• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - Core UDC Framework
4  *
5  * Copyright (C) 2010 Texas Instruments
6  * Author: Felipe Balbi <balbi@ti.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/err.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/workqueue.h>
17 
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb.h>
21 
22 #include "trace.h"
23 
24 /**
25  * struct usb_udc - describes one usb device controller
26  * @driver: the gadget driver pointer. For use by the class code
27  * @dev: the child device to the actual controller
28  * @gadget: the gadget. For use by the class code
29  * @list: for use by the udc class driver
30  * @vbus: for udcs who care about vbus status, this value is real vbus status;
31  * for udcs who do not care about vbus status, this value is always true
32  *
33  * This represents the internal data structure which is used by the UDC-class
34  * to hold information about udc driver and gadget together.
35  */
36 struct usb_udc {
37 	struct usb_gadget_driver	*driver;
38 	struct usb_gadget		*gadget;
39 	struct device			dev;
40 	struct list_head		list;
41 	bool				vbus;
42 };
43 
44 static struct class *udc_class;
45 static LIST_HEAD(udc_list);
46 static LIST_HEAD(gadget_driver_pending_list);
47 static DEFINE_MUTEX(udc_lock);
48 
49 static int udc_bind_to_driver(struct usb_udc *udc,
50 		struct usb_gadget_driver *driver);
51 
52 /* ------------------------------------------------------------------------- */
53 
54 /**
55  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
56  * @ep:the endpoint being configured
57  * @maxpacket_limit:value of maximum packet size limit
58  *
59  * This function should be used only in UDC drivers to initialize endpoint
60  * (usually in probe function).
61  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)62 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
63 					      unsigned maxpacket_limit)
64 {
65 	ep->maxpacket_limit = maxpacket_limit;
66 	ep->maxpacket = maxpacket_limit;
67 
68 	trace_usb_ep_set_maxpacket_limit(ep, 0);
69 }
70 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
71 
72 /**
73  * usb_ep_enable - configure endpoint, making it usable
74  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
75  *	drivers discover endpoints through the ep_list of a usb_gadget.
76  *
77  * When configurations are set, or when interface settings change, the driver
78  * will enable or disable the relevant endpoints.  while it is enabled, an
79  * endpoint may be used for i/o until the driver receives a disconnect() from
80  * the host or until the endpoint is disabled.
81  *
82  * the ep0 implementation (which calls this routine) must ensure that the
83  * hardware capabilities of each endpoint match the descriptor provided
84  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
85  * for interrupt transfers as well as bulk, but it likely couldn't be used
86  * for iso transfers or for endpoint 14.  some endpoints are fully
87  * configurable, with more generic names like "ep-a".  (remember that for
88  * USB, "in" means "towards the USB host".)
89  *
90  * This routine must be called in process context.
91  *
92  * returns zero, or a negative error code.
93  */
usb_ep_enable(struct usb_ep * ep)94 int usb_ep_enable(struct usb_ep *ep)
95 {
96 	int ret = 0;
97 
98 	if (ep->enabled)
99 		goto out;
100 
101 	/* UDC drivers can't handle endpoints with maxpacket size 0 */
102 	if (!ep->desc || usb_endpoint_maxp(ep->desc) == 0) {
103 		WARN_ONCE(1, "%s: ep%d (%s) has %s\n", __func__, ep->address, ep->name,
104 			  (!ep->desc) ? "NULL descriptor" : "maxpacket 0");
105 
106 		ret = -EINVAL;
107 		goto out;
108 	}
109 
110 	ret = ep->ops->enable(ep, ep->desc);
111 	if (ret)
112 		goto out;
113 
114 	ep->enabled = true;
115 
116 out:
117 	trace_usb_ep_enable(ep, ret);
118 
119 	return ret;
120 }
121 EXPORT_SYMBOL_GPL(usb_ep_enable);
122 
123 /**
124  * usb_ep_disable - endpoint is no longer usable
125  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
126  *
127  * no other task may be using this endpoint when this is called.
128  * any pending and uncompleted requests will complete with status
129  * indicating disconnect (-ESHUTDOWN) before this call returns.
130  * gadget drivers must call usb_ep_enable() again before queueing
131  * requests to the endpoint.
132  *
133  * This routine must be called in process context.
134  *
135  * returns zero, or a negative error code.
136  */
usb_ep_disable(struct usb_ep * ep)137 int usb_ep_disable(struct usb_ep *ep)
138 {
139 	int ret = 0;
140 
141 	if (!ep->enabled)
142 		goto out;
143 
144 	ret = ep->ops->disable(ep);
145 	if (ret)
146 		goto out;
147 
148 	ep->enabled = false;
149 
150 out:
151 	trace_usb_ep_disable(ep, ret);
152 
153 	return ret;
154 }
155 EXPORT_SYMBOL_GPL(usb_ep_disable);
156 
157 /**
158  * usb_ep_alloc_request - allocate a request object to use with this endpoint
159  * @ep:the endpoint to be used with with the request
160  * @gfp_flags:GFP_* flags to use
161  *
162  * Request objects must be allocated with this call, since they normally
163  * need controller-specific setup and may even need endpoint-specific
164  * resources such as allocation of DMA descriptors.
165  * Requests may be submitted with usb_ep_queue(), and receive a single
166  * completion callback.  Free requests with usb_ep_free_request(), when
167  * they are no longer needed.
168  *
169  * Returns the request, or null if one could not be allocated.
170  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)171 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
172 						       gfp_t gfp_flags)
173 {
174 	struct usb_request *req = NULL;
175 
176 	req = ep->ops->alloc_request(ep, gfp_flags);
177 
178 	trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
179 
180 	return req;
181 }
182 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
183 
184 /**
185  * usb_ep_free_request - frees a request object
186  * @ep:the endpoint associated with the request
187  * @req:the request being freed
188  *
189  * Reverses the effect of usb_ep_alloc_request().
190  * Caller guarantees the request is not queued, and that it will
191  * no longer be requeued (or otherwise used).
192  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)193 void usb_ep_free_request(struct usb_ep *ep,
194 				       struct usb_request *req)
195 {
196 	trace_usb_ep_free_request(ep, req, 0);
197 	ep->ops->free_request(ep, req);
198 }
199 EXPORT_SYMBOL_GPL(usb_ep_free_request);
200 
201 /**
202  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
203  * @ep:the endpoint associated with the request
204  * @req:the request being submitted
205  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
206  *	pre-allocate all necessary memory with the request.
207  *
208  * This tells the device controller to perform the specified request through
209  * that endpoint (reading or writing a buffer).  When the request completes,
210  * including being canceled by usb_ep_dequeue(), the request's completion
211  * routine is called to return the request to the driver.  Any endpoint
212  * (except control endpoints like ep0) may have more than one transfer
213  * request queued; they complete in FIFO order.  Once a gadget driver
214  * submits a request, that request may not be examined or modified until it
215  * is given back to that driver through the completion callback.
