1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3 *
4 * Copyright (c) 2013 Faraday Technology Corporation
5 *
6 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7 * Feng-Hsin Chiang <john453@faraday-tech.com>
8 * Po-Yu Chuang <ratbert.chuang@gmail.com>
9 *
10 * Most of code borrowed from the Linux-3.7 EHCI driver
11 */
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/vmalloc.h>
21 #include <linux/errno.h>
22 #include <linux/init.h>
23 #include <linux/hrtimer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/usb.h>
27 #include <linux/usb/hcd.h>
28 #include <linux/moduleparam.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/debugfs.h>
31 #include <linux/slab.h>
32 #include <linux/uaccess.h>
33 #include <linux/platform_device.h>
34 #include <linux/io.h>
35 #include <linux/iopoll.h>
36 #include <linux/clk.h>
37
38 #include <asm/byteorder.h>
39 #include <asm/irq.h>
40 #include <asm/unaligned.h>
41
42 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
43 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
44 static const char hcd_name[] = "fotg210_hcd";
45
46 #undef FOTG210_URB_TRACE
47 #define FOTG210_STATS
48
49 /* magic numbers that can affect system performance */
50 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
51 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
52 #define FOTG210_TUNE_RL_TT 0
53 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
54 #define FOTG210_TUNE_MULT_TT 1
55
56 /* Some drivers think it's safe to schedule isochronous transfers more than 256
57 * ms into the future (partly as a result of an old bug in the scheduling
58 * code). In an attempt to avoid trouble, we will use a minimum scheduling
59 * length of 512 frames instead of 256.
60 */
61 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
62
63 /* Initial IRQ latency: faster than hw default */
64 static int log2_irq_thresh; /* 0 to 6 */
65 module_param(log2_irq_thresh, int, S_IRUGO);
66 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
67
68 /* initial park setting: slower than hw default */
69 static unsigned park;
70 module_param(park, uint, S_IRUGO);
71 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
72
73 /* for link power management(LPM) feature */
74 static unsigned int hird;
75 module_param(hird, int, S_IRUGO);
76 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
77
78 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
79
80 #include "fotg210.h"
81
82 #define fotg210_dbg(fotg210, fmt, args...) \
83 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_err(fotg210, fmt, args...) \
85 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_info(fotg210, fmt, args...) \
87 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88 #define fotg210_warn(fotg210, fmt, args...) \
89 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
90
91 /* check the values in the HCSPARAMS register (host controller _Structural_
92 * parameters) see EHCI spec, Table 2-4 for each value
93 */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)94 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
95 {
96 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
97
98 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
99 HCS_N_PORTS(params));
100 }
101
102 /* check the values in the HCCPARAMS register (host controller _Capability_
103 * parameters) see EHCI Spec, Table 2-5 for each value
104 */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)105 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
106 {
107 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
108
109 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
110 params,
111 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
112 HCC_CANPARK(params) ? " park" : "");
113 }
114
115 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)116 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
117 {
118 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
119 hc32_to_cpup(fotg210, &qtd->hw_next),
120 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
121 hc32_to_cpup(fotg210, &qtd->hw_token),
122 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
123 if (qtd->hw_buf[1])
124 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
125 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
126 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
127 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
128 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
129 }
130
131 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)132 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
133 {
134 struct fotg210_qh_hw *hw = qh->hw;
135
136 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
137 hw->hw_next, hw->hw_info1, hw->hw_info2,
138 hw->hw_current);
139
140 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
141 }
142
143 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)144 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
145 {
146 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
147 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
148 itd->urb);
149
150 fotg210_dbg(fotg210,
151 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
152 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
153 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
154 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
155 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
156 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
157 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
158 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
159 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
160
161 fotg210_dbg(fotg210,
162 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
163 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
164 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
165 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
166 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
167 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
168 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
169 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
170
171 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
172 itd->index[0], itd->index[1], itd->index[2],
173 itd->index[3], itd->index[4], itd->index[5],
174 itd->index[6], itd->index[7]);
175 }
176
177 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)178 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
179 {
180 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
181 label, label[0] ? " " : "", status,
182 (status & STS_ASS) ? " Async" : "",
183 (status & STS_PSS) ? " Periodic" : "",
184 (status & STS_RECL) ? " Recl" : "",
185 (status & STS_HALT) ? " Halt" : "",
186 (status & STS_IAA) ? " IAA" : "",
187 (status & STS_FATAL) ? " FATAL" : "",
188 (status & STS_FLR) ? " FLR" : "",
189 (status & STS_PCD) ? " PCD" : "",
190 (status & STS_ERR) ? " ERR" : "",
191 (status & STS_INT) ? " INT" : "");
192 }
193
194 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)195 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
196 {
197 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
198 label, label[0] ? " " : "", enable,
199 (enable & STS_IAA) ? " IAA" : "",
200 (enable & STS_FATAL) ? " FATAL" : "",
201 (enable & STS_FLR) ? " FLR" : "",
202 (enable & STS_PCD) ? " PCD" : "",
203 (enable & STS_ERR) ? " ERR" : "",
204 (enable & STS_INT) ? " INT" : "");
205 }
206
207 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
208
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)209 static int dbg_command_buf(char *buf, unsigned len, const char *label,
210 u32 command)
211 {
212 return scnprintf(buf, len,
213 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
214 label, label[0] ? " " : "", command,
215 (command & CMD_PARK) ? " park" : "(park)",
216 CMD_PARK_CNT(command),
217 (command >> 16) & 0x3f,
218 (command & CMD_IAAD) ? " IAAD" : "",
219 (command & CMD_ASE) ? " Async" : "",
220 (command & CMD_PSE) ? " Periodic" : "",
221 fls_strings[(command >> 2) & 0x3],
222 (command & CMD_RESET) ? " Reset" : "",
223 (command & CMD_RUN) ? "RUN" : "HALT");
224 }
225
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)226 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
227 u32 status)
228 {
229 char *sig;
230
231 /* signaling state */
232 switch (status & (3 << 10)) {
233 case 0 << 10:
234 sig = "se0";
235 break;
236 case 1 << 10:
237 sig = "k";
238 break; /* low speed */
239 case 2 << 10:
240 sig = "j";
241 break;
242 default:
243 sig = "?";
244 break;
245 }
246
247 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
248 label, label[0] ? " " : "", port, status,
249 status >> 25, /*device address */
250 sig,
251 (status & PORT_RESET) ? " RESET" : "",
252 (status & PORT_SUSPEND) ? " SUSPEND" : "",
253 (status & PORT_RESUME) ? " RESUME" : "",
254 (status & PORT_PEC) ? " PEC" : "",
255 (status & PORT_PE) ? " PE" : "",
256 (status & PORT_CSC) ? " CSC" : "",
257 (status & PORT_CONNECT) ? " CONNECT" : "");
258
259 return buf;
260 }
261
262 /* functions have the "wrong" filename when they're output... */
263 #define dbg_status(fotg210, label, status) { \
264 char _buf[80]; \
265 dbg_status_buf(_buf, sizeof(_buf), label, status); \
266 fotg210_dbg(fotg210, "%s\n", _buf); \
267 }
268
269 #define dbg_cmd(fotg210, label, command) { \
270 char _buf[80]; \
271 dbg_command_buf(_buf, sizeof(_buf), label, command); \
272 fotg210_dbg(fotg210, "%s\n", _buf); \
273 }
274
275 #define dbg_port(fotg210, label, port, status) { \
276 char _buf[80]; \
277 fotg210_dbg(fotg210, "%s\n", \
278 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
279 }
280
281 /* troubleshooting help: expose state in debugfs */
282 static int debug_async_open(struct inode *, struct file *);
283 static int debug_periodic_open(struct inode *, struct file *);
284 static int debug_registers_open(struct inode *, struct file *);
285 static int debug_async_open(struct inode *, struct file *);
286
287 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
288 static int debug_close(struct inode *, struct file *);
289
290 static const struct file_operations debug_async_fops = {
291 .owner = THIS_MODULE,
292 .open = debug_async_open,
293 .read = debug_output,
294 .release = debug_close,
295 .llseek = default_llseek,
296 };
297 static const struct file_operations debug_periodic_fops = {
298 .owner = THIS_MODULE,
299 .open = debug_periodic_open,
300 .read = debug_output,
301 .release = debug_close,
302 .llseek = default_llseek,
303 };
304 static const struct file_operations debug_registers_fops = {
305 .owner = THIS_MODULE,
306 .open = debug_registers_open,
307 .read = debug_output,
308 .release = debug_close,
309 .llseek = default_llseek,
310 };
311
312 static struct dentry *fotg210_debug_root;
313
314 struct debug_buffer {
315 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
316 struct usb_bus *bus;
317 struct mutex mutex; /* protect filling of buffer */
318 size_t count; /* number of characters filled into buffer */
319 char *output_buf;
320 size_t alloc_size;
321 };
322
speed_char(u32 scratch)323 static inline char speed_char(u32 scratch)
324 {
325 switch (scratch & (3 << 12)) {
326 case QH_FULL_SPEED:
327 return 'f';
328
329 case QH_LOW_SPEED:
330 return 'l';
331
332 case QH_HIGH_SPEED:
333 return 'h';
334
335 default:
336 return '?';
337 }
338 }
339
token_mark(struct fotg210_hcd * fotg210,__hc32 token)340 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
341 {
342 __u32 v = hc32_to_cpu(fotg210, token);
343
344 if (v & QTD_STS_ACTIVE)
345 return '*';
346 if (v & QTD_STS_HALT)
347 return '-';
348 if (!IS_SHORT_READ(v))
349 return ' ';
350 /* tries to advance through hw_alt_next */
351 return '/';
352 }
353
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)354 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
355 char **nextp, unsigned *sizep)
356 {
357 u32 scratch;
358 u32 hw_curr;
359 struct fotg210_qtd *td;
360 unsigned temp;
361 unsigned size = *sizep;
362 char *next = *nextp;
363 char mark;
364 __le32 list_end = FOTG210_LIST_END(fotg210);
365 struct fotg210_qh_hw *hw = qh->hw;
366
367 if (hw->hw_qtd_next == list_end) /* NEC does this */
368 mark = '@';
369 else
370 mark = token_mark(fotg210, hw->hw_token);
371 if (mark == '/') { /* qh_alt_next controls qh advance? */
372 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
373 fotg210->async->hw->hw_alt_next)
374 mark = '#'; /* blocked */
375 else if (hw->hw_alt_next == list_end)
376 mark = '.'; /* use hw_qtd_next */
377 /* else alt_next points to some other qtd */
378 }
379 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
380 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
381 temp = scnprintf(next, size,
382 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
383 qh, scratch & 0x007f,
384 speed_char(scratch),
385 (scratch >> 8) & 0x000f,
386 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
387 hc32_to_cpup(fotg210, &hw->hw_token), mark,
388 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
389 ? "data1" : "data0",
390 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
391 size -= temp;
392 next += temp;
393
394 /* hc may be modifying the list as we read it ... */
395 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
396 scratch = hc32_to_cpup(fotg210, &td->hw_token);
397 mark = ' ';
398 if (hw_curr == td->qtd_dma)
399 mark = '*';
400 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
401 mark = '+';
402 else if (QTD_LENGTH(scratch)) {
403 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
404 mark = '#';
405 else if (td->hw_alt_next != list_end)
406 mark = '/';
407 }
408 temp = snprintf(next, size,
409 "\n\t%p%c%s len=%d %08x urb %p",
410 td, mark, ({ char *tmp;
411 switch ((scratch>>8)&0x03) {
412 case 0:
413 tmp = "out";
414 break;
415 case 1:
416 tmp = "in";
417 break;
418 case 2:
419 tmp = "setup";
420 break;
421 default:
422 tmp = "?";
423 break;
424 } tmp; }),
425 (scratch >> 16) & 0x7fff,
426 scratch,
427 td->urb);
428 if (size < temp)
429 temp = size;
430 size -= temp;
431 next += temp;
432 }
433
434 temp = snprintf(next, size, "\n");
435 if (size < temp)
436 temp = size;
437
438 size -= temp;
439 next += temp;
440
441 *sizep = size;
442 *nextp = next;
443 }
444
fill_async_buffer(struct debug_buffer * buf)445 static ssize_t fill_async_buffer(struct debug_buffer *buf)
446 {
447 struct usb_hcd *hcd;
448 struct fotg210_hcd *fotg210;
449 unsigned long flags;
450 unsigned temp, size;
451 char *next;
452 struct fotg210_qh *qh;
453
454 hcd = bus_to_hcd(buf->bus);
455 fotg210 = hcd_to_fotg210(hcd);
456 next = buf->output_buf;
457 size = buf->alloc_size;
458
459 *next = 0;
460
461 /* dumps a snapshot of the async schedule.
462 * usually empty except for long-term bulk reads, or head.
463 * one QH per line, and TDs we know about
464 */
465 spin_lock_irqsave(&fotg210->lock, flags);
466 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467 qh = qh->qh_next.qh)
468 qh_lines(fotg210, qh, &next, &size);
469 if (fotg210->async_unlink && size > 0) {
470 temp = scnprintf(next, size, "\nunlink =\n");
471 size -= temp;
472 next += temp;
473
474 for (qh = fotg210->async_unlink; size > 0 && qh;
475 qh = qh->unlink_next)
476 qh_lines(fotg210, qh, &next, &size);
477 }
478 spin_unlock_irqrestore(&fotg210->lock, flags);
479
480 return strlen(buf->output_buf);
481 }
482
483 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)484 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
486 {
487 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488 struct fotg210_qtd *qtd;
489 char *type = "";
490 unsigned temp = 0;
491
492 /* count tds, get ep direction */
493 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494 temp++;
495 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496 case 0:
497 type = "out";
498 continue;
499 case 1:
500 type = "in";
501 continue;
502 }
503 }
504
505 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 speed_char(scratch), scratch & 0x007f,
507 (scratch >> 8) & 0x000f, type, qh->usecs,
508 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
509 }
510
511 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513 {
514 struct usb_hcd *hcd;
515 struct fotg210_hcd *fotg210;
516 unsigned long flags;
517 union fotg210_shadow p, *seen;
518 unsigned temp, size, seen_count;
519 char *next;
520 unsigned i;
521 __hc32 tag;
522
523 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524 if (!seen)
525 return 0;
526
527 seen_count = 0;
528
529 hcd = bus_to_hcd(buf->bus);
530 fotg210 = hcd_to_fotg210(hcd);
531 next = buf->output_buf;
532 size = buf->alloc_size;
533
534 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535 size -= temp;
536 next += temp;
537
538 /* dump a snapshot of the periodic schedule.
539 * iso changes, interrupt usually doesn't.
540 */
541 spin_lock_irqsave(&fotg210->lock, flags);
542 for (i = 0; i < fotg210->periodic_size; i++) {
543 p = fotg210->pshadow[i];
544 if (likely(!p.ptr))
545 continue;
546
547 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
548
549 temp = scnprintf(next, size, "%4d: ", i);
550 size -= temp;
551 next += temp;
552
553 do {
554 struct fotg210_qh_hw *hw;
555
556 switch (hc32_to_cpu(fotg210, tag)) {
557 case Q_TYPE_QH:
558 hw = p.qh->hw;
559 temp = scnprintf(next, size, " qh%d-%04x/%p",
560 p.qh->period,
561 hc32_to_cpup(fotg210,
562 &hw->hw_info2)
563 /* uframe masks */
564 & (QH_CMASK | QH_SMASK),
565 p.qh);
566 size -= temp;
567 next += temp;
568 /* don't repeat what follows this qh */
569 for (temp = 0; temp < seen_count; temp++) {
570 if (seen[temp].ptr != p.ptr)
571 continue;
572 if (p.qh->qh_next.ptr) {
573 temp = scnprintf(next, size,
574 " ...");
575 size -= temp;
576 next += temp;
577 }
578 break;
579 }
580 /* show more info the first time around */
581 if (temp == seen_count) {
582 temp = output_buf_tds_dir(next,
583 fotg210, hw,
584 p.qh, size);
585
586 if (seen_count < DBG_SCHED_LIMIT)
587 seen[seen_count++].qh = p.qh;
588 } else
589 temp = 0;
590 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591 p = p.qh->qh_next;
592 break;
593 case Q_TYPE_FSTN:
594 temp = scnprintf(next, size,
595 " fstn-%8x/%p",
596 p.fstn->hw_prev, p.fstn);
597 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598 p = p.fstn->fstn_next;
599 break;
600 case Q_TYPE_ITD:
601 temp = scnprintf(next, size,
602 " itd/%p", p.itd);
603 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604 p = p.itd->itd_next;
605 break;
606 }
607 size -= temp;
608 next += temp;
609 } while (p.ptr);
610
611 temp = scnprintf(next, size, "\n");
612 size -= temp;
613 next += temp;
614 }
615 spin_unlock_irqrestore(&fotg210->lock, flags);
616 kfree(seen);
617
618 return buf->alloc_size - size;
619 }
620 #undef DBG_SCHED_LIMIT
621
rh_state_string(struct fotg210_hcd * fotg210)622 static const char *rh_state_string(struct fotg210_hcd *fotg210)
623 {
624 switch (fotg210->rh_state) {
625 case FOTG210_RH_HALTED:
626 return "halted";
627 case FOTG210_RH_SUSPENDED:
628 return "suspended";
629 case FOTG210_RH_RUNNING:
630 return "running";
631 case FOTG210_RH_STOPPING:
632 return "stopping";
633 }
634 return "?";
635 }
636
fill_registers_buffer(struct debug_buffer * buf)637 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
638 {
639 struct usb_hcd *hcd;
640 struct fotg210_hcd *fotg210;
641 unsigned long flags;
642 unsigned temp, size, i;
643 char *next, scratch[80];
644 static const char fmt[] = "%*s\n";
645 static const char label[] = "";
646
647 hcd = bus_to_hcd(buf->bus);
648 fotg210 = hcd_to_fotg210(hcd);
649 next = buf->output_buf;
650 size = buf->alloc_size;
651
652 spin_lock_irqsave(&fotg210->lock, flags);
653
654 if (!HCD_HW_ACCESSIBLE(hcd)) {
655 size = scnprintf(next, size,
656 "bus %s, device %s\n"
657 "%s\n"
658 "SUSPENDED(no register access)\n",
659 hcd->self.controller->bus->name,
660 dev_name(hcd->self.controller),
661 hcd->product_desc);
662 goto done;
663 }
664
665 /* Capability Registers */
666 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667 &fotg210->caps->hc_capbase));
668 temp = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "EHCI %x.%02x, rh state %s\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc,
675 i >> 8, i & 0x0ff, rh_state_string(fotg210));
676 size -= temp;
677 next += temp;
678
679 /* FIXME interpret both types of params */
680 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682 size -= temp;
683 next += temp;
684
685 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687 size -= temp;
688 next += temp;
689
690 /* Operational Registers */
691 temp = dbg_status_buf(scratch, sizeof(scratch), label,
692 fotg210_readl(fotg210, &fotg210->regs->status));
693 temp = scnprintf(next, size, fmt, temp, scratch);
694 size -= temp;
695 next += temp;
696
697 temp = dbg_command_buf(scratch, sizeof(scratch), label,
698 fotg210_readl(fotg210, &fotg210->regs->command));
699 temp = scnprintf(next, size, fmt, temp, scratch);
700 size -= temp;
701 next += temp;
702
703 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705 temp = scnprintf(next, size, fmt, temp, scratch);
706 size -= temp;
707 next += temp;
708
709 temp = scnprintf(next, size, "uframe %04x\n",
710 fotg210_read_frame_index(fotg210));
711 size -= temp;
712 next += temp;
713
714 if (fotg210->async_unlink) {
715 temp = scnprintf(next, size, "async unlink qh %p\n",
716 fotg210->async_unlink);
717 size -= temp;
718 next += temp;
719 }
720
721 #ifdef FOTG210_STATS
722 temp = scnprintf(next, size,
723 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 fotg210->stats.normal, fotg210->stats.error,
725 fotg210->stats.iaa, fotg210->stats.lost_iaa);
726 size -= temp;
727 next += temp;
728
729 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730 fotg210->stats.complete, fotg210->stats.unlink);
731 size -= temp;
732 next += temp;
733 #endif
734
735 done:
736 spin_unlock_irqrestore(&fotg210->lock, flags);
737
738 return buf->alloc_size - size;
739 }
740
741 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))742 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
743 {
744 struct debug_buffer *buf;
745
746 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
747
748 if (buf) {
749 buf->bus = bus;
750 buf->fill_func = fill_func;
751 mutex_init(&buf->mutex);
752 buf->alloc_size = PAGE_SIZE;
753 }
754
755 return buf;
756 }
757
fill_buffer(struct debug_buffer * buf)758 static int fill_buffer(struct debug_buffer *buf)
759 {
760 int ret = 0;
761
762 if (!buf->output_buf)
763 buf->output_buf = vmalloc(buf->alloc_size);
764
765 if (!buf->output_buf) {
766 ret = -ENOMEM;
767 goto out;
768 }
769
770 ret = buf->fill_func(buf);
771
772 if (ret >= 0) {
773 buf->count = ret;
774 ret = 0;
775 }
776
777 out:
778 return ret;
779 }
780
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)781 static ssize_t debug_output(struct file *file, char __user *user_buf,
782 size_t len, loff_t *offset)
783 {
784 struct debug_buffer *buf = file->private_data;
785 int ret = 0;
786
787 mutex_lock(&buf->mutex);
788 if (buf->count == 0) {
789 ret = fill_buffer(buf);
790 if (ret != 0) {
791 mutex_unlock(&buf->mutex);
792 goto out;
793 }
794 }
795 mutex_unlock(&buf->mutex);
796
797 ret = simple_read_from_buffer(user_buf, len, offset,
798 buf->output_buf, buf->count);
799
800 out:
801 return ret;
802
803 }
804
debug_close(struct inode * inode,struct file * file)805 static int debug_close(struct inode *inode, struct file *file)
806 {
807 struct debug_buffer *buf = file->private_data;
808
809 if (buf) {
810 vfree(buf->output_buf);
811 kfree(buf);
812 }
813
814 return 0;
815 }
debug_async_open(struct inode * inode,struct file * file)816 static int debug_async_open(struct inode *inode, struct file *file)
817 {
818 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
819
820 return file->private_data ? 0 : -ENOMEM;
821 }
822
debug_periodic_open(struct inode * inode,struct file * file)823 static int debug_periodic_open(struct inode *inode, struct file *file)
824 {
825 struct debug_buffer *buf;
826
827 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828 if (!buf)
829 return -ENOMEM;
830
831 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832 file->private_data = buf;
833 return 0;
834 }
835
debug_registers_open(struct inode * inode,struct file * file)836 static int debug_registers_open(struct inode *inode, struct file *file)
837 {
838 file->private_data = alloc_buffer(inode->i_private,
839 fill_registers_buffer);
840
841 return file->private_data ? 0 : -ENOMEM;
842 }
843
create_debug_files(struct fotg210_hcd * fotg210)844 static inline void create_debug_files(struct fotg210_hcd *fotg210)
845 {
846 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
847 struct dentry *root;
848
849 root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
850 fotg210->debug_dir = root;
851
852 debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
853 debugfs_create_file("periodic", S_IRUGO, root, bus,
854 &debug_periodic_fops);
855 debugfs_create_file("registers", S_IRUGO, root, bus,
856 &debug_registers_fops);
857 }
858
remove_debug_files(struct fotg210_hcd * fotg210)859 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
860 {
861 debugfs_remove_recursive(fotg210->debug_dir);
862 }
863
864 /* handshake - spin reading hc until handshake completes or fails
865 * @ptr: address of hc register to be read
866 * @mask: bits to look at in result of read
867 * @done: value of those bits when handshake succeeds
868 * @usec: timeout in microseconds
869 *
870 * Returns negative errno, or zero on success
871 *
872 * Success happens when the "mask" bits have the specified value (hardware
873 * handshake done). There are two failure modes: "usec" have passed (major
874 * hardware flakeout), or the register reads as all-ones (hardware removed).
