1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static void ext4_update_super(struct super_block *sb);
69 static int ext4_commit_super(struct super_block *sb);
70 static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_sync_fs(struct super_block *sb, int wait);
75 static int ext4_remount(struct super_block *sb, int *flags, char *data);
76 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77 static int ext4_unfreeze(struct super_block *sb);
78 static int ext4_freeze(struct super_block *sb);
79 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81 static inline int ext2_feature_set_ok(struct super_block *sb);
82 static inline int ext3_feature_set_ok(struct super_block *sb);
83 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84 static void ext4_destroy_lazyinit_thread(void);
85 static void ext4_unregister_li_request(struct super_block *sb);
86 static void ext4_clear_request_list(void);
87 static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 unsigned int journal_inum);
89
90 /*
91 * Lock ordering
92 *
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 *
96 * page fault path:
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 * page lock -> i_data_sem (rw)
99 *
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 * i_data_sem (rw)
104 *
105 * truncate:
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 * i_data_sem (rw)
109 *
110 * direct IO:
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 *
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
116 */
117
118 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119 static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
121 .name = "ext2",
122 .mount = ext4_mount,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
125 };
126 MODULE_ALIAS_FS("ext2");
127 MODULE_ALIAS("ext2");
128 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129 #else
130 #define IS_EXT2_SB(sb) (0)
131 #endif
132
133
134 static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext3",
137 .mount = ext4_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext3");
142 MODULE_ALIAS("ext3");
143 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144
145
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)146 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 bh_end_io_t *end_io)
148 {
149 /*
150 * buffer's verified bit is no longer valid after reading from
151 * disk again due to write out error, clear it to make sure we
152 * recheck the buffer contents.
153 */
154 clear_buffer_verified(bh);
155
156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 get_bh(bh);
158 submit_bh(REQ_OP_READ, op_flags, bh);
159 }
160
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)161 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 bh_end_io_t *end_io)
163 {
164 BUG_ON(!buffer_locked(bh));
165
166 if (ext4_buffer_uptodate(bh)) {
167 unlock_buffer(bh);
168 return;
169 }
170 __ext4_read_bh(bh, op_flags, end_io);
171 }
172
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)173 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174 {
175 BUG_ON(!buffer_locked(bh));
176
177 if (ext4_buffer_uptodate(bh)) {
178 unlock_buffer(bh);
179 return 0;
180 }
181
182 __ext4_read_bh(bh, op_flags, end_io);
183
184 wait_on_buffer(bh);
185 if (buffer_uptodate(bh))
186 return 0;
187 return -EIO;
188 }
189
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)190 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191 {
192 lock_buffer(bh);
193 if (!wait) {
194 ext4_read_bh_nowait(bh, op_flags, NULL);
195 return 0;
196 }
197 return ext4_read_bh(bh, op_flags, NULL);
198 }
199
200 /*
201 * This works like __bread_gfp() except it uses ERR_PTR for error
202 * returns. Currently with sb_bread it's impossible to distinguish
203 * between ENOMEM and EIO situations (since both result in a NULL
204 * return.
205 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)206 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
207 sector_t block, int op_flags,
208 gfp_t gfp)
209 {
210 struct buffer_head *bh;
211 int ret;
212
213 bh = sb_getblk_gfp(sb, block, gfp);
214 if (bh == NULL)
215 return ERR_PTR(-ENOMEM);
216 if (ext4_buffer_uptodate(bh))
217 return bh;
218
219 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
220 if (ret) {
221 put_bh(bh);
222 return ERR_PTR(ret);
223 }
224 return bh;
225 }
226
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)227 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
228 int op_flags)
229 {
230 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
231 }
232
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)233 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
234 sector_t block)
235 {
236 return __ext4_sb_bread_gfp(sb, block, 0, 0);
237 }
238
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)239 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
240 {
241 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
242
243 if (likely(bh)) {
244 if (trylock_buffer(bh))
245 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
246 brelse(bh);
247 }
248 }
249
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)250 static int ext4_verify_csum_type(struct super_block *sb,
251 struct ext4_super_block *es)
252 {
253 if (!ext4_has_feature_metadata_csum(sb))
254 return 1;
255
256 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
257 }
258
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)259 static __le32 ext4_superblock_csum(struct super_block *sb,
260 struct ext4_super_block *es)
261 {
262 struct ext4_sb_info *sbi = EXT4_SB(sb);
263 int offset = offsetof(struct ext4_super_block, s_checksum);
264 __u32 csum;
265
266 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
267
268 return cpu_to_le32(csum);
269 }
270
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)271 static int ext4_superblock_csum_verify(struct super_block *sb,
272 struct ext4_super_block *es)
273 {
274 if (!ext4_has_metadata_csum(sb))
275 return 1;
276
277 return es->s_checksum == ext4_superblock_csum(sb, es);
278 }
279
ext4_superblock_csum_set(struct super_block * sb)280 void ext4_superblock_csum_set(struct super_block *sb)
281 {
282 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
283
284 if (!ext4_has_metadata_csum(sb))
285 return;
286
287 es->s_checksum = ext4_superblock_csum(sb, es);
288 }
289
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)290 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
291 struct ext4_group_desc *bg)
292 {
293 return le32_to_cpu(bg->bg_block_bitmap_lo) |
294 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
295 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
296 }
297
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)298 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
299 struct ext4_group_desc *bg)
300 {
301 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
302 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
303 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
304 }
305
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
307 struct ext4_group_desc *bg)
308 {
309 return le32_to_cpu(bg->bg_inode_table_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
312 }
313
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)314 __u32 ext4_free_group_clusters(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
320 }
321
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)322 __u32 ext4_free_inodes_count(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
328 }
329
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_used_dirs_count(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
336 }
337
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_itable_unused_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_itable_unused_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
344 }
345
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)346 void ext4_block_bitmap_set(struct super_block *sb,
347 struct ext4_group_desc *bg, ext4_fsblk_t blk)
348 {
349 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
350 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
351 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
352 }
353
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)354 void ext4_inode_bitmap_set(struct super_block *sb,
355 struct ext4_group_desc *bg, ext4_fsblk_t blk)
356 {
357 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
358 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
359 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
360 }
361
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_inode_table_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
368 }
369
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)370 void ext4_free_group_clusters_set(struct super_block *sb,
371 struct ext4_group_desc *bg, __u32 count)
372 {
373 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
376 }
377
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)378 void ext4_free_inodes_set(struct super_block *sb,
379 struct ext4_group_desc *bg, __u32 count)
380 {
381 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
384 }
385
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_used_dirs_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388 {
389 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
392 }
393
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_itable_unused_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
400 }
401
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)402 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
403 {
404 now = clamp_val(now, 0, (1ull << 40) - 1);
405
406 *lo = cpu_to_le32(lower_32_bits(now));
407 *hi = upper_32_bits(now);
408 }
409
__ext4_get_tstamp(__le32 * lo,__u8 * hi)410 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
411 {
412 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
413 }
414 #define ext4_update_tstamp(es, tstamp) \
415 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
416 ktime_get_real_seconds())
417 #define ext4_get_tstamp(es, tstamp) \
418 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
419
420 /*
421 * The del_gendisk() function uninitializes the disk-specific data
422 * structures, including the bdi structure, without telling anyone
423 * else. Once this happens, any attempt to call mark_buffer_dirty()
424 * (for example, by ext4_commit_super), will cause a kernel OOPS.
425 * This is a kludge to prevent these oops until we can put in a proper
426 * hook in del_gendisk() to inform the VFS and file system layers.
427 */
block_device_ejected(struct super_block * sb)428 static int block_device_ejected(struct super_block *sb)
429 {
430 struct inode *bd_inode = sb->s_bdev->bd_inode;
431 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
432
433 return bdi->dev == NULL;
434 }
435
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)436 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
437 {
438 struct super_block *sb = journal->j_private;
439 struct ext4_sb_info *sbi = EXT4_SB(sb);
440 int error = is_journal_aborted(journal);
441 struct ext4_journal_cb_entry *jce;
442
443 BUG_ON(txn->t_state == T_FINISHED);
444
445 ext4_process_freed_data(sb, txn->t_tid);
446
447 spin_lock(&sbi->s_md_lock);
448 while (!list_empty(&txn->t_private_list)) {
449 jce = list_entry(txn->t_private_list.next,
450 struct ext4_journal_cb_entry, jce_list);
451 list_del_init(&jce->jce_list);
452 spin_unlock(&sbi->s_md_lock);
453 jce->jce_func(sb, jce, error);
454 spin_lock(&sbi->s_md_lock);
455 }
456 spin_unlock(&sbi->s_md_lock);
457 }
458
459 /*
460 * This writepage callback for write_cache_pages()
461 * takes care of a few cases after page cleaning.
462 *
463 * write_cache_pages() already checks for dirty pages
464 * and calls clear_page_dirty_for_io(), which we want,
465 * to write protect the pages.
466 *
467 * However, we may have to redirty a page (see below.)
468 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)469 static int ext4_journalled_writepage_callback(struct page *page,
470 struct writeback_control *wbc,
471 void *data)
472 {
473 transaction_t *transaction = (transaction_t *) data;
474 struct buffer_head *bh, *head;
475 struct journal_head *jh;
476
477 bh = head = page_buffers(page);
478 do {
479 /*
480 * We have to redirty a page in these cases:
481 * 1) If buffer is dirty, it means the page was dirty because it
482 * contains a buffer that needs checkpointing. So the dirty bit
483 * needs to be preserved so that checkpointing writes the buffer
484 * properly.
485 * 2) If buffer is not part of the committing transaction
486 * (we may have just accidentally come across this buffer because
487 * inode range tracking is not exact) or if the currently running
488 * transaction already contains this buffer as well, dirty bit
489 * needs to be preserved so that the buffer gets writeprotected
490 * properly on running transaction's commit.
491 */
492 jh = bh2jh(bh);
493 if (buffer_dirty(bh) ||
494 (jh && (jh->b_transaction != transaction ||
495 jh->b_next_transaction))) {
496 redirty_page_for_writepage(wbc, page);
497 goto out;
498 }
499 } while ((bh = bh->b_this_page) != head);
500
501 out:
502 return AOP_WRITEPAGE_ACTIVATE;
503 }
504
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)505 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
506 {
507 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
508 struct writeback_control wbc = {
509 .sync_mode = WB_SYNC_ALL,
510 .nr_to_write = LONG_MAX,
511 .range_start = jinode->i_dirty_start,
512 .range_end = jinode->i_dirty_end,
513 };
514
515 return write_cache_pages(mapping, &wbc,
516 ext4_journalled_writepage_callback,
517 jinode->i_transaction);
518 }
519
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)520 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
521 {
522 int ret;
523
524 if (ext4_should_journal_data(jinode->i_vfs_inode))
525 ret = ext4_journalled_submit_inode_data_buffers(jinode);
526 else
527 ret = jbd2_journal_submit_inode_data_buffers(jinode);
528
529 return ret;
530 }
531
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)532 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
533 {
534 int ret = 0;
535
536 if (!ext4_should_journal_data(jinode->i_vfs_inode))
537 ret = jbd2_journal_finish_inode_data_buffers(jinode);
538
539 return ret;
540 }
541
system_going_down(void)542 static bool system_going_down(void)
543 {
544 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
545 || system_state == SYSTEM_RESTART;
546 }
547
548 struct ext4_err_translation {
549 int code;
550 int errno;
551 };
552
553 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
554
555 static struct ext4_err_translation err_translation[] = {
556 EXT4_ERR_TRANSLATE(EIO),
557 EXT4_ERR_TRANSLATE(ENOMEM),
558 EXT4_ERR_TRANSLATE(EFSBADCRC),
559 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
560 EXT4_ERR_TRANSLATE(ENOSPC),
561 EXT4_ERR_TRANSLATE(ENOKEY),
562 EXT4_ERR_TRANSLATE(EROFS),
563 EXT4_ERR_TRANSLATE(EFBIG),
564 EXT4_ERR_TRANSLATE(EEXIST),
565 EXT4_ERR_TRANSLATE(ERANGE),
566 EXT4_ERR_TRANSLATE(EOVERFLOW),
567 EXT4_ERR_TRANSLATE(EBUSY),
568 EXT4_ERR_TRANSLATE(ENOTDIR),
569 EXT4_ERR_TRANSLATE(ENOTEMPTY),
570 EXT4_ERR_TRANSLATE(ESHUTDOWN),
571 EXT4_ERR_TRANSLATE(EFAULT),
572 };
573
ext4_errno_to_code(int errno)574 static int ext4_errno_to_code(int errno)
575 {
576 int i;
577
578 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
579 if (err_translation[i].errno == errno)
580 return err_translation[i].code;
581 return EXT4_ERR_UNKNOWN;
582 }
583
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)584 static void save_error_info(struct super_block *sb, int error,
585 __u32 ino, __u64 block,
586 const char *func, unsigned int line)
587 {
588 struct ext4_sb_info *sbi = EXT4_SB(sb);
589
590 /* We default to EFSCORRUPTED error... */
591 if (error == 0)
592 error = EFSCORRUPTED;
593
594 spin_lock(&sbi->s_error_lock);
595 sbi->s_add_error_count++;
596 sbi->s_last_error_code = error;
597 sbi->s_last_error_line = line;
598 sbi->s_last_error_ino = ino;
599 sbi->s_last_error_block = block;
600 sbi->s_last_error_func = func;
601 sbi->s_last_error_time = ktime_get_real_seconds();
602 if (!sbi->s_first_error_time) {
603 sbi->s_first_error_code = error;
604 sbi->s_first_error_line = line;
605 sbi->s_first_error_ino = ino;
606 sbi->s_first_error_block = block;
607 sbi->s_first_error_func = func;
608 sbi->s_first_error_time = sbi->s_last_error_time;
609 }
610 spin_unlock(&sbi->s_error_lock);
611 }
612
613 /* Deal with the reporting of failure conditions on a filesystem such as
614 * inconsistencies detected or read IO failures.
615 *
616 * On ext2, we can store the error state of the filesystem in the
617 * superblock. That is not possible on ext4, because we may have other
618 * write ordering constraints on the superblock which prevent us from
619 * writing it out straight away; and given that the journal is about to
620 * be aborted, we can't rely on the current, or future, transactions to
621 * write out the superblock safely.
622 *
623 * We'll just use the jbd2_journal_abort() error code to record an error in
624 * the journal instead. On recovery, the journal will complain about
625 * that error until we've noted it down and cleared it.
626 *
627 * If force_ro is set, we unconditionally force the filesystem into an
628 * ABORT|READONLY state, unless the error response on the fs has been set to
629 * panic in which case we take the easy way out and panic immediately. This is
630 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
631 * at a critical moment in log management.
632 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)633 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
634 __u32 ino, __u64 block,
635 const char *func, unsigned int line)
636 {
637 journal_t *journal = EXT4_SB(sb)->s_journal;
638 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
639
640 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
641 if (test_opt(sb, WARN_ON_ERROR))
642 WARN_ON_ONCE(1);
643
644 if (!continue_fs && !sb_rdonly(sb)) {
645 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
646 if (journal)
647 jbd2_journal_abort(journal, -EIO);
648 }
649
650 if (!bdev_read_only(sb->s_bdev)) {
651 save_error_info(sb, error, ino, block, func, line);
652 /*
653 * In case the fs should keep running, we need to writeout
654 * superblock through the journal. Due to lock ordering
655 * constraints, it may not be safe to do it right here so we
656 * defer superblock flushing to a workqueue.
657 */
658 if (continue_fs && journal)
659 schedule_work(&EXT4_SB(sb)->s_error_work);
660 else
661 ext4_commit_super(sb);
662 }
663
664 /*
665 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
666 * could panic during 'reboot -f' as the underlying device got already
667 * disabled.
668 */
669 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
670 panic("EXT4-fs (device %s): panic forced after error\n",
671 sb->s_id);
672 }
673
674 if (sb_rdonly(sb) || continue_fs)
675 return;
676
677 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
678 /*
679 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
680 * modifications. We don't set SB_RDONLY because that requires
681 * sb->s_umount semaphore and setting it without proper remount
682 * procedure is confusing code such as freeze_super() leading to
683 * deadlocks and other problems.
684 */
685 }
686
flush_stashed_error_work(struct work_struct * work)687 static void flush_stashed_error_work(struct work_struct *work)
688 {
689 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
690 s_error_work);
691 journal_t *journal = sbi->s_journal;
692 handle_t *handle;
693
694 /*
695 * If the journal is still running, we have to write out superblock
696 * through the journal to avoid collisions of other journalled sb
697 * updates.
698 *
699 * We use directly jbd2 functions here to avoid recursing back into
700 * ext4 error handling code during handling of previous errors.
701 */
702 if (!sb_rdonly(sbi->s_sb) && journal) {
703 struct buffer_head *sbh = sbi->s_sbh;
704 handle = jbd2_journal_start(journal, 1);
705 if (IS_ERR(handle))
706 goto write_directly;
707 if (jbd2_journal_get_write_access(handle, sbh)) {
708 jbd2_journal_stop(handle);
709 goto write_directly;
710 }
711 ext4_update_super(sbi->s_sb);
712 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
713 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
714 "superblock detected");
715 clear_buffer_write_io_error(sbh);
716 set_buffer_uptodate(sbh);
717 }
718
719 if (jbd2_journal_dirty_metadata(handle, sbh)) {
720 jbd2_journal_stop(handle);
721 goto write_directly;
722 }
723 jbd2_journal_stop(handle);
724 return;
725 }
726 write_directly:
727 /*
728 * Write through journal failed. Write sb directly to get error info
729 * out and hope for the best.
730 */
731 ext4_commit_super(sbi->s_sb);
732 }
733
734 #define ext4_error_ratelimit(sb) \
735 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
736 "EXT4-fs error")
737
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)738 void __ext4_error(struct super_block *sb, const char *function,
739 unsigned int line, bool force_ro, int error, __u64 block,
740 const char *fmt, ...)
741 {
742 struct va_format vaf;
743 va_list args;
744
745 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
746 return;
747
748 trace_ext4_error(sb, function, line);
749 if (ext4_error_ratelimit(sb)) {
750 va_start(args, fmt);
751 vaf.fmt = fmt;
752 vaf.va = &args;
753 printk(KERN_CRIT
754 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
755 sb->s_id, function, line, current->comm, &vaf);
756 va_end(args);
757 }
758 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
759 }
760
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)761 void __ext4_error_inode(struct inode *inode, const char *function,
762 unsigned int line, ext4_fsblk_t block, int error,
763 const char *fmt, ...)
764 {
765 va_list args;
766 struct va_format vaf;
767
768 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
769 return;
770
771 trace_ext4_error(inode->i_sb, function, line);
772 if (ext4_error_ratelimit(inode->i_sb)) {
773 va_start(args, fmt);
774 vaf.fmt = fmt;
775 vaf.va = &args;
776 if (block)
777 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
778 "inode #%lu: block %llu: comm %s: %pV\n",
779 inode->i_sb->s_id, function, line, inode->i_ino,
780 block, current->comm, &vaf);
781 else
782 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
783 "inode #%lu: comm %s: %pV\n",
784 inode->i_sb->s_id, function, line, inode->i_ino,
785 current->comm, &vaf);
786 va_end(args);
787 }
788 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
789 function, line);
790 }
791
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)792 void __ext4_error_file(struct file *file, const char *function,
793 unsigned int line, ext4_fsblk_t block,
794 const char *fmt, ...)
795 {
796 va_list args;
797 struct va_format vaf;
798 struct inode *inode = file_inode(file);
799 char pathname[80], *path;
800
801 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
802 return;
803
804 trace_ext4_error(inode->i_sb, function, line);
805 if (ext4_error_ratelimit(inode->i_sb)) {
806 path = file_path(file, pathname, sizeof(pathname));
807 if (IS_ERR(path))
808 path = "(unknown)";
809 va_start(args, fmt);
810 vaf.fmt = fmt;
811 vaf.va = &args;
812 if (block)
813 printk(KERN_CRIT
814 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
815 "block %llu: comm %s: path %s: %pV\n",
816 inode->i_sb->s_id, function, line, inode->i_ino,
817 block, current->comm, path, &vaf);
818 else
819 printk(KERN_CRIT
820 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
821 "comm %s: path %s: %pV\n",
822 inode->i_sb->s_id, function, line, inode->i_ino,
823 current->comm, path, &vaf);
824 va_end(args);
825 }
826 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
827 function, line);
828 }
829
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])830 const char *ext4_decode_error(struct super_block *sb, int errno,
831 char nbuf[16])
832 {
833 char *errstr = NULL;
834
835 switch (errno) {
836 case -EFSCORRUPTED:
837 errstr = "Corrupt filesystem";
838 break;
839 case -EFSBADCRC:
840 errstr = "Filesystem failed CRC";
841 break;
842 case -EIO:
843 errstr = "IO failure";
844 break;
845 case -ENOMEM:
846 errstr = "Out of memory";
847 break;
848 case -EROFS:
849 if (!sb || (EXT4_SB(sb)->s_journal &&
850 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
851 errstr = "Journal has aborted";
852 else
853 errstr = "Readonly filesystem";
854 break;
855 default:
856 /* If the caller passed in an extra buffer for unknown
857 * errors, textualise them now. Else we just return
858 * NULL. */
859 if (nbuf) {
860 /* Check for truncated error codes... */
861 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
862 errstr = nbuf;
863 }
864 break;
865 }
866
867 return errstr;
868 }
869
870 /* __ext4_std_error decodes expected errors from journaling functions
871 * automatically and invokes the appropriate error response. */
872
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)873 void __ext4_std_error(struct super_block *sb, const char *function,
874 unsigned int line, int errno)
875 {
876 char nbuf[16];
877 const char *errstr;
878
879 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
880 return;
881
882 /* Special case: if the error is EROFS, and we're not already
883 * inside a transaction, then there's really no point in logging
884 * an error. */
885 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
886 return;
887
888 if (ext4_error_ratelimit(sb)) {
889 errstr = ext4_decode_error(sb, errno, nbuf);
890 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
891 sb->s_id, function, line, errstr);
892 }
893
894 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
895 }
896
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)897 void __ext4_msg(struct super_block *sb,
898 const char *prefix, const char *fmt, ...)
899 {
900 struct va_format vaf;
901 va_list args;
902
903 atomic_inc(&EXT4_SB(sb)->s_msg_count);
904 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
905 return;
906
907 va_start(args, fmt);
908 vaf.fmt = fmt;
909 vaf.va = &args;
910 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
911 va_end(args);
912 }
913
ext4_warning_ratelimit(struct super_block * sb)914 static int ext4_warning_ratelimit(struct super_block *sb)
915 {
916 atomic_inc(&EXT4_SB(sb)->s_warning_count);
917 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
918 "EXT4-fs warning");
919 }
920
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)921 void __ext4_warning(struct super_block *sb, const char *function,
922 unsigned int line, const char *fmt, ...)
923 {
924 struct va_format vaf;
925 va_list args;
926
927 if (!ext4_warning_ratelimit(sb))
928 return;
929
930 va_start(args, fmt);
931 vaf.fmt = fmt;
932 vaf.va = &args;
933 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
934 sb->s_id, function, line, &vaf);
935 va_end(args);
936 }
937
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)938 void __ext4_warning_inode(const struct inode *inode, const char *function,
939 unsigned int line, const char *fmt, ...)
940 {
941 struct va_format vaf;
942 va_list args;
943
944 if (!ext4_warning_ratelimit(inode->i_sb))
945 return;
946
947 va_start(args, fmt);
948 vaf.fmt = fmt;
949 vaf.va = &args;
950 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
951 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
952 function, line, inode->i_ino, current->comm, &vaf);
953 va_end(args);
954 }
955
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)956 void __ext4_grp_locked_error(const char *function, unsigned int line,
957 struct super_block *sb, ext4_group_t grp,
958 unsigned long ino, ext4_fsblk_t block,
959 const char *fmt, ...)
960 __releases(bitlock)
961 __acquires(bitlock)
962 {
963 struct va_format vaf;
964 va_list args;
965
966 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
967 return;
968
969 trace_ext4_error(sb, function, line);
970 if (ext4_error_ratelimit(sb)) {
971 va_start(args, fmt);
972 vaf.fmt = fmt;
973 vaf.va = &args;
974 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
975 sb->s_id, function, line, grp);
976 if (ino)
977 printk(KERN_CONT "inode %lu: ", ino);
978 if (block)
979 printk(KERN_CONT "block %llu:",
980 (unsigned long long) block);
981 printk(KERN_CONT "%pV\n", &vaf);
982 va_end(args);
983 }
984
985 if (test_opt(sb, ERRORS_CONT)) {
986 if (test_opt(sb, WARN_ON_ERROR))
987 WARN_ON_ONCE(1);
988 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
989 if (!bdev_read_only(sb->s_bdev)) {
990 save_error_info(sb, EFSCORRUPTED, ino, block, function,
991 line);
992 schedule_work(&EXT4_SB(sb)->s_error_work);
993 }
994 return;
995 }
996 ext4_unlock_group(sb, grp);
997 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
998 /*
999 * We only get here in the ERRORS_RO case; relocking the group
1000 * may be dangerous, but nothing bad will happen since the
1001 * filesystem will have already been marked read/only and the
1002 * journal has been aborted. We return 1 as a hint to callers
1003 * who might what to use the return value from
1004 * ext4_grp_locked_error() to distinguish between the
1005 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1006 * aggressively from the ext4 function in question, with a
1007 * more appropriate error code.
