1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (unlikely(condition)) { \
37 WARN_ON(1); \
38 set_sbi_flag(sbi, SBI_NEED_FSCK); \
39 } \
40 } while (0)
41 #endif
42
43 enum {
44 FAULT_KMALLOC,
45 FAULT_KVMALLOC,
46 FAULT_PAGE_ALLOC,
47 FAULT_PAGE_GET,
48 FAULT_ALLOC_BIO,
49 FAULT_ALLOC_NID,
50 FAULT_ORPHAN,
51 FAULT_BLOCK,
52 FAULT_DIR_DEPTH,
53 FAULT_EVICT_INODE,
54 FAULT_TRUNCATE,
55 FAULT_READ_IO,
56 FAULT_CHECKPOINT,
57 FAULT_DISCARD,
58 FAULT_WRITE_IO,
59 FAULT_MAX,
60 };
61
62 #ifdef CONFIG_F2FS_FAULT_INJECTION
63 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
64
65 struct f2fs_fault_info {
66 atomic_t inject_ops;
67 int inject_rate;
68 unsigned int inject_type;
69 };
70
71 extern const char *f2fs_fault_name[FAULT_MAX];
72 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
73
74 /* maximum retry count for injected failure */
75 #define DEFAULT_FAILURE_RETRY_COUNT 8
76 #else
77 #define DEFAULT_FAILURE_RETRY_COUNT 1
78 #endif
79
80 /*
81 * For mount options
82 */
83 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
84 #define F2FS_MOUNT_DISCARD 0x00000004
85 #define F2FS_MOUNT_NOHEAP 0x00000008
86 #define F2FS_MOUNT_XATTR_USER 0x00000010
87 #define F2FS_MOUNT_POSIX_ACL 0x00000020
88 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
89 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
90 #define F2FS_MOUNT_INLINE_DATA 0x00000100
91 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
92 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
93 #define F2FS_MOUNT_NOBARRIER 0x00000800
94 #define F2FS_MOUNT_FASTBOOT 0x00001000
95 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
96 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
97 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
98 #define F2FS_MOUNT_USRQUOTA 0x00080000
99 #define F2FS_MOUNT_GRPQUOTA 0x00100000
100 #define F2FS_MOUNT_PRJQUOTA 0x00200000
101 #define F2FS_MOUNT_QUOTA 0x00400000
102 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
103 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
104 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
105 #define F2FS_MOUNT_NORECOVERY 0x04000000
106 #define F2FS_MOUNT_ATGC 0x08000000
107 #define F2FS_MOUNT_GC_MERGE 0x20000000
108
109 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
110 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
111 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
112 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
113
114 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
115 typecheck(unsigned long long, b) && \
116 ((long long)((a) - (b)) > 0))
117
118 typedef u32 block_t; /*
119 * should not change u32, since it is the on-disk block
120 * address format, __le32.
121 */
122 typedef u32 nid_t;
123
124 #define COMPRESS_EXT_NUM 16
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 int write_io_size_bits; /* Write IO size bits */
129 block_t root_reserved_blocks; /* root reserved blocks */
130 kuid_t s_resuid; /* reserved blocks for uid */
131 kgid_t s_resgid; /* reserved blocks for gid */
132 int active_logs; /* # of active logs */
133 int inline_xattr_size; /* inline xattr size */
134 #ifdef CONFIG_F2FS_FAULT_INJECTION
135 struct f2fs_fault_info fault_info; /* For fault injection */
136 #endif
137 #ifdef CONFIG_QUOTA
138 /* Names of quota files with journalled quota */
139 char *s_qf_names[MAXQUOTAS];
140 int s_jquota_fmt; /* Format of quota to use */
141 #endif
142 /* For which write hints are passed down to block layer */
143 int whint_mode;
144 int alloc_mode; /* segment allocation policy */
145 int fsync_mode; /* fsync policy */
146 int fs_mode; /* fs mode: LFS or ADAPTIVE */
147 int bggc_mode; /* bggc mode: off, on or sync */
148 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
149 block_t unusable_cap_perc; /* percentage for cap */
150 block_t unusable_cap; /* Amount of space allowed to be
151 * unusable when disabling checkpoint
152 */
153
154 /* For compression */
155 unsigned char compress_algorithm; /* algorithm type */
156 unsigned compress_log_size; /* cluster log size */
157 unsigned char compress_ext_cnt; /* extension count */
158 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
159 };
160
161 #define F2FS_FEATURE_ENCRYPT 0x0001
162 #define F2FS_FEATURE_BLKZONED 0x0002
163 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
164 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
165 #define F2FS_FEATURE_PRJQUOTA 0x0010
166 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
167 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
168 #define F2FS_FEATURE_QUOTA_INO 0x0080
169 #define F2FS_FEATURE_INODE_CRTIME 0x0100
170 #define F2FS_FEATURE_LOST_FOUND 0x0200
171 #define F2FS_FEATURE_VERITY 0x0400
172 #define F2FS_FEATURE_SB_CHKSUM 0x0800
173 #define F2FS_FEATURE_CASEFOLD 0x1000
174 #define F2FS_FEATURE_COMPRESSION 0x2000
175
176 #define __F2FS_HAS_FEATURE(raw_super, mask) \
177 ((raw_super->feature & cpu_to_le32(mask)) != 0)
178 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
179 #define F2FS_SET_FEATURE(sbi, mask) \
180 (sbi->raw_super->feature |= cpu_to_le32(mask))
181 #define F2FS_CLEAR_FEATURE(sbi, mask) \
182 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
183
184 /*
185 * Default values for user and/or group using reserved blocks
186 */
187 #define F2FS_DEF_RESUID 0
188 #define F2FS_DEF_RESGID 0
189
190 /*
191 * For checkpoint manager
192 */
193 enum {
194 NAT_BITMAP,
195 SIT_BITMAP
196 };
197
198 #define CP_UMOUNT 0x00000001
199 #define CP_FASTBOOT 0x00000002
200 #define CP_SYNC 0x00000004
201 #define CP_RECOVERY 0x00000008
202 #define CP_DISCARD 0x00000010
203 #define CP_TRIMMED 0x00000020
204 #define CP_PAUSE 0x00000040
205 #define CP_RESIZE 0x00000080
206
207 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
208 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
209 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
210 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
211 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
212 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
213 #define DEF_CP_INTERVAL 60 /* 60 secs */
214 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
215 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
216 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
217 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
218
219 struct cp_control {
220 int reason;
221 __u64 trim_start;
222 __u64 trim_end;
223 __u64 trim_minlen;
224 };
225
226 /*
227 * indicate meta/data type
228 */
229 enum {
230 META_CP,
231 META_NAT,
232 META_SIT,
233 META_SSA,
234 META_MAX,
235 META_POR,
236 DATA_GENERIC, /* check range only */
237 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
238 DATA_GENERIC_ENHANCE_READ, /*
239 * strong check on range and segment
240 * bitmap but no warning due to race
241 * condition of read on truncated area
242 * by extent_cache
243 */
244 DATA_GENERIC_ENHANCE_UPDATE, /*
245 * strong check on range and segment
246 * bitmap for update case
247 */
248 META_GENERIC,
249 };
250
251 /* for the list of ino */
252 enum {
253 ORPHAN_INO, /* for orphan ino list */
254 APPEND_INO, /* for append ino list */
255 UPDATE_INO, /* for update ino list */
256 TRANS_DIR_INO, /* for trasactions dir ino list */
257 FLUSH_INO, /* for multiple device flushing */
258 MAX_INO_ENTRY, /* max. list */
259 };
260
261 struct ino_entry {
262 struct list_head list; /* list head */
263 nid_t ino; /* inode number */
264 unsigned int dirty_device; /* dirty device bitmap */
265 };
266
267 /* for the list of inodes to be GCed */
268 struct inode_entry {
269 struct list_head list; /* list head */
270 struct inode *inode; /* vfs inode pointer */
271 };
272
273 struct fsync_node_entry {
274 struct list_head list; /* list head */
275 struct page *page; /* warm node page pointer */
276 unsigned int seq_id; /* sequence id */
277 };
278
279 /* for the bitmap indicate blocks to be discarded */
280 struct discard_entry {
281 struct list_head list; /* list head */
282 block_t start_blkaddr; /* start blockaddr of current segment */
283 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
284 };
285
286 /* default discard granularity of inner discard thread, unit: block count */
287 #define DEFAULT_DISCARD_GRANULARITY 16
288 #define DISCARD_GRAN_BL 16
289 #define DISCARD_GRAN_BG 512
290 #define DISCARD_GRAN_FORCE 1
291
292 /* max discard pend list number */
293 #define MAX_PLIST_NUM 512
294 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
295 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
296 #define FS_FREE_SPACE_PERCENT 20
297 #define DEVICE_FREE_SPACE_PERCENT 10
298 #define HUNDRED_PERCENT 100
299
300 enum {
301 D_PREP, /* initial */
302 D_PARTIAL, /* partially submitted */
303 D_SUBMIT, /* all submitted */
304 D_DONE, /* finished */
305 };
306
307 struct discard_info {
308 block_t lstart; /* logical start address */
309 block_t len; /* length */
310 block_t start; /* actual start address in dev */
311 };
312
313 struct discard_cmd {
314 struct rb_node rb_node; /* rb node located in rb-tree */
315 union {
316 struct {
317 block_t lstart; /* logical start address */
318 block_t len; /* length */
319 block_t start; /* actual start address in dev */
320 };
321 struct discard_info di; /* discard info */
322
323 };
324 struct list_head list; /* command list */
325 struct completion wait; /* compleation */
326 struct block_device *bdev; /* bdev */
327 unsigned short ref; /* reference count */
328 unsigned char state; /* state */
329 unsigned char queued; /* queued discard */
330 int error; /* bio error */
331 spinlock_t lock; /* for state/bio_ref updating */
332 unsigned short bio_ref; /* bio reference count */
333 };
334
335 enum {
336 DPOLICY_BG,
337 DPOLICY_BALANCE,
338 DPOLICY_FORCE,
339 DPOLICY_FSTRIM,
340 DPOLICY_UMOUNT,
341 MAX_DPOLICY,
342 };
343
344 enum {
345 SUB_POLICY_BIG,
346 SUB_POLICY_MID,
347 SUB_POLICY_SMALL,
348 NR_SUB_POLICY,
349 };
350
351 struct discard_sub_policy {
352 unsigned int max_requests;
353 int interval;
354 };
355
356 struct discard_policy {
357 int type; /* type of discard */
358 unsigned int min_interval; /* used for candidates exist */
359 unsigned int mid_interval; /* used for device busy */
360 unsigned int max_interval; /* used for candidates not exist */
361 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
362 bool io_aware; /* issue discard in idle time */
363 bool sync; /* submit discard with REQ_SYNC flag */
364 bool ordered; /* issue discard by lba order */
365 bool timeout; /* discard timeout for put_super */
366 unsigned int granularity; /* discard granularity */
367 struct discard_sub_policy sub_policy[NR_SUB_POLICY];
368 };
369
370 struct discard_cmd_control {
371 struct task_struct *f2fs_issue_discard; /* discard thread */
372 struct list_head entry_list; /* 4KB discard entry list */
373 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
374 struct list_head wait_list; /* store on-flushing entries */
375 struct list_head fstrim_list; /* in-flight discard from fstrim */
376 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
377 unsigned int discard_wake; /* to wake up discard thread */
378 struct mutex cmd_lock;
379 unsigned int nr_discards; /* # of discards in the list */
380 unsigned int max_discards; /* max. discards to be issued */
381 unsigned int discard_granularity; /* discard granularity */
382 unsigned int undiscard_blks; /* # of undiscard blocks */
383 unsigned int next_pos; /* next discard position */
384 atomic_t issued_discard; /* # of issued discard */
385 atomic_t queued_discard; /* # of queued discard */
386 atomic_t discard_cmd_cnt; /* # of cached cmd count */
387 struct rb_root_cached root; /* root of discard rb-tree */
388 bool rbtree_check; /* config for consistence check */
389 int discard_type; /* discard type */
390 };
391
392 /* for the list of fsync inodes, used only during recovery */
393 struct fsync_inode_entry {
394 struct list_head list; /* list head */
395 struct inode *inode; /* vfs inode pointer */
396 block_t blkaddr; /* block address locating the last fsync */
397 block_t last_dentry; /* block address locating the last dentry */
398 };
399
400 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
401 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
402
403 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
404 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
405 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
406 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
407
408 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
409 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
410
update_nats_in_cursum(struct f2fs_journal * journal,int i)411 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
412 {
413 int before = nats_in_cursum(journal);
414
415 journal->n_nats = cpu_to_le16(before + i);
416 return before;
417 }
418
update_sits_in_cursum(struct f2fs_journal * journal,int i)419 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
420 {
421 int before = sits_in_cursum(journal);
422
423 journal->n_sits = cpu_to_le16(before + i);
424 return before;
425 }
426
__has_cursum_space(struct f2fs_journal * journal,int size,int type)427 static inline bool __has_cursum_space(struct f2fs_journal *journal,
428 int size, int type)
429 {
430 if (type == NAT_JOURNAL)
431 return size <= MAX_NAT_JENTRIES(journal);
432 return size <= MAX_SIT_JENTRIES(journal);
433 }
434
435 /* for inline stuff */
436 #define DEF_INLINE_RESERVED_SIZE 1
437 static inline int get_extra_isize(struct inode *inode);
438 static inline int get_inline_xattr_addrs(struct inode *inode);
439 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
440 (CUR_ADDRS_PER_INODE(inode) - \
441 get_inline_xattr_addrs(inode) - \
442 DEF_INLINE_RESERVED_SIZE))
443
444 /* for inline dir */
445 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
446 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
447 BITS_PER_BYTE + 1))
448 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
449 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
450 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
451 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
452 NR_INLINE_DENTRY(inode) + \
453 INLINE_DENTRY_BITMAP_SIZE(inode)))
454
455 /*
456 * For INODE and NODE manager
457 */
458 /* for directory operations */
459
460 struct f2fs_filename {
461 /*
462 * The filename the user specified. This is NULL for some
463 * filesystem-internal operations, e.g. converting an inline directory
464 * to a non-inline one, or roll-forward recovering an encrypted dentry.
465 */
466 const struct qstr *usr_fname;
467
468 /*
469 * The on-disk filename. For encrypted directories, this is encrypted.
470 * This may be NULL for lookups in an encrypted dir without the key.
471 */
472 struct fscrypt_str disk_name;
473
474 /* The dirhash of this filename */
475 f2fs_hash_t hash;
476
477 #ifdef CONFIG_FS_ENCRYPTION
478 /*
479 * For lookups in encrypted directories: either the buffer backing
480 * disk_name, or a buffer that holds the decoded no-key name.
481 */
482 struct fscrypt_str crypto_buf;
483 #endif
484 #ifdef CONFIG_UNICODE
485 /*
486 * For casefolded directories: the casefolded name, but it's left NULL
487 * if the original name is not valid Unicode or if the filesystem is
488 * doing an internal operation where usr_fname is also NULL. In these
489 * cases we fall back to treating the name as an opaque byte sequence.
490 */
491 struct fscrypt_str cf_name;
492 #endif
493 };
494
495 struct f2fs_dentry_ptr {
496 struct inode *inode;
497 void *bitmap;
498 struct f2fs_dir_entry *dentry;
499 __u8 (*filename)[F2FS_SLOT_LEN];
500 int max;
501 int nr_bitmap;
502 };
503
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)504 static inline void make_dentry_ptr_block(struct inode *inode,
505 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
506 {
507 d->inode = inode;
508 d->max = NR_DENTRY_IN_BLOCK;
509 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
510 d->bitmap = t->dentry_bitmap;
511 d->dentry = t->dentry;
512 d->filename = t->filename;
513 }
514
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)515 static inline void make_dentry_ptr_inline(struct inode *inode,
516 struct f2fs_dentry_ptr *d, void *t)
517 {
518 int entry_cnt = NR_INLINE_DENTRY(inode);
519 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
520 int reserved_size = INLINE_RESERVED_SIZE(inode);
521
522 d->inode = inode;
523 d->max = entry_cnt;
524 d->nr_bitmap = bitmap_size;
525 d->bitmap = t;
526 d->dentry = t + bitmap_size + reserved_size;
527 d->filename = t + bitmap_size + reserved_size +
528 SIZE_OF_DIR_ENTRY * entry_cnt;
529 }
530
531 /*
532 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
533 * as its node offset to distinguish from index node blocks.
