• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
ext4_dio_supported(struct inode * inode)39 static bool ext4_dio_supported(struct inode *inode)
40 {
41 	if (IS_ENABLED(CONFIG_FS_ENCRYPTION) && IS_ENCRYPTED(inode))
42 		return false;
43 	if (fsverity_active(inode))
44 		return false;
45 	if (ext4_should_journal_data(inode))
46 		return false;
47 	if (ext4_has_inline_data(inode))
48 		return false;
49 	return true;
50 }
51 
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)52 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
53 {
54 	ssize_t ret;
55 	struct inode *inode = file_inode(iocb->ki_filp);
56 
57 	if (iocb->ki_flags & IOCB_NOWAIT) {
58 		if (!inode_trylock_shared(inode))
59 			return -EAGAIN;
60 	} else {
61 		inode_lock_shared(inode);
62 	}
63 
64 	if (!ext4_dio_supported(inode)) {
65 		inode_unlock_shared(inode);
66 		/*
67 		 * Fallback to buffered I/O if the operation being performed on
68 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 		 * flag needs to be cleared here in order to ensure that the
70 		 * direct I/O path within generic_file_read_iter() is not
71 		 * taken.
72 		 */
73 		iocb->ki_flags &= ~IOCB_DIRECT;
74 		return generic_file_read_iter(iocb, to);
75 	}
76 
77 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL,
78 			   is_sync_kiocb(iocb));
79 	inode_unlock_shared(inode);
80 
81 	file_accessed(iocb->ki_filp);
82 	return ret;
83 }
84 
85 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)86 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
87 {
88 	struct inode *inode = file_inode(iocb->ki_filp);
89 	ssize_t ret;
90 
91 	if (iocb->ki_flags & IOCB_NOWAIT) {
92 		if (!inode_trylock_shared(inode))
93 			return -EAGAIN;
94 	} else {
95 		inode_lock_shared(inode);
96 	}
97 	/*
98 	 * Recheck under inode lock - at this point we are sure it cannot
99 	 * change anymore
100 	 */
101 	if (!IS_DAX(inode)) {
102 		inode_unlock_shared(inode);
103 		/* Fallback to buffered IO in case we cannot support DAX */
104 		return generic_file_read_iter(iocb, to);
105 	}
106 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
107 	inode_unlock_shared(inode);
108 
109 	file_accessed(iocb->ki_filp);
110 	return ret;
111 }
112 #endif
113 
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)114 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
115 {
116 	struct inode *inode = file_inode(iocb->ki_filp);
117 
118 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
119 		return -EIO;
120 
121 	if (!iov_iter_count(to))
122 		return 0; /* skip atime */
123 
124 #ifdef CONFIG_FS_DAX
125 	if (IS_DAX(inode))
126 		return ext4_dax_read_iter(iocb, to);
127 #endif
128 	if (iocb->ki_flags & IOCB_DIRECT)
129 		return ext4_dio_read_iter(iocb, to);
130 
131 	return generic_file_read_iter(iocb, to);
132 }
133 
134 /*
135  * Called when an inode is released. Note that this is different
136  * from ext4_file_open: open gets called at every open, but release
137  * gets called only when /all/ the files are closed.
138  */
ext4_release_file(struct inode * inode,struct file * filp)139 static int ext4_release_file(struct inode *inode, struct file *filp)
140 {
141 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
142 		ext4_alloc_da_blocks(inode);
143 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
144 	}
145 	/* if we are the last writer on the inode, drop the block reservation */
146 	if ((filp->f_mode & FMODE_WRITE) &&
147 			(atomic_read(&inode->i_writecount) == 1) &&
148 			!EXT4_I(inode)->i_reserved_data_blocks) {
149 		down_write(&EXT4_I(inode)->i_data_sem);
150 		ext4_discard_preallocations(inode, 0);
151 		up_write(&EXT4_I(inode)->i_data_sem);
152 	}
153 	if (is_dx(inode) && filp->private_data)
154 		ext4_htree_free_dir_info(filp->private_data);
155 
156 	return 0;
157 }
158 
159 /*
160  * This tests whether the IO in question is block-aligned or not.