216  *
217  * Each request is turned into one or more packets.  The controller driver
218  * never merges adjacent requests into the same packet.  OUT transfers
219  * will sometimes use data that's already buffered in the hardware.
220  * Drivers can rely on the fact that the first byte of the request's buffer
221  * always corresponds to the first byte of some USB packet, for both
222  * IN and OUT transfers.
223  *
224  * Bulk endpoints can queue any amount of data; the transfer is packetized
225  * automatically.  The last packet will be short if the request doesn't fill it
226  * out completely.  Zero length packets (ZLPs) should be avoided in portable
227  * protocols since not all usb hardware can successfully handle zero length
228  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
229  * the request 'zero' flag is set.)  Bulk endpoints may also be used
230  * for interrupt transfers; but the reverse is not true, and some endpoints
231  * won't support every interrupt transfer.  (Such as 768 byte packets.)
232  *
233  * Interrupt-only endpoints are less functional than bulk endpoints, for
234  * example by not supporting queueing or not handling buffers that are
235  * larger than the endpoint's maxpacket size.  They may also treat data
236  * toggle differently.
237  *
238  * Control endpoints ... after getting a setup() callback, the driver queues
239  * one response (even if it would be zero length).  That enables the
240  * status ack, after transferring data as specified in the response.  Setup
241  * functions may return negative error codes to generate protocol stalls.
242  * (Note that some USB device controllers disallow protocol stall responses
243  * in some cases.)  When control responses are deferred (the response is
244  * written after the setup callback returns), then usb_ep_set_halt() may be
245  * used on ep0 to trigger protocol stalls.  Depending on the controller,
246  * it may not be possible to trigger a status-stage protocol stall when the
247  * data stage is over, that is, from within the response's completion
248  * routine.
249  *
250  * For periodic endpoints, like interrupt or isochronous ones, the usb host
251  * arranges to poll once per interval, and the gadget driver usually will
252  * have queued some data to transfer at that time.
253  *
254  * Note that @req's ->complete() callback must never be called from
255  * within usb_ep_queue() as that can create deadlock situations.
256  *
257  * This routine may be called in interrupt context.
258  *
259  * Returns zero, or a negative error code.  Endpoints that are not enabled
260  * report errors; errors will also be
261  * reported when the usb peripheral is disconnected.
262  *
263  * If and only if @req is successfully queued (the return value is zero),
264  * @req->complete() will be called exactly once, when the Gadget core and
265  * UDC are finished with the request.  When the completion function is called,
266  * control of the request is returned to the device driver which submitted it.
267  * The completion handler may then immediately free or reuse @req.
268  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)269 int usb_ep_queue(struct usb_ep *ep,
270 			       struct usb_request *req, gfp_t gfp_flags)
271 {
272 	int ret = 0;
273 
274 	if (!ep->enabled && ep->address) {
275 		pr_debug("USB gadget: queue request to disabled ep 0x%x (%s)\n",
276 				 ep->address, ep->name);
277 		ret = -ESHUTDOWN;
278 		goto out;
279 	}
280 
281 	ret = ep->ops->queue(ep, req, gfp_flags);
282 
283 out:
284 	trace_usb_ep_queue(ep, req, ret);
285 
286 	return ret;
287 }
288 EXPORT_SYMBOL_GPL(usb_ep_queue);
289 
290 /**
291  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
292  * @ep:the endpoint associated with the request
293  * @req:the request being canceled
294  *
295  * If the request is still active on the endpoint, it is dequeued and
296  * eventually its completion routine is called (with status -ECONNRESET);
297  * else a negative error code is returned.  This routine is asynchronous,
298  * that is, it may return before the completion routine runs.
299  *
300  * Note that some hardware can't clear out write fifos (to unlink the request
301  * at the head of the queue) except as part of disconnecting from usb. Such
302  * restrictions prevent drivers from supporting configuration changes,
303  * even to configuration zero (a "chapter 9" requirement).
304  *
305  * This routine may be called in interrupt context.
306  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)307 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
308 {
309 	int ret;
310 
311 	ret = ep->ops->dequeue(ep, req);
312 	trace_usb_ep_dequeue(ep, req, ret);
313 
314 	return ret;
315 }
316 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
317 
318 /**
319  * usb_ep_set_halt - sets the endpoint halt feature.
320  * @ep: the non-isochronous endpoint being stalled
321  *
322  * Use this to stall an endpoint, perhaps as an error report.
323  * Except for control endpoints,
324  * the endpoint stays halted (will not stream any data) until the host
325  * clears this feature; drivers may need to empty the endpoint's request
326  * queue first, to make sure no inappropriate transfers happen.
327  *
328  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
329  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
330  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
331  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
332  *
333  * This routine may be called in interrupt context.
334  *
335  * Returns zero, or a negative error code.  On success, this call sets
336  * underlying hardware state that blocks data transfers.
337  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
338  * transfer requests are still queued, or if the controller hardware
339  * (usually a FIFO) still holds bytes that the host hasn't collected.
340  */
usb_ep_set_halt(struct usb_ep * ep)341 int usb_ep_set_halt(struct usb_ep *ep)
342 {
343 	int ret;
344 
345 	ret = ep->ops->set_halt(ep, 1);
346 	trace_usb_ep_set_halt(ep, ret);
347 
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
351 
352 /**
353  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
354  * @ep:the bulk or interrupt endpoint being reset
355  *
356  * Use this when responding to the standard usb "set interface" request,
357  * for endpoints that aren't reconfigured, after clearing any other state
358  * in the endpoint's i/o queue.
359  *
360  * This routine may be called in interrupt context.
361  *
362  * Returns zero, or a negative error code.  On success, this call clears
363  * the underlying hardware state reflecting endpoint halt and data toggle.
364  * Note that some hardware can't support this request (like pxa2xx_udc),
365  * and accordingly can't correctly implement interface altsettings.
366  */
usb_ep_clear_halt(struct usb_ep * ep)367 int usb_ep_clear_halt(struct usb_ep *ep)
368 {
369 	int ret;
370 
371 	ret = ep->ops->set_halt(ep, 0);
372 	trace_usb_ep_clear_halt(ep, ret);
373 
374 	return ret;
375 }
376 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
377 
378 /**
379  * usb_ep_set_wedge - sets the halt feature and ignores clear requests
380  * @ep: the endpoint being wedged
381  *
382  * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
383  * requests. If the gadget driver clears the halt status, it will
384  * automatically unwedge the endpoint.
385  *
386  * This routine may be called in interrupt context.
387  *
388  * Returns zero on success, else negative errno.
389  */
usb_ep_set_wedge(struct usb_ep * ep)390 int usb_ep_set_wedge(struct usb_ep *ep)
391 {
392 	int ret;
393 
394 	if (ep->ops->set_wedge)
395 		ret = ep->ops->set_wedge(ep);
396 	else
397 		ret = ep->ops->set_halt(ep, 1);
398 
399 	trace_usb_ep_set_wedge(ep, ret);
400 
401 	return ret;
402 }
403 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
404 
405 /**
406  * usb_ep_fifo_status - returns number of bytes in fifo, or error
407  * @ep: the endpoint whose fifo status is being checked.
