1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 * Allison Henderson <achender@linux.vnet.ibm.com>
8 * Hugh Dickins <hughd@google.com>
9 * Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17
18 #include <trace/events/ext4.h>
19
20 /*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal. It is
26 * original built by Yongqiang Yang. At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
30 * delay extent tree at the first commit. But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done. All delayed extents are
35 * tracked in the tree. It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated. Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree. Hence, single extent cache can be removed
47 * because extent status tree can do a better job. Extents in status
48 * tree are loaded on-demand. Therefore, the extent status tree may not
49 * contain all of the extents in a file. Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory. written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure. Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57 /*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 * -- FIEMAP
75 * FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 * -- SEEK_HOLE/DATA
78 * SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 * -- bigalloc
81 * bigalloc looks up page cache to figure out if a block is
82 * already under delayed allocation or not to determine whether
83 * quota reserving is needed for the cluster.
84 *
85 * -- writeout
86 * Writeout looks up whole page cache to see if a buffer is
87 * mapped, If there are not very many delayed buffers, then it is
88 * time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 * -- extent
100 * A extent is a range of blocks which are contiguous logically and
101 * physically. Unlike extent in extent tree, this extent in ext4 is
102 * a in-memory struct, there is no corresponding on-disk data. There
103 * is no limit on length of extent, so an extent can contain as many
104 * blocks as they are contiguous logically and physically.
105 *
106 * -- extent status tree
107 * Every inode has an extent status tree and all allocation blocks
108 * are added to the tree with different status. The extent in the
109 * tree are ordered by logical block no.
110 *
111 * -- operations on a extent status tree
112 * There are three important operations on a delayed extent tree: find
113 * next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 * -- race on a extent status tree
116 * Extent status tree is protected by inode->i_es_lock.
117 *
118 * -- memory consumption
119 * Fragmented extent tree will make extent status tree cost too much
120 * memory. Hence, we will reclaim written/unwritten/hole extents from
121 * the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 * -- overhead
128 * 1. There is a cache extent for write access, so if writes are
129 * not very random, adding space operaions are in O(1) time.
130 *
131 * -- gain
132 * 2. Code is much simpler, more readable, more maintainable and
133 * more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 * -- Refactor delayed space reservation
140 *
141 * -- Extent-level locking
142 */
143
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 ext4_lblk_t end, int *reserved,
151 struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 ext4_lblk_t len,
157 struct pending_reservation **prealloc);
158
ext4_init_es(void)159 int __init ext4_init_es(void)
160 {
161 ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162 sizeof(struct extent_status),
163 0, (SLAB_RECLAIM_ACCOUNT), NULL);
164 if (ext4_es_cachep == NULL)
165 return -ENOMEM;
166 return 0;
167 }
168
ext4_exit_es(void)169 void ext4_exit_es(void)
170 {
171 kmem_cache_destroy(ext4_es_cachep);
172 }
173
ext4_es_init_tree(struct ext4_es_tree * tree)174 void ext4_es_init_tree(struct ext4_es_tree *tree)
175 {
176 tree->root = RB_ROOT;
177 tree->cache_es = NULL;
178 }
179
180 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)181 static void ext4_es_print_tree(struct inode *inode)
182 {
183 struct ext4_es_tree *tree;
184 struct rb_node *node;
185
186 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187 tree = &EXT4_I(inode)->i_es_tree;
188 node = rb_first(&tree->root);
189 while (node) {
190 struct extent_status *es;
191 es = rb_entry(node, struct extent_status, rb_node);
192 printk(KERN_DEBUG " [%u/%u) %llu %x",
193 es->es_lblk, es->es_len,
194 ext4_es_pblock(es), ext4_es_status(es));
195 node = rb_next(node);
196 }
197 printk(KERN_DEBUG "\n");
198 }
199 #else
200 #define ext4_es_print_tree(inode)
201 #endif
202
ext4_es_end(struct extent_status * es)203 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204 {
205 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206 return es->es_lblk + es->es_len - 1;
207 }
208
209 /*
210 * search through the tree for an delayed extent with a given offset. If
211 * it can't be found, try to find next extent.
212 */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)213 static struct extent_status *__es_tree_search(struct rb_root *root,
214 ext4_lblk_t lblk)
215 {
216 struct rb_node *node = root->rb_node;
217 struct extent_status *es = NULL;
218
219 while (node) {
220 es = rb_entry(node, struct extent_status, rb_node);
221 if (lblk < es->es_lblk)
222 node = node->rb_left;
223 else if (lblk > ext4_es_end(es))
224 node = node->rb_right;
225 else
226 return es;
227 }
228
229 if (es && lblk < es->es_lblk)
230 return es;
231
232 if (es && lblk > ext4_es_end(es)) {
233 node = rb_next(&es->rb_node);
234 return node ? rb_entry(node, struct extent_status, rb_node) :
235 NULL;
236 }
237
238 return NULL;
239 }
240
241 /*
242 * ext4_es_find_extent_range - find extent with specified status within block
243 * range or next extent following block range in
244 * extents status tree
245 *
246 * @inode - file containing the range
247 * @matching_fn - pointer to function that matches extents with desired status
248 * @lblk - logical block defining start of range
249 * @end - logical block defining end of range
250 * @es - extent found, if any
251 *
252 * Find the first extent within the block range specified by @lblk and @end
253 * in the extents status tree that satisfies @matching_fn. If a match
254 * is found, it's returned in @es. If not, and a matching extent is found
255 * beyond the block range, it's returned in @es. If no match is found, an
256 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257 * are 0.
258 */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)259 static void __es_find_extent_range(struct inode *inode,
260 int (*matching_fn)(struct extent_status *es),
261 ext4_lblk_t lblk, ext4_lblk_t end,
262 struct extent_status *es)
263 {
264 struct ext4_es_tree *tree = NULL;
265 struct extent_status *es1 = NULL;
266 struct rb_node *node;
267
268 WARN_ON(es == NULL);
269 WARN_ON(end < lblk);
270
271 tree = &EXT4_I(inode)->i_es_tree;
272
273 /* see if the extent has been cached */
274 es->es_lblk = es->es_len = es->es_pblk = 0;
275 es1 = READ_ONCE(tree->cache_es);
276 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277 es_debug("%u cached by [%u/%u) %llu %x\n",
278 lblk, es1->es_lblk, es1->es_len,
279 ext4_es_pblock(es1), ext4_es_status(es1));
280 goto out;
281 }
282
283 es1 = __es_tree_search(&tree->root, lblk);
284
285 out:
286 if (es1 && !matching_fn(es1)) {
287 while ((node = rb_next(&es1->rb_node)) != NULL) {
288 es1 = rb_entry(node, struct extent_status, rb_node);
289 if (es1->es_lblk > end) {
290 es1 = NULL;
291 break;
292 }
293 if (matching_fn(es1))
294 break;
295 }
296 }
297
298 if (es1 && matching_fn(es1)) {
299 WRITE_ONCE(tree->cache_es, es1);
300 es->es_lblk = es1->es_lblk;
301 es->es_len = es1->es_len;
302 es->es_pblk = es1->es_pblk;
303 }
304
305 }
306
307 /*
308 * Locking for __es_find_extent_range() for external use
309 */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)310 void ext4_es_find_extent_range(struct inode *inode,
311 int (*matching_fn)(struct extent_status *es),
312 ext4_lblk_t lblk, ext4_lblk_t end,
313 struct extent_status *es)
314 {
315 es->es_lblk = es->es_len = es->es_pblk = 0;
316
317 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
318 return;
319
320 trace_ext4_es_find_extent_range_enter(inode, lblk);
321
322 read_lock(&EXT4_I(inode)->i_es_lock);
323 __es_find_extent_range(inode, matching_fn, lblk, end, es);
324 read_unlock(&EXT4_I(inode)->i_es_lock);
325
326 trace_ext4_es_find_extent_range_exit(inode, es);
327 }
328
329 /*
330 * __es_scan_range - search block range for block with specified status
331 * in extents status tree
332 *
333 * @inode - file containing the range
334 * @matching_fn - pointer to function that matches extents with desired status
335 * @lblk - logical block defining start of range
336 * @end - logical block defining end of range
337 *
338 * Returns true if at least one block in the specified block range satisfies
339 * the criterion specified by @matching_fn, and false if not. If at least
340 * one extent has the specified status, then there is at least one block
341 * in the cluster with that status. Should only be called by code that has
342 * taken i_es_lock.
