeof(struct usb_otg_descriptor))
2145 goto inv_length;
2146 break;
2147
2148 case USB_DT_INTERFACE_ASSOCIATION: {
2149 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2150 pr_vdebug("interface association descriptor\n");
2151 if (length != sizeof *ds)
2152 goto inv_length;
2153 if (ds->iFunction)
2154 __entity(STRING, ds->iFunction);
2155 }
2156 break;
2157
2158 case USB_DT_SS_ENDPOINT_COMP:
2159 pr_vdebug("EP SS companion descriptor\n");
2160 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2161 goto inv_length;
2162 break;
2163
2164 case USB_DT_OTHER_SPEED_CONFIG:
2165 case USB_DT_INTERFACE_POWER:
2166 case USB_DT_DEBUG:
2167 case USB_DT_SECURITY:
2168 case USB_DT_CS_RADIO_CONTROL:
2169 /* TODO */
2170 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2171 return -EINVAL;
2172
2173 default:
2174 /* We should never be here */
2175 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2176 return -EINVAL;
2177
2178 inv_length:
2179 pr_vdebug("invalid length: %d (descriptor %d)\n",
2180 _ds->bLength, _ds->bDescriptorType);
2181 return -EINVAL;
2182 }
2183
2184 #undef __entity
2185 #undef __entity_check_DESCRIPTOR
2186 #undef __entity_check_INTERFACE
2187 #undef __entity_check_STRING
2188 #undef __entity_check_ENDPOINT
2189
2190 return length;
2191 }
2192
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2193 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2194 ffs_entity_callback entity, void *priv)
2195 {
2196 const unsigned _len = len;
2197 unsigned long num = 0;
2198 int current_class = -1;
2199
2200 ENTER();
2201
2202 for (;;) {
2203 int ret;
2204
2205 if (num == count)
2206 data = NULL;
2207
2208 /* Record "descriptor" entity */
2209 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2210 if (unlikely(ret < 0)) {
2211 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2212 num, ret);
2213 return ret;
2214 }
2215
2216 if (!data)
2217 return _len - len;
2218
2219 ret = ffs_do_single_desc(data, len, entity, priv,
2220 ¤t_class);
2221 if (unlikely(ret < 0)) {
2222 pr_debug("%s returns %d\n", __func__, ret);
2223 return ret;
2224 }
2225
2226 len -= ret;
2227 data += ret;
2228 ++num;
2229 }
2230 }
2231
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2232 static int __ffs_data_do_entity(enum ffs_entity_type type,
2233 u8 *valuep, struct usb_descriptor_header *desc,
2234 void *priv)
2235 {
2236 struct ffs_desc_helper *helper = priv;
2237 struct usb_endpoint_descriptor *d;
2238
2239 ENTER();
2240
2241 switch (type) {
2242 case FFS_DESCRIPTOR:
2243 break;
2244
2245 case FFS_INTERFACE:
2246 /*
2247 * Interfaces are indexed from zero so if we
2248 * encountered interface "n" then there are at least
2249 * "n+1" interfaces.
2250 */
2251 if (*valuep >= helper->interfaces_count)
2252 helper->interfaces_count = *valuep + 1;
2253 break;
2254
2255 case FFS_STRING:
2256 /*
2257 * Strings are indexed from 1 (0 is reserved
2258 * for languages list)
2259 */
2260 if (*valuep > helper->ffs->strings_count)
2261 helper->ffs->strings_count = *valuep;
2262 break;
2263
2264 case FFS_ENDPOINT:
2265 d = (void *)desc;
2266 helper->eps_count++;
2267 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2268 return -EINVAL;
2269 /* Check if descriptors for any speed were already parsed */
2270 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2271 helper->ffs->eps_addrmap[helper->eps_count] =
2272 d->bEndpointAddress;
2273 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2274 d->bEndpointAddress)
2275 return -EINVAL;
2276 break;
2277 }
2278
2279 return 0;
2280 }
2281
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2282 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2283 struct usb_os_desc_header *desc)
2284 {
2285 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2286 u16 w_index = le16_to_cpu(desc->wIndex);
2287
2288 if (bcd_version != 1) {
2289 pr_vdebug("unsupported os descriptors version: %d",
2290 bcd_version);
2291 return -EINVAL;
2292 }
2293 switch (w_index) {
2294 case 0x4:
2295 *next_type = FFS_OS_DESC_EXT_COMPAT;
2296 break;
2297 case 0x5:
2298 *next_type = FFS_OS_DESC_EXT_PROP;
2299 break;
2300 default:
2301 pr_vdebug("unsupported os descriptor type: %d", w_index);
2302 return -EINVAL;
2303 }
2304
2305 return sizeof(*desc);
2306 }
2307
2308 /*
2309 * Process all extended compatibility/extended property descriptors
2310 * of a feature descriptor
2311 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2312 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2313 enum ffs_os_desc_type type,
2314 u16 feature_count,
2315 ffs_os_desc_callback entity,
2316 void *priv,
2317 struct usb_os_desc_header *h)
2318 {
2319 int ret;
2320 const unsigned _len = len;
2321
2322 ENTER();
2323
2324 /* loop over all ext compat/ext prop descriptors */
2325 while (feature_count--) {
2326 ret = entity(type, h, data, len, priv);
2327 if (unlikely(ret < 0)) {
2328 pr_debug("bad OS descriptor, type: %d\n", type);
2329 return ret;
2330 }
2331 data += ret;
2332 len -= ret;
2333 }
2334 return _len - len;
2335 }
2336
2337 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2338 static int __must_check ffs_do_os_descs(unsigned count,
2339 char *data, unsigned len,
2340 ffs_os_desc_callback entity, void *priv)
2341 {
2342 const unsigned _len = len;
2343 unsigned long num = 0;
2344
2345 ENTER();
2346
2347 for (num = 0; num < count; ++num) {
2348 int ret;
2349 enum ffs_os_desc_type type;
2350 u16 feature_count;
2351 struct usb_os_desc_header *desc = (void *)data;
2352
2353 if (len < sizeof(*desc))
2354 return -EINVAL;
2355
2356 /*
2357 * Record "descriptor" entity.