408  *
409  * FIFO endpoints may have "unclaimed data" in them in certain cases,
410  * such as after aborted transfers.  Hosts may not have collected all
411  * the IN data written by the gadget driver (and reported by a request
412  * completion).  The gadget driver may not have collected all the data
413  * written OUT to it by the host.  Drivers that need precise handling for
414  * fault reporting or recovery may need to use this call.
415  *
416  * This routine may be called in interrupt context.
417  *
418  * This returns the number of such bytes in the fifo, or a negative
419  * errno if the endpoint doesn't use a FIFO or doesn't support such
420  * precise handling.
421  */
usb_ep_fifo_status(struct usb_ep * ep)422 int usb_ep_fifo_status(struct usb_ep *ep)
423 {
424 	int ret;
425 
426 	if (ep->ops->fifo_status)
427 		ret = ep->ops->fifo_status(ep);
428 	else
429 		ret = -EOPNOTSUPP;
430 
431 	trace_usb_ep_fifo_status(ep, ret);
432 
433 	return ret;
434 }
435 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
436 
437 /**
438  * usb_ep_fifo_flush - flushes contents of a fifo
439  * @ep: the endpoint whose fifo is being flushed.
440  *
441  * This call may be used to flush the "unclaimed data" that may exist in
442  * an endpoint fifo after abnormal transaction terminations.  The call
443  * must never be used except when endpoint is not being used for any
444  * protocol translation.
445  *
446  * This routine may be called in interrupt context.
447  */
usb_ep_fifo_flush(struct usb_ep * ep)448 void usb_ep_fifo_flush(struct usb_ep *ep)
449 {
450 	if (ep->ops->fifo_flush)
451 		ep->ops->fifo_flush(ep);
452 
453 	trace_usb_ep_fifo_flush(ep, 0);
454 }
455 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
456 
457 /* ------------------------------------------------------------------------- */
458 
459 /**
460  * usb_gadget_frame_number - returns the current frame number
461  * @gadget: controller that reports the frame number
462  *
463  * Returns the usb frame number, normally eleven bits from a SOF packet,
464  * or negative errno if this device doesn't support this capability.
465  */
usb_gadget_frame_number(struct usb_gadget * gadget)466 int usb_gadget_frame_number(struct usb_gadget *gadget)
467 {
468 	int ret;
469 
470 	ret = gadget->ops->get_frame(gadget);
471 
472 	trace_usb_gadget_frame_number(gadget, ret);
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
477 
478 /**
479  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
480  * @gadget: controller used to wake up the host
481  *
482  * Returns zero on success, else negative error code if the hardware
483  * doesn't support such attempts, or its support has not been enabled
484  * by the usb host.  Drivers must return device descriptors that report
485  * their ability to support this, or hosts won't enable it.
486  *
487  * This may also try to use SRP to wake the host and start enumeration,
488  * even if OTG isn't otherwise in use.  OTG devices may also start
489  * remote wakeup even when hosts don't explicitly enable it.
490  */
usb_gadget_wakeup(struct usb_gadget * gadget)491 int usb_gadget_wakeup(struct usb_gadget *gadget)
492 {
493 	int ret = 0;
494 
495 	if (!gadget->ops->wakeup) {
496 		ret = -EOPNOTSUPP;
497 		goto out;
498 	}
499 
500 	ret = gadget->ops->wakeup(gadget);
501 
502 out:
503 	trace_usb_gadget_wakeup(gadget, ret);
504 
505 	return ret;
506 }
507 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
508 
509 /**
510  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
511  * @gadget:the device being declared as self-powered
512  *
513  * this affects the device status reported by the hardware driver
514  * to reflect that it now has a local power supply.
515  *
516  * returns zero on success, else negative errno.
517  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)518 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
519 {
520 	int ret = 0;
521 
522 	if (!gadget->ops->set_selfpowered) {
523 		ret = -EOPNOTSUPP;
524 		goto out;
525 	}
526 
527 	ret = gadget->ops->set_selfpowered(gadget, 1);
528 
529 out:
530 	trace_usb_gadget_set_selfpowered(gadget, ret);
531 
532 	return ret;
533 }
534 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
535 
536 /**
537  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
538  * @gadget:the device being declared as bus-powered
539  *
540  * this affects the device status reported by the hardware driver.
541  * some hardware may not support bus-powered operation, in which
542  * case this feature's value can never change.
543  *
544  * returns zero on success, else negative errno.
545  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)546 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
547 {
548 	int ret = 0;
549 
550 	if (!gadget->ops->set_selfpowered) {
551 		ret = -EOPNOTSUPP;
552 		goto out;
553 	}
554 
555 	ret = gadget->ops->set_selfpowered(gadget, 0);
556 
557 out:
558 	trace_usb_gadget_clear_selfpowered(gadget, ret);
559 
560 	return ret;
561 }
562 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
563 
564 /**
565  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
566  * @gadget:The device which now has VBUS power.
567  * Context: can sleep
568  *
569  * This call is used by a driver for an external transceiver (or GPIO)
570  * that detects a VBUS power session starting.  Common responses include
571  * resuming the controller, activating the D+ (or D-) pullup to let the
572  * host detect that a USB device is attached, and starting to draw power
573  * (8mA or possibly more, especially after SET_CONFIGURATION).
574  *
575  * Returns zero on success, else negative errno.
576  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)577 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
578 {
579 	int ret = 0;
580 
581 	if (!gadget->ops->vbus_session) {
582 		ret = -EOPNOTSUPP;
583 		goto out;
584 	}
585 
586 	ret = gadget->ops->vbus_session(gadget, 1);
587 
588 out:
589 	trace_usb_gadget_vbus_connect(gadget, ret);
590 
591 	return ret;
592 }
593 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
594 
595 /**
596  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
597  * @gadget:The device whose VBUS usage is being described
598  * @mA:How much current to draw, in milliAmperes.  This should be twice
599  *	the value listed in the configuration descriptor bMaxPower field.
600  *
601  * This call is used by gadget drivers during SET_CONFIGURATION calls,
602  * reporting how much power the device may consume.  For example, this
603  * could affect how quickly batteries are recharged.
604  *
605  * Returns zero on success, else negative errno.
606  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)607 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
608 {
609 	int ret = 0;
610 
611 	if (!gadget->ops->vbus_draw) {
612 		ret = -EOPNOTSUPP;
613 		goto out;
614 	}
615 
616 	ret = gadget->ops->vbus_draw(gadget, mA);
617 	if (!ret)
618 		gadget->mA = mA;
619 
620 out:
621 	trace_usb_gadget_vbus_draw(gadget, ret);
622 
623 	return ret;
624 }
625 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
626 
627 /**
628  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
629  * @gadget:the device whose VBUS supply is being described
630  * Context: can sleep
631  *
632  * This call is used by a driver for an external transceiver (or GPIO)
633  * that detects a VBUS power session ending.  Common responses include
634  * reversing everything done in usb_gadget_vbus_connect().