343 */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)344 static bool __es_scan_range(struct inode *inode,
345 int (*matching_fn)(struct extent_status *es),
346 ext4_lblk_t start, ext4_lblk_t end)
347 {
348 struct extent_status es;
349
350 __es_find_extent_range(inode, matching_fn, start, end, &es);
351 if (es.es_len == 0)
352 return false; /* no matching extent in the tree */
353 else if (es.es_lblk <= start &&
354 start < es.es_lblk + es.es_len)
355 return true;
356 else if (start <= es.es_lblk && es.es_lblk <= end)
357 return true;
358 else
359 return false;
360 }
361 /*
362 * Locking for __es_scan_range() for external use
363 */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)364 bool ext4_es_scan_range(struct inode *inode,
365 int (*matching_fn)(struct extent_status *es),
366 ext4_lblk_t lblk, ext4_lblk_t end)
367 {
368 bool ret;
369
370 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
371 return false;
372
373 read_lock(&EXT4_I(inode)->i_es_lock);
374 ret = __es_scan_range(inode, matching_fn, lblk, end);
375 read_unlock(&EXT4_I(inode)->i_es_lock);
376
377 return ret;
378 }
379
380 /*
381 * __es_scan_clu - search cluster for block with specified status in
382 * extents status tree
383 *
384 * @inode - file containing the cluster
385 * @matching_fn - pointer to function that matches extents with desired status
386 * @lblk - logical block in cluster to be searched
387 *
388 * Returns true if at least one extent in the cluster containing @lblk
389 * satisfies the criterion specified by @matching_fn, and false if not. If at
390 * least one extent has the specified status, then there is at least one block
391 * in the cluster with that status. Should only be called by code that has
392 * taken i_es_lock.
393 */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)394 static bool __es_scan_clu(struct inode *inode,
395 int (*matching_fn)(struct extent_status *es),
396 ext4_lblk_t lblk)
397 {
398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
399 ext4_lblk_t lblk_start, lblk_end;
400
401 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
402 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
403
404 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
405 }
406
407 /*
408 * Locking for __es_scan_clu() for external use
409 */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)410 bool ext4_es_scan_clu(struct inode *inode,
411 int (*matching_fn)(struct extent_status *es),
412 ext4_lblk_t lblk)
413 {
414 bool ret;
415
416 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
417 return false;
418
419 read_lock(&EXT4_I(inode)->i_es_lock);
420 ret = __es_scan_clu(inode, matching_fn, lblk);
421 read_unlock(&EXT4_I(inode)->i_es_lock);
422
423 return ret;
424 }
425
ext4_es_list_add(struct inode * inode)426 static void ext4_es_list_add(struct inode *inode)
427 {
428 struct ext4_inode_info *ei = EXT4_I(inode);
429 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
430
431 if (!list_empty(&ei->i_es_list))
432 return;
433
434 spin_lock(&sbi->s_es_lock);
435 if (list_empty(&ei->i_es_list)) {
436 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
437 sbi->s_es_nr_inode++;
438 }
439 spin_unlock(&sbi->s_es_lock);
440 }
441
ext4_es_list_del(struct inode * inode)442 static void ext4_es_list_del(struct inode *inode)
443 {
444 struct ext4_inode_info *ei = EXT4_I(inode);
445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
446
447 spin_lock(&sbi->s_es_lock);
448 if (!list_empty(&ei->i_es_list)) {
449 list_del_init(&ei->i_es_list);
450 sbi->s_es_nr_inode--;
451 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
452 }
453 spin_unlock(&sbi->s_es_lock);
454 }
455
__alloc_pending(bool nofail)456 static inline struct pending_reservation *__alloc_pending(bool nofail)
457 {
458 if (!nofail)
459 return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
460
461 return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
462 }
463
__free_pending(struct pending_reservation * pr)464 static inline void __free_pending(struct pending_reservation *pr)
465 {
466 kmem_cache_free(ext4_pending_cachep, pr);
467 }
468
469 /*
470 * Returns true if we cannot fail to allocate memory for this extent_status
471 * entry and cannot reclaim it until its status changes.
472 */
ext4_es_must_keep(struct extent_status * es)473 static inline bool ext4_es_must_keep(struct extent_status *es)
474 {
475 /* fiemap, bigalloc, and seek_data/hole need to use it. */
476 if (ext4_es_is_delayed(es))
477 return true;
478
479 return false;
480 }
481
__es_alloc_extent(bool nofail)482 static inline struct extent_status *__es_alloc_extent(bool nofail)
483 {
484 if (!nofail)
485 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
486
487 return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
488 }
489
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)490 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
491 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
492 {
493 es->es_lblk = lblk;
494 es->es_len = len;
495 es->es_pblk = pblk;
496
497 /* We never try to reclaim a must kept extent, so we don't count it. */
498 if (!ext4_es_must_keep(es)) {
499 if (!EXT4_I(inode)->i_es_shk_nr++)
500 ext4_es_list_add(inode);
501 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
502 s_es_stats.es_stats_shk_cnt);
503 }
504
505 EXT4_I(inode)->i_es_all_nr++;
506 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
507 }
508
__es_free_extent(struct extent_status * es)509 static inline void __es_free_extent(struct extent_status *es)
510 {
511 kmem_cache_free(ext4_es_cachep, es);
512 }
513
ext4_es_free_extent(struct inode * inode,struct extent_status * es)514 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
515 {
516 EXT4_I(inode)->i_es_all_nr--;
517 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
518
519 /* Decrease the shrink counter when we can reclaim the extent. */
520 if (!ext4_es_must_keep(es)) {
521 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
522 if (!--EXT4_I(inode)->i_es_shk_nr)
523 ext4_es_list_del(inode);
524 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
525 s_es_stats.es_stats_shk_cnt);
526 }
527
528 __es_free_extent(es);
529 }
530
531 /*
532 * Check whether or not two extents can be merged
533 * Condition:
534 * - logical block number is contiguous
535 * - physical block number is contiguous
536 * - status is equal
537 */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)538 static int ext4_es_can_be_merged(struct extent_status *es1,
539 struct extent_status *es2)
540 {
541 if (ext4_es_type(es1) != ext4_es_type(es2))
542 return 0;
543
544 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
545 pr_warn("ES assertion failed when merging extents. "
546 "The sum of lengths of es1 (%d) and es2 (%d) "
547 "is bigger than allowed file size (%d)\n",
548 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
549 WARN_ON(1);
550 return 0;
551 }
552
553 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
554 return 0;
555
556 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
557 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
558 return 1;
559
560 if (ext4_es_is_hole(es1))
561 return 1;
562
563 /* we need to check delayed extent is without unwritten status */
564 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
565 return 1;
566
567 return 0;
568 }
569
570 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)571 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
572 {
573 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
574 struct extent_status *es1;
575 struct rb_node *node;
576
577 node = rb_prev(&es->rb_node);
578 if (!node)
579 return es;
580
581 es1 = rb_entry(node, struct extent_status, rb_node);
582 if (ext4_es_can_be_merged(es1, es)) {
583 es1->es_len += es->es_len;
584 if (ext4_es_is_referenced(es))
585 ext4_es_set_referenced(es1);
586 rb_erase(&es->rb_node, &tree->root);
587 ext4_es_free_extent(inode, es);
588 es = es1;
589 }
590
591 return es;
592 }
593
594 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)595 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
596 {
597 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
598 struct extent_status *es1;
599 struct rb_node *node;
600
601 node = rb_next(&es->rb_node);
602 if (!node)
603 return es;
604
605 es1 = rb_entry(node, struct extent_status, rb_node);
606 if (ext4_es_can_be_merged(es, es1)) {
607 es->es_len += es1->es_len;
608 if (ext4_es_is_referenced(es1))
609 ext4_es_set_referenced(es);
610 rb_erase(node, &tree->root);
611 ext4_es_free_extent(inode, es1);
612 }
613
614 return es;
615 }
616
617 #ifdef ES_AGGRESSIVE_TEST
618 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
619
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)620 static void ext4_es_insert_extent_ext_check(struct inode *inode,
621 struct extent_status *es)
622 {
623 struct ext4_ext_path *path = NULL;
624 struct ext4_extent *ex;
625 ext4_lblk_t ee_block;
626 ext4_fsblk_t ee_start;
627 unsigned short ee_len;
628 int depth, ee_status, es_status;
629
630 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
631 if (IS_ERR(path))
632 return;
633
634 depth = ext_depth(inode);
635 ex = path[depth].p_ext;
636
637 if (ex) {
638
639 ee_block = le32_to_cpu(ex->ee_block);
640 ee_start = ext4_ext_pblock(ex);
641 ee_len = ext4_ext_get_actual_len(ex);
642
643 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
644 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
645
646 /*
647 * Make sure ex and es are not overlap when we try to insert
648 * a delayed/hole extent.