161  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
162  * are converted to written only after the IO is complete.  Until they are
163  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
164  * it needs to zero out portions of the start and/or end block.  If 2 AIO
165  * threads are at work on the same unwritten block, they must be synchronized
166  * or one thread will zero the other's data, causing corruption.
167  */
168 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)169 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
170 {
171 	struct super_block *sb = inode->i_sb;
172 	unsigned long blockmask = sb->s_blocksize - 1;
173 
174 	if ((pos | iov_iter_alignment(from)) & blockmask)
175 		return true;
176 
177 	return false;
178 }
179 
180 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)181 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
182 {
183 	if (offset + len > i_size_read(inode) ||
184 	    offset + len > EXT4_I(inode)->i_disksize)
185 		return true;
186 	return false;
187 }
188 
189 /* Is IO overwriting allocated and initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len)190 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
191 {
192 	struct ext4_map_blocks map;
193 	unsigned int blkbits = inode->i_blkbits;
194 	int err, blklen;
195 
196 	if (pos + len > i_size_read(inode))
197 		return false;
198 
199 	map.m_lblk = pos >> blkbits;
200 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
201 	blklen = map.m_len;
202 
203 	err = ext4_map_blocks(NULL, inode, &map, 0);
204 	/*
205 	 * 'err==len' means that all of the blocks have been preallocated,
206 	 * regardless of whether they have been initialized or not. To exclude
207 	 * unwritten extents, we need to check m_flags.
208 	 */
209 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
210 }
211 
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)212 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
213 					 struct iov_iter *from)
214 {
215 	struct inode *inode = file_inode(iocb->ki_filp);
216 	ssize_t ret;
217 
218 	if (unlikely(IS_IMMUTABLE(inode)))
219 		return -EPERM;
220 
221 	ret = generic_write_checks(iocb, from);
222 	if (ret <= 0)
223 		return ret;
224 
225 	/*
226 	 * If we have encountered a bitmap-format file, the size limit
227 	 * is smaller than s_maxbytes, which is for extent-mapped files.
228 	 */
229 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
230 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
231 
232 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
233 			return -EFBIG;
234 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
235 	}
236 
237 	return iov_iter_count(from);
238 }
239 
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)240 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
241 {
242 	ssize_t ret, count;
243 
244 	count = ext4_generic_write_checks(iocb, from);
245 	if (count <= 0)
246 		return count;
247 
248 	ret = file_modified(iocb->ki_filp);
249 	if (ret)
250 		return ret;
251 	return count;
252 }
253 
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)254 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
255 					struct iov_iter *from)
256 {
257 	ssize_t ret;
258 	struct inode *inode = file_inode(iocb->ki_filp);
259 
260 	if (iocb->ki_flags & IOCB_NOWAIT)
261 		return -EOPNOTSUPP;
262 
263 	inode_lock(inode);
264 	ret = ext4_write_checks(iocb, from);
265 	if (ret <= 0)
266 		goto out;
267 
268 	current->backing_dev_info = inode_to_bdi(inode);
269 	ret = generic_perform_write(iocb->ki_filp, from, iocb->ki_pos);
270 	current->backing_dev_info = NULL;
271 
272 out:
273 	inode_unlock(inode);
274 	if (likely(ret > 0)) {
275 		iocb->ki_pos += ret;
276 		ret = generic_write_sync(iocb, ret);
277 	}
278 
279 	return ret;
280 }
281 
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t count)282 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
283 					   ssize_t count)
284 {
285 	handle_t *handle;
286 
287 	lockdep_assert_held_write(&inode->i_rwsem);
288 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
289 	if (IS_ERR(handle))
290 		return PTR_ERR(handle);
291 
292 	if (ext4_update_inode_size(inode, offset + count)) {
293 		int ret = ext4_mark_inode_dirty(handle, inode);
294 		if (unlikely(ret)) {
295 			ext4_journal_stop(handle);
296 			return ret;
297 		}
298 	}
299 
300 	if (inode->i_nlink)
301 		ext4_orphan_del(handle, inode);
302 	ext4_journal_stop(handle);
303 
304 	return count;
305 }
306 
307 /*
308  * Clean up the inode after DIO or DAX extending write has completed and the
309  * inode size has been updated using ext4_handle_inode_extension().
