• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22 
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24 
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29 
30 /*
31  * Check whether the given nid is within node id range.
32  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 		set_sbi_flag(sbi, SBI_NEED_FSCK);
37 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 			  __func__, nid);
39 		return -EFSCORRUPTED;
40 	}
41 	return 0;
42 }
43 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 	struct f2fs_nm_info *nm_i = NM_I(sbi);
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	si_meminfo(&val);
53 
54 	/* only uses low memory */
55 	avail_ram = val.totalram - val.totalhigh;
56 
57 	/*
58 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 	 */
60 	if (type == FREE_NIDS) {
61 		mem_size = (nm_i->nid_cnt[FREE_NID] *
62 				sizeof(struct free_nid)) >> PAGE_SHIFT;
63 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 	} else if (type == NAT_ENTRIES) {
65 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 		if (excess_cached_nats(sbi))
69 			res = false;
70 	} else if (type == DIRTY_DENTS) {
71 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 			return false;
73 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 	} else if (type == INO_ENTRIES) {
76 		int i;
77 
78 		for (i = 0; i < MAX_INO_ENTRY; i++)
79 			mem_size += sbi->im[i].ino_num *
80 						sizeof(struct ino_entry);
81 		mem_size >>= PAGE_SHIFT;
82 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 	} else if (type == EXTENT_CACHE) {
84 		mem_size = (atomic_read(&sbi->total_ext_tree) *
85 				sizeof(struct extent_tree) +
86 				atomic_read(&sbi->total_ext_node) *
87 				sizeof(struct extent_node)) >> PAGE_SHIFT;
88 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 	} else if (type == INMEM_PAGES) {
90 		/* it allows 20% / total_ram for inmemory pages */
91 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 		res = mem_size < (val.totalram / 5);
93 	} else {
94 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 			return true;
96 	}
97 	return res;
98 }
99 
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 	if (PageDirty(page)) {
103 		f2fs_clear_page_cache_dirty_tag(page);
104 		clear_page_dirty_for_io(page);
105 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 	}
107 	ClearPageUptodate(page);
108 }
109 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 	struct page *src_page;
118 	struct page *dst_page;
119 	pgoff_t dst_off;
120 	void *src_addr;
121 	void *dst_addr;
122 	struct f2fs_nm_info *nm_i = NM_I(sbi);
123 
124 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125 
126 	/* get current nat block page with lock */
127 	src_page = get_current_nat_page(sbi, nid);
128 	if (IS_ERR(src_page))
129 		return src_page;
130 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 	f2fs_bug_on(sbi, PageDirty(src_page));
132 
133 	src_addr = page_address(src_page);
134 	dst_addr = page_address(dst_page);
135 	memcpy(dst_addr, src_addr, PAGE_SIZE);
136 	set_page_dirty(dst_page);
137 	f2fs_put_page(src_page, 1);
138 
139 	set_to_next_nat(nm_i, nid);
140 
141 	return dst_page;
142 }
143 
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 	struct nat_entry *new;
147 
148 	if (no_fail)
149 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 	else
151 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 	if (new) {
153 		nat_set_nid(new, nid);
154 		nat_reset_flag(new);
155 	}
156 	return new;
157 }
158 
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 	kmem_cache_free(nat_entry_slab, e);
162 }
163 
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 	if (no_fail)
169 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 		return NULL;
172 
173 	if (raw_ne)
174 		node_info_from_raw_nat(&ne->ni, raw_ne);
175 
176 	spin_lock(&nm_i->nat_list_lock);
177 	list_add_tail(&ne->list, &nm_i->nat_entries);
178 	spin_unlock(&nm_i->nat_list_lock);
179 
180 	nm_i->nat_cnt[TOTAL_NAT]++;
181 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 	return ne;
183 }
184 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 	struct nat_entry *ne;
188 
189 	ne = radix_tree_lookup(&nm_i->nat_root, n);
190 
191 	/* for recent accessed nat entry, move it to tail of lru list */
192 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 		spin_lock(&nm_i->nat_list_lock);
194 		if (!list_empty(&ne->list))
195 			list_move_tail(&ne->list, &nm_i->nat_entries);
196 		spin_unlock(&nm_i->nat_list_lock);
197 	}
198 
199 	return ne;
200 }
201 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 		nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 	nm_i->nat_cnt[TOTAL_NAT]--;
212 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 	__free_nat_entry(e);
214 }
215 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 							struct nat_entry *ne)
218 {
219 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 	struct nat_entry_set *head;
221 
222 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 	if (!head) {
224 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225 
226 		INIT_LIST_HEAD(&head->entry_list);
227 		INIT_LIST_HEAD(&head->set_list);
228 		head->set = set;
229 		head->entry_cnt = 0;
230 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 	}
232 	return head;
233 }
234 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 						struct nat_entry *ne)
237 {
238 	struct nat_entry_set *head;
239 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240 
241 	if (!new_ne)
242 		head = __grab_nat_entry_set(nm_i, ne);
243 
244 	/*
245 	 * update entry_cnt in below condition:
246 	 * 1. update NEW_ADDR to valid block address;
247 	 * 2. update old block address to new one;
248 	 */
249 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 				!get_nat_flag(ne, IS_DIRTY)))
251 		head->entry_cnt++;
252 
253 	set_nat_flag(ne, IS_PREALLOC, new_ne);
254 
255 	if (get_nat_flag(ne, IS_DIRTY))
256 		goto refresh_list;
257 
258 	nm_i->nat_cnt[DIRTY_NAT]++;
259 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 	set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 	spin_lock(&nm_i->nat_list_lock);
263 	if (new_ne)
264 		list_del_init(&ne->list);
265 	else
266 		list_move_tail(&ne->list, &head->entry_list);
267 	spin_unlock(&nm_i->nat_list_lock);
268 }
269 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 		struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 	spin_lock(&nm_i->nat_list_lock);
274 	list_move_tail(&ne->list, &nm_i->nat_entries);
275 	spin_unlock(&nm_i->nat_list_lock);
276 
277 	set_nat_flag(ne, IS_DIRTY, false);
278 	set->entry_cnt--;
279 	nm_i->nat_cnt[DIRTY_NAT]--;
280 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 							start, nr);
288 }
289 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 	return NODE_MAPPING(sbi) == page->mapping &&
293 			IS_DNODE(page) && is_cold_node(page);
294 }
295 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 	spin_lock_init(&sbi->fsync_node_lock);
299 	INIT_LIST_HEAD(&sbi->fsync_node_list);
300 	sbi->fsync_seg_id = 0;
301 	sbi->fsync_node_num = 0;
302 }
303 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 							struct page *page)
306 {
307 	struct fsync_node_entry *fn;
308 	unsigned long flags;
309 	unsigned int seq_id;
310 
311 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312 
313 	get_page(page);
314 	fn->page = page;
315 	INIT_LIST_HEAD(&fn->list);
316 
317 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 	list_add_tail(&fn->list, &sbi->fsync_node_list);
319 	fn->seq_id = sbi->fsync_seg_id++;
320 	seq_id = fn->seq_id;
321 	sbi->fsync_node_num++;
322 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323 
324 	return seq_id;
325 }
326 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 	struct fsync_node_entry *fn;
330 	unsigned long flags;
331 
332 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 		if (fn->page == page) {
335 			list_del(&fn->list);
336 			sbi->fsync_node_num--;
337 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 			kmem_cache_free(fsync_node_entry_slab, fn);
339 			put_page(page);
340 			return;
341 		}
342 	}
343 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 	f2fs_bug_on(sbi, 1);
345 }
346 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 	unsigned long flags;
350 
351 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 	sbi->fsync_seg_id = 0;
353 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 	struct f2fs_nm_info *nm_i = NM_I(sbi);
359 	struct nat_entry *e;
360 	bool need = false;
361 
362 	down_read(&nm_i->nat_tree_lock);
363 	e = __lookup_nat_cache(nm_i, nid);
364 	if (e) {
365 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 				!get_nat_flag(e, HAS_FSYNCED_INODE))
367 			need = true;
368 	}
369 	up_read(&nm_i->nat_tree_lock);
370 	return need;
371 }
372 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 	struct f2fs_nm_info *nm_i = NM_I(sbi);
376 	struct nat_entry *e;
377 	bool is_cp = true;
378 
379 	down_read(&nm_i->nat_tree_lock);
380 	e = __lookup_nat_cache(nm_i, nid);
381 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 		is_cp = false;
383 	up_read(&nm_i->nat_tree_lock);
384 	return is_cp;
385 }
386 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 	struct f2fs_nm_info *nm_i = NM_I(sbi);
390 	struct nat_entry *e;
391 	bool need_update = true;
392 
393 	down_read(&nm_i->nat_tree_lock);
394 	e = __lookup_nat_cache(nm_i, ino);
395 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 			(get_nat_flag(e, IS_CHECKPOINTED) ||
397 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 		need_update = false;
399 	up_read(&nm_i->nat_tree_lock);
400 	return need_update;
401 }
402 
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 						struct f2fs_nat_entry *ne)
406 {
407 	struct f2fs_nm_info *nm_i = NM_I(sbi);
408 	struct nat_entry *new, *e;
409 
410 	new = __alloc_nat_entry(nid, false);
411 	if (!new)
412 		return;
413 
414 	down_write(&nm_i->nat_tree_lock);
415 	e = __lookup_nat_cache(nm_i, nid);
416 	if (!e)
417 		e = __init_nat_entry(nm_i, new, ne, false);
418 	else
419 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 				nat_get_blkaddr(e) !=
421 					le32_to_cpu(ne->block_addr) ||
422 				nat_get_version(e) != ne->version);
423 	up_write(&nm_i->nat_tree_lock);
424 	if (e != new)
425 		__free_nat_entry(new);
426 }
427 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 			block_t new_blkaddr, bool fsync_done)
430 {
431 	struct f2fs_nm_info *nm_i = NM_I(sbi);
432 	struct nat_entry *e;
433 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434 
435 	down_write(&nm_i->nat_tree_lock);
436 	e = __lookup_nat_cache(nm_i, ni->nid);
437 	if (!e) {
438 		e = __init_nat_entry(nm_i, new, NULL, true);
439 		copy_node_info(&e->ni, ni);
440 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 	} else if (new_blkaddr == NEW_ADDR) {
442 		/*
443 		 * when nid is reallocated,
444 		 * previous nat entry can be remained in nat cache.