649 */
650 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
651 if (in_range(es->es_lblk, ee_block, ee_len)) {
652 pr_warn("ES insert assertion failed for "
653 "inode: %lu we can find an extent "
654 "at block [%d/%d/%llu/%c], but we "
655 "want to add a delayed/hole extent "
656 "[%d/%d/%llu/%x]\n",
657 inode->i_ino, ee_block, ee_len,
658 ee_start, ee_status ? 'u' : 'w',
659 es->es_lblk, es->es_len,
660 ext4_es_pblock(es), ext4_es_status(es));
661 }
662 goto out;
663 }
664
665 /*
666 * We don't check ee_block == es->es_lblk, etc. because es
667 * might be a part of whole extent, vice versa.
668 */
669 if (es->es_lblk < ee_block ||
670 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
671 pr_warn("ES insert assertion failed for inode: %lu "
672 "ex_status [%d/%d/%llu/%c] != "
673 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
674 ee_block, ee_len, ee_start,
675 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
676 ext4_es_pblock(es), es_status ? 'u' : 'w');
677 goto out;
678 }
679
680 if (ee_status ^ es_status) {
681 pr_warn("ES insert assertion failed for inode: %lu "
682 "ex_status [%d/%d/%llu/%c] != "
683 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
684 ee_block, ee_len, ee_start,
685 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
686 ext4_es_pblock(es), es_status ? 'u' : 'w');
687 }
688 } else {
689 /*
690 * We can't find an extent on disk. So we need to make sure
691 * that we don't want to add an written/unwritten extent.
692 */
693 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
694 pr_warn("ES insert assertion failed for inode: %lu "
695 "can't find an extent at block %d but we want "
696 "to add a written/unwritten extent "
697 "[%d/%d/%llu/%x]\n", inode->i_ino,
698 es->es_lblk, es->es_lblk, es->es_len,
699 ext4_es_pblock(es), ext4_es_status(es));
700 }
701 }
702 out:
703 ext4_ext_drop_refs(path);
704 kfree(path);
705 }
706
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)707 static void ext4_es_insert_extent_ind_check(struct inode *inode,
708 struct extent_status *es)
709 {
710 struct ext4_map_blocks map;
711 int retval;
712
713 /*
714 * Here we call ext4_ind_map_blocks to lookup a block mapping because
715 * 'Indirect' structure is defined in indirect.c. So we couldn't
716 * access direct/indirect tree from outside. It is too dirty to define
717 * this function in indirect.c file.
718 */
719
720 map.m_lblk = es->es_lblk;
721 map.m_len = es->es_len;
722
723 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
724 if (retval > 0) {
725 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
726 /*
727 * We want to add a delayed/hole extent but this
728 * block has been allocated.
729 */
730 pr_warn("ES insert assertion failed for inode: %lu "
731 "We can find blocks but we want to add a "
732 "delayed/hole extent [%d/%d/%llu/%x]\n",
733 inode->i_ino, es->es_lblk, es->es_len,
734 ext4_es_pblock(es), ext4_es_status(es));
735 return;
736 } else if (ext4_es_is_written(es)) {
737 if (retval != es->es_len) {
738 pr_warn("ES insert assertion failed for "
739 "inode: %lu retval %d != es_len %d\n",
740 inode->i_ino, retval, es->es_len);
741 return;
742 }
743 if (map.m_pblk != ext4_es_pblock(es)) {
744 pr_warn("ES insert assertion failed for "
745 "inode: %lu m_pblk %llu != "
746 "es_pblk %llu\n",
747 inode->i_ino, map.m_pblk,
748 ext4_es_pblock(es));
749 return;
750 }
751 } else {
752 /*
753 * We don't need to check unwritten extent because
754 * indirect-based file doesn't have it.
755 */
756 BUG();
757 }
758 } else if (retval == 0) {
759 if (ext4_es_is_written(es)) {
760 pr_warn("ES insert assertion failed for inode: %lu "
761 "We can't find the block but we want to add "
762 "a written extent [%d/%d/%llu/%x]\n",
763 inode->i_ino, es->es_lblk, es->es_len,
764 ext4_es_pblock(es), ext4_es_status(es));
765 return;
766 }
767 }
768 }
769
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)770 static inline void ext4_es_insert_extent_check(struct inode *inode,
771 struct extent_status *es)
772 {
773 /*
774 * We don't need to worry about the race condition because
775 * caller takes i_data_sem locking.
776 */
777 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
778 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
779 ext4_es_insert_extent_ext_check(inode, es);
780 else
781 ext4_es_insert_extent_ind_check(inode, es);
782 }
783 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)784 static inline void ext4_es_insert_extent_check(struct inode *inode,
785 struct extent_status *es)
786 {
787 }
788 #endif
789
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)790 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
791 struct extent_status *prealloc)
792 {
793 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
794 struct rb_node **p = &tree->root.rb_node;
795 struct rb_node *parent = NULL;
796 struct extent_status *es;
797
798 while (*p) {
799 parent = *p;
800 es = rb_entry(parent, struct extent_status, rb_node);
801
802 if (newes->es_lblk < es->es_lblk) {
803 if (ext4_es_can_be_merged(newes, es)) {
804 /*
805 * Here we can modify es_lblk directly
806 * because it isn't overlapped.
807 */
808 es->es_lblk = newes->es_lblk;
809 es->es_len += newes->es_len;
810 if (ext4_es_is_written(es) ||
811 ext4_es_is_unwritten(es))
812 ext4_es_store_pblock(es,
813 newes->es_pblk);
814 es = ext4_es_try_to_merge_left(inode, es);
815 goto out;
816 }
817 p = &(*p)->rb_left;
818 } else if (newes->es_lblk > ext4_es_end(es)) {
819 if (ext4_es_can_be_merged(es, newes)) {
820 es->es_len += newes->es_len;
821 es = ext4_es_try_to_merge_right(inode, es);
822 goto out;
823 }
824 p = &(*p)->rb_right;
825 } else {
826 BUG();
827 return -EINVAL;
828 }
829 }
830
831 if (prealloc)
832 es = prealloc;
833 else
834 es = __es_alloc_extent(false);
835 if (!es)
836 return -ENOMEM;
837 ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
838 newes->es_pblk);
839
840 rb_link_node(&es->rb_node, parent, p);
841 rb_insert_color(&es->rb_node, &tree->root);
842
843 out:
844 tree->cache_es = es;
845 return 0;
846 }
847
848 /*
849 * ext4_es_insert_extent() adds information to an inode's extent
850 * status tree.
851 *
852 * Return 0 on success, error code on failure.
853 */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)854 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
855 ext4_lblk_t len, ext4_fsblk_t pblk,
856 unsigned int status)
857 {
858 struct extent_status newes;
859 ext4_lblk_t end = lblk + len - 1;
860 int err1 = 0, err2 = 0, err3 = 0;
861 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
862 struct extent_status *es1 = NULL;
863 struct extent_status *es2 = NULL;
864 struct pending_reservation *pr = NULL;
865 bool revise_pending = false;
866
867 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
868 return 0;
869
870 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
871 lblk, len, pblk, status, inode->i_ino);
872
873 if (!len)
874 return 0;
875
876 BUG_ON(end < lblk);
877
878 if ((status & EXTENT_STATUS_DELAYED) &&
879 (status & EXTENT_STATUS_WRITTEN)) {
880 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
881 " delayed and written which can potentially "
882 " cause data loss.", lblk, len);
883 WARN_ON(1);
884 }
885
886 newes.es_lblk = lblk;
887 newes.es_len = len;
888 ext4_es_store_pblock_status(&newes, pblk, status);
889 trace_ext4_es_insert_extent(inode, &newes);
890
891 ext4_es_insert_extent_check(inode, &newes);
892
893 revise_pending = sbi->s_cluster_ratio > 1 &&
894 test_opt(inode->i_sb, DELALLOC) &&
895 (status & (EXTENT_STATUS_WRITTEN |
896 EXTENT_STATUS_UNWRITTEN));
897 retry:
898 if (err1 && !es1)
899 es1 = __es_alloc_extent(true);
900 if ((err1 || err2) && !es2)
901 es2 = __es_alloc_extent(true);
902 if ((err1 || err2 || err3) && revise_pending && !pr)
903 pr = __alloc_pending(true);
904 write_lock(&EXT4_I(inode)->i_es_lock);
905
906 err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
907 if (err1 != 0)
908 goto error;
909 /* Free preallocated extent if it didn't get used. */
910 if (es1) {
911 if (!es1->es_len)
912 __es_free_extent(es1);
913 es1 = NULL;
914 }
915
916 err2 = __es_insert_extent(inode, &newes, es2);
917 if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
918 err2 = 0;
919 if (err2 != 0)
920 goto error;
921 /* Free preallocated extent if it didn't get used. */
922 if (es2) {
923 if (!es2->es_len)
924 __es_free_extent(es2);
925 es2 = NULL;
926 }
927
928 if (revise_pending) {
929 err3 = __revise_pending(inode, lblk, len, &pr);
930 if (err3 != 0)
931 goto error;
932 if (pr) {
933 __free_pending(pr);
934 pr = NULL;
935 }
936 }
937 error:
938 write_unlock(&EXT4_I(inode)->i_es_lock);
939 if (err1 || err2 || err3)
940 goto retry;
941
942 ext4_es_print_tree(inode);
943 return 0;
944 }
945
946 /*
947 * ext4_es_cache_extent() inserts information into the extent status
948 * tree if and only if there isn't information about the range in
949 * question already.