635  *
636  * Returns zero on success, else negative errno.
637  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)638 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
639 {
640 	int ret = 0;
641 
642 	if (!gadget->ops->vbus_session) {
643 		ret = -EOPNOTSUPP;
644 		goto out;
645 	}
646 
647 	ret = gadget->ops->vbus_session(gadget, 0);
648 
649 out:
650 	trace_usb_gadget_vbus_disconnect(gadget, ret);
651 
652 	return ret;
653 }
654 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
655 
656 /**
657  * usb_gadget_connect - software-controlled connect to USB host
658  * @gadget:the peripheral being connected
659  *
660  * Enables the D+ (or potentially D-) pullup.  The host will start
661  * enumerating this gadget when the pullup is active and a VBUS session
662  * is active (the link is powered).  This pullup is always enabled unless
663  * usb_gadget_disconnect() has been used to disable it.
664  *
665  * Returns zero on success, else negative errno.
666  */
usb_gadget_connect(struct usb_gadget * gadget)667 int usb_gadget_connect(struct usb_gadget *gadget)
668 {
669 	int ret = 0;
670 
671 	if (!gadget->ops->pullup) {
672 		ret = -EOPNOTSUPP;
673 		goto out;
674 	}
675 
676 	if (gadget->deactivated) {
677 		/*
678 		 * If gadget is deactivated we only save new state.
679 		 * Gadget will be connected automatically after activation.
680 		 */
681 		gadget->connected = true;
682 		goto out;
683 	}
684 
685 	ret = gadget->ops->pullup(gadget, 1);
686 	if (!ret)
687 		gadget->connected = 1;
688 
689 out:
690 	trace_usb_gadget_connect(gadget, ret);
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(usb_gadget_connect);
695 
696 /**
697  * usb_gadget_disconnect - software-controlled disconnect from USB host
698  * @gadget:the peripheral being disconnected
699  *
700  * Disables the D+ (or potentially D-) pullup, which the host may see
701  * as a disconnect (when a VBUS session is active).  Not all systems
702  * support software pullup controls.
703  *
704  * Following a successful disconnect, invoke the ->disconnect() callback
705  * for the current gadget driver so that UDC drivers don't need to.
706  *
707  * Returns zero on success, else negative errno.
708  */
usb_gadget_disconnect(struct usb_gadget * gadget)709 int usb_gadget_disconnect(struct usb_gadget *gadget)
710 {
711 	int ret = 0;
712 
713 	if (!gadget->ops->pullup) {
714 		ret = -EOPNOTSUPP;
715 		goto out;
716 	}
717 
718 	if (!gadget->connected)
719 		goto out;
720 
721 	if (gadget->deactivated) {
722 		/*
723 		 * If gadget is deactivated we only save new state.
724 		 * Gadget will stay disconnected after activation.
725 		 */
726 		gadget->connected = false;
727 		goto out;
728 	}
729 
730 	ret = gadget->ops->pullup(gadget, 0);
731 	if (!ret) {
732 		gadget->connected = 0;
733 		gadget->udc->driver->disconnect(gadget);
734 	}
735 
736 out:
737 	trace_usb_gadget_disconnect(gadget, ret);
738 
739 	return ret;
740 }
741 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
742 
743 /**
744  * usb_gadget_deactivate - deactivate function which is not ready to work
745  * @gadget: the peripheral being deactivated
746  *
747  * This routine may be used during the gadget driver bind() call to prevent
748  * the peripheral from ever being visible to the USB host, unless later
749  * usb_gadget_activate() is called.  For example, user mode components may
750  * need to be activated before the system can talk to hosts.
751  *
752  * Returns zero on success, else negative errno.
753  */
usb_gadget_deactivate(struct usb_gadget * gadget)754 int usb_gadget_deactivate(struct usb_gadget *gadget)
755 {
756 	int ret = 0;
757 
758 	if (gadget->deactivated)
759 		goto out;
760 
761 	if (gadget->connected) {
762 		ret = usb_gadget_disconnect(gadget);
763 		if (ret)
764 			goto out;
765 
766 		/*
767 		 * If gadget was being connected before deactivation, we want
768 		 * to reconnect it in usb_gadget_activate().
769 		 */
770 		gadget->connected = true;
771 	}
772 	gadget->deactivated = true;
773 
774 out:
775 	trace_usb_gadget_deactivate(gadget, ret);
776 
777 	return ret;
778 }
779 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
780 
781 /**
782  * usb_gadget_activate - activate function which is not ready to work
783  * @gadget: the peripheral being activated
784  *
785  * This routine activates gadget which was previously deactivated with
786  * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
787  *
788  * Returns zero on success, else negative errno.
789  */
usb_gadget_activate(struct usb_gadget * gadget)790 int usb_gadget_activate(struct usb_gadget *gadget)
791 {
792 	int ret = 0;
793 
794 	if (!gadget->deactivated)
795 		goto out;
796 
797 	gadget->deactivated = false;
798 
799 	/*
800 	 * If gadget has been connected before deactivation, or became connected
801 	 * while it was being deactivated, we call usb_gadget_connect().
802 	 */
803 	if (gadget->connected)
804 		ret = usb_gadget_connect(gadget);
805 
806 out:
807 	trace_usb_gadget_activate(gadget, ret);
808 
809 	return ret;
810 }
811 EXPORT_SYMBOL_GPL(usb_gadget_activate);
812 
813 /* ------------------------------------------------------------------------- */
814 
815 #ifdef	CONFIG_HAS_DMA
816 
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)817 int usb_gadget_map_request_by_dev(struct device *dev,
818 		struct usb_request *req, int is_in)
819 {
820 	if (req->length == 0)
821 		return 0;
822 
823 	if (req->num_sgs) {
824 		int     mapped;
825 
826 		mapped = dma_map_sg(dev, req->sg, req->num_sgs,
827 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
828 		if (mapped == 0) {
829 			dev_err(dev, "failed to map SGs\n");
830 			return -EFAULT;
831 		}
832 
833 		req->num_mapped_sgs = mapped;
834 	} else {
835 		if (is_vmalloc_addr(req->buf)) {
836 			dev_err(dev, "buffer is not dma capable\n");
837 			return -EFAULT;
838 		} else if (object_is_on_stack(req->buf)) {
839 			dev_err(dev, "buffer is on stack\n");
840 			return -EFAULT;
841 		}
842 
843 		req->dma = dma_map_single(dev, req->buf, req->length,
844 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
845 
846 		if (dma_mapping_error(dev, req->dma)) {
847 			dev_err(dev, "failed to map buffer\n");
848 			return -EFAULT;
849 		}
850 
851 		req->dma_mapped = 1;
852 	}
853 
854 	return 0;
855 }
856 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
857 
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)858 int usb_gadget_map_request(struct usb_gadget *gadget,
859 		struct usb_request *req, int is_in)
860 {
861 	return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
862 }
863 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
864 
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)865 void usb_gadget_unmap_request_by_dev(struct device *dev,
866 		struct usb_request *req, int is_in)
867 {
868 	if (req->length == 0)
869 		return;
870 
871 	if (req->num_mapped_sgs) {
872 		dma_unmap_sg(dev, req->sg, req->num_sgs,
873 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
874 
875 		req->num_mapped_sgs = 0;
876 	} else if (req->dma_mapped) {
877 		dma_unmap_single(dev, req->dma, req->length,
878 				is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
879 		req->dma_mapped = 0;
880 	}
881 }
882 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
883 
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)884 void usb_gadget_unmap_request(struct usb_gadget *gadget,
885 		struct usb_request *req, int is_in)
886 {
887 	usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
888 }
889 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
890 
891 #endif	/* CONFIG_HAS_DMA */
892 
893 /* ------------------------------------------------------------------------- */
894 
895 /**
896  * usb_gadget_giveback_request - give the request back to the gadget layer
897  * @ep: the endpoint to be used with with the request
898  * @req: the request being given back
899  *
900  * Context: in_interrupt()
901  *
902  * This is called by device controller drivers in order to return the
903  * completed request back to the gadget layer.