2358 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2359 * Move the data pointer to the beginning of extended
2360 * compatibilities proper or extended properties proper
2361 * portions of the data
2362 */
2363 if (le32_to_cpu(desc->dwLength) > len)
2364 return -EINVAL;
2365
2366 ret = __ffs_do_os_desc_header(&type, desc);
2367 if (unlikely(ret < 0)) {
2368 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2369 num, ret);
2370 return ret;
2371 }
2372 /*
2373 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2374 */
2375 feature_count = le16_to_cpu(desc->wCount);
2376 if (type == FFS_OS_DESC_EXT_COMPAT &&
2377 (feature_count > 255 || desc->Reserved))
2378 return -EINVAL;
2379 len -= ret;
2380 data += ret;
2381
2382 /*
2383 * Process all function/property descriptors
2384 * of this Feature Descriptor
2385 */
2386 ret = ffs_do_single_os_desc(data, len, type,
2387 feature_count, entity, priv, desc);
2388 if (unlikely(ret < 0)) {
2389 pr_debug("%s returns %d\n", __func__, ret);
2390 return ret;
2391 }
2392
2393 len -= ret;
2394 data += ret;
2395 }
2396 return _len - len;
2397 }
2398
2399 /*
2400 * Validate contents of the buffer from userspace related to OS descriptors.
2401 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2402 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2403 struct usb_os_desc_header *h, void *data,
2404 unsigned len, void *priv)
2405 {
2406 struct ffs_data *ffs = priv;
2407 u8 length;
2408
2409 ENTER();
2410
2411 switch (type) {
2412 case FFS_OS_DESC_EXT_COMPAT: {
2413 struct usb_ext_compat_desc *d = data;
2414 int i;
2415
2416 if (len < sizeof(*d) ||
2417 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2418 return -EINVAL;
2419 if (d->Reserved1 != 1) {
2420 /*
2421 * According to the spec, Reserved1 must be set to 1
2422 * but older kernels incorrectly rejected non-zero
2423 * values. We fix it here to avoid returning EINVAL
2424 * in response to values we used to accept.
2425 */
2426 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2427 d->Reserved1 = 1;
2428 }
2429 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2430 if (d->Reserved2[i])
2431 return -EINVAL;
2432
2433 length = sizeof(struct usb_ext_compat_desc);
2434 }
2435 break;
2436 case FFS_OS_DESC_EXT_PROP: {
2437 struct usb_ext_prop_desc *d = data;
2438 u32 type, pdl;
2439 u16 pnl;
2440
2441 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2442 return -EINVAL;
2443 length = le32_to_cpu(d->dwSize);
2444 if (len < length)
2445 return -EINVAL;
2446 type = le32_to_cpu(d->dwPropertyDataType);
2447 if (type < USB_EXT_PROP_UNICODE ||
2448 type > USB_EXT_PROP_UNICODE_MULTI) {
2449 pr_vdebug("unsupported os descriptor property type: %d",
2450 type);
2451 return -EINVAL;
2452 }
2453 pnl = le16_to_cpu(d->wPropertyNameLength);
2454 if (length < 14 + pnl) {
2455 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2456 length, pnl, type);
2457 return -EINVAL;
2458 }
2459 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2460 if (length != 14 + pnl + pdl) {
2461 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2462 length, pnl, pdl, type);
2463 return -EINVAL;
2464 }
2465 ++ffs->ms_os_descs_ext_prop_count;
2466 /* property name reported to the host as "WCHAR"s */
2467 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2468 ffs->ms_os_descs_ext_prop_data_len += pdl;
2469 }
2470 break;
2471 default:
2472 pr_vdebug("unknown descriptor: %d\n", type);
2473 return -EINVAL;
2474 }
2475 return length;
2476 }
2477
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2478 static int __ffs_data_got_descs(struct ffs_data *ffs,
2479 char *const _data, size_t len)
2480 {
2481 char *data = _data, *raw_descs;
2482 unsigned os_descs_count = 0, counts[3], flags;
2483 int ret = -EINVAL, i;
2484 struct ffs_desc_helper helper;
2485
2486 ENTER();
2487
2488 if (get_unaligned_le32(data + 4) != len)
2489 goto error;
2490
2491 switch (get_unaligned_le32(data)) {
2492 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2493 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2494 data += 8;
2495 len -= 8;
2496 break;
2497 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2498 flags = get_unaligned_le32(data + 8);
2499 ffs->user_flags = flags;
2500 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2501 FUNCTIONFS_HAS_HS_DESC |
2502 FUNCTIONFS_HAS_SS_DESC |
2503 FUNCTIONFS_HAS_MS_OS_DESC |
2504 FUNCTIONFS_VIRTUAL_ADDR |
2505 FUNCTIONFS_EVENTFD |
2506 FUNCTIONFS_ALL_CTRL_RECIP |
2507 FUNCTIONFS_CONFIG0_SETUP)) {
2508 ret = -ENOSYS;
2509 goto error;
2510 }
2511 data += 12;
2512 len -= 12;
2513 break;
2514 default:
2515 goto error;
2516 }
2517
2518 if (flags & FUNCTIONFS_EVENTFD) {
2519 if (len < 4)
2520 goto error;
2521 ffs->ffs_eventfd =
2522 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2523 if (IS_ERR(ffs->ffs_eventfd)) {
2524 ret = PTR_ERR(ffs->ffs_eventfd);
2525 ffs->ffs_eventfd = NULL;
2526 goto error;
2527 }
2528 data += 4;
2529 len -= 4;
2530 }
2531
2532 /* Read fs_count, hs_count and ss_count (if present) */
2533 for (i = 0; i < 3; ++i) {
2534 if (!(flags & (1 << i))) {
2535 counts[i] = 0;
2536 } else if (len < 4) {
2537 goto error;
2538 } else {
2539 counts[i] = get_unaligned_le32(data);
2540 data += 4;
2541 len -= 4;
2542 }
2543 }
2544 if (flags & (1 << i)) {
2545 if (len < 4) {
2546 goto error;
2547 }
2548 os_descs_count = get_unaligned_le32(data);
2549 data += 4;
2550 len -= 4;
2551 }
2552
2553 /* Read descriptors */
2554 raw_descs = data;
2555 helper.ffs = ffs;
2556 for (i = 0; i < 3; ++i) {
2557 if (!counts[i])
2558 continue;
2559 helper.interfaces_count = 0;
2560 helper.eps_count = 0;
2561 ret = ffs_do_descs(counts[i], data, len,
2562 __ffs_data_do_entity, &helper);
2563 if (ret < 0)
2564 goto error;
2565 if (!ffs->eps_count && !ffs->interfaces_count) {
2566 ffs->eps_count = helper.eps_count;
2567 ffs->interfaces_count = helper.interfaces_count;
2568 } else {
2569 if (ffs->eps_count != helper.eps_count) {
2570 ret = -EINVAL;
2571 goto error;
2572 }
2573 if (ffs->interfaces_count != helper.interfaces_count) {
2574 ret = -EINVAL;
2575 goto error;
2576 }
2577 }
2578 data += ret;
2579 len -= ret;
2580 }
2581 if (os_descs_count) {
2582 ret = ffs_do_os_descs(os_descs_count, data, len,
2583 __ffs_data_do_os_desc, ffs);
2584 if (ret < 0)
2585 goto error;
2586 data += ret;
2587 len -= ret;
2588 }
2589
2590 if (raw_descs == data || len) {
2591 ret = -EINVAL;
2592 goto error;
2593 }
2594
2595 ffs->raw_descs_data = _data;
2596 ffs->raw_descs = raw_descs;
2597 ffs->raw_descs_length = data - raw_descs;
2598 ffs->fs_descs_count = counts[0];
2599 ffs->hs_descs_count = counts[1];
2600 ffs->ss_descs_count = counts[2];
2601 ffs->ms_os_descs_count = os_descs_count;
2602
2603 return 0;
2604
2605 error:
2606 kfree(_data);
2607 return ret;
2608 }
2609
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2610 static int __ffs_data_got_strings(struct ffs_data *ffs,
2611 char *const _data, size_t len)
2612 {
2613 u32 str_count, needed_count, lang_count;
2614 struct usb_gadget_strings **stringtabs, *t;
2615 const char *data = _data;
2616 struct usb_string *s;
2617
2618 ENTER();
2619
2620 if (unlikely(len < 16 ||
2621 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2622 get_unaligned_le32(data + 4) != len))
2623 goto error;
2624 str_count = get_unaligned_le32(data + 8);
2625 lang_count = get_unaligned_le32(data + 12);
2626
2627 /* if one is zero the other must be zero */
2628 if (unlikely(!str_count != !lang_count))
2629 goto error;
2630
2631 /* Do we have at least as many strings as descriptors need? */
2632 needed_count = ffs->strings_count;
2633 if (unlikely(str_count < needed_count))
2634 goto error;
2635
2636 /*
2637 * If we don't need any strings just return and free all
2638 * memory.