534 * But some bits are used to mark the node block.
535 */
536 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
537 >> OFFSET_BIT_SHIFT)
538 enum {
539 ALLOC_NODE, /* allocate a new node page if needed */
540 LOOKUP_NODE, /* look up a node without readahead */
541 LOOKUP_NODE_RA, /*
542 * look up a node with readahead called
543 * by get_data_block.
544 */
545 };
546
547 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO count */
548
549 /* congestion wait timeout value, default: 20ms */
550 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
551
552 /* maximum retry quota flush count */
553 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
554
555 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
556
557 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
558
559 /* for in-memory extent cache entry */
560 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
561
562 /* number of extent info in extent cache we try to shrink */
563 #define EXTENT_CACHE_SHRINK_NUMBER 128
564
565 struct rb_entry {
566 struct rb_node rb_node; /* rb node located in rb-tree */
567 union {
568 struct {
569 unsigned int ofs; /* start offset of the entry */
570 unsigned int len; /* length of the entry */
571 };
572 unsigned long long key; /* 64-bits key */
573 } __packed;
574 };
575
576 struct extent_info {
577 unsigned int fofs; /* start offset in a file */
578 unsigned int len; /* length of the extent */
579 u32 blk; /* start block address of the extent */
580 };
581
582 struct extent_node {
583 struct rb_node rb_node; /* rb node located in rb-tree */
584 struct extent_info ei; /* extent info */
585 struct list_head list; /* node in global extent list of sbi */
586 struct extent_tree *et; /* extent tree pointer */
587 };
588
589 struct extent_tree {
590 nid_t ino; /* inode number */
591 struct rb_root_cached root; /* root of extent info rb-tree */
592 struct extent_node *cached_en; /* recently accessed extent node */
593 struct extent_info largest; /* largested extent info */
594 struct list_head list; /* to be used by sbi->zombie_list */
595 rwlock_t lock; /* protect extent info rb-tree */
596 atomic_t node_cnt; /* # of extent node in rb-tree*/
597 bool largest_updated; /* largest extent updated */
598 };
599
600 /*
601 * This structure is taken from ext4_map_blocks.
602 *
603 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
604 */
605 #define F2FS_MAP_NEW (1 << BH_New)
606 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
607 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
608 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
609 F2FS_MAP_UNWRITTEN)
610
611 struct f2fs_map_blocks {
612 block_t m_pblk;
613 block_t m_lblk;
614 unsigned int m_len;
615 unsigned int m_flags;
616 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
617 pgoff_t *m_next_extent; /* point to next possible extent */
618 int m_seg_type;
619 bool m_may_create; /* indicate it is from write path */
620 };
621
622 /* for flag in get_data_block */
623 enum {
624 F2FS_GET_BLOCK_DEFAULT,
625 F2FS_GET_BLOCK_FIEMAP,
626 F2FS_GET_BLOCK_BMAP,
627 F2FS_GET_BLOCK_DIO,
628 F2FS_GET_BLOCK_PRE_DIO,
629 F2FS_GET_BLOCK_PRE_AIO,
630 F2FS_GET_BLOCK_PRECACHE,
631 };
632
633 /*
634 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
635 */
636 #define FADVISE_COLD_BIT 0x01
637 #define FADVISE_LOST_PINO_BIT 0x02
638 #define FADVISE_ENCRYPT_BIT 0x04
639 #define FADVISE_ENC_NAME_BIT 0x08
640 #define FADVISE_KEEP_SIZE_BIT 0x10
641 #define FADVISE_HOT_BIT 0x20
642 #define FADVISE_VERITY_BIT 0x40
643
644 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
645
646 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
647 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
648 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
649 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
650 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
651 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
652 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
653 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
654 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
655 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
656 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
657 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
658 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
659 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
660 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
661 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
662 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
663 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
664
665 #define DEF_DIR_LEVEL 0
666
667 enum {
668 GC_FAILURE_PIN,
669 GC_FAILURE_ATOMIC,
670 MAX_GC_FAILURE
671 };
672
673 /* used for f2fs_inode_info->flags */
674 enum {
675 FI_NEW_INODE, /* indicate newly allocated inode */
676 FI_DIRTY_INODE, /* indicate inode is dirty or not */
677 FI_AUTO_RECOVER, /* indicate inode is recoverable */
678 FI_DIRTY_DIR, /* indicate directory has dirty pages */
679 FI_INC_LINK, /* need to increment i_nlink */
680 FI_ACL_MODE, /* indicate acl mode */
681 FI_NO_ALLOC, /* should not allocate any blocks */
682 FI_FREE_NID, /* free allocated nide */
683 FI_NO_EXTENT, /* not to use the extent cache */
684 FI_INLINE_XATTR, /* used for inline xattr */
685 FI_INLINE_DATA, /* used for inline data*/
686 FI_INLINE_DENTRY, /* used for inline dentry */
687 FI_APPEND_WRITE, /* inode has appended data */
688 FI_UPDATE_WRITE, /* inode has in-place-update data */
689 FI_NEED_IPU, /* used for ipu per file */
690 FI_ATOMIC_FILE, /* indicate atomic file */
691 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
692 FI_VOLATILE_FILE, /* indicate volatile file */
693 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
694 FI_DROP_CACHE, /* drop dirty page cache */
695 FI_DATA_EXIST, /* indicate data exists */
696 FI_DO_DEFRAG, /* indicate defragment is running */
697 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
698 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
699 FI_HOT_DATA, /* indicate file is hot */
700 FI_EXTRA_ATTR, /* indicate file has extra attribute */
701 FI_PROJ_INHERIT, /* indicate file inherits projectid */
702 FI_PIN_FILE, /* indicate file should not be gced */
703 FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
704 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
705 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
706 FI_MMAP_FILE, /* indicate file was mmapped */
707 FI_MAX, /* max flag, never be used */
708 };
709
710 struct f2fs_inode_info {
711 struct inode vfs_inode; /* serve a vfs inode */
712 unsigned long i_flags; /* keep an inode flags for ioctl */
713 unsigned char i_advise; /* use to give file attribute hints */
714 unsigned char i_dir_level; /* use for dentry level for large dir */
715 unsigned int i_current_depth; /* only for directory depth */
716 /* for gc failure statistic */
717 unsigned int i_gc_failures[MAX_GC_FAILURE];
718 unsigned int i_pino; /* parent inode number */
719 umode_t i_acl_mode; /* keep file acl mode temporarily */
720
721 /* Use below internally in f2fs*/
722 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
723 struct rw_semaphore i_sem; /* protect fi info */
724 atomic_t dirty_pages; /* # of dirty pages */
725 f2fs_hash_t chash; /* hash value of given file name */
726 unsigned int clevel; /* maximum level of given file name */
727 struct task_struct *task; /* lookup and create consistency */
728 struct task_struct *cp_task; /* separate cp/wb IO stats*/
729 struct task_struct *wb_task; /* indicate inode is in context of writeback */
730 nid_t i_xattr_nid; /* node id that contains xattrs */
731 loff_t last_disk_size; /* lastly written file size */
732 spinlock_t i_size_lock; /* protect last_disk_size */
733
734 #ifdef CONFIG_QUOTA
735 struct dquot *i_dquot[MAXQUOTAS];
736
737 /* quota space reservation, managed internally by quota code */
738 qsize_t i_reserved_quota;
739 #endif
740 struct list_head dirty_list; /* dirty list for dirs and files */
741 struct list_head gdirty_list; /* linked in global dirty list */
742 struct list_head inmem_ilist; /* list for inmem inodes */
743 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
744 struct task_struct *inmem_task; /* store inmemory task */
745 struct mutex inmem_lock; /* lock for inmemory pages */
746 pgoff_t ra_offset; /* ongoing readahead offset */
747 struct extent_tree *extent_tree; /* cached extent_tree entry */
748
749 /* avoid racing between foreground op and gc */
750 struct rw_semaphore i_gc_rwsem[2];
751 struct rw_semaphore i_mmap_sem;
752 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
753
754 int i_extra_isize; /* size of extra space located in i_addr */
755 kprojid_t i_projid; /* id for project quota */
756 int i_inline_xattr_size; /* inline xattr size */
757 struct timespec64 i_crtime; /* inode creation time */
758 struct timespec64 i_disk_time[4];/* inode disk times */
759
760 /* for file compress */
761 atomic_t i_compr_blocks; /* # of compressed blocks */
762 unsigned char i_compress_algorithm; /* algorithm type */
763 unsigned char i_log_cluster_size; /* log of cluster size */
764 unsigned int i_cluster_size; /* cluster size */
765 };
766
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)767 static inline void get_extent_info(struct extent_info *ext,
768 struct f2fs_extent *i_ext)
769 {
770 ext->fofs = le32_to_cpu(i_ext->fofs);
771 ext->blk = le32_to_cpu(i_ext->blk);
772 ext->len = le32_to_cpu(i_ext->len);
773 }
774
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)775 static inline void set_raw_extent(struct extent_info *ext,
776 struct f2fs_extent *i_ext)
777 {
778 i_ext->fofs = cpu_to_le32(ext->fofs);
779 i_ext->blk = cpu_to_le32(ext->blk);
780 i_ext->len = cpu_to_le32(ext->len);
781 }
782
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)783 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
784 u32 blk, unsigned int len)
785 {
786 ei->fofs = fofs;
787 ei->blk = blk;
788 ei->len = len;
789 }
790
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)791 static inline bool __is_discard_mergeable(struct discard_info *back,
792 struct discard_info *front, unsigned int max_len)
793 {
794 return (back->lstart + back->len == front->lstart) &&
795 (back->len + front->len <= max_len);
796 }
797
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)798 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
799 struct discard_info *back, unsigned int max_len)
800 {
801 return __is_discard_mergeable(back, cur, max_len);
802 }
803
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)804 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
805 struct discard_info *front, unsigned int max_len)
806 {
807 return __is_discard_mergeable(cur, front, max_len);
808 }
809
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)810 static inline bool __is_extent_mergeable(struct extent_info *back,
811 struct extent_info *front)
812 {
813 return (back->fofs + back->len == front->fofs &&
814 back->blk + back->len == front->blk);
815 }
816
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)817 static inline bool __is_back_mergeable(struct extent_info *cur,
818 struct extent_info *back)
819 {
820 return __is_extent_mergeable(back, cur);
821 }
822
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)823 static inline bool __is_front_mergeable(struct extent_info *cur,
824 struct extent_info *front)
825 {
826 return __is_extent_mergeable(cur, front);
827 }
828
829 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)830 static inline void __try_update_largest_extent(struct extent_tree *et,
831 struct extent_node *en)
832 {
833 if (en->ei.len > et->largest.len) {
834 et->largest = en->ei;
835 et->largest_updated = true;
836 }
837 }
838
839 /*
840 * For free nid management
841 */
842 enum nid_state {
843 FREE_NID, /* newly added to free nid list */
844 PREALLOC_NID, /* it is preallocated */
845 MAX_NID_STATE,
846 };
847
848 enum nat_state {
849 TOTAL_NAT,
850 DIRTY_NAT,
851 RECLAIMABLE_NAT,
852 MAX_NAT_STATE,
853 };
854
855 struct f2fs_nm_info {
856 block_t nat_blkaddr; /* base disk address of NAT */
857 nid_t max_nid; /* maximum possible node ids */
858 nid_t available_nids; /* # of available node ids */
859 nid_t next_scan_nid; /* the next nid to be scanned */
860 unsigned int ram_thresh; /* control the memory footprint */
861 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
862 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
863
864 /* NAT cache management */
865 struct radix_tree_root nat_root;/* root of the nat entry cache */
866 struct radix_tree_root nat_set_root;/* root of the nat set cache */
867 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
868 struct list_head nat_entries; /* cached nat entry list (clean) */
869 spinlock_t nat_list_lock; /* protect clean nat entry list */
870 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
871 unsigned int nat_blocks; /* # of nat blocks */
872
873 /* free node ids management */
874 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
875 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
876 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
877 spinlock_t nid_list_lock; /* protect nid lists ops */
878 struct mutex build_lock; /* lock for build free nids */
879 unsigned char **free_nid_bitmap;
880 unsigned char *nat_block_bitmap;
881 unsigned short *free_nid_count; /* free nid count of NAT block */
882
883 /* for checkpoint */
884 char *nat_bitmap; /* NAT bitmap pointer */
885
886 unsigned int nat_bits_blocks; /* # of nat bits blocks */
887 unsigned char *nat_bits; /* NAT bits blocks */
888 unsigned char *full_nat_bits; /* full NAT pages */
889 unsigned char *empty_nat_bits; /* empty NAT pages */
890 #ifdef CONFIG_F2FS_CHECK_FS
891 char *nat_bitmap_mir; /* NAT bitmap mirror */
892 #endif
893 int bitmap_size; /* bitmap size */
894 };
895
896 /*
897 * this structure is used as one of function parameters.
898 * all the information are dedicated to a given direct node block determined
899 * by the data offset in a file.
900 */
901 struct dnode_of_data {
902 struct inode *inode; /* vfs inode pointer */
903 struct page *inode_page; /* its inode page, NULL is possible */
904 struct page *node_page; /* cached direct node page */
905 nid_t nid; /* node id of the direct node block */
906 unsigned int ofs_in_node; /* data offset in the node page */
907 bool inode_page_locked; /* inode page is locked or not */
908 bool node_changed; /* is node block changed */
909 char cur_level; /* level of hole node page */
910 char max_level; /* level of current page located */
911 block_t data_blkaddr; /* block address of the node block */
912 };
913
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)914 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
915 struct page *ipage, struct page *npage, nid_t nid)
916 {
917 memset(dn, 0, sizeof(*dn));
918 dn->inode = inode;
919 dn->inode_page = ipage;
920 dn->node_page = npage;
921 dn->nid = nid;
922 }
923
924 /*
925 * For SIT manager
926 *
927 * By default, there are 6 active log areas across the whole main area.
928 * When considering hot and cold data separation to reduce cleaning overhead,
929 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
930 * respectively.
931 * In the current design, you should not change the numbers intentionally.
932 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
933 * logs individually according to the underlying devices. (default: 6)
934 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
935 * data and 8 for node logs.
936 */
937 #define NR_CURSEG_DATA_TYPE (3)
938 #define NR_CURSEG_NODE_TYPE (3)
939 #define NR_CURSEG_INMEM_TYPE (2)
940 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
941 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
942
943 enum {
944 CURSEG_HOT_DATA = 0, /* directory entry blocks */
945 CURSEG_WARM_DATA, /* data blocks */
946 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
947 CURSEG_HOT_NODE, /* direct node blocks of directory files */
948 CURSEG_WARM_NODE, /* direct node blocks of normal files */
949 CURSEG_COLD_NODE, /* indirect node blocks */
950 NR_PERSISTENT_LOG, /* number of persistent log */
951 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
952 /* pinned file that needs consecutive block address */
953 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
954 NO_CHECK_TYPE, /* number of persistent & inmem log */
955 };
956
957 struct flush_cmd {
958 struct completion wait;
959 struct llist_node llnode;
960 nid_t ino;
961 int ret;
962 };
963
964 struct flush_cmd_control {
965 struct task_struct *f2fs_issue_flush; /* flush thread */
966 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
967 atomic_t issued_flush; /* # of issued flushes */
968 atomic_t queued_flush; /* # of queued flushes */
969 struct llist_head issue_list; /* list for command issue */
970 struct llist_node *dispatch_list; /* list for command dispatch */
971 };
972
973 struct f2fs_sm_info {
974 struct sit_info *sit_info; /* whole segment information */
975 struct free_segmap_info *free_info; /* free segment information */
976 struct dirty_seglist_info *dirty_info; /* dirty segment information */
977 struct curseg_info *curseg_array; /* active segment information */
978
979 struct rw_semaphore curseg_lock; /* for preventing curseg change */
980
981 block_t seg0_blkaddr; /* block address of 0'th segment */
982 block_t main_blkaddr; /* start block address of main area */
983 block_t ssa_blkaddr; /* start block address of SSA area */
984
985 unsigned int segment_count; /* total # of segments */
986 unsigned int main_segments; /* # of segments in main area */
987 unsigned int reserved_segments; /* # of reserved segments */
988 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
989 unsigned int ovp_segments; /* # of overprovision segments */
990
991 /* a threshold to reclaim prefree segments */
992 unsigned int rec_prefree_segments;
993
994 /* for batched trimming */
995 unsigned int trim_sections; /* # of sections to trim */
996
997 struct list_head sit_entry_set; /* sit entry set list */
998
999 unsigned int ipu_policy; /* in-place-update policy */
1000 unsigned int min_ipu_util; /* in-place-update threshold */
1001 unsigned int min_fsync_blocks; /* threshold for fsync */
1002 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1003 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1004 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1005
1006 /* for flush command control */
1007 struct flush_cmd_control *fcc_info;
1008
1009 /* for discard command control */
1010 struct discard_cmd_control *dcc_info;
1011 };
1012
1013 /*
1014 * For superblock
1015 */
1016 /*
1017 * COUNT_TYPE for monitoring
1018 *
1019 * f2fs monitors the number of several block types such as on-writeback,
1020 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1021 */
1022 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1023 enum count_type {
1024 F2FS_DIRTY_DENTS,
1025 F2FS_DIRTY_DATA,
1026 F2FS_DIRTY_QDATA,
1027 F2FS_DIRTY_NODES,
1028 F2FS_DIRTY_META,
1029 F2FS_INMEM_PAGES,
1030 F2FS_DIRTY_IMETA,
1031 F2FS_WB_CP_DATA,
1032 F2FS_WB_DATA,
1033 F2FS_RD_DATA,
1034 F2FS_RD_NODE,
1035 F2FS_RD_META,
1036 F2FS_DIO_WRITE,
1037 F2FS_DIO_READ,
1038 NR_COUNT_TYPE,
1039 };
1040
1041 /*
1042 * The below are the page types of bios used in submit_bio().