1008 */
1009 ext4_lock_group(sb, grp);
1010 return;
1011 }
1012
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1013 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1014 ext4_group_t group,
1015 unsigned int flags)
1016 {
1017 struct ext4_sb_info *sbi = EXT4_SB(sb);
1018 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1019 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1020 int ret;
1021
1022 if (!grp || !gdp)
1023 return;
1024 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1025 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1026 &grp->bb_state);
1027 if (!ret)
1028 percpu_counter_sub(&sbi->s_freeclusters_counter,
1029 grp->bb_free);
1030 }
1031
1032 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1033 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1034 &grp->bb_state);
1035 if (!ret && gdp) {
1036 int count;
1037
1038 count = ext4_free_inodes_count(sb, gdp);
1039 percpu_counter_sub(&sbi->s_freeinodes_counter,
1040 count);
1041 }
1042 }
1043 }
1044
ext4_update_dynamic_rev(struct super_block * sb)1045 void ext4_update_dynamic_rev(struct super_block *sb)
1046 {
1047 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1048
1049 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1050 return;
1051
1052 ext4_warning(sb,
1053 "updating to rev %d because of new feature flag, "
1054 "running e2fsck is recommended",
1055 EXT4_DYNAMIC_REV);
1056
1057 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1058 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1059 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1060 /* leave es->s_feature_*compat flags alone */
1061 /* es->s_uuid will be set by e2fsck if empty */
1062
1063 /*
1064 * The rest of the superblock fields should be zero, and if not it
1065 * means they are likely already in use, so leave them alone. We
1066 * can leave it up to e2fsck to clean up any inconsistencies there.
1067 */
1068 }
1069
1070 /*
1071 * Open the external journal device
1072 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1073 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1074 {
1075 struct block_device *bdev;
1076
1077 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1078 if (IS_ERR(bdev))
1079 goto fail;
1080 return bdev;
1081
1082 fail:
1083 ext4_msg(sb, KERN_ERR,
1084 "failed to open journal device unknown-block(%u,%u) %ld",
1085 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1086 return NULL;
1087 }
1088
1089 /*
1090 * Release the journal device
1091 */
ext4_blkdev_put(struct block_device * bdev)1092 static void ext4_blkdev_put(struct block_device *bdev)
1093 {
1094 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1095 }
1096
ext4_blkdev_remove(struct ext4_sb_info * sbi)1097 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1098 {
1099 struct block_device *bdev;
1100 bdev = sbi->s_journal_bdev;
1101 if (bdev) {
1102 /*
1103 * Invalidate the journal device's buffers. We don't want them
1104 * floating about in memory - the physical journal device may
1105 * hotswapped, and it breaks the `ro-after' testing code.
1106 */
1107 invalidate_bdev(bdev);
1108 ext4_blkdev_put(bdev);
1109 sbi->s_journal_bdev = NULL;
1110 }
1111 }
1112
orphan_list_entry(struct list_head * l)1113 static inline struct inode *orphan_list_entry(struct list_head *l)
1114 {
1115 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1116 }
1117
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1118 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1119 {
1120 struct list_head *l;
1121
1122 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1123 le32_to_cpu(sbi->s_es->s_last_orphan));
1124
1125 printk(KERN_ERR "sb_info orphan list:\n");
1126 list_for_each(l, &sbi->s_orphan) {
1127 struct inode *inode = orphan_list_entry(l);
1128 printk(KERN_ERR " "
1129 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1130 inode->i_sb->s_id, inode->i_ino, inode,
1131 inode->i_mode, inode->i_nlink,
1132 NEXT_ORPHAN(inode));
1133 }
1134 }
1135
1136 #ifdef CONFIG_QUOTA
1137 static int ext4_quota_off(struct super_block *sb, int type);
1138
ext4_quota_off_umount(struct super_block * sb)1139 static inline void ext4_quota_off_umount(struct super_block *sb)
1140 {
1141 int type;
1142
1143 /* Use our quota_off function to clear inode flags etc. */
1144 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1145 ext4_quota_off(sb, type);
1146 }
1147
1148 /*
1149 * This is a helper function which is used in the mount/remount
1150 * codepaths (which holds s_umount) to fetch the quota file name.
1151 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1152 static inline char *get_qf_name(struct super_block *sb,
1153 struct ext4_sb_info *sbi,
1154 int type)
1155 {
1156 return rcu_dereference_protected(sbi->s_qf_names[type],
1157 lockdep_is_held(&sb->s_umount));
1158 }
1159 #else
ext4_quota_off_umount(struct super_block * sb)1160 static inline void ext4_quota_off_umount(struct super_block *sb)
1161 {
1162 }
1163 #endif
1164
ext4_put_super(struct super_block * sb)1165 static void ext4_put_super(struct super_block *sb)
1166 {
1167 struct ext4_sb_info *sbi = EXT4_SB(sb);
1168 struct ext4_super_block *es = sbi->s_es;
1169 struct buffer_head **group_desc;
1170 struct flex_groups **flex_groups;
1171 int aborted = 0;
1172 int i, err;
1173
1174 /*
1175 * Unregister sysfs before destroying jbd2 journal.
1176 * Since we could still access attr_journal_task attribute via sysfs
1177 * path which could have sbi->s_journal->j_task as NULL
1178 * Unregister sysfs before flush sbi->s_error_work.
1179 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1180 * read metadata verify failed then will queue error work.
1181 * flush_stashed_error_work will call start_this_handle may trigger
1182 * BUG_ON.
1183 */
1184 ext4_unregister_sysfs(sb);
1185
1186 ext4_unregister_li_request(sb);
1187 ext4_quota_off_umount(sb);
1188 flush_work(&sbi->s_error_work);
1189 destroy_workqueue(sbi->rsv_conversion_wq);
1190
1191 if (sbi->s_journal) {
1192 aborted = is_journal_aborted(sbi->s_journal);
1193 err = jbd2_journal_destroy(sbi->s_journal);
1194 sbi->s_journal = NULL;
1195 if ((err < 0) && !aborted) {
1196 ext4_abort(sb, -err, "Couldn't clean up the journal");
1197 }
1198 }
1199
1200 ext4_es_unregister_shrinker(sbi);
1201 del_timer_sync(&sbi->s_err_report);
1202 ext4_release_system_zone(sb);
1203 ext4_mb_release(sb);
1204 ext4_ext_release(sb);
1205
1206 if (!sb_rdonly(sb) && !aborted) {
1207 ext4_clear_feature_journal_needs_recovery(sb);
1208 es->s_state = cpu_to_le16(sbi->s_mount_state);
1209 }
1210 if (!sb_rdonly(sb))
1211 ext4_commit_super(sb);
1212
1213 rcu_read_lock();
1214 group_desc = rcu_dereference(sbi->s_group_desc);
1215 for (i = 0; i < sbi->s_gdb_count; i++)
1216 brelse(group_desc[i]);
1217 kvfree(group_desc);
1218 flex_groups = rcu_dereference(sbi->s_flex_groups);
1219 if (flex_groups) {
1220 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1221 kvfree(flex_groups[i]);
1222 kvfree(flex_groups);
1223 }
1224 rcu_read_unlock();
1225 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1226 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1227 percpu_counter_destroy(&sbi->s_dirs_counter);
1228 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1229 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1230 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1231 #ifdef CONFIG_QUOTA
1232 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1233 kfree(get_qf_name(sb, sbi, i));
1234 #endif
1235
1236 /* Debugging code just in case the in-memory inode orphan list
1237 * isn't empty. The on-disk one can be non-empty if we've
1238 * detected an error and taken the fs readonly, but the
1239 * in-memory list had better be clean by this point. */
1240 if (!list_empty(&sbi->s_orphan))
1241 dump_orphan_list(sb, sbi);
1242 J_ASSERT(list_empty(&sbi->s_orphan));
1243
1244 sync_blockdev(sb->s_bdev);
1245 invalidate_bdev(sb->s_bdev);
1246 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1247 sync_blockdev(sbi->s_journal_bdev);
1248 ext4_blkdev_remove(sbi);
1249 }
1250
1251 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1252 sbi->s_ea_inode_cache = NULL;
1253
1254 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1255 sbi->s_ea_block_cache = NULL;
1256
1257 ext4_stop_mmpd(sbi);
1258
1259 brelse(sbi->s_sbh);
1260 sb->s_fs_info = NULL;
1261 /*
1262 * Now that we are completely done shutting down the
1263 * superblock, we need to actually destroy the kobject.
1264 */
1265 kobject_put(&sbi->s_kobj);
1266 wait_for_completion(&sbi->s_kobj_unregister);
1267 if (sbi->s_chksum_driver)
1268 crypto_free_shash(sbi->s_chksum_driver);
1269 kfree(sbi->s_blockgroup_lock);
1270 fs_put_dax(sbi->s_daxdev);
1271 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1272 #ifdef CONFIG_UNICODE
1273 utf8_unload(sb->s_encoding);
1274 #endif
1275 kfree(sbi);
1276 }
1277
1278 static struct kmem_cache *ext4_inode_cachep;
1279
1280 /*
1281 * Called inside transaction, so use GFP_NOFS
1282 */
ext4_alloc_inode(struct super_block * sb)1283 static struct inode *ext4_alloc_inode(struct super_block *sb)
1284 {
1285 struct ext4_inode_info *ei;
1286
1287 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1288 if (!ei)
1289 return NULL;
1290
1291 inode_set_iversion(&ei->vfs_inode, 1);
1292 ei->i_flags = 0;
1293 spin_lock_init(&ei->i_raw_lock);
1294 INIT_LIST_HEAD(&ei->i_prealloc_list);
1295 atomic_set(&ei->i_prealloc_active, 0);
1296 spin_lock_init(&ei->i_prealloc_lock);
1297 ext4_es_init_tree(&ei->i_es_tree);
1298 rwlock_init(&ei->i_es_lock);
1299 INIT_LIST_HEAD(&ei->i_es_list);
1300 ei->i_es_all_nr = 0;
1301 ei->i_es_shk_nr = 0;
1302 ei->i_es_shrink_lblk = 0;
1303 ei->i_reserved_data_blocks = 0;
1304 spin_lock_init(&(ei->i_block_reservation_lock));
1305 ext4_init_pending_tree(&ei->i_pending_tree);
1306 #ifdef CONFIG_QUOTA
1307 ei->i_reserved_quota = 0;
1308 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1309 #endif
1310 ei->jinode = NULL;
1311 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1312 spin_lock_init(&ei->i_completed_io_lock);
1313 ei->i_sync_tid = 0;
1314 ei->i_datasync_tid = 0;
1315 atomic_set(&ei->i_unwritten, 0);
1316 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1317 ext4_fc_init_inode(&ei->vfs_inode);
1318 mutex_init(&ei->i_fc_lock);
1319 return &ei->vfs_inode;
1320 }
1321
ext4_drop_inode(struct inode * inode)1322 static int ext4_drop_inode(struct inode *inode)
1323 {
1324 int drop = generic_drop_inode(inode);
1325
1326 if (!drop)
1327 drop = fscrypt_drop_inode(inode);
1328
1329 trace_ext4_drop_inode(inode, drop);
1330 return drop;
1331 }
1332
ext4_free_in_core_inode(struct inode * inode)1333 static void ext4_free_in_core_inode(struct inode *inode)
1334 {
1335 fscrypt_free_inode(inode);
1336 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1337 pr_warn("%s: inode %ld still in fc list",
1338 __func__, inode->i_ino);
1339 }
1340 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1341 }
1342
ext4_destroy_inode(struct inode * inode)1343 static void ext4_destroy_inode(struct inode *inode)
1344 {
1345 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1346 ext4_msg(inode->i_sb, KERN_ERR,
1347 "Inode %lu (%p): orphan list check failed!",
1348 inode->i_ino, EXT4_I(inode));
1349 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1350 EXT4_I(inode), sizeof(struct ext4_inode_info),
1351 true);
1352 dump_stack();
1353 }
1354
1355 if (EXT4_I(inode)->i_reserved_data_blocks)
1356 ext4_msg(inode->i_sb, KERN_ERR,
1357 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1358 inode->i_ino, EXT4_I(inode),
1359 EXT4_I(inode)->i_reserved_data_blocks);
1360 }
1361
init_once(void * foo)1362 static void init_once(void *foo)
1363 {
1364 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1365
1366 INIT_LIST_HEAD(&ei->i_orphan);
1367 init_rwsem(&ei->xattr_sem);
1368 init_rwsem(&ei->i_data_sem);
1369 init_rwsem(&ei->i_mmap_sem);
1370 inode_init_once(&ei->vfs_inode);
1371 ext4_fc_init_inode(&ei->vfs_inode);
1372 }
1373
init_inodecache(void)1374 static int __init init_inodecache(void)
1375 {
1376 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 sizeof(struct ext4_inode_info), 0,
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 SLAB_ACCOUNT),
1380 offsetof(struct ext4_inode_info, i_data),
1381 sizeof_field(struct ext4_inode_info, i_data),
1382 init_once);
1383 if (ext4_inode_cachep == NULL)
1384 return -ENOMEM;
1385 return 0;
1386 }
1387
destroy_inodecache(void)1388 static void destroy_inodecache(void)
1389 {
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395 kmem_cache_destroy(ext4_inode_cachep);
1396 }
1397
ext4_clear_inode(struct inode * inode)1398 void ext4_clear_inode(struct inode *inode)
1399 {
1400 ext4_fc_del(inode);
1401 invalidate_inode_buffers(inode);
1402 clear_inode(inode);
1403 ext4_discard_preallocations(inode, 0);
1404 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 dquot_drop(inode);
1406 if (EXT4_I(inode)->jinode) {
1407 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 EXT4_I(inode)->jinode);
1409 jbd2_free_inode(EXT4_I(inode)->jinode);
1410 EXT4_I(inode)->jinode = NULL;
1411 }
1412 fscrypt_put_encryption_info(inode);
1413 fsverity_cleanup_inode(inode);
1414 }
1415
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1416 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 u64 ino, u32 generation)
1418 {
1419 struct inode *inode;
1420
1421 /*
1422 * Currently we don't know the generation for parent directory, so
1423 * a generation of 0 means "accept any"
1424 */
1425 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 if (IS_ERR(inode))
1427 return ERR_CAST(inode);
1428 if (generation && inode->i_generation != generation) {
1429 iput(inode);
1430 return ERR_PTR(-ESTALE);
1431 }
1432
1433 return inode;
1434 }
1435
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1436 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 int fh_len, int fh_type)
1438 {
1439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 ext4_nfs_get_inode);
1441 }
1442
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1443 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 int fh_len, int fh_type)
1445 {
1446 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 ext4_nfs_get_inode);
1448 }
1449
ext4_nfs_commit_metadata(struct inode * inode)1450 static int ext4_nfs_commit_metadata(struct inode *inode)
1451 {
1452 struct writeback_control wbc = {
1453 .sync_mode = WB_SYNC_ALL
1454 };
1455
1456 trace_ext4_nfs_commit_metadata(inode);
1457 return ext4_write_inode(inode, &wbc);
1458 }
1459
1460 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1461 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462 {
1463 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465 }
1466
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1467 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468 void *fs_data)
1469 {
1470 handle_t *handle = fs_data;
1471 int res, res2, credits, retries = 0;
1472
1473 /*
1474 * Encrypting the root directory is not allowed because e2fsck expects
1475 * lost+found to exist and be unencrypted, and encrypting the root
1476 * directory would imply encrypting the lost+found directory as well as
1477 * the filename "lost+found" itself.
1478 */
1479 if (inode->i_ino == EXT4_ROOT_INO)
1480 return -EPERM;
1481
1482 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483 return -EINVAL;
1484
1485 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486 return -EOPNOTSUPP;
1487
1488 res = ext4_convert_inline_data(inode);
1489 if (res)
1490 return res;
1491
1492 /*
1493 * If a journal handle was specified, then the encryption context is
1494 * being set on a new inode via inheritance and is part of a larger
1495 * transaction to create the inode. Otherwise the encryption context is
1496 * being set on an existing inode in its own transaction. Only in the
1497 * latter case should the "retry on ENOSPC" logic be used.
1498 */
1499
1500 if (handle) {
1501 res = ext4_xattr_set_handle(handle, inode,
1502 EXT4_XATTR_INDEX_ENCRYPTION,
1503 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504 ctx, len, 0);
1505 if (!res) {
1506 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507 ext4_clear_inode_state(inode,
1508 EXT4_STATE_MAY_INLINE_DATA);
1509 /*
1510 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511 * S_DAX may be disabled
1512 */
1513 ext4_set_inode_flags(inode, false);
1514 }
1515 return res;
1516 }
1517
1518 res = dquot_initialize(inode);
1519 if (res)
1520 return res;
1521 retry:
1522 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523 &credits);
1524 if (res)
1525 return res;
1526
1527 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528 if (IS_ERR(handle))
1529 return PTR_ERR(handle);
1530
1531 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533 ctx, len, 0);
1534 if (!res) {
1535 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536 /*
1537 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538 * S_DAX may be disabled
1539 */
1540 ext4_set_inode_flags(inode, false);
1541 res = ext4_mark_inode_dirty(handle, inode);
1542 if (res)
1543 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544 }
1545 res2 = ext4_journal_stop(handle);
1546
1547 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548 goto retry;
1549 if (!res)
1550 res = res2;
1551 return res;
1552 }
1553
ext4_get_dummy_policy(struct super_block * sb)1554 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555 {
1556 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557 }
1558
ext4_has_stable_inodes(struct super_block * sb)1559 static bool ext4_has_stable_inodes(struct super_block *sb)
1560 {
1561 return ext4_has_feature_stable_inodes(sb);
1562 }
1563
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1564 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565 int *ino_bits_ret, int *lblk_bits_ret)
1566 {
1567 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569 }
1570
1571 static const struct fscrypt_operations ext4_cryptops = {
1572 .key_prefix = "ext4:",
1573 .get_context = ext4_get_context,
1574 .set_context = ext4_set_context,
1575 .get_dummy_policy = ext4_get_dummy_policy,
1576 .empty_dir = ext4_empty_dir,
1577 .max_namelen = EXT4_NAME_LEN,
1578 .has_stable_inodes = ext4_has_stable_inodes,
1579 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1580 };
1581 #endif
1582
1583 #ifdef CONFIG_QUOTA
1584 static const char * const quotatypes[] = INITQFNAMES;
1585 #define QTYPE2NAME(t) (quotatypes[t])
1586
1587 static int ext4_write_dquot(struct dquot *dquot);
1588 static int ext4_acquire_dquot(struct dquot *dquot);
1589 static int ext4_release_dquot(struct dquot *dquot);
1590 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1591 static int ext4_write_info(struct super_block *sb, int type);
1592 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1593 const struct path *path);
1594 static int ext4_quota_on_mount(struct super_block *sb, int type);
1595 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 size_t len, loff_t off);
1597 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 const char *data, size_t len, loff_t off);
1599 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 unsigned int flags);
1601 static int ext4_enable_quotas(struct super_block *sb);
1602
ext4_get_dquots(struct inode * inode)1603 static struct dquot **ext4_get_dquots(struct inode *inode)
1604 {
1605 return EXT4_I(inode)->i_dquot;
1606 }
1607
1608 static const struct dquot_operations ext4_quota_operations = {
1609 .get_reserved_space = ext4_get_reserved_space,
1610 .write_dquot = ext4_write_dquot,
1611 .acquire_dquot = ext4_acquire_dquot,
1612 .release_dquot = ext4_release_dquot,
1613 .mark_dirty = ext4_mark_dquot_dirty,
1614 .write_info = ext4_write_info,
1615 .alloc_dquot = dquot_alloc,
1616 .destroy_dquot = dquot_destroy,
1617 .get_projid = ext4_get_projid,
1618 .get_inode_usage = ext4_get_inode_usage,
1619 .get_next_id = dquot_get_next_id,
1620 };
1621
1622 static const struct quotactl_ops ext4_qctl_operations = {
1623 .quota_on = ext4_quota_on,
1624 .quota_off = ext4_quota_off,
1625 .quota_sync = dquot_quota_sync,
1626 .get_state = dquot_get_state,
1627 .set_info = dquot_set_dqinfo,
1628 .get_dqblk = dquot_get_dqblk,
1629 .set_dqblk = dquot_set_dqblk,
1630 .get_nextdqblk = dquot_get_next_dqblk,
1631 };
1632 #endif
1633
1634 static const struct super_operations ext4_sops = {
1635 .alloc_inode = ext4_alloc_inode,
1636 .free_inode = ext4_free_in_core_inode,
1637 .destroy_inode = ext4_destroy_inode,
1638 .write_inode = ext4_write_inode,
1639 .dirty_inode = ext4_dirty_inode,
1640 .drop_inode = ext4_drop_inode,
1641 .evict_inode = ext4_evict_inode,
1642 .put_super = ext4_put_super,
1643 .sync_fs = ext4_sync_fs,
1644 .freeze_fs = ext4_freeze,
1645 .unfreeze_fs = ext4_unfreeze,
1646 .statfs = ext4_statfs,
1647 .remount_fs = ext4_remount,
1648 .show_options = ext4_show_options,
1649 #ifdef CONFIG_QUOTA
1650 .quota_read = ext4_quota_read,
1651 .quota_write = ext4_quota_write,
1652 .get_dquots = ext4_get_dquots,
1653 #endif
1654 };
1655
1656 static const struct export_operations ext4_export_ops = {
1657 .fh_to_dentry = ext4_fh_to_dentry,
1658 .fh_to_parent = ext4_fh_to_parent,
1659 .get_parent = ext4_get_parent,
1660 .commit_metadata = ext4_nfs_commit_metadata,
1661 };
1662
1663 enum {
1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1666 Opt_nouid32, Opt_debug, Opt_removed,
1667 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 Opt_inlinecrypt,
1674 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1675 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1676 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1678 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680 Opt_nowarn_on_error, Opt_mblk_io_submit,
1681 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1682 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1683 Opt_inode_readahead_blks, Opt_journal_ioprio,
1684 Opt_dioread_nolock, Opt_dioread_lock,
1685 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1686 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1687 Opt_prefetch_block_bitmaps,
1688 #ifdef CONFIG_EXT4_DEBUG
1689 Opt_fc_debug_max_replay, Opt_fc_debug_force
1690 #endif
1691 };
1692
1693 static const match_table_t tokens = {
1694 {Opt_bsd_df, "bsddf"},
1695 {Opt_minix_df, "minixdf"},
1696 {Opt_grpid, "grpid"},
1697 {Opt_grpid, "bsdgroups"},
1698 {Opt_nogrpid, "nogrpid"},
1699 {Opt_nogrpid, "sysvgroups"},
1700 {Opt_resgid, "resgid=%u"},
1701 {Opt_resuid, "resuid=%u"},
1702 {Opt_sb, "sb=%u"},
1703 {Opt_err_cont, "errors=continue"},
1704 {Opt_err_panic, "errors=panic"},
1705 {Opt_err_ro, "errors=remount-ro"},
1706 {Opt_nouid32, "nouid32"},
1707 {Opt_debug, "debug"},
1708 {Opt_removed, "oldalloc"},
1709 {Opt_removed, "orlov"},
1710 {Opt_user_xattr, "user_xattr"},
1711 {Opt_nouser_xattr, "nouser_xattr"},
1712 {Opt_acl, "acl"},
1713 {Opt_noacl, "noacl"},
1714 {Opt_noload, "norecovery"},
1715 {Opt_noload, "noload"},
1716 {Opt_removed, "nobh"},
1717 {Opt_removed, "bh"},
1718 {Opt_commit, "commit=%u"},
1719 {Opt_min_batch_time, "min_batch_time=%u"},
1720 {Opt_max_batch_time, "max_batch_time=%u"},
1721 {Opt_journal_dev, "journal_dev=%u"},
1722 {Opt_journal_path, "journal_path=%s"},
1723 {Opt_journal_checksum, "journal_checksum"},
1724 {Opt_nojournal_checksum, "nojournal_checksum"},
1725 {Opt_journal_async_commit, "journal_async_commit"},
1726 {Opt_abort, "abort"},
1727 {Opt_data_journal, "data=journal"},
1728 {Opt_data_ordered, "data=ordered"},
1729 {Opt_data_writeback, "data=writeback"},
1730 {Opt_data_err_abort, "data_err=abort"},
1731 {Opt_data_err_ignore, "data_err=ignore"},
1732 {Opt_offusrjquota, "usrjquota="},
1733 {Opt_usrjquota, "usrjquota=%s"},
1734 {Opt_offgrpjquota, "grpjquota="},
1735 {Opt_grpjquota, "grpjquota=%s"},
1736 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1737 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1738 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1739 {Opt_grpquota, "grpquota"},
1740 {Opt_noquota, "noquota"},
1741 {Opt_quota, "quota"},
1742 {Opt_usrquota, "usrquota"},
1743 {Opt_prjquota, "prjquota"},