2639 */
2640 if (!needed_count) {
2641 kfree(_data);
2642 return 0;
2643 }
2644
2645 /* Allocate everything in one chunk so there's less maintenance. */
2646 {
2647 unsigned i = 0;
2648 vla_group(d);
2649 vla_item(d, struct usb_gadget_strings *, stringtabs,
2650 lang_count + 1);
2651 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2652 vla_item(d, struct usb_string, strings,
2653 lang_count*(needed_count+1));
2654
2655 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2656
2657 if (unlikely(!vlabuf)) {
2658 kfree(_data);
2659 return -ENOMEM;
2660 }
2661
2662 /* Initialize the VLA pointers */
2663 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2664 t = vla_ptr(vlabuf, d, stringtab);
2665 i = lang_count;
2666 do {
2667 *stringtabs++ = t++;
2668 } while (--i);
2669 *stringtabs = NULL;
2670
2671 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2672 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2673 t = vla_ptr(vlabuf, d, stringtab);
2674 s = vla_ptr(vlabuf, d, strings);
2675 }
2676
2677 /* For each language */
2678 data += 16;
2679 len -= 16;
2680
2681 do { /* lang_count > 0 so we can use do-while */
2682 unsigned needed = needed_count;
2683 u32 str_per_lang = str_count;
2684
2685 if (unlikely(len < 3))
2686 goto error_free;
2687 t->language = get_unaligned_le16(data);
2688 t->strings = s;
2689 ++t;
2690
2691 data += 2;
2692 len -= 2;
2693
2694 /* For each string */
2695 do { /* str_count > 0 so we can use do-while */
2696 size_t length = strnlen(data, len);
2697
2698 if (unlikely(length == len))
2699 goto error_free;
2700
2701 /*
2702 * User may provide more strings then we need,
2703 * if that's the case we simply ignore the
2704 * rest
2705 */
2706 if (likely(needed)) {
2707 /*
2708 * s->id will be set while adding
2709 * function to configuration so for
2710 * now just leave garbage here.
2711 */
2712 s->s = data;
2713 --needed;
2714 ++s;
2715 }
2716
2717 data += length + 1;
2718 len -= length + 1;
2719 } while (--str_per_lang);
2720
2721 s->id = 0; /* terminator */
2722 s->s = NULL;
2723 ++s;
2724
2725 } while (--lang_count);
2726
2727 /* Some garbage left? */
2728 if (unlikely(len))
2729 goto error_free;
2730
2731 /* Done! */
2732 ffs->stringtabs = stringtabs;
2733 ffs->raw_strings = _data;
2734
2735 return 0;
2736
2737 error_free:
2738 kfree(stringtabs);
2739 error:
2740 kfree(_data);
2741 return -EINVAL;
2742 }
2743
2744
2745 /* Events handling and management *******************************************/
2746
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2747 static void __ffs_event_add(struct ffs_data *ffs,
2748 enum usb_functionfs_event_type type)
2749 {
2750 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2751 int neg = 0;
2752
2753 /*
2754 * Abort any unhandled setup
2755 *
2756 * We do not need to worry about some cmpxchg() changing value
2757 * of ffs->setup_state without holding the lock because when
2758 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2759 * the source does nothing.
2760 */
2761 if (ffs->setup_state == FFS_SETUP_PENDING)
2762 ffs->setup_state = FFS_SETUP_CANCELLED;
2763
2764 /*
2765 * Logic of this function guarantees that there are at most four pending
2766 * evens on ffs->ev.types queue. This is important because the queue
2767 * has space for four elements only and __ffs_ep0_read_events function
2768 * depends on that limit as well. If more event types are added, those
2769 * limits have to be revisited or guaranteed to still hold.