875 *
876 * That last failure should_only happen in cases like physical cardbus eject
877 * before driver shutdown. But it also seems to be caused by bugs in cardbus
878 * bridge shutdown: shutting down the bridge before the devices using it.
879 */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881 u32 mask, u32 done, int usec)
882 {
883 u32 result;
884 int ret;
885
886 ret = readl_poll_timeout_atomic(ptr, result,
887 ((result & mask) == done ||
888 result == U32_MAX), 1, usec);
889 if (result == U32_MAX) /* card removed */
890 return -ENODEV;
891
892 return ret;
893 }
894
895 /* Force HC to halt state from unknown (EHCI spec section 2.3).
896 * Must be called with interrupts enabled and the lock not held.
897 */
fotg210_halt(struct fotg210_hcd * fotg210)898 static int fotg210_halt(struct fotg210_hcd *fotg210)
899 {
900 u32 temp;
901
902 spin_lock_irq(&fotg210->lock);
903
904 /* disable any irqs left enabled by previous code */
905 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
906
907 /*
908 * This routine gets called during probe before fotg210->command
909 * has been initialized, so we can't rely on its value.
910 */
911 fotg210->command &= ~CMD_RUN;
912 temp = fotg210_readl(fotg210, &fotg210->regs->command);
913 temp &= ~(CMD_RUN | CMD_IAAD);
914 fotg210_writel(fotg210, temp, &fotg210->regs->command);
915
916 spin_unlock_irq(&fotg210->lock);
917 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
918
919 return handshake(fotg210, &fotg210->regs->status,
920 STS_HALT, STS_HALT, 16 * 125);
921 }
922
923 /* Reset a non-running (STS_HALT == 1) controller.
924 * Must be called with interrupts enabled and the lock not held.
925 */
fotg210_reset(struct fotg210_hcd * fotg210)926 static int fotg210_reset(struct fotg210_hcd *fotg210)
927 {
928 int retval;
929 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
930
931 /* If the EHCI debug controller is active, special care must be
932 * taken before and after a host controller reset
933 */
934 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
935 fotg210->debug = NULL;
936
937 command |= CMD_RESET;
938 dbg_cmd(fotg210, "reset", command);
939 fotg210_writel(fotg210, command, &fotg210->regs->command);
940 fotg210->rh_state = FOTG210_RH_HALTED;
941 fotg210->next_statechange = jiffies;
942 retval = handshake(fotg210, &fotg210->regs->command,
943 CMD_RESET, 0, 250 * 1000);
944
945 if (retval)
946 return retval;
947
948 if (fotg210->debug)
949 dbgp_external_startup(fotg210_to_hcd(fotg210));
950
951 fotg210->port_c_suspend = fotg210->suspended_ports =
952 fotg210->resuming_ports = 0;
953 return retval;
954 }
955
956 /* Idle the controller (turn off the schedules).
957 * Must be called with interrupts enabled and the lock not held.
958 */
fotg210_quiesce(struct fotg210_hcd * fotg210)959 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
960 {
961 u32 temp;
962
963 if (fotg210->rh_state != FOTG210_RH_RUNNING)
964 return;
965
966 /* wait for any schedule enables/disables to take effect */
967 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
968 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
969 16 * 125);
970
971 /* then disable anything that's still active */
972 spin_lock_irq(&fotg210->lock);
973 fotg210->command &= ~(CMD_ASE | CMD_PSE);
974 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
975 spin_unlock_irq(&fotg210->lock);
976
977 /* hardware can take 16 microframes to turn off ... */
978 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
979 16 * 125);
980 }
981
982 static void end_unlink_async(struct fotg210_hcd *fotg210);
983 static void unlink_empty_async(struct fotg210_hcd *fotg210);
984 static void fotg210_work(struct fotg210_hcd *fotg210);
985 static void start_unlink_intr(struct fotg210_hcd *fotg210,
986 struct fotg210_qh *qh);
987 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
988
989 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)990 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
991 {
992 fotg210->command |= bit;
993 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
994
995 /* unblock posted write */
996 fotg210_readl(fotg210, &fotg210->regs->command);
997 }
998
999 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1000 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1001 {
1002 fotg210->command &= ~bit;
1003 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1004
1005 /* unblock posted write */
1006 fotg210_readl(fotg210, &fotg210->regs->command);
1007 }
1008
1009 /* EHCI timer support... Now using hrtimers.
1010 *
1011 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1012 * the timer routine runs, it checks each possible event; events that are
1013 * currently enabled and whose expiration time has passed get handled.
1014 * The set of enabled events is stored as a collection of bitflags in
1015 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1016 * increasing delay values (ranging between 1 ms and 100 ms).
1017 *
1018 * Rather than implementing a sorted list or tree of all pending events,
1019 * we keep track only of the lowest-numbered pending event, in
1020 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1021 * expiration time is set to the timeout value for this event.
1022 *
1023 * As a result, events might not get handled right away; the actual delay
1024 * could be anywhere up to twice the requested delay. This doesn't
1025 * matter, because none of the events are especially time-critical. The
1026 * ones that matter most all have a delay of 1 ms, so they will be
1027 * handled after 2 ms at most, which is okay. In addition to this, we
1028 * allow for an expiration range of 1 ms.
1029 */
1030
1031 /* Delay lengths for the hrtimer event types.
1032 * Keep this list sorted by delay length, in the same order as
1033 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1034 */
1035 static unsigned event_delays_ns[] = {
1036 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1037 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1038 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1039 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1040 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1041 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1042 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1043 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1044 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1045 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1046 };
1047
1048 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1049 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1050 bool resched)
1051 {
1052 ktime_t *timeout = &fotg210->hr_timeouts[event];
1053
1054 if (resched)
1055 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1056 fotg210->enabled_hrtimer_events |= (1 << event);
1057
1058 /* Track only the lowest-numbered pending event */
1059 if (event < fotg210->next_hrtimer_event) {
1060 fotg210->next_hrtimer_event = event;
1061 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1062 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1063 }
1064 }
1065
1066
1067 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1068 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1069 {
1070 unsigned actual, want;
1071
1072 /* Don't enable anything if the controller isn't running (e.g., died) */
1073 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1074 return;
1075
1076 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1077 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1078
1079 if (want != actual) {
1080
1081 /* Poll again later, but give up after about 20 ms */
1082 if (fotg210->ASS_poll_count++ < 20) {
1083 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1084 true);
1085 return;
1086 }
1087 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1088 want, actual);
1089 }
1090 fotg210->ASS_poll_count = 0;
1091
1092 /* The status is up-to-date; restart or stop the schedule as needed */
1093 if (want == 0) { /* Stopped */
1094 if (fotg210->async_count > 0)
1095 fotg210_set_command_bit(fotg210, CMD_ASE);
1096
1097 } else { /* Running */
1098 if (fotg210->async_count == 0) {
1099
1100 /* Turn off the schedule after a while */
1101 fotg210_enable_event(fotg210,
1102 FOTG210_HRTIMER_DISABLE_ASYNC,
1103 true);
1104 }
1105 }
1106 }
1107
1108 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1109 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1110 {
1111 fotg210_clear_command_bit(fotg210, CMD_ASE);
1112 }
1113
1114
1115 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1116 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1117 {
1118 unsigned actual, want;
1119
1120 /* Don't do anything if the controller isn't running (e.g., died) */
1121 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1122 return;
1123
1124 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1125 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1126
1127 if (want != actual) {
1128
1129 /* Poll again later, but give up after about 20 ms */
1130 if (fotg210->PSS_poll_count++ < 20) {
1131 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1132 true);
1133 return;
1134 }
1135 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1136 want, actual);
1137 }
1138 fotg210->PSS_poll_count = 0;
1139
1140 /* The status is up-to-date; restart or stop the schedule as needed */
1141 if (want == 0) { /* Stopped */
1142 if (fotg210->periodic_count > 0)
1143 fotg210_set_command_bit(fotg210, CMD_PSE);
1144
1145 } else { /* Running */
1146 if (fotg210->periodic_count == 0) {
1147
1148 /* Turn off the schedule after a while */
1149 fotg210_enable_event(fotg210,
1150 FOTG210_HRTIMER_DISABLE_PERIODIC,
1151 true);
1152 }
1153 }
1154 }
1155
1156 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1157 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1158 {
1159 fotg210_clear_command_bit(fotg210, CMD_PSE);
1160 }
1161
1162
1163 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1164 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1165 {
1166 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1167
1168 /* Give up after a few milliseconds */
1169 if (fotg210->died_poll_count++ < 5) {
1170 /* Try again later */
1171 fotg210_enable_event(fotg210,
1172 FOTG210_HRTIMER_POLL_DEAD, true);
1173 return;
1174 }
1175 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1176 }
1177
1178 /* Clean up the mess */
1179 fotg210->rh_state = FOTG210_RH_HALTED;
1180 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1181 fotg210_work(fotg210);
1182 end_unlink_async(fotg210);
1183
1184 /* Not in process context, so don't try to reset the controller */
1185 }
1186
1187
1188 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1189 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1190 {
1191 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1192
1193 /*
1194 * Process all the QHs on the intr_unlink list that were added
1195 * before the current unlink cycle began. The list is in
1196 * temporal order, so stop when we reach the first entry in the
1197 * current cycle. But if the root hub isn't running then
1198 * process all the QHs on the list.
1199 */
1200 fotg210->intr_unlinking = true;
1201 while (fotg210->intr_unlink) {
1202 struct fotg210_qh *qh = fotg210->intr_unlink;
1203
1204 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1205 break;
1206 fotg210->intr_unlink = qh->unlink_next;
1207 qh->unlink_next = NULL;
1208 end_unlink_intr(fotg210, qh);
1209 }
1210
1211 /* Handle remaining entries later */
1212 if (fotg210->intr_unlink) {
1213 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1214 true);
1215 ++fotg210->intr_unlink_cycle;
1216 }
1217 fotg210->intr_unlinking = false;
1218 }
1219
1220
1221 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1222 static void start_free_itds(struct fotg210_hcd *fotg210)
1223 {
1224 if (!(fotg210->enabled_hrtimer_events &
1225 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1226 fotg210->last_itd_to_free = list_entry(
1227 fotg210->cached_itd_list.prev,
1228 struct fotg210_itd, itd_list);
1229 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1230 }
1231 }
1232
1233 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1234 static void end_free_itds(struct fotg210_hcd *fotg210)
1235 {
1236 struct fotg210_itd *itd, *n;
1237
1238 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1239 fotg210->last_itd_to_free = NULL;
1240
1241 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1242 list_del(&itd->itd_list);
1243 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1244 if (itd == fotg210->last_itd_to_free)
1245 break;
1246 }
1247
1248 if (!list_empty(&fotg210->cached_itd_list))
1249 start_free_itds(fotg210);
1250 }
1251
1252
1253 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1254 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1255 {
1256 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1257 return;
1258
1259 /*
1260 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1261 * So we need this watchdog, but must protect it against both
1262 * (a) SMP races against real IAA firing and retriggering, and
1263 * (b) clean HC shutdown, when IAA watchdog was pending.
1264 */
1265 if (fotg210->async_iaa) {
1266 u32 cmd, status;
1267
1268 /* If we get here, IAA is *REALLY* late. It's barely
1269 * conceivable that the system is so busy that CMD_IAAD
1270 * is still legitimately set, so let's be sure it's
1271 * clear before we read STS_IAA. (The HC should clear
1272 * CMD_IAAD when it sets STS_IAA.)
1273 */
1274 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1275
1276 /*
1277 * If IAA is set here it either legitimately triggered
1278 * after the watchdog timer expired (_way_ late, so we'll
1279 * still count it as lost) ... or a silicon erratum:
1280 * - VIA seems to set IAA without triggering the IRQ;
1281 * - IAAD potentially cleared without setting IAA.
1282 */
1283 status = fotg210_readl(fotg210, &fotg210->regs->status);
1284 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1285 INCR(fotg210->stats.lost_iaa);
1286 fotg210_writel(fotg210, STS_IAA,
1287 &fotg210->regs->status);
1288 }
1289
1290 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1291 status, cmd);
1292 end_unlink_async(fotg210);
1293 }
1294 }
1295
1296
1297 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1298 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1299 {
1300 /* Not needed if the controller isn't running or it's already enabled */
1301 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1302 (fotg210->enabled_hrtimer_events &
1303 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1304 return;
1305
1306 /*
1307 * Isochronous transfers always need the watchdog.
1308 * For other sorts we use it only if the flag is set.
1309 */
1310 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1311 fotg210->async_count + fotg210->intr_count > 0))
1312 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1313 true);
1314 }
1315
1316
1317 /* Handler functions for the hrtimer event types.
1318 * Keep this array in the same order as the event types indexed by
1319 * enum fotg210_hrtimer_event in fotg210.h.
1320 */
1321 static void (*event_handlers[])(struct fotg210_hcd *) = {
1322 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1323 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1324 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1325 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1326 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1327 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1328 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1329 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1330 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1331 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1332 };
1333
fotg210_hrtimer_func(struct hrtimer * t)1334 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1335 {
1336 struct fotg210_hcd *fotg210 =
1337 container_of(t, struct fotg210_hcd, hrtimer);
1338 ktime_t now;
1339 unsigned long events;
1340 unsigned long flags;
1341 unsigned e;
1342
1343 spin_lock_irqsave(&fotg210->lock, flags);
1344
1345 events = fotg210->enabled_hrtimer_events;
1346 fotg210->enabled_hrtimer_events = 0;
1347 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1348
1349 /*
1350 * Check each pending event. If its time has expired, handle
1351 * the event; otherwise re-enable it.
1352 */
1353 now = ktime_get();
1354 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1355 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1356 event_handlers[e](fotg210);
1357 else
1358 fotg210_enable_event(fotg210, e, false);
1359 }
1360
1361 spin_unlock_irqrestore(&fotg210->lock, flags);
1362 return HRTIMER_NORESTART;
1363 }
1364
1365 #define fotg210_bus_suspend NULL
1366 #define fotg210_bus_resume NULL
1367
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1368 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1369 u32 __iomem *status_reg, int port_status)
1370 {
1371 if (!(port_status & PORT_CONNECT))
1372 return port_status;
1373
1374 /* if reset finished and it's still not enabled -- handoff */
1375 if (!(port_status & PORT_PE))
1376 /* with integrated TT, there's nobody to hand it to! */
1377 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1378 index + 1);
1379 else
1380 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1381 index + 1);
1382
1383 return port_status;
1384 }
1385
1386
1387 /* build "status change" packet (one or two bytes) from HC registers */
1388
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1389 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1390 {
1391 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1392 u32 temp, status;
1393 u32 mask;
1394 int retval = 1;
1395 unsigned long flags;
1396
1397 /* init status to no-changes */
1398 buf[0] = 0;
1399
1400 /* Inform the core about resumes-in-progress by returning
1401 * a non-zero value even if there are no status changes.
1402 */
1403 status = fotg210->resuming_ports;
1404
1405 mask = PORT_CSC | PORT_PEC;
1406 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1407
1408 /* no hub change reports (bit 0) for now (power, ...) */
1409
1410 /* port N changes (bit N)? */
1411 spin_lock_irqsave(&fotg210->lock, flags);
1412
1413 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1414
1415 /*
1416 * Return status information even for ports with OWNER set.
1417 * Otherwise hub_wq wouldn't see the disconnect event when a
1418 * high-speed device is switched over to the companion
1419 * controller by the user.
1420 */
1421
1422 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1423 (fotg210->reset_done[0] &&
1424 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1425 buf[0] |= 1 << 1;
1426 status = STS_PCD;
1427 }
1428 /* FIXME autosuspend idle root hubs */
1429 spin_unlock_irqrestore(&fotg210->lock, flags);
1430 return status ? retval : 0;
1431 }
1432
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1433 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1434 struct usb_hub_descriptor *desc)
1435 {
1436 int ports = HCS_N_PORTS(fotg210->hcs_params);
1437 u16 temp;
1438
1439 desc->bDescriptorType = USB_DT_HUB;
1440 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1441 desc->bHubContrCurrent = 0;
1442
1443 desc->bNbrPorts = ports;
1444 temp = 1 + (ports / 8);
1445 desc->bDescLength = 7 + 2 * temp;
1446
1447 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1448 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1449 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1450
1451 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1452 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1453 desc->wHubCharacteristics = cpu_to_le16(temp);
1454 }
1455
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1456 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1457 u16 wIndex, char *buf, u16 wLength)
1458 {
1459 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1460 int ports = HCS_N_PORTS(fotg210->hcs_params);
1461 u32 __iomem *status_reg = &fotg210->regs->port_status;
1462 u32 temp, temp1, status;
1463 unsigned long flags;
1464 int retval = 0;
1465 unsigned selector;
1466
1467 /*
1468 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1469 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1470 * (track current state ourselves) ... blink for diagnostics,
1471 * power, "this is the one", etc. EHCI spec supports this.
1472 */
1473
1474 spin_lock_irqsave(&fotg210->lock, flags);
1475 switch (typeReq) {
1476 case ClearHubFeature:
1477 switch (wValue) {
1478 case C_HUB_LOCAL_POWER:
1479 case C_HUB_OVER_CURRENT:
1480 /* no hub-wide feature/status flags */
1481 break;
1482 default:
1483 goto error;
1484 }
1485 break;
1486 case ClearPortFeature:
1487 if (!wIndex || wIndex > ports)
1488 goto error;
1489 wIndex--;
1490 temp = fotg210_readl(fotg210, status_reg);
1491 temp &= ~PORT_RWC_BITS;
1492
1493 /*
1494 * Even if OWNER is set, so the port is owned by the
1495 * companion controller, hub_wq needs to be able to clear
1496 * the port-change status bits (especially
1497 * USB_PORT_STAT_C_CONNECTION).
1498 */
1499
1500 switch (wValue) {
1501 case USB_PORT_FEAT_ENABLE:
1502 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1503 break;
1504 case USB_PORT_FEAT_C_ENABLE:
1505 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1506 break;
1507 case USB_PORT_FEAT_SUSPEND:
1508 if (temp & PORT_RESET)
1509 goto error;
1510 if (!(temp & PORT_SUSPEND))
1511 break;
1512 if ((temp & PORT_PE) == 0)
1513 goto error;
1514
1515 /* resume signaling for 20 msec */
1516 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1517 fotg210->reset_done[wIndex] = jiffies
1518 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1519 break;
1520 case USB_PORT_FEAT_C_SUSPEND:
1521 clear_bit(wIndex, &fotg210->port_c_suspend);
1522 break;
1523 case USB_PORT_FEAT_C_CONNECTION:
1524 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1525 break;
1526 case USB_PORT_FEAT_C_OVER_CURRENT:
1527 fotg210_writel(fotg210, temp | OTGISR_OVC,
1528 &fotg210->regs->otgisr);
1529 break;
1530 case USB_PORT_FEAT_C_RESET:
1531 /* GetPortStatus clears reset */
1532 break;
1533 default:
1534 goto error;
1535 }
1536 fotg210_readl(fotg210, &fotg210->regs->command);
1537 break;
1538 case GetHubDescriptor:
1539 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1540 buf);
1541 break;
1542 case GetHubStatus:
1543 /* no hub-wide feature/status flags */
1544 memset(buf, 0, 4);
1545 /*cpu_to_le32s ((u32 *) buf); */
1546 break;
1547 case GetPortStatus:
1548 if (!wIndex || wIndex > ports)
1549 goto error;
1550 wIndex--;
1551 status = 0;
1552 temp = fotg210_readl(fotg210, status_reg);
1553
1554 /* wPortChange bits */
1555 if (temp & PORT_CSC)
1556 status |= USB_PORT_STAT_C_CONNECTION << 16;
1557 if (temp & PORT_PEC)
1558 status |= USB_PORT_STAT_C_ENABLE << 16;
1559
1560 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1561 if (temp1 & OTGISR_OVC)
1562 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1563
1564 /* whoever resumes must GetPortStatus to complete it!! */
1565 if (temp & PORT_RESUME) {
1566
1567 /* Remote Wakeup received? */
1568 if (!fotg210->reset_done[wIndex]) {
1569 /* resume signaling for 20 msec */
1570 fotg210->reset_done[wIndex] = jiffies
1571 + msecs_to_jiffies(20);
1572 /* check the port again */
1573 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1574 fotg210->reset_done[wIndex]);
1575 }
1576
1577 /* resume completed? */
1578 else if (time_after_eq(jiffies,
1579 fotg210->reset_done[wIndex])) {
1580 clear_bit(wIndex, &fotg210->suspended_ports);
1581 set_bit(wIndex, &fotg210->port_c_suspend);
1582 fotg210->reset_done[wIndex] = 0;
1583
1584 /* stop resume signaling */
1585 temp = fotg210_readl(fotg210, status_reg);
1586 fotg210_writel(fotg210, temp &
1587 ~(PORT_RWC_BITS | PORT_RESUME),
1588 status_reg);
1589 clear_bit(wIndex, &fotg210->resuming_ports);
1590 retval = handshake(fotg210, status_reg,
1591 PORT_RESUME, 0, 2000);/* 2ms */
1592 if (retval != 0) {
1593 fotg210_err(fotg210,
1594 "port %d resume error %d\n",
1595 wIndex + 1, retval);
1596 goto error;
1597 }
1598 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1599 }
1600 }
1601
1602 /* whoever resets must GetPortStatus to complete it!! */
1603 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1604 fotg210->reset_done[wIndex])) {
1605 status |= USB_PORT_STAT_C_RESET << 16;
1606 fotg210->reset_done[wIndex] = 0;
1607 clear_bit(wIndex, &fotg210->resuming_ports);
1608
1609 /* force reset to complete */
1610 fotg210_writel(fotg210,
1611 temp & ~(PORT_RWC_BITS | PORT_RESET),
1612 status_reg);
1613 /* REVISIT: some hardware needs 550+ usec to clear
1614 * this bit; seems too long to spin routinely...