950 */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)951 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
952 ext4_lblk_t len, ext4_fsblk_t pblk,
953 unsigned int status)
954 {
955 struct extent_status *es;
956 struct extent_status newes;
957 ext4_lblk_t end = lblk + len - 1;
958
959 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
960 return;
961
962 newes.es_lblk = lblk;
963 newes.es_len = len;
964 ext4_es_store_pblock_status(&newes, pblk, status);
965 trace_ext4_es_cache_extent(inode, &newes);
966
967 if (!len)
968 return;
969
970 BUG_ON(end < lblk);
971
972 write_lock(&EXT4_I(inode)->i_es_lock);
973
974 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
975 if (!es || es->es_lblk > end)
976 __es_insert_extent(inode, &newes, NULL);
977 write_unlock(&EXT4_I(inode)->i_es_lock);
978 }
979
980 /*
981 * ext4_es_lookup_extent() looks up an extent in extent status tree.
982 *
983 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
984 *
985 * Return: 1 on found, 0 on not
986 */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)987 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
988 ext4_lblk_t *next_lblk,
989 struct extent_status *es)
990 {
991 struct ext4_es_tree *tree;
992 struct ext4_es_stats *stats;
993 struct extent_status *es1 = NULL;
994 struct rb_node *node;
995 int found = 0;
996
997 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
998 return 0;
999
1000 trace_ext4_es_lookup_extent_enter(inode, lblk);
1001 es_debug("lookup extent in block %u\n", lblk);
1002
1003 tree = &EXT4_I(inode)->i_es_tree;
1004 read_lock(&EXT4_I(inode)->i_es_lock);
1005
1006 /* find extent in cache firstly */
1007 es->es_lblk = es->es_len = es->es_pblk = 0;
1008 es1 = READ_ONCE(tree->cache_es);
1009 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1010 es_debug("%u cached by [%u/%u)\n",
1011 lblk, es1->es_lblk, es1->es_len);
1012 found = 1;
1013 goto out;
1014 }
1015
1016 node = tree->root.rb_node;
1017 while (node) {
1018 es1 = rb_entry(node, struct extent_status, rb_node);
1019 if (lblk < es1->es_lblk)
1020 node = node->rb_left;
1021 else if (lblk > ext4_es_end(es1))
1022 node = node->rb_right;
1023 else {
1024 found = 1;
1025 break;
1026 }
1027 }
1028
1029 out:
1030 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1031 if (found) {
1032 BUG_ON(!es1);
1033 es->es_lblk = es1->es_lblk;
1034 es->es_len = es1->es_len;
1035 es->es_pblk = es1->es_pblk;
1036 if (!ext4_es_is_referenced(es1))
1037 ext4_es_set_referenced(es1);
1038 percpu_counter_inc(&stats->es_stats_cache_hits);
1039 if (next_lblk) {
1040 node = rb_next(&es1->rb_node);
1041 if (node) {
1042 es1 = rb_entry(node, struct extent_status,
1043 rb_node);
1044 *next_lblk = es1->es_lblk;
1045 } else
1046 *next_lblk = 0;
1047 }
1048 } else {
1049 percpu_counter_inc(&stats->es_stats_cache_misses);
1050 }
1051
1052 read_unlock(&EXT4_I(inode)->i_es_lock);
1053
1054 trace_ext4_es_lookup_extent_exit(inode, es, found);
1055 return found;
1056 }
1057
1058 struct rsvd_count {
1059 int ndelonly;
1060 bool first_do_lblk_found;
1061 ext4_lblk_t first_do_lblk;
1062 ext4_lblk_t last_do_lblk;
1063 struct extent_status *left_es;
1064 bool partial;
1065 ext4_lblk_t lclu;
1066 };
1067
1068 /*
1069 * init_rsvd - initialize reserved count data before removing block range
1070 * in file from extent status tree
1071 *
1072 * @inode - file containing range
1073 * @lblk - first block in range
1074 * @es - pointer to first extent in range
1075 * @rc - pointer to reserved count data
1076 *
1077 * Assumes es is not NULL
1078 */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1079 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1080 struct extent_status *es, struct rsvd_count *rc)
1081 {
1082 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1083 struct rb_node *node;
1084
1085 rc->ndelonly = 0;
1086
1087 /*
1088 * for bigalloc, note the first delonly block in the range has not
1089 * been found, record the extent containing the block to the left of
1090 * the region to be removed, if any, and note that there's no partial
1091 * cluster to track
1092 */
1093 if (sbi->s_cluster_ratio > 1) {
1094 rc->first_do_lblk_found = false;
1095 if (lblk > es->es_lblk) {
1096 rc->left_es = es;
1097 } else {
1098 node = rb_prev(&es->rb_node);
1099 rc->left_es = node ? rb_entry(node,
1100 struct extent_status,
1101 rb_node) : NULL;
1102 }
1103 rc->partial = false;
1104 }
1105 }
1106
1107 /*
1108 * count_rsvd - count the clusters containing delayed and not unwritten
1109 * (delonly) blocks in a range within an extent and add to
1110 * the running tally in rsvd_count
1111 *
1112 * @inode - file containing extent
1113 * @lblk - first block in range
1114 * @len - length of range in blocks
1115 * @es - pointer to extent containing clusters to be counted
1116 * @rc - pointer to reserved count data
1117 *
1118 * Tracks partial clusters found at the beginning and end of extents so
1119 * they aren't overcounted when they span adjacent extents
1120 */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1121 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1122 struct extent_status *es, struct rsvd_count *rc)
1123 {
1124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1125 ext4_lblk_t i, end, nclu;
1126
1127 if (!ext4_es_is_delonly(es))
1128 return;
1129
1130 WARN_ON(len <= 0);
1131
1132 if (sbi->s_cluster_ratio == 1) {
1133 rc->ndelonly += (int) len;
1134 return;
1135 }
1136
1137 /* bigalloc */
1138
1139 i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1140 end = lblk + (ext4_lblk_t) len - 1;
1141 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1142
1143 /* record the first block of the first delonly extent seen */
1144 if (!rc->first_do_lblk_found) {
1145 rc->first_do_lblk = i;
1146 rc->first_do_lblk_found = true;
1147 }
1148
1149 /* update the last lblk in the region seen so far */
1150 rc->last_do_lblk = end;
1151
1152 /*
1153 * if we're tracking a partial cluster and the current extent
1154 * doesn't start with it, count it and stop tracking
1155 */
1156 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1157 rc->ndelonly++;
1158 rc->partial = false;
1159 }
1160
1161 /*
1162 * if the first cluster doesn't start on a cluster boundary but
1163 * ends on one, count it
1164 */
1165 if (EXT4_LBLK_COFF(sbi, i) != 0) {
1166 if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1167 rc->ndelonly++;
1168 rc->partial = false;
1169 i = EXT4_LBLK_CFILL(sbi, i) + 1;
1170 }
1171 }
1172
1173 /*
1174 * if the current cluster starts on a cluster boundary, count the
1175 * number of whole delonly clusters in the extent
1176 */
1177 if ((i + sbi->s_cluster_ratio - 1) <= end) {
1178 nclu = (end - i + 1) >> sbi->s_cluster_bits;
1179 rc->ndelonly += nclu;
1180 i += nclu << sbi->s_cluster_bits;
1181 }
1182
1183 /*
1184 * start tracking a partial cluster if there's a partial at the end
1185 * of the current extent and we're not already tracking one
1186 */
1187 if (!rc->partial && i <= end) {
1188 rc->partial = true;
1189 rc->lclu = EXT4_B2C(sbi, i);
1190 }
1191 }
1192
1193 /*
1194 * __pr_tree_search - search for a pending cluster reservation
1195 *
1196 * @root - root of pending reservation tree
1197 * @lclu - logical cluster to search for
1198 *
1199 * Returns the pending reservation for the cluster identified by @lclu
1200 * if found. If not, returns a reservation for the next cluster if any,
1201 * and if not, returns NULL.