2770 */
2771 switch (type) {
2772 case FUNCTIONFS_RESUME:
2773 rem_type2 = FUNCTIONFS_SUSPEND;
2774 fallthrough;
2775 case FUNCTIONFS_SUSPEND:
2776 case FUNCTIONFS_SETUP:
2777 rem_type1 = type;
2778 /* Discard all similar events */
2779 break;
2780
2781 case FUNCTIONFS_BIND:
2782 case FUNCTIONFS_UNBIND:
2783 case FUNCTIONFS_DISABLE:
2784 case FUNCTIONFS_ENABLE:
2785 /* Discard everything other then power management. */
2786 rem_type1 = FUNCTIONFS_SUSPEND;
2787 rem_type2 = FUNCTIONFS_RESUME;
2788 neg = 1;
2789 break;
2790
2791 default:
2792 WARN(1, "%d: unknown event, this should not happen\n", type);
2793 return;
2794 }
2795
2796 {
2797 u8 *ev = ffs->ev.types, *out = ev;
2798 unsigned n = ffs->ev.count;
2799 for (; n; --n, ++ev)
2800 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2801 *out++ = *ev;
2802 else
2803 pr_vdebug("purging event %d\n", *ev);
2804 ffs->ev.count = out - ffs->ev.types;
2805 }
2806
2807 pr_vdebug("adding event %d\n", type);
2808 ffs->ev.types[ffs->ev.count++] = type;
2809 wake_up_locked(&ffs->ev.waitq);
2810 if (ffs->ffs_eventfd)
2811 eventfd_signal(ffs->ffs_eventfd, 1);
2812 }
2813
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2814 static void ffs_event_add(struct ffs_data *ffs,
2815 enum usb_functionfs_event_type type)
2816 {
2817 unsigned long flags;
2818 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2819 __ffs_event_add(ffs, type);
2820 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2821 }
2822
2823 /* Bind/unbind USB function hooks *******************************************/
2824
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2825 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2826 {
2827 int i;
2828
2829 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2830 if (ffs->eps_addrmap[i] == endpoint_address)
2831 return i;
2832 return -ENOENT;
2833 }
2834
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2835 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2836 struct usb_descriptor_header *desc,
2837 void *priv)
2838 {
2839 struct usb_endpoint_descriptor *ds = (void *)desc;
2840 struct ffs_function *func = priv;
2841 struct ffs_ep *ffs_ep;
2842 unsigned ep_desc_id;
2843 int idx;
2844 static const char *speed_names[] = { "full", "high", "super" };
2845
2846 if (type != FFS_DESCRIPTOR)
2847 return 0;
2848
2849 /*
2850 * If ss_descriptors is not NULL, we are reading super speed
2851 * descriptors; if hs_descriptors is not NULL, we are reading high
2852 * speed descriptors; otherwise, we are reading full speed
2853 * descriptors.
2854 */
2855 if (func->function.ss_descriptors) {
2856 ep_desc_id = 2;
2857 func->function.ss_descriptors[(long)valuep] = desc;
2858 } else if (func->function.hs_descriptors) {
2859 ep_desc_id = 1;
2860 func->function.hs_descriptors[(long)valuep] = desc;
2861 } else {
2862 ep_desc_id = 0;
2863 func->function.fs_descriptors[(long)valuep] = desc;
2864 }
2865
2866 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2867 return 0;
2868
2869 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2870 if (idx < 0)
2871 return idx;
2872
2873 ffs_ep = func->eps + idx;
2874
2875 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2876 pr_err("two %sspeed descriptors for EP %d\n",
2877 speed_names[ep_desc_id],
2878 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2879 return -EINVAL;
2880 }
2881 ffs_ep->descs[ep_desc_id] = ds;
2882
2883 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2884 if (ffs_ep->ep) {
2885 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2886 if (!ds->wMaxPacketSize)
2887 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2888 } else {
2889 struct usb_request *req;
2890 struct usb_ep *ep;
2891 u8 bEndpointAddress;
2892 u16 wMaxPacketSize;
2893
2894 /*
2895 * We back up bEndpointAddress because autoconfig overwrites
2896 * it with physical endpoint address.
2897 */
2898 bEndpointAddress = ds->bEndpointAddress;
2899 /*
2900 * We back up wMaxPacketSize because autoconfig treats
2901 * endpoint descriptors as if they were full speed.
2902 */
2903 wMaxPacketSize = ds->wMaxPacketSize;
2904 pr_vdebug("autoconfig\n");
2905 ep = usb_ep_autoconfig(func->gadget, ds);
2906 if (unlikely(!ep))
2907 return -ENOTSUPP;
2908 ep->driver_data = func->eps + idx;
2909
2910 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2911 if (unlikely(!req))
2912 return -ENOMEM;
2913
2914 ffs_ep->ep = ep;
2915 ffs_ep->req = req;
2916 func->eps_revmap[ds->bEndpointAddress &
2917 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2918 /*
2919 * If we use virtual address mapping, we restore
2920 * original bEndpointAddress value.
2921 */
2922 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2923 ds->bEndpointAddress = bEndpointAddress;
2924 /*
2925 * Restore wMaxPacketSize which was potentially
2926 * overwritten by autoconfig.
2927 */
2928 ds->wMaxPacketSize = wMaxPacketSize;
2929 }
2930 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2931
2932 return 0;
2933 }
2934
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2935 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2936 struct usb_descriptor_header *desc,
2937 void *priv)
2938 {
2939 struct ffs_function *func = priv;
2940 unsigned idx;
2941 u8 newValue;
2942
2943 switch (type) {
2944 default:
2945 case FFS_DESCRIPTOR:
2946 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2947 return 0;
2948
2949 case FFS_INTERFACE:
2950 idx = *valuep;
2951 if (func->interfaces_nums[idx] < 0) {
2952 int id = usb_interface_id(func->conf, &func->function);
2953 if (unlikely(id < 0))
2954 return id;
2955 func->interfaces_nums[idx] = id;
2956 }
2957 newValue = func->interfaces_nums[idx];
2958 break;
2959
2960 case FFS_STRING:
2961 /* String' IDs are allocated when fsf_data is bound to cdev */
2962 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2963 break;
2964
2965 case FFS_ENDPOINT:
2966 /*
2967 * USB_DT_ENDPOINT are handled in
2968 * __ffs_func_bind_do_descs().
2969 */
2970 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2971 return 0;
2972
2973 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2974 if (unlikely(!func->eps[idx].ep))
2975 return -EINVAL;
2976
2977 {
2978 struct usb_endpoint_descriptor **descs;
2979 descs = func->eps[idx].descs;
2980 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2981 }
2982 break;
2983 }
2984
2985 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2986 *valuep = newValue;
2987 return 0;
2988 }
2989
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2990 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2991 struct usb_os_desc_header *h, void *data,
2992 unsigned len, void *priv)
2993 {
2994 struct ffs_function *func = priv;
2995 u8 length = 0;
2996
2997 switch (type) {
2998 case FFS_OS_DESC_EXT_COMPAT: {
2999 struct usb_ext_compat_desc *desc = data;
3000 struct usb_os_desc_table *t;
3001
3002 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3003 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3004 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3005 ARRAY_SIZE(desc->CompatibleID) +
3006 ARRAY_SIZE(desc->SubCompatibleID));
3007 length = sizeof(*desc);
3008 }
3009 break;
3010 case FFS_OS_DESC_EXT_PROP: {
3011 struct usb_ext_prop_desc *desc = data;
3012 struct usb_os_desc_table *t;
3013 struct usb_os_desc_ext_prop *ext_prop;
3014 char *ext_prop_name;
3015 char *ext_prop_data;
3016
3017 t = &func->function.os_desc_table[h->interface];
3018 t->if_id = func->interfaces_nums[h->interface];
3019
3020 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3021 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3022
3023 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3024 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3025 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3026 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3027 length = ext_prop->name_len + ext_prop->data_len + 14;
3028
3029 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3030 func->ffs->ms_os_descs_ext_prop_name_avail +=
3031 ext_prop->name_len;
3032
3033 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3034 func->ffs->ms_os_descs_ext_prop_data_avail +=
3035 ext_prop->data_len;
3036 memcpy(ext_prop_data,
3037 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3038 ext_prop->data_len);
3039 /* unicode data reported to the host as "WCHAR"s */
3040 switch (ext_prop->type) {
3041 case USB_EXT_PROP_UNICODE:
3042 case USB_EXT_PROP_UNICODE_ENV:
3043 case USB_EXT_PROP_UNICODE_LINK:
3044 case USB_EXT_PROP_UNICODE_MULTI:
3045 ext_prop->data_len *= 2;
3046 break;
3047 }
3048 ext_prop->data = ext_prop_data;
3049
3050 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3051 ext_prop->name_len);
3052 /* property name reported to the host as "WCHAR"s */
3053 ext_prop->name_len *= 2;
3054 ext_prop->name = ext_prop_name;
3055
3056 t->os_desc->ext_prop_len +=
3057 ext_prop->name_len + ext_prop->data_len + 14;
3058 ++t->os_desc->ext_prop_count;
3059 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3060 }
3061 break;
3062 default:
3063 pr_vdebug("unknown descriptor: %d\n", type);
3064 }
3065
3066 return length;
3067 }
3068
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3069 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3070 struct usb_configuration *c)
3071 {
3072 struct ffs_function *func = ffs_func_from_usb(f);
3073 struct f_fs_opts *ffs_opts =
3074 container_of(f->fi, struct f_fs_opts, func_inst);
3075 struct ffs_data *ffs_data;
3076 int ret;
3077
3078 ENTER();
3079
3080 /*
3081 * Legacy gadget triggers binding in functionfs_ready_callback,
3082 * which already uses locking; taking the same lock here would
3083 * cause a deadlock.