1744 {Opt_barrier, "barrier=%u"},
1745 {Opt_barrier, "barrier"},
1746 {Opt_nobarrier, "nobarrier"},
1747 {Opt_i_version, "i_version"},
1748 {Opt_dax, "dax"},
1749 {Opt_dax_always, "dax=always"},
1750 {Opt_dax_inode, "dax=inode"},
1751 {Opt_dax_never, "dax=never"},
1752 {Opt_stripe, "stripe=%u"},
1753 {Opt_delalloc, "delalloc"},
1754 {Opt_warn_on_error, "warn_on_error"},
1755 {Opt_nowarn_on_error, "nowarn_on_error"},
1756 {Opt_lazytime, "lazytime"},
1757 {Opt_nolazytime, "nolazytime"},
1758 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1759 {Opt_nodelalloc, "nodelalloc"},
1760 {Opt_removed, "mblk_io_submit"},
1761 {Opt_removed, "nomblk_io_submit"},
1762 {Opt_block_validity, "block_validity"},
1763 {Opt_noblock_validity, "noblock_validity"},
1764 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1765 {Opt_journal_ioprio, "journal_ioprio=%u"},
1766 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1767 {Opt_auto_da_alloc, "auto_da_alloc"},
1768 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1769 {Opt_dioread_nolock, "dioread_nolock"},
1770 {Opt_dioread_lock, "nodioread_nolock"},
1771 {Opt_dioread_lock, "dioread_lock"},
1772 {Opt_discard, "discard"},
1773 {Opt_nodiscard, "nodiscard"},
1774 {Opt_init_itable, "init_itable=%u"},
1775 {Opt_init_itable, "init_itable"},
1776 {Opt_noinit_itable, "noinit_itable"},
1777 #ifdef CONFIG_EXT4_DEBUG
1778 {Opt_fc_debug_force, "fc_debug_force"},
1779 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1780 #endif
1781 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1782 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1783 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1784 {Opt_inlinecrypt, "inlinecrypt"},
1785 {Opt_nombcache, "nombcache"},
1786 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1787 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1788 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1789 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1790 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1791 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1792 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1793 {Opt_err, NULL},
1794 };
1795
get_sb_block(void ** data)1796 static ext4_fsblk_t get_sb_block(void **data)
1797 {
1798 ext4_fsblk_t sb_block;
1799 char *options = (char *) *data;
1800
1801 if (!options || strncmp(options, "sb=", 3) != 0)
1802 return 1; /* Default location */
1803
1804 options += 3;
1805 /* TODO: use simple_strtoll with >32bit ext4 */
1806 sb_block = simple_strtoul(options, &options, 0);
1807 if (*options && *options != ',') {
1808 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1809 (char *) *data);
1810 return 1;
1811 }
1812 if (*options == ',')
1813 options++;
1814 *data = (void *) options;
1815
1816 return sb_block;
1817 }
1818
1819 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1820 static const char deprecated_msg[] =
1821 "Mount option \"%s\" will be removed by %s\n"
1822 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1823
1824 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1825 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1826 {
1827 struct ext4_sb_info *sbi = EXT4_SB(sb);
1828 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1829 int ret = -1;
1830
1831 if (sb_any_quota_loaded(sb) && !old_qname) {
1832 ext4_msg(sb, KERN_ERR,
1833 "Cannot change journaled "
1834 "quota options when quota turned on");
1835 return -1;
1836 }
1837 if (ext4_has_feature_quota(sb)) {
1838 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1839 "ignored when QUOTA feature is enabled");
1840 return 1;
1841 }
1842 qname = match_strdup(args);
1843 if (!qname) {
1844 ext4_msg(sb, KERN_ERR,
1845 "Not enough memory for storing quotafile name");
1846 return -1;
1847 }
1848 if (old_qname) {
1849 if (strcmp(old_qname, qname) == 0)
1850 ret = 1;
1851 else
1852 ext4_msg(sb, KERN_ERR,
1853 "%s quota file already specified",
1854 QTYPE2NAME(qtype));
1855 goto errout;
1856 }
1857 if (strchr(qname, '/')) {
1858 ext4_msg(sb, KERN_ERR,
1859 "quotafile must be on filesystem root");
1860 goto errout;
1861 }
1862 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1863 set_opt(sb, QUOTA);
1864 return 1;
1865 errout:
1866 kfree(qname);
1867 return ret;
1868 }
1869
clear_qf_name(struct super_block * sb,int qtype)1870 static int clear_qf_name(struct super_block *sb, int qtype)
1871 {
1872
1873 struct ext4_sb_info *sbi = EXT4_SB(sb);
1874 char *old_qname = get_qf_name(sb, sbi, qtype);
1875
1876 if (sb_any_quota_loaded(sb) && old_qname) {
1877 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1878 " when quota turned on");
1879 return -1;
1880 }
1881 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1882 synchronize_rcu();
1883 kfree(old_qname);
1884 return 1;
1885 }
1886 #endif
1887
1888 #define MOPT_SET 0x0001
1889 #define MOPT_CLEAR 0x0002
1890 #define MOPT_NOSUPPORT 0x0004
1891 #define MOPT_EXPLICIT 0x0008
1892 #define MOPT_CLEAR_ERR 0x0010
1893 #define MOPT_GTE0 0x0020
1894 #ifdef CONFIG_QUOTA
1895 #define MOPT_Q 0
1896 #define MOPT_QFMT 0x0040
1897 #else
1898 #define MOPT_Q MOPT_NOSUPPORT
1899 #define MOPT_QFMT MOPT_NOSUPPORT
1900 #endif
1901 #define MOPT_DATAJ 0x0080
1902 #define MOPT_NO_EXT2 0x0100
1903 #define MOPT_NO_EXT3 0x0200
1904 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1905 #define MOPT_STRING 0x0400
1906 #define MOPT_SKIP 0x0800
1907 #define MOPT_2 0x1000
1908
1909 static const struct mount_opts {
1910 int token;
1911 int mount_opt;
1912 int flags;
1913 } ext4_mount_opts[] = {
1914 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1915 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1916 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1917 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1918 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1919 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1920 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1921 MOPT_EXT4_ONLY | MOPT_SET},
1922 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1923 MOPT_EXT4_ONLY | MOPT_CLEAR},
1924 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1925 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1926 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1927 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1928 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1929 MOPT_EXT4_ONLY | MOPT_CLEAR},
1930 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1931 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1932 {Opt_commit, 0, MOPT_NO_EXT2},
1933 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1934 MOPT_EXT4_ONLY | MOPT_CLEAR},
1935 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1936 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1937 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1938 EXT4_MOUNT_JOURNAL_CHECKSUM),
1939 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1941 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1942 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1943 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1944 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1945 MOPT_NO_EXT2},
1946 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1947 MOPT_NO_EXT2},
1948 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1949 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1950 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1951 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1952 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1953 {Opt_commit, 0, MOPT_GTE0},
1954 {Opt_max_batch_time, 0, MOPT_GTE0},
1955 {Opt_min_batch_time, 0, MOPT_GTE0},
1956 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1957 {Opt_init_itable, 0, MOPT_GTE0},
1958 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1959 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1960 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1961 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1962 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1963 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1964 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1965 {Opt_stripe, 0, MOPT_GTE0},
1966 {Opt_resuid, 0, MOPT_GTE0},
1967 {Opt_resgid, 0, MOPT_GTE0},
1968 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1969 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1970 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1971 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1972 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1973 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1974 MOPT_NO_EXT2 | MOPT_DATAJ},
1975 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1976 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1977 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1978 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1979 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1980 #else
1981 {Opt_acl, 0, MOPT_NOSUPPORT},
1982 {Opt_noacl, 0, MOPT_NOSUPPORT},
1983 #endif
1984 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1985 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1986 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1987 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1988 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1989 MOPT_SET | MOPT_Q},
1990 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1991 MOPT_SET | MOPT_Q},
1992 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1993 MOPT_SET | MOPT_Q},
1994 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1995 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1996 MOPT_CLEAR | MOPT_Q},
1997 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
1998 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
1999 {Opt_offusrjquota, 0, MOPT_Q},
2000 {Opt_offgrpjquota, 0, MOPT_Q},
2001 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2002 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2003 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2004 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2005 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2006 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2007 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2008 MOPT_SET},
2009 #ifdef CONFIG_EXT4_DEBUG
2010 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2011 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2012 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2013 #endif
2014 {Opt_err, 0, 0}
2015 };
2016
2017 #ifdef CONFIG_UNICODE
2018 static const struct ext4_sb_encodings {
2019 __u16 magic;
2020 char *name;
2021 char *version;
2022 } ext4_sb_encoding_map[] = {
2023 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2024 };
2025
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2026 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2027 const struct ext4_sb_encodings **encoding,
2028 __u16 *flags)
2029 {
2030 __u16 magic = le16_to_cpu(es->s_encoding);
2031 int i;
2032
2033 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2034 if (magic == ext4_sb_encoding_map[i].magic)
2035 break;
2036
2037 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2038 return -EINVAL;
2039
2040 *encoding = &ext4_sb_encoding_map[i];
2041 *flags = le16_to_cpu(es->s_encoding_flags);
2042
2043 return 0;
2044 }
2045 #endif
2046
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2047 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2048 const char *opt,
2049 const substring_t *arg,
2050 bool is_remount)
2051 {
2052 #ifdef CONFIG_FS_ENCRYPTION
2053 struct ext4_sb_info *sbi = EXT4_SB(sb);
2054 int err;
2055
2056 if (!ext4_has_feature_encrypt(sb)) {
2057 ext4_msg(sb, KERN_WARNING,
2058 "test_dummy_encryption requires encrypt feature");
2059 return -1;
2060 }
2061
2062 /*
2063 * This mount option is just for testing, and it's not worthwhile to
2064 * implement the extra complexity (e.g. RCU protection) that would be
2065 * needed to allow it to be set or changed during remount. We do allow
2066 * it to be specified during remount, but only if there is no change.
2067 */
2068 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2069 ext4_msg(sb, KERN_WARNING,
2070 "Can't set test_dummy_encryption on remount");
2071 return -1;
2072 }
2073 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2074 &sbi->s_dummy_enc_policy);
2075 if (err) {
2076 if (err == -EEXIST)
2077 ext4_msg(sb, KERN_WARNING,
2078 "Can't change test_dummy_encryption on remount");
2079 else if (err == -EINVAL)
2080 ext4_msg(sb, KERN_WARNING,
2081 "Value of option \"%s\" is unrecognized", opt);
2082 else
2083 ext4_msg(sb, KERN_WARNING,
2084 "Error processing option \"%s\" [%d]",
2085 opt, err);
2086 return -1;
2087 }
2088 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2089 return 1;
2090 #else
2091 ext4_msg(sb, KERN_WARNING,
2092 "test_dummy_encryption option not supported");
2093 return -1;
2094
2095 #endif
2096 }
2097
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2098 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2099 substring_t *args, unsigned long *journal_devnum,
2100 unsigned int *journal_ioprio, int is_remount)
2101 {
2102 struct ext4_sb_info *sbi = EXT4_SB(sb);
2103 const struct mount_opts *m;
2104 kuid_t uid;
2105 kgid_t gid;
2106 int arg = 0;
2107
2108 #ifdef CONFIG_QUOTA
2109 if (token == Opt_usrjquota)
2110 return set_qf_name(sb, USRQUOTA, &args[0]);
2111 else if (token == Opt_grpjquota)
2112 return set_qf_name(sb, GRPQUOTA, &args[0]);
2113 else if (token == Opt_offusrjquota)
2114 return clear_qf_name(sb, USRQUOTA);
2115 else if (token == Opt_offgrpjquota)
2116 return clear_qf_name(sb, GRPQUOTA);
2117 #endif
2118 switch (token) {
2119 case Opt_noacl:
2120 case Opt_nouser_xattr:
2121 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2122 break;
2123 case Opt_sb:
2124 return 1; /* handled by get_sb_block() */
2125 case Opt_removed:
2126 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2127 return 1;
2128 case Opt_abort:
2129 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2130 return 1;
2131 case Opt_i_version:
2132 sb->s_flags |= SB_I_VERSION;
2133 return 1;
2134 case Opt_lazytime:
2135 sb->s_flags |= SB_LAZYTIME;
2136 return 1;
2137 case Opt_nolazytime:
2138 sb->s_flags &= ~SB_LAZYTIME;
2139 return 1;
2140 case Opt_inlinecrypt:
2141 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2142 sb->s_flags |= SB_INLINECRYPT;
2143 #else
2144 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2145 #endif
2146 return 1;
2147 }
2148
2149 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2150 if (token == m->token)
2151 break;
2152
2153 if (m->token == Opt_err) {
2154 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2155 "or missing value", opt);
2156 return -1;
2157 }
2158
2159 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2160 ext4_msg(sb, KERN_ERR,
2161 "Mount option \"%s\" incompatible with ext2", opt);
2162 return -1;
2163 }
2164 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2165 ext4_msg(sb, KERN_ERR,
2166 "Mount option \"%s\" incompatible with ext3", opt);
2167 return -1;
2168 }
2169
2170 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2171 return -1;
2172 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2173 return -1;
2174 if (m->flags & MOPT_EXPLICIT) {
2175 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2176 set_opt2(sb, EXPLICIT_DELALLOC);
2177 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2178 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2179 } else
2180 return -1;
2181 }
2182 if (m->flags & MOPT_CLEAR_ERR)
2183 clear_opt(sb, ERRORS_MASK);
2184 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2185 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2186 "options when quota turned on");
2187 return -1;
2188 }
2189
2190 if (m->flags & MOPT_NOSUPPORT) {
2191 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2192 } else if (token == Opt_commit) {
2193 if (arg == 0)
2194 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2195 else if (arg > INT_MAX / HZ) {
2196 ext4_msg(sb, KERN_ERR,
2197 "Invalid commit interval %d, "
2198 "must be smaller than %d",
2199 arg, INT_MAX / HZ);
2200 return -1;
2201 }
2202 sbi->s_commit_interval = HZ * arg;
2203 } else if (token == Opt_debug_want_extra_isize) {
2204 if ((arg & 1) ||
2205 (arg < 4) ||
2206 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2207 ext4_msg(sb, KERN_ERR,
2208 "Invalid want_extra_isize %d", arg);
2209 return -1;
2210 }
2211 sbi->s_want_extra_isize = arg;
2212 } else if (token == Opt_max_batch_time) {
2213 sbi->s_max_batch_time = arg;
2214 } else if (token == Opt_min_batch_time) {
2215 sbi->s_min_batch_time = arg;
2216 } else if (token == Opt_inode_readahead_blks) {
2217 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2218 ext4_msg(sb, KERN_ERR,
2219 "EXT4-fs: inode_readahead_blks must be "
2220 "0 or a power of 2 smaller than 2^31");
2221 return -1;
2222 }
2223 sbi->s_inode_readahead_blks = arg;
2224 } else if (token == Opt_init_itable) {
2225 set_opt(sb, INIT_INODE_TABLE);
2226 if (!args->from)
2227 arg = EXT4_DEF_LI_WAIT_MULT;
2228 sbi->s_li_wait_mult = arg;
2229 } else if (token == Opt_max_dir_size_kb) {
2230 sbi->s_max_dir_size_kb = arg;
2231 #ifdef CONFIG_EXT4_DEBUG
2232 } else if (token == Opt_fc_debug_max_replay) {
2233 sbi->s_fc_debug_max_replay = arg;
2234 #endif
2235 } else if (token == Opt_stripe) {
2236 sbi->s_stripe = arg;
2237 } else if (token == Opt_resuid) {
2238 uid = make_kuid(current_user_ns(), arg);
2239 if (!uid_valid(uid)) {
2240 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2241 return -1;
2242 }
2243 sbi->s_resuid = uid;
2244 } else if (token == Opt_resgid) {
2245 gid = make_kgid(current_user_ns(), arg);
2246 if (!gid_valid(gid)) {
2247 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2248 return -1;
2249 }
2250 sbi->s_resgid = gid;
2251 } else if (token == Opt_journal_dev) {
2252 if (is_remount) {
2253 ext4_msg(sb, KERN_ERR,
2254 "Cannot specify journal on remount");
2255 return -1;
2256 }
2257 *journal_devnum = arg;
2258 } else if (token == Opt_journal_path) {
2259 char *journal_path;
2260 struct inode *journal_inode;
2261 struct path path;
2262 int error;
2263
2264 if (is_remount) {
2265 ext4_msg(sb, KERN_ERR,
2266 "Cannot specify journal on remount");
2267 return -1;
2268 }
2269 journal_path = match_strdup(&args[0]);
2270 if (!journal_path) {
2271 ext4_msg(sb, KERN_ERR, "error: could not dup "
2272 "journal device string");
2273 return -1;
2274 }
2275
2276 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2277 if (error) {
2278 ext4_msg(sb, KERN_ERR, "error: could not find "
2279 "journal device path: error %d", error);
2280 kfree(journal_path);
2281 return -1;
2282 }
2283
2284 journal_inode = d_inode(path.dentry);
2285 if (!S_ISBLK(journal_inode->i_mode)) {
2286 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2287 "is not a block device", journal_path);
2288 path_put(&path);
2289 kfree(journal_path);
2290 return -1;
2291 }
2292
2293 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2294 path_put(&path);
2295 kfree(journal_path);
2296 } else if (token == Opt_journal_ioprio) {
2297 if (arg > 7) {
2298 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2299 " (must be 0-7)");
2300 return -1;
2301 }
2302 *journal_ioprio =
2303 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2304 } else if (token == Opt_test_dummy_encryption) {
2305 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2306 is_remount);
2307 } else if (m->flags & MOPT_DATAJ) {
2308 if (is_remount) {
2309 if (!sbi->s_journal)
2310 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2311 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2312 ext4_msg(sb, KERN_ERR,
2313 "Cannot change data mode on remount");
2314 return -1;
2315 }
2316 } else {
2317 clear_opt(sb, DATA_FLAGS);
2318 sbi->s_mount_opt |= m->mount_opt;
2319 }
2320 #ifdef CONFIG_QUOTA
2321 } else if (m->flags & MOPT_QFMT) {
2322 if (sb_any_quota_loaded(sb) &&
2323 sbi->s_jquota_fmt != m->mount_opt) {
2324 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2325 "quota options when quota turned on");
2326 return -1;
2327 }
2328 if (ext4_has_feature_quota(sb)) {
2329 ext4_msg(sb, KERN_INFO,
2330 "Quota format mount options ignored "
2331 "when QUOTA feature is enabled");
2332 return 1;
2333 }
2334 sbi->s_jquota_fmt = m->mount_opt;
2335 #endif
2336 } else if (token == Opt_dax || token == Opt_dax_always ||
2337 token == Opt_dax_inode || token == Opt_dax_never) {
2338 #ifdef CONFIG_FS_DAX
2339 switch (token) {
2340 case Opt_dax:
2341 case Opt_dax_always:
2342 if (is_remount &&
2343 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2344 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2345 fail_dax_change_remount:
2346 ext4_msg(sb, KERN_ERR, "can't change "
2347 "dax mount option while remounting");
2348 return -1;
2349 }
2350 if (is_remount &&
2351 (test_opt(sb, DATA_FLAGS) ==
2352 EXT4_MOUNT_JOURNAL_DATA)) {
2353 ext4_msg(sb, KERN_ERR, "can't mount with "
2354 "both data=journal and dax");
2355 return -1;
2356 }
2357 ext4_msg(sb, KERN_WARNING,
2358 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2359 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2360 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2361 break;
2362 case Opt_dax_never:
2363 if (is_remount &&
2364 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2365 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2366 goto fail_dax_change_remount;
2367 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2368 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2369 break;
2370 case Opt_dax_inode:
2371 if (is_remount &&
2372 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2373 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2374 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2375 goto fail_dax_change_remount;
2376 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2377 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2378 /* Strictly for printing options */
2379 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2380 break;
2381 }
2382 #else
2383 ext4_msg(sb, KERN_INFO, "dax option not supported");
2384 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2385 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2386 return -1;
2387 #endif
2388 } else if (token == Opt_data_err_abort) {
2389 sbi->s_mount_opt |= m->mount_opt;
2390 } else if (token == Opt_data_err_ignore) {
2391 sbi->s_mount_opt &= ~m->mount_opt;
2392 } else {
2393 if (!args->from)
2394 arg = 1;
2395 if (m->flags & MOPT_CLEAR)
2396 arg = !arg;
2397 else if (unlikely(!(m->flags & MOPT_SET))) {
2398 ext4_msg(sb, KERN_WARNING,
2399 "buggy handling of option %s", opt);
2400 WARN_ON(1);
2401 return -1;
2402 }
2403 if (m->flags & MOPT_2) {
2404 if (arg != 0)
2405 sbi->s_mount_opt2 |= m->mount_opt;
2406 else
2407 sbi->s_mount_opt2 &= ~m->mount_opt;
2408 } else {
2409 if (arg != 0)
2410 sbi->s_mount_opt |= m->mount_opt;
2411 else
2412 sbi->s_mount_opt &= ~m->mount_opt;
2413 }
2414 }
2415 return 1;
2416 }
2417
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2418 static int parse_options(char *options, struct super_block *sb,
2419 unsigned long *journal_devnum,
2420 unsigned int *journal_ioprio,
2421 int is_remount)
2422 {
2423 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2424 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2425 substring_t args[MAX_OPT_ARGS];
2426 int token;
2427
2428 if (!options)
2429 return 1;
2430
2431 while ((p = strsep(&options, ",")) != NULL) {
2432 if (!*p)
2433 continue;
2434 /*
2435 * Initialize args struct so we know whether arg was
2436 * found; some options take optional arguments.
2437 */
2438 args[0].to = args[0].from = NULL;
2439 token = match_token(p, tokens, args);
2440 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2441 journal_ioprio, is_remount) < 0)
2442 return 0;
2443 }
2444 #ifdef CONFIG_QUOTA
2445 /*
2446 * We do the test below only for project quotas. 'usrquota' and
2447 * 'grpquota' mount options are allowed even without quota feature
2448 * to support legacy quotas in quota files.