310  */
ext4_inode_extension_cleanup(struct inode * inode,bool need_trunc)311 static void ext4_inode_extension_cleanup(struct inode *inode, bool need_trunc)
312 {
313 	lockdep_assert_held_write(&inode->i_rwsem);
314 	if (need_trunc) {
315 		ext4_truncate_failed_write(inode);
316 		/*
317 		 * If the truncate operation failed early, then the inode may
318 		 * still be on the orphan list. In that case, we need to try
319 		 * remove the inode from the in-memory linked list.
320 		 */
321 		if (inode->i_nlink)
322 			ext4_orphan_del(NULL, inode);
323 		return;
324 	}
325 	/*
326 	 * If i_disksize got extended either due to writeback of delalloc
327 	 * blocks or extending truncate while the DIO was running we could fail
328 	 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
329 	 * now.
330 	 */
331 	if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
332 		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
333 
334 		if (IS_ERR(handle)) {
335 			/*
336 			 * The write has successfully completed. Not much to
337 			 * do with the error here so just cleanup the orphan
338 			 * list and hope for the best.
339 			 */
340 			ext4_orphan_del(NULL, inode);
341 			return;
342 		}
343 		ext4_orphan_del(handle, inode);
344 		ext4_journal_stop(handle);
345 	}
346 }
347 
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)348 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
349 				 int error, unsigned int flags)
350 {
351 	loff_t pos = iocb->ki_pos;
352 	struct inode *inode = file_inode(iocb->ki_filp);
353 
354 	if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
355 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
356 	if (error)
357 		return error;
358 	/*
359 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
360 	 * inode->i_size while the I/O was running due to writeback of delalloc
361 	 * blocks. But the code in ext4_iomap_alloc() is careful to use
362 	 * zeroed/unwritten extents if this is possible; thus we won't leave
363 	 * uninitialized blocks in a file even if we didn't succeed in writing
364 	 * as much as we intended. Also we can race with truncate or write
365 	 * expanding the file so we have to be a bit careful here.
366 	 */
367 	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
368 	    pos + size <= i_size_read(inode))
369 		return size;
370 	return ext4_handle_inode_extension(inode, pos, size);
371 }
372 
373 static const struct iomap_dio_ops ext4_dio_write_ops = {
374 	.end_io = ext4_dio_write_end_io,
375 };
376 
377 /*
378  * The intention here is to start with shared lock acquired then see if any
379  * condition requires an exclusive inode lock. If yes, then we restart the
380  * whole operation by releasing the shared lock and acquiring exclusive lock.
381  *
382  * - For unaligned_io we never take shared lock as it may cause data corruption
383  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
384  *
385  * - For extending writes case we don't take the shared lock, since it requires
386  *   updating inode i_disksize and/or orphan handling with exclusive lock.
387  *
388  * - shared locking will only be true mostly with overwrites. Otherwise we will
389  *   switch to exclusive i_rwsem lock.
390  */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend)391 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
392 				     bool *ilock_shared, bool *extend)
393 {
394 	struct file *file = iocb->ki_filp;
395 	struct inode *inode = file_inode(file);
396 	loff_t offset;
397 	size_t count;
398 	ssize_t ret;
399 
400 restart:
401 	ret = ext4_generic_write_checks(iocb, from);
402 	if (ret <= 0)
403 		goto out;
404 
405 	offset = iocb->ki_pos;
406 	count = ret;
407 	if (ext4_extending_io(inode, offset, count))
408 		*extend = true;
409 	/*
410 	 * Determine whether the IO operation will overwrite allocated
411 	 * and initialized blocks.
412 	 * We need exclusive i_rwsem for changing security info
413 	 * in file_modified().