1043 * The available types are:
1044 * DATA User data pages. It operates as async mode.
1045 * NODE Node pages. It operates as async mode.
1046 * META FS metadata pages such as SIT, NAT, CP.
1047 * NR_PAGE_TYPE The number of page types.
1048 * META_FLUSH Make sure the previous pages are written
1049 * with waiting the bio's completion
1050 * ... Only can be used with META.
1051 */
1052 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1053 enum page_type {
1054 DATA = 0,
1055 NODE = 1, /* should not change this */
1056 META,
1057 NR_PAGE_TYPE,
1058 META_FLUSH,
1059 INMEM, /* the below types are used by tracepoints only. */
1060 INMEM_DROP,
1061 INMEM_INVALIDATE,
1062 INMEM_REVOKE,
1063 IPU,
1064 OPU,
1065 };
1066
1067 enum temp_type {
1068 HOT = 0, /* must be zero for meta bio */
1069 WARM,
1070 COLD,
1071 NR_TEMP_TYPE,
1072 };
1073
1074 enum need_lock_type {
1075 LOCK_REQ = 0,
1076 LOCK_DONE,
1077 LOCK_RETRY,
1078 };
1079
1080 enum cp_reason_type {
1081 CP_NO_NEEDED,
1082 CP_NON_REGULAR,
1083 CP_COMPRESSED,
1084 CP_HARDLINK,
1085 CP_SB_NEED_CP,
1086 CP_WRONG_PINO,
1087 CP_NO_SPC_ROLL,
1088 CP_NODE_NEED_CP,
1089 CP_FASTBOOT_MODE,
1090 CP_SPEC_LOG_NUM,
1091 CP_RECOVER_DIR,
1092 };
1093
1094 enum iostat_type {
1095 /* WRITE IO */
1096 APP_DIRECT_IO, /* app direct write IOs */
1097 APP_BUFFERED_IO, /* app buffered write IOs */
1098 APP_WRITE_IO, /* app write IOs */
1099 APP_MAPPED_IO, /* app mapped IOs */
1100 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1101 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1102 FS_META_IO, /* meta IOs from kworker/reclaimer */
1103 FS_GC_DATA_IO, /* data IOs from forground gc */
1104 FS_GC_NODE_IO, /* node IOs from forground gc */
1105 FS_CP_DATA_IO, /* data IOs from checkpoint */
1106 FS_CP_NODE_IO, /* node IOs from checkpoint */
1107 FS_CP_META_IO, /* meta IOs from checkpoint */
1108
1109 /* READ IO */
1110 APP_DIRECT_READ_IO, /* app direct read IOs */
1111 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1112 APP_READ_IO, /* app read IOs */
1113 APP_MAPPED_READ_IO, /* app mapped read IOs */
1114 FS_DATA_READ_IO, /* data read IOs */
1115 FS_GDATA_READ_IO, /* data read IOs from background gc */
1116 FS_CDATA_READ_IO, /* compressed data read IOs */
1117 FS_NODE_READ_IO, /* node read IOs */
1118 FS_META_READ_IO, /* meta read IOs */
1119
1120 /* other */
1121 FS_DISCARD, /* discard */
1122 NR_IO_TYPE,
1123 };
1124
1125 struct f2fs_io_info {
1126 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1127 nid_t ino; /* inode number */
1128 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1129 enum temp_type temp; /* contains HOT/WARM/COLD */
1130 int op; /* contains REQ_OP_ */
1131 int op_flags; /* req_flag_bits */
1132 block_t new_blkaddr; /* new block address to be written */
1133 block_t old_blkaddr; /* old block address before Cow */
1134 struct page *page; /* page to be written */
1135 struct page *encrypted_page; /* encrypted page */
1136 struct page *compressed_page; /* compressed page */
1137 struct list_head list; /* serialize IOs */
1138 bool submitted; /* indicate IO submission */
1139 int need_lock; /* indicate we need to lock cp_rwsem */
1140 bool in_list; /* indicate fio is in io_list */
1141 bool is_por; /* indicate IO is from recovery or not */
1142 bool retry; /* need to reallocate block address */
1143 int compr_blocks; /* # of compressed block addresses */
1144 bool encrypted; /* indicate file is encrypted */
1145 bool post_read; /* require post read */
1146 enum iostat_type io_type; /* io type */
1147 struct writeback_control *io_wbc; /* writeback control */
1148 struct bio **bio; /* bio for ipu */
1149 sector_t *last_block; /* last block number in bio */
1150 unsigned char version; /* version of the node */
1151 };
1152
1153 struct bio_entry {
1154 struct bio *bio;
1155 struct list_head list;
1156 };
1157
1158 #define is_read_io(rw) ((rw) == READ)
1159 struct f2fs_bio_info {
1160 struct f2fs_sb_info *sbi; /* f2fs superblock */
1161 struct bio *bio; /* bios to merge */
1162 sector_t last_block_in_bio; /* last block number */
1163 struct f2fs_io_info fio; /* store buffered io info. */
1164 struct rw_semaphore io_rwsem; /* blocking op for bio */
1165 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1166 struct list_head io_list; /* track fios */
1167 struct list_head bio_list; /* bio entry list head */
1168 struct rw_semaphore bio_list_lock; /* lock to protect bio entry list */
1169 };
1170
1171 #define FDEV(i) (sbi->devs[i])
1172 #define RDEV(i) (raw_super->devs[i])
1173 struct f2fs_dev_info {
1174 struct block_device *bdev;
1175 char path[MAX_PATH_LEN];
1176 unsigned int total_segments;
1177 block_t start_blk;
1178 block_t end_blk;
1179 #ifdef CONFIG_BLK_DEV_ZONED
1180 unsigned int nr_blkz; /* Total number of zones */
1181 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1182 #endif
1183 };
1184
1185 enum inode_type {
1186 DIR_INODE, /* for dirty dir inode */
1187 FILE_INODE, /* for dirty regular/symlink inode */
1188 DIRTY_META, /* for all dirtied inode metadata */
1189 ATOMIC_FILE, /* for all atomic files */
1190 NR_INODE_TYPE,
1191 };
1192
1193 /* for inner inode cache management */
1194 struct inode_management {
1195 struct radix_tree_root ino_root; /* ino entry array */
1196 spinlock_t ino_lock; /* for ino entry lock */
1197 struct list_head ino_list; /* inode list head */
1198 unsigned long ino_num; /* number of entries */
1199 };
1200
1201 /* for GC_AT */
1202 struct atgc_management {
1203 bool atgc_enabled; /* ATGC is enabled or not */
1204 struct rb_root_cached root; /* root of victim rb-tree */
1205 struct list_head victim_list; /* linked with all victim entries */
1206 unsigned int victim_count; /* victim count in rb-tree */
1207 unsigned int candidate_ratio; /* candidate ratio */
1208 unsigned int max_candidate_count; /* max candidate count */
1209 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1210 unsigned long long age_threshold; /* age threshold */
1211 };
1212
1213 /* For s_flag in struct f2fs_sb_info */
1214 enum {
1215 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1216 SBI_IS_CLOSE, /* specify unmounting */
1217 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1218 SBI_POR_DOING, /* recovery is doing or not */
1219 SBI_NEED_SB_WRITE, /* need to recover superblock */
1220 SBI_NEED_CP, /* need to checkpoint */
1221 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1222 SBI_IS_RECOVERED, /* recovered orphan/data */
1223 SBI_CP_DISABLED, /* CP was disabled last mount */
1224 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1225 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1226 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1227 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1228 SBI_IS_RESIZEFS, /* resizefs is in process */
1229 };
1230
1231 enum {
1232 CP_TIME,
1233 REQ_TIME,
1234 DISCARD_TIME,
1235 GC_TIME,
1236 DISABLE_TIME,
1237 UMOUNT_DISCARD_TIMEOUT,
1238 MAX_TIME,
1239 };
1240
1241 enum {
1242 GC_NORMAL,
1243 GC_IDLE_CB,
1244 GC_IDLE_GREEDY,
1245 GC_IDLE_AT,
1246 GC_URGENT_HIGH,
1247 GC_URGENT_LOW,
1248 };
1249
1250 enum {
1251 BGGC_MODE_ON, /* background gc is on */
1252 BGGC_MODE_OFF, /* background gc is off */
1253 BGGC_MODE_SYNC, /*
1254 * background gc is on, migrating blocks
1255 * like foreground gc
1256 */
1257 };
1258
1259 enum {
1260 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1261 FS_MODE_LFS, /* use lfs allocation only */
1262 };
1263
1264 enum {
1265 WHINT_MODE_OFF, /* not pass down write hints */
1266 WHINT_MODE_USER, /* try to pass down hints given by users */
1267 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1268 };
1269
1270 enum {
1271 ALLOC_MODE_DEFAULT, /* stay default */
1272 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1273 };
1274
1275 enum fsync_mode {
1276 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1277 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1278 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1279 };
1280
1281 /*
1282 * this value is set in page as a private data which indicate that
1283 * the page is atomically written, and it is in inmem_pages list.
1284 */
1285 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
1286 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2)
1287
1288 #define IS_ATOMIC_WRITTEN_PAGE(page) \
1289 (page_private(page) == ATOMIC_WRITTEN_PAGE)
1290 #define IS_DUMMY_WRITTEN_PAGE(page) \
1291 (page_private(page) == DUMMY_WRITTEN_PAGE)
1292
1293 #ifdef CONFIG_F2FS_IO_TRACE
1294 #define IS_IO_TRACED_PAGE(page) \
1295 (page_private(page) > 0 && \
1296 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1297 #else
1298 #define IS_IO_TRACED_PAGE(page) (0)
1299 #endif
1300
1301 /* For compression */
1302 enum compress_algorithm_type {
1303 COMPRESS_LZO,
1304 COMPRESS_LZ4,
1305 COMPRESS_ZSTD,
1306 COMPRESS_LZORLE,
1307 COMPRESS_MAX,
1308 };
1309
1310 #define COMPRESS_DATA_RESERVED_SIZE 5
1311 struct compress_data {
1312 __le32 clen; /* compressed data size */
1313 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1314 u8 cdata[]; /* compressed data */
1315 };
1316
1317 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1318
1319 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1320
1321 /* compress context */
1322 struct compress_ctx {
1323 struct inode *inode; /* inode the context belong to */
1324 pgoff_t cluster_idx; /* cluster index number */
1325 unsigned int cluster_size; /* page count in cluster */
1326 unsigned int log_cluster_size; /* log of cluster size */
1327 struct page **rpages; /* pages store raw data in cluster */
1328 unsigned int nr_rpages; /* total page number in rpages */
1329 struct page **cpages; /* pages store compressed data in cluster */
1330 unsigned int nr_cpages; /* total page number in cpages */
1331 void *rbuf; /* virtual mapped address on rpages */
1332 struct compress_data *cbuf; /* virtual mapped address on cpages */
1333 size_t rlen; /* valid data length in rbuf */
1334 size_t clen; /* valid data length in cbuf */
1335 void *private; /* payload buffer for specified compression algorithm */
1336 void *private2; /* extra payload buffer */
1337 };
1338
1339 /* compress context for write IO path */
1340 struct compress_io_ctx {
1341 u32 magic; /* magic number to indicate page is compressed */
1342 struct inode *inode; /* inode the context belong to */
1343 struct page **rpages; /* pages store raw data in cluster */
1344 unsigned int nr_rpages; /* total page number in rpages */
1345 atomic_t pending_pages; /* in-flight compressed page count */
1346 };
1347
1348 /* decompress io context for read IO path */
1349 struct decompress_io_ctx {
1350 u32 magic; /* magic number to indicate page is compressed */
1351 struct inode *inode; /* inode the context belong to */
1352 pgoff_t cluster_idx; /* cluster index number */
1353 unsigned int cluster_size; /* page count in cluster */
1354 unsigned int log_cluster_size; /* log of cluster size */
1355 struct page **rpages; /* pages store raw data in cluster */
1356 unsigned int nr_rpages; /* total page number in rpages */
1357 struct page **cpages; /* pages store compressed data in cluster */
1358 unsigned int nr_cpages; /* total page number in cpages */
1359 struct page **tpages; /* temp pages to pad holes in cluster */
1360 void *rbuf; /* virtual mapped address on rpages */
1361 struct compress_data *cbuf; /* virtual mapped address on cpages */
1362 size_t rlen; /* valid data length in rbuf */
1363 size_t clen; /* valid data length in cbuf */
1364 atomic_t pending_pages; /* in-flight compressed page count */
1365 atomic_t verity_pages; /* in-flight page count for verity */
1366 bool failed; /* indicate IO error during decompression */
1367 void *private; /* payload buffer for specified decompression algorithm */
1368 void *private2; /* extra payload buffer */
1369 };
1370
1371 #define NULL_CLUSTER ((unsigned int)(~0))
1372 #define MIN_COMPRESS_LOG_SIZE 2
1373 #define MAX_COMPRESS_LOG_SIZE 8
1374 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1375
1376 #ifdef CONFIG_F2FS_GRADING_SSR
1377 struct f2fs_hot_cold_params {
1378 unsigned int enable;
1379 unsigned int hot_data_lower_limit;
1380 unsigned int hot_data_waterline;
1381 unsigned int warm_data_lower_limit;
1382 unsigned int warm_data_waterline;
1383 unsigned int hot_node_lower_limit;
1384 unsigned int hot_node_waterline;
1385 unsigned int warm_node_lower_limit;
1386 unsigned int warm_node_waterline;
1387 };
1388 #endif
1389
1390 struct f2fs_sb_info {
1391 struct super_block *sb; /* pointer to VFS super block */
1392 struct proc_dir_entry *s_proc; /* proc entry */
1393 struct f2fs_super_block *raw_super; /* raw super block pointer */
1394 struct rw_semaphore sb_lock; /* lock for raw super block */
1395 int valid_super_block; /* valid super block no */
1396 unsigned long s_flag; /* flags for sbi */
1397 struct mutex writepages; /* mutex for writepages() */
1398
1399 #ifdef CONFIG_BLK_DEV_ZONED
1400 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1401 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1402 #endif
1403
1404 /* for node-related operations */
1405 struct f2fs_nm_info *nm_info; /* node manager */
1406 struct inode *node_inode; /* cache node blocks */
1407
1408 /* for segment-related operations */
1409 struct f2fs_sm_info *sm_info; /* segment manager */
1410
1411 /* for bio operations */
1412 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1413 /* keep migration IO order for LFS mode */
1414 struct rw_semaphore io_order_lock;
1415 mempool_t *write_io_dummy; /* Dummy pages */
1416
1417 /* for checkpoint */
1418 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1419 int cur_cp_pack; /* remain current cp pack */
1420 spinlock_t cp_lock; /* for flag in ckpt */
1421 struct inode *meta_inode; /* cache meta blocks */
1422 struct mutex cp_mutex; /* checkpoint procedure lock */
1423 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1424 struct rw_semaphore node_write; /* locking node writes */
1425 struct rw_semaphore node_change; /* locking node change */
1426 wait_queue_head_t cp_wait;
1427 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1428 long interval_time[MAX_TIME]; /* to store thresholds */
1429
1430 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1431
1432 spinlock_t fsync_node_lock; /* for node entry lock */
1433 struct list_head fsync_node_list; /* node list head */
1434 unsigned int fsync_seg_id; /* sequence id */
1435 unsigned int fsync_node_num; /* number of node entries */
1436
1437 /* for orphan inode, use 0'th array */
1438 unsigned int max_orphans; /* max orphan inodes */
1439
1440 /* for inode management */
1441 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1442 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1443 struct mutex flush_lock; /* for flush exclusion */
1444
1445 /* for extent tree cache */
1446 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1447 struct mutex extent_tree_lock; /* locking extent radix tree */
1448 struct list_head extent_list; /* lru list for shrinker */
1449 spinlock_t extent_lock; /* locking extent lru list */
1450 atomic_t total_ext_tree; /* extent tree count */
1451 struct list_head zombie_list; /* extent zombie tree list */
1452 atomic_t total_zombie_tree; /* extent zombie tree count */
1453 atomic_t total_ext_node; /* extent info count */
1454
1455 /* basic filesystem units */
1456 unsigned int log_sectors_per_block; /* log2 sectors per block */
1457 unsigned int log_blocksize; /* log2 block size */
1458 unsigned int blocksize; /* block size */
1459 unsigned int root_ino_num; /* root inode number*/
1460 unsigned int node_ino_num; /* node inode number*/
1461 unsigned int meta_ino_num; /* meta inode number*/
1462 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1463 unsigned int blocks_per_seg; /* blocks per segment */
1464 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1465 unsigned int segs_per_sec; /* segments per section */
1466 unsigned int secs_per_zone; /* sections per zone */
1467 unsigned int total_sections; /* total section count */
1468 unsigned int total_node_count; /* total node block count */
1469 unsigned int total_valid_node_count; /* valid node block count */
1470 loff_t max_file_blocks; /* max block index of file */
1471 int dir_level; /* directory level */
1472 int readdir_ra; /* readahead inode in readdir */
1473
1474 block_t user_block_count; /* # of user blocks */
1475 block_t total_valid_block_count; /* # of valid blocks */
1476 block_t discard_blks; /* discard command candidats */
1477 block_t last_valid_block_count; /* for recovery */
1478 block_t reserved_blocks; /* configurable reserved blocks */
1479 block_t current_reserved_blocks; /* current reserved blocks */
1480
1481 /* Additional tracking for no checkpoint mode */
1482 block_t unusable_block_count; /* # of blocks saved by last cp */
1483
1484 unsigned int nquota_files; /* # of quota sysfile */
1485 struct rw_semaphore quota_sem; /* blocking cp for flags */
1486
1487 /* # of pages, see count_type */
1488 atomic_t nr_pages[NR_COUNT_TYPE];
1489 /* # of allocated blocks */
1490 struct percpu_counter alloc_valid_block_count;
1491
1492 /* writeback control */
1493 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1494
1495 /* valid inode count */
1496 struct percpu_counter total_valid_inode_count;
1497
1498 struct f2fs_mount_info mount_opt; /* mount options */
1499
1500 /* for cleaning operations */
1501 struct rw_semaphore gc_lock; /*
1502 * semaphore for GC, avoid
1503 * race between GC and GC or CP
1504 */
1505 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1506 struct atgc_management am; /* atgc management */
1507 unsigned int cur_victim_sec; /* current victim section num */
1508 unsigned int gc_mode; /* current GC state */
1509 unsigned int next_victim_seg[2]; /* next segment in victim section */
1510
1511 /* for skip statistic */
1512 unsigned int atomic_files; /* # of opened atomic file */
1513 unsigned long long skipped_atomic_files[2]; /* FG_GC and BG_GC */
1514 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1515
1516 /* threshold for gc trials on pinned files */
1517 u64 gc_pin_file_threshold;
1518 struct rw_semaphore pin_sem;
1519
1520 /* maximum # of trials to find a victim segment for SSR and GC */
1521 unsigned int max_victim_search;
1522 /* migration granularity of garbage collection, unit: segment */
1523 unsigned int migration_granularity;
1524
1525 /*
1526 * for stat information.