3084 *
3085 * Configfs-enabled gadgets however do need ffs_dev_lock.
3086 */
3087 if (!ffs_opts->no_configfs)
3088 ffs_dev_lock();
3089 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3090 ffs_data = ffs_opts->dev->ffs_data;
3091 if (!ffs_opts->no_configfs)
3092 ffs_dev_unlock();
3093 if (ret)
3094 return ERR_PTR(ret);
3095
3096 func->ffs = ffs_data;
3097 func->conf = c;
3098 func->gadget = c->cdev->gadget;
3099
3100 /*
3101 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3102 * configurations are bound in sequence with list_for_each_entry,
3103 * in each configuration its functions are bound in sequence
3104 * with list_for_each_entry, so we assume no race condition
3105 * with regard to ffs_opts->bound access
3106 */
3107 if (!ffs_opts->refcnt) {
3108 ret = functionfs_bind(func->ffs, c->cdev);
3109 if (ret)
3110 return ERR_PTR(ret);
3111 }
3112 ffs_opts->refcnt++;
3113 func->function.strings = func->ffs->stringtabs;
3114
3115 return ffs_opts;
3116 }
3117
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3118 static int _ffs_func_bind(struct usb_configuration *c,
3119 struct usb_function *f)
3120 {
3121 struct ffs_function *func = ffs_func_from_usb(f);
3122 struct ffs_data *ffs = func->ffs;
3123
3124 const int full = !!func->ffs->fs_descs_count;
3125 const int high = !!func->ffs->hs_descs_count;
3126 const int super = !!func->ffs->ss_descs_count;
3127
3128 int fs_len, hs_len, ss_len, ret, i;
3129 struct ffs_ep *eps_ptr;
3130
3131 /* Make it a single chunk, less management later on */
3132 vla_group(d);
3133 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3134 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3135 full ? ffs->fs_descs_count + 1 : 0);
3136 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3137 high ? ffs->hs_descs_count + 1 : 0);
3138 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3139 super ? ffs->ss_descs_count + 1 : 0);
3140 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3141 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3142 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3143 vla_item_with_sz(d, char[16], ext_compat,
3144 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3145 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3146 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3147 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3148 ffs->ms_os_descs_ext_prop_count);
3149 vla_item_with_sz(d, char, ext_prop_name,
3150 ffs->ms_os_descs_ext_prop_name_len);
3151 vla_item_with_sz(d, char, ext_prop_data,
3152 ffs->ms_os_descs_ext_prop_data_len);
3153 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3154 char *vlabuf;
3155
3156 ENTER();
3157
3158 /* Has descriptors only for speeds gadget does not support */
3159 if (unlikely(!(full | high | super)))
3160 return -ENOTSUPP;
3161
3162 /* Allocate a single chunk, less management later on */
3163 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3164 if (unlikely(!vlabuf))
3165 return -ENOMEM;
3166
3167 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3168 ffs->ms_os_descs_ext_prop_name_avail =
3169 vla_ptr(vlabuf, d, ext_prop_name);
3170 ffs->ms_os_descs_ext_prop_data_avail =
3171 vla_ptr(vlabuf, d, ext_prop_data);
3172
3173 /* Copy descriptors */
3174 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3175 ffs->raw_descs_length);
3176
3177 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3178 eps_ptr = vla_ptr(vlabuf, d, eps);
3179 for (i = 0; i < ffs->eps_count; i++)
3180 eps_ptr[i].num = -1;
3181
3182 /* Save pointers
3183 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3184 */
3185 func->eps = vla_ptr(vlabuf, d, eps);
3186 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3187
3188 /*
3189 * Go through all the endpoint descriptors and allocate
3190 * endpoints first, so that later we can rewrite the endpoint
3191 * numbers without worrying that it may be described later on.
3192 */
3193 if (likely(full)) {
3194 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3195 fs_len = ffs_do_descs(ffs->fs_descs_count,
3196 vla_ptr(vlabuf, d, raw_descs),
3197 d_raw_descs__sz,
3198 __ffs_func_bind_do_descs, func);
3199 if (unlikely(fs_len < 0)) {
3200 ret = fs_len;
3201 goto error;
3202 }
3203 } else {
3204 fs_len = 0;
3205 }
3206
3207 if (likely(high)) {
3208 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3209 hs_len = ffs_do_descs(ffs->hs_descs_count,
3210 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3211 d_raw_descs__sz - fs_len,
3212 __ffs_func_bind_do_descs, func);
3213 if (unlikely(hs_len < 0)) {
3214 ret = hs_len;
3215 goto error;
3216 }
3217 } else {
3218 hs_len = 0;
3219 }
3220
3221 if (likely(super)) {
3222 func->function.ss_descriptors = func->function.ssp_descriptors =
3223 vla_ptr(vlabuf, d, ss_descs);
3224 ss_len = ffs_do_descs(ffs->ss_descs_count,
3225 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3226 d_raw_descs__sz - fs_len - hs_len,
3227 __ffs_func_bind_do_descs, func);
3228 if (unlikely(ss_len < 0)) {
3229 ret = ss_len;
3230 goto error;
3231 }
3232 } else {
3233 ss_len = 0;
3234 }
3235
3236 /*
3237 * Now handle interface numbers allocation and interface and
3238 * endpoint numbers rewriting. We can do that in one go
3239 * now.