414 	 */
415 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
416 	     !ext4_overwrite_io(inode, offset, count))) {
417 		if (iocb->ki_flags & IOCB_NOWAIT) {
418 			ret = -EAGAIN;
419 			goto out;
420 		}
421 		inode_unlock_shared(inode);
422 		*ilock_shared = false;
423 		inode_lock(inode);
424 		goto restart;
425 	}
426 
427 	ret = file_modified(file);
428 	if (ret < 0)
429 		goto out;
430 
431 	return count;
432 out:
433 	if (*ilock_shared)
434 		inode_unlock_shared(inode);
435 	else
436 		inode_unlock(inode);
437 	return ret;
438 }
439 
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)440 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
441 {
442 	ssize_t ret;
443 	handle_t *handle;
444 	struct inode *inode = file_inode(iocb->ki_filp);
445 	loff_t offset = iocb->ki_pos;
446 	size_t count = iov_iter_count(from);
447 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
448 	bool extend = false, unaligned_io = false;
449 	bool ilock_shared = true;
450 
451 	/*
452 	 * We initially start with shared inode lock unless it is
453 	 * unaligned IO which needs exclusive lock anyways.
454 	 */
455 	if (ext4_unaligned_io(inode, from, offset)) {
456 		unaligned_io = true;
457 		ilock_shared = false;
458 	}
459 	/*
460 	 * Quick check here without any i_rwsem lock to see if it is extending
461 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
462 	 * proper locking in place.
463 	 */
464 	if (offset + count > i_size_read(inode))
465 		ilock_shared = false;
466 
467 	if (iocb->ki_flags & IOCB_NOWAIT) {
468 		if (ilock_shared) {
469 			if (!inode_trylock_shared(inode))
470 				return -EAGAIN;
471 		} else {
472 			if (!inode_trylock(inode))
473 				return -EAGAIN;
474 		}
475 	} else {
476 		if (ilock_shared)
477 			inode_lock_shared(inode);
478 		else
479 			inode_lock(inode);
480 	}
481 
482 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
483 	if (!ext4_dio_supported(inode)) {
484 		if (ilock_shared)
485 			inode_unlock_shared(inode);
486 		else
487 			inode_unlock(inode);
488 		return ext4_buffered_write_iter(iocb, from);
489 	}
490 
491 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
492 	if (ret <= 0)
493 		return ret;
494 
495 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
496 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
497 		ret = -EAGAIN;
498 		goto out;
499 	}
500 	/*
501 	 * Make sure inline data cannot be created anymore since we are going
502 	 * to allocate blocks for DIO. We know the inode does not have any
503 	 * inline data now because ext4_dio_supported() checked for that.
504 	 */
505 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
506 
507 	offset = iocb->ki_pos;
508 	count = ret;
509 
510 	/*
511 	 * Unaligned direct IO must be serialized among each other as zeroing
512 	 * of partial blocks of two competing unaligned IOs can result in data
513 	 * corruption.
514 	 *
515 	 * So we make sure we don't allow any unaligned IO in flight.
516 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
517 	 * below inode_dio_wait() may anyway become a no-op, since we start
518 	 * with exclusive lock.
519 	 */
520 	if (unaligned_io)
521 		inode_dio_wait(inode);
522 
523 	if (extend) {
524 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
525 		if (IS_ERR(handle)) {
526 			ret = PTR_ERR(handle);
527 			goto out;
528 		}
529 
530 		ret = ext4_orphan_add(handle, inode);
531 		if (ret) {
532 			ext4_journal_stop(handle);
533 			goto out;
534 		}
535 
536 		ext4_journal_stop(handle);
537 	}
538 
539 	if (ilock_shared)
540 		iomap_ops = &ext4_iomap_overwrite_ops;
541 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
542 			   is_sync_kiocb(iocb) || unaligned_io || extend);
543 	if (ret == -ENOTBLK)
544 		ret = 0;
545 	if (extend) {
546 		/*
547 		 * We always perform extending DIO write synchronously so by
548 		 * now the IO is completed and ext4_handle_inode_extension()
549 		 * was called. Cleanup the inode in case of error or race with
550 		 * writeback of delalloc blocks.