1527 * one is for the LFS mode, and the other is for the SSR mode.
1528 */
1529 #ifdef CONFIG_F2FS_STAT_FS
1530 struct f2fs_stat_info *stat_info; /* FS status information */
1531 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1532 unsigned int segment_count[2]; /* # of allocated segments */
1533 unsigned int block_count[2]; /* # of allocated blocks */
1534 atomic_t inplace_count; /* # of inplace update */
1535 atomic64_t total_hit_ext; /* # of lookup extent cache */
1536 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1537 atomic64_t read_hit_largest; /* # of hit largest extent node */
1538 atomic64_t read_hit_cached; /* # of hit cached extent node */
1539 atomic_t inline_xattr; /* # of inline_xattr inodes */
1540 atomic_t inline_inode; /* # of inline_data inodes */
1541 atomic_t inline_dir; /* # of inline_dentry inodes */
1542 atomic_t compr_inode; /* # of compressed inodes */
1543 atomic64_t compr_blocks; /* # of compressed blocks */
1544 atomic_t vw_cnt; /* # of volatile writes */
1545 atomic_t max_aw_cnt; /* max # of atomic writes */
1546 atomic_t max_vw_cnt; /* max # of volatile writes */
1547 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1548 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1549 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1550 #endif
1551 spinlock_t stat_lock; /* lock for stat operations */
1552
1553 /* For app/fs IO statistics */
1554 spinlock_t iostat_lock;
1555 unsigned long long rw_iostat[NR_IO_TYPE];
1556 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1557 bool iostat_enable;
1558 unsigned long iostat_next_period;
1559 unsigned int iostat_period_ms;
1560
1561 /* to attach REQ_META|REQ_FUA flags */
1562 unsigned int data_io_flag;
1563 unsigned int node_io_flag;
1564
1565 /* For sysfs suppport */
1566 struct kobject s_kobj;
1567 struct completion s_kobj_unregister;
1568
1569 /* For shrinker support */
1570 struct list_head s_list;
1571 int s_ndevs; /* number of devices */
1572 struct f2fs_dev_info *devs; /* for device list */
1573 unsigned int dirty_device; /* for checkpoint data flush */
1574 spinlock_t dev_lock; /* protect dirty_device */
1575 struct mutex umount_mutex;
1576 unsigned int shrinker_run_no;
1577
1578 /* For write statistics */
1579 u64 sectors_written_start;
1580 u64 kbytes_written;
1581
1582 /* Reference to checksum algorithm driver via cryptoapi */
1583 struct crypto_shash *s_chksum_driver;
1584
1585 /* Precomputed FS UUID checksum for seeding other checksums */
1586 __u32 s_chksum_seed;
1587
1588 struct workqueue_struct *post_read_wq; /* post read workqueue */
1589
1590 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1591 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1592
1593 #ifdef CONFIG_F2FS_FS_COMPRESSION
1594 struct kmem_cache *page_array_slab; /* page array entry */
1595 unsigned int page_array_slab_size; /* default page array slab size */
1596 #endif
1597
1598 #ifdef CONFIG_F2FS_GRADING_SSR
1599 struct f2fs_hot_cold_params hot_cold_params;
1600 #endif
1601 };
1602
1603 struct f2fs_private_dio {
1604 struct inode *inode;
1605 void *orig_private;
1606 bio_end_io_t *orig_end_io;
1607 bool write;
1608 };
1609
1610 #ifdef CONFIG_F2FS_FAULT_INJECTION
1611 #define f2fs_show_injection_info(sbi, type) \
1612 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1613 KERN_INFO, sbi->sb->s_id, \
1614 f2fs_fault_name[type], \
1615 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1616 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1617 {
1618 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1619
1620 if (!ffi->inject_rate)
1621 return false;
1622
1623 if (!IS_FAULT_SET(ffi, type))
1624 return false;
1625
1626 atomic_inc(&ffi->inject_ops);
1627 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1628 atomic_set(&ffi->inject_ops, 0);
1629 return true;
1630 }
1631 return false;
1632 }
1633 #else
1634 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1635 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1636 {
1637 return false;
1638 }
1639 #endif
1640
1641 /*
1642 * Test if the mounted volume is a multi-device volume.
1643 * - For a single regular disk volume, sbi->s_ndevs is 0.
1644 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1645 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1646 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1647 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1648 {
1649 return sbi->s_ndevs > 1;
1650 }
1651
1652 /* For write statistics. Suppose sector size is 512 bytes,
1653 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1654 */
1655 #define BD_PART_WRITTEN(s) \
1656 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) - \
1657 (s)->sectors_written_start) >> 1)
1658
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1659 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1660 {
1661 unsigned long now = jiffies;
1662
1663 sbi->last_time[type] = now;
1664
1665 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1666 if (type == REQ_TIME) {
1667 sbi->last_time[DISCARD_TIME] = now;
1668 sbi->last_time[GC_TIME] = now;
1669 }
1670 }
1671
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1672 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1673 {
1674 unsigned long interval = sbi->interval_time[type] * HZ;
1675
1676 return time_after(jiffies, sbi->last_time[type] + interval);
1677 }
1678
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1679 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1680 int type)
1681 {
1682 unsigned long interval = sbi->interval_time[type] * HZ;
1683 unsigned int wait_ms = 0;
1684 long delta;
1685
1686 delta = (sbi->last_time[type] + interval) - jiffies;
1687 if (delta > 0)
1688 wait_ms = jiffies_to_msecs(delta);
1689
1690 return wait_ms;
1691 }
1692
1693 /*
1694 * Inline functions
1695 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1696 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1697 const void *address, unsigned int length)
1698 {
1699 struct {
1700 struct shash_desc shash;
1701 char ctx[4];
1702 } desc;
1703 int err;
1704
1705 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1706
1707 desc.shash.tfm = sbi->s_chksum_driver;
1708 *(u32 *)desc.ctx = crc;
1709
1710 err = crypto_shash_update(&desc.shash, address, length);
1711 BUG_ON(err);
1712
1713 return *(u32 *)desc.ctx;
1714 }
1715
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1716 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1717 unsigned int length)
1718 {
1719 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1720 }
1721
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1722 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1723 void *buf, size_t buf_size)
1724 {
1725 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1726 }
1727
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1728 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1729 const void *address, unsigned int length)
1730 {
1731 return __f2fs_crc32(sbi, crc, address, length);
1732 }
1733
F2FS_I(struct inode * inode)1734 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1735 {
1736 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1737 }
1738
F2FS_SB(struct super_block * sb)1739 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1740 {
1741 return sb->s_fs_info;
1742 }
1743
F2FS_I_SB(struct inode * inode)1744 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1745 {
1746 return F2FS_SB(inode->i_sb);
1747 }
1748
F2FS_M_SB(struct address_space * mapping)1749 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1750 {
1751 return F2FS_I_SB(mapping->host);
1752 }
1753
F2FS_P_SB(struct page * page)1754 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1755 {
1756 return F2FS_M_SB(page_file_mapping(page));
1757 }
1758
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1759 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1760 {
1761 return (struct f2fs_super_block *)(sbi->raw_super);
1762 }
1763
F2FS_CKPT(struct f2fs_sb_info * sbi)1764 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1765 {
1766 return (struct f2fs_checkpoint *)(sbi->ckpt);
1767 }
1768
F2FS_NODE(struct page * page)1769 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1770 {
1771 return (struct f2fs_node *)page_address(page);
1772 }
1773
F2FS_INODE(struct page * page)1774 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1775 {
1776 return &((struct f2fs_node *)page_address(page))->i;
1777 }
1778
NM_I(struct f2fs_sb_info * sbi)1779 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1780 {
1781 return (struct f2fs_nm_info *)(sbi->nm_info);
1782 }
1783
SM_I(struct f2fs_sb_info * sbi)1784 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1785 {
1786 return (struct f2fs_sm_info *)(sbi->sm_info);
1787 }
1788
SIT_I(struct f2fs_sb_info * sbi)1789 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1790 {
1791 return (struct sit_info *)(SM_I(sbi)->sit_info);
1792 }
1793
FREE_I(struct f2fs_sb_info * sbi)1794 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1795 {
1796 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1797 }
1798
DIRTY_I(struct f2fs_sb_info * sbi)1799 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1800 {
1801 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1802 }
1803
META_MAPPING(struct f2fs_sb_info * sbi)1804 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1805 {
1806 return sbi->meta_inode->i_mapping;
1807 }
1808
NODE_MAPPING(struct f2fs_sb_info * sbi)1809 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1810 {
1811 return sbi->node_inode->i_mapping;
1812 }
1813
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1814 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1815 {
1816 return test_bit(type, &sbi->s_flag);
1817 }
1818
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1819 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1820 {
1821 set_bit(type, &sbi->s_flag);
1822 }
1823
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1824 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1825 {
1826 clear_bit(type, &sbi->s_flag);
1827 }
1828
cur_cp_version(struct f2fs_checkpoint * cp)1829 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1830 {
1831 return le64_to_cpu(cp->checkpoint_ver);
1832 }
1833
f2fs_qf_ino(struct super_block * sb,int type)1834 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1835 {
1836 if (type < F2FS_MAX_QUOTAS)
1837 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1838 return 0;
1839 }
1840
cur_cp_crc(struct f2fs_checkpoint * cp)1841 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1842 {
1843 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1844 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1845 }
1846
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1847 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1848 {
1849 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1850
1851 return ckpt_flags & f;
1852 }
1853
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1854 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1855 {
1856 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1857 }
1858
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1859 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1860 {
1861 unsigned int ckpt_flags;
1862
1863 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1864 ckpt_flags |= f;
1865 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1866 }
1867
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1868 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1869 {
1870 unsigned long flags;
1871
1872 spin_lock_irqsave(&sbi->cp_lock, flags);
1873 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1874 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1875 }
1876
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1877 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1878 {
1879 unsigned int ckpt_flags;
1880
1881 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1882 ckpt_flags &= (~f);
1883 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1884 }
1885
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1886 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1887 {
1888 unsigned long flags;
1889
1890 spin_lock_irqsave(&sbi->cp_lock, flags);
1891 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1892 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1893 }
1894
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1895 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1896 {
1897 unsigned long flags;
1898 unsigned char *nat_bits;
1899
1900 /*
1901 * In order to re-enable nat_bits we need to call fsck.f2fs by
1902 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1903 * so let's rely on regular fsck or unclean shutdown.