445 		 * So, reinitialize it with new information.
446 		 */
447 		copy_node_info(&e->ni, ni);
448 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 	}
450 	/* let's free early to reduce memory consumption */
451 	if (e != new)
452 		__free_nat_entry(new);
453 
454 	/* sanity check */
455 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 			new_blkaddr == NULL_ADDR);
458 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 			new_blkaddr == NEW_ADDR);
460 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 			new_blkaddr == NEW_ADDR);
462 
463 	/* increment version no as node is removed */
464 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 		unsigned char version = nat_get_version(e);
466 		nat_set_version(e, inc_node_version(version));
467 	}
468 
469 	/* change address */
470 	nat_set_blkaddr(e, new_blkaddr);
471 	if (!__is_valid_data_blkaddr(new_blkaddr))
472 		set_nat_flag(e, IS_CHECKPOINTED, false);
473 	__set_nat_cache_dirty(nm_i, e);
474 
475 	/* update fsync_mark if its inode nat entry is still alive */
476 	if (ni->nid != ni->ino)
477 		e = __lookup_nat_cache(nm_i, ni->ino);
478 	if (e) {
479 		if (fsync_done && ni->nid == ni->ino)
480 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 	}
483 	up_write(&nm_i->nat_tree_lock);
484 }
485 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 	struct f2fs_nm_info *nm_i = NM_I(sbi);
489 	int nr = nr_shrink;
490 
491 	if (!down_write_trylock(&nm_i->nat_tree_lock))
492 		return 0;
493 
494 	spin_lock(&nm_i->nat_list_lock);
495 	while (nr_shrink) {
496 		struct nat_entry *ne;
497 
498 		if (list_empty(&nm_i->nat_entries))
499 			break;
500 
501 		ne = list_first_entry(&nm_i->nat_entries,
502 					struct nat_entry, list);
503 		list_del(&ne->list);
504 		spin_unlock(&nm_i->nat_list_lock);
505 
506 		__del_from_nat_cache(nm_i, ne);
507 		nr_shrink--;
508 
509 		spin_lock(&nm_i->nat_list_lock);
510 	}
511 	spin_unlock(&nm_i->nat_list_lock);
512 
513 	up_write(&nm_i->nat_tree_lock);
514 	return nr - nr_shrink;
515 }
516 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 						struct node_info *ni)
519 {
520 	struct f2fs_nm_info *nm_i = NM_I(sbi);
521 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 	struct f2fs_journal *journal = curseg->journal;
523 	nid_t start_nid = START_NID(nid);
524 	struct f2fs_nat_block *nat_blk;
525 	struct page *page = NULL;
526 	struct f2fs_nat_entry ne;
527 	struct nat_entry *e;
528 	pgoff_t index;
529 	block_t blkaddr;
530 	int i;
531 
532 	ni->nid = nid;
533 
534 	/* Check nat cache */
535 	down_read(&nm_i->nat_tree_lock);
536 	e = __lookup_nat_cache(nm_i, nid);
537 	if (e) {
538 		ni->ino = nat_get_ino(e);
539 		ni->blk_addr = nat_get_blkaddr(e);
540 		ni->version = nat_get_version(e);
541 		up_read(&nm_i->nat_tree_lock);
542 		return 0;
543 	}
544 
545 	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 
547 	/* Check current segment summary */
548 	down_read(&curseg->journal_rwsem);
549 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 	if (i >= 0) {
551 		ne = nat_in_journal(journal, i);
552 		node_info_from_raw_nat(ni, &ne);
553 	}
554 	up_read(&curseg->journal_rwsem);
555 	if (i >= 0) {
556 		up_read(&nm_i->nat_tree_lock);
557 		goto cache;
558 	}
559 
560 	/* Fill node_info from nat page */
561 	index = current_nat_addr(sbi, nid);
562 	up_read(&nm_i->nat_tree_lock);
563 
564 	page = f2fs_get_meta_page(sbi, index);
565 	if (IS_ERR(page))
566 		return PTR_ERR(page);
567 
568 	nat_blk = (struct f2fs_nat_block *)page_address(page);
569 	ne = nat_blk->entries[nid - start_nid];
570 	node_info_from_raw_nat(ni, &ne);
571 	f2fs_put_page(page, 1);
572 cache:
573 	blkaddr = le32_to_cpu(ne.block_addr);
574 	if (__is_valid_data_blkaddr(blkaddr) &&
575 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 		return -EFAULT;
577 
578 	/* cache nat entry */
579 	cache_nat_entry(sbi, nid, &ne);
580 	return 0;
581 }
582 
583 /*
584  * readahead MAX_RA_NODE number of node pages.
585  */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 	struct blk_plug plug;
590 	int i, end;
591 	nid_t nid;
592 
593 	blk_start_plug(&plug);
594 
595 	/* Then, try readahead for siblings of the desired node */
596 	end = start + n;
597 	end = min(end, NIDS_PER_BLOCK);
598 	for (i = start; i < end; i++) {
599 		nid = get_nid(parent, i, false);
600 		f2fs_ra_node_page(sbi, nid);
601 	}
602 
603 	blk_finish_plug(&plug);
604 }
605 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 	const long direct_index = ADDRS_PER_INODE(dn->inode);
609 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 	int cur_level = dn->cur_level;
613 	int max_level = dn->max_level;
614 	pgoff_t base = 0;
615 
616 	if (!dn->max_level)
617 		return pgofs + 1;
618 
619 	while (max_level-- > cur_level)
620 		skipped_unit *= NIDS_PER_BLOCK;
621 
622 	switch (dn->max_level) {
623 	case 3:
624 		base += 2 * indirect_blks;
625 		fallthrough;
626 	case 2:
627 		base += 2 * direct_blks;
628 		fallthrough;
629 	case 1:
630 		base += direct_index;
631 		break;
632 	default:
633 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 	}
635 
636 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638 
639 /*
640  * The maximum depth is four.
641  * Offset[0] will have raw inode offset.
642  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 				int offset[4], unsigned int noffset[4])
645 {
646 	const long direct_index = ADDRS_PER_INODE(inode);
647 	const long direct_blks = ADDRS_PER_BLOCK(inode);
648 	const long dptrs_per_blk = NIDS_PER_BLOCK;
649 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 	int n = 0;
652 	int level = 0;
653 
654 	noffset[0] = 0;
655 
656 	if (block < direct_index) {
657 		offset[n] = block;
658 		goto got;
659 	}
660 	block -= direct_index;
661 	if (block < direct_blks) {
662 		offset[n++] = NODE_DIR1_BLOCK;
663 		noffset[n] = 1;
664 		offset[n] = block;
665 		level = 1;
666 		goto got;
667 	}
668 	block -= direct_blks;
669 	if (block < direct_blks) {
670 		offset[n++] = NODE_DIR2_BLOCK;
671 		noffset[n] = 2;
672 		offset[n] = block;
673 		level = 1;
674 		goto got;
675 	}
676 	block -= direct_blks;
677 	if (block < indirect_blks) {
678 		offset[n++] = NODE_IND1_BLOCK;
679 		noffset[n] = 3;
680 		offset[n++] = block / direct_blks;
681 		noffset[n] = 4 + offset[n - 1];
682 		offset[n] = block % direct_blks;
683 		level = 2;
684 		goto got;
685 	}
686 	block -= indirect_blks;
687 	if (block < indirect_blks) {
688 		offset[n++] = NODE_IND2_BLOCK;
689 		noffset[n] = 4 + dptrs_per_blk;
690 		offset[n++] = block / direct_blks;
691 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 		offset[n] = block % direct_blks;
693 		level = 2;
694 		goto got;
695 	}
696 	block -= indirect_blks;
697 	if (block < dindirect_blks) {
698 		offset[n++] = NODE_DIND_BLOCK;
699 		noffset[n] = 5 + (dptrs_per_blk * 2);
700 		offset[n++] = block / indirect_blks;
701 		noffset[n] = 6 + (dptrs_per_blk * 2) +
702 			      offset[n - 1] * (dptrs_per_blk + 1);
703 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 		noffset[n] = 7 + (dptrs_per_blk * 2) +
705 			      offset[n - 2] * (dptrs_per_blk + 1) +
706 			      offset[n - 1];
707 		offset[n] = block % direct_blks;
708 		level = 3;
709 		goto got;
710 	} else {
711 		return -E2BIG;
712 	}
713 got:
714 	return level;
715 }
716 
717 /*
718  * Caller should call f2fs_put_dnode(dn).