904  */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)905 void usb_gadget_giveback_request(struct usb_ep *ep,
906 		struct usb_request *req)
907 {
908 	if (likely(req->status == 0))
909 		usb_led_activity(USB_LED_EVENT_GADGET);
910 
911 	trace_usb_gadget_giveback_request(ep, req, 0);
912 
913 	req->complete(ep, req);
914 }
915 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
916 
917 /* ------------------------------------------------------------------------- */
918 
919 /**
920  * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
921  *	in second parameter or NULL if searched endpoint not found
922  * @g: controller to check for quirk
923  * @name: name of searched endpoint
924  */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)925 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
926 {
927 	struct usb_ep *ep;
928 
929 	gadget_for_each_ep(ep, g) {
930 		if (!strcmp(ep->name, name))
931 			return ep;
932 	}
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
937 
938 /* ------------------------------------------------------------------------- */
939 
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)940 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
941 		struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
942 		struct usb_ss_ep_comp_descriptor *ep_comp)
943 {
944 	u8		type;
945 	u16		max;
946 	int		num_req_streams = 0;
947 
948 	/* endpoint already claimed? */
949 	if (ep->claimed)
950 		return 0;
951 
952 	type = usb_endpoint_type(desc);
953 	max = usb_endpoint_maxp(desc);
954 
955 	if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
956 		return 0;
957 	if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
958 		return 0;
959 
960 	if (max > ep->maxpacket_limit)
961 		return 0;
962 
963 	/* "high bandwidth" works only at high speed */
964 	if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
965 		return 0;
966 
967 	switch (type) {
968 	case USB_ENDPOINT_XFER_CONTROL:
969 		/* only support ep0 for portable CONTROL traffic */
970 		return 0;
971 	case USB_ENDPOINT_XFER_ISOC:
972 		if (!ep->caps.type_iso)
973 			return 0;
974 		/* ISO:  limit 1023 bytes full speed, 1024 high/super speed */
975 		if (!gadget_is_dualspeed(gadget) && max > 1023)
976 			return 0;
977 		break;
978 	case USB_ENDPOINT_XFER_BULK:
979 		if (!ep->caps.type_bulk)
980 			return 0;
981 		if (ep_comp && gadget_is_superspeed(gadget)) {
982 			/* Get the number of required streams from the
983 			 * EP companion descriptor and see if the EP
984 			 * matches it
985 			 */
986 			num_req_streams = ep_comp->bmAttributes & 0x1f;
987 			if (num_req_streams > ep->max_streams)
988 				return 0;
989 		}
990 		break;
991 	case USB_ENDPOINT_XFER_INT:
992 		/* Bulk endpoints handle interrupt transfers,
993 		 * except the toggle-quirky iso-synch kind
994 		 */
995 		if (!ep->caps.type_int && !ep->caps.type_bulk)
996 			return 0;
997 		/* INT:  limit 64 bytes full speed, 1024 high/super speed */
998 		if (!gadget_is_dualspeed(gadget) && max > 64)
999 			return 0;
1000 		break;
1001 	}
1002 
1003 	return 1;
1004 }
1005 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1006 
1007 /**
1008  * usb_gadget_check_config - checks if the UDC can support the binded
1009  *	configuration
1010  * @gadget: controller to check the USB configuration
1011  *
1012  * Ensure that a UDC is able to support the requested resources by a
1013  * configuration, and that there are no resource limitations, such as
1014  * internal memory allocated to all requested endpoints.
1015  *
1016  * Returns zero on success, else a negative errno.
1017  */
usb_gadget_check_config(struct usb_gadget * gadget)1018 int usb_gadget_check_config(struct usb_gadget *gadget)
1019 {
1020 	if (gadget->ops->check_config)
1021 		return gadget->ops->check_config(gadget);
1022 	return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1025 
1026 /* ------------------------------------------------------------------------- */
1027 
usb_gadget_state_work(struct work_struct * work)1028 static void usb_gadget_state_work(struct work_struct *work)
1029 {
1030 	struct usb_gadget *gadget = work_to_gadget(work);
1031 	struct usb_udc *udc = gadget->udc;
1032 
1033 	if (udc)
1034 		sysfs_notify(&udc->dev.kobj, NULL, "state");
1035 }
1036 
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1037 void usb_gadget_set_state(struct usb_gadget *gadget,
1038 		enum usb_device_state state)
1039 {
1040 	gadget->state = state;
1041 	schedule_work(&gadget->work);
1042 }
1043 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1044 
1045 /* ------------------------------------------------------------------------- */
1046 
usb_udc_connect_control(struct usb_udc * udc)1047 static void usb_udc_connect_control(struct usb_udc *udc)
1048 {
1049 	if (udc->vbus)
1050 		usb_gadget_connect(udc->gadget);
1051 	else
1052 		usb_gadget_disconnect(udc->gadget);
1053 }
1054 
1055 /**
1056  * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1057  * connect or disconnect gadget
1058  * @gadget: The gadget which vbus change occurs
1059  * @status: The vbus status
1060  *
1061  * The udc driver calls it when it wants to connect or disconnect gadget
1062  * according to vbus status.
1063  */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1064 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1065 {
1066 	struct usb_udc *udc = gadget->udc;
1067 
1068 	if (udc) {
1069 		udc->vbus = status;
1070 		usb_udc_connect_control(udc);
1071 	}
1072 }
1073 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1074 
1075 /**
1076  * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1077  * @gadget: The gadget which bus reset occurs
1078  * @driver: The gadget driver we want to notify
1079  *
1080  * If the udc driver has bus reset handler, it needs to call this when the bus
1081  * reset occurs, it notifies the gadget driver that the bus reset occurs as
1082  * well as updates gadget state.