3240 */
3241 ret = ffs_do_descs(ffs->fs_descs_count +
3242 (high ? ffs->hs_descs_count : 0) +
3243 (super ? ffs->ss_descs_count : 0),
3244 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3245 __ffs_func_bind_do_nums, func);
3246 if (unlikely(ret < 0))
3247 goto error;
3248
3249 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3250 if (c->cdev->use_os_string) {
3251 for (i = 0; i < ffs->interfaces_count; ++i) {
3252 struct usb_os_desc *desc;
3253
3254 desc = func->function.os_desc_table[i].os_desc =
3255 vla_ptr(vlabuf, d, os_desc) +
3256 i * sizeof(struct usb_os_desc);
3257 desc->ext_compat_id =
3258 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3259 INIT_LIST_HEAD(&desc->ext_prop);
3260 }
3261 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3262 vla_ptr(vlabuf, d, raw_descs) +
3263 fs_len + hs_len + ss_len,
3264 d_raw_descs__sz - fs_len - hs_len -
3265 ss_len,
3266 __ffs_func_bind_do_os_desc, func);
3267 if (unlikely(ret < 0))
3268 goto error;
3269 }
3270 func->function.os_desc_n =
3271 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3272
3273 /* And we're done */
3274 ffs_event_add(ffs, FUNCTIONFS_BIND);
3275 return 0;
3276
3277 error:
3278 /* XXX Do we need to release all claimed endpoints here? */
3279 return ret;
3280 }
3281
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3282 static int ffs_func_bind(struct usb_configuration *c,
3283 struct usb_function *f)
3284 {
3285 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3286 struct ffs_function *func = ffs_func_from_usb(f);
3287 int ret;
3288
3289 if (IS_ERR(ffs_opts))
3290 return PTR_ERR(ffs_opts);
3291
3292 ret = _ffs_func_bind(c, f);
3293 if (ret && !--ffs_opts->refcnt)
3294 functionfs_unbind(func->ffs);
3295
3296 return ret;
3297 }
3298
3299
3300 /* Other USB function hooks *************************************************/
3301
ffs_reset_work(struct work_struct * work)3302 static void ffs_reset_work(struct work_struct *work)
3303 {
3304 struct ffs_data *ffs = container_of(work,
3305 struct ffs_data, reset_work);
3306 ffs_data_reset(ffs);
3307 }
3308
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3309 static int ffs_func_set_alt(struct usb_function *f,
3310 unsigned interface, unsigned alt)
3311 {
3312 struct ffs_function *func = ffs_func_from_usb(f);
3313 struct ffs_data *ffs = func->ffs;
3314 int ret = 0, intf;
3315
3316 if (alt != (unsigned)-1) {
3317 intf = ffs_func_revmap_intf(func, interface);
3318 if (unlikely(intf < 0))
3319 return intf;
3320 }
3321
3322 if (ffs->func)
3323 ffs_func_eps_disable(ffs->func);
3324
3325 if (ffs->state == FFS_DEACTIVATED) {
3326 ffs->state = FFS_CLOSING;
3327 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3328 schedule_work(&ffs->reset_work);
3329 return -ENODEV;
3330 }
3331
3332 if (ffs->state != FFS_ACTIVE)
3333 return -ENODEV;
3334
3335 if (alt == (unsigned)-1) {
3336 ffs->func = NULL;
3337 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3338 return 0;
3339 }
3340
3341 ffs->func = func;
3342 ret = ffs_func_eps_enable(func);
3343 if (likely(ret >= 0))
3344 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3345 return ret;
3346 }
3347
ffs_func_disable(struct usb_function * f)3348 static void ffs_func_disable(struct usb_function *f)
3349 {
3350 ffs_func_set_alt(f, 0, (unsigned)-1);
3351 }
3352
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3353 static int ffs_func_setup(struct usb_function *f,
3354 const struct usb_ctrlrequest *creq)
3355 {
3356 struct ffs_function *func = ffs_func_from_usb(f);
3357 struct ffs_data *ffs = func->ffs;
3358 unsigned long flags;
3359 int ret;
3360
3361 ENTER();
3362
3363 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3364 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3365 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3366 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3367 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3368
3369 /*
3370 * Most requests directed to interface go through here
3371 * (notable exceptions are set/get interface) so we need to
3372 * handle them. All other either handled by composite or
3373 * passed to usb_configuration->setup() (if one is set). No
3374 * matter, we will handle requests directed to endpoint here
3375 * as well (as it's straightforward). Other request recipient
3376 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3377 * is being used.