719  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 	struct page *npage[4];
726 	struct page *parent = NULL;
727 	int offset[4];
728 	unsigned int noffset[4];
729 	nid_t nids[4];
730 	int level, i = 0;
731 	int err = 0;
732 
733 	level = get_node_path(dn->inode, index, offset, noffset);
734 	if (level < 0)
735 		return level;
736 
737 	nids[0] = dn->inode->i_ino;
738 	npage[0] = dn->inode_page;
739 
740 	if (!npage[0]) {
741 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 		if (IS_ERR(npage[0]))
743 			return PTR_ERR(npage[0]);
744 	}
745 
746 	/* if inline_data is set, should not report any block indices */
747 	if (f2fs_has_inline_data(dn->inode) && index) {
748 		err = -ENOENT;
749 		f2fs_put_page(npage[0], 1);
750 		goto release_out;
751 	}
752 
753 	parent = npage[0];
754 	if (level != 0)
755 		nids[1] = get_nid(parent, offset[0], true);
756 	dn->inode_page = npage[0];
757 	dn->inode_page_locked = true;
758 
759 	/* get indirect or direct nodes */
760 	for (i = 1; i <= level; i++) {
761 		bool done = false;
762 
763 		if (!nids[i] && mode == ALLOC_NODE) {
764 			/* alloc new node */
765 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 				err = -ENOSPC;
767 				goto release_pages;
768 			}
769 
770 			dn->nid = nids[i];
771 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 			if (IS_ERR(npage[i])) {
773 				f2fs_alloc_nid_failed(sbi, nids[i]);
774 				err = PTR_ERR(npage[i]);
775 				goto release_pages;
776 			}
777 
778 			set_nid(parent, offset[i - 1], nids[i], i == 1);
779 			f2fs_alloc_nid_done(sbi, nids[i]);
780 			done = true;
781 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 			if (IS_ERR(npage[i])) {
784 				err = PTR_ERR(npage[i]);
785 				goto release_pages;
786 			}
787 			done = true;
788 		}
789 		if (i == 1) {
790 			dn->inode_page_locked = false;
791 			unlock_page(parent);
792 		} else {
793 			f2fs_put_page(parent, 1);
794 		}
795 
796 		if (!done) {
797 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 			if (IS_ERR(npage[i])) {
799 				err = PTR_ERR(npage[i]);
800 				f2fs_put_page(npage[0], 0);
801 				goto release_out;
802 			}
803 		}
804 		if (i < level) {
805 			parent = npage[i];
806 			nids[i + 1] = get_nid(parent, offset[i], false);
807 		}
808 	}
809 	dn->nid = nids[level];
810 	dn->ofs_in_node = offset[level];
811 	dn->node_page = npage[level];
812 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 	return 0;
814 
815 release_pages:
816 	f2fs_put_page(parent, 1);
817 	if (i > 1)
818 		f2fs_put_page(npage[0], 0);
819 release_out:
820 	dn->inode_page = NULL;
821 	dn->node_page = NULL;
822 	if (err == -ENOENT) {
823 		dn->cur_level = i;
824 		dn->max_level = level;
825 		dn->ofs_in_node = offset[level];
826 	}
827 	return err;
828 }
829 
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 	struct node_info ni;
834 	int err;
835 	pgoff_t index;
836 
837 	err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 	if (err)
839 		return err;
840 
841 	if (ni.blk_addr != NEW_ADDR &&
842 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
843 		f2fs_err(sbi,
844 			"nat entry is corrupted, run fsck to fix it, ino:%u, "
845 			"nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
846 		set_sbi_flag(sbi, SBI_NEED_FSCK);
847 		return -EFSCORRUPTED;
848 	}
849 
850 	/* Deallocate node address */
851 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
852 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
853 	set_node_addr(sbi, &ni, NULL_ADDR, false);
854 
855 	if (dn->nid == dn->inode->i_ino) {
856 		f2fs_remove_orphan_inode(sbi, dn->nid);
857 		dec_valid_inode_count(sbi);
858 		f2fs_inode_synced(dn->inode);
859 	}
860 
861 	clear_node_page_dirty(dn->node_page);
862 	set_sbi_flag(sbi, SBI_IS_DIRTY);
863 
864 	index = dn->node_page->index;
865 	f2fs_put_page(dn->node_page, 1);
866 
867 	invalidate_mapping_pages(NODE_MAPPING(sbi),
868 			index, index);
869 
870 	dn->node_page = NULL;
871 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
872 
873 	return 0;
874 }
875 
truncate_dnode(struct dnode_of_data * dn)876 static int truncate_dnode(struct dnode_of_data *dn)
877 {
878 	struct page *page;
879 	int err;
880 
881 	if (dn->nid == 0)
882 		return 1;
883 
884 	/* get direct node */
885 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
886 	if (PTR_ERR(page) == -ENOENT)
887 		return 1;
888 	else if (IS_ERR(page))
889 		return PTR_ERR(page);
890 
891 	/* Make dnode_of_data for parameter */
892 	dn->node_page = page;
893 	dn->ofs_in_node = 0;
894 	f2fs_truncate_data_blocks(dn);
895 	err = truncate_node(dn);
896 	if (err) {
897 		f2fs_put_page(page, 1);
898 		return err;
899 	}
900 
901 	return 1;
902 }
903 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)904 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
905 						int ofs, int depth)
906 {
907 	struct dnode_of_data rdn = *dn;
908 	struct page *page;
909 	struct f2fs_node *rn;
910 	nid_t child_nid;
911 	unsigned int child_nofs;
912 	int freed = 0;
913 	int i, ret;
914 
915 	if (dn->nid == 0)
916 		return NIDS_PER_BLOCK + 1;
917 
918 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
919 
920 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
921 	if (IS_ERR(page)) {
922 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
923 		return PTR_ERR(page);
924 	}
925 
926 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
927 
928 	rn = F2FS_NODE(page);
929 	if (depth < 3) {
930 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
931 			child_nid = le32_to_cpu(rn->in.nid[i]);
932 			if (child_nid == 0)
933 				continue;
934 			rdn.nid = child_nid;
935 			ret = truncate_dnode(&rdn);
936 			if (ret < 0)
937 				goto out_err;
938 			if (set_nid(page, i, 0, false))
939 				dn->node_changed = true;
940 		}
941 	} else {
942 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
943 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
944 			child_nid = le32_to_cpu(rn->in.nid[i]);
945 			if (child_nid == 0) {
946 				child_nofs += NIDS_PER_BLOCK + 1;
947 				continue;
948 			}
949 			rdn.nid = child_nid;
950 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
951 			if (ret == (NIDS_PER_BLOCK + 1)) {
952 				if (set_nid(page, i, 0, false))
953 					dn->node_changed = true;
954 				child_nofs += ret;
955 			} else if (ret < 0 && ret != -ENOENT) {
956 				goto out_err;
957 			}
958 		}
959 		freed = child_nofs;
960 	}
961 
962 	if (!ofs) {
963 		/* remove current indirect node */
964 		dn->node_page = page;
965 		ret = truncate_node(dn);
966 		if (ret)
967 			goto out_err;
968 		freed++;
969 	} else {
970 		f2fs_put_page(page, 1);
971 	}
972 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
973 	return freed;
974 
975 out_err:
976 	f2fs_put_page(page, 1);
977 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
978 	return ret;
979 }
980 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)981 static int truncate_partial_nodes(struct dnode_of_data *dn,
982 			struct f2fs_inode *ri, int *offset, int depth)
983 {
984 	struct page *pages[2];
985 	nid_t nid[3];
986 	nid_t child_nid;
987 	int err = 0;
988 	int i;
989 	int idx = depth - 2;
990 
991 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
992 	if (!nid[0])
993 		return 0;
994 
995 	/* get indirect nodes in the path */
996 	for (i = 0; i < idx + 1; i++) {
997 		/* reference count'll be increased */
998 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
999 		if (IS_ERR(pages[i])) {
1000 			err = PTR_ERR(pages[i]);
1001 			idx = i - 1;
1002 			goto fail;
1003 		}
1004 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1005 	}
1006 
1007 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1008 
1009 	/* free direct nodes linked to a partial indirect node */
1010 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1011 		child_nid = get_nid(pages[idx], i, false);
1012 		if (!child_nid)
1013 			continue;
1014 		dn->nid = child_nid;
1015 		err = truncate_dnode(dn);
1016 		if (err < 0)
1017 			goto fail;
1018 		if (set_nid(pages[idx], i, 0, false))
1019 			dn->node_changed = true;
1020 	}
1021 
1022 	if (offset[idx + 1] == 0) {
1023 		dn->node_page = pages[idx];
1024 		dn->nid = nid[idx];
1025 		err = truncate_node(dn);
1026 		if (err)
1027 			goto fail;
1028 	} else {
1029 		f2fs_put_page(pages[idx], 1);
1030 	}
1031 	offset[idx]++;
1032 	offset[idx + 1] = 0;
1033 	idx--;
1034 fail:
1035 	for (i = idx; i >= 0; i--)
1036 		f2fs_put_page(pages[i], 1);
1037 
1038 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1039 
1040 	return err;
1041 }
1042 
1043 /*
1044  * All the block addresses of data and nodes should be nullified.