1083  */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1084 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1085 		struct usb_gadget_driver *driver)
1086 {
1087 	driver->reset(gadget);
1088 	usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1089 }
1090 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1091 
1092 /**
1093  * usb_gadget_udc_start - tells usb device controller to start up
1094  * @udc: The UDC to be started
1095  *
1096  * This call is issued by the UDC Class driver when it's about
1097  * to register a gadget driver to the device controller, before
1098  * calling gadget driver's bind() method.
1099  *
1100  * It allows the controller to be powered off until strictly
1101  * necessary to have it powered on.
1102  *
1103  * Returns zero on success, else negative errno.
1104  */
usb_gadget_udc_start(struct usb_udc * udc)1105 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1106 {
1107 	return udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1108 }
1109 
1110 /**
1111  * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1112  * @udc: The UDC to be stopped
1113  *
1114  * This call is issued by the UDC Class driver after calling
1115  * gadget driver's unbind() method.
1116  *
1117  * The details are implementation specific, but it can go as
1118  * far as powering off UDC completely and disable its data
1119  * line pullups.
1120  */
usb_gadget_udc_stop(struct usb_udc * udc)1121 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1122 {
1123 	udc->gadget->ops->udc_stop(udc->gadget);
1124 }
1125 
1126 /**
1127  * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1128  *    current driver
1129  * @udc: The device we want to set maximum speed
1130  * @speed: The maximum speed to allowed to run
1131  *
1132  * This call is issued by the UDC Class driver before calling
1133  * usb_gadget_udc_start() in order to make sure that we don't try to
1134  * connect on speeds the gadget driver doesn't support.
1135  */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1136 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1137 					    enum usb_device_speed speed)
1138 {
1139 	if (udc->gadget->ops->udc_set_speed) {
1140 		enum usb_device_speed s;
1141 
1142 		s = min(speed, udc->gadget->max_speed);
1143 		udc->gadget->ops->udc_set_speed(udc->gadget, s);
1144 	}
1145 }
1146 
1147 /**
1148  * usb_udc_release - release the usb_udc struct
1149  * @dev: the dev member within usb_udc
1150  *
1151  * This is called by driver's core in order to free memory once the last
1152  * reference is released.
1153  */
usb_udc_release(struct device * dev)1154 static void usb_udc_release(struct device *dev)
1155 {
1156 	struct usb_udc *udc;
1157 
1158 	udc = container_of(dev, struct usb_udc, dev);
1159 	dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1160 	kfree(udc);
1161 }
1162 
1163 static const struct attribute_group *usb_udc_attr_groups[];
1164 
usb_udc_nop_release(struct device * dev)1165 static void usb_udc_nop_release(struct device *dev)
1166 {
1167 	dev_vdbg(dev, "%s\n", __func__);
1168 }
1169 
1170 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1171 static int check_pending_gadget_drivers(struct usb_udc *udc)
1172 {
1173 	struct usb_gadget_driver *driver;
1174 	int ret = 0;
1175 
1176 	list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1177 		if (!driver->udc_name || strcmp(driver->udc_name,
1178 						dev_name(&udc->dev)) == 0) {
1179 			ret = udc_bind_to_driver(udc, driver);
1180 			if (ret != -EPROBE_DEFER)
1181 				list_del_init(&driver->pending);
1182 			break;
1183 		}
1184 
1185 	return ret;
1186 }
1187 
1188 /**
1189  * usb_initialize_gadget - initialize a gadget and its embedded struct device
1190  * @parent: the parent device to this udc. Usually the controller driver's
1191  * device.
1192  * @gadget: the gadget to be initialized.
1193  * @release: a gadget release function.
1194  *
1195  * Returns zero on success, negative errno otherwise.
1196  * Calls the gadget release function in the latter case.
1197  */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1198 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1199 		void (*release)(struct device *dev))
1200 {
1201 	dev_set_name(&gadget->dev, "gadget");
1202 	INIT_WORK(&gadget->work, usb_gadget_state_work);
1203 	gadget->dev.parent = parent;
1204 
1205 	if (release)
1206 		gadget->dev.release = release;
1207 	else
1208 		gadget->dev.release = usb_udc_nop_release;
1209 
1210 	device_initialize(&gadget->dev);
1211 }
1212 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1213 
1214 /**
1215  * usb_add_gadget - adds a new gadget to the udc class driver list
1216  * @gadget: the gadget to be added to the list.
1217  *
1218  * Returns zero on success, negative errno otherwise.
1219  * Does not do a final usb_put_gadget() if an error occurs.
1220  */
usb_add_gadget(struct usb_gadget * gadget)1221 int usb_add_gadget(struct usb_gadget *gadget)
1222 {
1223 	struct usb_udc		*udc;
1224 	int			ret = -ENOMEM;
1225 
1226 	udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1227 	if (!udc)
1228 		goto error;
1229 
1230 	device_initialize(&udc->dev);
1231 	udc->dev.release = usb_udc_release;
1232 	udc->dev.class = udc_class;
1233 	udc->dev.groups = usb_udc_attr_groups;
1234 	udc->dev.parent = gadget->dev.parent;
1235 	ret = dev_set_name(&udc->dev, "%s",
1236 			kobject_name(&gadget->dev.parent->kobj));
1237 	if (ret)
1238 		goto err_put_udc;
1239 
1240 	ret = device_add(&gadget->dev);
1241 	if (ret)
1242 		goto err_put_udc;
1243 
1244 	udc->gadget = gadget;
1245 	gadget->udc = udc;
1246 
1247 	mutex_lock(&udc_lock);
1248 	list_add_tail(&udc->list, &udc_list);
1249 
1250 	ret = device_add(&udc->dev);
1251 	if (ret)
1252 		goto err_unlist_udc;
1253 
1254 	usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1255 	udc->vbus = true;
1256 
1257 	/* pick up one of pending gadget drivers */
1258 	ret = check_pending_gadget_drivers(udc);
1259 	if (ret)
1260 		goto err_del_udc;
1261 
1262 	mutex_unlock(&udc_lock);
1263 
1264 	return 0;
1265 
1266  err_del_udc:
1267 	flush_work(&gadget->work);
1268 	device_del(&udc->dev);
1269 
1270  err_unlist_udc:
1271 	list_del(&udc->list);
1272 	mutex_unlock(&udc_lock);
1273 
1274 	device_del(&gadget->dev);
1275 
1276  err_put_udc:
1277 	put_device(&udc->dev);
1278 
1279  error:
1280 	return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(usb_add_gadget);
1283 
1284 /**
1285  * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1286  * @parent: the parent device to this udc. Usually the controller driver's
1287  * device.
1288  * @gadget: the gadget to be added to the list.
1289  * @release: a gadget release function.
1290  *
1291  * Returns zero on success, negative errno otherwise.