1615 */
1616 retval = handshake(fotg210, status_reg,
1617 PORT_RESET, 0, 1000);
1618 if (retval != 0) {
1619 fotg210_err(fotg210, "port %d reset error %d\n",
1620 wIndex + 1, retval);
1621 goto error;
1622 }
1623
1624 /* see what we found out */
1625 temp = check_reset_complete(fotg210, wIndex, status_reg,
1626 fotg210_readl(fotg210, status_reg));
1627
1628 /* restart schedule */
1629 fotg210->command |= CMD_RUN;
1630 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1631 }
1632
1633 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634 fotg210->reset_done[wIndex] = 0;
1635 clear_bit(wIndex, &fotg210->resuming_ports);
1636 }
1637
1638 /* transfer dedicated ports to the companion hc */
1639 if ((temp & PORT_CONNECT) &&
1640 test_bit(wIndex, &fotg210->companion_ports)) {
1641 temp &= ~PORT_RWC_BITS;
1642 fotg210_writel(fotg210, temp, status_reg);
1643 fotg210_dbg(fotg210, "port %d --> companion\n",
1644 wIndex + 1);
1645 temp = fotg210_readl(fotg210, status_reg);
1646 }
1647
1648 /*
1649 * Even if OWNER is set, there's no harm letting hub_wq
1650 * see the wPortStatus values (they should all be 0 except
1651 * for PORT_POWER anyway).
1652 */
1653
1654 if (temp & PORT_CONNECT) {
1655 status |= USB_PORT_STAT_CONNECTION;
1656 status |= fotg210_port_speed(fotg210, temp);
1657 }
1658 if (temp & PORT_PE)
1659 status |= USB_PORT_STAT_ENABLE;
1660
1661 /* maybe the port was unsuspended without our knowledge */
1662 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663 status |= USB_PORT_STAT_SUSPEND;
1664 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665 clear_bit(wIndex, &fotg210->suspended_ports);
1666 clear_bit(wIndex, &fotg210->resuming_ports);
1667 fotg210->reset_done[wIndex] = 0;
1668 if (temp & PORT_PE)
1669 set_bit(wIndex, &fotg210->port_c_suspend);
1670 }
1671
1672 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673 if (temp1 & OTGISR_OVC)
1674 status |= USB_PORT_STAT_OVERCURRENT;
1675 if (temp & PORT_RESET)
1676 status |= USB_PORT_STAT_RESET;
1677 if (test_bit(wIndex, &fotg210->port_c_suspend))
1678 status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680 if (status & ~0xffff) /* only if wPortChange is interesting */
1681 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682 put_unaligned_le32(status, buf);
1683 break;
1684 case SetHubFeature:
1685 switch (wValue) {
1686 case C_HUB_LOCAL_POWER:
1687 case C_HUB_OVER_CURRENT:
1688 /* no hub-wide feature/status flags */
1689 break;
1690 default:
1691 goto error;
1692 }
1693 break;
1694 case SetPortFeature:
1695 selector = wIndex >> 8;
1696 wIndex &= 0xff;
1697
1698 if (!wIndex || wIndex > ports)
1699 goto error;
1700 wIndex--;
1701 temp = fotg210_readl(fotg210, status_reg);
1702 temp &= ~PORT_RWC_BITS;
1703 switch (wValue) {
1704 case USB_PORT_FEAT_SUSPEND:
1705 if ((temp & PORT_PE) == 0
1706 || (temp & PORT_RESET) != 0)
1707 goto error;
1708
1709 /* After above check the port must be connected.
1710 * Set appropriate bit thus could put phy into low power
1711 * mode if we have hostpc feature
1712 */
1713 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714 status_reg);
1715 set_bit(wIndex, &fotg210->suspended_ports);
1716 break;
1717 case USB_PORT_FEAT_RESET:
1718 if (temp & PORT_RESUME)
1719 goto error;
1720 /* line status bits may report this as low speed,
1721 * which can be fine if this root hub has a
1722 * transaction translator built in.
1723 */
1724 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725 temp |= PORT_RESET;
1726 temp &= ~PORT_PE;
1727
1728 /*
1729 * caller must wait, then call GetPortStatus
1730 * usb 2.0 spec says 50 ms resets on root
1731 */
1732 fotg210->reset_done[wIndex] = jiffies
1733 + msecs_to_jiffies(50);
1734 fotg210_writel(fotg210, temp, status_reg);
1735 break;
1736
1737 /* For downstream facing ports (these): one hub port is put
1738 * into test mode according to USB2 11.24.2.13, then the hub
1739 * must be reset (which for root hub now means rmmod+modprobe,
1740 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1741 * about the EHCI-specific stuff.
1742 */
1743 case USB_PORT_FEAT_TEST:
1744 if (!selector || selector > 5)
1745 goto error;
1746 spin_unlock_irqrestore(&fotg210->lock, flags);
1747 fotg210_quiesce(fotg210);
1748 spin_lock_irqsave(&fotg210->lock, flags);
1749
1750 /* Put all enabled ports into suspend */
1751 temp = fotg210_readl(fotg210, status_reg) &
1752 ~PORT_RWC_BITS;
1753 if (temp & PORT_PE)
1754 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755 status_reg);
1756
1757 spin_unlock_irqrestore(&fotg210->lock, flags);
1758 fotg210_halt(fotg210);
1759 spin_lock_irqsave(&fotg210->lock, flags);
1760
1761 temp = fotg210_readl(fotg210, status_reg);
1762 temp |= selector << 16;
1763 fotg210_writel(fotg210, temp, status_reg);
1764 break;
1765
1766 default:
1767 goto error;
1768 }
1769 fotg210_readl(fotg210, &fotg210->regs->command);
1770 break;
1771
1772 default:
1773 error:
1774 /* "stall" on error */
1775 retval = -EPIPE;
1776 }
1777 spin_unlock_irqrestore(&fotg210->lock, flags);
1778 return retval;
1779 }
1780
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782 int portnum)
1783 {
1784 return;
1785 }
1786
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788 int portnum)
1789 {
1790 return 0;
1791 }
1792
1793 /* There's basically three types of memory:
1794 * - data used only by the HCD ... kmalloc is fine
1795 * - async and periodic schedules, shared by HC and HCD ... these
1796 * need to use dma_pool or dma_alloc_coherent
1797 * - driver buffers, read/written by HC ... single shot DMA mapped
1798 *
1799 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800 * No memory seen by this driver is pageable.
1801 */
1802
1803 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805 struct fotg210_qtd *qtd, dma_addr_t dma)
1806 {
1807 memset(qtd, 0, sizeof(*qtd));
1808 qtd->qtd_dma = dma;
1809 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810 qtd->hw_next = FOTG210_LIST_END(fotg210);
1811 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812 INIT_LIST_HEAD(&qtd->qtd_list);
1813 }
1814
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816 gfp_t flags)
1817 {
1818 struct fotg210_qtd *qtd;
1819 dma_addr_t dma;
1820
1821 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822 if (qtd != NULL)
1823 fotg210_qtd_init(fotg210, qtd, dma);
1824
1825 return qtd;
1826 }
1827
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829 struct fotg210_qtd *qtd)
1830 {
1831 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832 }
1833
1834
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836 {
1837 /* clean qtds first, and know this is not linked */
1838 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839 fotg210_dbg(fotg210, "unused qh not empty!\n");
1840 BUG();
1841 }
1842 if (qh->dummy)
1843 fotg210_qtd_free(fotg210, qh->dummy);
1844 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845 kfree(qh);
1846 }
1847
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849 gfp_t flags)
1850 {
1851 struct fotg210_qh *qh;
1852 dma_addr_t dma;
1853
1854 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855 if (!qh)
1856 goto done;
1857 qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1858 if (!qh->hw)
1859 goto fail;
1860 qh->qh_dma = dma;
1861 INIT_LIST_HEAD(&qh->qtd_list);
1862
1863 /* dummy td enables safe urb queuing */
1864 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1865 if (qh->dummy == NULL) {
1866 fotg210_dbg(fotg210, "no dummy td\n");
1867 goto fail1;
1868 }
1869 done:
1870 return qh;
1871 fail1:
1872 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1873 fail:
1874 kfree(qh);
1875 return NULL;
1876 }
1877
1878 /* The queue heads and transfer descriptors are managed from pools tied
1879 * to each of the "per device" structures.
1880 * This is the initialisation and cleanup code.
1881 */
1882
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1883 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1884 {
1885 if (fotg210->async)
1886 qh_destroy(fotg210, fotg210->async);
1887 fotg210->async = NULL;
1888
1889 if (fotg210->dummy)
1890 qh_destroy(fotg210, fotg210->dummy);
1891 fotg210->dummy = NULL;
1892
1893 /* DMA consistent memory and pools */
1894 dma_pool_destroy(fotg210->qtd_pool);
1895 fotg210->qtd_pool = NULL;
1896
1897 dma_pool_destroy(fotg210->qh_pool);
1898 fotg210->qh_pool = NULL;
1899
1900 dma_pool_destroy(fotg210->itd_pool);
1901 fotg210->itd_pool = NULL;
1902
1903 if (fotg210->periodic)
1904 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1905 fotg210->periodic_size * sizeof(u32),
1906 fotg210->periodic, fotg210->periodic_dma);
1907 fotg210->periodic = NULL;
1908
1909 /* shadow periodic table */
1910 kfree(fotg210->pshadow);
1911 fotg210->pshadow = NULL;
1912 }
1913
1914 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1915 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1916 {
1917 int i;
1918
1919 /* QTDs for control/bulk/intr transfers */
1920 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1921 fotg210_to_hcd(fotg210)->self.controller,
1922 sizeof(struct fotg210_qtd),
1923 32 /* byte alignment (for hw parts) */,
1924 4096 /* can't cross 4K */);
1925 if (!fotg210->qtd_pool)
1926 goto fail;
1927
1928 /* QHs for control/bulk/intr transfers */
1929 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1930 fotg210_to_hcd(fotg210)->self.controller,
1931 sizeof(struct fotg210_qh_hw),
1932 32 /* byte alignment (for hw parts) */,
1933 4096 /* can't cross 4K */);
1934 if (!fotg210->qh_pool)
1935 goto fail;
1936
1937 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1938 if (!fotg210->async)
1939 goto fail;
1940
1941 /* ITD for high speed ISO transfers */
1942 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1943 fotg210_to_hcd(fotg210)->self.controller,
1944 sizeof(struct fotg210_itd),
1945 64 /* byte alignment (for hw parts) */,
1946 4096 /* can't cross 4K */);
1947 if (!fotg210->itd_pool)
1948 goto fail;
1949
1950 /* Hardware periodic table */
1951 fotg210->periodic = (__le32 *)
1952 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1953 fotg210->periodic_size * sizeof(__le32),
1954 &fotg210->periodic_dma, 0);
1955 if (fotg210->periodic == NULL)
1956 goto fail;
1957
1958 for (i = 0; i < fotg210->periodic_size; i++)
1959 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1960
1961 /* software shadow of hardware table */
1962 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1963 flags);
1964 if (fotg210->pshadow != NULL)
1965 return 0;
1966
1967 fail:
1968 fotg210_dbg(fotg210, "couldn't init memory\n");
1969 fotg210_mem_cleanup(fotg210);
1970 return -ENOMEM;
1971 }
1972 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
1973 *
1974 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
1975 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1976 * buffers needed for the larger number). We use one QH per endpoint, queue
1977 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
1978 *
1979 * ISO traffic uses "ISO TD" (itd) records, and (along with
1980 * interrupts) needs careful scheduling. Performance improvements can be
1981 * an ongoing challenge. That's in "ehci-sched.c".
1982 *
1983 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1984 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1985 * (b) special fields in qh entries or (c) split iso entries. TTs will
1986 * buffer low/full speed data so the host collects it at high speed.
1987 */
1988
1989 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1990 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1991 dma_addr_t buf, size_t len, int token, int maxpacket)
1992 {
1993 int i, count;
1994 u64 addr = buf;
1995
1996 /* one buffer entry per 4K ... first might be short or unaligned */
1997 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1998 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1999 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2000 if (likely(len < count)) /* ... iff needed */
2001 count = len;
2002 else {
2003 buf += 0x1000;
2004 buf &= ~0x0fff;
2005
2006 /* per-qtd limit: from 16K to 20K (best alignment) */
2007 for (i = 1; count < len && i < 5; i++) {
2008 addr = buf;
2009 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2010 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2011 (u32)(addr >> 32));
2012 buf += 0x1000;
2013 if ((count + 0x1000) < len)
2014 count += 0x1000;
2015 else
2016 count = len;
2017 }
2018
2019 /* short packets may only terminate transfers */
2020 if (count != len)
2021 count -= (count % maxpacket);
2022 }
2023 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2024 qtd->length = count;
2025
2026 return count;
2027 }
2028
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2029 static inline void qh_update(struct fotg210_hcd *fotg210,
2030 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2031 {
2032 struct fotg210_qh_hw *hw = qh->hw;
2033
2034 /* writes to an active overlay are unsafe */
2035 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2036
2037 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2038 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2039
2040 /* Except for control endpoints, we make hardware maintain data
2041 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2042 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2043 * ever clear it.
2044 */
2045 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2046 unsigned is_out, epnum;
2047
2048 is_out = qh->is_out;
2049 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2050 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2051 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2052 usb_settoggle(qh->dev, epnum, is_out, 1);
2053 }
2054 }
2055
2056 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2057 }
2058
2059 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2060 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2061 * recovery (including urb dequeue) would need software changes to a QH...
2062 */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2063 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2064 {
2065 struct fotg210_qtd *qtd;
2066
2067 if (list_empty(&qh->qtd_list))
2068 qtd = qh->dummy;
2069 else {
2070 qtd = list_entry(qh->qtd_list.next,
2071 struct fotg210_qtd, qtd_list);
2072 /*
2073 * first qtd may already be partially processed.
2074 * If we come here during unlink, the QH overlay region
2075 * might have reference to the just unlinked qtd. The
2076 * qtd is updated in qh_completions(). Update the QH
2077 * overlay here.
2078 */
2079 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2080 qh->hw->hw_qtd_next = qtd->hw_next;
2081 qtd = NULL;
2082 }
2083 }
2084
2085 if (qtd)
2086 qh_update(fotg210, qh, qtd);
2087 }
2088
2089 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2090
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2091 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2092 struct usb_host_endpoint *ep)
2093 {
2094 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2095 struct fotg210_qh *qh = ep->hcpriv;
2096 unsigned long flags;
2097
2098 spin_lock_irqsave(&fotg210->lock, flags);
2099 qh->clearing_tt = 0;
2100 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2101 && fotg210->rh_state == FOTG210_RH_RUNNING)
2102 qh_link_async(fotg210, qh);
2103 spin_unlock_irqrestore(&fotg210->lock, flags);
2104 }
2105
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2106 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2107 struct fotg210_qh *qh, struct urb *urb, u32 token)
2108 {
2109
2110 /* If an async split transaction gets an error or is unlinked,
2111 * the TT buffer may be left in an indeterminate state. We
2112 * have to clear the TT buffer.
2113 *
2114 * Note: this routine is never called for Isochronous transfers.
2115 */
2116 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2117 struct usb_device *tt = urb->dev->tt->hub;
2118
2119 dev_dbg(&tt->dev,
2120 "clear tt buffer port %d, a%d ep%d t%08x\n",
2121 urb->dev->ttport, urb->dev->devnum,
2122 usb_pipeendpoint(urb->pipe), token);
2123
2124 if (urb->dev->tt->hub !=
2125 fotg210_to_hcd(fotg210)->self.root_hub) {
2126 if (usb_hub_clear_tt_buffer(urb) == 0)
2127 qh->clearing_tt = 1;
2128 }
2129 }
2130 }
2131
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2132 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2133 size_t length, u32 token)
2134 {
2135 int status = -EINPROGRESS;
2136
2137 /* count IN/OUT bytes, not SETUP (even short packets) */
2138 if (likely(QTD_PID(token) != 2))
2139 urb->actual_length += length - QTD_LENGTH(token);
2140
2141 /* don't modify error codes */
2142 if (unlikely(urb->unlinked))
2143 return status;
2144
2145 /* force cleanup after short read; not always an error */
2146 if (unlikely(IS_SHORT_READ(token)))
2147 status = -EREMOTEIO;
2148
2149 /* serious "can't proceed" faults reported by the hardware */
2150 if (token & QTD_STS_HALT) {
2151 if (token & QTD_STS_BABBLE) {
2152 /* FIXME "must" disable babbling device's port too */
2153 status = -EOVERFLOW;
2154 /* CERR nonzero + halt --> stall */
2155 } else if (QTD_CERR(token)) {
2156 status = -EPIPE;
2157
2158 /* In theory, more than one of the following bits can be set
2159 * since they are sticky and the transaction is retried.
2160 * Which to test first is rather arbitrary.
2161 */
2162 } else if (token & QTD_STS_MMF) {
2163 /* fs/ls interrupt xfer missed the complete-split */
2164 status = -EPROTO;
2165 } else if (token & QTD_STS_DBE) {
2166 status = (QTD_PID(token) == 1) /* IN ? */
2167 ? -ENOSR /* hc couldn't read data */
2168 : -ECOMM; /* hc couldn't write data */
2169 } else if (token & QTD_STS_XACT) {
2170 /* timeout, bad CRC, wrong PID, etc */
2171 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2172 urb->dev->devpath,
2173 usb_pipeendpoint(urb->pipe),
2174 usb_pipein(urb->pipe) ? "in" : "out");
2175 status = -EPROTO;
2176 } else { /* unknown */
2177 status = -EPROTO;
2178 }
2179
2180 fotg210_dbg(fotg210,
2181 "dev%d ep%d%s qtd token %08x --> status %d\n",
2182 usb_pipedevice(urb->pipe),
2183 usb_pipeendpoint(urb->pipe),
2184 usb_pipein(urb->pipe) ? "in" : "out",
2185 token, status);
2186 }
2187
2188 return status;
2189 }
2190
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2191 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2192 int status)
2193 __releases(fotg210->lock)
2194 __acquires(fotg210->lock)
2195 {
2196 if (likely(urb->hcpriv != NULL)) {
2197 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2198
2199 /* S-mask in a QH means it's an interrupt urb */
2200 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2201
2202 /* ... update hc-wide periodic stats (for usbfs) */
2203 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2204 }
2205 }
2206
2207 if (unlikely(urb->unlinked)) {
2208 INCR(fotg210->stats.unlink);
2209 } else {
2210 /* report non-error and short read status as zero */
2211 if (status == -EINPROGRESS || status == -EREMOTEIO)
2212 status = 0;
2213 INCR(fotg210->stats.complete);
2214 }
2215
2216 #ifdef FOTG210_URB_TRACE
2217 fotg210_dbg(fotg210,
2218 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2219 __func__, urb->dev->devpath, urb,
2220 usb_pipeendpoint(urb->pipe),
2221 usb_pipein(urb->pipe) ? "in" : "out",
2222 status,
2223 urb->actual_length, urb->transfer_buffer_length);
2224 #endif
2225
2226 /* complete() can reenter this HCD */
2227 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2228 spin_unlock(&fotg210->lock);
2229 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2230 spin_lock(&fotg210->lock);
2231 }
2232
2233 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2234
2235 /* Process and free completed qtds for a qh, returning URBs to drivers.
2236 * Chases up to qh->hw_current. Returns number of completions called,
2237 * indicating how much "real" work we did.
2238 */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2239 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2240 struct fotg210_qh *qh)
2241 {
2242 struct fotg210_qtd *last, *end = qh->dummy;
2243 struct fotg210_qtd *qtd, *tmp;
2244 int last_status;
2245 int stopped;
2246 unsigned count = 0;
2247 u8 state;
2248 struct fotg210_qh_hw *hw = qh->hw;
2249
2250 if (unlikely(list_empty(&qh->qtd_list)))
2251 return count;
2252
2253 /* completions (or tasks on other cpus) must never clobber HALT
2254 * till we've gone through and cleaned everything up, even when
2255 * they add urbs to this qh's queue or mark them for unlinking.
2256 *
2257 * NOTE: unlinking expects to be done in queue order.
2258 *
2259 * It's a bug for qh->qh_state to be anything other than
2260 * QH_STATE_IDLE, unless our caller is scan_async() or
2261 * scan_intr().
2262 */
2263 state = qh->qh_state;
2264 qh->qh_state = QH_STATE_COMPLETING;
2265 stopped = (state == QH_STATE_IDLE);
2266
2267 rescan:
2268 last = NULL;
2269 last_status = -EINPROGRESS;
2270 qh->needs_rescan = 0;
2271
2272 /* remove de-activated QTDs from front of queue.
2273 * after faults (including short reads), cleanup this urb
2274 * then let the queue advance.
2275 * if queue is stopped, handles unlinks.