1045  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1046 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1047 {
1048 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1049 	int err = 0, cont = 1;
1050 	int level, offset[4], noffset[4];
1051 	unsigned int nofs = 0;
1052 	struct f2fs_inode *ri;
1053 	struct dnode_of_data dn;
1054 	struct page *page;
1055 
1056 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1057 
1058 	level = get_node_path(inode, from, offset, noffset);
1059 	if (level < 0) {
1060 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1061 		return level;
1062 	}
1063 
1064 	page = f2fs_get_node_page(sbi, inode->i_ino);
1065 	if (IS_ERR(page)) {
1066 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1067 		return PTR_ERR(page);
1068 	}
1069 
1070 	set_new_dnode(&dn, inode, page, NULL, 0);
1071 	unlock_page(page);
1072 
1073 	ri = F2FS_INODE(page);
1074 	switch (level) {
1075 	case 0:
1076 	case 1:
1077 		nofs = noffset[1];
1078 		break;
1079 	case 2:
1080 		nofs = noffset[1];
1081 		if (!offset[level - 1])
1082 			goto skip_partial;
1083 		err = truncate_partial_nodes(&dn, ri, offset, level);
1084 		if (err < 0 && err != -ENOENT)
1085 			goto fail;
1086 		nofs += 1 + NIDS_PER_BLOCK;
1087 		break;
1088 	case 3:
1089 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1090 		if (!offset[level - 1])
1091 			goto skip_partial;
1092 		err = truncate_partial_nodes(&dn, ri, offset, level);
1093 		if (err < 0 && err != -ENOENT)
1094 			goto fail;
1095 		break;
1096 	default:
1097 		BUG();
1098 	}
1099 
1100 skip_partial:
1101 	while (cont) {
1102 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1103 		switch (offset[0]) {
1104 		case NODE_DIR1_BLOCK:
1105 		case NODE_DIR2_BLOCK:
1106 			err = truncate_dnode(&dn);
1107 			break;
1108 
1109 		case NODE_IND1_BLOCK:
1110 		case NODE_IND2_BLOCK:
1111 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1112 			break;
1113 
1114 		case NODE_DIND_BLOCK:
1115 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1116 			cont = 0;
1117 			break;
1118 
1119 		default:
1120 			BUG();
1121 		}
1122 		if (err < 0 && err != -ENOENT)
1123 			goto fail;
1124 		if (offset[1] == 0 &&
1125 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1126 			lock_page(page);
1127 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1128 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1129 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1130 			set_page_dirty(page);
1131 			unlock_page(page);
1132 		}
1133 		offset[1] = 0;
1134 		offset[0]++;
1135 		nofs += err;
1136 	}
1137 fail:
1138 	f2fs_put_page(page, 0);
1139 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1140 	return err > 0 ? 0 : err;
1141 }
1142 
1143 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1144 int f2fs_truncate_xattr_node(struct inode *inode)
1145 {
1146 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1148 	struct dnode_of_data dn;
1149 	struct page *npage;
1150 	int err;
1151 
1152 	if (!nid)
1153 		return 0;
1154 
1155 	npage = f2fs_get_node_page(sbi, nid);
1156 	if (IS_ERR(npage))
1157 		return PTR_ERR(npage);
1158 
1159 	set_new_dnode(&dn, inode, NULL, npage, nid);
1160 	err = truncate_node(&dn);
1161 	if (err) {
1162 		f2fs_put_page(npage, 1);
1163 		return err;
1164 	}
1165 
1166 	f2fs_i_xnid_write(inode, 0);
1167 
1168 	return 0;
1169 }
1170 
1171 /*
1172  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1173  * f2fs_unlock_op().
1174  */
f2fs_remove_inode_page(struct inode * inode)1175 int f2fs_remove_inode_page(struct inode *inode)
1176 {
1177 	struct dnode_of_data dn;
1178 	int err;
1179 
1180 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1181 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1182 	if (err)
1183 		return err;
1184 
1185 	err = f2fs_truncate_xattr_node(inode);
1186 	if (err) {
1187 		f2fs_put_dnode(&dn);
1188 		return err;
1189 	}
1190 
1191 	/* remove potential inline_data blocks */
1192 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1193 				S_ISLNK(inode->i_mode))
1194 		f2fs_truncate_data_blocks_range(&dn, 1);
1195 
1196 	/* 0 is possible, after f2fs_new_inode() has failed */
1197 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1198 		f2fs_put_dnode(&dn);
1199 		return -EIO;
1200 	}
1201 
1202 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1203 		f2fs_warn(F2FS_I_SB(inode),
1204 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1205 			inode->i_ino, (unsigned long long)inode->i_blocks);
1206 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1207 	}
1208 
1209 	/* will put inode & node pages */
1210 	err = truncate_node(&dn);
1211 	if (err) {
1212 		f2fs_put_dnode(&dn);
1213 		return err;
1214 	}
1215 	return 0;
1216 }
1217 
f2fs_new_inode_page(struct inode * inode)1218 struct page *f2fs_new_inode_page(struct inode *inode)
1219 {
1220 	struct dnode_of_data dn;
1221 
1222 	/* allocate inode page for new inode */
1223 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1224 
1225 	/* caller should f2fs_put_page(page, 1); */
1226 	return f2fs_new_node_page(&dn, 0);
1227 }
1228 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1229 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1230 {
1231 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1232 	struct node_info new_ni;
1233 	struct page *page;
1234 	int err;
1235 
1236 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1237 		return ERR_PTR(-EPERM);
1238 
1239 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1240 	if (!page)
1241 		return ERR_PTR(-ENOMEM);
1242 
1243 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1244 		goto fail;
1245 
1246 #ifdef CONFIG_F2FS_CHECK_FS
1247 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1248 	if (err) {
1249 		dec_valid_node_count(sbi, dn->inode, !ofs);
1250 		goto fail;
1251 	}
1252 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1253 		err = -EFSCORRUPTED;
1254 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1255 		goto fail;
1256 	}
1257 #endif
1258 	new_ni.nid = dn->nid;
1259 	new_ni.ino = dn->inode->i_ino;
1260 	new_ni.blk_addr = NULL_ADDR;
1261 	new_ni.flag = 0;
1262 	new_ni.version = 0;
1263 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1264 
1265 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1266 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1267 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1268 	if (!PageUptodate(page))
1269 		SetPageUptodate(page);
1270 	if (set_page_dirty(page))
1271 		dn->node_changed = true;
1272 
1273 	if (f2fs_has_xattr_block(ofs))
1274 		f2fs_i_xnid_write(dn->inode, dn->nid);
1275 
1276 	if (ofs == 0)
1277 		inc_valid_inode_count(sbi);
1278 	return page;
1279 
1280 fail:
1281 	clear_node_page_dirty(page);
1282 	f2fs_put_page(page, 1);
1283 	return ERR_PTR(err);
1284 }
1285 
1286 /*
1287  * Caller should do after getting the following values.