1292  * Calls the gadget release function in the latter case.
1293  */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1294 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1295 		void (*release)(struct device *dev))
1296 {
1297 	int	ret;
1298 
1299 	usb_initialize_gadget(parent, gadget, release);
1300 	ret = usb_add_gadget(gadget);
1301 	if (ret)
1302 		usb_put_gadget(gadget);
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1306 
1307 /**
1308  * usb_get_gadget_udc_name - get the name of the first UDC controller
1309  * This functions returns the name of the first UDC controller in the system.
1310  * Please note that this interface is usefull only for legacy drivers which
1311  * assume that there is only one UDC controller in the system and they need to
1312  * get its name before initialization. There is no guarantee that the UDC
1313  * of the returned name will be still available, when gadget driver registers
1314  * itself.
1315  *
1316  * Returns pointer to string with UDC controller name on success, NULL
1317  * otherwise. Caller should kfree() returned string.
1318  */
usb_get_gadget_udc_name(void)1319 char *usb_get_gadget_udc_name(void)
1320 {
1321 	struct usb_udc *udc;
1322 	char *name = NULL;
1323 
1324 	/* For now we take the first available UDC */
1325 	mutex_lock(&udc_lock);
1326 	list_for_each_entry(udc, &udc_list, list) {
1327 		if (!udc->driver) {
1328 			name = kstrdup(udc->gadget->name, GFP_KERNEL);
1329 			break;
1330 		}
1331 	}
1332 	mutex_unlock(&udc_lock);
1333 	return name;
1334 }
1335 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1336 
1337 /**
1338  * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1339  * @parent: the parent device to this udc. Usually the controller
1340  * driver's device.
1341  * @gadget: the gadget to be added to the list
1342  *
1343  * Returns zero on success, negative errno otherwise.
1344  */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1345 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1346 {
1347 	return usb_add_gadget_udc_release(parent, gadget, NULL);
1348 }
1349 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1350 
usb_gadget_remove_driver(struct usb_udc * udc)1351 static void usb_gadget_remove_driver(struct usb_udc *udc)
1352 {
1353 	dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1354 			udc->driver->function);
1355 
1356 	usb_gadget_disconnect(udc->gadget);
1357 	if (udc->gadget->irq)
1358 		synchronize_irq(udc->gadget->irq);
1359 	udc->driver->unbind(udc->gadget);
1360 	usb_gadget_udc_stop(udc);
1361 
1362 	udc->driver = NULL;
1363 	udc->gadget->dev.driver = NULL;
1364 
1365 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1366 }
1367 
1368 /**
1369  * usb_del_gadget - deletes @udc from udc_list
1370  * @gadget: the gadget to be removed.
1371  *
1372  * This will call usb_gadget_unregister_driver() if
1373  * the @udc is still busy.
1374  * It will not do a final usb_put_gadget().
1375  */
usb_del_gadget(struct usb_gadget * gadget)1376 void usb_del_gadget(struct usb_gadget *gadget)
1377 {
1378 	struct usb_udc *udc = gadget->udc;
1379 
1380 	if (!udc)
1381 		return;
1382 
1383 	dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1384 
1385 	mutex_lock(&udc_lock);
1386 	list_del(&udc->list);
1387 
1388 	if (udc->driver) {
1389 		struct usb_gadget_driver *driver = udc->driver;
1390 
1391 		usb_gadget_remove_driver(udc);
1392 		list_add(&driver->pending, &gadget_driver_pending_list);
1393 	}
1394 	mutex_unlock(&udc_lock);
1395 
1396 	kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1397 	flush_work(&gadget->work);
1398 	device_unregister(&udc->dev);
1399 	device_del(&gadget->dev);
1400 }
1401 EXPORT_SYMBOL_GPL(usb_del_gadget);
1402 
1403 /**
1404  * usb_del_gadget_udc - deletes @udc from udc_list
1405  * @gadget: the gadget to be removed.
1406  *
1407  * Calls usb_del_gadget() and does a final usb_put_gadget().
1408  */
usb_del_gadget_udc(struct usb_gadget * gadget)1409 void usb_del_gadget_udc(struct usb_gadget *gadget)
1410 {
1411 	usb_del_gadget(gadget);
1412 	usb_put_gadget(gadget);
1413 }
1414 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1415 
1416 /* ------------------------------------------------------------------------- */
1417 
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1418 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1419 {
1420 	int ret;
1421 
1422 	dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1423 			driver->function);
1424 
1425 	udc->driver = driver;
1426 	udc->gadget->dev.driver = &driver->driver;
1427 
1428 	usb_gadget_udc_set_speed(udc, driver->max_speed);
1429 
1430 	ret = driver->bind(udc->gadget, driver);
1431 	if (ret)
1432 		goto err1;
1433 	ret = usb_gadget_udc_start(udc);
1434 	if (ret) {
1435 		driver->unbind(udc->gadget);
1436 		goto err1;
1437 	}
1438 	usb_udc_connect_control(udc);
1439 
1440 	kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1441 	return 0;
1442 err1:
1443 	if (ret != -EISNAM)
1444 		dev_err(&udc->dev, "failed to start %s: %d\n",
1445 			udc->driver->function, ret);
1446 	udc->driver = NULL;
1447 	udc->gadget->dev.driver = NULL;
1448 	return ret;
1449 }
1450 
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1451 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1452 {
1453 	struct usb_udc		*udc = NULL;
1454 	int			ret = -ENODEV;
1455 
1456 	if (!driver || !driver->bind || !driver->setup)
1457 		return -EINVAL;
1458 
1459 	mutex_lock(&udc_lock);
1460 	if (driver->udc_name) {
1461 		list_for_each_entry(udc, &udc_list, list) {
1462 			ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1463 			if (!ret)
1464 				break;
1465 		}
1466 		if (ret)
1467 			ret = -ENODEV;
1468 		else if (udc->driver)
1469 			ret = -EBUSY;
1470 		else
1471 			goto found;
1472 	} else {
1473 		list_for_each_entry(udc, &udc_list, list) {
1474 			/* For now we take the first one */
1475 			if (!udc->driver)
1476 				goto found;
1477 		}
1478 	}
1479 
1480 	if (!driver->match_existing_only) {
1481 		list_add_tail(&driver->pending, &gadget_driver_pending_list);
1482 		pr_info("udc-core: couldn't find an available UDC - added [%s] to list of pending drivers\n",
1483 			driver->function);
1484 		ret = 0;
1485 	}
1486 
1487 	mutex_unlock(&udc_lock);
1488 	if (ret)
1489 		pr_warn("udc-core: couldn't find an available UDC or it's busy\n");
1490 	return ret;
1491 found:
1492 	ret = udc_bind_to_driver(udc, driver);
1493 	mutex_unlock(&udc_lock);
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1497 