1202 */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1203 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1204 ext4_lblk_t lclu)
1205 {
1206 struct rb_node *node = root->rb_node;
1207 struct pending_reservation *pr = NULL;
1208
1209 while (node) {
1210 pr = rb_entry(node, struct pending_reservation, rb_node);
1211 if (lclu < pr->lclu)
1212 node = node->rb_left;
1213 else if (lclu > pr->lclu)
1214 node = node->rb_right;
1215 else
1216 return pr;
1217 }
1218 if (pr && lclu < pr->lclu)
1219 return pr;
1220 if (pr && lclu > pr->lclu) {
1221 node = rb_next(&pr->rb_node);
1222 return node ? rb_entry(node, struct pending_reservation,
1223 rb_node) : NULL;
1224 }
1225 return NULL;
1226 }
1227
1228 /*
1229 * get_rsvd - calculates and returns the number of cluster reservations to be
1230 * released when removing a block range from the extent status tree
1231 * and releases any pending reservations within the range
1232 *
1233 * @inode - file containing block range
1234 * @end - last block in range
1235 * @right_es - pointer to extent containing next block beyond end or NULL
1236 * @rc - pointer to reserved count data
1237 *
1238 * The number of reservations to be released is equal to the number of
1239 * clusters containing delayed and not unwritten (delonly) blocks within
1240 * the range, minus the number of clusters still containing delonly blocks
1241 * at the ends of the range, and minus the number of pending reservations
1242 * within the range.
1243 */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1244 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1245 struct extent_status *right_es,
1246 struct rsvd_count *rc)
1247 {
1248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249 struct pending_reservation *pr;
1250 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1251 struct rb_node *node;
1252 ext4_lblk_t first_lclu, last_lclu;
1253 bool left_delonly, right_delonly, count_pending;
1254 struct extent_status *es;
1255
1256 if (sbi->s_cluster_ratio > 1) {
1257 /* count any remaining partial cluster */
1258 if (rc->partial)
1259 rc->ndelonly++;
1260
1261 if (rc->ndelonly == 0)
1262 return 0;
1263
1264 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1265 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1266
1267 /*
1268 * decrease the delonly count by the number of clusters at the
1269 * ends of the range that still contain delonly blocks -
1270 * these clusters still need to be reserved
1271 */
1272 left_delonly = right_delonly = false;
1273
1274 es = rc->left_es;
1275 while (es && ext4_es_end(es) >=
1276 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1277 if (ext4_es_is_delonly(es)) {
1278 rc->ndelonly--;
1279 left_delonly = true;
1280 break;
1281 }
1282 node = rb_prev(&es->rb_node);
1283 if (!node)
1284 break;
1285 es = rb_entry(node, struct extent_status, rb_node);
1286 }
1287 if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1288 if (end < ext4_es_end(right_es)) {
1289 es = right_es;
1290 } else {
1291 node = rb_next(&right_es->rb_node);
1292 es = node ? rb_entry(node, struct extent_status,
1293 rb_node) : NULL;
1294 }
1295 while (es && es->es_lblk <=
1296 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1297 if (ext4_es_is_delonly(es)) {
1298 rc->ndelonly--;
1299 right_delonly = true;
1300 break;
1301 }
1302 node = rb_next(&es->rb_node);
1303 if (!node)
1304 break;
1305 es = rb_entry(node, struct extent_status,
1306 rb_node);
1307 }
1308 }
1309
1310 /*
1311 * Determine the block range that should be searched for
1312 * pending reservations, if any. Clusters on the ends of the
1313 * original removed range containing delonly blocks are
1314 * excluded. They've already been accounted for and it's not
1315 * possible to determine if an associated pending reservation
1316 * should be released with the information available in the
1317 * extents status tree.
1318 */
1319 if (first_lclu == last_lclu) {
1320 if (left_delonly | right_delonly)
1321 count_pending = false;
1322 else
1323 count_pending = true;
1324 } else {
1325 if (left_delonly)
1326 first_lclu++;
1327 if (right_delonly)
1328 last_lclu--;
1329 if (first_lclu <= last_lclu)
1330 count_pending = true;
1331 else
1332 count_pending = false;
1333 }
1334
1335 /*
1336 * a pending reservation found between first_lclu and last_lclu
1337 * represents an allocated cluster that contained at least one
1338 * delonly block, so the delonly total must be reduced by one
1339 * for each pending reservation found and released
1340 */
1341 if (count_pending) {
1342 pr = __pr_tree_search(&tree->root, first_lclu);
1343 while (pr && pr->lclu <= last_lclu) {
1344 rc->ndelonly--;
1345 node = rb_next(&pr->rb_node);
1346 rb_erase(&pr->rb_node, &tree->root);
1347 __free_pending(pr);
1348 if (!node)
1349 break;
1350 pr = rb_entry(node, struct pending_reservation,
1351 rb_node);
1352 }
1353 }
1354 }
1355 return rc->ndelonly;
1356 }
1357
1358
1359 /*
1360 * __es_remove_extent - removes block range from extent status tree
1361 *
1362 * @inode - file containing range
1363 * @lblk - first block in range
1364 * @end - last block in range
1365 * @reserved - number of cluster reservations released
1366 * @prealloc - pre-allocated es to avoid memory allocation failures
1367 *
1368 * If @reserved is not NULL and delayed allocation is enabled, counts
1369 * block/cluster reservations freed by removing range and if bigalloc
1370 * enabled cancels pending reservations as needed. Returns 0 on success,
1371 * error code on failure.
1372 */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1373 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1374 ext4_lblk_t end, int *reserved,
1375 struct extent_status *prealloc)
1376 {
1377 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1378 struct rb_node *node;
1379 struct extent_status *es;
1380 struct extent_status orig_es;
1381 ext4_lblk_t len1, len2;
1382 ext4_fsblk_t block;
1383 int err = 0;
1384 bool count_reserved = true;
1385 struct rsvd_count rc;
1386
1387 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1388 count_reserved = false;
1389
1390 es = __es_tree_search(&tree->root, lblk);
1391 if (!es)
1392 goto out;
1393 if (es->es_lblk > end)
1394 goto out;
1395
1396 /* Simply invalidate cache_es. */
1397 tree->cache_es = NULL;
1398 if (count_reserved)
1399 init_rsvd(inode, lblk, es, &rc);
1400
1401 orig_es.es_lblk = es->es_lblk;
1402 orig_es.es_len = es->es_len;
1403 orig_es.es_pblk = es->es_pblk;
1404
1405 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1406 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1407 if (len1 > 0)
1408 es->es_len = len1;
1409 if (len2 > 0) {
1410 if (len1 > 0) {
1411 struct extent_status newes;
1412
1413 newes.es_lblk = end + 1;
1414 newes.es_len = len2;
1415 block = 0x7FDEADBEEFULL;
1416 if (ext4_es_is_written(&orig_es) ||
1417 ext4_es_is_unwritten(&orig_es))
1418 block = ext4_es_pblock(&orig_es) +
1419 orig_es.es_len - len2;
1420 ext4_es_store_pblock_status(&newes, block,
1421 ext4_es_status(&orig_es));
1422 err = __es_insert_extent(inode, &newes, prealloc);
1423 if (err) {
1424 if (!ext4_es_must_keep(&newes))
1425 return 0;
1426
1427 es->es_lblk = orig_es.es_lblk;
1428 es->es_len = orig_es.es_len;
1429 goto out;
1430 }
1431 } else {
1432 es->es_lblk = end + 1;
1433 es->es_len = len2;
1434 if (ext4_es_is_written(es) ||
1435 ext4_es_is_unwritten(es)) {
1436 block = orig_es.es_pblk + orig_es.es_len - len2;
1437 ext4_es_store_pblock(es, block);
1438 }
1439 }
1440 if (count_reserved)
1441 count_rsvd(inode, orig_es.es_lblk + len1,
1442 orig_es.es_len - len1 - len2, &orig_es, &rc);
1443 goto out_get_reserved;
1444 }
1445
1446 if (len1 > 0) {
1447 if (count_reserved)
1448 count_rsvd(inode, lblk, orig_es.es_len - len1,
1449 &orig_es, &rc);
1450 node = rb_next(&es->rb_node);
1451 if (node)
1452 es = rb_entry(node, struct extent_status, rb_node);
1453 else
1454 es = NULL;
1455 }
1456
1457 while (es && ext4_es_end(es) <= end) {
1458 if (count_reserved)
1459 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1460 node = rb_next(&es->rb_node);
1461 rb_erase(&es->rb_node, &tree->root);
1462 ext4_es_free_extent(inode, es);
1463 if (!node) {
1464 es = NULL;
1465 break;
1466 }
1467 es = rb_entry(node, struct extent_status, rb_node);
1468 }
1469
1470 if (es && es->es_lblk < end + 1) {
1471 ext4_lblk_t orig_len = es->es_len;
1472
1473 len1 = ext4_es_end(es) - end;
1474 if (count_reserved)
1475 count_rsvd(inode, es->es_lblk, orig_len - len1,
1476 es, &rc);
1477 es->es_lblk = end + 1;
1478 es->es_len = len1;
1479 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1480 block = es->es_pblk + orig_len - len1;
1481 ext4_es_store_pblock(es, block);
1482 }
1483 }
1484
1485 out_get_reserved:
1486 if (count_reserved)
1487 *reserved = get_rsvd(inode, end, es, &rc);
1488 out:
1489 return err;
1490 }
1491
1492 /*
1493 * ext4_es_remove_extent - removes block range from extent status tree
1494 *
1495 * @inode - file containing range
1496 * @lblk - first block in range
1497 * @len - number of blocks to remove
1498 *
1499 * Reduces block/cluster reservation count and for bigalloc cancels pending
1500 * reservations as needed. Returns 0 on success, error code on failure.