1288  * 0: f2fs_put_page(page, 0)
1289  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1290  */
read_node_page(struct page * page,int op_flags)1291 static int read_node_page(struct page *page, int op_flags)
1292 {
1293 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1294 	struct node_info ni;
1295 	struct f2fs_io_info fio = {
1296 		.sbi = sbi,
1297 		.type = NODE,
1298 		.op = REQ_OP_READ,
1299 		.op_flags = op_flags,
1300 		.page = page,
1301 		.encrypted_page = NULL,
1302 	};
1303 	int err;
1304 
1305 	if (PageUptodate(page)) {
1306 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1307 			ClearPageUptodate(page);
1308 			return -EFSBADCRC;
1309 		}
1310 		return LOCKED_PAGE;
1311 	}
1312 
1313 	err = f2fs_get_node_info(sbi, page->index, &ni);
1314 	if (err)
1315 		return err;
1316 
1317 	if (unlikely(ni.blk_addr == NULL_ADDR) ||
1318 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1319 		ClearPageUptodate(page);
1320 		return -ENOENT;
1321 	}
1322 
1323 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1324 
1325 	err = f2fs_submit_page_bio(&fio);
1326 
1327 	if (!err)
1328 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * Readahead a node page
1335  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1336 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1337 {
1338 	struct page *apage;
1339 	int err;
1340 
1341 	if (!nid)
1342 		return;
1343 	if (f2fs_check_nid_range(sbi, nid))
1344 		return;
1345 
1346 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1347 	if (apage)
1348 		return;
1349 
1350 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351 	if (!apage)
1352 		return;
1353 
1354 	err = read_node_page(apage, REQ_RAHEAD);
1355 	f2fs_put_page(apage, err ? 1 : 0);
1356 }
1357 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1358 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1359 					struct page *parent, int start)
1360 {
1361 	struct page *page;
1362 	int err;
1363 
1364 	if (!nid)
1365 		return ERR_PTR(-ENOENT);
1366 	if (f2fs_check_nid_range(sbi, nid))
1367 		return ERR_PTR(-EINVAL);
1368 repeat:
1369 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1370 	if (!page)
1371 		return ERR_PTR(-ENOMEM);
1372 
1373 	err = read_node_page(page, 0);
1374 	if (err < 0) {
1375 		f2fs_put_page(page, 1);
1376 		return ERR_PTR(err);
1377 	} else if (err == LOCKED_PAGE) {
1378 		err = 0;
1379 		goto page_hit;
1380 	}
1381 
1382 	if (parent)
1383 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1384 
1385 	lock_page(page);
1386 
1387 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1388 		f2fs_put_page(page, 1);
1389 		goto repeat;
1390 	}
1391 
1392 	if (unlikely(!PageUptodate(page))) {
1393 		err = -EIO;
1394 		goto out_err;
1395 	}
1396 
1397 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1398 		err = -EFSBADCRC;
1399 		goto out_err;
1400 	}
1401 page_hit:
1402 	if(unlikely(nid != nid_of_node(page))) {
1403 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1404 			  nid, nid_of_node(page), ino_of_node(page),
1405 			  ofs_of_node(page), cpver_of_node(page),
1406 			  next_blkaddr_of_node(page));
1407 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1408 		err = -EINVAL;
1409 out_err:
1410 		ClearPageUptodate(page);
1411 		f2fs_put_page(page, 1);
1412 		return ERR_PTR(err);
1413 	}
1414 	return page;
1415 }
1416 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1417 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1418 {
1419 	return __get_node_page(sbi, nid, NULL, 0);
1420 }
1421 
f2fs_get_node_page_ra(struct page * parent,int start)1422 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1423 {
1424 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1425 	nid_t nid = get_nid(parent, start, false);
1426 
1427 	return __get_node_page(sbi, nid, parent, start);
1428 }
1429 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1430 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1431 {
1432 	struct inode *inode;
1433 	struct page *page;
1434 	int ret;
1435 
1436 	/* should flush inline_data before evict_inode */
1437 	inode = ilookup(sbi->sb, ino);
1438 	if (!inode)
1439 		return;
1440 
1441 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1442 					FGP_LOCK|FGP_NOWAIT, 0);
1443 	if (!page)
1444 		goto iput_out;
1445 
1446 	if (!PageUptodate(page))
1447 		goto page_out;
1448 
1449 	if (!PageDirty(page))
1450 		goto page_out;
1451 
1452 	if (!clear_page_dirty_for_io(page))
1453 		goto page_out;
1454 
1455 	ret = f2fs_write_inline_data(inode, page);
1456 	inode_dec_dirty_pages(inode);
1457 	f2fs_remove_dirty_inode(inode);
1458 	if (ret)
1459 		set_page_dirty(page);
1460 page_out:
1461 	f2fs_put_page(page, 1);
1462 iput_out:
1463 	iput(inode);
1464 }
1465 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1466 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1467 {
1468 	pgoff_t index;
1469 	struct pagevec pvec;
1470 	struct page *last_page = NULL;
1471 	int nr_pages;
1472 
1473 	pagevec_init(&pvec);
1474 	index = 0;
1475 
1476 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1477 				PAGECACHE_TAG_DIRTY))) {
1478 		int i;
1479 
1480 		for (i = 0; i < nr_pages; i++) {
1481 			struct page *page = pvec.pages[i];
1482 
1483 			if (unlikely(f2fs_cp_error(sbi))) {
1484 				f2fs_put_page(last_page, 0);
1485 				pagevec_release(&pvec);
1486 				return ERR_PTR(-EIO);
1487 			}
1488 
1489 			if (!IS_DNODE(page) || !is_cold_node(page))
1490 				continue;
1491 			if (ino_of_node(page) != ino)
1492 				continue;
1493 
1494 			lock_page(page);
1495 
1496 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1497 continue_unlock:
1498 				unlock_page(page);
1499 				continue;
1500 			}
1501 			if (ino_of_node(page) != ino)
1502 				goto continue_unlock;
1503 
1504 			if (!PageDirty(page)) {
1505 				/* someone wrote it for us */
1506 				goto continue_unlock;
1507 			}
1508 
1509 			if (last_page)
1510 				f2fs_put_page(last_page, 0);
1511 
1512 			get_page(page);
1513 			last_page = page;
1514 			unlock_page(page);
1515 		}
1516 		pagevec_release(&pvec);
1517 		cond_resched();
1518 	}
1519 	return last_page;
1520 }
1521 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1522 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1523 				struct writeback_control *wbc, bool do_balance,
1524 				enum iostat_type io_type, unsigned int *seq_id)
1525 {
1526 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1527 	nid_t nid;
1528 	struct node_info ni;
1529 	struct f2fs_io_info fio = {
1530 		.sbi = sbi,
1531 		.ino = ino_of_node(page),
1532 		.type = NODE,
1533 		.op = REQ_OP_WRITE,
1534 		.op_flags = wbc_to_write_flags(wbc),
1535 		.page = page,
1536 		.encrypted_page = NULL,
1537 		.submitted = false,
1538 		.io_type = io_type,
1539 		.io_wbc = wbc,
1540 	};
1541 	unsigned int seq;
1542 
1543 	trace_f2fs_writepage(page, NODE);
1544 
1545 	if (unlikely(f2fs_cp_error(sbi))) {
1546 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1547 			ClearPageUptodate(page);
1548 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1549 			unlock_page(page);
1550 			return 0;
1551 		}
1552 		goto redirty_out;
1553 	}
1554 
1555 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1556 		goto redirty_out;
1557 
1558 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1559 			wbc->sync_mode == WB_SYNC_NONE &&
1560 			IS_DNODE(page) && is_cold_node(page))
1561 		goto redirty_out;
1562 
1563 	/* get old block addr of this node page */
1564 	nid = nid_of_node(page);
1565 	f2fs_bug_on(sbi, page->index != nid);
1566 
1567 	if (f2fs_get_node_info(sbi, nid, &ni))
1568 		goto redirty_out;
1569 
1570 	if (wbc->for_reclaim) {
1571 		if (!down_read_trylock(&sbi->node_write))
1572 			goto redirty_out;
1573 	} else {
1574 		down_read(&sbi->node_write);
1575 	}
1576 
1577 	/* This page is already truncated */
1578 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1579 		ClearPageUptodate(page);
1580 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1581 		up_read(&sbi->node_write);
1582 		unlock_page(page);
1583 		return 0;
1584 	}
1585 
1586 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1587 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1588 					DATA_GENERIC_ENHANCE)) {
1589 		up_read(&sbi->node_write);
1590 		goto redirty_out;
1591 	}
1592 
1593 	if (atomic && !test_opt(sbi, NOBARRIER))
1594 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1595 
1596 	/* should add to global list before clearing PAGECACHE status */
1597 	if (f2fs_in_warm_node_list(sbi, page)) {
1598 		seq = f2fs_add_fsync_node_entry(sbi, page);
1599 		if (seq_id)
1600 			*seq_id = seq;
1601 	}
1602 
1603 	set_page_writeback(page);
1604 	ClearPageError(page);
1605 
1606 	fio.old_blkaddr = ni.blk_addr;
1607 	f2fs_do_write_node_page(nid, &fio);
1608 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1609 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1610 	up_read(&sbi->node_write);
1611 
1612 	if (wbc->for_reclaim) {
1613 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1614 		submitted = NULL;
1615 	}
1616 
1617 	unlock_page(page);
1618 
1619 	if (unlikely(f2fs_cp_error(sbi))) {
1620 		f2fs_submit_merged_write(sbi, NODE);
1621 		submitted = NULL;
1622 	}
1623 	if (submitted)
1624 		*submitted = fio.submitted;
1625 
1626 	if (do_balance)
1627 		f2fs_balance_fs(sbi, false);
1628 	return 0;
1629 
1630 redirty_out:
1631 	redirty_page_for_writepage(wbc, page);
1632 	return AOP_WRITEPAGE_ACTIVATE;
1633 }
1634 
f2fs_move_node_page(struct page * node_page,int gc_type)1635 int f2fs_move_node_page(struct page *node_page, int gc_type)
1636 {
1637 	int err = 0;
1638 
1639 	if (gc_type == FG_GC) {
1640 		struct writeback_control wbc = {
1641 			.sync_mode = WB_SYNC_ALL,
1642 			.nr_to_write = 1,
1643 			.for_reclaim = 0,