2276 */
2277 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2278 struct urb *urb;
2279 u32 token = 0;
2280
2281 urb = qtd->urb;
2282
2283 /* clean up any state from previous QTD ...*/
2284 if (last) {
2285 if (likely(last->urb != urb)) {
2286 fotg210_urb_done(fotg210, last->urb,
2287 last_status);
2288 count++;
2289 last_status = -EINPROGRESS;
2290 }
2291 fotg210_qtd_free(fotg210, last);
2292 last = NULL;
2293 }
2294
2295 /* ignore urbs submitted during completions we reported */
2296 if (qtd == end)
2297 break;
2298
2299 /* hardware copies qtd out of qh overlay */
2300 rmb();
2301 token = hc32_to_cpu(fotg210, qtd->hw_token);
2302
2303 /* always clean up qtds the hc de-activated */
2304 retry_xacterr:
2305 if ((token & QTD_STS_ACTIVE) == 0) {
2306
2307 /* Report Data Buffer Error: non-fatal but useful */
2308 if (token & QTD_STS_DBE)
2309 fotg210_dbg(fotg210,
2310 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2311 urb, usb_endpoint_num(&urb->ep->desc),
2312 usb_endpoint_dir_in(&urb->ep->desc)
2313 ? "in" : "out",
2314 urb->transfer_buffer_length, qtd, qh);
2315
2316 /* on STALL, error, and short reads this urb must
2317 * complete and all its qtds must be recycled.
2318 */
2319 if ((token & QTD_STS_HALT) != 0) {
2320
2321 /* retry transaction errors until we
2322 * reach the software xacterr limit
2323 */
2324 if ((token & QTD_STS_XACT) &&
2325 QTD_CERR(token) == 0 &&
2326 ++qh->xacterrs < QH_XACTERR_MAX &&
2327 !urb->unlinked) {
2328 fotg210_dbg(fotg210,
2329 "detected XactErr len %zu/%zu retry %d\n",
2330 qtd->length - QTD_LENGTH(token),
2331 qtd->length,
2332 qh->xacterrs);
2333
2334 /* reset the token in the qtd and the
2335 * qh overlay (which still contains
2336 * the qtd) so that we pick up from
2337 * where we left off
2338 */
2339 token &= ~QTD_STS_HALT;
2340 token |= QTD_STS_ACTIVE |
2341 (FOTG210_TUNE_CERR << 10);
2342 qtd->hw_token = cpu_to_hc32(fotg210,
2343 token);
2344 wmb();
2345 hw->hw_token = cpu_to_hc32(fotg210,
2346 token);
2347 goto retry_xacterr;
2348 }
2349 stopped = 1;
2350
2351 /* magic dummy for some short reads; qh won't advance.
2352 * that silicon quirk can kick in with this dummy too.
2353 *
2354 * other short reads won't stop the queue, including
2355 * control transfers (status stage handles that) or
2356 * most other single-qtd reads ... the queue stops if
2357 * URB_SHORT_NOT_OK was set so the driver submitting
2358 * the urbs could clean it up.
2359 */
2360 } else if (IS_SHORT_READ(token) &&
2361 !(qtd->hw_alt_next &
2362 FOTG210_LIST_END(fotg210))) {
2363 stopped = 1;
2364 }
2365
2366 /* stop scanning when we reach qtds the hc is using */
2367 } else if (likely(!stopped
2368 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2369 break;
2370
2371 /* scan the whole queue for unlinks whenever it stops */
2372 } else {
2373 stopped = 1;
2374
2375 /* cancel everything if we halt, suspend, etc */
2376 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2377 last_status = -ESHUTDOWN;
2378
2379 /* this qtd is active; skip it unless a previous qtd
2380 * for its urb faulted, or its urb was canceled.
2381 */
2382 else if (last_status == -EINPROGRESS && !urb->unlinked)
2383 continue;
2384
2385 /* qh unlinked; token in overlay may be most current */
2386 if (state == QH_STATE_IDLE &&
2387 cpu_to_hc32(fotg210, qtd->qtd_dma)
2388 == hw->hw_current) {
2389 token = hc32_to_cpu(fotg210, hw->hw_token);
2390
2391 /* An unlink may leave an incomplete
2392 * async transaction in the TT buffer.
2393 * We have to clear it.
2394 */
2395 fotg210_clear_tt_buffer(fotg210, qh, urb,
2396 token);
2397 }
2398 }
2399
2400 /* unless we already know the urb's status, collect qtd status
2401 * and update count of bytes transferred. in common short read
2402 * cases with only one data qtd (including control transfers),
2403 * queue processing won't halt. but with two or more qtds (for
2404 * example, with a 32 KB transfer), when the first qtd gets a
2405 * short read the second must be removed by hand.
2406 */
2407 if (last_status == -EINPROGRESS) {
2408 last_status = qtd_copy_status(fotg210, urb,
2409 qtd->length, token);
2410 if (last_status == -EREMOTEIO &&
2411 (qtd->hw_alt_next &
2412 FOTG210_LIST_END(fotg210)))
2413 last_status = -EINPROGRESS;
2414
2415 /* As part of low/full-speed endpoint-halt processing
2416 * we must clear the TT buffer (11.17.5).
2417 */
2418 if (unlikely(last_status != -EINPROGRESS &&
2419 last_status != -EREMOTEIO)) {
2420 /* The TT's in some hubs malfunction when they
2421 * receive this request following a STALL (they
2422 * stop sending isochronous packets). Since a
2423 * STALL can't leave the TT buffer in a busy
2424 * state (if you believe Figures 11-48 - 11-51
2425 * in the USB 2.0 spec), we won't clear the TT
2426 * buffer in this case. Strictly speaking this
2427 * is a violation of the spec.
2428 */
2429 if (last_status != -EPIPE)
2430 fotg210_clear_tt_buffer(fotg210, qh,
2431 urb, token);
2432 }
2433 }
2434
2435 /* if we're removing something not at the queue head,
2436 * patch the hardware queue pointer.
2437 */
2438 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2439 last = list_entry(qtd->qtd_list.prev,
2440 struct fotg210_qtd, qtd_list);
2441 last->hw_next = qtd->hw_next;
2442 }
2443
2444 /* remove qtd; it's recycled after possible urb completion */
2445 list_del(&qtd->qtd_list);
2446 last = qtd;
2447
2448 /* reinit the xacterr counter for the next qtd */
2449 qh->xacterrs = 0;
2450 }
2451
2452 /* last urb's completion might still need calling */
2453 if (likely(last != NULL)) {
2454 fotg210_urb_done(fotg210, last->urb, last_status);
2455 count++;
2456 fotg210_qtd_free(fotg210, last);
2457 }
2458
2459 /* Do we need to rescan for URBs dequeued during a giveback? */
2460 if (unlikely(qh->needs_rescan)) {
2461 /* If the QH is already unlinked, do the rescan now. */
2462 if (state == QH_STATE_IDLE)
2463 goto rescan;
2464
2465 /* Otherwise we have to wait until the QH is fully unlinked.
2466 * Our caller will start an unlink if qh->needs_rescan is
2467 * set. But if an unlink has already started, nothing needs
2468 * to be done.
2469 */
2470 if (state != QH_STATE_LINKED)
2471 qh->needs_rescan = 0;
2472 }
2473
2474 /* restore original state; caller must unlink or relink */
2475 qh->qh_state = state;
2476
2477 /* be sure the hardware's done with the qh before refreshing
2478 * it after fault cleanup, or recovering from silicon wrongly
2479 * overlaying the dummy qtd (which reduces DMA chatter).
2480 */
2481 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2482 switch (state) {
2483 case QH_STATE_IDLE:
2484 qh_refresh(fotg210, qh);
2485 break;
2486 case QH_STATE_LINKED:
2487 /* We won't refresh a QH that's linked (after the HC
2488 * stopped the queue). That avoids a race:
2489 * - HC reads first part of QH;
2490 * - CPU updates that first part and the token;
2491 * - HC reads rest of that QH, including token
2492 * Result: HC gets an inconsistent image, and then
2493 * DMAs to/from the wrong memory (corrupting it).
2494 *
2495 * That should be rare for interrupt transfers,
2496 * except maybe high bandwidth ...
2497 */
2498
2499 /* Tell the caller to start an unlink */
2500 qh->needs_rescan = 1;
2501 break;
2502 /* otherwise, unlink already started */
2503 }
2504 }
2505
2506 return count;
2507 }
2508
2509 /* reverse of qh_urb_transaction: free a list of TDs.
2510 * used for cleanup after errors, before HC sees an URB's TDs.
2511 */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2512 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2513 struct list_head *head)
2514 {
2515 struct fotg210_qtd *qtd, *temp;
2516
2517 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2518 list_del(&qtd->qtd_list);
2519 fotg210_qtd_free(fotg210, qtd);
2520 }
2521 }
2522
2523 /* create a list of filled qtds for this URB; won't link into qh.
2524 */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2525 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2526 struct urb *urb, struct list_head *head, gfp_t flags)
2527 {
2528 struct fotg210_qtd *qtd, *qtd_prev;
2529 dma_addr_t buf;
2530 int len, this_sg_len, maxpacket;
2531 int is_input;
2532 u32 token;
2533 int i;
2534 struct scatterlist *sg;
2535
2536 /*
2537 * URBs map to sequences of QTDs: one logical transaction
2538 */
2539 qtd = fotg210_qtd_alloc(fotg210, flags);
2540 if (unlikely(!qtd))
2541 return NULL;
2542 list_add_tail(&qtd->qtd_list, head);
2543 qtd->urb = urb;
2544
2545 token = QTD_STS_ACTIVE;
2546 token |= (FOTG210_TUNE_CERR << 10);
2547 /* for split transactions, SplitXState initialized to zero */
2548
2549 len = urb->transfer_buffer_length;
2550 is_input = usb_pipein(urb->pipe);
2551 if (usb_pipecontrol(urb->pipe)) {
2552 /* SETUP pid */
2553 qtd_fill(fotg210, qtd, urb->setup_dma,
2554 sizeof(struct usb_ctrlrequest),
2555 token | (2 /* "setup" */ << 8), 8);
2556
2557 /* ... and always at least one more pid */
2558 token ^= QTD_TOGGLE;
2559 qtd_prev = qtd;
2560 qtd = fotg210_qtd_alloc(fotg210, flags);
2561 if (unlikely(!qtd))
2562 goto cleanup;
2563 qtd->urb = urb;
2564 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2565 list_add_tail(&qtd->qtd_list, head);
2566
2567 /* for zero length DATA stages, STATUS is always IN */
2568 if (len == 0)
2569 token |= (1 /* "in" */ << 8);
2570 }
2571
2572 /*
2573 * data transfer stage: buffer setup
2574 */
2575 i = urb->num_mapped_sgs;
2576 if (len > 0 && i > 0) {
2577 sg = urb->sg;
2578 buf = sg_dma_address(sg);
2579
2580 /* urb->transfer_buffer_length may be smaller than the
2581 * size of the scatterlist (or vice versa)
2582 */
2583 this_sg_len = min_t(int, sg_dma_len(sg), len);
2584 } else {
2585 sg = NULL;
2586 buf = urb->transfer_dma;
2587 this_sg_len = len;
2588 }
2589
2590 if (is_input)
2591 token |= (1 /* "in" */ << 8);
2592 /* else it's already initted to "out" pid (0 << 8) */
2593
2594 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2595
2596 /*
2597 * buffer gets wrapped in one or more qtds;
2598 * last one may be "short" (including zero len)
2599 * and may serve as a control status ack
2600 */
2601 for (;;) {
2602 int this_qtd_len;
2603
2604 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2605 maxpacket);
2606 this_sg_len -= this_qtd_len;
2607 len -= this_qtd_len;
2608 buf += this_qtd_len;
2609
2610 /*
2611 * short reads advance to a "magic" dummy instead of the next
2612 * qtd ... that forces the queue to stop, for manual cleanup.
2613 * (this will usually be overridden later.)
2614 */
2615 if (is_input)
2616 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2617
2618 /* qh makes control packets use qtd toggle; maybe switch it */
2619 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2620 token ^= QTD_TOGGLE;
2621
2622 if (likely(this_sg_len <= 0)) {
2623 if (--i <= 0 || len <= 0)
2624 break;
2625 sg = sg_next(sg);
2626 buf = sg_dma_address(sg);
2627 this_sg_len = min_t(int, sg_dma_len(sg), len);
2628 }
2629
2630 qtd_prev = qtd;
2631 qtd = fotg210_qtd_alloc(fotg210, flags);
2632 if (unlikely(!qtd))
2633 goto cleanup;
2634 qtd->urb = urb;
2635 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2636 list_add_tail(&qtd->qtd_list, head);
2637 }
2638
2639 /*
2640 * unless the caller requires manual cleanup after short reads,
2641 * have the alt_next mechanism keep the queue running after the
2642 * last data qtd (the only one, for control and most other cases).
2643 */
2644 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2645 usb_pipecontrol(urb->pipe)))
2646 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2647
2648 /*
2649 * control requests may need a terminating data "status" ack;
2650 * other OUT ones may need a terminating short packet
2651 * (zero length).
2652 */
2653 if (likely(urb->transfer_buffer_length != 0)) {
2654 int one_more = 0;
2655
2656 if (usb_pipecontrol(urb->pipe)) {
2657 one_more = 1;
2658 token ^= 0x0100; /* "in" <--> "out" */
2659 token |= QTD_TOGGLE; /* force DATA1 */
2660 } else if (usb_pipeout(urb->pipe)
2661 && (urb->transfer_flags & URB_ZERO_PACKET)
2662 && !(urb->transfer_buffer_length % maxpacket)) {
2663 one_more = 1;
2664 }
2665 if (one_more) {
2666 qtd_prev = qtd;
2667 qtd = fotg210_qtd_alloc(fotg210, flags);
2668 if (unlikely(!qtd))
2669 goto cleanup;
2670 qtd->urb = urb;
2671 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2672 list_add_tail(&qtd->qtd_list, head);
2673
2674 /* never any data in such packets */
2675 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2676 }
2677 }
2678
2679 /* by default, enable interrupt on urb completion */
2680 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2681 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2682 return head;
2683
2684 cleanup:
2685 qtd_list_free(fotg210, urb, head);
2686 return NULL;
2687 }
2688
2689 /* Would be best to create all qh's from config descriptors,
2690 * when each interface/altsetting is established. Unlink
2691 * any previous qh and cancel its urbs first; endpoints are
2692 * implicitly reset then (data toggle too).
2693 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2694 */
2695
2696
2697 /* Each QH holds a qtd list; a QH is used for everything except iso.
2698 *
2699 * For interrupt urbs, the scheduler must set the microframe scheduling
2700 * mask(s) each time the QH gets scheduled. For highspeed, that's
2701 * just one microframe in the s-mask. For split interrupt transactions
2702 * there are additional complications: c-mask, maybe FSTNs.
2703 */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2704 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2705 gfp_t flags)
2706 {
2707 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2708 struct usb_host_endpoint *ep;
2709 u32 info1 = 0, info2 = 0;
2710 int is_input, type;
2711 int maxp = 0;
2712 int mult;
2713 struct usb_tt *tt = urb->dev->tt;
2714 struct fotg210_qh_hw *hw;
2715
2716 if (!qh)
2717 return qh;
2718
2719 /*
2720 * init endpoint/device data for this QH
2721 */
2722 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2723 info1 |= usb_pipedevice(urb->pipe) << 0;
2724
2725 is_input = usb_pipein(urb->pipe);
2726 type = usb_pipetype(urb->pipe);
2727 ep = usb_pipe_endpoint(urb->dev, urb->pipe);
2728 maxp = usb_endpoint_maxp(&ep->desc);
2729 mult = usb_endpoint_maxp_mult(&ep->desc);
2730
2731 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2732 * acts like up to 3KB, but is built from smaller packets.
2733 */
2734 if (maxp > 1024) {
2735 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n", maxp);
2736 goto done;
2737 }
2738
2739 /* Compute interrupt scheduling parameters just once, and save.
2740 * - allowing for high bandwidth, how many nsec/uframe are used?
2741 * - split transactions need a second CSPLIT uframe; same question
2742 * - splits also need a schedule gap (for full/low speed I/O)
2743 * - qh has a polling interval
2744 *
2745 * For control/bulk requests, the HC or TT handles these.
2746 */
2747 if (type == PIPE_INTERRUPT) {
2748 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2749 is_input, 0, mult * maxp));
2750 qh->start = NO_FRAME;
2751
2752 if (urb->dev->speed == USB_SPEED_HIGH) {
2753 qh->c_usecs = 0;
2754 qh->gap_uf = 0;
2755
2756 qh->period = urb->interval >> 3;
2757 if (qh->period == 0 && urb->interval != 1) {
2758 /* NOTE interval 2 or 4 uframes could work.
2759 * But interval 1 scheduling is simpler, and
2760 * includes high bandwidth.
2761 */
2762 urb->interval = 1;
2763 } else if (qh->period > fotg210->periodic_size) {
2764 qh->period = fotg210->periodic_size;
2765 urb->interval = qh->period << 3;
2766 }
2767 } else {
2768 int think_time;
2769
2770 /* gap is f(FS/LS transfer times) */
2771 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2772 is_input, 0, maxp) / (125 * 1000);
2773
2774 /* FIXME this just approximates SPLIT/CSPLIT times */
2775 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2776 qh->c_usecs = qh->usecs + HS_USECS(0);
2777 qh->usecs = HS_USECS(1);
2778 } else { /* SPLIT+DATA, gap, CSPLIT */
2779 qh->usecs += HS_USECS(1);
2780 qh->c_usecs = HS_USECS(0);
2781 }
2782
2783 think_time = tt ? tt->think_time : 0;
2784 qh->tt_usecs = NS_TO_US(think_time +
2785 usb_calc_bus_time(urb->dev->speed,
2786 is_input, 0, maxp));
2787 qh->period = urb->interval;
2788 if (qh->period > fotg210->periodic_size) {
2789 qh->period = fotg210->periodic_size;
2790 urb->interval = qh->period;
2791 }
2792 }
2793 }
2794
2795 /* support for tt scheduling, and access to toggles */
2796 qh->dev = urb->dev;
2797
2798 /* using TT? */
2799 switch (urb->dev->speed) {
2800 case USB_SPEED_LOW:
2801 info1 |= QH_LOW_SPEED;
2802 fallthrough;
2803
2804 case USB_SPEED_FULL:
2805 /* EPS 0 means "full" */
2806 if (type != PIPE_INTERRUPT)
2807 info1 |= (FOTG210_TUNE_RL_TT << 28);
2808 if (type == PIPE_CONTROL) {
2809 info1 |= QH_CONTROL_EP; /* for TT */
2810 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2811 }
2812 info1 |= maxp << 16;
2813
2814 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2815
2816 /* Some Freescale processors have an erratum in which the
2817 * port number in the queue head was 0..N-1 instead of 1..N.
2818 */
2819 if (fotg210_has_fsl_portno_bug(fotg210))
2820 info2 |= (urb->dev->ttport-1) << 23;
2821 else
2822 info2 |= urb->dev->ttport << 23;
2823
2824 /* set the address of the TT; for TDI's integrated
2825 * root hub tt, leave it zeroed.
2826 */
2827 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2828 info2 |= tt->hub->devnum << 16;
2829
2830 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2831
2832 break;
2833
2834 case USB_SPEED_HIGH: /* no TT involved */
2835 info1 |= QH_HIGH_SPEED;
2836 if (type == PIPE_CONTROL) {
2837 info1 |= (FOTG210_TUNE_RL_HS << 28);
2838 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2839 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2840 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2841 } else if (type == PIPE_BULK) {
2842 info1 |= (FOTG210_TUNE_RL_HS << 28);
2843 /* The USB spec says that high speed bulk endpoints
2844 * always use 512 byte maxpacket. But some device
2845 * vendors decided to ignore that, and MSFT is happy
2846 * to help them do so. So now people expect to use
2847 * such nonconformant devices with Linux too; sigh.
2848 */
2849 info1 |= maxp << 16;
2850 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2851 } else { /* PIPE_INTERRUPT */
2852 info1 |= maxp << 16;
2853 info2 |= mult << 30;
2854 }
2855 break;
2856 default:
2857 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2858 urb->dev->speed);
2859 done:
2860 qh_destroy(fotg210, qh);
2861 return NULL;
2862 }
2863
2864 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2865
2866 /* init as live, toggle clear, advance to dummy */
2867 qh->qh_state = QH_STATE_IDLE;
2868 hw = qh->hw;
2869 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2870 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2871 qh->is_out = !is_input;
2872 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2873 qh_refresh(fotg210, qh);
2874 return qh;
2875 }
2876
enable_async(struct fotg210_hcd * fotg210)2877 static void enable_async(struct fotg210_hcd *fotg210)
2878 {
2879 if (fotg210->async_count++)
2880 return;
2881
2882 /* Stop waiting to turn off the async schedule */
2883 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2884
2885 /* Don't start the schedule until ASS is 0 */
2886 fotg210_poll_ASS(fotg210);
2887 turn_on_io_watchdog(fotg210);
2888 }
2889
disable_async(struct fotg210_hcd * fotg210)2890 static void disable_async(struct fotg210_hcd *fotg210)
2891 {
2892 if (--fotg210->async_count)
2893 return;
2894
2895 /* The async schedule and async_unlink list are supposed to be empty */
2896 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2897
2898 /* Don't turn off the schedule until ASS is 1 */
2899 fotg210_poll_ASS(fotg210);
2900 }
2901
2902 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2903
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2904 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2905 {
2906 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2907 struct fotg210_qh *head;
2908
2909 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2910 if (unlikely(qh->clearing_tt))
2911 return;
2912
2913 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2914
2915 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2916 qh_refresh(fotg210, qh);
2917
2918 /* splice right after start */
2919 head = fotg210->async;
2920 qh->qh_next = head->qh_next;
2921 qh->hw->hw_next = head->hw->hw_next;
2922 wmb();
2923
2924 head->qh_next.qh = qh;
2925 head->hw->hw_next = dma;
2926
2927 qh->xacterrs = 0;
2928 qh->qh_state = QH_STATE_LINKED;
2929 /* qtd completions reported later by interrupt */
2930
2931 enable_async(fotg210);
2932 }
2933
2934 /* For control/bulk/interrupt, return QH with these TDs appended.
2935 * Allocates and initializes the QH if necessary.
2936 * Returns null if it can't allocate a QH it needs to.
2937 * If the QH has TDs (urbs) already, that's great.