1904 */
1905
1906 if (lock)
1907 spin_lock_irqsave(&sbi->cp_lock, flags);
1908 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1909 nat_bits = NM_I(sbi)->nat_bits;
1910 NM_I(sbi)->nat_bits = NULL;
1911 if (lock)
1912 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1913
1914 kvfree(nat_bits);
1915 }
1916
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1917 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1918 struct cp_control *cpc)
1919 {
1920 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1921
1922 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1923 }
1924
f2fs_lock_op(struct f2fs_sb_info * sbi)1925 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1926 {
1927 down_read(&sbi->cp_rwsem);
1928 }
1929
f2fs_trylock_op(struct f2fs_sb_info * sbi)1930 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1931 {
1932 return down_read_trylock(&sbi->cp_rwsem);
1933 }
1934
f2fs_unlock_op(struct f2fs_sb_info * sbi)1935 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1936 {
1937 up_read(&sbi->cp_rwsem);
1938 }
1939
f2fs_lock_all(struct f2fs_sb_info * sbi)1940 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1941 {
1942 down_write(&sbi->cp_rwsem);
1943 }
1944
f2fs_unlock_all(struct f2fs_sb_info * sbi)1945 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1946 {
1947 up_write(&sbi->cp_rwsem);
1948 }
1949
__get_cp_reason(struct f2fs_sb_info * sbi)1950 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1951 {
1952 int reason = CP_SYNC;
1953
1954 if (test_opt(sbi, FASTBOOT))
1955 reason = CP_FASTBOOT;
1956 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1957 reason = CP_UMOUNT;
1958 return reason;
1959 }
1960
__remain_node_summaries(int reason)1961 static inline bool __remain_node_summaries(int reason)
1962 {
1963 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1964 }
1965
__exist_node_summaries(struct f2fs_sb_info * sbi)1966 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1967 {
1968 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1969 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1970 }
1971
1972 /*
1973 * Check whether the inode has blocks or not
1974 */
F2FS_HAS_BLOCKS(struct inode * inode)1975 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1976 {
1977 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1978
1979 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1980 }
1981
f2fs_has_xattr_block(unsigned int ofs)1982 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1983 {
1984 return ofs == XATTR_NODE_OFFSET;
1985 }
1986
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1987 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1988 struct inode *inode, bool cap)
1989 {
1990 if (!inode)
1991 return true;
1992 if (!test_opt(sbi, RESERVE_ROOT))
1993 return false;
1994 if (IS_NOQUOTA(inode))
1995 return true;
1996 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1997 return true;
1998 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1999 in_group_p(F2FS_OPTION(sbi).s_resgid))
2000 return true;
2001 if (cap && capable(CAP_SYS_RESOURCE))
2002 return true;
2003 return false;
2004 }
2005
2006 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2007 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2008 struct inode *inode, blkcnt_t *count)
2009 {
2010 blkcnt_t diff = 0, release = 0;
2011 block_t avail_user_block_count;
2012 int ret;
2013
2014 ret = dquot_reserve_block(inode, *count);
2015 if (ret)
2016 return ret;
2017
2018 if (time_to_inject(sbi, FAULT_BLOCK)) {
2019 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2020 release = *count;
2021 goto release_quota;
2022 }
2023
2024 /*
2025 * let's increase this in prior to actual block count change in order
2026 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2027 */
2028 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2029
2030 spin_lock(&sbi->stat_lock);
2031 sbi->total_valid_block_count += (block_t)(*count);
2032 avail_user_block_count = sbi->user_block_count -
2033 sbi->current_reserved_blocks;
2034
2035 if (!__allow_reserved_blocks(sbi, inode, true))
2036 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2037
2038 if (F2FS_IO_ALIGNED(sbi))
2039 avail_user_block_count -= sbi->blocks_per_seg *
2040 SM_I(sbi)->additional_reserved_segments;
2041
2042 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2043 if (avail_user_block_count > sbi->unusable_block_count)
2044 avail_user_block_count -= sbi->unusable_block_count;
2045 else
2046 avail_user_block_count = 0;
2047 }
2048 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2049 diff = sbi->total_valid_block_count - avail_user_block_count;
2050 if (diff > *count)
2051 diff = *count;
2052 *count -= diff;
2053 release = diff;
2054 sbi->total_valid_block_count -= diff;
2055 if (!*count) {
2056 spin_unlock(&sbi->stat_lock);
2057 goto enospc;
2058 }
2059 }
2060 spin_unlock(&sbi->stat_lock);
2061
2062 if (unlikely(release)) {
2063 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2064 dquot_release_reservation_block(inode, release);
2065 }
2066 f2fs_i_blocks_write(inode, *count, true, true);
2067 return 0;
2068
2069 enospc:
2070 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2071 release_quota:
2072 dquot_release_reservation_block(inode, release);
2073 return -ENOSPC;
2074 }
2075
2076 __printf(2, 3)
2077 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2078
2079 #define f2fs_err(sbi, fmt, ...) \
2080 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2081 #define f2fs_warn(sbi, fmt, ...) \
2082 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2083 #define f2fs_notice(sbi, fmt, ...) \
2084 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2085 #define f2fs_info(sbi, fmt, ...) \
2086 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2087 #define f2fs_debug(sbi, fmt, ...) \
2088 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2089
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2090 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2091 struct inode *inode,
2092 block_t count)
2093 {
2094 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2095
2096 spin_lock(&sbi->stat_lock);
2097 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2098 sbi->total_valid_block_count -= (block_t)count;
2099 if (sbi->reserved_blocks &&
2100 sbi->current_reserved_blocks < sbi->reserved_blocks)
2101 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2102 sbi->current_reserved_blocks + count);
2103 spin_unlock(&sbi->stat_lock);
2104 if (unlikely(inode->i_blocks < sectors)) {
2105 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2106 inode->i_ino,
2107 (unsigned long long)inode->i_blocks,
2108 (unsigned long long)sectors);
2109 set_sbi_flag(sbi, SBI_NEED_FSCK);
2110 return;
2111 }
2112 f2fs_i_blocks_write(inode, count, false, true);
2113 }
2114
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2115 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2116 {
2117 atomic_inc(&sbi->nr_pages[count_type]);
2118
2119 if (count_type == F2FS_DIRTY_DENTS ||
2120 count_type == F2FS_DIRTY_NODES ||
2121 count_type == F2FS_DIRTY_META ||
2122 count_type == F2FS_DIRTY_QDATA ||
2123 count_type == F2FS_DIRTY_IMETA)
2124 set_sbi_flag(sbi, SBI_IS_DIRTY);
2125 }
2126
inode_inc_dirty_pages(struct inode * inode)2127 static inline void inode_inc_dirty_pages(struct inode *inode)
2128 {
2129 atomic_inc(&F2FS_I(inode)->dirty_pages);
2130 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2131 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2132 if (IS_NOQUOTA(inode))
2133 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2134 }
2135
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2136 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2137 {
2138 atomic_dec(&sbi->nr_pages[count_type]);
2139 }
2140
inode_dec_dirty_pages(struct inode * inode)2141 static inline void inode_dec_dirty_pages(struct inode *inode)
2142 {
2143 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2144 !S_ISLNK(inode->i_mode))
2145 return;
2146
2147 atomic_dec(&F2FS_I(inode)->dirty_pages);
2148 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2149 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2150 if (IS_NOQUOTA(inode))
2151 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2152 }
2153
get_pages(struct f2fs_sb_info * sbi,int count_type)2154 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2155 {
2156 return atomic_read(&sbi->nr_pages[count_type]);
2157 }
2158
get_dirty_pages(struct inode * inode)2159 static inline int get_dirty_pages(struct inode *inode)
2160 {
2161 return atomic_read(&F2FS_I(inode)->dirty_pages);
2162 }
2163
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2164 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2165 {
2166 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2167 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2168 sbi->log_blocks_per_seg;
2169
2170 return segs / sbi->segs_per_sec;
2171 }
2172
valid_user_blocks(struct f2fs_sb_info * sbi)2173 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2174 {
2175 return sbi->total_valid_block_count;
2176 }
2177
discard_blocks(struct f2fs_sb_info * sbi)2178 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2179 {
2180 return sbi->discard_blks;
2181 }
2182
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2183 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2184 {
2185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2186
2187 /* return NAT or SIT bitmap */
2188 if (flag == NAT_BITMAP)
2189 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2190 else if (flag == SIT_BITMAP)
2191 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2192
2193 return 0;
2194 }
2195
__cp_payload(struct f2fs_sb_info * sbi)2196 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2197 {
2198 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2199 }
2200
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2201 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2202 {
2203 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2204 int offset;
2205
2206 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2207 offset = (flag == SIT_BITMAP) ?
2208 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2209 /*
2210 * if large_nat_bitmap feature is enabled, leave checksum
2211 * protection for all nat/sit bitmaps.
2212 */
2213 return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2214 }
2215
2216 if (__cp_payload(sbi) > 0) {
2217 if (flag == NAT_BITMAP)
2218 return &ckpt->sit_nat_version_bitmap;
2219 else
2220 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2221 } else {
2222 offset = (flag == NAT_BITMAP) ?
2223 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2224 return &ckpt->sit_nat_version_bitmap + offset;
2225 }
2226 }
2227
__start_cp_addr(struct f2fs_sb_info * sbi)2228 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2229 {
2230 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2231
2232 if (sbi->cur_cp_pack == 2)
2233 start_addr += sbi->blocks_per_seg;
2234 return start_addr;
2235 }
2236
__start_cp_next_addr(struct f2fs_sb_info * sbi)2237 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2238 {
2239 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2240
2241 if (sbi->cur_cp_pack == 1)
2242 start_addr += sbi->blocks_per_seg;
2243 return start_addr;
2244 }
2245
__set_cp_next_pack(struct f2fs_sb_info * sbi)2246 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2247 {
2248 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2249 }
2250
__start_sum_addr(struct f2fs_sb_info * sbi)2251 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2252 {
2253 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2254 }
2255
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2256 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2257 struct inode *inode, bool is_inode)
2258 {
2259 block_t valid_block_count;
2260 unsigned int valid_node_count, user_block_count;
2261 int err;
2262
2263 if (is_inode) {
2264 if (inode) {
2265 err = dquot_alloc_inode(inode);
2266 if (err)
2267 return err;
2268 }
2269 } else {
2270 err = dquot_reserve_block(inode, 1);
2271 if (err)
2272 return err;
2273 }
2274
2275 if (time_to_inject(sbi, FAULT_BLOCK)) {
2276 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2277 goto enospc;
2278 }
2279
2280 spin_lock(&sbi->stat_lock);
2281
2282 valid_block_count = sbi->total_valid_block_count +
2283 sbi->current_reserved_blocks + 1;
2284
2285 if (!__allow_reserved_blocks(sbi, inode, false))
2286 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2287
2288 if (F2FS_IO_ALIGNED(sbi))
2289 valid_block_count += sbi->blocks_per_seg *
2290 SM_I(sbi)->additional_reserved_segments;
2291
2292 user_block_count = sbi->user_block_count;
2293 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2294 user_block_count -= sbi->unusable_block_count;
2295
2296 if (unlikely(valid_block_count > user_block_count)) {
2297 spin_unlock(&sbi->stat_lock);
2298 goto enospc;
2299 }
2300
2301 valid_node_count = sbi->total_valid_node_count + 1;
2302 if (unlikely(valid_node_count > sbi->total_node_count)) {
2303 spin_unlock(&sbi->stat_lock);
2304 goto enospc;
2305 }
2306
2307 sbi->total_valid_node_count++;
2308 sbi->total_valid_block_count++;
2309 spin_unlock(&sbi->stat_lock);
2310
2311 if (inode) {
2312 if (is_inode)
2313 f2fs_mark_inode_dirty_sync(inode, true);
2314 else
2315 f2fs_i_blocks_write(inode, 1, true, true);
2316 }
2317
2318 percpu_counter_inc(&sbi->alloc_valid_block_count);
2319 return 0;
2320
2321 enospc:
2322 if (is_inode) {
2323 if (inode)
2324 dquot_free_inode(inode);
2325 } else {
2326 dquot_release_reservation_block(inode, 1);
2327 }
2328 return -ENOSPC;
2329 }
2330
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2331 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2332 struct inode *inode, bool is_inode)
2333 {
2334 spin_lock(&sbi->stat_lock);
2335
2336 if (unlikely(!sbi->total_valid_block_count ||
2337 !sbi->total_valid_node_count)) {
2338 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2339 sbi->total_valid_block_count,
2340 sbi->total_valid_node_count);
2341 set_sbi_flag(sbi, SBI_NEED_FSCK);
2342 } else {
2343 sbi->total_valid_block_count--;
2344 sbi->total_valid_node_count--;
2345 }
2346
2347 if (sbi->reserved_blocks &&
2348 sbi->current_reserved_blocks < sbi->reserved_blocks)
2349 sbi->current_reserved_blocks++;
2350
2351 spin_unlock(&sbi->stat_lock);
2352
2353 if (is_inode) {
2354 dquot_free_inode(inode);
2355 } else {
2356 if (unlikely(inode->i_blocks == 0)) {
2357 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2358 inode->i_ino,
2359 (unsigned long long)inode->i_blocks);
2360 set_sbi_flag(sbi, SBI_NEED_FSCK);
2361 return;
2362 }
2363 f2fs_i_blocks_write(inode, 1, false, true);
2364 }
2365 }
2366
valid_node_count(struct f2fs_sb_info * sbi)2367 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2368 {
2369 return sbi->total_valid_node_count;
2370 }
2371
inc_valid_inode_count(struct f2fs_sb_info * sbi)2372 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2373 {
2374 percpu_counter_inc(&sbi->total_valid_inode_count);
2375 }
2376
dec_valid_inode_count(struct f2fs_sb_info * sbi)2377 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2378 {
2379 percpu_counter_dec(&sbi->total_valid_inode_count);
2380 }
2381
valid_inode_count(struct f2fs_sb_info * sbi)2382 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2383 {
2384 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2385 }
2386
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2387 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2388 pgoff_t index, bool for_write)
2389 {
2390 struct page *page;
2391
2392 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2393 if (!for_write)
2394 page = find_get_page_flags(mapping, index,
2395 FGP_LOCK | FGP_ACCESSED);
2396 else
2397 page = find_lock_page(mapping, index);
2398 if (page)
2399 return page;
2400
2401 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2402 f2fs_show_injection_info(F2FS_M_SB(mapping),
2403 FAULT_PAGE_ALLOC);
2404 return NULL;
2405 }
2406 }
2407
2408 if (!for_write)
2409 return grab_cache_page(mapping, index);
2410 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2411 }
2412
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2413 static inline struct page *f2fs_pagecache_get_page(
2414 struct address_space *mapping, pgoff_t index,
2415 int fgp_flags, gfp_t gfp_mask)
2416 {
2417 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2418 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2419 return NULL;
2420 }
2421
2422 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2423 }
2424
f2fs_copy_page(struct page * src,struct page * dst)2425 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2426 {
2427 char *src_kaddr = kmap(src);
2428 char *dst_kaddr = kmap(dst);
2429
2430 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2431 kunmap(dst);
2432 kunmap(src);
2433 }
2434
f2fs_put_page(struct page * page,int unlock)2435 static inline void f2fs_put_page(struct page *page, int unlock)
2436 {
2437 if (!page)
2438 return;
2439
2440 if (unlock) {
2441 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2442 unlock_page(page);
2443 }
2444 put_page(page);
2445 }
2446
f2fs_put_dnode(struct dnode_of_data * dn)2447 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2448 {
2449 if (dn->node_page)
2450 f2fs_put_page(dn->node_page, 1);
2451 if (dn->inode_page && dn->node_page != dn->inode_page)
2452 f2fs_put_page(dn->inode_page, 0);
2453 dn->node_page = NULL;
2454 dn->inode_page = NULL;
2455 }
2456
f2fs_kmem_cache_create(const char * name,size_t size)2457 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2458 size_t size)
2459 {
2460 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2461 }
2462
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2463 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2464 gfp_t flags)
2465 {
2466 void *entry;