1644 		};
1645 
1646 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1647 
1648 		set_page_dirty(node_page);
1649 
1650 		if (!clear_page_dirty_for_io(node_page)) {
1651 			err = -EAGAIN;
1652 			goto out_page;
1653 		}
1654 
1655 		if (__write_node_page(node_page, false, NULL,
1656 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1657 			err = -EAGAIN;
1658 			unlock_page(node_page);
1659 		}
1660 		goto release_page;
1661 	} else {
1662 		/* set page dirty and write it */
1663 		if (!PageWriteback(node_page))
1664 			set_page_dirty(node_page);
1665 	}
1666 out_page:
1667 	unlock_page(node_page);
1668 release_page:
1669 	f2fs_put_page(node_page, 0);
1670 	return err;
1671 }
1672 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1673 static int f2fs_write_node_page(struct page *page,
1674 				struct writeback_control *wbc)
1675 {
1676 	return __write_node_page(page, false, NULL, wbc, false,
1677 						FS_NODE_IO, NULL);
1678 }
1679 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1680 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1681 			struct writeback_control *wbc, bool atomic,
1682 			unsigned int *seq_id)
1683 {
1684 	pgoff_t index;
1685 	struct pagevec pvec;
1686 	int ret = 0;
1687 	struct page *last_page = NULL;
1688 	bool marked = false;
1689 	nid_t ino = inode->i_ino;
1690 	int nr_pages;
1691 	int nwritten = 0;
1692 
1693 	if (atomic) {
1694 		last_page = last_fsync_dnode(sbi, ino);
1695 		if (IS_ERR_OR_NULL(last_page))
1696 			return PTR_ERR_OR_ZERO(last_page);
1697 	}
1698 retry:
1699 	pagevec_init(&pvec);
1700 	index = 0;
1701 
1702 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1703 				PAGECACHE_TAG_DIRTY))) {
1704 		int i;
1705 
1706 		for (i = 0; i < nr_pages; i++) {
1707 			struct page *page = pvec.pages[i];
1708 			bool submitted = false;
1709 
1710 			if (unlikely(f2fs_cp_error(sbi))) {
1711 				f2fs_put_page(last_page, 0);
1712 				pagevec_release(&pvec);
1713 				ret = -EIO;
1714 				goto out;
1715 			}
1716 
1717 			if (!IS_DNODE(page) || !is_cold_node(page))
1718 				continue;
1719 			if (ino_of_node(page) != ino)
1720 				continue;
1721 
1722 			lock_page(page);
1723 
1724 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1725 continue_unlock:
1726 				unlock_page(page);
1727 				continue;
1728 			}
1729 			if (ino_of_node(page) != ino)
1730 				goto continue_unlock;
1731 
1732 			if (!PageDirty(page) && page != last_page) {
1733 				/* someone wrote it for us */
1734 				goto continue_unlock;
1735 			}
1736 
1737 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1738 
1739 			set_fsync_mark(page, 0);
1740 			set_dentry_mark(page, 0);
1741 
1742 			if (!atomic || page == last_page) {
1743 				set_fsync_mark(page, 1);
1744 				if (IS_INODE(page)) {
1745 					if (is_inode_flag_set(inode,
1746 								FI_DIRTY_INODE))
1747 						f2fs_update_inode(inode, page);
1748 					set_dentry_mark(page,
1749 						f2fs_need_dentry_mark(sbi, ino));
1750 				}
1751 				/* may be written by other thread */
1752 				if (!PageDirty(page))
1753 					set_page_dirty(page);
1754 			}
1755 
1756 			if (!clear_page_dirty_for_io(page))
1757 				goto continue_unlock;
1758 
1759 			ret = __write_node_page(page, atomic &&
1760 						page == last_page,
1761 						&submitted, wbc, true,
1762 						FS_NODE_IO, seq_id);
1763 			if (ret) {
1764 				unlock_page(page);
1765 				f2fs_put_page(last_page, 0);
1766 				break;
1767 			} else if (submitted) {
1768 				nwritten++;
1769 			}
1770 
1771 			if (page == last_page) {
1772 				f2fs_put_page(page, 0);
1773 				marked = true;
1774 				break;
1775 			}
1776 		}
1777 		pagevec_release(&pvec);
1778 		cond_resched();
1779 
1780 		if (ret || marked)
1781 			break;
1782 	}
1783 	if (!ret && atomic && !marked) {
1784 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1785 			   ino, last_page->index);
1786 		lock_page(last_page);
1787 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1788 		set_page_dirty(last_page);
1789 		unlock_page(last_page);
1790 		goto retry;
1791 	}
1792 out:
1793 	if (nwritten)
1794 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1795 	return ret ? -EIO: 0;
1796 }
1797 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1798 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1799 {
1800 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1801 	bool clean;
1802 
1803 	if (inode->i_ino != ino)
1804 		return 0;
1805 
1806 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1807 		return 0;
1808 
1809 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1810 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1811 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1812 
1813 	if (clean)
1814 		return 0;
1815 
1816 	inode = igrab(inode);
1817 	if (!inode)
1818 		return 0;
1819 	return 1;
1820 }
1821 
flush_dirty_inode(struct page * page)1822 static bool flush_dirty_inode(struct page *page)
1823 {
1824 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1825 	struct inode *inode;
1826 	nid_t ino = ino_of_node(page);
1827 
1828 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1829 	if (!inode)
1830 		return false;
1831 
1832 	f2fs_update_inode(inode, page);
1833 	unlock_page(page);
1834 
1835 	iput(inode);
1836 	return true;
1837 }
1838 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1839 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1840 {
1841 	pgoff_t index = 0;
1842 	struct pagevec pvec;
1843 	int nr_pages;
1844 
1845 	pagevec_init(&pvec);
1846 
1847 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1848 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1849 		int i;
1850 
1851 		for (i = 0; i < nr_pages; i++) {
1852 			struct page *page = pvec.pages[i];
1853 
1854 			if (!IS_DNODE(page))
1855 				continue;
1856 
1857 			lock_page(page);
1858 
1859 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860 continue_unlock:
1861 				unlock_page(page);
1862 				continue;
1863 			}
1864 
1865 			if (!PageDirty(page)) {
1866 				/* someone wrote it for us */
1867 				goto continue_unlock;
1868 			}
1869 
1870 			/* flush inline_data, if it's async context. */
1871 			if (is_inline_node(page)) {
1872 				clear_inline_node(page);
1873 				unlock_page(page);
1874 				flush_inline_data(sbi, ino_of_node(page));
1875 				continue;
1876 			}
1877 			unlock_page(page);
1878 		}
1879 		pagevec_release(&pvec);
1880 		cond_resched();
1881 	}
1882 }
1883 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1884 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1885 				struct writeback_control *wbc,
1886 				bool do_balance, enum iostat_type io_type)
1887 {
1888 	pgoff_t index;
1889 	struct pagevec pvec;
1890 	int step = 0;
1891 	int nwritten = 0;
1892 	int ret = 0;
1893 	int nr_pages, done = 0;
1894 
1895 	pagevec_init(&pvec);
1896 
1897 next_step:
1898 	index = 0;
1899 
1900 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1901 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1902 		int i;
1903 
1904 		for (i = 0; i < nr_pages; i++) {
1905 			struct page *page = pvec.pages[i];
1906 			bool submitted = false;
1907 			bool may_dirty = true;
1908 
1909 			/* give a priority to WB_SYNC threads */
1910 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1911 					wbc->sync_mode == WB_SYNC_NONE) {
1912 				done = 1;
1913 				break;
1914 			}
1915 
1916 			/*
1917 			 * flushing sequence with step:
1918 			 * 0. indirect nodes
1919 			 * 1. dentry dnodes
1920 			 * 2. file dnodes
1921 			 */
1922 			if (step == 0 && IS_DNODE(page))
1923 				continue;
1924 			if (step == 1 && (!IS_DNODE(page) ||
1925 						is_cold_node(page)))
1926 				continue;
1927 			if (step == 2 && (!IS_DNODE(page) ||
1928 						!is_cold_node(page)))
1929 				continue;
1930 lock_node:
1931 			if (wbc->sync_mode == WB_SYNC_ALL)
1932 				lock_page(page);
1933 			else if (!trylock_page(page))
1934 				continue;
1935 
1936 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1937 continue_unlock:
1938 				unlock_page(page);
1939 				continue;
1940 			}
1941 
1942 			if (!PageDirty(page)) {
1943 				/* someone wrote it for us */
1944 				goto continue_unlock;
1945 			}
1946 
1947 			/* flush inline_data/inode, if it's async context. */
1948 			if (!do_balance)
1949 				goto write_node;
1950 
1951 			/* flush inline_data */
1952 			if (is_inline_node(page)) {
1953 				clear_inline_node(page);
1954 				unlock_page(page);
1955 				flush_inline_data(sbi, ino_of_node(page));
1956 				goto lock_node;
1957 			}
1958 
1959 			/* flush dirty inode */
1960 			if (IS_INODE(page) && may_dirty) {
1961 				may_dirty = false;
1962 				if (flush_dirty_inode(page))
1963 					goto lock_node;
1964 			}
1965 write_node:
1966 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1967 
1968 			if (!clear_page_dirty_for_io(page))
1969 				goto continue_unlock;
1970 
1971 			set_fsync_mark(page, 0);
1972 			set_dentry_mark(page, 0);
1973 
1974 			ret = __write_node_page(page, false, &submitted,
1975 						wbc, do_balance, io_type, NULL);
1976 			if (ret)
1977 				unlock_page(page);
1978 			else if (submitted)
1979 				nwritten++;
1980 
1981 			if (--wbc->nr_to_write == 0)
1982 				break;
1983 		}
1984 		pagevec_release(&pvec);
1985 		cond_resched();
1986 
1987 		if (wbc->nr_to_write == 0) {
1988 			step = 2;
1989 			break;
1990 		}
1991 	}
1992 
1993 	if (step < 2) {
1994 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1995 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
1996 			goto out;
1997 		step++;
1998 		goto next_step;
1999 	}
2000 out:
2001 	if (nwritten)
2002 		f2fs_submit_merged_write(sbi, NODE);
2003 
2004 	if (unlikely(f2fs_cp_error(sbi)))
2005 		return -EIO;
2006 	return ret;
2007 }
2008 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2009 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2010 						unsigned int seq_id)