2938 */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2939 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2940 struct urb *urb, struct list_head *qtd_list,
2941 int epnum, void **ptr)
2942 {
2943 struct fotg210_qh *qh = NULL;
2944 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2945
2946 qh = (struct fotg210_qh *) *ptr;
2947 if (unlikely(qh == NULL)) {
2948 /* can't sleep here, we have fotg210->lock... */
2949 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2950 *ptr = qh;
2951 }
2952 if (likely(qh != NULL)) {
2953 struct fotg210_qtd *qtd;
2954
2955 if (unlikely(list_empty(qtd_list)))
2956 qtd = NULL;
2957 else
2958 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2959 qtd_list);
2960
2961 /* control qh may need patching ... */
2962 if (unlikely(epnum == 0)) {
2963 /* usb_reset_device() briefly reverts to address 0 */
2964 if (usb_pipedevice(urb->pipe) == 0)
2965 qh->hw->hw_info1 &= ~qh_addr_mask;
2966 }
2967
2968 /* just one way to queue requests: swap with the dummy qtd.
2969 * only hc or qh_refresh() ever modify the overlay.
2970 */
2971 if (likely(qtd != NULL)) {
2972 struct fotg210_qtd *dummy;
2973 dma_addr_t dma;
2974 __hc32 token;
2975
2976 /* to avoid racing the HC, use the dummy td instead of
2977 * the first td of our list (becomes new dummy). both
2978 * tds stay deactivated until we're done, when the
2979 * HC is allowed to fetch the old dummy (4.10.2).
2980 */
2981 token = qtd->hw_token;
2982 qtd->hw_token = HALT_BIT(fotg210);
2983
2984 dummy = qh->dummy;
2985
2986 dma = dummy->qtd_dma;
2987 *dummy = *qtd;
2988 dummy->qtd_dma = dma;
2989
2990 list_del(&qtd->qtd_list);
2991 list_add(&dummy->qtd_list, qtd_list);
2992 list_splice_tail(qtd_list, &qh->qtd_list);
2993
2994 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2995 qh->dummy = qtd;
2996
2997 /* hc must see the new dummy at list end */
2998 dma = qtd->qtd_dma;
2999 qtd = list_entry(qh->qtd_list.prev,
3000 struct fotg210_qtd, qtd_list);
3001 qtd->hw_next = QTD_NEXT(fotg210, dma);
3002
3003 /* let the hc process these next qtds */
3004 wmb();
3005 dummy->hw_token = token;
3006
3007 urb->hcpriv = qh;
3008 }
3009 }
3010 return qh;
3011 }
3012
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3013 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3014 struct list_head *qtd_list, gfp_t mem_flags)
3015 {
3016 int epnum;
3017 unsigned long flags;
3018 struct fotg210_qh *qh = NULL;
3019 int rc;
3020
3021 epnum = urb->ep->desc.bEndpointAddress;
3022
3023 #ifdef FOTG210_URB_TRACE
3024 {
3025 struct fotg210_qtd *qtd;
3026
3027 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3028 fotg210_dbg(fotg210,
3029 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3030 __func__, urb->dev->devpath, urb,
3031 epnum & 0x0f, (epnum & USB_DIR_IN)
3032 ? "in" : "out",
3033 urb->transfer_buffer_length,
3034 qtd, urb->ep->hcpriv);
3035 }
3036 #endif
3037
3038 spin_lock_irqsave(&fotg210->lock, flags);
3039 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3040 rc = -ESHUTDOWN;
3041 goto done;
3042 }
3043 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3044 if (unlikely(rc))
3045 goto done;
3046
3047 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3048 if (unlikely(qh == NULL)) {
3049 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3050 rc = -ENOMEM;
3051 goto done;
3052 }
3053
3054 /* Control/bulk operations through TTs don't need scheduling,
3055 * the HC and TT handle it when the TT has a buffer ready.
3056 */
3057 if (likely(qh->qh_state == QH_STATE_IDLE))
3058 qh_link_async(fotg210, qh);
3059 done:
3060 spin_unlock_irqrestore(&fotg210->lock, flags);
3061 if (unlikely(qh == NULL))
3062 qtd_list_free(fotg210, urb, qtd_list);
3063 return rc;
3064 }
3065
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3066 static void single_unlink_async(struct fotg210_hcd *fotg210,
3067 struct fotg210_qh *qh)
3068 {
3069 struct fotg210_qh *prev;
3070
3071 /* Add to the end of the list of QHs waiting for the next IAAD */
3072 qh->qh_state = QH_STATE_UNLINK;
3073 if (fotg210->async_unlink)
3074 fotg210->async_unlink_last->unlink_next = qh;
3075 else
3076 fotg210->async_unlink = qh;
3077 fotg210->async_unlink_last = qh;
3078
3079 /* Unlink it from the schedule */
3080 prev = fotg210->async;
3081 while (prev->qh_next.qh != qh)
3082 prev = prev->qh_next.qh;
3083
3084 prev->hw->hw_next = qh->hw->hw_next;
3085 prev->qh_next = qh->qh_next;
3086 if (fotg210->qh_scan_next == qh)
3087 fotg210->qh_scan_next = qh->qh_next.qh;
3088 }
3089
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3090 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3091 {
3092 /*
3093 * Do nothing if an IAA cycle is already running or
3094 * if one will be started shortly.
3095 */
3096 if (fotg210->async_iaa || fotg210->async_unlinking)
3097 return;
3098
3099 /* Do all the waiting QHs at once */
3100 fotg210->async_iaa = fotg210->async_unlink;
3101 fotg210->async_unlink = NULL;
3102
3103 /* If the controller isn't running, we don't have to wait for it */
3104 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3105 if (!nested) /* Avoid recursion */
3106 end_unlink_async(fotg210);
3107
3108 /* Otherwise start a new IAA cycle */
3109 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3110 /* Make sure the unlinks are all visible to the hardware */
3111 wmb();
3112
3113 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3114 &fotg210->regs->command);
3115 fotg210_readl(fotg210, &fotg210->regs->command);
3116 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3117 true);
3118 }
3119 }
3120
3121 /* the async qh for the qtds being unlinked are now gone from the HC */
3122
end_unlink_async(struct fotg210_hcd * fotg210)3123 static void end_unlink_async(struct fotg210_hcd *fotg210)
3124 {
3125 struct fotg210_qh *qh;
3126
3127 /* Process the idle QHs */
3128 restart:
3129 fotg210->async_unlinking = true;
3130 while (fotg210->async_iaa) {
3131 qh = fotg210->async_iaa;
3132 fotg210->async_iaa = qh->unlink_next;
3133 qh->unlink_next = NULL;
3134
3135 qh->qh_state = QH_STATE_IDLE;
3136 qh->qh_next.qh = NULL;
3137
3138 qh_completions(fotg210, qh);
3139 if (!list_empty(&qh->qtd_list) &&
3140 fotg210->rh_state == FOTG210_RH_RUNNING)
3141 qh_link_async(fotg210, qh);
3142 disable_async(fotg210);
3143 }
3144 fotg210->async_unlinking = false;
3145
3146 /* Start a new IAA cycle if any QHs are waiting for it */
3147 if (fotg210->async_unlink) {
3148 start_iaa_cycle(fotg210, true);
3149 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3150 goto restart;
3151 }
3152 }
3153
unlink_empty_async(struct fotg210_hcd * fotg210)3154 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3155 {
3156 struct fotg210_qh *qh, *next;
3157 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3158 bool check_unlinks_later = false;
3159
3160 /* Unlink all the async QHs that have been empty for a timer cycle */
3161 next = fotg210->async->qh_next.qh;
3162 while (next) {
3163 qh = next;
3164 next = qh->qh_next.qh;
3165
3166 if (list_empty(&qh->qtd_list) &&
3167 qh->qh_state == QH_STATE_LINKED) {
3168 if (!stopped && qh->unlink_cycle ==
3169 fotg210->async_unlink_cycle)
3170 check_unlinks_later = true;
3171 else
3172 single_unlink_async(fotg210, qh);
3173 }
3174 }
3175
3176 /* Start a new IAA cycle if any QHs are waiting for it */
3177 if (fotg210->async_unlink)
3178 start_iaa_cycle(fotg210, false);
3179
3180 /* QHs that haven't been empty for long enough will be handled later */
3181 if (check_unlinks_later) {
3182 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3183 true);
3184 ++fotg210->async_unlink_cycle;
3185 }
3186 }
3187
3188 /* makes sure the async qh will become idle */
3189 /* caller must own fotg210->lock */
3190
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3191 static void start_unlink_async(struct fotg210_hcd *fotg210,
3192 struct fotg210_qh *qh)
3193 {
3194 /*
3195 * If the QH isn't linked then there's nothing we can do
3196 * unless we were called during a giveback, in which case
3197 * qh_completions() has to deal with it.
3198 */
3199 if (qh->qh_state != QH_STATE_LINKED) {
3200 if (qh->qh_state == QH_STATE_COMPLETING)
3201 qh->needs_rescan = 1;
3202 return;
3203 }
3204
3205 single_unlink_async(fotg210, qh);
3206 start_iaa_cycle(fotg210, false);
3207 }
3208
scan_async(struct fotg210_hcd * fotg210)3209 static void scan_async(struct fotg210_hcd *fotg210)
3210 {
3211 struct fotg210_qh *qh;
3212 bool check_unlinks_later = false;
3213
3214 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3215 while (fotg210->qh_scan_next) {
3216 qh = fotg210->qh_scan_next;
3217 fotg210->qh_scan_next = qh->qh_next.qh;
3218 rescan:
3219 /* clean any finished work for this qh */
3220 if (!list_empty(&qh->qtd_list)) {
3221 int temp;
3222
3223 /*
3224 * Unlinks could happen here; completion reporting
3225 * drops the lock. That's why fotg210->qh_scan_next
3226 * always holds the next qh to scan; if the next qh
3227 * gets unlinked then fotg210->qh_scan_next is adjusted
3228 * in single_unlink_async().
3229 */
3230 temp = qh_completions(fotg210, qh);
3231 if (qh->needs_rescan) {
3232 start_unlink_async(fotg210, qh);
3233 } else if (list_empty(&qh->qtd_list)
3234 && qh->qh_state == QH_STATE_LINKED) {
3235 qh->unlink_cycle = fotg210->async_unlink_cycle;
3236 check_unlinks_later = true;
3237 } else if (temp != 0)
3238 goto rescan;
3239 }
3240 }
3241
3242 /*
3243 * Unlink empty entries, reducing DMA usage as well
3244 * as HCD schedule-scanning costs. Delay for any qh
3245 * we just scanned, there's a not-unusual case that it
3246 * doesn't stay idle for long.
3247 */
3248 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3249 !(fotg210->enabled_hrtimer_events &
3250 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3251 fotg210_enable_event(fotg210,
3252 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3253 ++fotg210->async_unlink_cycle;
3254 }
3255 }
3256 /* EHCI scheduled transaction support: interrupt, iso, split iso
3257 * These are called "periodic" transactions in the EHCI spec.
3258 *
3259 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3260 * with the "asynchronous" transaction support (control/bulk transfers).
3261 * The only real difference is in how interrupt transfers are scheduled.
3262 *
3263 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3264 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3265 * pre-calculated schedule data to make appending to the queue be quick.
3266 */
3267 static int fotg210_get_frame(struct usb_hcd *hcd);
3268
3269 /* periodic_next_shadow - return "next" pointer on shadow list
3270 * @periodic: host pointer to qh/itd
3271 * @tag: hardware tag for type of this record
3272 */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3273 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3274 union fotg210_shadow *periodic, __hc32 tag)
3275 {
3276 switch (hc32_to_cpu(fotg210, tag)) {
3277 case Q_TYPE_QH:
3278 return &periodic->qh->qh_next;
3279 case Q_TYPE_FSTN:
3280 return &periodic->fstn->fstn_next;
3281 default:
3282 return &periodic->itd->itd_next;
3283 }
3284 }
3285
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3286 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3287 union fotg210_shadow *periodic, __hc32 tag)
3288 {
3289 switch (hc32_to_cpu(fotg210, tag)) {
3290 /* our fotg210_shadow.qh is actually software part */
3291 case Q_TYPE_QH:
3292 return &periodic->qh->hw->hw_next;
3293 /* others are hw parts */
3294 default:
3295 return periodic->hw_next;
3296 }
3297 }
3298
3299 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3300 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3301 void *ptr)
3302 {
3303 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3304 __hc32 *hw_p = &fotg210->periodic[frame];
3305 union fotg210_shadow here = *prev_p;
3306
3307 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3308 while (here.ptr && here.ptr != ptr) {
3309 prev_p = periodic_next_shadow(fotg210, prev_p,
3310 Q_NEXT_TYPE(fotg210, *hw_p));
3311 hw_p = shadow_next_periodic(fotg210, &here,
3312 Q_NEXT_TYPE(fotg210, *hw_p));
3313 here = *prev_p;
3314 }
3315 /* an interrupt entry (at list end) could have been shared */
3316 if (!here.ptr)
3317 return;
3318
3319 /* update shadow and hardware lists ... the old "next" pointers
3320 * from ptr may still be in use, the caller updates them.
3321 */
3322 *prev_p = *periodic_next_shadow(fotg210, &here,
3323 Q_NEXT_TYPE(fotg210, *hw_p));
3324
3325 *hw_p = *shadow_next_periodic(fotg210, &here,
3326 Q_NEXT_TYPE(fotg210, *hw_p));
3327 }
3328
3329 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3330 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3331 unsigned frame, unsigned uframe)
3332 {
3333 __hc32 *hw_p = &fotg210->periodic[frame];
3334 union fotg210_shadow *q = &fotg210->pshadow[frame];
3335 unsigned usecs = 0;
3336 struct fotg210_qh_hw *hw;
3337
3338 while (q->ptr) {
3339 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3340 case Q_TYPE_QH:
3341 hw = q->qh->hw;
3342 /* is it in the S-mask? */
3343 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3344 usecs += q->qh->usecs;
3345 /* ... or C-mask? */
3346 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3347 1 << (8 + uframe)))
3348 usecs += q->qh->c_usecs;
3349 hw_p = &hw->hw_next;
3350 q = &q->qh->qh_next;
3351 break;
3352 /* case Q_TYPE_FSTN: */
3353 default:
3354 /* for "save place" FSTNs, count the relevant INTR
3355 * bandwidth from the previous frame
3356 */
3357 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3358 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3359
3360 hw_p = &q->fstn->hw_next;
3361 q = &q->fstn->fstn_next;
3362 break;
3363 case Q_TYPE_ITD:
3364 if (q->itd->hw_transaction[uframe])
3365 usecs += q->itd->stream->usecs;
3366 hw_p = &q->itd->hw_next;
3367 q = &q->itd->itd_next;
3368 break;
3369 }
3370 }
3371 if (usecs > fotg210->uframe_periodic_max)
3372 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3373 frame * 8 + uframe, usecs);
3374 return usecs;
3375 }
3376
same_tt(struct usb_device * dev1,struct usb_device * dev2)3377 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3378 {
3379 if (!dev1->tt || !dev2->tt)
3380 return 0;
3381 if (dev1->tt != dev2->tt)
3382 return 0;
3383 if (dev1->tt->multi)
3384 return dev1->ttport == dev2->ttport;
3385 else
3386 return 1;
3387 }
3388
3389 /* return true iff the device's transaction translator is available
3390 * for a periodic transfer starting at the specified frame, using
3391 * all the uframes in the mask.
3392 */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3393 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3394 struct usb_device *dev, unsigned frame, u32 uf_mask)
3395 {
3396 if (period == 0) /* error */
3397 return 0;
3398
3399 /* note bandwidth wastage: split never follows csplit
3400 * (different dev or endpoint) until the next uframe.
3401 * calling convention doesn't make that distinction.
3402 */
3403 for (; frame < fotg210->periodic_size; frame += period) {
3404 union fotg210_shadow here;
3405 __hc32 type;
3406 struct fotg210_qh_hw *hw;
3407
3408 here = fotg210->pshadow[frame];
3409 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3410 while (here.ptr) {
3411 switch (hc32_to_cpu(fotg210, type)) {
3412 case Q_TYPE_ITD:
3413 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3414 here = here.itd->itd_next;
3415 continue;
3416 case Q_TYPE_QH:
3417 hw = here.qh->hw;
3418 if (same_tt(dev, here.qh->dev)) {
3419 u32 mask;
3420
3421 mask = hc32_to_cpu(fotg210,
3422 hw->hw_info2);
3423 /* "knows" no gap is needed */
3424 mask |= mask >> 8;
3425 if (mask & uf_mask)
3426 break;
3427 }
3428 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3429 here = here.qh->qh_next;
3430 continue;
3431 /* case Q_TYPE_FSTN: */
3432 default:
3433 fotg210_dbg(fotg210,
3434 "periodic frame %d bogus type %d\n",
3435 frame, type);
3436 }
3437
3438 /* collision or error */
3439 return 0;
3440 }
3441 }
3442
3443 /* no collision */
3444 return 1;
3445 }
3446
enable_periodic(struct fotg210_hcd * fotg210)3447 static void enable_periodic(struct fotg210_hcd *fotg210)
3448 {
3449 if (fotg210->periodic_count++)
3450 return;
3451
3452 /* Stop waiting to turn off the periodic schedule */
3453 fotg210->enabled_hrtimer_events &=
3454 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3455
3456 /* Don't start the schedule until PSS is 0 */
3457 fotg210_poll_PSS(fotg210);
3458 turn_on_io_watchdog(fotg210);
3459 }
3460
disable_periodic(struct fotg210_hcd * fotg210)3461 static void disable_periodic(struct fotg210_hcd *fotg210)
3462 {
3463 if (--fotg210->periodic_count)
3464 return;
3465
3466 /* Don't turn off the schedule until PSS is 1 */
3467 fotg210_poll_PSS(fotg210);
3468 }
3469
3470 /* periodic schedule slots have iso tds (normal or split) first, then a
3471 * sparse tree for active interrupt transfers.
3472 *
3473 * this just links in a qh; caller guarantees uframe masks are set right.
3474 * no FSTN support (yet; fotg210 0.96+)
3475 */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3476 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3477 {
3478 unsigned i;
3479 unsigned period = qh->period;
3480
3481 dev_dbg(&qh->dev->dev,
3482 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3483 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3484 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3485 qh->c_usecs);
3486
3487 /* high bandwidth, or otherwise every microframe */
3488 if (period == 0)
3489 period = 1;
3490
3491 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3492 union fotg210_shadow *prev = &fotg210->pshadow[i];
3493 __hc32 *hw_p = &fotg210->periodic[i];
3494 union fotg210_shadow here = *prev;
3495 __hc32 type = 0;
3496
3497 /* skip the iso nodes at list head */
3498 while (here.ptr) {
3499 type = Q_NEXT_TYPE(fotg210, *hw_p);
3500 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3501 break;
3502 prev = periodic_next_shadow(fotg210, prev, type);
3503 hw_p = shadow_next_periodic(fotg210, &here, type);
3504 here = *prev;
3505 }
3506
3507 /* sorting each branch by period (slow-->fast)
3508 * enables sharing interior tree nodes
3509 */
3510 while (here.ptr && qh != here.qh) {
3511 if (qh->period > here.qh->period)
3512 break;
3513 prev = &here.qh->qh_next;
3514 hw_p = &here.qh->hw->hw_next;
3515 here = *prev;
3516 }
3517 /* link in this qh, unless some earlier pass did that */
3518 if (qh != here.qh) {
3519 qh->qh_next = here;
3520 if (here.qh)
3521 qh->hw->hw_next = *hw_p;
3522 wmb();
3523 prev->qh = qh;
3524 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3525 }
3526 }
3527 qh->qh_state = QH_STATE_LINKED;
3528 qh->xacterrs = 0;
3529
3530 /* update per-qh bandwidth for usbfs */
3531 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3532 ? ((qh->usecs + qh->c_usecs) / qh->period)
3533 : (qh->usecs * 8);
3534
3535 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3536
3537 /* maybe enable periodic schedule processing */
3538 ++fotg210->intr_count;
3539 enable_periodic(fotg210);
3540 }
3541
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3542 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3543 struct fotg210_qh *qh)
3544 {
3545 unsigned i;
3546 unsigned period;
3547
3548 /*
3549 * If qh is for a low/full-speed device, simply unlinking it
3550 * could interfere with an ongoing split transaction. To unlink
3551 * it safely would require setting the QH_INACTIVATE bit and
3552 * waiting at least one frame, as described in EHCI 4.12.2.5.
3553 *
3554 * We won't bother with any of this. Instead, we assume that the
3555 * only reason for unlinking an interrupt QH while the current URB
3556 * is still active is to dequeue all the URBs (flush the whole
3557 * endpoint queue).
3558 *
3559 * If rebalancing the periodic schedule is ever implemented, this
3560 * approach will no longer be valid.
3561 */
3562
3563 /* high bandwidth, or otherwise part of every microframe */
3564 period = qh->period;
3565 if (!period)
3566 period = 1;
3567
3568 for (i = qh->start; i < fotg210->periodic_size; i += period)
3569 periodic_unlink(fotg210, i, qh);
3570
3571 /* update per-qh bandwidth for usbfs */
3572 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3573 ? ((qh->usecs + qh->c_usecs) / qh->period)
3574 : (qh->usecs * 8);
3575
3576 dev_dbg(&qh->dev->dev,
3577 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3578 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3579 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3580 qh->c_usecs);
3581
3582 /* qh->qh_next still "live" to HC */
3583 qh->qh_state = QH_STATE_UNLINK;
3584 qh->qh_next.ptr = NULL;
3585
3586 if (fotg210->qh_scan_next == qh)
3587 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3588 struct fotg210_qh, intr_node);
3589 list_del(&qh->intr_node);
3590 }
3591
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3592 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3593 struct fotg210_qh *qh)
3594 {
3595 /* If the QH isn't linked then there's nothing we can do
3596 * unless we were called during a giveback, in which case
3597 * qh_completions() has to deal with it.
3598 */
3599 if (qh->qh_state != QH_STATE_LINKED) {
3600 if (qh->qh_state == QH_STATE_COMPLETING)
3601 qh->needs_rescan = 1;
3602 return;
3603 }
3604
3605 qh_unlink_periodic(fotg210, qh);
3606
3607 /* Make sure the unlinks are visible before starting the timer */
3608 wmb();
3609
3610 /*
3611 * The EHCI spec doesn't say how long it takes the controller to
3612 * stop accessing an unlinked interrupt QH. The timer delay is
3613 * 9 uframes; presumably that will be long enough.