2467
2468 entry = kmem_cache_alloc(cachep, flags);
2469 if (!entry)
2470 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2471 return entry;
2472 }
2473
is_inflight_io(struct f2fs_sb_info * sbi,int type)2474 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2475 {
2476 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2477 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2478 get_pages(sbi, F2FS_WB_CP_DATA) ||
2479 get_pages(sbi, F2FS_DIO_READ) ||
2480 get_pages(sbi, F2FS_DIO_WRITE))
2481 return true;
2482
2483 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2484 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2485 return true;
2486
2487 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2488 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2489 return true;
2490 return false;
2491 }
2492
is_idle(struct f2fs_sb_info * sbi,int type)2493 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2494 {
2495 if (sbi->gc_mode == GC_URGENT_HIGH)
2496 return true;
2497
2498 if (is_inflight_io(sbi, type))
2499 return false;
2500
2501 if (sbi->gc_mode == GC_URGENT_LOW &&
2502 (type == DISCARD_TIME || type == GC_TIME))
2503 return true;
2504
2505 return f2fs_time_over(sbi, type);
2506 }
2507
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2508 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2509 unsigned long index, void *item)
2510 {
2511 while (radix_tree_insert(root, index, item))
2512 cond_resched();
2513 }
2514
2515 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2516
IS_INODE(struct page * page)2517 static inline bool IS_INODE(struct page *page)
2518 {
2519 struct f2fs_node *p = F2FS_NODE(page);
2520
2521 return RAW_IS_INODE(p);
2522 }
2523
offset_in_addr(struct f2fs_inode * i)2524 static inline int offset_in_addr(struct f2fs_inode *i)
2525 {
2526 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2527 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2528 }
2529
blkaddr_in_node(struct f2fs_node * node)2530 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2531 {
2532 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2533 }
2534
2535 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2536 static inline block_t data_blkaddr(struct inode *inode,
2537 struct page *node_page, unsigned int offset)
2538 {
2539 struct f2fs_node *raw_node;
2540 __le32 *addr_array;
2541 int base = 0;
2542 bool is_inode = IS_INODE(node_page);
2543
2544 raw_node = F2FS_NODE(node_page);
2545
2546 if (is_inode) {
2547 if (!inode)
2548 /* from GC path only */
2549 base = offset_in_addr(&raw_node->i);
2550 else if (f2fs_has_extra_attr(inode))
2551 base = get_extra_isize(inode);
2552 }
2553
2554 addr_array = blkaddr_in_node(raw_node);
2555 return le32_to_cpu(addr_array[base + offset]);
2556 }
2557
f2fs_data_blkaddr(struct dnode_of_data * dn)2558 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2559 {
2560 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2561 }
2562
f2fs_test_bit(unsigned int nr,char * addr)2563 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2564 {
2565 int mask;
2566
2567 addr += (nr >> 3);
2568 mask = 1 << (7 - (nr & 0x07));
2569 return mask & *addr;
2570 }
2571
f2fs_set_bit(unsigned int nr,char * addr)2572 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2573 {
2574 int mask;
2575
2576 addr += (nr >> 3);
2577 mask = 1 << (7 - (nr & 0x07));
2578 *addr |= mask;
2579 }
2580
f2fs_clear_bit(unsigned int nr,char * addr)2581 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2582 {
2583 int mask;
2584
2585 addr += (nr >> 3);
2586 mask = 1 << (7 - (nr & 0x07));
2587 *addr &= ~mask;
2588 }
2589
f2fs_test_and_set_bit(unsigned int nr,char * addr)2590 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2591 {
2592 int mask;
2593 int ret;
2594
2595 addr += (nr >> 3);
2596 mask = 1 << (7 - (nr & 0x07));
2597 ret = mask & *addr;
2598 *addr |= mask;
2599 return ret;
2600 }
2601
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2602 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2603 {
2604 int mask;
2605 int ret;
2606
2607 addr += (nr >> 3);
2608 mask = 1 << (7 - (nr & 0x07));
2609 ret = mask & *addr;
2610 *addr &= ~mask;
2611 return ret;
2612 }
2613
f2fs_change_bit(unsigned int nr,char * addr)2614 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2615 {
2616 int mask;
2617
2618 addr += (nr >> 3);
2619 mask = 1 << (7 - (nr & 0x07));
2620 *addr ^= mask;
2621 }
2622
2623 /*
2624 * On-disk inode flags (f2fs_inode::i_flags)
2625 */
2626 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2627 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2628 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2629 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2630 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2631 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2632 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2633 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2634 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2635 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2636 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2637
2638 /* Flags that should be inherited by new inodes from their parent. */
2639 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2640 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2641 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2642
2643 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2644 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2645 F2FS_CASEFOLD_FL))
2646
2647 /* Flags that are appropriate for non-directories/regular files. */
2648 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2649
f2fs_mask_flags(umode_t mode,__u32 flags)2650 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2651 {
2652 if (S_ISDIR(mode))
2653 return flags;
2654 else if (S_ISREG(mode))
2655 return flags & F2FS_REG_FLMASK;
2656 else
2657 return flags & F2FS_OTHER_FLMASK;
2658 }
2659
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2660 static inline void __mark_inode_dirty_flag(struct inode *inode,
2661 int flag, bool set)
2662 {
2663 switch (flag) {
2664 case FI_INLINE_XATTR:
2665 case FI_INLINE_DATA:
2666 case FI_INLINE_DENTRY:
2667 case FI_NEW_INODE:
2668 if (set)
2669 return;
2670 fallthrough;
2671 case FI_DATA_EXIST:
2672 case FI_PIN_FILE:
2673 f2fs_mark_inode_dirty_sync(inode, true);
2674 }
2675 }
2676
set_inode_flag(struct inode * inode,int flag)2677 static inline void set_inode_flag(struct inode *inode, int flag)
2678 {
2679 set_bit(flag, F2FS_I(inode)->flags);
2680 __mark_inode_dirty_flag(inode, flag, true);
2681 }
2682
is_inode_flag_set(struct inode * inode,int flag)2683 static inline int is_inode_flag_set(struct inode *inode, int flag)
2684 {
2685 return test_bit(flag, F2FS_I(inode)->flags);
2686 }
2687
clear_inode_flag(struct inode * inode,int flag)2688 static inline void clear_inode_flag(struct inode *inode, int flag)
2689 {
2690 clear_bit(flag, F2FS_I(inode)->flags);
2691 __mark_inode_dirty_flag(inode, flag, false);
2692 }
2693
f2fs_verity_in_progress(struct inode * inode)2694 static inline bool f2fs_verity_in_progress(struct inode *inode)
2695 {
2696 return IS_ENABLED(CONFIG_FS_VERITY) &&
2697 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2698 }
2699
set_acl_inode(struct inode * inode,umode_t mode)2700 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2701 {
2702 F2FS_I(inode)->i_acl_mode = mode;
2703 set_inode_flag(inode, FI_ACL_MODE);
2704 f2fs_mark_inode_dirty_sync(inode, false);
2705 }
2706
f2fs_i_links_write(struct inode * inode,bool inc)2707 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2708 {
2709 if (inc)
2710 inc_nlink(inode);
2711 else
2712 drop_nlink(inode);
2713 f2fs_mark_inode_dirty_sync(inode, true);
2714 }
2715
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2716 static inline void f2fs_i_blocks_write(struct inode *inode,
2717 block_t diff, bool add, bool claim)
2718 {
2719 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721
2722 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2723 if (add) {
2724 if (claim)
2725 dquot_claim_block(inode, diff);
2726 else
2727 dquot_alloc_block_nofail(inode, diff);
2728 } else {
2729 dquot_free_block(inode, diff);
2730 }
2731
2732 f2fs_mark_inode_dirty_sync(inode, true);
2733 if (clean || recover)
2734 set_inode_flag(inode, FI_AUTO_RECOVER);
2735 }
2736
f2fs_i_size_write(struct inode * inode,loff_t i_size)2737 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2738 {
2739 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2740 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2741
2742 if (i_size_read(inode) == i_size)
2743 return;
2744
2745 i_size_write(inode, i_size);
2746 f2fs_mark_inode_dirty_sync(inode, true);
2747 if (clean || recover)
2748 set_inode_flag(inode, FI_AUTO_RECOVER);
2749 }
2750
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2751 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2752 {
2753 F2FS_I(inode)->i_current_depth = depth;
2754 f2fs_mark_inode_dirty_sync(inode, true);
2755 }
2756
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2757 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2758 unsigned int count)
2759 {
2760 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2761 f2fs_mark_inode_dirty_sync(inode, true);
2762 }
2763
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2764 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2765 {
2766 F2FS_I(inode)->i_xattr_nid = xnid;
2767 f2fs_mark_inode_dirty_sync(inode, true);
2768 }
2769
f2fs_i_pino_write(struct inode * inode,nid_t pino)2770 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2771 {
2772 F2FS_I(inode)->i_pino = pino;
2773 f2fs_mark_inode_dirty_sync(inode, true);
2774 }
2775
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2776 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2777 {
2778 struct f2fs_inode_info *fi = F2FS_I(inode);
2779
2780 if (ri->i_inline & F2FS_INLINE_XATTR)
2781 set_bit(FI_INLINE_XATTR, fi->flags);
2782 if (ri->i_inline & F2FS_INLINE_DATA)
2783 set_bit(FI_INLINE_DATA, fi->flags);
2784 if (ri->i_inline & F2FS_INLINE_DENTRY)
2785 set_bit(FI_INLINE_DENTRY, fi->flags);
2786 if (ri->i_inline & F2FS_DATA_EXIST)
2787 set_bit(FI_DATA_EXIST, fi->flags);
2788 if (ri->i_inline & F2FS_EXTRA_ATTR)
2789 set_bit(FI_EXTRA_ATTR, fi->flags);
2790 if (ri->i_inline & F2FS_PIN_FILE)
2791 set_bit(FI_PIN_FILE, fi->flags);
2792 }
2793
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2794 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2795 {
2796 ri->i_inline = 0;
2797
2798 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2799 ri->i_inline |= F2FS_INLINE_XATTR;
2800 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2801 ri->i_inline |= F2FS_INLINE_DATA;
2802 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2803 ri->i_inline |= F2FS_INLINE_DENTRY;
2804 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2805 ri->i_inline |= F2FS_DATA_EXIST;
2806 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2807 ri->i_inline |= F2FS_EXTRA_ATTR;
2808 if (is_inode_flag_set(inode, FI_PIN_FILE))
2809 ri->i_inline |= F2FS_PIN_FILE;
2810 }
2811
f2fs_has_extra_attr(struct inode * inode)2812 static inline int f2fs_has_extra_attr(struct inode *inode)
2813 {
2814 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2815 }
2816
f2fs_has_inline_xattr(struct inode * inode)2817 static inline int f2fs_has_inline_xattr(struct inode *inode)
2818 {
2819 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2820 }
2821
f2fs_compressed_file(struct inode * inode)2822 static inline int f2fs_compressed_file(struct inode *inode)
2823 {
2824 return S_ISREG(inode->i_mode) &&
2825 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2826 }
2827
addrs_per_inode(struct inode * inode)2828 static inline unsigned int addrs_per_inode(struct inode *inode)
2829 {
2830 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2831 get_inline_xattr_addrs(inode);
2832
2833 if (!f2fs_compressed_file(inode))
2834 return addrs;
2835 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2836 }
2837
addrs_per_block(struct inode * inode)2838 static inline unsigned int addrs_per_block(struct inode *inode)
2839 {
2840 if (!f2fs_compressed_file(inode))
2841 return DEF_ADDRS_PER_BLOCK;
2842 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2843 }
2844
inline_xattr_addr(struct inode * inode,struct page * page)2845 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2846 {
2847 struct f2fs_inode *ri = F2FS_INODE(page);
2848
2849 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2850 get_inline_xattr_addrs(inode)]);
2851 }
2852
inline_xattr_size(struct inode * inode)2853 static inline int inline_xattr_size(struct inode *inode)
2854 {
2855 if (f2fs_has_inline_xattr(inode))
2856 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2857 return 0;
2858 }
2859
f2fs_has_inline_data(struct inode * inode)2860 static inline int f2fs_has_inline_data(struct inode *inode)
2861 {
2862 return is_inode_flag_set(inode, FI_INLINE_DATA);
2863 }
2864
f2fs_exist_data(struct inode * inode)2865 static inline int f2fs_exist_data(struct inode *inode)
2866 {
2867 return is_inode_flag_set(inode, FI_DATA_EXIST);
2868 }
2869
f2fs_is_mmap_file(struct inode * inode)2870 static inline int f2fs_is_mmap_file(struct inode *inode)
2871 {
2872 return is_inode_flag_set(inode, FI_MMAP_FILE);
2873 }
2874
f2fs_is_pinned_file(struct inode * inode)2875 static inline bool f2fs_is_pinned_file(struct inode *inode)
2876 {
2877 return is_inode_flag_set(inode, FI_PIN_FILE);
2878 }
2879
f2fs_is_atomic_file(struct inode * inode)2880 static inline bool f2fs_is_atomic_file(struct inode *inode)
2881 {
2882 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2883 }
2884
f2fs_is_commit_atomic_write(struct inode * inode)2885 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2886 {
2887 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2888 }
2889
f2fs_is_volatile_file(struct inode * inode)2890 static inline bool f2fs_is_volatile_file(struct inode *inode)
2891 {
2892 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2893 }
2894
f2fs_is_first_block_written(struct inode * inode)2895 static inline bool f2fs_is_first_block_written(struct inode *inode)
2896 {
2897 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2898 }
2899
f2fs_is_drop_cache(struct inode * inode)2900 static inline bool f2fs_is_drop_cache(struct inode *inode)
2901 {
2902 return is_inode_flag_set(inode, FI_DROP_CACHE);
2903 }
2904
inline_data_addr(struct inode * inode,struct page * page)2905 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2906 {
2907 struct f2fs_inode *ri = F2FS_INODE(page);
2908 int extra_size = get_extra_isize(inode);
2909
2910 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2911 }
2912
f2fs_has_inline_dentry(struct inode * inode)2913 static inline int f2fs_has_inline_dentry(struct inode *inode)
2914 {
2915 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2916 }
2917
is_file(struct inode * inode,int type)2918 static inline int is_file(struct inode *inode, int type)
2919 {
2920 return F2FS_I(inode)->i_advise & type;
2921 }
2922
set_file(struct inode * inode,int type)2923 static inline void set_file(struct inode *inode, int type)
2924 {
2925 F2FS_I(inode)->i_advise |= type;
2926 f2fs_mark_inode_dirty_sync(inode, true);
2927 }
2928
clear_file(struct inode * inode,int type)2929 static inline void clear_file(struct inode *inode, int type)
2930 {
2931 F2FS_I(inode)->i_advise &= ~type;
2932 f2fs_mark_inode_dirty_sync(inode, true);
2933 }
2934
f2fs_is_time_consistent(struct inode * inode)2935 static inline bool f2fs_is_time_consistent(struct inode *inode)
2936 {
2937 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2938 return false;
2939 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2940 return false;
2941 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2942 return false;
2943 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2944 &F2FS_I(inode)->i_crtime))
2945 return false;
2946 return true;
2947 }
2948
f2fs_skip_inode_update(struct inode * inode,int dsync)2949 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2950 {
2951 bool ret;
2952
2953 if (dsync) {
2954 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2955
2956 spin_lock(&sbi->inode_lock[DIRTY_META]);
2957 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2958 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2959 return ret;
2960 }
2961 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2962 file_keep_isize(inode) ||
2963 i_size_read(inode) & ~PAGE_MASK)
2964 return false;
2965
2966 if (!f2fs_is_time_consistent(inode))
2967 return false;
2968
2969 spin_lock(&F2FS_I(inode)->i_size_lock);
2970 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2971 spin_unlock(&F2FS_I(inode)->i_size_lock);
2972
2973 return ret;
2974 }
2975
f2fs_readonly(struct super_block * sb)2976 static inline bool f2fs_readonly(struct super_block *sb)
2977 {
2978 return sb_rdonly(sb);
2979 }
2980
f2fs_cp_error(struct f2fs_sb_info * sbi)2981 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2982 {
2983 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2984 }
2985
is_dot_dotdot(const u8 * name,size_t len)2986 static inline bool is_dot_dotdot(const u8 *name, size_t len)
2987 {
2988 if (len == 1 && name[0] == '.')
2989 return true;
2990
2991 if (len == 2 && name[0] == '.' && name[1] == '.')
2992 return true;
2993
2994 return false;
2995 }
2996
f2fs_may_extent_tree(struct inode * inode)2997 static inline bool f2fs_may_extent_tree(struct inode *inode)
2998 {
2999 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3000
3001 if (!test_opt(sbi, EXTENT_CACHE) ||
3002 is_inode_flag_set(inode, FI_NO_EXTENT) ||
3003 is_inode_flag_set(inode, FI_COMPRESSED_FILE))
3004 return false;
3005
3006 /*
3007 * for recovered files during mount do not create extents
3008 * if shrinker is not registered.