2011 {
2012 	struct fsync_node_entry *fn;
2013 	struct page *page;
2014 	struct list_head *head = &sbi->fsync_node_list;
2015 	unsigned long flags;
2016 	unsigned int cur_seq_id = 0;
2017 	int ret2, ret = 0;
2018 
2019 	while (seq_id && cur_seq_id < seq_id) {
2020 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2021 		if (list_empty(head)) {
2022 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2023 			break;
2024 		}
2025 		fn = list_first_entry(head, struct fsync_node_entry, list);
2026 		if (fn->seq_id > seq_id) {
2027 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2028 			break;
2029 		}
2030 		cur_seq_id = fn->seq_id;
2031 		page = fn->page;
2032 		get_page(page);
2033 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2034 
2035 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2036 		if (TestClearPageError(page))
2037 			ret = -EIO;
2038 
2039 		put_page(page);
2040 
2041 		if (ret)
2042 			break;
2043 	}
2044 
2045 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2046 	if (!ret)
2047 		ret = ret2;
2048 
2049 	return ret;
2050 }
2051 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2052 static int f2fs_write_node_pages(struct address_space *mapping,
2053 			    struct writeback_control *wbc)
2054 {
2055 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2056 	struct blk_plug plug;
2057 	long diff;
2058 
2059 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2060 		goto skip_write;
2061 
2062 	/* balancing f2fs's metadata in background */
2063 	f2fs_balance_fs_bg(sbi, true);
2064 
2065 	/* collect a number of dirty node pages and write together */
2066 	if (wbc->sync_mode != WB_SYNC_ALL &&
2067 			get_pages(sbi, F2FS_DIRTY_NODES) <
2068 					nr_pages_to_skip(sbi, NODE))
2069 		goto skip_write;
2070 
2071 	if (wbc->sync_mode == WB_SYNC_ALL)
2072 		atomic_inc(&sbi->wb_sync_req[NODE]);
2073 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2074 		/* to avoid potential deadlock */
2075 		if (current->plug)
2076 			blk_finish_plug(current->plug);
2077 		goto skip_write;
2078 	}
2079 
2080 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2081 
2082 	diff = nr_pages_to_write(sbi, NODE, wbc);
2083 	blk_start_plug(&plug);
2084 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2085 	blk_finish_plug(&plug);
2086 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2087 
2088 	if (wbc->sync_mode == WB_SYNC_ALL)
2089 		atomic_dec(&sbi->wb_sync_req[NODE]);
2090 	return 0;
2091 
2092 skip_write:
2093 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2094 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2095 	return 0;
2096 }
2097 
f2fs_set_node_page_dirty(struct page * page)2098 static int f2fs_set_node_page_dirty(struct page *page)
2099 {
2100 	trace_f2fs_set_page_dirty(page, NODE);
2101 
2102 	if (!PageUptodate(page))
2103 		SetPageUptodate(page);
2104 #ifdef CONFIG_F2FS_CHECK_FS
2105 	if (IS_INODE(page))
2106 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2107 #endif
2108 	if (!PageDirty(page)) {
2109 		__set_page_dirty_nobuffers(page);
2110 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2111 		f2fs_set_page_private(page, 0);
2112 		f2fs_trace_pid(page);
2113 		return 1;
2114 	}
2115 	return 0;
2116 }
2117 
2118 /*
2119  * Structure of the f2fs node operations
2120  */
2121 const struct address_space_operations f2fs_node_aops = {
2122 	.writepage	= f2fs_write_node_page,
2123 	.writepages	= f2fs_write_node_pages,
2124 	.set_page_dirty	= f2fs_set_node_page_dirty,
2125 	.invalidatepage	= f2fs_invalidate_page,
2126 	.releasepage	= f2fs_release_page,
2127 #ifdef CONFIG_MIGRATION
2128 	.migratepage	= f2fs_migrate_page,
2129 #endif
2130 };
2131 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2132 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2133 						nid_t n)
2134 {
2135 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2136 }
2137 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2138 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2139 				struct free_nid *i)
2140 {
2141 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2142 
2143 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2144 	if (err)
2145 		return err;
2146 
2147 	nm_i->nid_cnt[FREE_NID]++;
2148 	list_add_tail(&i->list, &nm_i->free_nid_list);
2149 	return 0;
2150 }
2151 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2152 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2153 			struct free_nid *i, enum nid_state state)
2154 {
2155 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2156 
2157 	f2fs_bug_on(sbi, state != i->state);
2158 	nm_i->nid_cnt[state]--;
2159 	if (state == FREE_NID)
2160 		list_del(&i->list);
2161 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2162 }
2163 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2164 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2165 			enum nid_state org_state, enum nid_state dst_state)
2166 {
2167 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2168 
2169 	f2fs_bug_on(sbi, org_state != i->state);
2170 	i->state = dst_state;
2171 	nm_i->nid_cnt[org_state]--;
2172 	nm_i->nid_cnt[dst_state]++;
2173 
2174 	switch (dst_state) {
2175 	case PREALLOC_NID:
2176 		list_del(&i->list);
2177 		break;
2178 	case FREE_NID:
2179 		list_add_tail(&i->list, &nm_i->free_nid_list);
2180 		break;
2181 	default:
2182 		BUG_ON(1);
2183 	}
2184 }
2185 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2186 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2187 							bool set, bool build)
2188 {
2189 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2190 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2191 	unsigned int nid_ofs = nid - START_NID(nid);
2192 
2193 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2194 		return;
2195 
2196 	if (set) {
2197 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2198 			return;
2199 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2200 		nm_i->free_nid_count[nat_ofs]++;
2201 	} else {
2202 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2203 			return;
2204 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2205 		if (!build)
2206 			nm_i->free_nid_count[nat_ofs]--;
2207 	}
2208 }
2209 
2210 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2211 static bool add_free_nid(struct f2fs_sb_info *sbi,
2212 				nid_t nid, bool build, bool update)
2213 {
2214 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2215 	struct free_nid *i, *e;
2216 	struct nat_entry *ne;
2217 	int err = -EINVAL;
2218 	bool ret = false;
2219 
2220 	/* 0 nid should not be used */
2221 	if (unlikely(nid == 0))
2222 		return false;
2223 
2224 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2225 		return false;
2226 
2227 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2228 	i->nid = nid;
2229 	i->state = FREE_NID;
2230 
2231 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2232 
2233 	spin_lock(&nm_i->nid_list_lock);
2234 
2235 	if (build) {
2236 		/*
2237 		 *   Thread A             Thread B
2238 		 *  - f2fs_create
2239 		 *   - f2fs_new_inode
2240 		 *    - f2fs_alloc_nid
2241 		 *     - __insert_nid_to_list(PREALLOC_NID)
2242 		 *                     - f2fs_balance_fs_bg
2243 		 *                      - f2fs_build_free_nids
2244 		 *                       - __f2fs_build_free_nids
2245 		 *                        - scan_nat_page
2246 		 *                         - add_free_nid
2247 		 *                          - __lookup_nat_cache
2248 		 *  - f2fs_add_link
2249 		 *   - f2fs_init_inode_metadata
2250 		 *    - f2fs_new_inode_page
2251 		 *     - f2fs_new_node_page
2252 		 *      - set_node_addr
2253 		 *  - f2fs_alloc_nid_done
2254 		 *   - __remove_nid_from_list(PREALLOC_NID)
2255 		 *                         - __insert_nid_to_list(FREE_NID)
2256 		 */
2257 		ne = __lookup_nat_cache(nm_i, nid);
2258 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2259 				nat_get_blkaddr(ne) != NULL_ADDR))
2260 			goto err_out;
2261 
2262 		e = __lookup_free_nid_list(nm_i, nid);
2263 		if (e) {
2264 			if (e->state == FREE_NID)
2265 				ret = true;
2266 			goto err_out;
2267 		}
2268 	}
2269 	ret = true;
2270 	err = __insert_free_nid(sbi, i);
2271 err_out:
2272 	if (update) {
2273 		update_free_nid_bitmap(sbi, nid, ret, build);
2274 		if (!build)
2275 			nm_i->available_nids++;
2276 	}
2277 	spin_unlock(&nm_i->nid_list_lock);
2278 	radix_tree_preload_end();
2279 
2280 	if (err)
2281 		kmem_cache_free(free_nid_slab, i);
2282 	return ret;
2283 }
2284 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2285 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2286 {
2287 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2288 	struct free_nid *i;
2289 	bool need_free = false;
2290 
2291 	spin_lock(&nm_i->nid_list_lock);
2292 	i = __lookup_free_nid_list(nm_i, nid);
2293 	if (i && i->state == FREE_NID) {
2294 		__remove_free_nid(sbi, i, FREE_NID);
2295 		need_free = true;
2296 	}
2297 	spin_unlock(&nm_i->nid_list_lock);
2298 
2299 	if (need_free)
2300 		kmem_cache_free(free_nid_slab, i);
2301 }
2302 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2303 static int scan_nat_page(struct f2fs_sb_info *sbi,
2304 			struct page *nat_page, nid_t start_nid)
2305 {
2306 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2307 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2308 	block_t blk_addr;
2309 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2310 	int i;
2311 
2312 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2313 
2314 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2315 
2316 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2317 		if (unlikely(start_nid >= nm_i->max_nid))
2318 			break;
2319 
2320 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2321 