551 		 */
552 		WARN_ON_ONCE(ret == -EIOCBQUEUED);
553 		ext4_inode_extension_cleanup(inode, ret < 0);
554 	}
555 
556 out:
557 	if (ilock_shared)
558 		inode_unlock_shared(inode);
559 	else
560 		inode_unlock(inode);
561 
562 	if (ret >= 0 && iov_iter_count(from)) {
563 		ssize_t err;
564 		loff_t endbyte;
565 
566 		offset = iocb->ki_pos;
567 		err = ext4_buffered_write_iter(iocb, from);
568 		if (err < 0)
569 			return err;
570 
571 		/*
572 		 * We need to ensure that the pages within the page cache for
573 		 * the range covered by this I/O are written to disk and
574 		 * invalidated. This is in attempt to preserve the expected
575 		 * direct I/O semantics in the case we fallback to buffered I/O
576 		 * to complete off the I/O request.
577 		 */
578 		ret += err;
579 		endbyte = offset + err - 1;
580 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
581 						   offset, endbyte);
582 		if (!err)
583 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
584 						 offset >> PAGE_SHIFT,
585 						 endbyte >> PAGE_SHIFT);
586 	}
587 
588 	return ret;
589 }
590 
591 #ifdef CONFIG_FS_DAX
592 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)593 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
594 {
595 	ssize_t ret;
596 	size_t count;
597 	loff_t offset;
598 	handle_t *handle;
599 	bool extend = false;
600 	struct inode *inode = file_inode(iocb->ki_filp);
601 
602 	if (iocb->ki_flags & IOCB_NOWAIT) {
603 		if (!inode_trylock(inode))
604 			return -EAGAIN;
605 	} else {
606 		inode_lock(inode);
607 	}
608 
609 	ret = ext4_write_checks(iocb, from);
610 	if (ret <= 0)
611 		goto out;
612 
613 	offset = iocb->ki_pos;
614 	count = iov_iter_count(from);
615 
616 	if (offset + count > EXT4_I(inode)->i_disksize) {
617 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
618 		if (IS_ERR(handle)) {
619 			ret = PTR_ERR(handle);
620 			goto out;
621 		}
622 
623 		ret = ext4_orphan_add(handle, inode);
624 		if (ret) {
625 			ext4_journal_stop(handle);
626 			goto out;
627 		}
628 
629 		extend = true;
630 		ext4_journal_stop(handle);
631 	}
632 
633 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
634 
635 	if (extend) {
636 		ret = ext4_handle_inode_extension(inode, offset, ret);
637 		ext4_inode_extension_cleanup(inode, ret < (ssize_t)count);
638 	}
639 out:
640 	inode_unlock(inode);
641 	if (ret > 0)
642 		ret = generic_write_sync(iocb, ret);
643 	return ret;
644 }
645 #endif
646 
647 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)648 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
649 {
650 	struct inode *inode = file_inode(iocb->ki_filp);
651 
652 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
653 		return -EIO;
654 
655 #ifdef CONFIG_FS_DAX
656 	if (IS_DAX(inode))
657 		return ext4_dax_write_iter(iocb, from);
658 #endif
659 	if (iocb->ki_flags & IOCB_DIRECT)
660 		return ext4_dio_write_iter(iocb, from);
661 	else
662 		return ext4_buffered_write_iter(iocb, from);
663 }
664 
665 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)666 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
667 		enum page_entry_size pe_size)
668 {
669 	int error = 0;
670 	vm_fault_t result;
671 	int retries = 0;
672 	handle_t *handle = NULL;
673 	struct inode *inode = file_inode(vmf->vma->vm_file);
674 	struct super_block *sb = inode->i_sb;
675 
676 	/*
677 	 * We have to distinguish real writes from writes which will result in a
678 	 * COW page; COW writes should *not* poke the journal (the file will not
679 	 * be changed). Doing so would cause unintended failures when mounted
680 	 * read-only.