3009 */
3010 if (list_empty(&sbi->s_list))
3011 return false;
3012
3013 return S_ISREG(inode->i_mode);
3014 }
3015
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3016 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3017 size_t size, gfp_t flags)
3018 {
3019 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3020 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3021 return NULL;
3022 }
3023
3024 return kmalloc(size, flags);
3025 }
3026
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3027 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3028 size_t size, gfp_t flags)
3029 {
3030 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3031 }
3032
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3033 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3034 size_t size, gfp_t flags)
3035 {
3036 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3037 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3038 return NULL;
3039 }
3040
3041 return kvmalloc(size, flags);
3042 }
3043
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3044 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3045 size_t size, gfp_t flags)
3046 {
3047 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3048 }
3049
get_extra_isize(struct inode * inode)3050 static inline int get_extra_isize(struct inode *inode)
3051 {
3052 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3053 }
3054
get_inline_xattr_addrs(struct inode * inode)3055 static inline int get_inline_xattr_addrs(struct inode *inode)
3056 {
3057 return F2FS_I(inode)->i_inline_xattr_size;
3058 }
3059
3060 #define f2fs_get_inode_mode(i) \
3061 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3062 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3063
3064 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3065 (offsetof(struct f2fs_inode, i_extra_end) - \
3066 offsetof(struct f2fs_inode, i_extra_isize)) \
3067
3068 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3069 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3070 ((offsetof(typeof(*(f2fs_inode)), field) + \
3071 sizeof((f2fs_inode)->field)) \
3072 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3073
3074 #define DEFAULT_IOSTAT_PERIOD_MS 3000
3075 #define MIN_IOSTAT_PERIOD_MS 100
3076 /* maximum period of iostat tracing is 1 day */
3077 #define MAX_IOSTAT_PERIOD_MS 8640000
3078
f2fs_reset_iostat(struct f2fs_sb_info * sbi)3079 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3080 {
3081 int i;
3082
3083 spin_lock(&sbi->iostat_lock);
3084 for (i = 0; i < NR_IO_TYPE; i++) {
3085 sbi->rw_iostat[i] = 0;
3086 sbi->prev_rw_iostat[i] = 0;
3087 }
3088 spin_unlock(&sbi->iostat_lock);
3089 }
3090
3091 extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3092
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)3093 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3094 enum iostat_type type, unsigned long long io_bytes)
3095 {
3096 if (!sbi->iostat_enable)
3097 return;
3098 spin_lock(&sbi->iostat_lock);
3099 sbi->rw_iostat[type] += io_bytes;
3100
3101 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3102 sbi->rw_iostat[APP_BUFFERED_IO] =
3103 sbi->rw_iostat[APP_WRITE_IO] -
3104 sbi->rw_iostat[APP_DIRECT_IO];
3105
3106 if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3107 sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3108 sbi->rw_iostat[APP_READ_IO] -
3109 sbi->rw_iostat[APP_DIRECT_READ_IO];
3110 spin_unlock(&sbi->iostat_lock);
3111
3112 f2fs_record_iostat(sbi);
3113 }
3114
fs_free_space_threshold(struct f2fs_sb_info * sbi)3115 static inline block_t fs_free_space_threshold(struct f2fs_sb_info *sbi)
3116 {
3117 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3118 FS_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3119 }
3120
device_free_space_threshold(struct f2fs_sb_info * sbi)3121 static inline block_t device_free_space_threshold(struct f2fs_sb_info *sbi)
3122 {
3123 return (block_t)(SM_I(sbi)->main_segments * sbi->blocks_per_seg *
3124 DEVICE_FREE_SPACE_PERCENT) / HUNDRED_PERCENT;
3125 }
3126
3127 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3128
3129 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3130
3131 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3132 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3133 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3134 block_t blkaddr, int type)
3135 {
3136 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3137 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3138 blkaddr, type);
3139 f2fs_bug_on(sbi, 1);
3140 }
3141 }
3142
__is_valid_data_blkaddr(block_t blkaddr)3143 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3144 {
3145 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3146 blkaddr == COMPRESS_ADDR)
3147 return false;
3148 return true;
3149 }
3150
f2fs_set_page_private(struct page * page,unsigned long data)3151 static inline void f2fs_set_page_private(struct page *page,
3152 unsigned long data)
3153 {
3154 if (PagePrivate(page))
3155 return;
3156
3157 attach_page_private(page, (void *)data);
3158 }
3159
f2fs_clear_page_private(struct page * page)3160 static inline void f2fs_clear_page_private(struct page *page)
3161 {
3162 detach_page_private(page);
3163 }
3164
3165 /*
3166 * file.c
3167 */
3168 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3169 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3170 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3171 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3172 int f2fs_truncate(struct inode *inode);
3173 int f2fs_getattr(const struct path *path, struct kstat *stat,
3174 u32 request_mask, unsigned int flags);
3175 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3176 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3177 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3178 int f2fs_precache_extents(struct inode *inode);
3179 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3180 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3181 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3182 int f2fs_pin_file_control(struct inode *inode, bool inc);
3183
3184 /*
3185 * inode.c
3186 */
3187 void f2fs_set_inode_flags(struct inode *inode);
3188 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3189 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3190 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3191 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3192 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3193 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3194 void f2fs_update_inode_page(struct inode *inode);
3195 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3196 void f2fs_evict_inode(struct inode *inode);
3197 void f2fs_handle_failed_inode(struct inode *inode);
3198
3199 /*
3200 * namei.c
3201 */
3202 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3203 bool hot, bool set);
3204 struct dentry *f2fs_get_parent(struct dentry *child);
3205
3206 /*
3207 * dir.c
3208 */
3209 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3210 int f2fs_init_casefolded_name(const struct inode *dir,
3211 struct f2fs_filename *fname);
3212 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3213 int lookup, struct f2fs_filename *fname);
3214 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3215 struct f2fs_filename *fname);
3216 void f2fs_free_filename(struct f2fs_filename *fname);
3217 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3218 const struct f2fs_filename *fname, int *max_slots);
3219 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3220 unsigned int start_pos, struct fscrypt_str *fstr);
3221 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3222 struct f2fs_dentry_ptr *d);
3223 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3224 const struct f2fs_filename *fname, struct page *dpage);
3225 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3226 unsigned int current_depth);
3227 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3228 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3229 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3230 const struct f2fs_filename *fname,
3231 struct page **res_page);
3232 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3233 const struct qstr *child, struct page **res_page);
3234 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3235 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3236 struct page **page);
3237 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3238 struct page *page, struct inode *inode);
3239 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3240 const struct f2fs_filename *fname);
3241 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3242 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3243 unsigned int bit_pos);
3244 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3245 struct inode *inode, nid_t ino, umode_t mode);
3246 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3247 struct inode *inode, nid_t ino, umode_t mode);
3248 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3249 struct inode *inode, nid_t ino, umode_t mode);
3250 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3251 struct inode *dir, struct inode *inode);
3252 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3253 bool f2fs_empty_dir(struct inode *dir);
3254
f2fs_add_link(struct dentry * dentry,struct inode * inode)3255 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3256 {
3257 if (fscrypt_is_nokey_name(dentry))
3258 return -ENOKEY;
3259 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3260 inode, inode->i_ino, inode->i_mode);
3261 }
3262
3263 /*
3264 * super.c
3265 */
3266 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3267 void f2fs_inode_synced(struct inode *inode);
3268 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3269 int f2fs_quota_sync(struct super_block *sb, int type);
3270 void f2fs_quota_off_umount(struct super_block *sb);
3271 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3272 int f2fs_sync_fs(struct super_block *sb, int sync);
3273 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3274
3275 /*
3276 * hash.c
3277 */
3278 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3279
3280 /*
3281 * node.c
3282 */
3283 struct dnode_of_data;
3284 struct node_info;
3285
3286 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3287 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3288 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3289 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3290 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3291 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3292 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3293 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3294 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3295 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3296 struct node_info *ni);
3297 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3298 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3299 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3300 int f2fs_truncate_xattr_node(struct inode *inode);
3301 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3302 unsigned int seq_id);
3303 int f2fs_remove_inode_page(struct inode *inode);
3304 struct page *f2fs_new_inode_page(struct inode *inode);
3305 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3306 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3307 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3308 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3309 int f2fs_move_node_page(struct page *node_page, int gc_type);
3310 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3311 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3312 struct writeback_control *wbc, bool atomic,
3313 unsigned int *seq_id);
3314 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3315 struct writeback_control *wbc,
3316 bool do_balance, enum iostat_type io_type);
3317 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3318 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3319 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3320 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3321 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3322 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3323 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3324 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3325 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3326 unsigned int segno, struct f2fs_summary_block *sum);
3327 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3328 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3329 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3330 int __init f2fs_create_node_manager_caches(void);
3331 void f2fs_destroy_node_manager_caches(void);
3332
3333 /*
3334 * segment.c
3335 */
3336 unsigned long find_rev_next_bit(const unsigned long *addr,
3337 unsigned long size, unsigned long offset);
3338 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
3339 unsigned long size, unsigned long offset);
3340 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3341 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3342 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3343 void f2fs_drop_inmem_pages(struct inode *inode);
3344 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3345 int f2fs_commit_inmem_pages(struct inode *inode);
3346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3347 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3348 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3349 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3350 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3351 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3352 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3353 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3354 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3355 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3356 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3357 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3358 struct cp_control *cpc);
3359 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3360 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3361 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3362 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3363 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3364 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3365 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3366 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3367 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3368 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3369 unsigned int *newseg, bool new_sec, int dir);
3370 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3371 unsigned int start, unsigned int end);
3372 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type);
3373 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3374 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3375 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3376 struct cp_control *cpc);
3377 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3378 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3379 block_t blk_addr);
3380 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3381 enum iostat_type io_type);
3382 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3383 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3384 struct f2fs_io_info *fio);
3385 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3386 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3387 block_t old_blkaddr, block_t new_blkaddr,
3388 bool recover_curseg, bool recover_newaddr,
3389 bool from_gc);
3390 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3391 block_t old_addr, block_t new_addr,
3392 unsigned char version, bool recover_curseg,
3393 bool recover_newaddr);
3394 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3395 block_t old_blkaddr, block_t *new_blkaddr,
3396 struct f2fs_summary *sum, int type,
3397 struct f2fs_io_info *fio, int contig_level);
3398 void f2fs_wait_on_page_writeback(struct page *page,
3399 enum page_type type, bool ordered, bool locked);
3400 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3401 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3402 block_t len);
3403 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3404 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3405 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3406 unsigned int val, int alloc);
3407 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3408 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3409 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3410 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3411 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3412 int __init f2fs_create_segment_manager_caches(void);
3413 void f2fs_destroy_segment_manager_caches(void);
3414 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3415 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3416 enum page_type type, enum temp_type temp);
3417 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3418 unsigned int segno);
3419 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3420 unsigned int segno);
3421
3422 /*
3423 * checkpoint.c
3424 */
3425 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3426 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3427 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3428 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3429 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3430 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3431 block_t blkaddr, int type);
3432 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3433 int type, bool sync);
3434 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3435 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3436 long nr_to_write, enum iostat_type io_type);
3437 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3438 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3439 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3440 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3441 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3442 unsigned int devidx, int type);
3443 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3444 unsigned int devidx, int type);
3445 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3446 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3447 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3448 void f2fs_add_orphan_inode(struct inode *inode);
3449 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3450 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3451 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3452 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3453 void f2fs_remove_dirty_inode(struct inode *inode);
3454 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3455 bool from_cp);
3456 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3457 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3458 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3459 int __init f2fs_create_checkpoint_caches(void);
3460 void f2fs_destroy_checkpoint_caches(void);
3461
3462 /*
3463 * data.c
3464 */
3465 int __init f2fs_init_bioset(void);
3466 void f2fs_destroy_bioset(void);
3467 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3468 int f2fs_init_bio_entry_cache(void);
3469 void f2fs_destroy_bio_entry_cache(void);
3470 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3471 struct bio *bio, enum page_type type);
3472 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3473 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3474 struct inode *inode, struct page *page,
3475 nid_t ino, enum page_type type);
3476 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3477 struct bio **bio, struct page *page);
3478 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3479 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3480 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3481 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3482 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3483 block_t blk_addr, struct bio *bio);
3484 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3485 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3486 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3487 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3488 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3489 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3490 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3491 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3492 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3493 int op_flags, bool for_write);
3494 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3495 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3496 bool for_write);
3497 struct page *f2fs_get_new_data_page(struct inode *inode,
3498 struct page *ipage, pgoff_t index, bool new_i_size);
3499 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3500 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3501 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3502 int create, int flag);
3503 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3504 u64 start, u64 len);
3505 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3506 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3507 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3508 int f2fs_write_single_data_page(struct page *page, int *submitted,
3509 struct bio **bio, sector_t *last_block,
3510 struct writeback_control *wbc,
3511 enum iostat_type io_type,
3512 int compr_blocks, bool allow_balance);
3513 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3514 unsigned int length);
3515 int f2fs_release_page(struct page *page, gfp_t wait);
3516 #ifdef CONFIG_MIGRATION
3517 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3518 struct page *page, enum migrate_mode mode);
3519 #endif
3520 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3521 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3522 int f2fs_init_post_read_processing(void);
3523 void f2fs_destroy_post_read_processing(void);
3524 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3525 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3526
3527 /*
3528 * gc.c
3529 */
3530 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3531 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3532 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3533 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3534 unsigned int segno);
3535 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3536 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3537 int __init f2fs_create_garbage_collection_cache(void);
3538 void f2fs_destroy_garbage_collection_cache(void);
3539
3540 /*
3541 * recovery.c
3542 */
3543 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3544 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3545 int __init f2fs_create_recovery_cache(void);
3546 void f2fs_destroy_recovery_cache(void);
3547
3548 /*
3549 * debug.c
3550 */
3551 #ifdef CONFIG_F2FS_STAT_FS
3552 struct f2fs_stat_info {
3553 struct list_head stat_list;
3554 struct f2fs_sb_info *sbi;
3555 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3556 int main_area_segs, main_area_sections, main_area_zones;
3557 unsigned long long hit_largest, hit_cached, hit_rbtree;
3558 unsigned long long hit_total, total_ext;
3559 int ext_tree, zombie_tree, ext_node;
3560 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3561 int ndirty_data, ndirty_qdata;
3562 int inmem_pages;
3563 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3564 int nats, dirty_nats, sits, dirty_sits;
3565 int free_nids, avail_nids, alloc_nids;
3566 int total_count, utilization;
3567 int bg_gc, nr_wb_cp_data, nr_wb_data;
3568 int nr_rd_data, nr_rd_node, nr_rd_meta;
3569 int nr_dio_read, nr_dio_write;
3570 unsigned int io_skip_bggc, other_skip_bggc;
3571 int nr_flushing, nr_flushed, flush_list_empty;
3572 int nr_discarding, nr_discarded;
3573 int nr_discard_cmd;
3574 unsigned int undiscard_blks;
3575 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3576 int compr_inode;
3577 unsigned long long compr_blocks;
3578 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3579 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3580 unsigned int bimodal, avg_vblocks;
3581 int util_free, util_valid, util_invalid;
3582 int rsvd_segs, overp_segs;
3583 int dirty_count, node_pages, meta_pages;
3584 int prefree_count, call_count, cp_count, bg_cp_count;
3585 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3586 int bg_node_segs, bg_data_segs;