2449 */
2450 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2451 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2452 "Cannot enable project quota enforcement.");
2453 return 0;
2454 }
2455 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2456 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2457 if (usr_qf_name || grp_qf_name) {
2458 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2459 clear_opt(sb, USRQUOTA);
2460
2461 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2462 clear_opt(sb, GRPQUOTA);
2463
2464 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2465 ext4_msg(sb, KERN_ERR, "old and new quota "
2466 "format mixing");
2467 return 0;
2468 }
2469
2470 if (!sbi->s_jquota_fmt) {
2471 ext4_msg(sb, KERN_ERR, "journaled quota format "
2472 "not specified");
2473 return 0;
2474 }
2475 }
2476 #endif
2477 if (test_opt(sb, DIOREAD_NOLOCK)) {
2478 int blocksize =
2479 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2480 if (blocksize < PAGE_SIZE)
2481 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2482 "experimental mount option 'dioread_nolock' "
2483 "for blocksize < PAGE_SIZE");
2484 }
2485 return 1;
2486 }
2487
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2488 static inline void ext4_show_quota_options(struct seq_file *seq,
2489 struct super_block *sb)
2490 {
2491 #if defined(CONFIG_QUOTA)
2492 struct ext4_sb_info *sbi = EXT4_SB(sb);
2493 char *usr_qf_name, *grp_qf_name;
2494
2495 if (sbi->s_jquota_fmt) {
2496 char *fmtname = "";
2497
2498 switch (sbi->s_jquota_fmt) {
2499 case QFMT_VFS_OLD:
2500 fmtname = "vfsold";
2501 break;
2502 case QFMT_VFS_V0:
2503 fmtname = "vfsv0";
2504 break;
2505 case QFMT_VFS_V1:
2506 fmtname = "vfsv1";
2507 break;
2508 }
2509 seq_printf(seq, ",jqfmt=%s", fmtname);
2510 }
2511
2512 rcu_read_lock();
2513 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2514 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2515 if (usr_qf_name)
2516 seq_show_option(seq, "usrjquota", usr_qf_name);
2517 if (grp_qf_name)
2518 seq_show_option(seq, "grpjquota", grp_qf_name);
2519 rcu_read_unlock();
2520 #endif
2521 }
2522
token2str(int token)2523 static const char *token2str(int token)
2524 {
2525 const struct match_token *t;
2526
2527 for (t = tokens; t->token != Opt_err; t++)
2528 if (t->token == token && !strchr(t->pattern, '='))
2529 break;
2530 return t->pattern;
2531 }
2532
2533 /*
2534 * Show an option if
2535 * - it's set to a non-default value OR
2536 * - if the per-sb default is different from the global default
2537 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2538 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2539 int nodefs)
2540 {
2541 struct ext4_sb_info *sbi = EXT4_SB(sb);
2542 struct ext4_super_block *es = sbi->s_es;
2543 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2544 const struct mount_opts *m;
2545 char sep = nodefs ? '\n' : ',';
2546
2547 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2548 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2549
2550 if (sbi->s_sb_block != 1)
2551 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2552
2553 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2554 int want_set = m->flags & MOPT_SET;
2555 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2556 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2557 continue;
2558 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2559 continue; /* skip if same as the default */
2560 if ((want_set &&
2561 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2562 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2563 continue; /* select Opt_noFoo vs Opt_Foo */
2564 SEQ_OPTS_PRINT("%s", token2str(m->token));
2565 }
2566
2567 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2568 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2569 SEQ_OPTS_PRINT("resuid=%u",
2570 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2571 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2572 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2573 SEQ_OPTS_PRINT("resgid=%u",
2574 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2575 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2576 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2577 SEQ_OPTS_PUTS("errors=remount-ro");
2578 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2579 SEQ_OPTS_PUTS("errors=continue");
2580 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2581 SEQ_OPTS_PUTS("errors=panic");
2582 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2583 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2584 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2585 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2586 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2587 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2588 if (sb->s_flags & SB_I_VERSION)
2589 SEQ_OPTS_PUTS("i_version");
2590 if (nodefs || sbi->s_stripe)
2591 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2592 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2593 (sbi->s_mount_opt ^ def_mount_opt)) {
2594 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2595 SEQ_OPTS_PUTS("data=journal");
2596 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2597 SEQ_OPTS_PUTS("data=ordered");
2598 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2599 SEQ_OPTS_PUTS("data=writeback");
2600 }
2601 if (nodefs ||
2602 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2603 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2604 sbi->s_inode_readahead_blks);
2605
2606 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2607 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2608 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2609 if (nodefs || sbi->s_max_dir_size_kb)
2610 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2611 if (test_opt(sb, DATA_ERR_ABORT))
2612 SEQ_OPTS_PUTS("data_err=abort");
2613
2614 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2615
2616 if (sb->s_flags & SB_INLINECRYPT)
2617 SEQ_OPTS_PUTS("inlinecrypt");
2618
2619 if (test_opt(sb, DAX_ALWAYS)) {
2620 if (IS_EXT2_SB(sb))
2621 SEQ_OPTS_PUTS("dax");
2622 else
2623 SEQ_OPTS_PUTS("dax=always");
2624 } else if (test_opt2(sb, DAX_NEVER)) {
2625 SEQ_OPTS_PUTS("dax=never");
2626 } else if (test_opt2(sb, DAX_INODE)) {
2627 SEQ_OPTS_PUTS("dax=inode");
2628 }
2629 ext4_show_quota_options(seq, sb);
2630 return 0;
2631 }
2632
ext4_show_options(struct seq_file * seq,struct dentry * root)2633 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2634 {
2635 return _ext4_show_options(seq, root->d_sb, 0);
2636 }
2637
ext4_seq_options_show(struct seq_file * seq,void * offset)2638 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2639 {
2640 struct super_block *sb = seq->private;
2641 int rc;
2642
2643 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2644 rc = _ext4_show_options(seq, sb, 1);
2645 seq_puts(seq, "\n");
2646 return rc;
2647 }
2648
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2649 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2650 int read_only)
2651 {
2652 struct ext4_sb_info *sbi = EXT4_SB(sb);
2653 int err = 0;
2654
2655 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2656 ext4_msg(sb, KERN_ERR, "revision level too high, "
2657 "forcing read-only mode");
2658 err = -EROFS;
2659 goto done;
2660 }
2661 if (read_only)
2662 goto done;
2663 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2664 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2665 "running e2fsck is recommended");
2666 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2667 ext4_msg(sb, KERN_WARNING,
2668 "warning: mounting fs with errors, "
2669 "running e2fsck is recommended");
2670 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2671 le16_to_cpu(es->s_mnt_count) >=
2672 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2673 ext4_msg(sb, KERN_WARNING,
2674 "warning: maximal mount count reached, "
2675 "running e2fsck is recommended");
2676 else if (le32_to_cpu(es->s_checkinterval) &&
2677 (ext4_get_tstamp(es, s_lastcheck) +
2678 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2679 ext4_msg(sb, KERN_WARNING,
2680 "warning: checktime reached, "
2681 "running e2fsck is recommended");
2682 if (!sbi->s_journal)
2683 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2684 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2685 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2686 le16_add_cpu(&es->s_mnt_count, 1);
2687 ext4_update_tstamp(es, s_mtime);
2688 if (sbi->s_journal)
2689 ext4_set_feature_journal_needs_recovery(sb);
2690
2691 err = ext4_commit_super(sb);
2692 done:
2693 if (test_opt(sb, DEBUG))
2694 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2695 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2696 sb->s_blocksize,
2697 sbi->s_groups_count,
2698 EXT4_BLOCKS_PER_GROUP(sb),
2699 EXT4_INODES_PER_GROUP(sb),
2700 sbi->s_mount_opt, sbi->s_mount_opt2);
2701
2702 cleancache_init_fs(sb);
2703 return err;
2704 }
2705
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2706 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2707 {
2708 struct ext4_sb_info *sbi = EXT4_SB(sb);
2709 struct flex_groups **old_groups, **new_groups;
2710 int size, i, j;
2711
2712 if (!sbi->s_log_groups_per_flex)
2713 return 0;
2714
2715 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2716 if (size <= sbi->s_flex_groups_allocated)
2717 return 0;
2718
2719 new_groups = kvzalloc(roundup_pow_of_two(size *
2720 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2721 if (!new_groups) {
2722 ext4_msg(sb, KERN_ERR,
2723 "not enough memory for %d flex group pointers", size);
2724 return -ENOMEM;
2725 }
2726 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2727 new_groups[i] = kvzalloc(roundup_pow_of_two(
2728 sizeof(struct flex_groups)),
2729 GFP_KERNEL);
2730 if (!new_groups[i]) {
2731 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2732 kvfree(new_groups[j]);
2733 kvfree(new_groups);
2734 ext4_msg(sb, KERN_ERR,
2735 "not enough memory for %d flex groups", size);
2736 return -ENOMEM;
2737 }
2738 }
2739 rcu_read_lock();
2740 old_groups = rcu_dereference(sbi->s_flex_groups);
2741 if (old_groups)
2742 memcpy(new_groups, old_groups,
2743 (sbi->s_flex_groups_allocated *
2744 sizeof(struct flex_groups *)));
2745 rcu_read_unlock();
2746 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2747 sbi->s_flex_groups_allocated = size;
2748 if (old_groups)
2749 ext4_kvfree_array_rcu(old_groups);
2750 return 0;
2751 }
2752
ext4_fill_flex_info(struct super_block * sb)2753 static int ext4_fill_flex_info(struct super_block *sb)
2754 {
2755 struct ext4_sb_info *sbi = EXT4_SB(sb);
2756 struct ext4_group_desc *gdp = NULL;
2757 struct flex_groups *fg;
2758 ext4_group_t flex_group;
2759 int i, err;
2760
2761 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2762 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2763 sbi->s_log_groups_per_flex = 0;
2764 return 1;
2765 }
2766
2767 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2768 if (err)
2769 goto failed;
2770
2771 for (i = 0; i < sbi->s_groups_count; i++) {
2772 gdp = ext4_get_group_desc(sb, i, NULL);
2773
2774 flex_group = ext4_flex_group(sbi, i);
2775 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2776 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2777 atomic64_add(ext4_free_group_clusters(sb, gdp),
2778 &fg->free_clusters);
2779 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2780 }
2781
2782 return 1;
2783 failed:
2784 return 0;
2785 }
2786
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2787 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2788 struct ext4_group_desc *gdp)
2789 {
2790 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2791 __u16 crc = 0;
2792 __le32 le_group = cpu_to_le32(block_group);
2793 struct ext4_sb_info *sbi = EXT4_SB(sb);
2794
2795 if (ext4_has_metadata_csum(sbi->s_sb)) {
2796 /* Use new metadata_csum algorithm */
2797 __u32 csum32;
2798 __u16 dummy_csum = 0;
2799
2800 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2801 sizeof(le_group));
2802 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2803 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2804 sizeof(dummy_csum));
2805 offset += sizeof(dummy_csum);
2806 if (offset < sbi->s_desc_size)
2807 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2808 sbi->s_desc_size - offset);
2809
2810 crc = csum32 & 0xFFFF;
2811 goto out;
2812 }
2813
2814 /* old crc16 code */
2815 if (!ext4_has_feature_gdt_csum(sb))
2816 return 0;
2817
2818 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2819 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2820 crc = crc16(crc, (__u8 *)gdp, offset);
2821 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2822 /* for checksum of struct ext4_group_desc do the rest...*/
2823 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
2824 crc = crc16(crc, (__u8 *)gdp + offset,
2825 sbi->s_desc_size - offset);
2826
2827 out:
2828 return cpu_to_le16(crc);
2829 }
2830
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2831 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2832 struct ext4_group_desc *gdp)
2833 {
2834 if (ext4_has_group_desc_csum(sb) &&
2835 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2836 return 0;
2837
2838 return 1;
2839 }
2840
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2841 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2842 struct ext4_group_desc *gdp)
2843 {
2844 if (!ext4_has_group_desc_csum(sb))
2845 return;
2846 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2847 }
2848
2849 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2850 static int ext4_check_descriptors(struct super_block *sb,
2851 ext4_fsblk_t sb_block,
2852 ext4_group_t *first_not_zeroed)
2853 {
2854 struct ext4_sb_info *sbi = EXT4_SB(sb);
2855 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2856 ext4_fsblk_t last_block;
2857 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2858 ext4_fsblk_t block_bitmap;
2859 ext4_fsblk_t inode_bitmap;
2860 ext4_fsblk_t inode_table;
2861 int flexbg_flag = 0;
2862 ext4_group_t i, grp = sbi->s_groups_count;
2863
2864 if (ext4_has_feature_flex_bg(sb))
2865 flexbg_flag = 1;
2866
2867 ext4_debug("Checking group descriptors");
2868
2869 for (i = 0; i < sbi->s_groups_count; i++) {
2870 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2871
2872 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2873 last_block = ext4_blocks_count(sbi->s_es) - 1;
2874 else
2875 last_block = first_block +
2876 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2877
2878 if ((grp == sbi->s_groups_count) &&
2879 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2880 grp = i;
2881
2882 block_bitmap = ext4_block_bitmap(sb, gdp);
2883 if (block_bitmap == sb_block) {
2884 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2885 "Block bitmap for group %u overlaps "
2886 "superblock", i);
2887 if (!sb_rdonly(sb))
2888 return 0;
2889 }
2890 if (block_bitmap >= sb_block + 1 &&
2891 block_bitmap <= last_bg_block) {
2892 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2893 "Block bitmap for group %u overlaps "
2894 "block group descriptors", i);
2895 if (!sb_rdonly(sb))
2896 return 0;
2897 }
2898 if (block_bitmap < first_block || block_bitmap > last_block) {
2899 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2900 "Block bitmap for group %u not in group "
2901 "(block %llu)!", i, block_bitmap);
2902 return 0;
2903 }
2904 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2905 if (inode_bitmap == sb_block) {
2906 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2907 "Inode bitmap for group %u overlaps "
2908 "superblock", i);
2909 if (!sb_rdonly(sb))
2910 return 0;
2911 }
2912 if (inode_bitmap >= sb_block + 1 &&
2913 inode_bitmap <= last_bg_block) {
2914 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2915 "Inode bitmap for group %u overlaps "
2916 "block group descriptors", i);
2917 if (!sb_rdonly(sb))
2918 return 0;
2919 }
2920 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2921 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2922 "Inode bitmap for group %u not in group "
2923 "(block %llu)!", i, inode_bitmap);
2924 return 0;
2925 }
2926 inode_table = ext4_inode_table(sb, gdp);
2927 if (inode_table == sb_block) {
2928 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2929 "Inode table for group %u overlaps "
2930 "superblock", i);
2931 if (!sb_rdonly(sb))
2932 return 0;
2933 }
2934 if (inode_table >= sb_block + 1 &&
2935 inode_table <= last_bg_block) {
2936 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2937 "Inode table for group %u overlaps "
2938 "block group descriptors", i);
2939 if (!sb_rdonly(sb))
2940 return 0;
2941 }
2942 if (inode_table < first_block ||
2943 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2944 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2945 "Inode table for group %u not in group "
2946 "(block %llu)!", i, inode_table);
2947 return 0;
2948 }
2949 ext4_lock_group(sb, i);
2950 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2951 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2952 "Checksum for group %u failed (%u!=%u)",
2953 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2954 gdp)), le16_to_cpu(gdp->bg_checksum));
2955 if (!sb_rdonly(sb)) {
2956 ext4_unlock_group(sb, i);
2957 return 0;
2958 }
2959 }
2960 ext4_unlock_group(sb, i);
2961 if (!flexbg_flag)
2962 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2963 }
2964 if (NULL != first_not_zeroed)
2965 *first_not_zeroed = grp;
2966 return 1;
2967 }
2968
2969 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2970 * the superblock) which were deleted from all directories, but held open by
2971 * a process at the time of a crash. We walk the list and try to delete these
2972 * inodes at recovery time (only with a read-write filesystem).
2973 *
2974 * In order to keep the orphan inode chain consistent during traversal (in
2975 * case of crash during recovery), we link each inode into the superblock
2976 * orphan list_head and handle it the same way as an inode deletion during
2977 * normal operation (which journals the operations for us).
2978 *
2979 * We only do an iget() and an iput() on each inode, which is very safe if we
2980 * accidentally point at an in-use or already deleted inode. The worst that
2981 * can happen in this case is that we get a "bit already cleared" message from
2982 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2983 * e2fsck was run on this filesystem, and it must have already done the orphan
2984 * inode cleanup for us, so we can safely abort without any further action.
2985 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)2986 static void ext4_orphan_cleanup(struct super_block *sb,
2987 struct ext4_super_block *es)
2988 {
2989 unsigned int s_flags = sb->s_flags;
2990 int ret, nr_orphans = 0, nr_truncates = 0;
2991 #ifdef CONFIG_QUOTA
2992 int quota_update = 0;
2993 int i;
2994 #endif
2995 if (!es->s_last_orphan) {
2996 jbd_debug(4, "no orphan inodes to clean up\n");
2997 return;
2998 }
2999
3000 if (bdev_read_only(sb->s_bdev)) {
3001 ext4_msg(sb, KERN_ERR, "write access "
3002 "unavailable, skipping orphan cleanup");
3003 return;
3004 }
3005
3006 /* Check if feature set would not allow a r/w mount */
3007 if (!ext4_feature_set_ok(sb, 0)) {
3008 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3009 "unknown ROCOMPAT features");
3010 return;
3011 }
3012
3013 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3014 /* don't clear list on RO mount w/ errors */
3015 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3016 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3017 "clearing orphan list.\n");
3018 es->s_last_orphan = 0;
3019 }
3020 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3021 return;
3022 }
3023
3024 if (s_flags & SB_RDONLY) {
3025 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3026 sb->s_flags &= ~SB_RDONLY;
3027 }
3028 #ifdef CONFIG_QUOTA
3029 /*
3030 * Turn on quotas which were not enabled for read-only mounts if
3031 * filesystem has quota feature, so that they are updated correctly.
3032 */
3033 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3034 int ret = ext4_enable_quotas(sb);
3035
3036 if (!ret)
3037 quota_update = 1;
3038 else
3039 ext4_msg(sb, KERN_ERR,
3040 "Cannot turn on quotas: error %d", ret);
3041 }
3042
3043 /* Turn on journaled quotas used for old sytle */
3044 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3045 if (EXT4_SB(sb)->s_qf_names[i]) {
3046 int ret = ext4_quota_on_mount(sb, i);
3047
3048 if (!ret)
3049 quota_update = 1;
3050 else
3051 ext4_msg(sb, KERN_ERR,
3052 "Cannot turn on journaled "
3053 "quota: type %d: error %d", i, ret);
3054 }
3055 }
3056 #endif
3057
3058 while (es->s_last_orphan) {
3059 struct inode *inode;
3060
3061 /*
3062 * We may have encountered an error during cleanup; if
3063 * so, skip the rest.
3064 */
3065 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3066 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3067 es->s_last_orphan = 0;
3068 break;
3069 }
3070
3071 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3072 if (IS_ERR(inode)) {
3073 es->s_last_orphan = 0;
3074 break;
3075 }
3076
3077 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3078 dquot_initialize(inode);
3079 if (inode->i_nlink) {
3080 if (test_opt(sb, DEBUG))
3081 ext4_msg(sb, KERN_DEBUG,
3082 "%s: truncating inode %lu to %lld bytes",
3083 __func__, inode->i_ino, inode->i_size);
3084 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3085 inode->i_ino, inode->i_size);
3086 inode_lock(inode);
3087 truncate_inode_pages(inode->i_mapping, inode->i_size);
3088 ret = ext4_truncate(inode);
3089 if (ret) {
3090 /*
3091 * We need to clean up the in-core orphan list
3092 * manually if ext4_truncate() failed to get a
3093 * transaction handle.
3094 */
3095 ext4_orphan_del(NULL, inode);
3096 ext4_std_error(inode->i_sb, ret);
3097 }
3098 inode_unlock(inode);
3099 nr_truncates++;
3100 } else {
3101 if (test_opt(sb, DEBUG))
3102 ext4_msg(sb, KERN_DEBUG,
3103 "%s: deleting unreferenced inode %lu",
3104 __func__, inode->i_ino);
3105 jbd_debug(2, "deleting unreferenced inode %lu\n",
3106 inode->i_ino);
3107 nr_orphans++;
3108 }
3109 iput(inode); /* The delete magic happens here! */
3110 }
3111
3112 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3113
3114 if (nr_orphans)
3115 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3116 PLURAL(nr_orphans));
3117 if (nr_truncates)
3118 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3119 PLURAL(nr_truncates));
3120 #ifdef CONFIG_QUOTA
3121 /* Turn off quotas if they were enabled for orphan cleanup */
3122 if (quota_update) {
3123 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3124 if (sb_dqopt(sb)->files[i])
3125 dquot_quota_off(sb, i);
3126 }
3127 }
3128 #endif
3129 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3130 }
3131
3132 /*
3133 * Maximal extent format file size.
3134 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3135 * extent format containers, within a sector_t, and within i_blocks
3136 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3137 * so that won't be a limiting factor.
3138 *
3139 * However there is other limiting factor. We do store extents in the form
3140 * of starting block and length, hence the resulting length of the extent
3141 * covering maximum file size must fit into on-disk format containers as
3142 * well. Given that length is always by 1 unit bigger than max unit (because
3143 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3144 *
3145 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3146 */
ext4_max_size(int blkbits,int has_huge_files)3147 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3148 {
3149 loff_t res;
3150 loff_t upper_limit = MAX_LFS_FILESIZE;
3151
3152 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3153
3154 if (!has_huge_files) {
3155 upper_limit = (1LL << 32) - 1;
3156
3157 /* total blocks in file system block size */
3158 upper_limit >>= (blkbits - 9);
3159 upper_limit <<= blkbits;
3160 }
3161
3162 /*
3163 * 32-bit extent-start container, ee_block. We lower the maxbytes
3164 * by one fs block, so ee_len can cover the extent of maximum file
3165 * size
3166 */
3167 res = (1LL << 32) - 1;
3168 res <<= blkbits;
3169
3170 /* Sanity check against vm- & vfs- imposed limits */
3171 if (res > upper_limit)
3172 res = upper_limit;
3173
3174 return res;
3175 }
3176
3177 /*
3178 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3179 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3180 * We need to be 1 filesystem block less than the 2^48 sector limit.
3181 */
ext4_max_bitmap_size(int bits,int has_huge_files)3182 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3183 {
3184 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3185 int meta_blocks;
3186
3187 /*
3188 * This is calculated to be the largest file size for a dense, block
3189 * mapped file such that the file's total number of 512-byte sectors,
3190 * including data and all indirect blocks, does not exceed (2^48 - 1).
3191 *
3192 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3193 * number of 512-byte sectors of the file.
3194 */
3195 if (!has_huge_files) {
3196 /*
3197 * !has_huge_files or implies that the inode i_block field
3198 * represents total file blocks in 2^32 512-byte sectors ==
3199 * size of vfs inode i_blocks * 8
3200 */
3201 upper_limit = (1LL << 32) - 1;
3202
3203 /* total blocks in file system block size */
3204 upper_limit >>= (bits - 9);
3205
3206 } else {
3207 /*
3208 * We use 48 bit ext4_inode i_blocks
3209 * With EXT4_HUGE_FILE_FL set the i_blocks
3210 * represent total number of blocks in
3211 * file system block size
3212 */
3213 upper_limit = (1LL << 48) - 1;
3214
3215 }
3216
3217 /* indirect blocks */
3218 meta_blocks = 1;
3219 /* double indirect blocks */
3220 meta_blocks += 1 + (1LL << (bits-2));
3221 /* tripple indirect blocks */
3222 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3223
3224 upper_limit -= meta_blocks;
3225 upper_limit <<= bits;
3226
3227 res += 1LL << (bits-2);
3228 res += 1LL << (2*(bits-2));
3229 res += 1LL << (3*(bits-2));
3230 res <<= bits;
3231 if (res > upper_limit)
3232 res = upper_limit;
3233
3234 if (res > MAX_LFS_FILESIZE)
3235 res = MAX_LFS_FILESIZE;
3236
3237 return (loff_t)res;
3238 }
3239
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3240 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3241 ext4_fsblk_t logical_sb_block, int nr)
3242 {
3243 struct ext4_sb_info *sbi = EXT4_SB(sb);
3244 ext4_group_t bg, first_meta_bg;
3245 int has_super = 0;
3246
3247 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3248
3249 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3250 return logical_sb_block + nr + 1;
3251 bg = sbi->s_desc_per_block * nr;
3252 if (ext4_bg_has_super(sb, bg))
3253 has_super = 1;
3254
3255 /*
3256 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3257 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3258 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3259 * compensate.
3260 */
3261 if (sb->s_blocksize == 1024 && nr == 0 &&
3262 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3263 has_super++;
3264
3265 return (has_super + ext4_group_first_block_no(sb, bg));
3266 }
3267
3268 /**
3269 * ext4_get_stripe_size: Get the stripe size.
3270 * @sbi: In memory super block info
3271 *
3272 * If we have specified it via mount option, then
3273 * use the mount option value. If the value specified at mount time is
3274 * greater than the blocks per group use the super block value.
3275 * If the super block value is greater than blocks per group return 0.
3276 * Allocator needs it be less than blocks per group.
3277 *
3278 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3279 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3280 {
3281 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3282 unsigned long stripe_width =
3283 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3284 int ret;
3285
3286 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3287 ret = sbi->s_stripe;
3288 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3289 ret = stripe_width;
3290 else if (stride && stride <= sbi->s_blocks_per_group)
3291 ret = stride;
3292 else
3293 ret = 0;
3294
3295 /*
3296 * If the stripe width is 1, this makes no sense and
3297 * we set it to 0 to turn off stripe handling code.
3298 */
3299 if (ret <= 1)
3300 ret = 0;
3301
3302 return ret;
3303 }
3304
3305 /*
3306 * Check whether this filesystem can be mounted based on
3307 * the features present and the RDONLY/RDWR mount requested.
3308 * Returns 1 if this filesystem can be mounted as requested,
3309 * 0 if it cannot be.
3310 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3311 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3312 {
3313 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3314 ext4_msg(sb, KERN_ERR,
3315 "Couldn't mount because of "
3316 "unsupported optional features (%x)",
3317 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3318 ~EXT4_FEATURE_INCOMPAT_SUPP));
3319 return 0;
3320 }
3321
3322 #ifndef CONFIG_UNICODE
3323 if (ext4_has_feature_casefold(sb)) {
3324 ext4_msg(sb, KERN_ERR,
3325 "Filesystem with casefold feature cannot be "
3326 "mounted without CONFIG_UNICODE");
3327 return 0;
3328 }
3329 #endif
3330
3331 if (readonly)
3332 return 1;
3333
3334 if (ext4_has_feature_readonly(sb)) {
3335 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3336 sb->s_flags |= SB_RDONLY;
3337 return 1;
3338 }
3339
3340 /* Check that feature set is OK for a read-write mount */
3341 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3342 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3343 "unsupported optional features (%x)",
3344 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3345 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3346 return 0;
3347 }
3348 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3349 ext4_msg(sb, KERN_ERR,
3350 "Can't support bigalloc feature without "
3351 "extents feature\n");
3352 return 0;
3353 }
3354
3355 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3356 if (!readonly && (ext4_has_feature_quota(sb) ||
3357 ext4_has_feature_project(sb))) {
3358 ext4_msg(sb, KERN_ERR,
3359 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3360 return 0;
3361 }
3362 #endif /* CONFIG_QUOTA */
3363 return 1;
3364 }
3365
3366 /*
3367 * This function is called once a day if we have errors logged
3368 * on the file system
3369 */
print_daily_error_info(struct timer_list * t)3370 static void print_daily_error_info(struct timer_list *t)
3371 {
3372 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3373 struct super_block *sb = sbi->s_sb;
3374 struct ext4_super_block *es = sbi->s_es;
3375
3376 if (es->s_error_count)
3377 /* fsck newer than v1.41.13 is needed to clean this condition. */
3378 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3379 le32_to_cpu(es->s_error_count));
3380 if (es->s_first_error_time) {
3381 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3382 sb->s_id,
3383 ext4_get_tstamp(es, s_first_error_time),
3384 (int) sizeof(es->s_first_error_func),
3385 es->s_first_error_func,
3386 le32_to_cpu(es->s_first_error_line));
3387 if (es->s_first_error_ino)
3388 printk(KERN_CONT ": inode %u",
3389 le32_to_cpu(es->s_first_error_ino));
3390 if (es->s_first_error_block)
3391 printk(KERN_CONT ": block %llu", (unsigned long long)
3392 le64_to_cpu(es->s_first_error_block));
3393 printk(KERN_CONT "\n");
3394 }
3395 if (es->s_last_error_time) {
3396 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3397 sb->s_id,
3398 ext4_get_tstamp(es, s_last_error_time),
3399 (int) sizeof(es->s_last_error_func),
3400 es->s_last_error_func,
3401 le32_to_cpu(es->s_last_error_line));
3402 if (es->s_last_error_ino)
3403 printk(KERN_CONT ": inode %u",
3404 le32_to_cpu(es->s_last_error_ino));
3405 if (es->s_last_error_block)
3406 printk(KERN_CONT ": block %llu", (unsigned long long)
3407 le64_to_cpu(es->s_last_error_block));
3408 printk(KERN_CONT "\n");
3409 }
3410 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3411 }
3412
3413 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3414 static int ext4_run_li_request(struct ext4_li_request *elr)
3415 {
3416 struct ext4_group_desc *gdp = NULL;
3417 struct super_block *sb = elr->lr_super;
3418 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3419 ext4_group_t group = elr->lr_next_group;
3420 unsigned int prefetch_ios = 0;
3421 int ret = 0;
3422 u64 start_time;
3423
3424 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3425 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3426 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3427 if (prefetch_ios)
3428 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3429 prefetch_ios);
3430 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3431 prefetch_ios);
3432 if (group >= elr->lr_next_group) {
3433 ret = 1;
3434 if (elr->lr_first_not_zeroed != ngroups &&
3435 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3436 elr->lr_next_group = elr->lr_first_not_zeroed;
3437 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3438 ret = 0;
3439 }
3440 }
3441 return ret;
3442 }
3443
3444 for (; group < ngroups; group++) {
3445 gdp = ext4_get_group_desc(sb, group, NULL);
3446 if (!gdp) {
3447 ret = 1;
3448 break;
3449 }
3450
3451 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3452 break;
3453 }
3454
3455 if (group >= ngroups)
3456 ret = 1;
3457
3458 if (!ret) {
3459 start_time = ktime_get_real_ns();
3460 ret = ext4_init_inode_table(sb, group,
3461 elr->lr_timeout ? 0 : 1);
3462 trace_ext4_lazy_itable_init(sb, group);
3463 if (elr->lr_timeout == 0) {
3464 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3465 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3466 }
3467 elr->lr_next_sched = jiffies + elr->lr_timeout;
3468 elr->lr_next_group = group + 1;
3469 }
3470 return ret;
3471 }
3472
3473 /*
3474 * Remove lr_request from the list_request and free the
3475 * request structure. Should be called with li_list_mtx held
3476 */
ext4_remove_li_request(struct ext4_li_request * elr)3477 static void ext4_remove_li_request(struct ext4_li_request *elr)
3478 {
3479 if (!elr)
3480 return;
3481
3482 list_del(&elr->lr_request);
3483 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3484 kfree(elr);
3485 }
3486
ext4_unregister_li_request(struct super_block * sb)3487 static void ext4_unregister_li_request(struct super_block *sb)
3488 {
3489 mutex_lock(&ext4_li_mtx);
3490 if (!ext4_li_info) {
3491 mutex_unlock(&ext4_li_mtx);
3492 return;
3493 }
3494
3495 mutex_lock(&ext4_li_info->li_list_mtx);
3496 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3497 mutex_unlock(&ext4_li_info->li_list_mtx);
3498 mutex_unlock(&ext4_li_mtx);
3499 }
3500
3501 static struct task_struct *ext4_lazyinit_task;
3502
3503 /*
3504 * This is the function where ext4lazyinit thread lives. It walks
3505 * through the request list searching for next scheduled filesystem.