3378 */
3379 if (ffs->state != FFS_ACTIVE)
3380 return -ENODEV;
3381
3382 switch (creq->bRequestType & USB_RECIP_MASK) {
3383 case USB_RECIP_INTERFACE:
3384 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3385 if (unlikely(ret < 0))
3386 return ret;
3387 break;
3388
3389 case USB_RECIP_ENDPOINT:
3390 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3391 if (unlikely(ret < 0))
3392 return ret;
3393 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3394 ret = func->ffs->eps_addrmap[ret];
3395 break;
3396
3397 default:
3398 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3399 ret = le16_to_cpu(creq->wIndex);
3400 else
3401 return -EOPNOTSUPP;
3402 }
3403
3404 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3405 ffs->ev.setup = *creq;
3406 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3407 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3408 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3409
3410 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3411 }
3412
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3413 static bool ffs_func_req_match(struct usb_function *f,
3414 const struct usb_ctrlrequest *creq,
3415 bool config0)
3416 {
3417 struct ffs_function *func = ffs_func_from_usb(f);
3418
3419 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3420 return false;
3421
3422 switch (creq->bRequestType & USB_RECIP_MASK) {
3423 case USB_RECIP_INTERFACE:
3424 return (ffs_func_revmap_intf(func,
3425 le16_to_cpu(creq->wIndex)) >= 0);
3426 case USB_RECIP_ENDPOINT:
3427 return (ffs_func_revmap_ep(func,
3428 le16_to_cpu(creq->wIndex)) >= 0);
3429 default:
3430 return (bool) (func->ffs->user_flags &
3431 FUNCTIONFS_ALL_CTRL_RECIP);
3432 }
3433 }
3434
ffs_func_suspend(struct usb_function * f)3435 static void ffs_func_suspend(struct usb_function *f)
3436 {
3437 ENTER();
3438 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3439 }
3440
ffs_func_resume(struct usb_function * f)3441 static void ffs_func_resume(struct usb_function *f)
3442 {
3443 ENTER();
3444 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3445 }
3446
3447
3448 /* Endpoint and interface numbers reverse mapping ***************************/
3449
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3450 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3451 {
3452 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3453 return num ? num : -EDOM;
3454 }
3455
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3456 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3457 {
3458 short *nums = func->interfaces_nums;
3459 unsigned count = func->ffs->interfaces_count;
3460
3461 for (; count; --count, ++nums) {
3462 if (*nums >= 0 && *nums == intf)
3463 return nums - func->interfaces_nums;
3464 }
3465
3466 return -EDOM;
3467 }
3468
3469
3470 /* Devices management *******************************************************/
3471
3472 static LIST_HEAD(ffs_devices);
3473
_ffs_do_find_dev(const char * name)3474 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3475 {
3476 struct ffs_dev *dev;
3477
3478 if (!name)
3479 return NULL;
3480
3481 list_for_each_entry(dev, &ffs_devices, entry) {
3482 if (strcmp(dev->name, name) == 0)
3483 return dev;
3484 }
3485
3486 return NULL;
3487 }
3488
3489 /*
3490 * ffs_lock must be taken by the caller of this function
3491 */
_ffs_get_single_dev(void)3492 static struct ffs_dev *_ffs_get_single_dev(void)
3493 {
3494 struct ffs_dev *dev;
3495
3496 if (list_is_singular(&ffs_devices)) {
3497 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3498 if (dev->single)
3499 return dev;
3500 }
3501
3502 return NULL;
3503 }
3504
3505 /*
3506 * ffs_lock must be taken by the caller of this function
3507 */
_ffs_find_dev(const char * name)3508 static struct ffs_dev *_ffs_find_dev(const char *name)
3509 {
3510 struct ffs_dev *dev;
3511
3512 dev = _ffs_get_single_dev();
3513 if (dev)
3514 return dev;
3515
3516 return _ffs_do_find_dev(name);
3517 }
3518
3519 /* Configfs support *********************************************************/
3520
to_ffs_opts(struct config_item * item)3521 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3522 {
3523 return container_of(to_config_group(item), struct f_fs_opts,
3524 func_inst.group);
3525 }
3526
ffs_attr_release(struct config_item * item)3527 static void ffs_attr_release(struct config_item *item)
3528 {
3529 struct f_fs_opts *opts = to_ffs_opts(item);
3530
3531 usb_put_function_instance(&opts->func_inst);
3532 }
3533
3534 static struct configfs_item_operations ffs_item_ops = {
3535 .release = ffs_attr_release,
3536 };
3537
3538 static const struct config_item_type ffs_func_type = {
3539 .ct_item_ops = &ffs_item_ops,
3540 .ct_owner = THIS_MODULE,
3541 };
3542
3543
3544 /* Function registration interface ******************************************/
3545
ffs_free_inst(struct usb_function_instance * f)3546 static void ffs_free_inst(struct usb_function_instance *f)
3547 {
3548 struct f_fs_opts *opts;
3549
3550 opts = to_f_fs_opts(f);
3551 ffs_release_dev(opts->dev);
3552 ffs_dev_lock();
3553 _ffs_free_dev(opts->dev);
3554 ffs_dev_unlock();
3555 kfree(opts);
3556 }
3557
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3558 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3559 {
3560 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3561 return -ENAMETOOLONG;
3562 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3563 }
3564
ffs_alloc_inst(void)3565 static struct usb_function_instance *ffs_alloc_inst(void)
3566 {
3567 struct f_fs_opts *opts;
3568 struct ffs_dev *dev;
3569
3570 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3571 if (!opts)
3572 return ERR_PTR(-ENOMEM);
3573
3574 opts->func_inst.set_inst_name = ffs_set_inst_name;
3575 opts->func_inst.free_func_inst = ffs_free_inst;
3576 ffs_dev_lock();
3577 dev = _ffs_alloc_dev();
3578 ffs_dev_unlock();
3579 if (IS_ERR(dev)) {
3580 kfree(opts);
3581 return ERR_CAST(dev);
3582 }
3583 opts->dev = dev;
3584 dev->opts = opts;
3585
3586 config_group_init_type_name(&opts->func_inst.group, "",
3587 &ffs_func_type);
3588 return &opts->func_inst;
3589 }
3590
ffs_free(struct usb_function * f)3591 static void ffs_free(struct usb_function *f)
3592 {
3593 kfree(ffs_func_from_usb(f));
3594 }
3595
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3596 static void ffs_func_unbind(struct usb_configuration *c,
3597 struct usb_function *f)
3598 {
3599 struct ffs_function *func = ffs_func_from_usb(f);
3600 struct ffs_data *ffs = func->ffs;
3601 struct f_fs_opts *opts =
3602 container_of(f->fi, struct f_fs_opts, func_inst);
3603 struct ffs_ep *ep = func->eps;
3604 unsigned count = ffs->eps_count;
3605 unsigned long flags;
3606
3607 ENTER();
3608 if (ffs->func == func) {
3609 ffs_func_eps_disable(func);
3610 ffs->func = NULL;
3611 }
3612
3613 /* Drain any pending AIO completions */
3614 drain_workqueue(ffs->io_completion_wq);
3615
3616 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3617 if (!--opts->refcnt)
3618 functionfs_unbind(ffs);
3619
3620 /* cleanup after autoconfig */
3621 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3622 while (count--) {
3623 if (ep->ep && ep->req)
3624 usb_ep_free_request(ep->ep, ep->req);
3625 ep->req = NULL;
3626 ++ep;
3627 }
3628 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3629 kfree(func->eps);
3630 func->eps = NULL;
3631 /*
3632 * eps, descriptors and interfaces_nums are allocated in the
3633 * same chunk so only one free is required.