1501 */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1502 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1503 ext4_lblk_t len)
1504 {
1505 ext4_lblk_t end;
1506 int err = 0;
1507 int reserved = 0;
1508 struct extent_status *es = NULL;
1509
1510 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1511 return 0;
1512
1513 trace_ext4_es_remove_extent(inode, lblk, len);
1514 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1515 lblk, len, inode->i_ino);
1516
1517 if (!len)
1518 return err;
1519
1520 end = lblk + len - 1;
1521 BUG_ON(end < lblk);
1522
1523 retry:
1524 if (err && !es)
1525 es = __es_alloc_extent(true);
1526 /*
1527 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1528 * so that we are sure __es_shrink() is done with the inode before it
1529 * is reclaimed.
1530 */
1531 write_lock(&EXT4_I(inode)->i_es_lock);
1532 err = __es_remove_extent(inode, lblk, end, &reserved, es);
1533 /* Free preallocated extent if it didn't get used. */
1534 if (es) {
1535 if (!es->es_len)
1536 __es_free_extent(es);
1537 es = NULL;
1538 }
1539 write_unlock(&EXT4_I(inode)->i_es_lock);
1540 if (err)
1541 goto retry;
1542
1543 ext4_es_print_tree(inode);
1544 ext4_da_release_space(inode, reserved);
1545 return 0;
1546 }
1547
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1548 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1549 struct ext4_inode_info *locked_ei)
1550 {
1551 struct ext4_inode_info *ei;
1552 struct ext4_es_stats *es_stats;
1553 ktime_t start_time;
1554 u64 scan_time;
1555 int nr_to_walk;
1556 int nr_shrunk = 0;
1557 int retried = 0, nr_skipped = 0;
1558
1559 es_stats = &sbi->s_es_stats;
1560 start_time = ktime_get();
1561
1562 retry:
1563 spin_lock(&sbi->s_es_lock);
1564 nr_to_walk = sbi->s_es_nr_inode;
1565 while (nr_to_walk-- > 0) {
1566 if (list_empty(&sbi->s_es_list)) {
1567 spin_unlock(&sbi->s_es_lock);
1568 goto out;
1569 }
1570 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1571 i_es_list);
1572 /* Move the inode to the tail */
1573 list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1574
1575 /*
1576 * Normally we try hard to avoid shrinking precached inodes,
1577 * but we will as a last resort.
1578 */
1579 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1580 EXT4_STATE_EXT_PRECACHED)) {
1581 nr_skipped++;
1582 continue;
1583 }
1584
1585 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1586 nr_skipped++;
1587 continue;
1588 }
1589 /*
1590 * Now we hold i_es_lock which protects us from inode reclaim
1591 * freeing inode under us
1592 */
1593 spin_unlock(&sbi->s_es_lock);
1594
1595 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1596 write_unlock(&ei->i_es_lock);
1597
1598 if (nr_to_scan <= 0)
1599 goto out;
1600 spin_lock(&sbi->s_es_lock);
1601 }
1602 spin_unlock(&sbi->s_es_lock);
1603
1604 /*
1605 * If we skipped any inodes, and we weren't able to make any
1606 * forward progress, try again to scan precached inodes.
1607 */
1608 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1609 retried++;
1610 goto retry;
1611 }
1612
1613 if (locked_ei && nr_shrunk == 0)
1614 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1615
1616 out:
1617 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1618 if (likely(es_stats->es_stats_scan_time))
1619 es_stats->es_stats_scan_time = (scan_time +
1620 es_stats->es_stats_scan_time*3) / 4;
1621 else
1622 es_stats->es_stats_scan_time = scan_time;
1623 if (scan_time > es_stats->es_stats_max_scan_time)
1624 es_stats->es_stats_max_scan_time = scan_time;
1625 if (likely(es_stats->es_stats_shrunk))
1626 es_stats->es_stats_shrunk = (nr_shrunk +
1627 es_stats->es_stats_shrunk*3) / 4;
1628 else
1629 es_stats->es_stats_shrunk = nr_shrunk;
1630
1631 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1632 nr_skipped, retried);
1633 return nr_shrunk;
1634 }
1635
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1636 static unsigned long ext4_es_count(struct shrinker *shrink,
1637 struct shrink_control *sc)
1638 {
1639 unsigned long nr;
1640 struct ext4_sb_info *sbi;
1641
1642 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1643 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1644 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1645 return nr;
1646 }
1647
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1648 static unsigned long ext4_es_scan(struct shrinker *shrink,
1649 struct shrink_control *sc)
1650 {
1651 struct ext4_sb_info *sbi = container_of(shrink,
1652 struct ext4_sb_info, s_es_shrinker);
1653 int nr_to_scan = sc->nr_to_scan;
1654 int ret, nr_shrunk;
1655
1656 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1657 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1658
1659 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1660
1661 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1662 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1663 return nr_shrunk;
1664 }
1665
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1666 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1667 {
1668 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1669 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1670 struct ext4_inode_info *ei, *max = NULL;
1671 unsigned int inode_cnt = 0;
1672
1673 if (v != SEQ_START_TOKEN)
1674 return 0;
1675
1676 /* here we just find an inode that has the max nr. of objects */
1677 spin_lock(&sbi->s_es_lock);
1678 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1679 inode_cnt++;
1680 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1681 max = ei;
1682 else if (!max)
1683 max = ei;
1684 }
1685 spin_unlock(&sbi->s_es_lock);
1686
1687 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1688 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1689 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1690 seq_printf(seq, " %lld/%lld cache hits/misses\n",
1691 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1692 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1693 if (inode_cnt)
1694 seq_printf(seq, " %d inodes on list\n", inode_cnt);
1695
1696 seq_printf(seq, "average:\n %llu us scan time\n",
1697 div_u64(es_stats->es_stats_scan_time, 1000));
1698 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1699 if (inode_cnt)
1700 seq_printf(seq,
1701 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1702 " %llu us max scan time\n",
1703 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1704 div_u64(es_stats->es_stats_max_scan_time, 1000));
1705
1706 return 0;
1707 }
1708
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1709 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1710 {
1711 int err;
1712
1713 /* Make sure we have enough bits for physical block number */
1714 BUILD_BUG_ON(ES_SHIFT < 48);
1715 INIT_LIST_HEAD(&sbi->s_es_list);
1716 sbi->s_es_nr_inode = 0;
1717 spin_lock_init(&sbi->s_es_lock);
1718 sbi->s_es_stats.es_stats_shrunk = 0;
1719 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1720 GFP_KERNEL);
1721 if (err)
1722 return err;
1723 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1724 GFP_KERNEL);
1725 if (err)
1726 goto err1;
1727 sbi->s_es_stats.es_stats_scan_time = 0;
1728 sbi->s_es_stats.es_stats_max_scan_time = 0;
1729 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1730 if (err)
1731 goto err2;
1732 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1733 if (err)
1734 goto err3;
1735
1736 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1737 sbi->s_es_shrinker.count_objects = ext4_es_count;
1738 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1739 err = register_shrinker(&sbi->s_es_shrinker);
1740 if (err)
1741 goto err4;
1742
1743 return 0;
1744 err4:
1745 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1746 err3:
1747 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1748 err2:
1749 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1750 err1:
1751 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1752 return err;
1753 }
1754
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1755 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1756 {
1757 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1758 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1759 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1760 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1761 unregister_shrinker(&sbi->s_es_shrinker);
1762 }
1763
1764 /*
1765 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1766 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1767 *
1768 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1769 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1770 * ei->i_es_shrink_lblk to where we should continue scanning.