3506 * When such a fs is found, run the lazy initialization request
3507 * (ext4_rn_li_request) and keep track of the time spend in this
3508 * function. Based on that time we compute next schedule time of
3509 * the request. When walking through the list is complete, compute
3510 * next waking time and put itself into sleep.
3511 */
ext4_lazyinit_thread(void * arg)3512 static int ext4_lazyinit_thread(void *arg)
3513 {
3514 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3515 struct list_head *pos, *n;
3516 struct ext4_li_request *elr;
3517 unsigned long next_wakeup, cur;
3518
3519 BUG_ON(NULL == eli);
3520 set_freezable();
3521
3522 cont_thread:
3523 while (true) {
3524 next_wakeup = MAX_JIFFY_OFFSET;
3525
3526 mutex_lock(&eli->li_list_mtx);
3527 if (list_empty(&eli->li_request_list)) {
3528 mutex_unlock(&eli->li_list_mtx);
3529 goto exit_thread;
3530 }
3531 list_for_each_safe(pos, n, &eli->li_request_list) {
3532 int err = 0;
3533 int progress = 0;
3534 elr = list_entry(pos, struct ext4_li_request,
3535 lr_request);
3536
3537 if (time_before(jiffies, elr->lr_next_sched)) {
3538 if (time_before(elr->lr_next_sched, next_wakeup))
3539 next_wakeup = elr->lr_next_sched;
3540 continue;
3541 }
3542 if (down_read_trylock(&elr->lr_super->s_umount)) {
3543 if (sb_start_write_trylock(elr->lr_super)) {
3544 progress = 1;
3545 /*
3546 * We hold sb->s_umount, sb can not
3547 * be removed from the list, it is
3548 * now safe to drop li_list_mtx
3549 */
3550 mutex_unlock(&eli->li_list_mtx);
3551 err = ext4_run_li_request(elr);
3552 sb_end_write(elr->lr_super);
3553 mutex_lock(&eli->li_list_mtx);
3554 n = pos->next;
3555 }
3556 up_read((&elr->lr_super->s_umount));
3557 }
3558 /* error, remove the lazy_init job */
3559 if (err) {
3560 ext4_remove_li_request(elr);
3561 continue;
3562 }
3563 if (!progress) {
3564 elr->lr_next_sched = jiffies +
3565 (prandom_u32()
3566 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3567 }
3568 if (time_before(elr->lr_next_sched, next_wakeup))
3569 next_wakeup = elr->lr_next_sched;
3570 }
3571 mutex_unlock(&eli->li_list_mtx);
3572
3573 try_to_freeze();
3574
3575 cur = jiffies;
3576 if ((time_after_eq(cur, next_wakeup)) ||
3577 (MAX_JIFFY_OFFSET == next_wakeup)) {
3578 cond_resched();
3579 continue;
3580 }
3581
3582 schedule_timeout_interruptible(next_wakeup - cur);
3583
3584 if (kthread_should_stop()) {
3585 ext4_clear_request_list();
3586 goto exit_thread;
3587 }
3588 }
3589
3590 exit_thread:
3591 /*
3592 * It looks like the request list is empty, but we need
3593 * to check it under the li_list_mtx lock, to prevent any
3594 * additions into it, and of course we should lock ext4_li_mtx
3595 * to atomically free the list and ext4_li_info, because at
3596 * this point another ext4 filesystem could be registering
3597 * new one.
3598 */
3599 mutex_lock(&ext4_li_mtx);
3600 mutex_lock(&eli->li_list_mtx);
3601 if (!list_empty(&eli->li_request_list)) {
3602 mutex_unlock(&eli->li_list_mtx);
3603 mutex_unlock(&ext4_li_mtx);
3604 goto cont_thread;
3605 }
3606 mutex_unlock(&eli->li_list_mtx);
3607 kfree(ext4_li_info);
3608 ext4_li_info = NULL;
3609 mutex_unlock(&ext4_li_mtx);
3610
3611 return 0;
3612 }
3613
ext4_clear_request_list(void)3614 static void ext4_clear_request_list(void)
3615 {
3616 struct list_head *pos, *n;
3617 struct ext4_li_request *elr;
3618
3619 mutex_lock(&ext4_li_info->li_list_mtx);
3620 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3621 elr = list_entry(pos, struct ext4_li_request,
3622 lr_request);
3623 ext4_remove_li_request(elr);
3624 }
3625 mutex_unlock(&ext4_li_info->li_list_mtx);
3626 }
3627
ext4_run_lazyinit_thread(void)3628 static int ext4_run_lazyinit_thread(void)
3629 {
3630 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3631 ext4_li_info, "ext4lazyinit");
3632 if (IS_ERR(ext4_lazyinit_task)) {
3633 int err = PTR_ERR(ext4_lazyinit_task);
3634 ext4_clear_request_list();
3635 kfree(ext4_li_info);
3636 ext4_li_info = NULL;
3637 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3638 "initialization thread\n",
3639 err);
3640 return err;
3641 }
3642 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3643 return 0;
3644 }
3645
3646 /*
3647 * Check whether it make sense to run itable init. thread or not.
3648 * If there is at least one uninitialized inode table, return
3649 * corresponding group number, else the loop goes through all
3650 * groups and return total number of groups.
3651 */
ext4_has_uninit_itable(struct super_block * sb)3652 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3653 {
3654 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3655 struct ext4_group_desc *gdp = NULL;
3656
3657 if (!ext4_has_group_desc_csum(sb))
3658 return ngroups;
3659
3660 for (group = 0; group < ngroups; group++) {
3661 gdp = ext4_get_group_desc(sb, group, NULL);
3662 if (!gdp)
3663 continue;
3664
3665 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3666 break;
3667 }
3668
3669 return group;
3670 }
3671
ext4_li_info_new(void)3672 static int ext4_li_info_new(void)
3673 {
3674 struct ext4_lazy_init *eli = NULL;
3675
3676 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3677 if (!eli)
3678 return -ENOMEM;
3679
3680 INIT_LIST_HEAD(&eli->li_request_list);
3681 mutex_init(&eli->li_list_mtx);
3682
3683 eli->li_state |= EXT4_LAZYINIT_QUIT;
3684
3685 ext4_li_info = eli;
3686
3687 return 0;
3688 }
3689
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3690 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3691 ext4_group_t start)
3692 {
3693 struct ext4_li_request *elr;
3694
3695 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3696 if (!elr)
3697 return NULL;
3698
3699 elr->lr_super = sb;
3700 elr->lr_first_not_zeroed = start;
3701 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3702 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3703 else {
3704 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3705 elr->lr_next_group = start;
3706 }
3707
3708 /*
3709 * Randomize first schedule time of the request to
3710 * spread the inode table initialization requests
3711 * better.
3712 */
3713 elr->lr_next_sched = jiffies + (prandom_u32() %
3714 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3715 return elr;
3716 }
3717
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3718 int ext4_register_li_request(struct super_block *sb,
3719 ext4_group_t first_not_zeroed)
3720 {
3721 struct ext4_sb_info *sbi = EXT4_SB(sb);
3722 struct ext4_li_request *elr = NULL;
3723 ext4_group_t ngroups = sbi->s_groups_count;
3724 int ret = 0;
3725
3726 mutex_lock(&ext4_li_mtx);
3727 if (sbi->s_li_request != NULL) {
3728 /*
3729 * Reset timeout so it can be computed again, because
3730 * s_li_wait_mult might have changed.
3731 */
3732 sbi->s_li_request->lr_timeout = 0;
3733 goto out;
3734 }
3735
3736 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3737 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3738 !test_opt(sb, INIT_INODE_TABLE)))
3739 goto out;
3740
3741 elr = ext4_li_request_new(sb, first_not_zeroed);
3742 if (!elr) {
3743 ret = -ENOMEM;
3744 goto out;
3745 }
3746
3747 if (NULL == ext4_li_info) {
3748 ret = ext4_li_info_new();
3749 if (ret)
3750 goto out;
3751 }
3752
3753 mutex_lock(&ext4_li_info->li_list_mtx);
3754 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3755 mutex_unlock(&ext4_li_info->li_list_mtx);
3756
3757 sbi->s_li_request = elr;
3758 /*
3759 * set elr to NULL here since it has been inserted to
3760 * the request_list and the removal and free of it is
3761 * handled by ext4_clear_request_list from now on.
3762 */
3763 elr = NULL;
3764
3765 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3766 ret = ext4_run_lazyinit_thread();
3767 if (ret)
3768 goto out;
3769 }
3770 out:
3771 mutex_unlock(&ext4_li_mtx);
3772 if (ret)
3773 kfree(elr);
3774 return ret;
3775 }
3776
3777 /*
3778 * We do not need to lock anything since this is called on
3779 * module unload.
3780 */
ext4_destroy_lazyinit_thread(void)3781 static void ext4_destroy_lazyinit_thread(void)
3782 {
3783 /*
3784 * If thread exited earlier
3785 * there's nothing to be done.
3786 */
3787 if (!ext4_li_info || !ext4_lazyinit_task)
3788 return;
3789
3790 kthread_stop(ext4_lazyinit_task);
3791 }
3792
set_journal_csum_feature_set(struct super_block * sb)3793 static int set_journal_csum_feature_set(struct super_block *sb)
3794 {
3795 int ret = 1;
3796 int compat, incompat;
3797 struct ext4_sb_info *sbi = EXT4_SB(sb);
3798
3799 if (ext4_has_metadata_csum(sb)) {
3800 /* journal checksum v3 */
3801 compat = 0;
3802 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3803 } else {
3804 /* journal checksum v1 */
3805 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3806 incompat = 0;
3807 }
3808
3809 jbd2_journal_clear_features(sbi->s_journal,
3810 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3811 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3812 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3813 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3814 ret = jbd2_journal_set_features(sbi->s_journal,
3815 compat, 0,
3816 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3817 incompat);
3818 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3819 ret = jbd2_journal_set_features(sbi->s_journal,
3820 compat, 0,
3821 incompat);
3822 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3823 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3824 } else {
3825 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3826 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3827 }
3828
3829 return ret;
3830 }
3831
3832 /*
3833 * Note: calculating the overhead so we can be compatible with
3834 * historical BSD practice is quite difficult in the face of
3835 * clusters/bigalloc. This is because multiple metadata blocks from
3836 * different block group can end up in the same allocation cluster.
3837 * Calculating the exact overhead in the face of clustered allocation
3838 * requires either O(all block bitmaps) in memory or O(number of block
3839 * groups**2) in time. We will still calculate the superblock for
3840 * older file systems --- and if we come across with a bigalloc file
3841 * system with zero in s_overhead_clusters the estimate will be close to
3842 * correct especially for very large cluster sizes --- but for newer
3843 * file systems, it's better to calculate this figure once at mkfs
3844 * time, and store it in the superblock. If the superblock value is
3845 * present (even for non-bigalloc file systems), we will use it.
3846 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3847 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3848 char *buf)
3849 {
3850 struct ext4_sb_info *sbi = EXT4_SB(sb);
3851 struct ext4_group_desc *gdp;
3852 ext4_fsblk_t first_block, last_block, b;
3853 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3854 int s, j, count = 0;
3855 int has_super = ext4_bg_has_super(sb, grp);
3856
3857 if (!ext4_has_feature_bigalloc(sb))
3858 return (has_super + ext4_bg_num_gdb(sb, grp) +
3859 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
3860 sbi->s_itb_per_group + 2);
3861
3862 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3863 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3864 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3865 for (i = 0; i < ngroups; i++) {
3866 gdp = ext4_get_group_desc(sb, i, NULL);
3867 b = ext4_block_bitmap(sb, gdp);
3868 if (b >= first_block && b <= last_block) {
3869 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3870 count++;
3871 }
3872 b = ext4_inode_bitmap(sb, gdp);
3873 if (b >= first_block && b <= last_block) {
3874 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3875 count++;
3876 }
3877 b = ext4_inode_table(sb, gdp);
3878 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3879 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3880 int c = EXT4_B2C(sbi, b - first_block);
3881 ext4_set_bit(c, buf);
3882 count++;
3883 }
3884 if (i != grp)
3885 continue;
3886 s = 0;
3887 if (ext4_bg_has_super(sb, grp)) {
3888 ext4_set_bit(s++, buf);
3889 count++;
3890 }
3891 j = ext4_bg_num_gdb(sb, grp);
3892 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3893 ext4_error(sb, "Invalid number of block group "
3894 "descriptor blocks: %d", j);
3895 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3896 }
3897 count += j;
3898 for (; j > 0; j--)
3899 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3900 }
3901 if (!count)
3902 return 0;
3903 return EXT4_CLUSTERS_PER_GROUP(sb) -
3904 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3905 }
3906
3907 /*
3908 * Compute the overhead and stash it in sbi->s_overhead
3909 */
ext4_calculate_overhead(struct super_block * sb)3910 int ext4_calculate_overhead(struct super_block *sb)
3911 {
3912 struct ext4_sb_info *sbi = EXT4_SB(sb);
3913 struct ext4_super_block *es = sbi->s_es;
3914 struct inode *j_inode;
3915 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3916 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3917 ext4_fsblk_t overhead = 0;
3918 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3919
3920 if (!buf)
3921 return -ENOMEM;
3922
3923 /*
3924 * Compute the overhead (FS structures). This is constant
3925 * for a given filesystem unless the number of block groups
3926 * changes so we cache the previous value until it does.
3927 */
3928
3929 /*
3930 * All of the blocks before first_data_block are overhead
3931 */
3932 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3933
3934 /*
3935 * Add the overhead found in each block group
3936 */
3937 for (i = 0; i < ngroups; i++) {
3938 int blks;
3939
3940 blks = count_overhead(sb, i, buf);
3941 overhead += blks;
3942 if (blks)
3943 memset(buf, 0, PAGE_SIZE);
3944 cond_resched();
3945 }
3946
3947 /*
3948 * Add the internal journal blocks whether the journal has been
3949 * loaded or not
3950 */
3951 if (sbi->s_journal && !sbi->s_journal_bdev)
3952 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3953 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3954 /* j_inum for internal journal is non-zero */
3955 j_inode = ext4_get_journal_inode(sb, j_inum);
3956 if (j_inode) {
3957 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3958 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3959 iput(j_inode);
3960 } else {
3961 ext4_msg(sb, KERN_ERR, "can't get journal size");
3962 }
3963 }
3964 sbi->s_overhead = overhead;
3965 smp_wmb();
3966 free_page((unsigned long) buf);
3967 return 0;
3968 }
3969
ext4_set_resv_clusters(struct super_block * sb)3970 static void ext4_set_resv_clusters(struct super_block *sb)
3971 {
3972 ext4_fsblk_t resv_clusters;
3973 struct ext4_sb_info *sbi = EXT4_SB(sb);
3974
3975 /*
3976 * There's no need to reserve anything when we aren't using extents.
3977 * The space estimates are exact, there are no unwritten extents,
3978 * hole punching doesn't need new metadata... This is needed especially
3979 * to keep ext2/3 backward compatibility.
3980 */
3981 if (!ext4_has_feature_extents(sb))
3982 return;
3983 /*
3984 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3985 * This should cover the situations where we can not afford to run
3986 * out of space like for example punch hole, or converting
3987 * unwritten extents in delalloc path. In most cases such
3988 * allocation would require 1, or 2 blocks, higher numbers are
3989 * very rare.
3990 */
3991 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3992 sbi->s_cluster_bits);
3993
3994 do_div(resv_clusters, 50);
3995 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3996
3997 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3998 }
3999
ext4_fill_super(struct super_block * sb,void * data,int silent)4000 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4001 {
4002 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4003 char *orig_data = kstrdup(data, GFP_KERNEL);
4004 struct buffer_head *bh, **group_desc;
4005 struct ext4_super_block *es = NULL;
4006 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4007 struct flex_groups **flex_groups;
4008 ext4_fsblk_t block;
4009 ext4_fsblk_t sb_block = get_sb_block(&data);
4010 ext4_fsblk_t logical_sb_block;
4011 unsigned long offset = 0;
4012 unsigned long journal_devnum = 0;
4013 unsigned long def_mount_opts;
4014 struct inode *root;
4015 const char *descr;
4016 int ret = -ENOMEM;
4017 int blocksize, clustersize;
4018 unsigned int db_count;
4019 unsigned int i;
4020 int needs_recovery, has_huge_files;
4021 __u64 blocks_count;
4022 int err = 0;
4023 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4024 ext4_group_t first_not_zeroed;
4025
4026 if ((data && !orig_data) || !sbi)
4027 goto out_free_base;
4028
4029 sbi->s_daxdev = dax_dev;
4030 sbi->s_blockgroup_lock =
4031 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4032 if (!sbi->s_blockgroup_lock)
4033 goto out_free_base;
4034
4035 sb->s_fs_info = sbi;
4036 sbi->s_sb = sb;
4037 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4038 sbi->s_sb_block = sb_block;
4039 if (sb->s_bdev->bd_part)
4040 sbi->s_sectors_written_start =
4041 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4042
4043 /* Cleanup superblock name */
4044 strreplace(sb->s_id, '/', '!');
4045
4046 /* -EINVAL is default */
4047 ret = -EINVAL;
4048 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4049 if (!blocksize) {
4050 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4051 goto out_fail;
4052 }
4053
4054 /*
4055 * The ext4 superblock will not be buffer aligned for other than 1kB
4056 * block sizes. We need to calculate the offset from buffer start.
4057 */
4058 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4059 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4060 offset = do_div(logical_sb_block, blocksize);
4061 } else {
4062 logical_sb_block = sb_block;
4063 }
4064
4065 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4066 if (IS_ERR(bh)) {
4067 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4068 ret = PTR_ERR(bh);
4069 bh = NULL;
4070 goto out_fail;
4071 }
4072 /*
4073 * Note: s_es must be initialized as soon as possible because
4074 * some ext4 macro-instructions depend on its value
4075 */
4076 es = (struct ext4_super_block *) (bh->b_data + offset);
4077 sbi->s_es = es;
4078 sb->s_magic = le16_to_cpu(es->s_magic);
4079 if (sb->s_magic != EXT4_SUPER_MAGIC)
4080 goto cantfind_ext4;
4081 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4082
4083 /* Warn if metadata_csum and gdt_csum are both set. */
4084 if (ext4_has_feature_metadata_csum(sb) &&
4085 ext4_has_feature_gdt_csum(sb))
4086 ext4_warning(sb, "metadata_csum and uninit_bg are "
4087 "redundant flags; please run fsck.");
4088
4089 /* Check for a known checksum algorithm */
4090 if (!ext4_verify_csum_type(sb, es)) {
4091 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4092 "unknown checksum algorithm.");
4093 silent = 1;
4094 goto cantfind_ext4;
4095 }
4096
4097 /* Load the checksum driver */
4098 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4099 if (IS_ERR(sbi->s_chksum_driver)) {
4100 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4101 ret = PTR_ERR(sbi->s_chksum_driver);
4102 sbi->s_chksum_driver = NULL;
4103 goto failed_mount;
4104 }
4105
4106 /* Check superblock checksum */
4107 if (!ext4_superblock_csum_verify(sb, es)) {
4108 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4109 "invalid superblock checksum. Run e2fsck?");
4110 silent = 1;
4111 ret = -EFSBADCRC;
4112 goto cantfind_ext4;
4113 }
4114
4115 /* Precompute checksum seed for all metadata */
4116 if (ext4_has_feature_csum_seed(sb))
4117 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4118 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4119 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4120 sizeof(es->s_uuid));
4121
4122 /* Set defaults before we parse the mount options */
4123 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4124 set_opt(sb, INIT_INODE_TABLE);
4125 if (def_mount_opts & EXT4_DEFM_DEBUG)
4126 set_opt(sb, DEBUG);
4127 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4128 set_opt(sb, GRPID);
4129 if (def_mount_opts & EXT4_DEFM_UID16)
4130 set_opt(sb, NO_UID32);
4131 /* xattr user namespace & acls are now defaulted on */
4132 set_opt(sb, XATTR_USER);
4133 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4134 set_opt(sb, POSIX_ACL);
4135 #endif
4136 if (ext4_has_feature_fast_commit(sb))
4137 set_opt2(sb, JOURNAL_FAST_COMMIT);
4138 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4139 if (ext4_has_metadata_csum(sb))
4140 set_opt(sb, JOURNAL_CHECKSUM);
4141
4142 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4143 set_opt(sb, JOURNAL_DATA);
4144 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4145 set_opt(sb, ORDERED_DATA);
4146 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4147 set_opt(sb, WRITEBACK_DATA);
4148
4149 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4150 set_opt(sb, ERRORS_PANIC);
4151 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4152 set_opt(sb, ERRORS_CONT);
4153 else
4154 set_opt(sb, ERRORS_RO);
4155 /* block_validity enabled by default; disable with noblock_validity */
4156 set_opt(sb, BLOCK_VALIDITY);
4157 if (def_mount_opts & EXT4_DEFM_DISCARD)
4158 set_opt(sb, DISCARD);
4159
4160 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4161 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4162 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4163 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4164 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4165
4166 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4167 set_opt(sb, BARRIER);
4168
4169 /*
4170 * enable delayed allocation by default
4171 * Use -o nodelalloc to turn it off
4172 */
4173 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4174 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4175 set_opt(sb, DELALLOC);
4176
4177 /*
4178 * set default s_li_wait_mult for lazyinit, for the case there is
4179 * no mount option specified.
4180 */
4181 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4182
4183 if (le32_to_cpu(es->s_log_block_size) >
4184 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4185 ext4_msg(sb, KERN_ERR,
4186 "Invalid log block size: %u",
4187 le32_to_cpu(es->s_log_block_size));
4188 goto failed_mount;
4189 }
4190 if (le32_to_cpu(es->s_log_cluster_size) >
4191 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4192 ext4_msg(sb, KERN_ERR,
4193 "Invalid log cluster size: %u",
4194 le32_to_cpu(es->s_log_cluster_size));
4195 goto failed_mount;
4196 }
4197
4198 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4199
4200 if (blocksize == PAGE_SIZE)
4201 set_opt(sb, DIOREAD_NOLOCK);
4202
4203 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4204 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4205 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4206 } else {
4207 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4208 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4209 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4210 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4211 sbi->s_first_ino);
4212 goto failed_mount;
4213 }
4214 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4215 (!is_power_of_2(sbi->s_inode_size)) ||
4216 (sbi->s_inode_size > blocksize)) {
4217 ext4_msg(sb, KERN_ERR,
4218 "unsupported inode size: %d",
4219 sbi->s_inode_size);
4220 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4221 goto failed_mount;
4222 }
4223 /*
4224 * i_atime_extra is the last extra field available for
4225 * [acm]times in struct ext4_inode. Checking for that
4226 * field should suffice to ensure we have extra space
4227 * for all three.
4228 */
4229 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4230 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4231 sb->s_time_gran = 1;
4232 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4233 } else {
4234 sb->s_time_gran = NSEC_PER_SEC;
4235 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4236 }
4237 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4238 }
4239 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4240 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4241 EXT4_GOOD_OLD_INODE_SIZE;
4242 if (ext4_has_feature_extra_isize(sb)) {
4243 unsigned v, max = (sbi->s_inode_size -
4244 EXT4_GOOD_OLD_INODE_SIZE);
4245
4246 v = le16_to_cpu(es->s_want_extra_isize);
4247 if (v > max) {
4248 ext4_msg(sb, KERN_ERR,
4249 "bad s_want_extra_isize: %d", v);
4250 goto failed_mount;
4251 }
4252 if (sbi->s_want_extra_isize < v)
4253 sbi->s_want_extra_isize = v;
4254
4255 v = le16_to_cpu(es->s_min_extra_isize);
4256 if (v > max) {
4257 ext4_msg(sb, KERN_ERR,
4258 "bad s_min_extra_isize: %d", v);
4259 goto failed_mount;
4260 }
4261 if (sbi->s_want_extra_isize < v)
4262 sbi->s_want_extra_isize = v;
4263 }
4264 }
4265
4266 if (sbi->s_es->s_mount_opts[0]) {
4267 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4268 sizeof(sbi->s_es->s_mount_opts),
4269 GFP_KERNEL);
4270 if (!s_mount_opts)
4271 goto failed_mount;
4272 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4273 &journal_ioprio, 0)) {
4274 ext4_msg(sb, KERN_WARNING,
4275 "failed to parse options in superblock: %s",
4276 s_mount_opts);
4277 }
4278 kfree(s_mount_opts);
4279 }
4280 sbi->s_def_mount_opt = sbi->s_mount_opt;
4281 if (!parse_options((char *) data, sb, &journal_devnum,
4282 &journal_ioprio, 0))
4283 goto failed_mount;
4284
4285 #ifdef CONFIG_UNICODE
4286 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4287 const struct ext4_sb_encodings *encoding_info;
4288 struct unicode_map *encoding;
4289 __u16 encoding_flags;
4290
4291 if (ext4_has_feature_encrypt(sb)) {
4292 ext4_msg(sb, KERN_ERR,
4293 "Can't mount with encoding and encryption");
4294 goto failed_mount;
4295 }
4296
4297 if (ext4_sb_read_encoding(es, &encoding_info,
4298 &encoding_flags)) {
4299 ext4_msg(sb, KERN_ERR,
4300 "Encoding requested by superblock is unknown");
4301 goto failed_mount;
4302 }
4303
4304 encoding = utf8_load(encoding_info->version);
4305 if (IS_ERR(encoding)) {
4306 ext4_msg(sb, KERN_ERR,
4307 "can't mount with superblock charset: %s-%s "
4308 "not supported by the kernel. flags: 0x%x.",
4309 encoding_info->name, encoding_info->version,
4310 encoding_flags);
4311 goto failed_mount;
4312 }
4313 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4314 "%s-%s with flags 0x%hx", encoding_info->name,
4315 encoding_info->version?:"\b", encoding_flags);
4316
4317 sb->s_encoding = encoding;
4318 sb->s_encoding_flags = encoding_flags;
4319 }
4320 #endif
4321
4322 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4323 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4324 /* can't mount with both data=journal and dioread_nolock. */
4325 clear_opt(sb, DIOREAD_NOLOCK);
4326 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4327 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4328 ext4_msg(sb, KERN_ERR, "can't mount with "
4329 "both data=journal and delalloc");
4330 goto failed_mount;
4331 }
4332 if (test_opt(sb, DAX_ALWAYS)) {
4333 ext4_msg(sb, KERN_ERR, "can't mount with "
4334 "both data=journal and dax");
4335 goto failed_mount;
4336 }
4337 if (ext4_has_feature_encrypt(sb)) {
4338 ext4_msg(sb, KERN_WARNING,
4339 "encrypted files will use data=ordered "
4340 "instead of data journaling mode");
4341 }
4342 if (test_opt(sb, DELALLOC))
4343 clear_opt(sb, DELALLOC);
4344 } else {
4345 sb->s_iflags |= SB_I_CGROUPWB;
4346 }
4347
4348 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4349 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4350
4351 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4352 (ext4_has_compat_features(sb) ||
4353 ext4_has_ro_compat_features(sb) ||
4354 ext4_has_incompat_features(sb)))
4355 ext4_msg(sb, KERN_WARNING,
4356 "feature flags set on rev 0 fs, "
4357 "running e2fsck is recommended");
4358
4359 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4360 set_opt2(sb, HURD_COMPAT);
4361 if (ext4_has_feature_64bit(sb)) {
4362 ext4_msg(sb, KERN_ERR,
4363 "The Hurd can't support 64-bit file systems");
4364 goto failed_mount;
4365 }
4366
4367 /*
4368 * ea_inode feature uses l_i_version field which is not
4369 * available in HURD_COMPAT mode.