3634 */
3635 func->function.fs_descriptors = NULL;
3636 func->function.hs_descriptors = NULL;
3637 func->function.ss_descriptors = NULL;
3638 func->function.ssp_descriptors = NULL;
3639 func->interfaces_nums = NULL;
3640
3641 }
3642
ffs_alloc(struct usb_function_instance * fi)3643 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3644 {
3645 struct ffs_function *func;
3646
3647 ENTER();
3648
3649 func = kzalloc(sizeof(*func), GFP_KERNEL);
3650 if (unlikely(!func))
3651 return ERR_PTR(-ENOMEM);
3652
3653 func->function.name = "Function FS Gadget";
3654
3655 func->function.bind = ffs_func_bind;
3656 func->function.unbind = ffs_func_unbind;
3657 func->function.set_alt = ffs_func_set_alt;
3658 func->function.disable = ffs_func_disable;
3659 func->function.setup = ffs_func_setup;
3660 func->function.req_match = ffs_func_req_match;
3661 func->function.suspend = ffs_func_suspend;
3662 func->function.resume = ffs_func_resume;
3663 func->function.free_func = ffs_free;
3664
3665 return &func->function;
3666 }
3667
3668 /*
3669 * ffs_lock must be taken by the caller of this function
3670 */
_ffs_alloc_dev(void)3671 static struct ffs_dev *_ffs_alloc_dev(void)
3672 {
3673 struct ffs_dev *dev;
3674 int ret;
3675
3676 if (_ffs_get_single_dev())
3677 return ERR_PTR(-EBUSY);
3678
3679 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3680 if (!dev)
3681 return ERR_PTR(-ENOMEM);
3682
3683 if (list_empty(&ffs_devices)) {
3684 ret = functionfs_init();
3685 if (ret) {
3686 kfree(dev);
3687 return ERR_PTR(ret);
3688 }
3689 }
3690
3691 list_add(&dev->entry, &ffs_devices);
3692
3693 return dev;
3694 }
3695
ffs_name_dev(struct ffs_dev * dev,const char * name)3696 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3697 {
3698 struct ffs_dev *existing;
3699 int ret = 0;
3700
3701 ffs_dev_lock();
3702
3703 existing = _ffs_do_find_dev(name);
3704 if (!existing)
3705 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3706 else if (existing != dev)
3707 ret = -EBUSY;
3708
3709 ffs_dev_unlock();
3710
3711 return ret;
3712 }
3713 EXPORT_SYMBOL_GPL(ffs_name_dev);
3714
ffs_single_dev(struct ffs_dev * dev)3715 int ffs_single_dev(struct ffs_dev *dev)
3716 {
3717 int ret;
3718
3719 ret = 0;
3720 ffs_dev_lock();
3721
3722 if (!list_is_singular(&ffs_devices))
3723 ret = -EBUSY;
3724 else
3725 dev->single = true;
3726
3727 ffs_dev_unlock();
3728 return ret;
3729 }
3730 EXPORT_SYMBOL_GPL(ffs_single_dev);
3731
3732 /*
3733 * ffs_lock must be taken by the caller of this function
3734 */
_ffs_free_dev(struct ffs_dev * dev)3735 static void _ffs_free_dev(struct ffs_dev *dev)
3736 {
3737 list_del(&dev->entry);
3738
3739 kfree(dev);
3740 if (list_empty(&ffs_devices))
3741 functionfs_cleanup();
3742 }
3743
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3744 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3745 {
3746 int ret = 0;
3747 struct ffs_dev *ffs_dev;
3748
3749 ENTER();
3750 ffs_dev_lock();
3751
3752 ffs_dev = _ffs_find_dev(dev_name);
3753 if (!ffs_dev) {
3754 ret = -ENOENT;
3755 } else if (ffs_dev->mounted) {
3756 ret = -EBUSY;
3757 } else if (ffs_dev->ffs_acquire_dev_callback &&
3758 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3759 ret = -ENOENT;
3760 } else {
3761 ffs_dev->mounted = true;
3762 ffs_dev->ffs_data = ffs_data;
3763 ffs_data->private_data = ffs_dev;
3764 }
3765
3766 ffs_dev_unlock();
3767 return ret;
3768 }
3769
ffs_release_dev(struct ffs_dev * ffs_dev)3770 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3771 {
3772 ENTER();
3773 ffs_dev_lock();
3774
3775 if (ffs_dev && ffs_dev->mounted) {
3776 ffs_dev->mounted = false;
3777 if (ffs_dev->ffs_data) {
3778 ffs_dev->ffs_data->private_data = NULL;
3779 ffs_dev->ffs_data = NULL;
3780 }
3781
3782 if (ffs_dev->ffs_release_dev_callback)
3783 ffs_dev->ffs_release_dev_callback(ffs_dev);
3784 }
3785
3786 ffs_dev_unlock();
3787 }
3788
ffs_ready(struct ffs_data * ffs)3789 static int ffs_ready(struct ffs_data *ffs)
3790 {
3791 struct ffs_dev *ffs_obj;
3792 int ret = 0;
3793
3794 ENTER();
3795 ffs_dev_lock();
3796
3797 ffs_obj = ffs->private_data;
3798 if (!ffs_obj) {
3799 ret = -EINVAL;
3800 goto done;
3801 }
3802 if (WARN_ON(ffs_obj->desc_ready)) {
3803 ret = -EBUSY;
3804 goto done;
3805 }
3806
3807 ffs_obj->desc_ready = true;
3808
3809 if (ffs_obj->ffs_ready_callback) {
3810 ret = ffs_obj->ffs_ready_callback(ffs);
3811 if (ret)
3812 goto done;
3813 }
3814
3815 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3816 done:
3817 ffs_dev_unlock();
3818 return ret;
3819 }
3820
ffs_closed(struct ffs_data * ffs)3821 static void ffs_closed(struct ffs_data *ffs)
3822 {
3823 struct ffs_dev *ffs_obj;
3824 struct f_fs_opts *opts;
3825 struct config_item *ci;
3826
3827 ENTER();
3828 ffs_dev_lock();
3829
3830 ffs_obj = ffs->private_data;
3831 if (!ffs_obj)
3832 goto done;
3833
3834 ffs_obj->desc_ready = false;
3835
3836 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3837 ffs_obj->ffs_closed_callback)
3838 ffs_obj->ffs_closed_callback(ffs);
3839
3840 if (ffs_obj->opts)
3841 opts = ffs_obj->opts;
3842 else
3843 goto done;
3844
3845 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3846 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3847 goto done;
3848
3849 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3850 ffs_dev_unlock();
3851
3852 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3853 unregister_gadget_item(ci);
3854 return;
3855 done:
3856 ffs_dev_unlock();
3857 }
3858
3859 /* Misc helper functions ****************************************************/
3860
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3861 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3862 {
3863 return nonblock
3864 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3865 : mutex_lock_interruptible(mutex);
3866 }
3867
ffs_prepare_buffer(const char __user * buf,size_t len)3868 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3869 {
3870 char *data;
3871
3872 if (unlikely(!len))
3873 return NULL;
3874
3875 data = kmalloc(len, GFP_KERNEL);
3876 if (unlikely(!data))
3877 return ERR_PTR(-ENOMEM);
3878
3879 if (unlikely(copy_from_user(data, buf, len))) {
3880 kfree(data);
3881 return ERR_PTR(-EFAULT);
3882 }
3883
3884 pr_vdebug("Buffer from user space:\n");
3885 ffs_dump_mem("", data, len);
3886
3887 return data;
3888 }
3889
3890 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3891 MODULE_LICENSE("GPL");
3892 MODULE_AUTHOR("Michal Nazarewicz");
3893