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1498 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1499 {
1500 	struct usb_udc		*udc = NULL;
1501 	int			ret = -ENODEV;
1502 
1503 	if (!driver || !driver->unbind)
1504 		return -EINVAL;
1505 
1506 	mutex_lock(&udc_lock);
1507 	list_for_each_entry(udc, &udc_list, list) {
1508 		if (udc->driver == driver) {
1509 			usb_gadget_remove_driver(udc);
1510 			usb_gadget_set_state(udc->gadget,
1511 					     USB_STATE_NOTATTACHED);
1512 
1513 			/* Maybe there is someone waiting for this UDC? */
1514 			check_pending_gadget_drivers(udc);
1515 			/*
1516 			 * For now we ignore bind errors as probably it's
1517 			 * not a valid reason to fail other's gadget unbind
1518 			 */
1519 			ret = 0;
1520 			break;
1521 		}
1522 	}
1523 
1524 	if (ret) {
1525 		list_del(&driver->pending);
1526 		ret = 0;
1527 	}
1528 	mutex_unlock(&udc_lock);
1529 	return ret;
1530 }
1531 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1532 
1533 /* ------------------------------------------------------------------------- */
1534 
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1535 static ssize_t srp_store(struct device *dev,
1536 		struct device_attribute *attr, const char *buf, size_t n)
1537 {
1538 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1539 
1540 	if (sysfs_streq(buf, "1"))
1541 		usb_gadget_wakeup(udc->gadget);
1542 
1543 	return n;
1544 }
1545 static DEVICE_ATTR_WO(srp);
1546 
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1547 static ssize_t soft_connect_store(struct device *dev,
1548 		struct device_attribute *attr, const char *buf, size_t n)
1549 {
1550 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1551 	ssize_t			ret;
1552 
1553 	mutex_lock(&udc_lock);
1554 	if (!udc->driver) {
1555 		dev_err(dev, "soft-connect without a gadget driver\n");
1556 		ret = -EOPNOTSUPP;
1557 		goto out;
1558 	}
1559 
1560 	if (sysfs_streq(buf, "connect")) {
1561 		usb_gadget_udc_start(udc);
1562 		usb_gadget_connect(udc->gadget);
1563 	} else if (sysfs_streq(buf, "disconnect")) {
1564 		usb_gadget_disconnect(udc->gadget);
1565 		usb_gadget_udc_stop(udc);
1566 	} else {
1567 		dev_err(dev, "unsupported command '%s'\n", buf);
1568 		ret = -EINVAL;
1569 		goto out;
1570 	}
1571 
1572 	ret = n;
1573 out:
1574 	mutex_unlock(&udc_lock);
1575 	return ret;
1576 }
1577 static DEVICE_ATTR_WO(soft_connect);
1578 
state_show(struct device * dev,struct device_attribute * attr,char * buf)1579 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1580 			  char *buf)
1581 {
1582 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1583 	struct usb_gadget	*gadget = udc->gadget;
1584 
1585 	return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1586 }
1587 static DEVICE_ATTR_RO(state);
1588 
function_show(struct device * dev,struct device_attribute * attr,char * buf)1589 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1590 			     char *buf)
1591 {
1592 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1593 	struct usb_gadget_driver *drv = udc->driver;
1594 
1595 	if (!drv || !drv->function)
1596 		return 0;
1597 	return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1598 }
1599 static DEVICE_ATTR_RO(function);
1600 
1601 #define USB_UDC_SPEED_ATTR(name, param)					\
1602 ssize_t name##_show(struct device *dev,					\
1603 		struct device_attribute *attr, char *buf)		\
1604 {									\
1605 	struct usb_udc *udc = container_of(dev, struct usb_udc, dev);	\
1606 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1607 			usb_speed_string(udc->gadget->param));		\
1608 }									\
1609 static DEVICE_ATTR_RO(name)
1610 
1611 static USB_UDC_SPEED_ATTR(current_speed, speed);
1612 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1613 
1614 #define USB_UDC_ATTR(name)					\
1615 ssize_t name##_show(struct device *dev,				\
1616 		struct device_attribute *attr, char *buf)	\
1617 {								\
1618 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev); \
1619 	struct usb_gadget	*gadget = udc->gadget;		\
1620 								\
1621 	return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name);	\
1622 }								\
1623 static DEVICE_ATTR_RO(name)
1624 
1625 static USB_UDC_ATTR(is_otg);
1626 static USB_UDC_ATTR(is_a_peripheral);
1627 static USB_UDC_ATTR(b_hnp_enable);
1628 static USB_UDC_ATTR(a_hnp_support);
1629 static USB_UDC_ATTR(a_alt_hnp_support);
1630 static USB_UDC_ATTR(is_selfpowered);
1631 
1632 static struct attribute *usb_udc_attrs[] = {
1633 	&dev_attr_srp.attr,
1634 	&dev_attr_soft_connect.attr,
1635 	&dev_attr_state.attr,
1636 	&dev_attr_function.attr,
1637 	&dev_attr_current_speed.attr,
1638 	&dev_attr_maximum_speed.attr,
1639 
1640 	&dev_attr_is_otg.attr,
1641 	&dev_attr_is_a_peripheral.attr,
1642 	&dev_attr_b_hnp_enable.attr,
1643 	&dev_attr_a_hnp_support.attr,
1644 	&dev_attr_a_alt_hnp_support.attr,
1645 	&dev_attr_is_selfpowered.attr,
1646 	NULL,
1647 };
1648 
1649 static const struct attribute_group usb_udc_attr_group = {
1650 	.attrs = usb_udc_attrs,
1651 };
1652 
1653 static const struct attribute_group *usb_udc_attr_groups[] = {
1654 	&usb_udc_attr_group,
1655 	NULL,
1656 };
1657 
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1658 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1659 {
1660 	struct usb_udc		*udc = container_of(dev, struct usb_udc, dev);
1661 	int			ret;
1662 
1663 	ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1664 	if (ret) {
1665 		dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1666 		return ret;
1667 	}
1668 
1669 	if (udc->driver) {
1670 		ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1671 				udc->driver->function);
1672 		if (ret) {
1673 			dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1674 			return ret;
1675 		}
1676 	}
1677 
1678 	return 0;
1679 }
1680 
usb_udc_init(void)1681 static int __init usb_udc_init(void)
1682 {
1683 	udc_class = class_create(THIS_MODULE, "udc");
1684 	if (IS_ERR(udc_class)) {
1685 		pr_err("failed to create udc class --> %ld\n",
1686 				PTR_ERR(udc_class));
1687 		return PTR_ERR(udc_class);
1688 	}
1689 
1690 	udc_class->dev_uevent = usb_udc_uevent;
1691 	return 0;
1692 }
1693 subsys_initcall(usb_udc_init);
1694 
usb_udc_exit(void)1695 static void __exit usb_udc_exit(void)
1696 {
1697 	class_destroy(udc_class);
1698 }
1699 module_exit(usb_udc_exit);
1700 
1701 MODULE_DESCRIPTION("UDC Framework");
1702 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1703 MODULE_LICENSE("GPL v2");
1704