4370 */
4371 if (ext4_has_feature_ea_inode(sb)) {
4372 ext4_msg(sb, KERN_ERR,
4373 "ea_inode feature is not supported for Hurd");
4374 goto failed_mount;
4375 }
4376 }
4377
4378 if (IS_EXT2_SB(sb)) {
4379 if (ext2_feature_set_ok(sb))
4380 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4381 "using the ext4 subsystem");
4382 else {
4383 /*
4384 * If we're probing be silent, if this looks like
4385 * it's actually an ext[34] filesystem.
4386 */
4387 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4388 goto failed_mount;
4389 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4390 "to feature incompatibilities");
4391 goto failed_mount;
4392 }
4393 }
4394
4395 if (IS_EXT3_SB(sb)) {
4396 if (ext3_feature_set_ok(sb))
4397 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4398 "using the ext4 subsystem");
4399 else {
4400 /*
4401 * If we're probing be silent, if this looks like
4402 * it's actually an ext4 filesystem.
4403 */
4404 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4405 goto failed_mount;
4406 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4407 "to feature incompatibilities");
4408 goto failed_mount;
4409 }
4410 }
4411
4412 /*
4413 * Check feature flags regardless of the revision level, since we
4414 * previously didn't change the revision level when setting the flags,
4415 * so there is a chance incompat flags are set on a rev 0 filesystem.
4416 */
4417 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4418 goto failed_mount;
4419
4420 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4421 ext4_msg(sb, KERN_ERR,
4422 "Number of reserved GDT blocks insanely large: %d",
4423 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4424 goto failed_mount;
4425 }
4426
4427 if (bdev_dax_supported(sb->s_bdev, blocksize))
4428 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4429
4430 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4431 if (ext4_has_feature_inline_data(sb)) {
4432 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4433 " that may contain inline data");
4434 goto failed_mount;
4435 }
4436 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4437 ext4_msg(sb, KERN_ERR,
4438 "DAX unsupported by block device.");
4439 goto failed_mount;
4440 }
4441 }
4442
4443 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4444 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4445 es->s_encryption_level);
4446 goto failed_mount;
4447 }
4448
4449 if (sb->s_blocksize != blocksize) {
4450 /*
4451 * bh must be released before kill_bdev(), otherwise
4452 * it won't be freed and its page also. kill_bdev()
4453 * is called by sb_set_blocksize().
4454 */
4455 brelse(bh);
4456 /* Validate the filesystem blocksize */
4457 if (!sb_set_blocksize(sb, blocksize)) {
4458 ext4_msg(sb, KERN_ERR, "bad block size %d",
4459 blocksize);
4460 bh = NULL;
4461 goto failed_mount;
4462 }
4463
4464 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4465 offset = do_div(logical_sb_block, blocksize);
4466 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4467 if (IS_ERR(bh)) {
4468 ext4_msg(sb, KERN_ERR,
4469 "Can't read superblock on 2nd try");
4470 ret = PTR_ERR(bh);
4471 bh = NULL;
4472 goto failed_mount;
4473 }
4474 es = (struct ext4_super_block *)(bh->b_data + offset);
4475 sbi->s_es = es;
4476 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4477 ext4_msg(sb, KERN_ERR,
4478 "Magic mismatch, very weird!");
4479 goto failed_mount;
4480 }
4481 }
4482
4483 has_huge_files = ext4_has_feature_huge_file(sb);
4484 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4485 has_huge_files);
4486 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4487
4488 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4489 if (ext4_has_feature_64bit(sb)) {
4490 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4491 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4492 !is_power_of_2(sbi->s_desc_size)) {
4493 ext4_msg(sb, KERN_ERR,
4494 "unsupported descriptor size %lu",
4495 sbi->s_desc_size);
4496 goto failed_mount;
4497 }
4498 } else
4499 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4500
4501 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4502 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4503
4504 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4505 if (sbi->s_inodes_per_block == 0)
4506 goto cantfind_ext4;
4507 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4508 sbi->s_inodes_per_group > blocksize * 8) {
4509 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4510 sbi->s_inodes_per_group);
4511 goto failed_mount;
4512 }
4513 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4514 sbi->s_inodes_per_block;
4515 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4516 sbi->s_sbh = bh;
4517 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
4518 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4519 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4520
4521 for (i = 0; i < 4; i++)
4522 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4523 sbi->s_def_hash_version = es->s_def_hash_version;
4524 if (ext4_has_feature_dir_index(sb)) {
4525 i = le32_to_cpu(es->s_flags);
4526 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4527 sbi->s_hash_unsigned = 3;
4528 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4529 #ifdef __CHAR_UNSIGNED__
4530 if (!sb_rdonly(sb))
4531 es->s_flags |=
4532 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4533 sbi->s_hash_unsigned = 3;
4534 #else
4535 if (!sb_rdonly(sb))
4536 es->s_flags |=
4537 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4538 #endif
4539 }
4540 }
4541
4542 /* Handle clustersize */
4543 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4544 if (ext4_has_feature_bigalloc(sb)) {
4545 if (clustersize < blocksize) {
4546 ext4_msg(sb, KERN_ERR,
4547 "cluster size (%d) smaller than "
4548 "block size (%d)", clustersize, blocksize);
4549 goto failed_mount;
4550 }
4551 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4552 le32_to_cpu(es->s_log_block_size);
4553 sbi->s_clusters_per_group =
4554 le32_to_cpu(es->s_clusters_per_group);
4555 if (sbi->s_clusters_per_group > blocksize * 8) {
4556 ext4_msg(sb, KERN_ERR,
4557 "#clusters per group too big: %lu",
4558 sbi->s_clusters_per_group);
4559 goto failed_mount;
4560 }
4561 if (sbi->s_blocks_per_group !=
4562 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4563 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4564 "clusters per group (%lu) inconsistent",
4565 sbi->s_blocks_per_group,
4566 sbi->s_clusters_per_group);
4567 goto failed_mount;
4568 }
4569 } else {
4570 if (clustersize != blocksize) {
4571 ext4_msg(sb, KERN_ERR,
4572 "fragment/cluster size (%d) != "
4573 "block size (%d)", clustersize, blocksize);
4574 goto failed_mount;
4575 }
4576 if (sbi->s_blocks_per_group > blocksize * 8) {
4577 ext4_msg(sb, KERN_ERR,
4578 "#blocks per group too big: %lu",
4579 sbi->s_blocks_per_group);
4580 goto failed_mount;
4581 }
4582 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4583 sbi->s_cluster_bits = 0;
4584 }
4585 sbi->s_cluster_ratio = clustersize / blocksize;
4586
4587 /* Do we have standard group size of clustersize * 8 blocks ? */
4588 if (sbi->s_blocks_per_group == clustersize << 3)
4589 set_opt2(sb, STD_GROUP_SIZE);
4590
4591 /*
4592 * Test whether we have more sectors than will fit in sector_t,
4593 * and whether the max offset is addressable by the page cache.
4594 */
4595 err = generic_check_addressable(sb->s_blocksize_bits,
4596 ext4_blocks_count(es));
4597 if (err) {
4598 ext4_msg(sb, KERN_ERR, "filesystem"
4599 " too large to mount safely on this system");
4600 goto failed_mount;
4601 }
4602
4603 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4604 goto cantfind_ext4;
4605
4606 /* check blocks count against device size */
4607 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4608 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4609 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4610 "exceeds size of device (%llu blocks)",
4611 ext4_blocks_count(es), blocks_count);
4612 goto failed_mount;
4613 }
4614
4615 /*
4616 * It makes no sense for the first data block to be beyond the end
4617 * of the filesystem.
4618 */
4619 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4620 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4621 "block %u is beyond end of filesystem (%llu)",
4622 le32_to_cpu(es->s_first_data_block),
4623 ext4_blocks_count(es));
4624 goto failed_mount;
4625 }
4626 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4627 (sbi->s_cluster_ratio == 1)) {
4628 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4629 "block is 0 with a 1k block and cluster size");
4630 goto failed_mount;
4631 }
4632
4633 blocks_count = (ext4_blocks_count(es) -
4634 le32_to_cpu(es->s_first_data_block) +
4635 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4636 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4637 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4638 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4639 "(block count %llu, first data block %u, "
4640 "blocks per group %lu)", blocks_count,
4641 ext4_blocks_count(es),
4642 le32_to_cpu(es->s_first_data_block),
4643 EXT4_BLOCKS_PER_GROUP(sb));
4644 goto failed_mount;
4645 }
4646 sbi->s_groups_count = blocks_count;
4647 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4648 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4649 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4650 le32_to_cpu(es->s_inodes_count)) {
4651 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4652 le32_to_cpu(es->s_inodes_count),
4653 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4654 ret = -EINVAL;
4655 goto failed_mount;
4656 }
4657 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4658 EXT4_DESC_PER_BLOCK(sb);
4659 if (ext4_has_feature_meta_bg(sb)) {
4660 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4661 ext4_msg(sb, KERN_WARNING,
4662 "first meta block group too large: %u "
4663 "(group descriptor block count %u)",
4664 le32_to_cpu(es->s_first_meta_bg), db_count);
4665 goto failed_mount;
4666 }
4667 }
4668 rcu_assign_pointer(sbi->s_group_desc,
4669 kvmalloc_array(db_count,
4670 sizeof(struct buffer_head *),
4671 GFP_KERNEL));
4672 if (sbi->s_group_desc == NULL) {
4673 ext4_msg(sb, KERN_ERR, "not enough memory");
4674 ret = -ENOMEM;
4675 goto failed_mount;
4676 }
4677
4678 bgl_lock_init(sbi->s_blockgroup_lock);
4679
4680 /* Pre-read the descriptors into the buffer cache */
4681 for (i = 0; i < db_count; i++) {
4682 block = descriptor_loc(sb, logical_sb_block, i);
4683 ext4_sb_breadahead_unmovable(sb, block);
4684 }
4685
4686 for (i = 0; i < db_count; i++) {
4687 struct buffer_head *bh;
4688
4689 block = descriptor_loc(sb, logical_sb_block, i);
4690 bh = ext4_sb_bread_unmovable(sb, block);
4691 if (IS_ERR(bh)) {
4692 ext4_msg(sb, KERN_ERR,
4693 "can't read group descriptor %d", i);
4694 db_count = i;
4695 ret = PTR_ERR(bh);
4696 bh = NULL;
4697 goto failed_mount2;
4698 }
4699 rcu_read_lock();
4700 rcu_dereference(sbi->s_group_desc)[i] = bh;
4701 rcu_read_unlock();
4702 }
4703 sbi->s_gdb_count = db_count;
4704 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4705 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4706 ret = -EFSCORRUPTED;
4707 goto failed_mount2;
4708 }
4709
4710 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4711 spin_lock_init(&sbi->s_error_lock);
4712 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4713
4714 /* Register extent status tree shrinker */
4715 if (ext4_es_register_shrinker(sbi))
4716 goto failed_mount3;
4717
4718 sbi->s_stripe = ext4_get_stripe_size(sbi);
4719 sbi->s_extent_max_zeroout_kb = 32;
4720
4721 /*
4722 * set up enough so that it can read an inode
4723 */
4724 sb->s_op = &ext4_sops;
4725 sb->s_export_op = &ext4_export_ops;
4726 sb->s_xattr = ext4_xattr_handlers;
4727 #ifdef CONFIG_FS_ENCRYPTION
4728 sb->s_cop = &ext4_cryptops;
4729 #endif
4730 #ifdef CONFIG_FS_VERITY
4731 sb->s_vop = &ext4_verityops;
4732 #endif
4733 #ifdef CONFIG_QUOTA
4734 sb->dq_op = &ext4_quota_operations;
4735 if (ext4_has_feature_quota(sb))
4736 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4737 else
4738 sb->s_qcop = &ext4_qctl_operations;
4739 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4740 #endif
4741 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4742
4743 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4744 mutex_init(&sbi->s_orphan_lock);
4745
4746 spin_lock_init(&sbi->s_bdev_wb_lock);
4747
4748 /* Initialize fast commit stuff */
4749 atomic_set(&sbi->s_fc_subtid, 0);
4750 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4751 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4752 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4753 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4754 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4755 sbi->s_fc_bytes = 0;
4756 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4757 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4758 spin_lock_init(&sbi->s_fc_lock);
4759 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4760 sbi->s_fc_replay_state.fc_regions = NULL;
4761 sbi->s_fc_replay_state.fc_regions_size = 0;
4762 sbi->s_fc_replay_state.fc_regions_used = 0;
4763 sbi->s_fc_replay_state.fc_regions_valid = 0;
4764 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4765 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4766 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4767
4768 sb->s_root = NULL;
4769
4770 needs_recovery = (es->s_last_orphan != 0 ||
4771 ext4_has_feature_journal_needs_recovery(sb));
4772
4773 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
4774 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
4775 if (err)
4776 goto failed_mount3a;
4777 }
4778
4779 /*
4780 * The first inode we look at is the journal inode. Don't try
4781 * root first: it may be modified in the journal!
4782 */
4783 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4784 err = ext4_load_journal(sb, es, journal_devnum);
4785 if (err)
4786 goto failed_mount3a;
4787 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4788 ext4_has_feature_journal_needs_recovery(sb)) {
4789 ext4_msg(sb, KERN_ERR, "required journal recovery "
4790 "suppressed and not mounted read-only");
4791 goto failed_mount3a;
4792 } else {
4793 /* Nojournal mode, all journal mount options are illegal */
4794 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4795 ext4_msg(sb, KERN_ERR, "can't mount with "
4796 "journal_async_commit, fs mounted w/o journal");
4797 goto failed_mount3a;
4798 }
4799
4800 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4801 ext4_msg(sb, KERN_ERR, "can't mount with "
4802 "journal_checksum, fs mounted w/o journal");
4803 goto failed_mount3a;
4804 }
4805 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4806 ext4_msg(sb, KERN_ERR, "can't mount with "
4807 "commit=%lu, fs mounted w/o journal",
4808 sbi->s_commit_interval / HZ);
4809 goto failed_mount3a;
4810 }
4811 if (EXT4_MOUNT_DATA_FLAGS &
4812 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4813 ext4_msg(sb, KERN_ERR, "can't mount with "
4814 "data=, fs mounted w/o journal");
4815 goto failed_mount3a;
4816 }
4817 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4818 clear_opt(sb, JOURNAL_CHECKSUM);
4819 clear_opt(sb, DATA_FLAGS);
4820 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4821 sbi->s_journal = NULL;
4822 needs_recovery = 0;
4823 goto no_journal;
4824 }
4825
4826 if (ext4_has_feature_64bit(sb) &&
4827 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4828 JBD2_FEATURE_INCOMPAT_64BIT)) {
4829 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4830 goto failed_mount_wq;
4831 }
4832
4833 if (!set_journal_csum_feature_set(sb)) {
4834 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4835 "feature set");
4836 goto failed_mount_wq;
4837 }
4838
4839 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4840 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4841 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4842 ext4_msg(sb, KERN_ERR,
4843 "Failed to set fast commit journal feature");
4844 goto failed_mount_wq;
4845 }
4846
4847 /* We have now updated the journal if required, so we can
4848 * validate the data journaling mode. */
4849 switch (test_opt(sb, DATA_FLAGS)) {
4850 case 0:
4851 /* No mode set, assume a default based on the journal
4852 * capabilities: ORDERED_DATA if the journal can
4853 * cope, else JOURNAL_DATA
4854 */
4855 if (jbd2_journal_check_available_features
4856 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4857 set_opt(sb, ORDERED_DATA);
4858 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4859 } else {
4860 set_opt(sb, JOURNAL_DATA);
4861 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4862 }
4863 break;
4864
4865 case EXT4_MOUNT_ORDERED_DATA:
4866 case EXT4_MOUNT_WRITEBACK_DATA:
4867 if (!jbd2_journal_check_available_features
4868 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4869 ext4_msg(sb, KERN_ERR, "Journal does not support "
4870 "requested data journaling mode");
4871 goto failed_mount_wq;
4872 }
4873 default:
4874 break;
4875 }
4876
4877 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4878 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4879 ext4_msg(sb, KERN_ERR, "can't mount with "
4880 "journal_async_commit in data=ordered mode");
4881 goto failed_mount_wq;
4882 }
4883
4884 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4885
4886 sbi->s_journal->j_submit_inode_data_buffers =
4887 ext4_journal_submit_inode_data_buffers;
4888 sbi->s_journal->j_finish_inode_data_buffers =
4889 ext4_journal_finish_inode_data_buffers;
4890
4891 no_journal:
4892 if (!test_opt(sb, NO_MBCACHE)) {
4893 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4894 if (!sbi->s_ea_block_cache) {
4895 ext4_msg(sb, KERN_ERR,
4896 "Failed to create ea_block_cache");
4897 goto failed_mount_wq;
4898 }
4899
4900 if (ext4_has_feature_ea_inode(sb)) {
4901 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4902 if (!sbi->s_ea_inode_cache) {
4903 ext4_msg(sb, KERN_ERR,
4904 "Failed to create ea_inode_cache");
4905 goto failed_mount_wq;
4906 }
4907 }
4908 }
4909
4910 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4911 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4912 goto failed_mount_wq;
4913 }
4914
4915 /*
4916 * Get the # of file system overhead blocks from the
4917 * superblock if present.
4918 */
4919 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4920 /* ignore the precalculated value if it is ridiculous */
4921 if (sbi->s_overhead > ext4_blocks_count(es))
4922 sbi->s_overhead = 0;
4923 /*
4924 * If the bigalloc feature is not enabled recalculating the
4925 * overhead doesn't take long, so we might as well just redo
4926 * it to make sure we are using the correct value.
4927 */
4928 if (!ext4_has_feature_bigalloc(sb))
4929 sbi->s_overhead = 0;
4930 if (sbi->s_overhead == 0) {
4931 err = ext4_calculate_overhead(sb);
4932 if (err)
4933 goto failed_mount_wq;
4934 }
4935
4936 /*
4937 * The maximum number of concurrent works can be high and
4938 * concurrency isn't really necessary. Limit it to 1.
4939 */
4940 EXT4_SB(sb)->rsv_conversion_wq =
4941 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4942 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4943 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4944 ret = -ENOMEM;
4945 goto failed_mount4;
4946 }
4947
4948 /*
4949 * The jbd2_journal_load will have done any necessary log recovery,
4950 * so we can safely mount the rest of the filesystem now.
4951 */
4952
4953 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4954 if (IS_ERR(root)) {
4955 ext4_msg(sb, KERN_ERR, "get root inode failed");
4956 ret = PTR_ERR(root);
4957 root = NULL;
4958 goto failed_mount4;
4959 }
4960 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4961 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4962 iput(root);
4963 goto failed_mount4;
4964 }
4965
4966 #ifdef CONFIG_UNICODE
4967 if (sb->s_encoding)
4968 sb->s_d_op = &ext4_dentry_ops;
4969 #endif
4970
4971 sb->s_root = d_make_root(root);
4972 if (!sb->s_root) {
4973 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4974 ret = -ENOMEM;
4975 goto failed_mount4;
4976 }
4977
4978 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4979 if (ret == -EROFS) {
4980 sb->s_flags |= SB_RDONLY;
4981 ret = 0;
4982 } else if (ret)
4983 goto failed_mount4a;
4984
4985 ext4_set_resv_clusters(sb);
4986
4987 if (test_opt(sb, BLOCK_VALIDITY)) {
4988 err = ext4_setup_system_zone(sb);
4989 if (err) {
4990 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4991 "zone (%d)", err);
4992 goto failed_mount4a;
4993 }
4994 }
4995 ext4_fc_replay_cleanup(sb);
4996
4997 ext4_ext_init(sb);
4998 err = ext4_mb_init(sb);
4999 if (err) {
5000 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5001 err);
5002 goto failed_mount5;
5003 }
5004
5005 /*
5006 * We can only set up the journal commit callback once
5007 * mballoc is initialized
5008 */
5009 if (sbi->s_journal)
5010 sbi->s_journal->j_commit_callback =
5011 ext4_journal_commit_callback;
5012
5013 block = ext4_count_free_clusters(sb);
5014 ext4_free_blocks_count_set(sbi->s_es,
5015 EXT4_C2B(sbi, block));
5016 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5017 GFP_KERNEL);
5018 if (!err) {
5019 unsigned long freei = ext4_count_free_inodes(sb);
5020 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5021 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5022 GFP_KERNEL);
5023 }
5024 /*
5025 * Update the checksum after updating free space/inode
5026 * counters. Otherwise the superblock can have an incorrect
5027 * checksum in the buffer cache until it is written out and
5028 * e2fsprogs programs trying to open a file system immediately
5029 * after it is mounted can fail.
5030 */
5031 ext4_superblock_csum_set(sb);
5032 if (!err)
5033 err = percpu_counter_init(&sbi->s_dirs_counter,
5034 ext4_count_dirs(sb), GFP_KERNEL);
5035 if (!err)
5036 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5037 GFP_KERNEL);
5038 if (!err)
5039 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5040 GFP_KERNEL);
5041 if (!err)
5042 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5043
5044 if (err) {
5045 ext4_msg(sb, KERN_ERR, "insufficient memory");
5046 goto failed_mount6;
5047 }
5048
5049 if (ext4_has_feature_flex_bg(sb))
5050 if (!ext4_fill_flex_info(sb)) {
5051 ext4_msg(sb, KERN_ERR,
5052 "unable to initialize "
5053 "flex_bg meta info!");
5054 ret = -ENOMEM;
5055 goto failed_mount6;
5056 }
5057
5058 err = ext4_register_li_request(sb, first_not_zeroed);
5059 if (err)
5060 goto failed_mount6;
5061
5062 err = ext4_register_sysfs(sb);
5063 if (err)
5064 goto failed_mount7;
5065
5066 #ifdef CONFIG_QUOTA
5067 /* Enable quota usage during mount. */
5068 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5069 err = ext4_enable_quotas(sb);
5070 if (err)
5071 goto failed_mount8;
5072 }
5073 #endif /* CONFIG_QUOTA */
5074
5075 /*
5076 * Save the original bdev mapping's wb_err value which could be
5077 * used to detect the metadata async write error.
5078 */
5079 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5080 &sbi->s_bdev_wb_err);
5081 sb->s_bdev->bd_super = sb;
5082 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5083 ext4_orphan_cleanup(sb, es);
5084 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5085 if (needs_recovery) {
5086 ext4_msg(sb, KERN_INFO, "recovery complete");
5087 err = ext4_mark_recovery_complete(sb, es);
5088 if (err)
5089 goto failed_mount8;
5090 }
5091 if (EXT4_SB(sb)->s_journal) {
5092 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5093 descr = " journalled data mode";
5094 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5095 descr = " ordered data mode";
5096 else
5097 descr = " writeback data mode";
5098 } else
5099 descr = "out journal";
5100
5101 if (test_opt(sb, DISCARD)) {
5102 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5103 if (!blk_queue_discard(q))
5104 ext4_msg(sb, KERN_WARNING,
5105 "mounting with \"discard\" option, but "
5106 "the device does not support discard");
5107 }
5108
5109 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5110 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5111 "Opts: %.*s%s%s", descr,
5112 (int) sizeof(sbi->s_es->s_mount_opts),
5113 sbi->s_es->s_mount_opts,
5114 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5115
5116 if (es->s_error_count)
5117 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5118
5119 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5120 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5121 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5122 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5123 atomic_set(&sbi->s_warning_count, 0);
5124 atomic_set(&sbi->s_msg_count, 0);
5125
5126 kfree(orig_data);
5127 return 0;
5128
5129 cantfind_ext4:
5130 if (!silent)
5131 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5132 goto failed_mount;
5133
5134 failed_mount8:
5135 ext4_unregister_sysfs(sb);
5136 kobject_put(&sbi->s_kobj);
5137 failed_mount7:
5138 ext4_unregister_li_request(sb);
5139 failed_mount6:
5140 ext4_mb_release(sb);
5141 rcu_read_lock();
5142 flex_groups = rcu_dereference(sbi->s_flex_groups);
5143 if (flex_groups) {
5144 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5145 kvfree(flex_groups[i]);
5146 kvfree(flex_groups);
5147 }
5148 rcu_read_unlock();
5149 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5150 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5151 percpu_counter_destroy(&sbi->s_dirs_counter);
5152 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5153 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5154 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5155 failed_mount5:
5156 ext4_ext_release(sb);
5157 ext4_release_system_zone(sb);
5158 failed_mount4a:
5159 dput(sb->s_root);
5160 sb->s_root = NULL;
5161 failed_mount4:
5162 ext4_msg(sb, KERN_ERR, "mount failed");
5163 if (EXT4_SB(sb)->rsv_conversion_wq)
5164 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5165 failed_mount_wq:
5166 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5167 sbi->s_ea_inode_cache = NULL;
5168
5169 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5170 sbi->s_ea_block_cache = NULL;
5171
5172 if (sbi->s_journal) {
5173 /* flush s_error_work before journal destroy. */
5174 flush_work(&sbi->s_error_work);
5175 jbd2_journal_destroy(sbi->s_journal);
5176 sbi->s_journal = NULL;
5177 }
5178 failed_mount3a:
5179 ext4_es_unregister_shrinker(sbi);
5180 failed_mount3:
5181 /* flush s_error_work before sbi destroy */
5182 flush_work(&sbi->s_error_work);
5183 ext4_stop_mmpd(sbi);
5184 del_timer_sync(&sbi->s_err_report);
5185 failed_mount2:
5186 rcu_read_lock();
5187 group_desc = rcu_dereference(sbi->s_group_desc);
5188 for (i = 0; i < db_count; i++)
5189 brelse(group_desc[i]);
5190 kvfree(group_desc);
5191 rcu_read_unlock();
5192 failed_mount:
5193 if (sbi->s_chksum_driver)
5194 crypto_free_shash(sbi->s_chksum_driver);
5195
5196 #ifdef CONFIG_UNICODE
5197 utf8_unload(sb->s_encoding);
5198 #endif
5199
5200 #ifdef CONFIG_QUOTA
5201 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5202 kfree(get_qf_name(sb, sbi, i));
5203 #endif
5204 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5205 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5206 brelse(bh);
5207 ext4_blkdev_remove(sbi);
5208 out_fail:
5209 invalidate_bdev(sb->s_bdev);
5210 sb->s_fs_info = NULL;
5211 kfree(sbi->s_blockgroup_lock);
5212 out_free_base:
5213 kfree(sbi);
5214 kfree(orig_data);
5215 fs_put_dax(dax_dev);
5216 return err ? err : ret;
5217 }
5218
5219 /*
5220 * Setup any per-fs journal parameters now. We'll do this both on
5221 * initial mount, once the journal has been initialised but before we've
5222 * done any recovery; and again on any subsequent remount.