3614 */
3615 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3616
3617 /* New entries go at the end of the intr_unlink list */
3618 if (fotg210->intr_unlink)
3619 fotg210->intr_unlink_last->unlink_next = qh;
3620 else
3621 fotg210->intr_unlink = qh;
3622 fotg210->intr_unlink_last = qh;
3623
3624 if (fotg210->intr_unlinking)
3625 ; /* Avoid recursive calls */
3626 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3627 fotg210_handle_intr_unlinks(fotg210);
3628 else if (fotg210->intr_unlink == qh) {
3629 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3630 true);
3631 ++fotg210->intr_unlink_cycle;
3632 }
3633 }
3634
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3635 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3636 {
3637 struct fotg210_qh_hw *hw = qh->hw;
3638 int rc;
3639
3640 qh->qh_state = QH_STATE_IDLE;
3641 hw->hw_next = FOTG210_LIST_END(fotg210);
3642
3643 qh_completions(fotg210, qh);
3644
3645 /* reschedule QH iff another request is queued */
3646 if (!list_empty(&qh->qtd_list) &&
3647 fotg210->rh_state == FOTG210_RH_RUNNING) {
3648 rc = qh_schedule(fotg210, qh);
3649
3650 /* An error here likely indicates handshake failure
3651 * or no space left in the schedule. Neither fault
3652 * should happen often ...
3653 *
3654 * FIXME kill the now-dysfunctional queued urbs
3655 */
3656 if (rc != 0)
3657 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3658 qh, rc);
3659 }
3660
3661 /* maybe turn off periodic schedule */
3662 --fotg210->intr_count;
3663 disable_periodic(fotg210);
3664 }
3665
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3666 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3667 unsigned uframe, unsigned period, unsigned usecs)
3668 {
3669 int claimed;
3670
3671 /* complete split running into next frame?
3672 * given FSTN support, we could sometimes check...
3673 */
3674 if (uframe >= 8)
3675 return 0;
3676
3677 /* convert "usecs we need" to "max already claimed" */
3678 usecs = fotg210->uframe_periodic_max - usecs;
3679
3680 /* we "know" 2 and 4 uframe intervals were rejected; so
3681 * for period 0, check _every_ microframe in the schedule.
3682 */
3683 if (unlikely(period == 0)) {
3684 do {
3685 for (uframe = 0; uframe < 7; uframe++) {
3686 claimed = periodic_usecs(fotg210, frame,
3687 uframe);
3688 if (claimed > usecs)
3689 return 0;
3690 }
3691 } while ((frame += 1) < fotg210->periodic_size);
3692
3693 /* just check the specified uframe, at that period */
3694 } else {
3695 do {
3696 claimed = periodic_usecs(fotg210, frame, uframe);
3697 if (claimed > usecs)
3698 return 0;
3699 } while ((frame += period) < fotg210->periodic_size);
3700 }
3701
3702 /* success! */
3703 return 1;
3704 }
3705
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3706 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3707 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3708 {
3709 int retval = -ENOSPC;
3710 u8 mask = 0;
3711
3712 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3713 goto done;
3714
3715 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3716 goto done;
3717 if (!qh->c_usecs) {
3718 retval = 0;
3719 *c_maskp = 0;
3720 goto done;
3721 }
3722
3723 /* Make sure this tt's buffer is also available for CSPLITs.
3724 * We pessimize a bit; probably the typical full speed case
3725 * doesn't need the second CSPLIT.
3726 *
3727 * NOTE: both SPLIT and CSPLIT could be checked in just
3728 * one smart pass...
3729 */
3730 mask = 0x03 << (uframe + qh->gap_uf);
3731 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3732
3733 mask |= 1 << uframe;
3734 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3735 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3736 qh->period, qh->c_usecs))
3737 goto done;
3738 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3739 qh->period, qh->c_usecs))
3740 goto done;
3741 retval = 0;
3742 }
3743 done:
3744 return retval;
3745 }
3746
3747 /* "first fit" scheduling policy used the first time through,
3748 * or when the previous schedule slot can't be re-used.
3749 */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3750 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3751 {
3752 int status;
3753 unsigned uframe;
3754 __hc32 c_mask;
3755 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3756 struct fotg210_qh_hw *hw = qh->hw;
3757
3758 qh_refresh(fotg210, qh);
3759 hw->hw_next = FOTG210_LIST_END(fotg210);
3760 frame = qh->start;
3761
3762 /* reuse the previous schedule slots, if we can */
3763 if (frame < qh->period) {
3764 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3765 status = check_intr_schedule(fotg210, frame, --uframe,
3766 qh, &c_mask);
3767 } else {
3768 uframe = 0;
3769 c_mask = 0;
3770 status = -ENOSPC;
3771 }
3772
3773 /* else scan the schedule to find a group of slots such that all
3774 * uframes have enough periodic bandwidth available.
3775 */
3776 if (status) {
3777 /* "normal" case, uframing flexible except with splits */
3778 if (qh->period) {
3779 int i;
3780
3781 for (i = qh->period; status && i > 0; --i) {
3782 frame = ++fotg210->random_frame % qh->period;
3783 for (uframe = 0; uframe < 8; uframe++) {
3784 status = check_intr_schedule(fotg210,
3785 frame, uframe, qh,
3786 &c_mask);
3787 if (status == 0)
3788 break;
3789 }
3790 }
3791
3792 /* qh->period == 0 means every uframe */
3793 } else {
3794 frame = 0;
3795 status = check_intr_schedule(fotg210, 0, 0, qh,
3796 &c_mask);
3797 }
3798 if (status)
3799 goto done;
3800 qh->start = frame;
3801
3802 /* reset S-frame and (maybe) C-frame masks */
3803 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3804 hw->hw_info2 |= qh->period
3805 ? cpu_to_hc32(fotg210, 1 << uframe)
3806 : cpu_to_hc32(fotg210, QH_SMASK);
3807 hw->hw_info2 |= c_mask;
3808 } else
3809 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3810
3811 /* stuff into the periodic schedule */
3812 qh_link_periodic(fotg210, qh);
3813 done:
3814 return status;
3815 }
3816
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3817 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3818 struct list_head *qtd_list, gfp_t mem_flags)
3819 {
3820 unsigned epnum;
3821 unsigned long flags;
3822 struct fotg210_qh *qh;
3823 int status;
3824 struct list_head empty;
3825
3826 /* get endpoint and transfer/schedule data */
3827 epnum = urb->ep->desc.bEndpointAddress;
3828
3829 spin_lock_irqsave(&fotg210->lock, flags);
3830
3831 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3832 status = -ESHUTDOWN;
3833 goto done_not_linked;
3834 }
3835 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3836 if (unlikely(status))
3837 goto done_not_linked;
3838
3839 /* get qh and force any scheduling errors */
3840 INIT_LIST_HEAD(&empty);
3841 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3842 if (qh == NULL) {
3843 status = -ENOMEM;
3844 goto done;
3845 }
3846 if (qh->qh_state == QH_STATE_IDLE) {
3847 status = qh_schedule(fotg210, qh);
3848 if (status)
3849 goto done;
3850 }
3851
3852 /* then queue the urb's tds to the qh */
3853 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3854 BUG_ON(qh == NULL);
3855
3856 /* ... update usbfs periodic stats */
3857 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3858
3859 done:
3860 if (unlikely(status))
3861 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3862 done_not_linked:
3863 spin_unlock_irqrestore(&fotg210->lock, flags);
3864 if (status)
3865 qtd_list_free(fotg210, urb, qtd_list);
3866
3867 return status;
3868 }
3869
scan_intr(struct fotg210_hcd * fotg210)3870 static void scan_intr(struct fotg210_hcd *fotg210)
3871 {
3872 struct fotg210_qh *qh;
3873
3874 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3875 &fotg210->intr_qh_list, intr_node) {
3876 rescan:
3877 /* clean any finished work for this qh */
3878 if (!list_empty(&qh->qtd_list)) {
3879 int temp;
3880
3881 /*
3882 * Unlinks could happen here; completion reporting
3883 * drops the lock. That's why fotg210->qh_scan_next
3884 * always holds the next qh to scan; if the next qh
3885 * gets unlinked then fotg210->qh_scan_next is adjusted
3886 * in qh_unlink_periodic().
3887 */
3888 temp = qh_completions(fotg210, qh);
3889 if (unlikely(qh->needs_rescan ||
3890 (list_empty(&qh->qtd_list) &&
3891 qh->qh_state == QH_STATE_LINKED)))
3892 start_unlink_intr(fotg210, qh);
3893 else if (temp != 0)
3894 goto rescan;
3895 }
3896 }
3897 }
3898
3899 /* fotg210_iso_stream ops work with both ITD and SITD */
3900
iso_stream_alloc(gfp_t mem_flags)3901 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3902 {
3903 struct fotg210_iso_stream *stream;
3904
3905 stream = kzalloc(sizeof(*stream), mem_flags);
3906 if (likely(stream != NULL)) {
3907 INIT_LIST_HEAD(&stream->td_list);
3908 INIT_LIST_HEAD(&stream->free_list);
3909 stream->next_uframe = -1;
3910 }
3911 return stream;
3912 }
3913
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3914 static void iso_stream_init(struct fotg210_hcd *fotg210,
3915 struct fotg210_iso_stream *stream, struct usb_device *dev,
3916 int pipe, unsigned interval)
3917 {
3918 u32 buf1;
3919 unsigned epnum, maxp;
3920 int is_input;
3921 long bandwidth;
3922 unsigned multi;
3923 struct usb_host_endpoint *ep;
3924
3925 /*
3926 * this might be a "high bandwidth" highspeed endpoint,
3927 * as encoded in the ep descriptor's wMaxPacket field
3928 */
3929 epnum = usb_pipeendpoint(pipe);
3930 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3931 ep = usb_pipe_endpoint(dev, pipe);
3932 maxp = usb_endpoint_maxp(&ep->desc);
3933 if (is_input)
3934 buf1 = (1 << 11);
3935 else
3936 buf1 = 0;
3937
3938 multi = usb_endpoint_maxp_mult(&ep->desc);
3939 buf1 |= maxp;
3940 maxp *= multi;
3941
3942 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3943 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3944 stream->buf2 = cpu_to_hc32(fotg210, multi);
3945
3946 /* usbfs wants to report the average usecs per frame tied up
3947 * when transfers on this endpoint are scheduled ...
3948 */
3949 if (dev->speed == USB_SPEED_FULL) {
3950 interval <<= 3;
3951 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3952 is_input, 1, maxp));
3953 stream->usecs /= 8;
3954 } else {
3955 stream->highspeed = 1;
3956 stream->usecs = HS_USECS_ISO(maxp);
3957 }
3958 bandwidth = stream->usecs * 8;
3959 bandwidth /= interval;
3960
3961 stream->bandwidth = bandwidth;
3962 stream->udev = dev;
3963 stream->bEndpointAddress = is_input | epnum;
3964 stream->interval = interval;
3965 stream->maxp = maxp;
3966 }
3967
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3968 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3969 struct urb *urb)
3970 {
3971 unsigned epnum;
3972 struct fotg210_iso_stream *stream;
3973 struct usb_host_endpoint *ep;
3974 unsigned long flags;
3975
3976 epnum = usb_pipeendpoint(urb->pipe);
3977 if (usb_pipein(urb->pipe))
3978 ep = urb->dev->ep_in[epnum];
3979 else
3980 ep = urb->dev->ep_out[epnum];
3981
3982 spin_lock_irqsave(&fotg210->lock, flags);
3983 stream = ep->hcpriv;
3984
3985 if (unlikely(stream == NULL)) {
3986 stream = iso_stream_alloc(GFP_ATOMIC);
3987 if (likely(stream != NULL)) {
3988 ep->hcpriv = stream;
3989 stream->ep = ep;
3990 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3991 urb->interval);
3992 }
3993
3994 /* if dev->ep[epnum] is a QH, hw is set */
3995 } else if (unlikely(stream->hw != NULL)) {
3996 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3997 urb->dev->devpath, epnum,
3998 usb_pipein(urb->pipe) ? "in" : "out");
3999 stream = NULL;
4000 }
4001
4002 spin_unlock_irqrestore(&fotg210->lock, flags);
4003 return stream;
4004 }
4005
4006 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4007
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4008 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4009 gfp_t mem_flags)
4010 {
4011 struct fotg210_iso_sched *iso_sched;
4012 int size = sizeof(*iso_sched);
4013
4014 size += packets * sizeof(struct fotg210_iso_packet);
4015 iso_sched = kzalloc(size, mem_flags);
4016 if (likely(iso_sched != NULL))
4017 INIT_LIST_HEAD(&iso_sched->td_list);
4018
4019 return iso_sched;
4020 }
4021
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4022 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4023 struct fotg210_iso_sched *iso_sched,
4024 struct fotg210_iso_stream *stream, struct urb *urb)
4025 {
4026 unsigned i;
4027 dma_addr_t dma = urb->transfer_dma;
4028
4029 /* how many uframes are needed for these transfers */
4030 iso_sched->span = urb->number_of_packets * stream->interval;
4031
4032 /* figure out per-uframe itd fields that we'll need later
4033 * when we fit new itds into the schedule.
4034 */
4035 for (i = 0; i < urb->number_of_packets; i++) {
4036 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4037 unsigned length;
4038 dma_addr_t buf;
4039 u32 trans;
4040
4041 length = urb->iso_frame_desc[i].length;
4042 buf = dma + urb->iso_frame_desc[i].offset;
4043
4044 trans = FOTG210_ISOC_ACTIVE;
4045 trans |= buf & 0x0fff;
4046 if (unlikely(((i + 1) == urb->number_of_packets))
4047 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4048 trans |= FOTG210_ITD_IOC;
4049 trans |= length << 16;
4050 uframe->transaction = cpu_to_hc32(fotg210, trans);
4051
4052 /* might need to cross a buffer page within a uframe */
4053 uframe->bufp = (buf & ~(u64)0x0fff);
4054 buf += length;
4055 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4056 uframe->cross = 1;
4057 }
4058 }
4059
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4060 static void iso_sched_free(struct fotg210_iso_stream *stream,
4061 struct fotg210_iso_sched *iso_sched)
4062 {
4063 if (!iso_sched)
4064 return;
4065 /* caller must hold fotg210->lock!*/
4066 list_splice(&iso_sched->td_list, &stream->free_list);
4067 kfree(iso_sched);
4068 }
4069
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4070 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4071 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4072 {
4073 struct fotg210_itd *itd;
4074 dma_addr_t itd_dma;
4075 int i;
4076 unsigned num_itds;
4077 struct fotg210_iso_sched *sched;
4078 unsigned long flags;
4079
4080 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4081 if (unlikely(sched == NULL))
4082 return -ENOMEM;
4083
4084 itd_sched_init(fotg210, sched, stream, urb);
4085
4086 if (urb->interval < 8)
4087 num_itds = 1 + (sched->span + 7) / 8;
4088 else
4089 num_itds = urb->number_of_packets;
4090
4091 /* allocate/init ITDs */
4092 spin_lock_irqsave(&fotg210->lock, flags);
4093 for (i = 0; i < num_itds; i++) {
4094
4095 /*
4096 * Use iTDs from the free list, but not iTDs that may
4097 * still be in use by the hardware.
4098 */
4099 if (likely(!list_empty(&stream->free_list))) {
4100 itd = list_first_entry(&stream->free_list,
4101 struct fotg210_itd, itd_list);
4102 if (itd->frame == fotg210->now_frame)
4103 goto alloc_itd;
4104 list_del(&itd->itd_list);
4105 itd_dma = itd->itd_dma;
4106 } else {
4107 alloc_itd:
4108 spin_unlock_irqrestore(&fotg210->lock, flags);
4109 itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4110 &itd_dma);
4111 spin_lock_irqsave(&fotg210->lock, flags);
4112 if (!itd) {
4113 iso_sched_free(stream, sched);
4114 spin_unlock_irqrestore(&fotg210->lock, flags);
4115 return -ENOMEM;
4116 }
4117 }
4118
4119 itd->itd_dma = itd_dma;
4120 list_add(&itd->itd_list, &sched->td_list);
4121 }
4122 spin_unlock_irqrestore(&fotg210->lock, flags);
4123
4124 /* temporarily store schedule info in hcpriv */
4125 urb->hcpriv = sched;
4126 urb->error_count = 0;
4127 return 0;
4128 }
4129
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4130 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4131 u8 usecs, u32 period)
4132 {
4133 uframe %= period;
4134 do {
4135 /* can't commit more than uframe_periodic_max usec */
4136 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4137 > (fotg210->uframe_periodic_max - usecs))
4138 return 0;
4139
4140 /* we know urb->interval is 2^N uframes */
4141 uframe += period;
4142 } while (uframe < mod);
4143 return 1;
4144 }
4145
4146 /* This scheduler plans almost as far into the future as it has actual
4147 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4148 * "as small as possible" to be cache-friendlier.) That limits the size
4149 * transfers you can stream reliably; avoid more than 64 msec per urb.
4150 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4151 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4152 * and other factors); or more than about 230 msec total (for portability,
4153 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4154 */
4155
4156 #define SCHEDULE_SLOP 80 /* microframes */
4157
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4158 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4159 struct fotg210_iso_stream *stream)
4160 {
4161 u32 now, next, start, period, span;
4162 int status;
4163 unsigned mod = fotg210->periodic_size << 3;
4164 struct fotg210_iso_sched *sched = urb->hcpriv;
4165
4166 period = urb->interval;
4167 span = sched->span;
4168
4169 if (span > mod - SCHEDULE_SLOP) {
4170 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4171 status = -EFBIG;
4172 goto fail;
4173 }
4174
4175 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4176
4177 /* Typical case: reuse current schedule, stream is still active.
4178 * Hopefully there are no gaps from the host falling behind
4179 * (irq delays etc), but if there are we'll take the next
4180 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4181 */
4182 if (likely(!list_empty(&stream->td_list))) {
4183 u32 excess;
4184
4185 /* For high speed devices, allow scheduling within the
4186 * isochronous scheduling threshold. For full speed devices
4187 * and Intel PCI-based controllers, don't (work around for
4188 * Intel ICH9 bug).
4189 */
4190 if (!stream->highspeed && fotg210->fs_i_thresh)
4191 next = now + fotg210->i_thresh;
4192 else
4193 next = now;
4194
4195 /* Fell behind (by up to twice the slop amount)?
4196 * We decide based on the time of the last currently-scheduled
4197 * slot, not the time of the next available slot.
4198 */
4199 excess = (stream->next_uframe - period - next) & (mod - 1);
4200 if (excess >= mod - 2 * SCHEDULE_SLOP)
4201 start = next + excess - mod + period *
4202 DIV_ROUND_UP(mod - excess, period);
4203 else
4204 start = next + excess + period;
4205 if (start - now >= mod) {
4206 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4207 urb, start - now - period, period,
4208 mod);
4209 status = -EFBIG;
4210 goto fail;
4211 }
4212 }
4213
4214 /* need to schedule; when's the next (u)frame we could start?
4215 * this is bigger than fotg210->i_thresh allows; scheduling itself
4216 * isn't free, the slop should handle reasonably slow cpus. it
4217 * can also help high bandwidth if the dma and irq loads don't
4218 * jump until after the queue is primed.
4219 */
4220 else {
4221 int done = 0;
4222
4223 start = SCHEDULE_SLOP + (now & ~0x07);
4224
4225 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4226
4227 /* find a uframe slot with enough bandwidth.
4228 * Early uframes are more precious because full-speed
4229 * iso IN transfers can't use late uframes,
4230 * and therefore they should be allocated last.
4231 */
4232 next = start;
4233 start += period;
4234 do {
4235 start--;
4236 /* check schedule: enough space? */
4237 if (itd_slot_ok(fotg210, mod, start,
4238 stream->usecs, period))
4239 done = 1;
4240 } while (start > next && !done);
4241
4242 /* no room in the schedule */
4243 if (!done) {
4244 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4245 urb, now, now + mod);
4246 status = -ENOSPC;
4247 goto fail;
4248 }
4249 }
4250
4251 /* Tried to schedule too far into the future? */
4252 if (unlikely(start - now + span - period >=
4253 mod - 2 * SCHEDULE_SLOP)) {
4254 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4255 urb, start - now, span - period,
4256 mod - 2 * SCHEDULE_SLOP);
4257 status = -EFBIG;
4258 goto fail;
4259 }
4260
4261 stream->next_uframe = start & (mod - 1);
4262
4263 /* report high speed start in uframes; full speed, in frames */
4264 urb->start_frame = stream->next_uframe;
4265 if (!stream->highspeed)
4266 urb->start_frame >>= 3;
4267
4268 /* Make sure scan_isoc() sees these */
4269 if (fotg210->isoc_count == 0)
4270 fotg210->next_frame = now >> 3;
4271 return 0;
4272
4273 fail:
4274 iso_sched_free(stream, sched);
4275 urb->hcpriv = NULL;
4276 return status;
4277 }
4278
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4279 static inline void itd_init(struct fotg210_hcd *fotg210,
4280 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4281 {
4282 int i;
4283
4284 /* it's been recently zeroed */
4285 itd->hw_next = FOTG210_LIST_END(fotg210);
4286 itd->hw_bufp[0] = stream->buf0;
4287 itd->hw_bufp[1] = stream->buf1;
4288 itd->hw_bufp[2] = stream->buf2;
4289
4290 for (i = 0; i < 8; i++)
4291 itd->index[i] = -1;
4292
4293 /* All other fields are filled when scheduling */
4294 }
4295
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4296 static inline void itd_patch(struct fotg210_hcd *fotg210,
4297 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4298 unsigned index, u16 uframe)
4299 {
4300 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4301 unsigned pg = itd->pg;
4302
4303 uframe &= 0x07;
4304 itd->index[uframe] = index;
4305
4306 itd->hw_transaction[uframe] = uf->transaction;
4307 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4308 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4309 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4310
4311 /* iso_frame_desc[].offset must be strictly increasing */
4312 if (unlikely(uf->cross)) {
4313 u64 bufp = uf->bufp + 4096;
4314
4315 itd->pg = ++pg;
4316 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4317 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4318 }
4319 }
4320
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4321 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4322 struct fotg210_itd *itd)
4323 {
4324 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4325 __hc32 *hw_p = &fotg210->periodic[frame];
4326 union fotg210_shadow here = *prev;
4327 __hc32 type = 0;
4328
4329 /* skip any iso nodes which might belong to previous microframes */
4330 while (here.ptr) {
4331 type = Q_NEXT_TYPE(fotg210, *hw_p);
4332 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4333 break;
4334 prev = periodic_next_shadow(fotg210, prev, type);
4335 hw_p = shadow_next_periodic(fotg210, &here, type);
4336 here = *prev;
4337 }
4338
4339 itd->itd_next = here;
4340 itd->hw_next = *hw_p;
4341 prev->itd = itd;
4342 itd->frame = frame;
4343 wmb();
4344 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4345 }
4346
4347 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4348 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4349 unsigned mod, struct fotg210_iso_stream *stream)
4350 {
4351 int packet;
4352 unsigned next_uframe, uframe, frame;
4353 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4354 struct fotg210_itd *itd;
4355
4356 next_uframe = stream->next_uframe & (mod - 1);
4357
4358 if (unlikely(list_empty(&stream->td_list))) {
4359 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4360 += stream->bandwidth;
4361 fotg210_dbg(fotg210,
4362 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4363 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4364 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4365 urb->interval,
4366 next_uframe >> 3, next_uframe & 0x7);
4367 }
4368
4369 /* fill iTDs uframe by uframe */
4370 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4371 if (itd == NULL) {
4372 /* ASSERT: we have all necessary itds */
4373
4374 /* ASSERT: no itds for this endpoint in this uframe */
4375
4376 itd = list_entry(iso_sched->td_list.next,
4377 struct fotg210_itd, itd_list);
4378 list_move_tail(&itd->itd_list, &stream->td_list);
4379 itd->stream = stream;
4380 itd->urb = urb;
4381 itd_init(fotg210, stream, itd);
4382 }
4383
4384 uframe = next_uframe & 0x07;
4385 frame = next_uframe >> 3;
4386
4387 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4388
4389 next_uframe += stream->interval;
4390 next_uframe &= mod - 1;
4391 packet++;
4392
4393 /* link completed itds into the schedule */
4394 if (((next_uframe >> 3) != frame)
4395 || packet == urb->number_of_packets) {
4396 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4397 itd);
4398 itd = NULL;
4399 }
4400 }
4401 stream->next_uframe = next_uframe;
4402
4403 /* don't need that schedule data any more */
4404 iso_sched_free(stream, iso_sched);
4405 urb->hcpriv = NULL;
4406
4407 ++fotg210->isoc_count;
4408 enable_periodic(fotg210);
4409 }
4410
4411 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4412 FOTG210_ISOC_XACTERR)
4413
4414 /* Process and recycle a completed ITD. Return true iff its urb completed,
4415 * and hence its completion callback probably added things to the hardware
4416 * schedule.