681 	 *
682 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
683 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
684 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
685 	 * we eventually come back with a COW page.
686 	 */
687 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
688 		(vmf->vma->vm_flags & VM_SHARED);
689 	pfn_t pfn;
690 
691 	if (write) {
692 		sb_start_pagefault(sb);
693 		file_update_time(vmf->vma->vm_file);
694 		down_read(&EXT4_I(inode)->i_mmap_sem);
695 retry:
696 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
697 					       EXT4_DATA_TRANS_BLOCKS(sb));
698 		if (IS_ERR(handle)) {
699 			up_read(&EXT4_I(inode)->i_mmap_sem);
700 			sb_end_pagefault(sb);
701 			return VM_FAULT_SIGBUS;
702 		}
703 	} else {
704 		down_read(&EXT4_I(inode)->i_mmap_sem);
705 	}
706 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
707 	if (write) {
708 		ext4_journal_stop(handle);
709 
710 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
711 		    ext4_should_retry_alloc(sb, &retries))
712 			goto retry;
713 		/* Handling synchronous page fault? */
714 		if (result & VM_FAULT_NEEDDSYNC)
715 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
716 		up_read(&EXT4_I(inode)->i_mmap_sem);
717 		sb_end_pagefault(sb);
718 	} else {
719 		up_read(&EXT4_I(inode)->i_mmap_sem);
720 	}
721 
722 	return result;
723 }
724 
ext4_dax_fault(struct vm_fault * vmf)725 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
726 {
727 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
728 }
729 
730 static const struct vm_operations_struct ext4_dax_vm_ops = {
731 	.fault		= ext4_dax_fault,
732 	.huge_fault	= ext4_dax_huge_fault,
733 	.page_mkwrite	= ext4_dax_fault,
734 	.pfn_mkwrite	= ext4_dax_fault,
735 };
736 #else
737 #define ext4_dax_vm_ops	ext4_file_vm_ops
738 #endif
739 
740 static const struct vm_operations_struct ext4_file_vm_ops = {
741 	.fault		= ext4_filemap_fault,
742 	.map_pages	= filemap_map_pages,
743 	.page_mkwrite   = ext4_page_mkwrite,
744 };
745 
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)746 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
747 {
748 	struct inode *inode = file->f_mapping->host;
749 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
750 	struct dax_device *dax_dev = sbi->s_daxdev;
751 
752 	if (unlikely(ext4_forced_shutdown(sbi)))
753 		return -EIO;
754 
755 	/*
756 	 * We don't support synchronous mappings for non-DAX files and
757 	 * for DAX files if underneath dax_device is not synchronous.
758 	 */
759 	if (!daxdev_mapping_supported(vma, dax_dev))
760 		return -EOPNOTSUPP;
761 
762 	file_accessed(file);
763 	if (IS_DAX(file_inode(file))) {
764 		vma->vm_ops = &ext4_dax_vm_ops;
765 		vma->vm_flags |= VM_HUGEPAGE;
766 	} else {
767 		vma->vm_ops = &ext4_file_vm_ops;
768 	}
769 	return 0;
770 }
771 
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)772 static int ext4_sample_last_mounted(struct super_block *sb,
773 				    struct vfsmount *mnt)
774 {
775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
776 	struct path path;
777 	char buf[64], *cp;
778 	handle_t *handle;
779 	int err;
780 
781 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
782 		return 0;
783 
784 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
785 		return 0;
786 
787 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
788 	/*
789 	 * Sample where the filesystem has been mounted and
790 	 * store it in the superblock for sysadmin convenience
791 	 * when trying to sort through large numbers of block
792 	 * devices or filesystem images.