5223 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5224 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5225 {
5226 struct ext4_sb_info *sbi = EXT4_SB(sb);
5227
5228 journal->j_commit_interval = sbi->s_commit_interval;
5229 journal->j_min_batch_time = sbi->s_min_batch_time;
5230 journal->j_max_batch_time = sbi->s_max_batch_time;
5231 ext4_fc_init(sb, journal);
5232
5233 write_lock(&journal->j_state_lock);
5234 if (test_opt(sb, BARRIER))
5235 journal->j_flags |= JBD2_BARRIER;
5236 else
5237 journal->j_flags &= ~JBD2_BARRIER;
5238 if (test_opt(sb, DATA_ERR_ABORT))
5239 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5240 else
5241 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5242 write_unlock(&journal->j_state_lock);
5243 }
5244
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5245 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5246 unsigned int journal_inum)
5247 {
5248 struct inode *journal_inode;
5249
5250 /*
5251 * Test for the existence of a valid inode on disk. Bad things
5252 * happen if we iget() an unused inode, as the subsequent iput()
5253 * will try to delete it.
5254 */
5255 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5256 if (IS_ERR(journal_inode)) {
5257 ext4_msg(sb, KERN_ERR, "no journal found");
5258 return NULL;
5259 }
5260 if (!journal_inode->i_nlink) {
5261 make_bad_inode(journal_inode);
5262 iput(journal_inode);
5263 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5264 return NULL;
5265 }
5266
5267 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5268 journal_inode, journal_inode->i_size);
5269 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5270 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5271 iput(journal_inode);
5272 return NULL;
5273 }
5274 return journal_inode;
5275 }
5276
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5277 static journal_t *ext4_get_journal(struct super_block *sb,
5278 unsigned int journal_inum)
5279 {
5280 struct inode *journal_inode;
5281 journal_t *journal;
5282
5283 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5284 return NULL;
5285
5286 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5287 if (!journal_inode)
5288 return NULL;
5289
5290 journal = jbd2_journal_init_inode(journal_inode);
5291 if (!journal) {
5292 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5293 iput(journal_inode);
5294 return NULL;
5295 }
5296 journal->j_private = sb;
5297 ext4_init_journal_params(sb, journal);
5298 return journal;
5299 }
5300
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5301 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5302 dev_t j_dev)
5303 {
5304 struct buffer_head *bh;
5305 journal_t *journal;
5306 ext4_fsblk_t start;
5307 ext4_fsblk_t len;
5308 int hblock, blocksize;
5309 ext4_fsblk_t sb_block;
5310 unsigned long offset;
5311 struct ext4_super_block *es;
5312 struct block_device *bdev;
5313
5314 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5315 return NULL;
5316
5317 bdev = ext4_blkdev_get(j_dev, sb);
5318 if (bdev == NULL)
5319 return NULL;
5320
5321 blocksize = sb->s_blocksize;
5322 hblock = bdev_logical_block_size(bdev);
5323 if (blocksize < hblock) {
5324 ext4_msg(sb, KERN_ERR,
5325 "blocksize too small for journal device");
5326 goto out_bdev;
5327 }
5328
5329 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5330 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5331 set_blocksize(bdev, blocksize);
5332 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5333 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5334 "external journal");
5335 goto out_bdev;
5336 }
5337
5338 es = (struct ext4_super_block *) (bh->b_data + offset);
5339 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5340 !(le32_to_cpu(es->s_feature_incompat) &
5341 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5342 ext4_msg(sb, KERN_ERR, "external journal has "
5343 "bad superblock");
5344 brelse(bh);
5345 goto out_bdev;
5346 }
5347
5348 if ((le32_to_cpu(es->s_feature_ro_compat) &
5349 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5350 es->s_checksum != ext4_superblock_csum(sb, es)) {
5351 ext4_msg(sb, KERN_ERR, "external journal has "
5352 "corrupt superblock");
5353 brelse(bh);
5354 goto out_bdev;
5355 }
5356
5357 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5358 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5359 brelse(bh);
5360 goto out_bdev;
5361 }
5362
5363 len = ext4_blocks_count(es);
5364 start = sb_block + 1;
5365 brelse(bh); /* we're done with the superblock */
5366
5367 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5368 start, len, blocksize);
5369 if (!journal) {
5370 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5371 goto out_bdev;
5372 }
5373 journal->j_private = sb;
5374 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5375 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5376 goto out_journal;
5377 }
5378 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5379 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5380 "user (unsupported) - %d",
5381 be32_to_cpu(journal->j_superblock->s_nr_users));
5382 goto out_journal;
5383 }
5384 EXT4_SB(sb)->s_journal_bdev = bdev;
5385 ext4_init_journal_params(sb, journal);
5386 return journal;
5387
5388 out_journal:
5389 jbd2_journal_destroy(journal);
5390 out_bdev:
5391 ext4_blkdev_put(bdev);
5392 return NULL;
5393 }
5394
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5395 static int ext4_load_journal(struct super_block *sb,
5396 struct ext4_super_block *es,
5397 unsigned long journal_devnum)
5398 {
5399 journal_t *journal;
5400 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5401 dev_t journal_dev;
5402 int err = 0;
5403 int really_read_only;
5404 int journal_dev_ro;
5405
5406 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5407 return -EFSCORRUPTED;
5408
5409 if (journal_devnum &&
5410 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5411 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5412 "numbers have changed");
5413 journal_dev = new_decode_dev(journal_devnum);
5414 } else
5415 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5416
5417 if (journal_inum && journal_dev) {
5418 ext4_msg(sb, KERN_ERR,
5419 "filesystem has both journal inode and journal device!");
5420 return -EINVAL;
5421 }
5422
5423 if (journal_inum) {
5424 journal = ext4_get_journal(sb, journal_inum);
5425 if (!journal)
5426 return -EINVAL;
5427 } else {
5428 journal = ext4_get_dev_journal(sb, journal_dev);
5429 if (!journal)
5430 return -EINVAL;
5431 }
5432
5433 journal_dev_ro = bdev_read_only(journal->j_dev);
5434 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5435
5436 if (journal_dev_ro && !sb_rdonly(sb)) {
5437 ext4_msg(sb, KERN_ERR,
5438 "journal device read-only, try mounting with '-o ro'");
5439 err = -EROFS;
5440 goto err_out;
5441 }
5442
5443 /*
5444 * Are we loading a blank journal or performing recovery after a
5445 * crash? For recovery, we need to check in advance whether we
5446 * can get read-write access to the device.
5447 */
5448 if (ext4_has_feature_journal_needs_recovery(sb)) {
5449 if (sb_rdonly(sb)) {
5450 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5451 "required on readonly filesystem");
5452 if (really_read_only) {
5453 ext4_msg(sb, KERN_ERR, "write access "
5454 "unavailable, cannot proceed "
5455 "(try mounting with noload)");
5456 err = -EROFS;
5457 goto err_out;
5458 }
5459 ext4_msg(sb, KERN_INFO, "write access will "
5460 "be enabled during recovery");
5461 }
5462 }
5463
5464 if (!(journal->j_flags & JBD2_BARRIER))
5465 ext4_msg(sb, KERN_INFO, "barriers disabled");
5466
5467 if (!ext4_has_feature_journal_needs_recovery(sb))
5468 err = jbd2_journal_wipe(journal, !really_read_only);
5469 if (!err) {
5470 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5471 if (save)
5472 memcpy(save, ((char *) es) +
5473 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5474 err = jbd2_journal_load(journal);
5475 if (save)
5476 memcpy(((char *) es) + EXT4_S_ERR_START,
5477 save, EXT4_S_ERR_LEN);
5478 kfree(save);
5479 }
5480
5481 if (err) {
5482 ext4_msg(sb, KERN_ERR, "error loading journal");
5483 goto err_out;
5484 }
5485
5486 EXT4_SB(sb)->s_journal = journal;
5487 err = ext4_clear_journal_err(sb, es);
5488 if (err) {
5489 EXT4_SB(sb)->s_journal = NULL;
5490 jbd2_journal_destroy(journal);
5491 return err;
5492 }
5493
5494 if (!really_read_only && journal_devnum &&
5495 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5496 es->s_journal_dev = cpu_to_le32(journal_devnum);
5497
5498 /* Make sure we flush the recovery flag to disk. */
5499 ext4_commit_super(sb);
5500 }
5501
5502 return 0;
5503
5504 err_out:
5505 jbd2_journal_destroy(journal);
5506 return err;
5507 }
5508
5509 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5510 static void ext4_update_super(struct super_block *sb)
5511 {
5512 struct ext4_sb_info *sbi = EXT4_SB(sb);
5513 struct ext4_super_block *es = sbi->s_es;
5514 struct buffer_head *sbh = sbi->s_sbh;
5515
5516 lock_buffer(sbh);
5517 /*
5518 * If the file system is mounted read-only, don't update the
5519 * superblock write time. This avoids updating the superblock
5520 * write time when we are mounting the root file system
5521 * read/only but we need to replay the journal; at that point,
5522 * for people who are east of GMT and who make their clock
5523 * tick in localtime for Windows bug-for-bug compatibility,
5524 * the clock is set in the future, and this will cause e2fsck
5525 * to complain and force a full file system check.
5526 */
5527 if (!(sb->s_flags & SB_RDONLY))
5528 ext4_update_tstamp(es, s_wtime);
5529 if (sb->s_bdev->bd_part)
5530 es->s_kbytes_written =
5531 cpu_to_le64(sbi->s_kbytes_written +
5532 ((part_stat_read(sb->s_bdev->bd_part,
5533 sectors[STAT_WRITE]) -
5534 sbi->s_sectors_written_start) >> 1));
5535 else
5536 es->s_kbytes_written = cpu_to_le64(sbi->s_kbytes_written);
5537 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5538 ext4_free_blocks_count_set(es,
5539 EXT4_C2B(sbi, percpu_counter_sum_positive(
5540 &sbi->s_freeclusters_counter)));
5541 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5542 es->s_free_inodes_count =
5543 cpu_to_le32(percpu_counter_sum_positive(
5544 &sbi->s_freeinodes_counter));
5545 /* Copy error information to the on-disk superblock */
5546 spin_lock(&sbi->s_error_lock);
5547 if (sbi->s_add_error_count > 0) {
5548 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5549 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5550 __ext4_update_tstamp(&es->s_first_error_time,
5551 &es->s_first_error_time_hi,
5552 sbi->s_first_error_time);
5553 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5554 sizeof(es->s_first_error_func));
5555 es->s_first_error_line =
5556 cpu_to_le32(sbi->s_first_error_line);
5557 es->s_first_error_ino =
5558 cpu_to_le32(sbi->s_first_error_ino);
5559 es->s_first_error_block =
5560 cpu_to_le64(sbi->s_first_error_block);
5561 es->s_first_error_errcode =
5562 ext4_errno_to_code(sbi->s_first_error_code);
5563 }
5564 __ext4_update_tstamp(&es->s_last_error_time,
5565 &es->s_last_error_time_hi,
5566 sbi->s_last_error_time);
5567 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5568 sizeof(es->s_last_error_func));
5569 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5570 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5571 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5572 es->s_last_error_errcode =
5573 ext4_errno_to_code(sbi->s_last_error_code);
5574 /*
5575 * Start the daily error reporting function if it hasn't been
5576 * started already
5577 */
5578 if (!es->s_error_count)
5579 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5580 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5581 sbi->s_add_error_count = 0;
5582 }
5583 spin_unlock(&sbi->s_error_lock);
5584
5585 ext4_superblock_csum_set(sb);
5586 unlock_buffer(sbh);
5587 }
5588
ext4_commit_super(struct super_block * sb)5589 static int ext4_commit_super(struct super_block *sb)
5590 {
5591 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5592 int error = 0;
5593
5594 if (!sbh)
5595 return -EINVAL;
5596 if (block_device_ejected(sb))
5597 return -ENODEV;
5598
5599 ext4_update_super(sb);
5600
5601 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5602 /*
5603 * Oh, dear. A previous attempt to write the
5604 * superblock failed. This could happen because the
5605 * USB device was yanked out. Or it could happen to
5606 * be a transient write error and maybe the block will
5607 * be remapped. Nothing we can do but to retry the
5608 * write and hope for the best.
5609 */
5610 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5611 "superblock detected");
5612 clear_buffer_write_io_error(sbh);
5613 set_buffer_uptodate(sbh);
5614 }
5615 BUFFER_TRACE(sbh, "marking dirty");
5616 mark_buffer_dirty(sbh);
5617 error = __sync_dirty_buffer(sbh,
5618 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5619 if (buffer_write_io_error(sbh)) {
5620 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5621 "superblock");
5622 clear_buffer_write_io_error(sbh);
5623 set_buffer_uptodate(sbh);
5624 }
5625 return error;
5626 }
5627
5628 /*
5629 * Have we just finished recovery? If so, and if we are mounting (or
5630 * remounting) the filesystem readonly, then we will end up with a
5631 * consistent fs on disk. Record that fact.
5632 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5633 static int ext4_mark_recovery_complete(struct super_block *sb,
5634 struct ext4_super_block *es)
5635 {
5636 int err;
5637 journal_t *journal = EXT4_SB(sb)->s_journal;
5638
5639 if (!ext4_has_feature_journal(sb)) {
5640 if (journal != NULL) {
5641 ext4_error(sb, "Journal got removed while the fs was "
5642 "mounted!");
5643 return -EFSCORRUPTED;
5644 }
5645 return 0;
5646 }
5647 jbd2_journal_lock_updates(journal);
5648 err = jbd2_journal_flush(journal);
5649 if (err < 0)
5650 goto out;
5651
5652 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5653 ext4_clear_feature_journal_needs_recovery(sb);
5654 ext4_commit_super(sb);
5655 }
5656 out:
5657 jbd2_journal_unlock_updates(journal);
5658 return err;
5659 }
5660
5661 /*
5662 * If we are mounting (or read-write remounting) a filesystem whose journal
5663 * has recorded an error from a previous lifetime, move that error to the
5664 * main filesystem now.
5665 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5666 static int ext4_clear_journal_err(struct super_block *sb,
5667 struct ext4_super_block *es)
5668 {
5669 journal_t *journal;
5670 int j_errno;
5671 const char *errstr;
5672
5673 if (!ext4_has_feature_journal(sb)) {
5674 ext4_error(sb, "Journal got removed while the fs was mounted!");
5675 return -EFSCORRUPTED;
5676 }
5677
5678 journal = EXT4_SB(sb)->s_journal;
5679
5680 /*
5681 * Now check for any error status which may have been recorded in the
5682 * journal by a prior ext4_error() or ext4_abort()
5683 */
5684
5685 j_errno = jbd2_journal_errno(journal);
5686 if (j_errno) {
5687 char nbuf[16];
5688
5689 errstr = ext4_decode_error(sb, j_errno, nbuf);
5690 ext4_warning(sb, "Filesystem error recorded "
5691 "from previous mount: %s", errstr);
5692 ext4_warning(sb, "Marking fs in need of filesystem check.");
5693
5694 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5695 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5696 ext4_commit_super(sb);
5697
5698 jbd2_journal_clear_err(journal);
5699 jbd2_journal_update_sb_errno(journal);
5700 }
5701 return 0;
5702 }
5703
5704 /*
5705 * Force the running and committing transactions to commit,
5706 * and wait on the commit.
5707 */
ext4_force_commit(struct super_block * sb)5708 int ext4_force_commit(struct super_block *sb)
5709 {
5710 journal_t *journal;
5711
5712 if (sb_rdonly(sb))
5713 return 0;
5714
5715 journal = EXT4_SB(sb)->s_journal;
5716 return ext4_journal_force_commit(journal);
5717 }
5718
ext4_sync_fs(struct super_block * sb,int wait)5719 static int ext4_sync_fs(struct super_block *sb, int wait)
5720 {
5721 int ret = 0;
5722 tid_t target;
5723 bool needs_barrier = false;
5724 struct ext4_sb_info *sbi = EXT4_SB(sb);
5725
5726 if (unlikely(ext4_forced_shutdown(sbi)))
5727 return 0;
5728
5729 trace_ext4_sync_fs(sb, wait);
5730 flush_workqueue(sbi->rsv_conversion_wq);
5731 /*
5732 * Writeback quota in non-journalled quota case - journalled quota has
5733 * no dirty dquots
5734 */
5735 dquot_writeback_dquots(sb, -1);
5736 /*
5737 * Data writeback is possible w/o journal transaction, so barrier must
5738 * being sent at the end of the function. But we can skip it if
5739 * transaction_commit will do it for us.
5740 */
5741 if (sbi->s_journal) {
5742 target = jbd2_get_latest_transaction(sbi->s_journal);
5743 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5744 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5745 needs_barrier = true;
5746
5747 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5748 if (wait)
5749 ret = jbd2_log_wait_commit(sbi->s_journal,
5750 target);
5751 }
5752 } else if (wait && test_opt(sb, BARRIER))
5753 needs_barrier = true;
5754 if (needs_barrier) {
5755 int err;
5756 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5757 if (!ret)
5758 ret = err;
5759 }
5760
5761 return ret;
5762 }
5763
5764 /*
5765 * LVM calls this function before a (read-only) snapshot is created. This
5766 * gives us a chance to flush the journal completely and mark the fs clean.
5767 *
5768 * Note that only this function cannot bring a filesystem to be in a clean
5769 * state independently. It relies on upper layer to stop all data & metadata
5770 * modifications.
5771 */
ext4_freeze(struct super_block * sb)5772 static int ext4_freeze(struct super_block *sb)
5773 {
5774 int error = 0;
5775 journal_t *journal;
5776
5777 if (sb_rdonly(sb))
5778 return 0;
5779
5780 journal = EXT4_SB(sb)->s_journal;
5781
5782 if (journal) {
5783 /* Now we set up the journal barrier. */
5784 jbd2_journal_lock_updates(journal);
5785
5786 /*
5787 * Don't clear the needs_recovery flag if we failed to
5788 * flush the journal.
5789 */
5790 error = jbd2_journal_flush(journal);
5791 if (error < 0)
5792 goto out;
5793
5794 /* Journal blocked and flushed, clear needs_recovery flag. */
5795 ext4_clear_feature_journal_needs_recovery(sb);
5796 }
5797
5798 error = ext4_commit_super(sb);
5799 out:
5800 if (journal)
5801 /* we rely on upper layer to stop further updates */
5802 jbd2_journal_unlock_updates(journal);
5803 return error;
5804 }
5805
5806 /*
5807 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5808 * flag here, even though the filesystem is not technically dirty yet.
5809 */
ext4_unfreeze(struct super_block * sb)5810 static int ext4_unfreeze(struct super_block *sb)
5811 {
5812 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5813 return 0;
5814
5815 if (EXT4_SB(sb)->s_journal) {
5816 /* Reset the needs_recovery flag before the fs is unlocked. */
5817 ext4_set_feature_journal_needs_recovery(sb);
5818 }
5819
5820 ext4_commit_super(sb);
5821 return 0;
5822 }
5823
5824 /*
5825 * Structure to save mount options for ext4_remount's benefit
5826 */
5827 struct ext4_mount_options {
5828 unsigned long s_mount_opt;
5829 unsigned long s_mount_opt2;
5830 kuid_t s_resuid;
5831 kgid_t s_resgid;
5832 unsigned long s_commit_interval;
5833 u32 s_min_batch_time, s_max_batch_time;
5834 #ifdef CONFIG_QUOTA
5835 int s_jquota_fmt;
5836 char *s_qf_names[EXT4_MAXQUOTAS];
5837 #endif
5838 };
5839
ext4_remount(struct super_block * sb,int * flags,char * data)5840 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5841 {
5842 struct ext4_super_block *es;
5843 struct ext4_sb_info *sbi = EXT4_SB(sb);
5844 unsigned long old_sb_flags, vfs_flags;
5845 struct ext4_mount_options old_opts;
5846 ext4_group_t g;
5847 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5848 int err = 0;
5849 #ifdef CONFIG_QUOTA
5850 int enable_quota = 0;
5851 int i, j;
5852 char *to_free[EXT4_MAXQUOTAS];
5853 #endif
5854 char *orig_data = kstrdup(data, GFP_KERNEL);
5855
5856 if (data && !orig_data)
5857 return -ENOMEM;
5858
5859 /* Store the original options */
5860 old_sb_flags = sb->s_flags;
5861 old_opts.s_mount_opt = sbi->s_mount_opt;
5862 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5863 old_opts.s_resuid = sbi->s_resuid;
5864 old_opts.s_resgid = sbi->s_resgid;
5865 old_opts.s_commit_interval = sbi->s_commit_interval;
5866 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5867 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5868 #ifdef CONFIG_QUOTA
5869 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5870 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5871 if (sbi->s_qf_names[i]) {
5872 char *qf_name = get_qf_name(sb, sbi, i);
5873
5874 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5875 if (!old_opts.s_qf_names[i]) {
5876 for (j = 0; j < i; j++)
5877 kfree(old_opts.s_qf_names[j]);
5878 kfree(orig_data);
5879 return -ENOMEM;
5880 }
5881 } else
5882 old_opts.s_qf_names[i] = NULL;
5883 #endif
5884 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5885 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5886
5887 /*
5888 * Some options can be enabled by ext4 and/or by VFS mount flag
5889 * either way we need to make sure it matches in both *flags and
5890 * s_flags. Copy those selected flags from *flags to s_flags
5891 */
5892 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5893 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5894
5895 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5896 err = -EINVAL;
5897 goto restore_opts;
5898 }
5899
5900 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5901 test_opt(sb, JOURNAL_CHECKSUM)) {
5902 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5903 "during remount not supported; ignoring");
5904 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5905 }
5906
5907 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5908 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5909 ext4_msg(sb, KERN_ERR, "can't mount with "
5910 "both data=journal and delalloc");
5911 err = -EINVAL;
5912 goto restore_opts;
5913 }
5914 if (test_opt(sb, DIOREAD_NOLOCK)) {
5915 ext4_msg(sb, KERN_ERR, "can't mount with "
5916 "both data=journal and dioread_nolock");
5917 err = -EINVAL;
5918 goto restore_opts;
5919 }
5920 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5921 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5922 ext4_msg(sb, KERN_ERR, "can't mount with "
5923 "journal_async_commit in data=ordered mode");
5924 err = -EINVAL;
5925 goto restore_opts;
5926 }
5927 }
5928
5929 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5930 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5931 err = -EINVAL;
5932 goto restore_opts;
5933 }
5934
5935 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5936 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5937
5938 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5939 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5940
5941 es = sbi->s_es;
5942
5943 if (sbi->s_journal) {
5944 ext4_init_journal_params(sb, sbi->s_journal);
5945 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5946 }
5947
5948 /* Flush outstanding errors before changing fs state */
5949 flush_work(&sbi->s_error_work);
5950
5951 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5952 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5953 err = -EROFS;
5954 goto restore_opts;
5955 }
5956
5957 if (*flags & SB_RDONLY) {
5958 err = sync_filesystem(sb);
5959 if (err < 0)
5960 goto restore_opts;
5961 err = dquot_suspend(sb, -1);
5962 if (err < 0)
5963 goto restore_opts;
5964
5965 /*
5966 * First of all, the unconditional stuff we have to do
5967 * to disable replay of the journal when we next remount
5968 */
5969 sb->s_flags |= SB_RDONLY;
5970
5971 /*
5972 * OK, test if we are remounting a valid rw partition
5973 * readonly, and if so set the rdonly flag and then
5974 * mark the partition as valid again.
5975 */
5976 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5977 (sbi->s_mount_state & EXT4_VALID_FS))
5978 es->s_state = cpu_to_le16(sbi->s_mount_state);
5979
5980 if (sbi->s_journal) {
5981 /*
5982 * We let remount-ro finish even if marking fs
5983 * as clean failed...