4417 *
4418 * Note that we carefully avoid recycling this descriptor until after any
4419 * completion callback runs, so that it won't be reused quickly. That is,
4420 * assuming (a) no more than two urbs per frame on this endpoint, and also
4421 * (b) only this endpoint's completions submit URBs. It seems some silicon
4422 * corrupts things if you reuse completed descriptors very quickly...
4423 */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4424 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4425 {
4426 struct urb *urb = itd->urb;
4427 struct usb_iso_packet_descriptor *desc;
4428 u32 t;
4429 unsigned uframe;
4430 int urb_index = -1;
4431 struct fotg210_iso_stream *stream = itd->stream;
4432 struct usb_device *dev;
4433 bool retval = false;
4434
4435 /* for each uframe with a packet */
4436 for (uframe = 0; uframe < 8; uframe++) {
4437 if (likely(itd->index[uframe] == -1))
4438 continue;
4439 urb_index = itd->index[uframe];
4440 desc = &urb->iso_frame_desc[urb_index];
4441
4442 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4443 itd->hw_transaction[uframe] = 0;
4444
4445 /* report transfer status */
4446 if (unlikely(t & ISO_ERRS)) {
4447 urb->error_count++;
4448 if (t & FOTG210_ISOC_BUF_ERR)
4449 desc->status = usb_pipein(urb->pipe)
4450 ? -ENOSR /* hc couldn't read */
4451 : -ECOMM; /* hc couldn't write */
4452 else if (t & FOTG210_ISOC_BABBLE)
4453 desc->status = -EOVERFLOW;
4454 else /* (t & FOTG210_ISOC_XACTERR) */
4455 desc->status = -EPROTO;
4456
4457 /* HC need not update length with this error */
4458 if (!(t & FOTG210_ISOC_BABBLE)) {
4459 desc->actual_length = FOTG210_ITD_LENGTH(t);
4460 urb->actual_length += desc->actual_length;
4461 }
4462 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4463 desc->status = 0;
4464 desc->actual_length = FOTG210_ITD_LENGTH(t);
4465 urb->actual_length += desc->actual_length;
4466 } else {
4467 /* URB was too late */
4468 desc->status = -EXDEV;
4469 }
4470 }
4471
4472 /* handle completion now? */
4473 if (likely((urb_index + 1) != urb->number_of_packets))
4474 goto done;
4475
4476 /* ASSERT: it's really the last itd for this urb
4477 * list_for_each_entry (itd, &stream->td_list, itd_list)
4478 * BUG_ON (itd->urb == urb);
4479 */
4480
4481 /* give urb back to the driver; completion often (re)submits */
4482 dev = urb->dev;
4483 fotg210_urb_done(fotg210, urb, 0);
4484 retval = true;
4485 urb = NULL;
4486
4487 --fotg210->isoc_count;
4488 disable_periodic(fotg210);
4489
4490 if (unlikely(list_is_singular(&stream->td_list))) {
4491 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4492 -= stream->bandwidth;
4493 fotg210_dbg(fotg210,
4494 "deschedule devp %s ep%d%s-iso\n",
4495 dev->devpath, stream->bEndpointAddress & 0x0f,
4496 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4497 }
4498
4499 done:
4500 itd->urb = NULL;
4501
4502 /* Add to the end of the free list for later reuse */
4503 list_move_tail(&itd->itd_list, &stream->free_list);
4504
4505 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4506 if (list_empty(&stream->td_list)) {
4507 list_splice_tail_init(&stream->free_list,
4508 &fotg210->cached_itd_list);
4509 start_free_itds(fotg210);
4510 }
4511
4512 return retval;
4513 }
4514
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4515 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4516 gfp_t mem_flags)
4517 {
4518 int status = -EINVAL;
4519 unsigned long flags;
4520 struct fotg210_iso_stream *stream;
4521
4522 /* Get iso_stream head */
4523 stream = iso_stream_find(fotg210, urb);
4524 if (unlikely(stream == NULL)) {
4525 fotg210_dbg(fotg210, "can't get iso stream\n");
4526 return -ENOMEM;
4527 }
4528 if (unlikely(urb->interval != stream->interval &&
4529 fotg210_port_speed(fotg210, 0) ==
4530 USB_PORT_STAT_HIGH_SPEED)) {
4531 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4532 stream->interval, urb->interval);
4533 goto done;
4534 }
4535
4536 #ifdef FOTG210_URB_TRACE
4537 fotg210_dbg(fotg210,
4538 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4539 __func__, urb->dev->devpath, urb,
4540 usb_pipeendpoint(urb->pipe),
4541 usb_pipein(urb->pipe) ? "in" : "out",
4542 urb->transfer_buffer_length,
4543 urb->number_of_packets, urb->interval,
4544 stream);
4545 #endif
4546
4547 /* allocate ITDs w/o locking anything */
4548 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4549 if (unlikely(status < 0)) {
4550 fotg210_dbg(fotg210, "can't init itds\n");
4551 goto done;
4552 }
4553
4554 /* schedule ... need to lock */
4555 spin_lock_irqsave(&fotg210->lock, flags);
4556 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4557 status = -ESHUTDOWN;
4558 goto done_not_linked;
4559 }
4560 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4561 if (unlikely(status))
4562 goto done_not_linked;
4563 status = iso_stream_schedule(fotg210, urb, stream);
4564 if (likely(status == 0))
4565 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4566 else
4567 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4568 done_not_linked:
4569 spin_unlock_irqrestore(&fotg210->lock, flags);
4570 done:
4571 return status;
4572 }
4573
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4574 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4575 unsigned now_frame, bool live)
4576 {
4577 unsigned uf;
4578 bool modified;
4579 union fotg210_shadow q, *q_p;
4580 __hc32 type, *hw_p;
4581
4582 /* scan each element in frame's queue for completions */
4583 q_p = &fotg210->pshadow[frame];
4584 hw_p = &fotg210->periodic[frame];
4585 q.ptr = q_p->ptr;
4586 type = Q_NEXT_TYPE(fotg210, *hw_p);
4587 modified = false;
4588
4589 while (q.ptr) {
4590 switch (hc32_to_cpu(fotg210, type)) {
4591 case Q_TYPE_ITD:
4592 /* If this ITD is still active, leave it for
4593 * later processing ... check the next entry.
4594 * No need to check for activity unless the
4595 * frame is current.
4596 */
4597 if (frame == now_frame && live) {
4598 rmb();
4599 for (uf = 0; uf < 8; uf++) {
4600 if (q.itd->hw_transaction[uf] &
4601 ITD_ACTIVE(fotg210))
4602 break;
4603 }
4604 if (uf < 8) {
4605 q_p = &q.itd->itd_next;
4606 hw_p = &q.itd->hw_next;
4607 type = Q_NEXT_TYPE(fotg210,
4608 q.itd->hw_next);
4609 q = *q_p;
4610 break;
4611 }
4612 }
4613
4614 /* Take finished ITDs out of the schedule
4615 * and process them: recycle, maybe report
4616 * URB completion. HC won't cache the
4617 * pointer for much longer, if at all.
4618 */
4619 *q_p = q.itd->itd_next;
4620 *hw_p = q.itd->hw_next;
4621 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4622 wmb();
4623 modified = itd_complete(fotg210, q.itd);
4624 q = *q_p;
4625 break;
4626 default:
4627 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4628 type, frame, q.ptr);
4629 fallthrough;
4630 case Q_TYPE_QH:
4631 case Q_TYPE_FSTN:
4632 /* End of the iTDs and siTDs */
4633 q.ptr = NULL;
4634 break;
4635 }
4636
4637 /* assume completion callbacks modify the queue */
4638 if (unlikely(modified && fotg210->isoc_count > 0))
4639 return -EINVAL;
4640 }
4641 return 0;
4642 }
4643
scan_isoc(struct fotg210_hcd * fotg210)4644 static void scan_isoc(struct fotg210_hcd *fotg210)
4645 {
4646 unsigned uf, now_frame, frame, ret;
4647 unsigned fmask = fotg210->periodic_size - 1;
4648 bool live;
4649
4650 /*
4651 * When running, scan from last scan point up to "now"
4652 * else clean up by scanning everything that's left.
4653 * Touches as few pages as possible: cache-friendly.
4654 */
4655 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4656 uf = fotg210_read_frame_index(fotg210);
4657 now_frame = (uf >> 3) & fmask;
4658 live = true;
4659 } else {
4660 now_frame = (fotg210->next_frame - 1) & fmask;
4661 live = false;
4662 }
4663 fotg210->now_frame = now_frame;
4664
4665 frame = fotg210->next_frame;
4666 for (;;) {
4667 ret = 1;
4668 while (ret != 0)
4669 ret = scan_frame_queue(fotg210, frame,
4670 now_frame, live);
4671
4672 /* Stop when we have reached the current frame */
4673 if (frame == now_frame)
4674 break;
4675 frame = (frame + 1) & fmask;
4676 }
4677 fotg210->next_frame = now_frame;
4678 }
4679
4680 /* Display / Set uframe_periodic_max
4681 */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4682 static ssize_t uframe_periodic_max_show(struct device *dev,
4683 struct device_attribute *attr, char *buf)
4684 {
4685 struct fotg210_hcd *fotg210;
4686 int n;
4687
4688 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4689 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4690 return n;
4691 }
4692
4693
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4694 static ssize_t uframe_periodic_max_store(struct device *dev,
4695 struct device_attribute *attr, const char *buf, size_t count)
4696 {
4697 struct fotg210_hcd *fotg210;
4698 unsigned uframe_periodic_max;
4699 unsigned frame, uframe;
4700 unsigned short allocated_max;
4701 unsigned long flags;
4702 ssize_t ret;
4703
4704 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4705 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4706 return -EINVAL;
4707
4708 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4709 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4710 uframe_periodic_max);
4711 return -EINVAL;
4712 }
4713
4714 ret = -EINVAL;
4715
4716 /*
4717 * lock, so that our checking does not race with possible periodic
4718 * bandwidth allocation through submitting new urbs.
4719 */
4720 spin_lock_irqsave(&fotg210->lock, flags);
4721
4722 /*
4723 * for request to decrease max periodic bandwidth, we have to check
4724 * every microframe in the schedule to see whether the decrease is
4725 * possible.
4726 */
4727 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4728 allocated_max = 0;
4729
4730 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4731 for (uframe = 0; uframe < 7; ++uframe)
4732 allocated_max = max(allocated_max,
4733 periodic_usecs(fotg210, frame,
4734 uframe));
4735
4736 if (allocated_max > uframe_periodic_max) {
4737 fotg210_info(fotg210,
4738 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4739 allocated_max, uframe_periodic_max);
4740 goto out_unlock;
4741 }
4742 }
4743
4744 /* increasing is always ok */
4745
4746 fotg210_info(fotg210,
4747 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4748 100 * uframe_periodic_max/125, uframe_periodic_max);
4749
4750 if (uframe_periodic_max != 100)
4751 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4752
4753 fotg210->uframe_periodic_max = uframe_periodic_max;
4754 ret = count;
4755
4756 out_unlock:
4757 spin_unlock_irqrestore(&fotg210->lock, flags);
4758 return ret;
4759 }
4760
4761 static DEVICE_ATTR_RW(uframe_periodic_max);
4762
create_sysfs_files(struct fotg210_hcd * fotg210)4763 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4764 {
4765 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4766
4767 return device_create_file(controller, &dev_attr_uframe_periodic_max);
4768 }
4769
remove_sysfs_files(struct fotg210_hcd * fotg210)4770 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4771 {
4772 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4773
4774 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4775 }
4776 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4777 * The firmware seems to think that powering off is a wakeup event!
4778 * This routine turns off remote wakeup and everything else, on all ports.
4779 */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4780 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4781 {
4782 u32 __iomem *status_reg = &fotg210->regs->port_status;
4783
4784 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4785 }
4786
4787 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4788 * Must be called with interrupts enabled and the lock not held.
4789 */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4790 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4791 {
4792 fotg210_halt(fotg210);
4793
4794 spin_lock_irq(&fotg210->lock);
4795 fotg210->rh_state = FOTG210_RH_HALTED;
4796 fotg210_turn_off_all_ports(fotg210);
4797 spin_unlock_irq(&fotg210->lock);
4798 }
4799
4800 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4801 * This forcibly disables dma and IRQs, helping kexec and other cases
4802 * where the next system software may expect clean state.
4803 */
fotg210_shutdown(struct usb_hcd * hcd)4804 static void fotg210_shutdown(struct usb_hcd *hcd)
4805 {
4806 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4807
4808 spin_lock_irq(&fotg210->lock);
4809 fotg210->shutdown = true;
4810 fotg210->rh_state = FOTG210_RH_STOPPING;
4811 fotg210->enabled_hrtimer_events = 0;
4812 spin_unlock_irq(&fotg210->lock);
4813
4814 fotg210_silence_controller(fotg210);
4815
4816 hrtimer_cancel(&fotg210->hrtimer);
4817 }
4818
4819 /* fotg210_work is called from some interrupts, timers, and so on.
4820 * it calls driver completion functions, after dropping fotg210->lock.
4821 */
fotg210_work(struct fotg210_hcd * fotg210)4822 static void fotg210_work(struct fotg210_hcd *fotg210)
4823 {
4824 /* another CPU may drop fotg210->lock during a schedule scan while
4825 * it reports urb completions. this flag guards against bogus
4826 * attempts at re-entrant schedule scanning.
4827 */
4828 if (fotg210->scanning) {
4829 fotg210->need_rescan = true;
4830 return;
4831 }
4832 fotg210->scanning = true;
4833
4834 rescan:
4835 fotg210->need_rescan = false;
4836 if (fotg210->async_count)
4837 scan_async(fotg210);
4838 if (fotg210->intr_count > 0)
4839 scan_intr(fotg210);
4840 if (fotg210->isoc_count > 0)
4841 scan_isoc(fotg210);
4842 if (fotg210->need_rescan)
4843 goto rescan;
4844 fotg210->scanning = false;
4845
4846 /* the IO watchdog guards against hardware or driver bugs that
4847 * misplace IRQs, and should let us run completely without IRQs.
4848 * such lossage has been observed on both VT6202 and VT8235.
4849 */
4850 turn_on_io_watchdog(fotg210);
4851 }
4852
4853 /* Called when the fotg210_hcd module is removed.
4854 */
fotg210_stop(struct usb_hcd * hcd)4855 static void fotg210_stop(struct usb_hcd *hcd)
4856 {
4857 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4858
4859 fotg210_dbg(fotg210, "stop\n");
4860
4861 /* no more interrupts ... */
4862
4863 spin_lock_irq(&fotg210->lock);
4864 fotg210->enabled_hrtimer_events = 0;
4865 spin_unlock_irq(&fotg210->lock);
4866
4867 fotg210_quiesce(fotg210);
4868 fotg210_silence_controller(fotg210);
4869 fotg210_reset(fotg210);
4870
4871 hrtimer_cancel(&fotg210->hrtimer);
4872 remove_sysfs_files(fotg210);
4873 remove_debug_files(fotg210);
4874
4875 /* root hub is shut down separately (first, when possible) */
4876 spin_lock_irq(&fotg210->lock);
4877 end_free_itds(fotg210);
4878 spin_unlock_irq(&fotg210->lock);
4879 fotg210_mem_cleanup(fotg210);
4880
4881 #ifdef FOTG210_STATS
4882 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4883 fotg210->stats.normal, fotg210->stats.error,
4884 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4885 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4886 fotg210->stats.complete, fotg210->stats.unlink);
4887 #endif
4888
4889 dbg_status(fotg210, "fotg210_stop completed",
4890 fotg210_readl(fotg210, &fotg210->regs->status));
4891 }
4892
4893 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4894 static int hcd_fotg210_init(struct usb_hcd *hcd)
4895 {
4896 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4897 u32 temp;
4898 int retval;
4899 u32 hcc_params;
4900 struct fotg210_qh_hw *hw;
4901
4902 spin_lock_init(&fotg210->lock);
4903
4904 /*
4905 * keep io watchdog by default, those good HCDs could turn off it later
4906 */
4907 fotg210->need_io_watchdog = 1;
4908
4909 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4910 fotg210->hrtimer.function = fotg210_hrtimer_func;
4911 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4912
4913 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4914
4915 /*
4916 * by default set standard 80% (== 100 usec/uframe) max periodic
4917 * bandwidth as required by USB 2.0
4918 */
4919 fotg210->uframe_periodic_max = 100;
4920
4921 /*
4922 * hw default: 1K periodic list heads, one per frame.
4923 * periodic_size can shrink by USBCMD update if hcc_params allows.
4924 */
4925 fotg210->periodic_size = DEFAULT_I_TDPS;
4926 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4927 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4928
4929 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4930 /* periodic schedule size can be smaller than default */
4931 switch (FOTG210_TUNE_FLS) {
4932 case 0:
4933 fotg210->periodic_size = 1024;
4934 break;
4935 case 1:
4936 fotg210->periodic_size = 512;
4937 break;
4938 case 2:
4939 fotg210->periodic_size = 256;
4940 break;
4941 default:
4942 BUG();
4943 }
4944 }
4945 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4946 if (retval < 0)
4947 return retval;
4948
4949 /* controllers may cache some of the periodic schedule ... */
4950 fotg210->i_thresh = 2;
4951
4952 /*
4953 * dedicate a qh for the async ring head, since we couldn't unlink
4954 * a 'real' qh without stopping the async schedule [4.8]. use it
4955 * as the 'reclamation list head' too.
4956 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4957 * from automatically advancing to the next td after short reads.
4958 */
4959 fotg210->async->qh_next.qh = NULL;
4960 hw = fotg210->async->hw;
4961 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4962 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4963 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4964 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4965 fotg210->async->qh_state = QH_STATE_LINKED;
4966 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4967
4968 /* clear interrupt enables, set irq latency */
4969 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4970 log2_irq_thresh = 0;
4971 temp = 1 << (16 + log2_irq_thresh);
4972 if (HCC_CANPARK(hcc_params)) {
4973 /* HW default park == 3, on hardware that supports it (like
4974 * NVidia and ALI silicon), maximizes throughput on the async
4975 * schedule by avoiding QH fetches between transfers.
4976 *
4977 * With fast usb storage devices and NForce2, "park" seems to
4978 * make problems: throughput reduction (!), data errors...
4979 */
4980 if (park) {
4981 park = min_t(unsigned, park, 3);
4982 temp |= CMD_PARK;
4983 temp |= park << 8;
4984 }
4985 fotg210_dbg(fotg210, "park %d\n", park);
4986 }
4987 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4988 /* periodic schedule size can be smaller than default */
4989 temp &= ~(3 << 2);
4990 temp |= (FOTG210_TUNE_FLS << 2);
4991 }
4992 fotg210->command = temp;
4993
4994 /* Accept arbitrarily long scatter-gather lists */
4995 if (!hcd->localmem_pool)
4996 hcd->self.sg_tablesize = ~0;
4997 return 0;
4998 }
4999
5000 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5001 static int fotg210_run(struct usb_hcd *hcd)
5002 {
5003 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5004 u32 temp;
5005
5006 hcd->uses_new_polling = 1;
5007
5008 /* EHCI spec section 4.1 */
5009
5010 fotg210_writel(fotg210, fotg210->periodic_dma,
5011 &fotg210->regs->frame_list);
5012 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5013 &fotg210->regs->async_next);
5014
5015 /*
5016 * hcc_params controls whether fotg210->regs->segment must (!!!)
5017 * be used; it constrains QH/ITD/SITD and QTD locations.
5018 * dma_pool consistent memory always uses segment zero.
5019 * streaming mappings for I/O buffers, like pci_map_single(),
5020 * can return segments above 4GB, if the device allows.
5021 *
5022 * NOTE: the dma mask is visible through dev->dma_mask, so
5023 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5024 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5025 * host side drivers though.
5026 */
5027 fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5028
5029 /*
5030 * Philips, Intel, and maybe others need CMD_RUN before the
5031 * root hub will detect new devices (why?); NEC doesn't
5032 */
5033 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5034 fotg210->command |= CMD_RUN;
5035 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5036 dbg_cmd(fotg210, "init", fotg210->command);
5037
5038 /*
5039 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5040 * are explicitly handed to companion controller(s), so no TT is
5041 * involved with the root hub. (Except where one is integrated,
5042 * and there's no companion controller unless maybe for USB OTG.)