1771 */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1772 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1773 int *nr_to_scan, int *nr_shrunk)
1774 {
1775 struct inode *inode = &ei->vfs_inode;
1776 struct ext4_es_tree *tree = &ei->i_es_tree;
1777 struct extent_status *es;
1778 struct rb_node *node;
1779
1780 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1781 if (!es)
1782 goto out_wrap;
1783
1784 while (*nr_to_scan > 0) {
1785 if (es->es_lblk > end) {
1786 ei->i_es_shrink_lblk = end + 1;
1787 return 0;
1788 }
1789
1790 (*nr_to_scan)--;
1791 node = rb_next(&es->rb_node);
1792
1793 if (ext4_es_must_keep(es))
1794 goto next;
1795 if (ext4_es_is_referenced(es)) {
1796 ext4_es_clear_referenced(es);
1797 goto next;
1798 }
1799
1800 rb_erase(&es->rb_node, &tree->root);
1801 ext4_es_free_extent(inode, es);
1802 (*nr_shrunk)++;
1803 next:
1804 if (!node)
1805 goto out_wrap;
1806 es = rb_entry(node, struct extent_status, rb_node);
1807 }
1808 ei->i_es_shrink_lblk = es->es_lblk;
1809 return 1;
1810 out_wrap:
1811 ei->i_es_shrink_lblk = 0;
1812 return 0;
1813 }
1814
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1815 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1816 {
1817 struct inode *inode = &ei->vfs_inode;
1818 int nr_shrunk = 0;
1819 ext4_lblk_t start = ei->i_es_shrink_lblk;
1820 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1821 DEFAULT_RATELIMIT_BURST);
1822
1823 if (ei->i_es_shk_nr == 0)
1824 return 0;
1825
1826 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1827 __ratelimit(&_rs))
1828 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1829
1830 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1831 start != 0)
1832 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1833
1834 ei->i_es_tree.cache_es = NULL;
1835 return nr_shrunk;
1836 }
1837
1838 /*
1839 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
1840 * discretionary entries from the extent status cache. (Some entries
1841 * must be present for proper operations.)
1842 */
ext4_clear_inode_es(struct inode * inode)1843 void ext4_clear_inode_es(struct inode *inode)
1844 {
1845 struct ext4_inode_info *ei = EXT4_I(inode);
1846 struct extent_status *es;
1847 struct ext4_es_tree *tree;
1848 struct rb_node *node;
1849
1850 write_lock(&ei->i_es_lock);
1851 tree = &EXT4_I(inode)->i_es_tree;
1852 tree->cache_es = NULL;
1853 node = rb_first(&tree->root);
1854 while (node) {
1855 es = rb_entry(node, struct extent_status, rb_node);
1856 node = rb_next(node);
1857 if (!ext4_es_must_keep(es)) {
1858 rb_erase(&es->rb_node, &tree->root);
1859 ext4_es_free_extent(inode, es);
1860 }
1861 }
1862 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1863 write_unlock(&ei->i_es_lock);
1864 }
1865
1866 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1867 static void ext4_print_pending_tree(struct inode *inode)
1868 {
1869 struct ext4_pending_tree *tree;
1870 struct rb_node *node;
1871 struct pending_reservation *pr;
1872
1873 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1874 tree = &EXT4_I(inode)->i_pending_tree;
1875 node = rb_first(&tree->root);
1876 while (node) {
1877 pr = rb_entry(node, struct pending_reservation, rb_node);
1878 printk(KERN_DEBUG " %u", pr->lclu);
1879 node = rb_next(node);
1880 }
1881 printk(KERN_DEBUG "\n");
1882 }
1883 #else
1884 #define ext4_print_pending_tree(inode)
1885 #endif
1886
ext4_init_pending(void)1887 int __init ext4_init_pending(void)
1888 {
1889 ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1890 sizeof(struct pending_reservation),
1891 0, (SLAB_RECLAIM_ACCOUNT), NULL);
1892 if (ext4_pending_cachep == NULL)
1893 return -ENOMEM;
1894 return 0;
1895 }
1896
ext4_exit_pending(void)1897 void ext4_exit_pending(void)
1898 {
1899 kmem_cache_destroy(ext4_pending_cachep);
1900 }
1901
ext4_init_pending_tree(struct ext4_pending_tree * tree)1902 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1903 {
1904 tree->root = RB_ROOT;
1905 }
1906
1907 /*
1908 * __get_pending - retrieve a pointer to a pending reservation
1909 *
1910 * @inode - file containing the pending cluster reservation
1911 * @lclu - logical cluster of interest
1912 *
1913 * Returns a pointer to a pending reservation if it's a member of
1914 * the set, and NULL if not. Must be called holding i_es_lock.
1915 */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1916 static struct pending_reservation *__get_pending(struct inode *inode,
1917 ext4_lblk_t lclu)
1918 {
1919 struct ext4_pending_tree *tree;
1920 struct rb_node *node;
1921 struct pending_reservation *pr = NULL;
1922
1923 tree = &EXT4_I(inode)->i_pending_tree;
1924 node = (&tree->root)->rb_node;
1925
1926 while (node) {
1927 pr = rb_entry(node, struct pending_reservation, rb_node);
1928 if (lclu < pr->lclu)
1929 node = node->rb_left;
1930 else if (lclu > pr->lclu)
1931 node = node->rb_right;
1932 else if (lclu == pr->lclu)
1933 return pr;
1934 }
1935 return NULL;
1936 }
1937
1938 /*
1939 * __insert_pending - adds a pending cluster reservation to the set of
1940 * pending reservations
1941 *
1942 * @inode - file containing the cluster
1943 * @lblk - logical block in the cluster to be added
1944 * @prealloc - preallocated pending entry
1945 *
1946 * Returns 0 on successful insertion and -ENOMEM on failure. If the
1947 * pending reservation is already in the set, returns successfully.
1948 */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1949 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1950 struct pending_reservation **prealloc)
1951 {
1952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1953 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1954 struct rb_node **p = &tree->root.rb_node;
1955 struct rb_node *parent = NULL;
1956 struct pending_reservation *pr;
1957 ext4_lblk_t lclu;
1958 int ret = 0;
1959
1960 lclu = EXT4_B2C(sbi, lblk);
1961 /* search to find parent for insertion */
1962 while (*p) {
1963 parent = *p;
1964 pr = rb_entry(parent, struct pending_reservation, rb_node);
1965
1966 if (lclu < pr->lclu) {
1967 p = &(*p)->rb_left;
1968 } else if (lclu > pr->lclu) {
1969 p = &(*p)->rb_right;
1970 } else {
1971 /* pending reservation already inserted */
1972 goto out;
1973 }
1974 }
1975
1976 if (likely(*prealloc == NULL)) {
1977 pr = __alloc_pending(false);
1978 if (!pr) {
1979 ret = -ENOMEM;
1980 goto out;
1981 }
1982 } else {
1983 pr = *prealloc;
1984 *prealloc = NULL;
1985 }
1986 pr->lclu = lclu;
1987
1988 rb_link_node(&pr->rb_node, parent, p);
1989 rb_insert_color(&pr->rb_node, &tree->root);
1990
1991 out:
1992 return ret;
1993 }
1994
1995 /*
1996 * __remove_pending - removes a pending cluster reservation from the set
1997 * of pending reservations
1998 *
1999 * @inode - file containing the cluster
2000 * @lblk - logical block in the pending cluster reservation to be removed
2001 *
2002 * Returns successfully if pending reservation is not a member of the set.
2003 */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)2004 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2005 {
2006 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2007 struct pending_reservation *pr;
2008 struct ext4_pending_tree *tree;
2009
2010 pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2011 if (pr != NULL) {
2012 tree = &EXT4_I(inode)->i_pending_tree;
2013 rb_erase(&pr->rb_node, &tree->root);
2014 __free_pending(pr);
2015 }
2016 }
2017
2018 /*
2019 * ext4_remove_pending - removes a pending cluster reservation from the set
2020 * of pending reservations
2021 *
2022 * @inode - file containing the cluster
2023 * @lblk - logical block in the pending cluster reservation to be removed
2024 *
2025 * Locking for external use of __remove_pending.
2026 */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2027 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2028 {
2029 struct ext4_inode_info *ei = EXT4_I(inode);
2030
2031 write_lock(&ei->i_es_lock);
2032 __remove_pending(inode, lblk);
2033 write_unlock(&ei->i_es_lock);
2034 }
2035
2036 /*
2037 * ext4_is_pending - determine whether a cluster has a pending reservation
2038 * on it
2039 *
2040 * @inode - file containing the cluster
2041 * @lblk - logical block in the cluster
2042 *
2043 * Returns true if there's a pending reservation for the cluster in the
2044 * set of pending reservations, and false if not.