3587 int tot_blks, data_blks, node_blks;
3588 int bg_data_blks, bg_node_blks;
3589 unsigned long long skipped_atomic_files[2];
3590 int curseg[NR_CURSEG_TYPE];
3591 int cursec[NR_CURSEG_TYPE];
3592 int curzone[NR_CURSEG_TYPE];
3593 unsigned int dirty_seg[NR_CURSEG_TYPE];
3594 unsigned int full_seg[NR_CURSEG_TYPE];
3595 unsigned int valid_blks[NR_CURSEG_TYPE];
3596
3597 unsigned int meta_count[META_MAX];
3598 unsigned int segment_count[2];
3599 unsigned int block_count[2];
3600 unsigned int inplace_count;
3601 unsigned long long base_mem, cache_mem, page_mem;
3602 };
3603
F2FS_STAT(struct f2fs_sb_info * sbi)3604 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3605 {
3606 return (struct f2fs_stat_info *)sbi->stat_info;
3607 }
3608
3609 #define stat_inc_cp_count(si) ((si)->cp_count++)
3610 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3611 #define stat_inc_call_count(si) ((si)->call_count++)
3612 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3613 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3614 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3615 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3616 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3617 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3618 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3619 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3620 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3621 #define stat_inc_inline_xattr(inode) \
3622 do { \
3623 if (f2fs_has_inline_xattr(inode)) \
3624 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3625 } while (0)
3626 #define stat_dec_inline_xattr(inode) \
3627 do { \
3628 if (f2fs_has_inline_xattr(inode)) \
3629 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3630 } while (0)
3631 #define stat_inc_inline_inode(inode) \
3632 do { \
3633 if (f2fs_has_inline_data(inode)) \
3634 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3635 } while (0)
3636 #define stat_dec_inline_inode(inode) \
3637 do { \
3638 if (f2fs_has_inline_data(inode)) \
3639 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3640 } while (0)
3641 #define stat_inc_inline_dir(inode) \
3642 do { \
3643 if (f2fs_has_inline_dentry(inode)) \
3644 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3645 } while (0)
3646 #define stat_dec_inline_dir(inode) \
3647 do { \
3648 if (f2fs_has_inline_dentry(inode)) \
3649 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3650 } while (0)
3651 #define stat_inc_compr_inode(inode) \
3652 do { \
3653 if (f2fs_compressed_file(inode)) \
3654 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3655 } while (0)
3656 #define stat_dec_compr_inode(inode) \
3657 do { \
3658 if (f2fs_compressed_file(inode)) \
3659 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3660 } while (0)
3661 #define stat_add_compr_blocks(inode, blocks) \
3662 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3663 #define stat_sub_compr_blocks(inode, blocks) \
3664 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3665 #define stat_inc_meta_count(sbi, blkaddr) \
3666 do { \
3667 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3668 atomic_inc(&(sbi)->meta_count[META_CP]); \
3669 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3670 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3671 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3672 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3673 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3674 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3675 } while (0)
3676 #define stat_inc_seg_type(sbi, curseg) \
3677 ((sbi)->segment_count[(curseg)->alloc_type]++)
3678 #define stat_inc_block_count(sbi, curseg) \
3679 ((sbi)->block_count[(curseg)->alloc_type]++)
3680 #define stat_inc_inplace_blocks(sbi) \
3681 (atomic_inc(&(sbi)->inplace_count))
3682 #define stat_update_max_atomic_write(inode) \
3683 do { \
3684 int cur = F2FS_I_SB(inode)->atomic_files; \
3685 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3686 if (cur > max) \
3687 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3688 } while (0)
3689 #define stat_inc_volatile_write(inode) \
3690 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3691 #define stat_dec_volatile_write(inode) \
3692 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3693 #define stat_update_max_volatile_write(inode) \
3694 do { \
3695 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
3696 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
3697 if (cur > max) \
3698 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3699 } while (0)
3700 #define stat_inc_seg_count(sbi, type, gc_type) \
3701 do { \
3702 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3703 si->tot_segs++; \
3704 if ((type) == SUM_TYPE_DATA) { \
3705 si->data_segs++; \
3706 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3707 } else { \
3708 si->node_segs++; \
3709 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3710 } \
3711 } while (0)
3712
3713 #define stat_inc_tot_blk_count(si, blks) \
3714 ((si)->tot_blks += (blks))
3715
3716 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3717 do { \
3718 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3719 stat_inc_tot_blk_count(si, blks); \
3720 si->data_blks += (blks); \
3721 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3722 } while (0)
3723
3724 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3725 do { \
3726 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3727 stat_inc_tot_blk_count(si, blks); \
3728 si->node_blks += (blks); \
3729 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3730 } while (0)
3731
3732 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3733 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3734 void __init f2fs_create_root_stats(void);
3735 void f2fs_destroy_root_stats(void);
3736 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3737 #else
3738 #define stat_inc_cp_count(si) do { } while (0)
3739 #define stat_inc_bg_cp_count(si) do { } while (0)
3740 #define stat_inc_call_count(si) do { } while (0)
3741 #define stat_inc_bggc_count(si) do { } while (0)
3742 #define stat_io_skip_bggc_count(sbi) do { } while (0)
3743 #define stat_other_skip_bggc_count(sbi) do { } while (0)
3744 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3745 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3746 #define stat_inc_total_hit(sbi) do { } while (0)
3747 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
3748 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3749 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3750 #define stat_inc_inline_xattr(inode) do { } while (0)
3751 #define stat_dec_inline_xattr(inode) do { } while (0)
3752 #define stat_inc_inline_inode(inode) do { } while (0)
3753 #define stat_dec_inline_inode(inode) do { } while (0)
3754 #define stat_inc_inline_dir(inode) do { } while (0)
3755 #define stat_dec_inline_dir(inode) do { } while (0)
3756 #define stat_inc_compr_inode(inode) do { } while (0)
3757 #define stat_dec_compr_inode(inode) do { } while (0)
3758 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
3759 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
3760 #define stat_inc_atomic_write(inode) do { } while (0)
3761 #define stat_dec_atomic_write(inode) do { } while (0)
3762 #define stat_update_max_atomic_write(inode) do { } while (0)
3763 #define stat_inc_volatile_write(inode) do { } while (0)
3764 #define stat_dec_volatile_write(inode) do { } while (0)
3765 #define stat_update_max_volatile_write(inode) do { } while (0)
3766 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
3767 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3768 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3769 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3770 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3771 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3772 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3773 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3774
f2fs_build_stats(struct f2fs_sb_info * sbi)3775 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3776 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3777 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3778 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3779 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3780 #endif
3781
3782 extern const struct file_operations f2fs_dir_operations;
3783 #ifdef CONFIG_UNICODE
3784 extern const struct dentry_operations f2fs_dentry_ops;
3785 #endif
3786 extern const struct file_operations f2fs_file_operations;
3787 extern const struct inode_operations f2fs_file_inode_operations;
3788 extern const struct address_space_operations f2fs_dblock_aops;
3789 extern const struct address_space_operations f2fs_node_aops;
3790 extern const struct address_space_operations f2fs_meta_aops;
3791 extern const struct inode_operations f2fs_dir_inode_operations;
3792 extern const struct inode_operations f2fs_symlink_inode_operations;
3793 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3794 extern const struct inode_operations f2fs_special_inode_operations;
3795 extern struct kmem_cache *f2fs_inode_entry_slab;
3796
3797 /*
3798 * inline.c
3799 */
3800 bool f2fs_may_inline_data(struct inode *inode);
3801 bool f2fs_sanity_check_inline_data(struct inode *inode);
3802 bool f2fs_may_inline_dentry(struct inode *inode);
3803 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3804 void f2fs_truncate_inline_inode(struct inode *inode,
3805 struct page *ipage, u64 from);
3806 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3807 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3808 int f2fs_convert_inline_inode(struct inode *inode);
3809 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3810 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3811 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3812 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3813 const struct f2fs_filename *fname,
3814 struct page **res_page);
3815 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3816 struct page *ipage);
3817 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3818 struct inode *inode, nid_t ino, umode_t mode);
3819 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3820 struct page *page, struct inode *dir,
3821 struct inode *inode);
3822 bool f2fs_empty_inline_dir(struct inode *dir);
3823 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3824 struct fscrypt_str *fstr);
3825 int f2fs_inline_data_fiemap(struct inode *inode,
3826 struct fiemap_extent_info *fieinfo,
3827 __u64 start, __u64 len);
3828
3829 /*
3830 * shrinker.c
3831 */
3832 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3833 struct shrink_control *sc);
3834 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3835 struct shrink_control *sc);
3836 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3837 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3838
3839 /*
3840 * extent_cache.c
3841 */
3842 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3843 struct rb_entry *cached_re, unsigned int ofs);
3844 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3845 struct rb_root_cached *root,
3846 struct rb_node **parent,
3847 unsigned long long key, bool *left_most);
3848 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3849 struct rb_root_cached *root,
3850 struct rb_node **parent,
3851 unsigned int ofs, bool *leftmost);
3852 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3853 struct rb_entry *cached_re, unsigned int ofs,
3854 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3855 struct rb_node ***insert_p, struct rb_node **insert_parent,
3856 bool force, bool *leftmost);
3857 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3858 struct rb_root_cached *root, bool check_key);
3859 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3860 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3861 void f2fs_drop_extent_tree(struct inode *inode);
3862 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3863 void f2fs_destroy_extent_tree(struct inode *inode);
3864 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3865 struct extent_info *ei);
3866 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3867 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3868 pgoff_t fofs, block_t blkaddr, unsigned int len);
3869 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3870 int __init f2fs_create_extent_cache(void);
3871 void f2fs_destroy_extent_cache(void);
3872
3873 /*
3874 * sysfs.c
3875 */
3876 int __init f2fs_init_sysfs(void);
3877 void f2fs_exit_sysfs(void);
3878 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3879 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3880
3881 /* verity.c */
3882 extern const struct fsverity_operations f2fs_verityops;
3883
3884 /*
3885 * crypto support
3886 */
f2fs_encrypted_file(struct inode * inode)3887 static inline bool f2fs_encrypted_file(struct inode *inode)
3888 {
3889 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3890 }
3891
f2fs_set_encrypted_inode(struct inode * inode)3892 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3893 {
3894 #ifdef CONFIG_FS_ENCRYPTION
3895 file_set_encrypt(inode);
3896 f2fs_set_inode_flags(inode);
3897 #endif
3898 }
3899
3900 /*
3901 * Returns true if the reads of the inode's data need to undergo some
3902 * postprocessing step, like decryption or authenticity verification.
3903 */
f2fs_post_read_required(struct inode * inode)3904 static inline bool f2fs_post_read_required(struct inode *inode)
3905 {
3906 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3907 f2fs_compressed_file(inode);
3908 }
3909
3910 /*
3911 * compress.c
3912 */
3913 #ifdef CONFIG_F2FS_FS_COMPRESSION
3914 bool f2fs_is_compressed_page(struct page *page);
3915 struct page *f2fs_compress_control_page(struct page *page);
3916 int f2fs_prepare_compress_overwrite(struct inode *inode,
3917 struct page **pagep, pgoff_t index, void **fsdata);
3918 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3919 pgoff_t index, unsigned copied);
3920 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3921 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3922 bool f2fs_is_compress_backend_ready(struct inode *inode);
3923 int f2fs_init_compress_mempool(void);
3924 void f2fs_destroy_compress_mempool(void);
3925 void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3926 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3927 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3928 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3929 int f2fs_write_multi_pages(struct compress_ctx *cc,
3930 int *submitted,
3931 struct writeback_control *wbc,
3932 enum iostat_type io_type);
3933 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3934 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3935 unsigned nr_pages, sector_t *last_block_in_bio,
3936 bool is_readahead, bool for_write);
3937 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3938 void f2fs_free_dic(struct decompress_io_ctx *dic);
3939 void f2fs_decompress_end_io(struct page **rpages,
3940 unsigned int cluster_size, bool err, bool verity);
3941 int f2fs_init_compress_ctx(struct compress_ctx *cc);
3942 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
3943 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3944 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
3945 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
3946 int __init f2fs_init_compress_cache(void);
3947 void f2fs_destroy_compress_cache(void);
3948 #else
f2fs_is_compressed_page(struct page * page)3949 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)3950 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3951 {
3952 if (!f2fs_compressed_file(inode))
3953 return true;
3954 /* not support compression */
3955 return false;
3956 }
f2fs_compress_control_page(struct page * page)3957 static inline struct page *f2fs_compress_control_page(struct page *page)
3958 {
3959 WARN_ON_ONCE(1);
3960 return ERR_PTR(-EINVAL);
3961 }
f2fs_init_compress_mempool(void)3962 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)3963 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)3964 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)3965 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)3966 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)3967 static inline void f2fs_destroy_compress_cache(void) { }
3968 #endif
3969
set_compress_context(struct inode * inode)3970 static inline void set_compress_context(struct inode *inode)
3971 {
3972 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3973
3974 F2FS_I(inode)->i_compress_algorithm =
3975 F2FS_OPTION(sbi).compress_algorithm;
3976 F2FS_I(inode)->i_log_cluster_size =
3977 F2FS_OPTION(sbi).compress_log_size;
3978 F2FS_I(inode)->i_cluster_size =
3979 1 << F2FS_I(inode)->i_log_cluster_size;
3980 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3981 set_inode_flag(inode, FI_COMPRESSED_FILE);
3982 stat_inc_compr_inode(inode);
3983 f2fs_mark_inode_dirty_sync(inode, true);
3984 }
3985
f2fs_disable_compressed_file(struct inode * inode)3986 static inline bool f2fs_disable_compressed_file(struct inode *inode)
3987 {
3988 struct f2fs_inode_info *fi = F2FS_I(inode);
3989
3990 if (!f2fs_compressed_file(inode))
3991 return true;
3992 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
3993 return false;
3994
3995 fi->i_flags &= ~F2FS_COMPR_FL;
3996 stat_dec_compr_inode(inode);
3997 clear_inode_flag(inode, FI_COMPRESSED_FILE);
3998 f2fs_mark_inode_dirty_sync(inode, true);
3999 return true;
4000 }
4001
4002 #define F2FS_FEATURE_FUNCS(name, flagname) \
4003 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4004 { \
4005 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4006 }
4007
4008 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4009 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4010 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4011 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4012 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4013 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4014 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4015 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4016 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4017 F2FS_FEATURE_FUNCS(verity, VERITY);
4018 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4019 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4020 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4021
4022 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4023 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4024 block_t blkaddr)
4025 {
4026 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4027
4028 return test_bit(zno, FDEV(devi).blkz_seq);
4029 }
4030 #endif
4031
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4032 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4033 {
4034 return f2fs_sb_has_blkzoned(sbi);
4035 }
4036
f2fs_bdev_support_discard(struct block_device * bdev)4037 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4038 {
4039 return blk_queue_discard(bdev_get_queue(bdev)) ||
4040 bdev_is_zoned(bdev);
4041 }
4042
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4043 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4044 {
4045 int i;
4046
4047 if (!f2fs_is_multi_device(sbi))
4048 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4049
4050 for (i = 0; i < sbi->s_ndevs; i++)
4051 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4052 return true;
4053 return false;
4054 }
4055
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4056 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4057 {
4058 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4059 f2fs_hw_should_discard(sbi);
4060 }
4061
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4062 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4063 {
4064 int i;
4065
4066 if (!f2fs_is_multi_device(sbi))
4067 return bdev_read_only(sbi->sb->s_bdev);
4068
4069 for (i = 0; i < sbi->s_ndevs; i++)
4070 if (bdev_read_only(FDEV(i).bdev))
4071 return true;
4072 return false;
4073 }
4074
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4075 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4076 {
4077 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4078 }
4079
f2fs_may_compress(struct inode * inode)4080 static inline bool f2fs_may_compress(struct inode *inode)
4081 {
4082 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4083 f2fs_is_atomic_file(inode) ||
4084 f2fs_is_volatile_file(inode))
4085 return false;
4086 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4087 }
4088
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4089 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4090 u64 blocks, bool add)
4091 {
4092 int diff = F2FS_I(inode)->i_cluster_size - blocks;
4093 struct f2fs_inode_info *fi = F2FS_I(inode);
4094
4095 /* don't update i_compr_blocks if saved blocks were released */
4096 if (!add && !atomic_read(&fi->i_compr_blocks))
4097 return;
4098
4099 if (add) {
4100 atomic_add(diff, &fi->i_compr_blocks);
4101 stat_add_compr_blocks(inode, diff);
4102 } else {
4103 atomic_sub(diff, &fi->i_compr_blocks);
4104 stat_sub_compr_blocks(inode, diff);
4105 }
4106 f2fs_mark_inode_dirty_sync(inode, true);
4107 }
4108
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4109 static inline int block_unaligned_IO(struct inode *inode,
4110 struct kiocb *iocb, struct iov_iter *iter)
4111 {
4112 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4113 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4114 loff_t offset = iocb->ki_pos;
4115 unsigned long align = offset | iov_iter_alignment(iter);
4116
4117 return align & blocksize_mask;
4118 }
4119
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4120 static inline int allow_outplace_dio(struct inode *inode,
4121 struct kiocb *iocb, struct iov_iter *iter)
4122 {
4123 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4124 int rw = iov_iter_rw(iter);
4125
4126 return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4127 !block_unaligned_IO(inode, iocb, iter));
4128 }
4129
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4130 static inline bool f2fs_force_buffered_io(struct inode *inode,
4131 struct kiocb *iocb, struct iov_iter *iter)
4132 {
4133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4134 int rw = iov_iter_rw(iter);
4135
4136 if (f2fs_post_read_required(inode))
4137 return true;
4138 if (f2fs_is_multi_device(sbi))
4139 return true;
4140 /*
4141 * for blkzoned device, fallback direct IO to buffered IO, so
4142 * all IOs can be serialized by log-structured write.
4143 */
4144 if (f2fs_sb_has_blkzoned(sbi))
4145 return true;
4146 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4147 if (block_unaligned_IO(inode, iocb, iter))
4148 return true;
4149 if (F2FS_IO_ALIGNED(sbi))
4150 return true;
4151 }
4152 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4153 !IS_SWAPFILE(inode))
4154 return true;
4155
4156 return false;
4157 }
4158
4159 #ifdef CONFIG_F2FS_FAULT_INJECTION
4160 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4161 unsigned long type);
4162 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4163 static int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4164 unsigned long type)
4165 {
4166 return 0;
4167 }
4168 #endif
4169
is_journalled_quota(struct f2fs_sb_info * sbi)4170 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4171 {
4172 #ifdef CONFIG_QUOTA
4173 if (f2fs_sb_has_quota_ino(sbi))
4174 return true;
4175 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4176 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4177 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4178 return true;
4179 #endif
4180 return false;
4181 }
4182
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4183 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4184 block_t blkaddr, unsigned int cnt)
4185 {
4186 bool need_submit = false;
4187 int i = 0;
4188
4189 do {
4190 struct page *page;
4191
4192 page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4193 if (page) {
4194 if (PageWriteback(page))
4195 need_submit = true;
4196 f2fs_put_page(page, 0);
4197 }
4198 } while (++i < cnt && !need_submit);
4199
4200 if (need_submit)
4201 f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4202 NULL, 0, DATA);
4203
4204 truncate_inode_pages_range(META_MAPPING(sbi),
4205 F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4206 F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4207 }
4208
4209 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4210 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4211
4212 #endif /* _LINUX_F2FS_H */
4213