5043 *
5044 * Turning on the CF flag will transfer ownership of all ports
5045 * from the companions to the EHCI controller. If any of the
5046 * companions are in the middle of a port reset at the time, it
5047 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5048 * guarantees that no resets are in progress. After we set CF,
5049 * a short delay lets the hardware catch up; new resets shouldn't
5050 * be started before the port switching actions could complete.
5051 */
5052 down_write(&ehci_cf_port_reset_rwsem);
5053 fotg210->rh_state = FOTG210_RH_RUNNING;
5054 /* unblock posted writes */
5055 fotg210_readl(fotg210, &fotg210->regs->command);
5056 usleep_range(5000, 10000);
5057 up_write(&ehci_cf_port_reset_rwsem);
5058 fotg210->last_periodic_enable = ktime_get_real();
5059
5060 temp = HC_VERSION(fotg210,
5061 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5062 fotg210_info(fotg210,
5063 "USB %x.%x started, EHCI %x.%02x\n",
5064 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5065 temp >> 8, temp & 0xff);
5066
5067 fotg210_writel(fotg210, INTR_MASK,
5068 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5069
5070 /* GRR this is run-once init(), being done every time the HC starts.
5071 * So long as they're part of class devices, we can't do it init()
5072 * since the class device isn't created that early.
5073 */
5074 create_debug_files(fotg210);
5075 create_sysfs_files(fotg210);
5076
5077 return 0;
5078 }
5079
fotg210_setup(struct usb_hcd * hcd)5080 static int fotg210_setup(struct usb_hcd *hcd)
5081 {
5082 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5083 int retval;
5084
5085 fotg210->regs = (void __iomem *)fotg210->caps +
5086 HC_LENGTH(fotg210,
5087 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5088 dbg_hcs_params(fotg210, "reset");
5089 dbg_hcc_params(fotg210, "reset");
5090
5091 /* cache this readonly data; minimize chip reads */
5092 fotg210->hcs_params = fotg210_readl(fotg210,
5093 &fotg210->caps->hcs_params);
5094
5095 fotg210->sbrn = HCD_USB2;
5096
5097 /* data structure init */
5098 retval = hcd_fotg210_init(hcd);
5099 if (retval)
5100 return retval;
5101
5102 retval = fotg210_halt(fotg210);
5103 if (retval)
5104 return retval;
5105
5106 fotg210_reset(fotg210);
5107
5108 return 0;
5109 }
5110
fotg210_irq(struct usb_hcd * hcd)5111 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5112 {
5113 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5114 u32 status, masked_status, pcd_status = 0, cmd;
5115 int bh;
5116
5117 spin_lock(&fotg210->lock);
5118
5119 status = fotg210_readl(fotg210, &fotg210->regs->status);
5120
5121 /* e.g. cardbus physical eject */
5122 if (status == ~(u32) 0) {
5123 fotg210_dbg(fotg210, "device removed\n");
5124 goto dead;
5125 }
5126
5127 /*
5128 * We don't use STS_FLR, but some controllers don't like it to
5129 * remain on, so mask it out along with the other status bits.
5130 */
5131 masked_status = status & (INTR_MASK | STS_FLR);
5132
5133 /* Shared IRQ? */
5134 if (!masked_status ||
5135 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5136 spin_unlock(&fotg210->lock);
5137 return IRQ_NONE;
5138 }
5139
5140 /* clear (just) interrupts */
5141 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5142 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5143 bh = 0;
5144
5145 /* unrequested/ignored: Frame List Rollover */
5146 dbg_status(fotg210, "irq", status);
5147
5148 /* INT, ERR, and IAA interrupt rates can be throttled */
5149
5150 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5151 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5152 if (likely((status & STS_ERR) == 0))
5153 INCR(fotg210->stats.normal);
5154 else
5155 INCR(fotg210->stats.error);
5156 bh = 1;
5157 }
5158
5159 /* complete the unlinking of some qh [4.15.2.3] */
5160 if (status & STS_IAA) {
5161
5162 /* Turn off the IAA watchdog */
5163 fotg210->enabled_hrtimer_events &=
5164 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5165
5166 /*
5167 * Mild optimization: Allow another IAAD to reset the
5168 * hrtimer, if one occurs before the next expiration.
5169 * In theory we could always cancel the hrtimer, but
5170 * tests show that about half the time it will be reset
5171 * for some other event anyway.
5172 */
5173 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5174 ++fotg210->next_hrtimer_event;
5175
5176 /* guard against (alleged) silicon errata */
5177 if (cmd & CMD_IAAD)
5178 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5179 if (fotg210->async_iaa) {
5180 INCR(fotg210->stats.iaa);
5181 end_unlink_async(fotg210);
5182 } else
5183 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5184 }
5185
5186 /* remote wakeup [4.3.1] */
5187 if (status & STS_PCD) {
5188 int pstatus;
5189 u32 __iomem *status_reg = &fotg210->regs->port_status;
5190
5191 /* kick root hub later */
5192 pcd_status = status;
5193
5194 /* resume root hub? */
5195 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5196 usb_hcd_resume_root_hub(hcd);
5197
5198 pstatus = fotg210_readl(fotg210, status_reg);
5199
5200 if (test_bit(0, &fotg210->suspended_ports) &&
5201 ((pstatus & PORT_RESUME) ||
5202 !(pstatus & PORT_SUSPEND)) &&
5203 (pstatus & PORT_PE) &&
5204 fotg210->reset_done[0] == 0) {
5205
5206 /* start 20 msec resume signaling from this port,
5207 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5208 * stop that signaling. Use 5 ms extra for safety,
5209 * like usb_port_resume() does.
5210 */
5211 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5212 set_bit(0, &fotg210->resuming_ports);
5213 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5214 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5215 }
5216 }
5217
5218 /* PCI errors [4.15.2.4] */
5219 if (unlikely((status & STS_FATAL) != 0)) {
5220 fotg210_err(fotg210, "fatal error\n");
5221 dbg_cmd(fotg210, "fatal", cmd);
5222 dbg_status(fotg210, "fatal", status);
5223 dead:
5224 usb_hc_died(hcd);
5225
5226 /* Don't let the controller do anything more */
5227 fotg210->shutdown = true;
5228 fotg210->rh_state = FOTG210_RH_STOPPING;
5229 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5230 fotg210_writel(fotg210, fotg210->command,
5231 &fotg210->regs->command);
5232 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5233 fotg210_handle_controller_death(fotg210);
5234
5235 /* Handle completions when the controller stops */
5236 bh = 0;
5237 }
5238
5239 if (bh)
5240 fotg210_work(fotg210);
5241 spin_unlock(&fotg210->lock);
5242 if (pcd_status)
5243 usb_hcd_poll_rh_status(hcd);
5244 return IRQ_HANDLED;
5245 }
5246
5247 /* non-error returns are a promise to giveback() the urb later
5248 * we drop ownership so next owner (or urb unlink) can get it
5249 *
5250 * urb + dev is in hcd.self.controller.urb_list
5251 * we're queueing TDs onto software and hardware lists
5252 *
5253 * hcd-specific init for hcpriv hasn't been done yet
5254 *
5255 * NOTE: control, bulk, and interrupt share the same code to append TDs
5256 * to a (possibly active) QH, and the same QH scanning code.
5257 */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5258 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5259 gfp_t mem_flags)
5260 {
5261 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5262 struct list_head qtd_list;
5263
5264 INIT_LIST_HEAD(&qtd_list);
5265
5266 switch (usb_pipetype(urb->pipe)) {
5267 case PIPE_CONTROL:
5268 /* qh_completions() code doesn't handle all the fault cases
5269 * in multi-TD control transfers. Even 1KB is rare anyway.
5270 */
5271 if (urb->transfer_buffer_length > (16 * 1024))
5272 return -EMSGSIZE;
5273 /* FALLTHROUGH */
5274 /* case PIPE_BULK: */
5275 default:
5276 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5277 return -ENOMEM;
5278 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5279
5280 case PIPE_INTERRUPT:
5281 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5282 return -ENOMEM;
5283 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5284
5285 case PIPE_ISOCHRONOUS:
5286 return itd_submit(fotg210, urb, mem_flags);
5287 }
5288 }
5289
5290 /* remove from hardware lists
5291 * completions normally happen asynchronously
5292 */
5293
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5294 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5295 {
5296 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5297 struct fotg210_qh *qh;
5298 unsigned long flags;
5299 int rc;
5300
5301 spin_lock_irqsave(&fotg210->lock, flags);
5302 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5303 if (rc)
5304 goto done;
5305
5306 switch (usb_pipetype(urb->pipe)) {
5307 /* case PIPE_CONTROL: */
5308 /* case PIPE_BULK:*/
5309 default:
5310 qh = (struct fotg210_qh *) urb->hcpriv;
5311 if (!qh)
5312 break;
5313 switch (qh->qh_state) {
5314 case QH_STATE_LINKED:
5315 case QH_STATE_COMPLETING:
5316 start_unlink_async(fotg210, qh);
5317 break;
5318 case QH_STATE_UNLINK:
5319 case QH_STATE_UNLINK_WAIT:
5320 /* already started */
5321 break;
5322 case QH_STATE_IDLE:
5323 /* QH might be waiting for a Clear-TT-Buffer */
5324 qh_completions(fotg210, qh);
5325 break;
5326 }
5327 break;
5328
5329 case PIPE_INTERRUPT:
5330 qh = (struct fotg210_qh *) urb->hcpriv;
5331 if (!qh)
5332 break;
5333 switch (qh->qh_state) {
5334 case QH_STATE_LINKED:
5335 case QH_STATE_COMPLETING:
5336 start_unlink_intr(fotg210, qh);
5337 break;
5338 case QH_STATE_IDLE:
5339 qh_completions(fotg210, qh);
5340 break;
5341 default:
5342 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5343 qh, qh->qh_state);
5344 goto done;
5345 }
5346 break;
5347
5348 case PIPE_ISOCHRONOUS:
5349 /* itd... */
5350
5351 /* wait till next completion, do it then. */
5352 /* completion irqs can wait up to 1024 msec, */
5353 break;
5354 }
5355 done:
5356 spin_unlock_irqrestore(&fotg210->lock, flags);
5357 return rc;
5358 }
5359
5360 /* bulk qh holds the data toggle */
5361
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5362 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5363 struct usb_host_endpoint *ep)
5364 {
5365 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5366 unsigned long flags;
5367 struct fotg210_qh *qh, *tmp;
5368
5369 /* ASSERT: any requests/urbs are being unlinked */
5370 /* ASSERT: nobody can be submitting urbs for this any more */
5371
5372 rescan:
5373 spin_lock_irqsave(&fotg210->lock, flags);
5374 qh = ep->hcpriv;
5375 if (!qh)
5376 goto done;
5377
5378 /* endpoints can be iso streams. for now, we don't
5379 * accelerate iso completions ... so spin a while.
5380 */
5381 if (qh->hw == NULL) {
5382 struct fotg210_iso_stream *stream = ep->hcpriv;
5383
5384 if (!list_empty(&stream->td_list))
5385 goto idle_timeout;
5386
5387 /* BUG_ON(!list_empty(&stream->free_list)); */
5388 kfree(stream);
5389 goto done;
5390 }
5391
5392 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5393 qh->qh_state = QH_STATE_IDLE;
5394 switch (qh->qh_state) {
5395 case QH_STATE_LINKED:
5396 case QH_STATE_COMPLETING:
5397 for (tmp = fotg210->async->qh_next.qh;
5398 tmp && tmp != qh;
5399 tmp = tmp->qh_next.qh)
5400 continue;
5401 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5402 * may already be unlinked.
5403 */
5404 if (tmp)
5405 start_unlink_async(fotg210, qh);
5406 fallthrough;
5407 case QH_STATE_UNLINK: /* wait for hw to finish? */
5408 case QH_STATE_UNLINK_WAIT:
5409 idle_timeout:
5410 spin_unlock_irqrestore(&fotg210->lock, flags);
5411 schedule_timeout_uninterruptible(1);
5412 goto rescan;
5413 case QH_STATE_IDLE: /* fully unlinked */
5414 if (qh->clearing_tt)
5415 goto idle_timeout;
5416 if (list_empty(&qh->qtd_list)) {
5417 qh_destroy(fotg210, qh);
5418 break;
5419 }
5420 fallthrough;
5421 default:
5422 /* caller was supposed to have unlinked any requests;
5423 * that's not our job. just leak this memory.
5424 */
5425 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5426 qh, ep->desc.bEndpointAddress, qh->qh_state,
5427 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5428 break;
5429 }
5430 done:
5431 ep->hcpriv = NULL;
5432 spin_unlock_irqrestore(&fotg210->lock, flags);
5433 }
5434
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5435 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5436 struct usb_host_endpoint *ep)
5437 {
5438 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5439 struct fotg210_qh *qh;
5440 int eptype = usb_endpoint_type(&ep->desc);
5441 int epnum = usb_endpoint_num(&ep->desc);
5442 int is_out = usb_endpoint_dir_out(&ep->desc);
5443 unsigned long flags;
5444
5445 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5446 return;
5447
5448 spin_lock_irqsave(&fotg210->lock, flags);
5449 qh = ep->hcpriv;
5450
5451 /* For Bulk and Interrupt endpoints we maintain the toggle state
5452 * in the hardware; the toggle bits in udev aren't used at all.
5453 * When an endpoint is reset by usb_clear_halt() we must reset
5454 * the toggle bit in the QH.
5455 */
5456 if (qh) {
5457 usb_settoggle(qh->dev, epnum, is_out, 0);
5458 if (!list_empty(&qh->qtd_list)) {
5459 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5460 } else if (qh->qh_state == QH_STATE_LINKED ||
5461 qh->qh_state == QH_STATE_COMPLETING) {
5462
5463 /* The toggle value in the QH can't be updated
5464 * while the QH is active. Unlink it now;
5465 * re-linking will call qh_refresh().
5466 */
5467 if (eptype == USB_ENDPOINT_XFER_BULK)
5468 start_unlink_async(fotg210, qh);
5469 else
5470 start_unlink_intr(fotg210, qh);
5471 }
5472 }
5473 spin_unlock_irqrestore(&fotg210->lock, flags);
5474 }
5475
fotg210_get_frame(struct usb_hcd * hcd)5476 static int fotg210_get_frame(struct usb_hcd *hcd)
5477 {
5478 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5479
5480 return (fotg210_read_frame_index(fotg210) >> 3) %
5481 fotg210->periodic_size;
5482 }
5483
5484 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5485 * because its registers (and irq) are shared between host/gadget/otg
5486 * functions and in order to facilitate role switching we cannot
5487 * give the fotg210 driver exclusive access to those.
5488 */
5489 MODULE_DESCRIPTION(DRIVER_DESC);
5490 MODULE_AUTHOR(DRIVER_AUTHOR);
5491 MODULE_LICENSE("GPL");
5492
5493 static const struct hc_driver fotg210_fotg210_hc_driver = {
5494 .description = hcd_name,
5495 .product_desc = "Faraday USB2.0 Host Controller",
5496 .hcd_priv_size = sizeof(struct fotg210_hcd),
5497
5498 /*
5499 * generic hardware linkage
5500 */
5501 .irq = fotg210_irq,
5502 .flags = HCD_MEMORY | HCD_DMA | HCD_USB2,
5503
5504 /*
5505 * basic lifecycle operations
5506 */
5507 .reset = hcd_fotg210_init,
5508 .start = fotg210_run,
5509 .stop = fotg210_stop,
5510 .shutdown = fotg210_shutdown,
5511
5512 /*
5513 * managing i/o requests and associated device resources
5514 */
5515 .urb_enqueue = fotg210_urb_enqueue,
5516 .urb_dequeue = fotg210_urb_dequeue,
5517 .endpoint_disable = fotg210_endpoint_disable,
5518 .endpoint_reset = fotg210_endpoint_reset,
5519
5520 /*
5521 * scheduling support
5522 */
5523 .get_frame_number = fotg210_get_frame,
5524
5525 /*
5526 * root hub support
5527 */
5528 .hub_status_data = fotg210_hub_status_data,
5529 .hub_control = fotg210_hub_control,
5530 .bus_suspend = fotg210_bus_suspend,
5531 .bus_resume = fotg210_bus_resume,
5532
5533 .relinquish_port = fotg210_relinquish_port,
5534 .port_handed_over = fotg210_port_handed_over,
5535
5536 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5537 };
5538
fotg210_init(struct fotg210_hcd * fotg210)5539 static void fotg210_init(struct fotg210_hcd *fotg210)
5540 {
5541 u32 value;
5542
5543 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5544 &fotg210->regs->gmir);
5545
5546 value = ioread32(&fotg210->regs->otgcsr);
5547 value &= ~OTGCSR_A_BUS_DROP;
5548 value |= OTGCSR_A_BUS_REQ;
5549 iowrite32(value, &fotg210->regs->otgcsr);
5550 }
5551
5552 /*
5553 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5554 *
5555 * Allocates basic resources for this USB host controller, and
5556 * then invokes the start() method for the HCD associated with it
5557 * through the hotplug entry's driver_data.
5558 */
fotg210_hcd_probe(struct platform_device * pdev)5559 static int fotg210_hcd_probe(struct platform_device *pdev)
5560 {
5561 struct device *dev = &pdev->dev;
5562 struct usb_hcd *hcd;
5563 struct resource *res;
5564 int irq;
5565 int retval;
5566 struct fotg210_hcd *fotg210;
5567
5568 if (usb_disabled())
5569 return -ENODEV;
5570
5571 pdev->dev.power.power_state = PMSG_ON;
5572
5573 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5574 if (!res) {
5575 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5576 dev_name(dev));
5577 return -ENODEV;
5578 }
5579
5580 irq = res->start;
5581
5582 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5583 dev_name(dev));
5584 if (!hcd) {
5585 dev_err(dev, "failed to create hcd\n");
5586 retval = -ENOMEM;
5587 goto fail_create_hcd;
5588 }
5589
5590 hcd->has_tt = 1;
5591
5592 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5593 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5594 if (IS_ERR(hcd->regs)) {
5595 retval = PTR_ERR(hcd->regs);
5596 goto failed_put_hcd;
5597 }
5598
5599 hcd->rsrc_start = res->start;
5600 hcd->rsrc_len = resource_size(res);
5601
5602 fotg210 = hcd_to_fotg210(hcd);
5603
5604 fotg210->caps = hcd->regs;
5605
5606 /* It's OK not to supply this clock */
5607 fotg210->pclk = clk_get(dev, "PCLK");
5608 if (!IS_ERR(fotg210->pclk)) {
5609 retval = clk_prepare_enable(fotg210->pclk);
5610 if (retval) {
5611 dev_err(dev, "failed to enable PCLK\n");
5612 goto failed_put_hcd;
5613 }
5614 } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5615 /*
5616 * Percolate deferrals, for anything else,
5617 * just live without the clocking.
5618 */
5619 retval = PTR_ERR(fotg210->pclk);
5620 goto failed_dis_clk;
5621 }
5622
5623 retval = fotg210_setup(hcd);
5624 if (retval)
5625 goto failed_dis_clk;
5626
5627 fotg210_init(fotg210);
5628
5629 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5630 if (retval) {
5631 dev_err(dev, "failed to add hcd with err %d\n", retval);
5632 goto failed_dis_clk;
5633 }
5634 device_wakeup_enable(hcd->self.controller);
5635 platform_set_drvdata(pdev, hcd);
5636
5637 return retval;
5638
5639 failed_dis_clk:
5640 if (!IS_ERR(fotg210->pclk)) {
5641 clk_disable_unprepare(fotg210->pclk);
5642 clk_put(fotg210->pclk);
5643 }
5644 failed_put_hcd:
5645 usb_put_hcd(hcd);
5646 fail_create_hcd:
5647 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5648 return retval;
5649 }
5650
5651 /*
5652 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5653 * @dev: USB Host Controller being removed
5654 *
5655 */
fotg210_hcd_remove(struct platform_device * pdev)5656 static int fotg210_hcd_remove(struct platform_device *pdev)
5657 {
5658 struct usb_hcd *hcd = platform_get_drvdata(pdev);
5659 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5660
5661 if (!IS_ERR(fotg210->pclk)) {
5662 clk_disable_unprepare(fotg210->pclk);
5663 clk_put(fotg210->pclk);
5664 }
5665
5666 usb_remove_hcd(hcd);
5667 usb_put_hcd(hcd);
5668
5669 return 0;
5670 }
5671
5672 #ifdef CONFIG_OF
5673 static const struct of_device_id fotg210_of_match[] = {
5674 { .compatible = "faraday,fotg210" },
5675 {},
5676 };
5677 MODULE_DEVICE_TABLE(of, fotg210_of_match);
5678 #endif
5679
5680 static struct platform_driver fotg210_hcd_driver = {
5681 .driver = {
5682 .name = "fotg210-hcd",
5683 .of_match_table = of_match_ptr(fotg210_of_match),
5684 },
5685 .probe = fotg210_hcd_probe,
5686 .remove = fotg210_hcd_remove,
5687 };
5688
fotg210_hcd_init(void)5689 static int __init fotg210_hcd_init(void)
5690 {
5691 int retval = 0;
5692
5693 if (usb_disabled())
5694 return -ENODEV;
5695
5696 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5697 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5698 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5699 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5700 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5701
5702 pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5703 hcd_name, sizeof(struct fotg210_qh),
5704 sizeof(struct fotg210_qtd),
5705 sizeof(struct fotg210_itd));
5706
5707 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5708
5709 retval = platform_driver_register(&fotg210_hcd_driver);
5710 if (retval < 0)
5711 goto clean;
5712 return retval;
5713
5714 clean:
5715 debugfs_remove(fotg210_debug_root);
5716 fotg210_debug_root = NULL;
5717
5718 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5719 return retval;
5720 }
5721 module_init(fotg210_hcd_init);
5722
fotg210_hcd_cleanup(void)5723 static void __exit fotg210_hcd_cleanup(void)
5724 {
5725 platform_driver_unregister(&fotg210_hcd_driver);
5726 debugfs_remove(fotg210_debug_root);
5727 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5728 }
5729 module_exit(fotg210_hcd_cleanup);
5730