5984 */
5985 ext4_mark_recovery_complete(sb, es);
5986 }
5987 } else {
5988 /* Make sure we can mount this feature set readwrite */
5989 if (ext4_has_feature_readonly(sb) ||
5990 !ext4_feature_set_ok(sb, 0)) {
5991 err = -EROFS;
5992 goto restore_opts;
5993 }
5994 /*
5995 * Make sure the group descriptor checksums
5996 * are sane. If they aren't, refuse to remount r/w.
5997 */
5998 for (g = 0; g < sbi->s_groups_count; g++) {
5999 struct ext4_group_desc *gdp =
6000 ext4_get_group_desc(sb, g, NULL);
6001
6002 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6003 ext4_msg(sb, KERN_ERR,
6004 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6005 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6006 le16_to_cpu(gdp->bg_checksum));
6007 err = -EFSBADCRC;
6008 goto restore_opts;
6009 }
6010 }
6011
6012 /*
6013 * If we have an unprocessed orphan list hanging
6014 * around from a previously readonly bdev mount,
6015 * require a full umount/remount for now.
6016 */
6017 if (es->s_last_orphan) {
6018 ext4_msg(sb, KERN_WARNING, "Couldn't "
6019 "remount RDWR because of unprocessed "
6020 "orphan inode list. Please "
6021 "umount/remount instead");
6022 err = -EINVAL;
6023 goto restore_opts;
6024 }
6025
6026 /*
6027 * Mounting a RDONLY partition read-write, so reread
6028 * and store the current valid flag. (It may have
6029 * been changed by e2fsck since we originally mounted
6030 * the partition.)
6031 */
6032 if (sbi->s_journal) {
6033 err = ext4_clear_journal_err(sb, es);
6034 if (err)
6035 goto restore_opts;
6036 }
6037 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6038 ~EXT4_FC_REPLAY);
6039
6040 err = ext4_setup_super(sb, es, 0);
6041 if (err)
6042 goto restore_opts;
6043
6044 sb->s_flags &= ~SB_RDONLY;
6045 if (ext4_has_feature_mmp(sb)) {
6046 err = ext4_multi_mount_protect(sb,
6047 le64_to_cpu(es->s_mmp_block));
6048 if (err)
6049 goto restore_opts;
6050 }
6051 #ifdef CONFIG_QUOTA
6052 enable_quota = 1;
6053 #endif
6054 }
6055 }
6056
6057 /*
6058 * Handle creation of system zone data early because it can fail.
6059 * Releasing of existing data is done when we are sure remount will
6060 * succeed.
6061 */
6062 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6063 err = ext4_setup_system_zone(sb);
6064 if (err)
6065 goto restore_opts;
6066 }
6067
6068 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6069 err = ext4_commit_super(sb);
6070 if (err)
6071 goto restore_opts;
6072 }
6073
6074 #ifdef CONFIG_QUOTA
6075 if (enable_quota) {
6076 if (sb_any_quota_suspended(sb))
6077 dquot_resume(sb, -1);
6078 else if (ext4_has_feature_quota(sb)) {
6079 err = ext4_enable_quotas(sb);
6080 if (err)
6081 goto restore_opts;
6082 }
6083 }
6084 /* Release old quota file names */
6085 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6086 kfree(old_opts.s_qf_names[i]);
6087 #endif
6088 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6089 ext4_release_system_zone(sb);
6090
6091 /*
6092 * Reinitialize lazy itable initialization thread based on
6093 * current settings
6094 */
6095 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6096 ext4_unregister_li_request(sb);
6097 else {
6098 ext4_group_t first_not_zeroed;
6099 first_not_zeroed = ext4_has_uninit_itable(sb);
6100 ext4_register_li_request(sb, first_not_zeroed);
6101 }
6102
6103 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6104 ext4_stop_mmpd(sbi);
6105
6106 /*
6107 * Some options can be enabled by ext4 and/or by VFS mount flag
6108 * either way we need to make sure it matches in both *flags and
6109 * s_flags. Copy those selected flags from s_flags to *flags
6110 */
6111 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6112
6113 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6114 kfree(orig_data);
6115 return 0;
6116
6117 restore_opts:
6118 /*
6119 * If there was a failing r/w to ro transition, we may need to
6120 * re-enable quota
6121 */
6122 if ((sb->s_flags & SB_RDONLY) && !(old_sb_flags & SB_RDONLY) &&
6123 sb_any_quota_suspended(sb))
6124 dquot_resume(sb, -1);
6125 sb->s_flags = old_sb_flags;
6126 sbi->s_mount_opt = old_opts.s_mount_opt;
6127 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6128 sbi->s_resuid = old_opts.s_resuid;
6129 sbi->s_resgid = old_opts.s_resgid;
6130 sbi->s_commit_interval = old_opts.s_commit_interval;
6131 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6132 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6133 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6134 ext4_release_system_zone(sb);
6135 #ifdef CONFIG_QUOTA
6136 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6137 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6138 to_free[i] = get_qf_name(sb, sbi, i);
6139 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6140 }
6141 synchronize_rcu();
6142 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6143 kfree(to_free[i]);
6144 #endif
6145 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6146 ext4_stop_mmpd(sbi);
6147 kfree(orig_data);
6148 return err;
6149 }
6150
6151 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6152 static int ext4_statfs_project(struct super_block *sb,
6153 kprojid_t projid, struct kstatfs *buf)
6154 {
6155 struct kqid qid;
6156 struct dquot *dquot;
6157 u64 limit;
6158 u64 curblock;
6159
6160 qid = make_kqid_projid(projid);
6161 dquot = dqget(sb, qid);
6162 if (IS_ERR(dquot))
6163 return PTR_ERR(dquot);
6164 spin_lock(&dquot->dq_dqb_lock);
6165
6166 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6167 dquot->dq_dqb.dqb_bhardlimit);
6168 limit >>= sb->s_blocksize_bits;
6169
6170 if (limit && buf->f_blocks > limit) {
6171 curblock = (dquot->dq_dqb.dqb_curspace +
6172 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6173 buf->f_blocks = limit;
6174 buf->f_bfree = buf->f_bavail =
6175 (buf->f_blocks > curblock) ?
6176 (buf->f_blocks - curblock) : 0;
6177 }
6178
6179 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6180 dquot->dq_dqb.dqb_ihardlimit);
6181 if (limit && buf->f_files > limit) {
6182 buf->f_files = limit;
6183 buf->f_ffree =
6184 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6185 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6186 }
6187
6188 spin_unlock(&dquot->dq_dqb_lock);
6189 dqput(dquot);
6190 return 0;
6191 }
6192 #endif
6193
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6194 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6195 {
6196 struct super_block *sb = dentry->d_sb;
6197 struct ext4_sb_info *sbi = EXT4_SB(sb);
6198 struct ext4_super_block *es = sbi->s_es;
6199 ext4_fsblk_t overhead = 0, resv_blocks;
6200 u64 fsid;
6201 s64 bfree;
6202 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6203
6204 if (!test_opt(sb, MINIX_DF))
6205 overhead = sbi->s_overhead;
6206
6207 buf->f_type = EXT4_SUPER_MAGIC;
6208 buf->f_bsize = sb->s_blocksize;
6209 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6210 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6211 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6212 /* prevent underflow in case that few free space is available */
6213 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6214 buf->f_bavail = buf->f_bfree -
6215 (ext4_r_blocks_count(es) + resv_blocks);
6216 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6217 buf->f_bavail = 0;
6218 buf->f_files = le32_to_cpu(es->s_inodes_count);
6219 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6220 buf->f_namelen = EXT4_NAME_LEN;
6221 fsid = le64_to_cpup((void *)es->s_uuid) ^
6222 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6223 buf->f_fsid = u64_to_fsid(fsid);
6224
6225 #ifdef CONFIG_QUOTA
6226 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6227 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6228 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6229 #endif
6230 return 0;
6231 }
6232
6233
6234 #ifdef CONFIG_QUOTA
6235
6236 /*
6237 * Helper functions so that transaction is started before we acquire dqio_sem
6238 * to keep correct lock ordering of transaction > dqio_sem
6239 */
dquot_to_inode(struct dquot * dquot)6240 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6241 {
6242 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6243 }
6244
ext4_write_dquot(struct dquot * dquot)6245 static int ext4_write_dquot(struct dquot *dquot)
6246 {
6247 int ret, err;
6248 handle_t *handle;
6249 struct inode *inode;
6250
6251 inode = dquot_to_inode(dquot);
6252 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6253 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6254 if (IS_ERR(handle))
6255 return PTR_ERR(handle);
6256 ret = dquot_commit(dquot);
6257 err = ext4_journal_stop(handle);
6258 if (!ret)
6259 ret = err;
6260 return ret;
6261 }
6262
ext4_acquire_dquot(struct dquot * dquot)6263 static int ext4_acquire_dquot(struct dquot *dquot)
6264 {
6265 int ret, err;
6266 handle_t *handle;
6267
6268 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6269 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6270 if (IS_ERR(handle))
6271 return PTR_ERR(handle);
6272 ret = dquot_acquire(dquot);
6273 err = ext4_journal_stop(handle);
6274 if (!ret)
6275 ret = err;
6276 return ret;
6277 }
6278
ext4_release_dquot(struct dquot * dquot)6279 static int ext4_release_dquot(struct dquot *dquot)
6280 {
6281 int ret, err;
6282 handle_t *handle;
6283
6284 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6285 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6286 if (IS_ERR(handle)) {
6287 /* Release dquot anyway to avoid endless cycle in dqput() */
6288 dquot_release(dquot);
6289 return PTR_ERR(handle);
6290 }
6291 ret = dquot_release(dquot);
6292 err = ext4_journal_stop(handle);
6293 if (!ret)
6294 ret = err;
6295 return ret;
6296 }
6297
ext4_mark_dquot_dirty(struct dquot * dquot)6298 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6299 {
6300 struct super_block *sb = dquot->dq_sb;
6301 struct ext4_sb_info *sbi = EXT4_SB(sb);
6302
6303 /* Are we journaling quotas? */
6304 if (ext4_has_feature_quota(sb) ||
6305 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6306 dquot_mark_dquot_dirty(dquot);
6307 return ext4_write_dquot(dquot);
6308 } else {
6309 return dquot_mark_dquot_dirty(dquot);
6310 }
6311 }
6312
ext4_write_info(struct super_block * sb,int type)6313 static int ext4_write_info(struct super_block *sb, int type)
6314 {
6315 int ret, err;
6316 handle_t *handle;
6317
6318 /* Data block + inode block */
6319 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6320 if (IS_ERR(handle))
6321 return PTR_ERR(handle);
6322 ret = dquot_commit_info(sb, type);
6323 err = ext4_journal_stop(handle);
6324 if (!ret)
6325 ret = err;
6326 return ret;
6327 }
6328
6329 /*
6330 * Turn on quotas during mount time - we need to find
6331 * the quota file and such...
6332 */
ext4_quota_on_mount(struct super_block * sb,int type)6333 static int ext4_quota_on_mount(struct super_block *sb, int type)
6334 {
6335 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6336 EXT4_SB(sb)->s_jquota_fmt, type);
6337 }
6338
lockdep_set_quota_inode(struct inode * inode,int subclass)6339 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6340 {
6341 struct ext4_inode_info *ei = EXT4_I(inode);
6342
6343 /* The first argument of lockdep_set_subclass has to be
6344 * *exactly* the same as the argument to init_rwsem() --- in
6345 * this case, in init_once() --- or lockdep gets unhappy
6346 * because the name of the lock is set using the
6347 * stringification of the argument to init_rwsem().
6348 */
6349 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6350 lockdep_set_subclass(&ei->i_data_sem, subclass);
6351 }
6352
6353 /*
6354 * Standard function to be called on quota_on
6355 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6356 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6357 const struct path *path)
6358 {
6359 int err;
6360
6361 if (!test_opt(sb, QUOTA))
6362 return -EINVAL;
6363
6364 /* Quotafile not on the same filesystem? */
6365 if (path->dentry->d_sb != sb)
6366 return -EXDEV;
6367
6368 /* Quota already enabled for this file? */
6369 if (IS_NOQUOTA(d_inode(path->dentry)))
6370 return -EBUSY;
6371
6372 /* Journaling quota? */
6373 if (EXT4_SB(sb)->s_qf_names[type]) {
6374 /* Quotafile not in fs root? */
6375 if (path->dentry->d_parent != sb->s_root)
6376 ext4_msg(sb, KERN_WARNING,
6377 "Quota file not on filesystem root. "
6378 "Journaled quota will not work");
6379 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6380 } else {
6381 /*
6382 * Clear the flag just in case mount options changed since
6383 * last time.
6384 */
6385 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6386 }
6387
6388 /*
6389 * When we journal data on quota file, we have to flush journal to see
6390 * all updates to the file when we bypass pagecache...
6391 */
6392 if (EXT4_SB(sb)->s_journal &&
6393 ext4_should_journal_data(d_inode(path->dentry))) {
6394 /*
6395 * We don't need to lock updates but journal_flush() could
6396 * otherwise be livelocked...
6397 */
6398 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6399 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6400 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6401 if (err)
6402 return err;
6403 }
6404
6405 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6406 err = dquot_quota_on(sb, type, format_id, path);
6407 if (!err) {
6408 struct inode *inode = d_inode(path->dentry);
6409 handle_t *handle;
6410
6411 /*
6412 * Set inode flags to prevent userspace from messing with quota
6413 * files. If this fails, we return success anyway since quotas
6414 * are already enabled and this is not a hard failure.
6415 */
6416 inode_lock(inode);
6417 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6418 if (IS_ERR(handle))
6419 goto unlock_inode;
6420 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6421 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6422 S_NOATIME | S_IMMUTABLE);
6423 err = ext4_mark_inode_dirty(handle, inode);
6424 ext4_journal_stop(handle);
6425 unlock_inode:
6426 inode_unlock(inode);
6427 if (err)
6428 dquot_quota_off(sb, type);
6429 }
6430 if (err)
6431 lockdep_set_quota_inode(path->dentry->d_inode,
6432 I_DATA_SEM_NORMAL);
6433 return err;
6434 }
6435
ext4_check_quota_inum(int type,unsigned long qf_inum)6436 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6437 {
6438 switch (type) {
6439 case USRQUOTA:
6440 return qf_inum == EXT4_USR_QUOTA_INO;
6441 case GRPQUOTA:
6442 return qf_inum == EXT4_GRP_QUOTA_INO;
6443 case PRJQUOTA:
6444 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6445 default:
6446 BUG();
6447 }
6448 }
6449
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6450 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6451 unsigned int flags)
6452 {
6453 int err;
6454 struct inode *qf_inode;
6455 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6456 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6457 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6458 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6459 };
6460
6461 BUG_ON(!ext4_has_feature_quota(sb));
6462
6463 if (!qf_inums[type])
6464 return -EPERM;
6465
6466 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6467 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6468 qf_inums[type], type);
6469 return -EUCLEAN;
6470 }
6471
6472 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6473 if (IS_ERR(qf_inode)) {
6474 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6475 qf_inums[type], type);
6476 return PTR_ERR(qf_inode);
6477 }
6478
6479 /* Don't account quota for quota files to avoid recursion */
6480 qf_inode->i_flags |= S_NOQUOTA;
6481 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6482 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6483 if (err)
6484 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6485 iput(qf_inode);
6486
6487 return err;
6488 }
6489
6490 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6491 static int ext4_enable_quotas(struct super_block *sb)
6492 {
6493 int type, err = 0;
6494 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6495 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6496 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6497 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6498 };
6499 bool quota_mopt[EXT4_MAXQUOTAS] = {
6500 test_opt(sb, USRQUOTA),
6501 test_opt(sb, GRPQUOTA),
6502 test_opt(sb, PRJQUOTA),
6503 };
6504
6505 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6506 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6507 if (qf_inums[type]) {
6508 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6509 DQUOT_USAGE_ENABLED |
6510 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6511 if (err) {
6512 ext4_warning(sb,
6513 "Failed to enable quota tracking "
6514 "(type=%d, err=%d, ino=%lu). "
6515 "Please run e2fsck to fix.", type,
6516 err, qf_inums[type]);
6517 for (type--; type >= 0; type--) {
6518 struct inode *inode;
6519
6520 inode = sb_dqopt(sb)->files[type];
6521 if (inode)
6522 inode = igrab(inode);
6523 dquot_quota_off(sb, type);
6524 if (inode) {
6525 lockdep_set_quota_inode(inode,
6526 I_DATA_SEM_NORMAL);
6527 iput(inode);
6528 }
6529 }
6530
6531 return err;
6532 }
6533 }
6534 }
6535 return 0;
6536 }
6537
ext4_quota_off(struct super_block * sb,int type)6538 static int ext4_quota_off(struct super_block *sb, int type)
6539 {
6540 struct inode *inode = sb_dqopt(sb)->files[type];
6541 handle_t *handle;
6542 int err;
6543
6544 /* Force all delayed allocation blocks to be allocated.
6545 * Caller already holds s_umount sem */
6546 if (test_opt(sb, DELALLOC))
6547 sync_filesystem(sb);
6548
6549 if (!inode || !igrab(inode))
6550 goto out;
6551
6552 err = dquot_quota_off(sb, type);
6553 if (err || ext4_has_feature_quota(sb))
6554 goto out_put;
6555
6556 inode_lock(inode);
6557 /*
6558 * Update modification times of quota files when userspace can
6559 * start looking at them. If we fail, we return success anyway since
6560 * this is not a hard failure and quotas are already disabled.
6561 */
6562 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6563 if (IS_ERR(handle)) {
6564 err = PTR_ERR(handle);
6565 goto out_unlock;
6566 }
6567 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6568 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6569 inode->i_mtime = inode->i_ctime = current_time(inode);
6570 err = ext4_mark_inode_dirty(handle, inode);
6571 ext4_journal_stop(handle);
6572 out_unlock:
6573 inode_unlock(inode);
6574 out_put:
6575 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6576 iput(inode);
6577 return err;
6578 out:
6579 return dquot_quota_off(sb, type);
6580 }
6581
6582 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6583 * acquiring the locks... As quota files are never truncated and quota code
6584 * itself serializes the operations (and no one else should touch the files)
6585 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6586 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6587 size_t len, loff_t off)
6588 {
6589 struct inode *inode = sb_dqopt(sb)->files[type];
6590 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6591 int offset = off & (sb->s_blocksize - 1);
6592 int tocopy;
6593 size_t toread;
6594 struct buffer_head *bh;
6595 loff_t i_size = i_size_read(inode);
6596
6597 if (off > i_size)
6598 return 0;
6599 if (off+len > i_size)
6600 len = i_size-off;
6601 toread = len;
6602 while (toread > 0) {
6603 tocopy = sb->s_blocksize - offset < toread ?
6604 sb->s_blocksize - offset : toread;
6605 bh = ext4_bread(NULL, inode, blk, 0);
6606 if (IS_ERR(bh))
6607 return PTR_ERR(bh);
6608 if (!bh) /* A hole? */
6609 memset(data, 0, tocopy);
6610 else
6611 memcpy(data, bh->b_data+offset, tocopy);
6612 brelse(bh);
6613 offset = 0;
6614 toread -= tocopy;
6615 data += tocopy;
6616 blk++;
6617 }
6618 return len;
6619 }
6620
6621 /* Write to quotafile (we know the transaction is already started and has
6622 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6623 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6624 const char *data, size_t len, loff_t off)
6625 {
6626 struct inode *inode = sb_dqopt(sb)->files[type];
6627 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6628 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6629 int retries = 0;
6630 struct buffer_head *bh;
6631 handle_t *handle = journal_current_handle();
6632
6633 if (!handle) {
6634 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6635 " cancelled because transaction is not started",
6636 (unsigned long long)off, (unsigned long long)len);
6637 return -EIO;
6638 }
6639 /*
6640 * Since we account only one data block in transaction credits,
6641 * then it is impossible to cross a block boundary.
6642 */
6643 if (sb->s_blocksize - offset < len) {
6644 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6645 " cancelled because not block aligned",
6646 (unsigned long long)off, (unsigned long long)len);
6647 return -EIO;
6648 }
6649
6650 do {
6651 bh = ext4_bread(handle, inode, blk,
6652 EXT4_GET_BLOCKS_CREATE |
6653 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6654 } while (PTR_ERR(bh) == -ENOSPC &&
6655 ext4_should_retry_alloc(inode->i_sb, &retries));
6656 if (IS_ERR(bh))
6657 return PTR_ERR(bh);
6658 if (!bh)
6659 goto out;
6660 BUFFER_TRACE(bh, "get write access");
6661 err = ext4_journal_get_write_access(handle, bh);
6662 if (err) {
6663 brelse(bh);
6664 return err;
6665 }
6666 lock_buffer(bh);
6667 memcpy(bh->b_data+offset, data, len);
6668 flush_dcache_page(bh->b_page);
6669 unlock_buffer(bh);
6670 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6671 brelse(bh);
6672 out:
6673 if (inode->i_size < off + len) {
6674 i_size_write(inode, off + len);
6675 EXT4_I(inode)->i_disksize = inode->i_size;
6676 err2 = ext4_mark_inode_dirty(handle, inode);
6677 if (unlikely(err2 && !err))
6678 err = err2;
6679 }
6680 return err ? err : len;
6681 }
6682 #endif
6683
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6684 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6685 const char *dev_name, void *data)
6686 {
6687 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6688 }
6689
6690 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6691 static inline void register_as_ext2(void)
6692 {
6693 int err = register_filesystem(&ext2_fs_type);
6694 if (err)
6695 printk(KERN_WARNING
6696 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6697 }
6698
unregister_as_ext2(void)6699 static inline void unregister_as_ext2(void)
6700 {
6701 unregister_filesystem(&ext2_fs_type);
6702 }
6703
ext2_feature_set_ok(struct super_block * sb)6704 static inline int ext2_feature_set_ok(struct super_block *sb)
6705 {
6706 if (ext4_has_unknown_ext2_incompat_features(sb))
6707 return 0;
6708 if (sb_rdonly(sb))
6709 return 1;
6710 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6711 return 0;
6712 return 1;
6713 }
6714 #else
register_as_ext2(void)6715 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6716 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6717 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6718 #endif
6719
register_as_ext3(void)6720 static inline void register_as_ext3(void)
6721 {
6722 int err = register_filesystem(&ext3_fs_type);
6723 if (err)
6724 printk(KERN_WARNING
6725 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6726 }
6727
unregister_as_ext3(void)6728 static inline void unregister_as_ext3(void)
6729 {
6730 unregister_filesystem(&ext3_fs_type);
6731 }
6732
ext3_feature_set_ok(struct super_block * sb)6733 static inline int ext3_feature_set_ok(struct super_block *sb)
6734 {
6735 if (ext4_has_unknown_ext3_incompat_features(sb))
6736 return 0;
6737 if (!ext4_has_feature_journal(sb))
6738 return 0;
6739 if (sb_rdonly(sb))
6740 return 1;
6741 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6742 return 0;
6743 return 1;
6744 }
6745
6746 static struct file_system_type ext4_fs_type = {
6747 .owner = THIS_MODULE,
6748 .name = "ext4",
6749 .mount = ext4_mount,
6750 .kill_sb = kill_block_super,
6751 .fs_flags = FS_REQUIRES_DEV,
6752 };
6753 MODULE_ALIAS_FS("ext4");
6754
6755 /* Shared across all ext4 file systems */
6756 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6757
ext4_init_fs(void)6758 static int __init ext4_init_fs(void)
6759 {
6760 int i, err;
6761
6762 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6763 ext4_li_info = NULL;
6764 mutex_init(&ext4_li_mtx);
6765
6766 /* Build-time check for flags consistency */
6767 ext4_check_flag_values();
6768
6769 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6770 init_waitqueue_head(&ext4__ioend_wq[i]);
6771
6772 err = ext4_init_es();
6773 if (err)
6774 return err;
6775
6776 err = ext4_init_pending();
6777 if (err)
6778 goto out7;
6779
6780 err = ext4_init_post_read_processing();
6781 if (err)
6782 goto out6;
6783
6784 err = ext4_init_pageio();
6785 if (err)
6786 goto out5;
6787
6788 err = ext4_init_system_zone();
6789 if (err)
6790 goto out4;
6791
6792 err = ext4_init_sysfs();
6793 if (err)
6794 goto out3;
6795
6796 err = ext4_init_mballoc();
6797 if (err)
6798 goto out2;
6799 err = init_inodecache();
6800 if (err)
6801 goto out1;
6802
6803 err = ext4_fc_init_dentry_cache();
6804 if (err)
6805 goto out05;
6806
6807 register_as_ext3();
6808 register_as_ext2();
6809 err = register_filesystem(&ext4_fs_type);
6810 if (err)
6811 goto out;
6812
6813 return 0;
6814 out:
6815 unregister_as_ext2();
6816 unregister_as_ext3();
6817 ext4_fc_destroy_dentry_cache();
6818 out05:
6819 destroy_inodecache();
6820 out1:
6821 ext4_exit_mballoc();
6822 out2:
6823 ext4_exit_sysfs();
6824 out3:
6825 ext4_exit_system_zone();
6826 out4:
6827 ext4_exit_pageio();
6828 out5:
6829 ext4_exit_post_read_processing();
6830 out6:
6831 ext4_exit_pending();
6832 out7:
6833 ext4_exit_es();
6834
6835 return err;
6836 }
6837
ext4_exit_fs(void)6838 static void __exit ext4_exit_fs(void)
6839 {
6840 ext4_destroy_lazyinit_thread();
6841 unregister_as_ext2();
6842 unregister_as_ext3();
6843 unregister_filesystem(&ext4_fs_type);
6844 ext4_fc_destroy_dentry_cache();
6845 destroy_inodecache();
6846 ext4_exit_mballoc();
6847 ext4_exit_sysfs();
6848 ext4_exit_system_zone();
6849 ext4_exit_pageio();
6850 ext4_exit_post_read_processing();
6851 ext4_exit_es();
6852 ext4_exit_pending();
6853 }
6854
6855 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6856 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6857 MODULE_LICENSE("GPL");
6858 MODULE_SOFTDEP("pre: crc32c");
6859 module_init(ext4_init_fs)
6860 module_exit(ext4_exit_fs)
6861