793 	 */
794 	memset(buf, 0, sizeof(buf));
795 	path.mnt = mnt;
796 	path.dentry = mnt->mnt_root;
797 	cp = d_path(&path, buf, sizeof(buf));
798 	err = 0;
799 	if (IS_ERR(cp))
800 		goto out;
801 
802 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
803 	err = PTR_ERR(handle);
804 	if (IS_ERR(handle))
805 		goto out;
806 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
807 	err = ext4_journal_get_write_access(handle, sbi->s_sbh);
808 	if (err)
809 		goto out_journal;
810 	lock_buffer(sbi->s_sbh);
811 	strncpy(sbi->s_es->s_last_mounted, cp,
812 		sizeof(sbi->s_es->s_last_mounted));
813 	ext4_superblock_csum_set(sb);
814 	unlock_buffer(sbi->s_sbh);
815 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
816 out_journal:
817 	ext4_journal_stop(handle);
818 out:
819 	sb_end_intwrite(sb);
820 	return err;
821 }
822 
ext4_file_open(struct inode * inode,struct file * filp)823 static int ext4_file_open(struct inode *inode, struct file *filp)
824 {
825 	int ret;
826 
827 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
828 		return -EIO;
829 
830 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
831 	if (ret)
832 		return ret;
833 
834 	ret = fscrypt_file_open(inode, filp);
835 	if (ret)
836 		return ret;
837 
838 	ret = fsverity_file_open(inode, filp);
839 	if (ret)
840 		return ret;
841 
842 	/*
843 	 * Set up the jbd2_inode if we are opening the inode for
844 	 * writing and the journal is present
845 	 */
846 	if (filp->f_mode & FMODE_WRITE) {
847 		ret = ext4_inode_attach_jinode(inode);
848 		if (ret < 0)
849 			return ret;
850 	}
851 
852 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
853 	return dquot_file_open(inode, filp);
854 }
855 
856 /*
857  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
858  * by calling generic_file_llseek_size() with the appropriate maxbytes
859  * value for each.
860  */
ext4_llseek(struct file * file,loff_t offset,int whence)861 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
862 {
863 	struct inode *inode = file->f_mapping->host;
864 	loff_t maxbytes;
865 
866 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
867 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
868 	else
869 		maxbytes = inode->i_sb->s_maxbytes;
870 
871 	switch (whence) {
872 	default:
873 		return generic_file_llseek_size(file, offset, whence,
874 						maxbytes, i_size_read(inode));
875 	case SEEK_HOLE:
876 		inode_lock_shared(inode);
877 		offset = iomap_seek_hole(inode, offset,
878 					 &ext4_iomap_report_ops);
879 		inode_unlock_shared(inode);
880 		break;
881 	case SEEK_DATA:
882 		inode_lock_shared(inode);
883 		offset = iomap_seek_data(inode, offset,
884 					 &ext4_iomap_report_ops);
885 		inode_unlock_shared(inode);
886 		break;
887 	}
888 
889 	if (offset < 0)
890 		return offset;
891 	return vfs_setpos(file, offset, maxbytes);
892 }
893 
894 const struct file_operations ext4_file_operations = {
895 	.llseek		= ext4_llseek,
896 	.read_iter	= ext4_file_read_iter,
897 	.write_iter	= ext4_file_write_iter,
898 	.iopoll		= iomap_dio_iopoll,
899 	.unlocked_ioctl = ext4_ioctl,
900 #ifdef CONFIG_COMPAT
901 	.compat_ioctl	= ext4_compat_ioctl,
902 #endif
903 	.mmap		= ext4_file_mmap,
904 	.mmap_supported_flags = MAP_SYNC,
905 	.open		= ext4_file_open,
906 	.release	= ext4_release_file,
907 	.fsync		= ext4_sync_file,
908 	.get_unmapped_area = thp_get_unmapped_area,
909 	.splice_read	= generic_file_splice_read,
910 	.splice_write	= iter_file_splice_write,
911 	.fallocate	= ext4_fallocate,
912 };
913 
914 const struct inode_operations ext4_file_inode_operations = {
915 	.setattr	= ext4_setattr,
916 	.getattr	= ext4_file_getattr,
917 	.listxattr	= ext4_listxattr,
918 	.get_acl	= ext4_get_acl,
919 	.set_acl	= ext4_set_acl,
920 	.fiemap		= ext4_fiemap,
921 };
922 
923