2045 */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2046 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2047 {
2048 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2049 struct ext4_inode_info *ei = EXT4_I(inode);
2050 bool ret;
2051
2052 read_lock(&ei->i_es_lock);
2053 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2054 read_unlock(&ei->i_es_lock);
2055
2056 return ret;
2057 }
2058
2059 /*
2060 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2061 * tree, adding a pending reservation where
2062 * needed
2063 *
2064 * @inode - file containing the newly added block
2065 * @lblk - logical block to be added
2066 * @allocated - indicates whether a physical cluster has been allocated for
2067 * the logical cluster that contains the block
2068 *
2069 * Returns 0 on success, negative error code on failure.
2070 */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2071 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2072 bool allocated)
2073 {
2074 struct extent_status newes;
2075 int err1 = 0, err2 = 0, err3 = 0;
2076 struct extent_status *es1 = NULL;
2077 struct extent_status *es2 = NULL;
2078 struct pending_reservation *pr = NULL;
2079
2080 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2081 return 0;
2082
2083 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2084 lblk, inode->i_ino);
2085
2086 newes.es_lblk = lblk;
2087 newes.es_len = 1;
2088 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2089 trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2090
2091 ext4_es_insert_extent_check(inode, &newes);
2092
2093 retry:
2094 if (err1 && !es1)
2095 es1 = __es_alloc_extent(true);
2096 if ((err1 || err2) && !es2)
2097 es2 = __es_alloc_extent(true);
2098 if ((err1 || err2 || err3) && allocated && !pr)
2099 pr = __alloc_pending(true);
2100 write_lock(&EXT4_I(inode)->i_es_lock);
2101
2102 err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2103 if (err1 != 0)
2104 goto error;
2105 /* Free preallocated extent if it didn't get used. */
2106 if (es1) {
2107 if (!es1->es_len)
2108 __es_free_extent(es1);
2109 es1 = NULL;
2110 }
2111
2112 err2 = __es_insert_extent(inode, &newes, es2);
2113 if (err2 != 0)
2114 goto error;
2115 /* Free preallocated extent if it didn't get used. */
2116 if (es2) {
2117 if (!es2->es_len)
2118 __es_free_extent(es2);
2119 es2 = NULL;
2120 }
2121
2122 if (allocated) {
2123 err3 = __insert_pending(inode, lblk, &pr);
2124 if (err3 != 0)
2125 goto error;
2126 if (pr) {
2127 __free_pending(pr);
2128 pr = NULL;
2129 }
2130 }
2131 error:
2132 write_unlock(&EXT4_I(inode)->i_es_lock);
2133 if (err1 || err2 || err3)
2134 goto retry;
2135
2136 ext4_es_print_tree(inode);
2137 ext4_print_pending_tree(inode);
2138 return 0;
2139 }
2140
2141 /*
2142 * __es_delayed_clu - count number of clusters containing blocks that
2143 * are delayed only
2144 *
2145 * @inode - file containing block range
2146 * @start - logical block defining start of range
2147 * @end - logical block defining end of range
2148 *
2149 * Returns the number of clusters containing only delayed (not delayed
2150 * and unwritten) blocks in the range specified by @start and @end. Any
2151 * cluster or part of a cluster within the range and containing a delayed
2152 * and not unwritten block within the range is counted as a whole cluster.
2153 */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2154 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2155 ext4_lblk_t end)
2156 {
2157 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2158 struct extent_status *es;
2159 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2160 struct rb_node *node;
2161 ext4_lblk_t first_lclu, last_lclu;
2162 unsigned long long last_counted_lclu;
2163 unsigned int n = 0;
2164
2165 /* guaranteed to be unequal to any ext4_lblk_t value */
2166 last_counted_lclu = ~0ULL;
2167
2168 es = __es_tree_search(&tree->root, start);
2169
2170 while (es && (es->es_lblk <= end)) {
2171 if (ext4_es_is_delonly(es)) {
2172 if (es->es_lblk <= start)
2173 first_lclu = EXT4_B2C(sbi, start);
2174 else
2175 first_lclu = EXT4_B2C(sbi, es->es_lblk);
2176
2177 if (ext4_es_end(es) >= end)
2178 last_lclu = EXT4_B2C(sbi, end);
2179 else
2180 last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2181
2182 if (first_lclu == last_counted_lclu)
2183 n += last_lclu - first_lclu;
2184 else
2185 n += last_lclu - first_lclu + 1;
2186 last_counted_lclu = last_lclu;
2187 }
2188 node = rb_next(&es->rb_node);
2189 if (!node)
2190 break;
2191 es = rb_entry(node, struct extent_status, rb_node);
2192 }
2193
2194 return n;
2195 }
2196
2197 /*
2198 * ext4_es_delayed_clu - count number of clusters containing blocks that
2199 * are both delayed and unwritten
2200 *
2201 * @inode - file containing block range
2202 * @lblk - logical block defining start of range
2203 * @len - number of blocks in range
2204 *
2205 * Locking for external use of __es_delayed_clu().
2206 */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2207 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2208 ext4_lblk_t len)
2209 {
2210 struct ext4_inode_info *ei = EXT4_I(inode);
2211 ext4_lblk_t end;
2212 unsigned int n;
2213
2214 if (len == 0)
2215 return 0;
2216
2217 end = lblk + len - 1;
2218 WARN_ON(end < lblk);
2219
2220 read_lock(&ei->i_es_lock);
2221
2222 n = __es_delayed_clu(inode, lblk, end);
2223
2224 read_unlock(&ei->i_es_lock);
2225
2226 return n;
2227 }
2228
2229 /*
2230 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2231 * reservations for a specified block range depending
2232 * upon the presence or absence of delayed blocks
2233 * outside the range within clusters at the ends of the
2234 * range
2235 *
2236 * @inode - file containing the range
2237 * @lblk - logical block defining the start of range
2238 * @len - length of range in blocks
2239 * @prealloc - preallocated pending entry
2240 *
2241 * Used after a newly allocated extent is added to the extents status tree.
2242 * Requires that the extents in the range have either written or unwritten
2243 * status. Must be called while holding i_es_lock.
2244 */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2245 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2246 ext4_lblk_t len,
2247 struct pending_reservation **prealloc)
2248 {
2249 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2250 ext4_lblk_t end = lblk + len - 1;
2251 ext4_lblk_t first, last;
2252 bool f_del = false, l_del = false;
2253 int ret = 0;
2254
2255 if (len == 0)
2256 return 0;
2257
2258 /*
2259 * Two cases - block range within single cluster and block range
2260 * spanning two or more clusters. Note that a cluster belonging
2261 * to a range starting and/or ending on a cluster boundary is treated
2262 * as if it does not contain a delayed extent. The new range may
2263 * have allocated space for previously delayed blocks out to the
2264 * cluster boundary, requiring that any pre-existing pending
2265 * reservation be canceled. Because this code only looks at blocks
2266 * outside the range, it should revise pending reservations
2267 * correctly even if the extent represented by the range can't be
2268 * inserted in the extents status tree due to ENOSPC.
2269 */
2270
2271 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2272 first = EXT4_LBLK_CMASK(sbi, lblk);
2273 if (first != lblk)
2274 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2275 first, lblk - 1);
2276 if (f_del) {
2277 ret = __insert_pending(inode, first, prealloc);
2278 if (ret < 0)
2279 goto out;
2280 } else {
2281 last = EXT4_LBLK_CMASK(sbi, end) +
2282 sbi->s_cluster_ratio - 1;
2283 if (last != end)
2284 l_del = __es_scan_range(inode,
2285 &ext4_es_is_delonly,
2286 end + 1, last);
2287 if (l_del) {
2288 ret = __insert_pending(inode, last, prealloc);
2289 if (ret < 0)
2290 goto out;
2291 } else
2292 __remove_pending(inode, last);
2293 }
2294 } else {
2295 first = EXT4_LBLK_CMASK(sbi, lblk);
2296 if (first != lblk)
2297 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2298 first, lblk - 1);
2299 if (f_del) {
2300 ret = __insert_pending(inode, first, prealloc);
2301 if (ret < 0)
2302 goto out;
2303 } else
2304 __remove_pending(inode, first);
2305
2306 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2307 if (last != end)
2308 l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2309 end + 1, last);
2310 if (l_del) {
2311 ret = __insert_pending(inode, last, prealloc);
2312 if (ret < 0)
2313 goto out;
2314 } else
2315 __remove_pending(inode, last);
2316 }
2317 out:
2318 return ret;
2319 }
2320