2322 		if (blk_addr == NEW_ADDR)
2323 			return -EINVAL;
2324 
2325 		if (blk_addr == NULL_ADDR) {
2326 			add_free_nid(sbi, start_nid, true, true);
2327 		} else {
2328 			spin_lock(&NM_I(sbi)->nid_list_lock);
2329 			update_free_nid_bitmap(sbi, start_nid, false, true);
2330 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2331 		}
2332 	}
2333 
2334 	return 0;
2335 }
2336 
scan_curseg_cache(struct f2fs_sb_info * sbi)2337 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2338 {
2339 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2340 	struct f2fs_journal *journal = curseg->journal;
2341 	int i;
2342 
2343 	down_read(&curseg->journal_rwsem);
2344 	for (i = 0; i < nats_in_cursum(journal); i++) {
2345 		block_t addr;
2346 		nid_t nid;
2347 
2348 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2349 		nid = le32_to_cpu(nid_in_journal(journal, i));
2350 		if (addr == NULL_ADDR)
2351 			add_free_nid(sbi, nid, true, false);
2352 		else
2353 			remove_free_nid(sbi, nid);
2354 	}
2355 	up_read(&curseg->journal_rwsem);
2356 }
2357 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2358 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2359 {
2360 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2361 	unsigned int i, idx;
2362 	nid_t nid;
2363 
2364 	down_read(&nm_i->nat_tree_lock);
2365 
2366 	for (i = 0; i < nm_i->nat_blocks; i++) {
2367 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2368 			continue;
2369 		if (!nm_i->free_nid_count[i])
2370 			continue;
2371 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2372 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2373 						NAT_ENTRY_PER_BLOCK, idx);
2374 			if (idx >= NAT_ENTRY_PER_BLOCK)
2375 				break;
2376 
2377 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2378 			add_free_nid(sbi, nid, true, false);
2379 
2380 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2381 				goto out;
2382 		}
2383 	}
2384 out:
2385 	scan_curseg_cache(sbi);
2386 
2387 	up_read(&nm_i->nat_tree_lock);
2388 }
2389 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2390 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2391 						bool sync, bool mount)
2392 {
2393 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2394 	int i = 0, ret;
2395 	nid_t nid = nm_i->next_scan_nid;
2396 
2397 	if (unlikely(nid >= nm_i->max_nid))
2398 		nid = 0;
2399 
2400 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2401 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2402 
2403 	/* Enough entries */
2404 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2405 		return 0;
2406 
2407 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2408 		return 0;
2409 
2410 	if (!mount) {
2411 		/* try to find free nids in free_nid_bitmap */
2412 		scan_free_nid_bits(sbi);
2413 
2414 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2415 			return 0;
2416 	}
2417 
2418 	/* readahead nat pages to be scanned */
2419 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2420 							META_NAT, true);
2421 
2422 	down_read(&nm_i->nat_tree_lock);
2423 
2424 	while (1) {
2425 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2426 						nm_i->nat_block_bitmap)) {
2427 			struct page *page = get_current_nat_page(sbi, nid);
2428 
2429 			if (IS_ERR(page)) {
2430 				ret = PTR_ERR(page);
2431 			} else {
2432 				ret = scan_nat_page(sbi, page, nid);
2433 				f2fs_put_page(page, 1);
2434 			}
2435 
2436 			if (ret) {
2437 				up_read(&nm_i->nat_tree_lock);
2438 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2439 				return ret;
2440 			}
2441 		}
2442 
2443 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2444 		if (unlikely(nid >= nm_i->max_nid))
2445 			nid = 0;
2446 
2447 		if (++i >= FREE_NID_PAGES)
2448 			break;
2449 	}
2450 
2451 	/* go to the next free nat pages to find free nids abundantly */
2452 	nm_i->next_scan_nid = nid;
2453 
2454 	/* find free nids from current sum_pages */
2455 	scan_curseg_cache(sbi);
2456 
2457 	up_read(&nm_i->nat_tree_lock);
2458 
2459 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2460 					nm_i->ra_nid_pages, META_NAT, false);
2461 
2462 	return 0;
2463 }
2464 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2465 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2466 {
2467 	int ret;
2468 
2469 	mutex_lock(&NM_I(sbi)->build_lock);
2470 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2471 	mutex_unlock(&NM_I(sbi)->build_lock);
2472 
2473 	return ret;
2474 }
2475 
2476 /*
2477  * If this function returns success, caller can obtain a new nid
2478  * from second parameter of this function.
2479  * The returned nid could be used ino as well as nid when inode is created.
2480  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2481 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2482 {
2483 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2484 	struct free_nid *i = NULL;
2485 retry:
2486 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2487 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2488 		return false;
2489 	}
2490 
2491 	spin_lock(&nm_i->nid_list_lock);
2492 
2493 	if (unlikely(nm_i->available_nids == 0)) {
2494 		spin_unlock(&nm_i->nid_list_lock);
2495 		return false;
2496 	}
2497 
2498 	/* We should not use stale free nids created by f2fs_build_free_nids */
2499 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2500 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2501 		i = list_first_entry(&nm_i->free_nid_list,
2502 					struct free_nid, list);
2503 		*nid = i->nid;
2504 
2505 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2506 		nm_i->available_nids--;
2507 
2508 		update_free_nid_bitmap(sbi, *nid, false, false);
2509 
2510 		spin_unlock(&nm_i->nid_list_lock);
2511 		return true;
2512 	}
2513 	spin_unlock(&nm_i->nid_list_lock);
2514 
2515 	/* Let's scan nat pages and its caches to get free nids */
2516 	if (!f2fs_build_free_nids(sbi, true, false))
2517 		goto retry;
2518 	return false;
2519 }
2520 
2521 /*
2522  * f2fs_alloc_nid() should be called prior to this function.
2523  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2524 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2525 {
2526 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2527 	struct free_nid *i;
2528 
2529 	spin_lock(&nm_i->nid_list_lock);
2530 	i = __lookup_free_nid_list(nm_i, nid);
2531 	f2fs_bug_on(sbi, !i);
2532 	__remove_free_nid(sbi, i, PREALLOC_NID);
2533 	spin_unlock(&nm_i->nid_list_lock);
2534 
2535 	kmem_cache_free(free_nid_slab, i);
2536 }
2537 
2538 /*
2539  * f2fs_alloc_nid() should be called prior to this function.
2540  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2541 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2542 {
2543 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2544 	struct free_nid *i;
2545 	bool need_free = false;
2546 
2547 	if (!nid)
2548 		return;
2549 
2550 	spin_lock(&nm_i->nid_list_lock);
2551 	i = __lookup_free_nid_list(nm_i, nid);
2552 	f2fs_bug_on(sbi, !i);
2553 
2554 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2555 		__remove_free_nid(sbi, i, PREALLOC_NID);
2556 		need_free = true;
2557 	} else {
2558 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2559 	}
2560 
2561 	nm_i->available_nids++;
2562 
2563 	update_free_nid_bitmap(sbi, nid, true, false);
2564 
2565 	spin_unlock(&nm_i->nid_list_lock);
2566 
2567 	if (need_free)
2568 		kmem_cache_free(free_nid_slab, i);
2569 }
2570 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2571 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2572 {
2573 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2574 	int nr = nr_shrink;
2575 
2576 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2577 		return 0;
2578 
2579 	if (!mutex_trylock(&nm_i->build_lock))
2580 		return 0;
2581 
2582 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2583 		struct free_nid *i, *next;
2584 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2585 
2586 		spin_lock(&nm_i->nid_list_lock);
2587 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2588 			if (!nr_shrink || !batch ||
2589 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2590 				break;
2591 			__remove_free_nid(sbi, i, FREE_NID);
2592 			kmem_cache_free(free_nid_slab, i);
2593 			nr_shrink--;
2594 			batch--;
2595 		}
2596 		spin_unlock(&nm_i->nid_list_lock);
2597 	}
2598 
2599 	mutex_unlock(&nm_i->build_lock);
2600 
2601 	return nr - nr_shrink;
2602 }
2603 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2604 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2605 {
2606 	void *src_addr, *dst_addr;
2607 	size_t inline_size;
2608 	struct page *ipage;
2609 	struct f2fs_inode *ri;
2610 
2611 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2612 	if (IS_ERR(ipage))
2613 		return PTR_ERR(ipage);
2614 
2615 	ri = F2FS_INODE(page);
2616 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2617 		set_inode_flag(inode, FI_INLINE_XATTR);
2618 	} else {
2619 		clear_inode_flag(inode, FI_INLINE_XATTR);
2620 		goto update_inode;
2621 	}
2622 
2623 	dst_addr = inline_xattr_addr(inode, ipage);
2624 	src_addr = inline_xattr_addr(inode, page);
2625 	inline_size = inline_xattr_size(inode);
2626 
2627 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2628 	memcpy(dst_addr, src_addr, inline_size);
2629 update_inode:
2630 	f2fs_update_inode(inode, ipage);
2631 	f2fs_put_page(ipage, 1);
2632 	return 0;
2633 }
2634 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2635 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2636 {
2637 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2639 	nid_t new_xnid;
2640 	struct dnode_of_data dn;
2641 	struct node_info ni;
2642 	struct page *xpage;
2643 	int err;
2644 
2645 	if (!prev_xnid)
2646 		goto recover_xnid;
2647 
2648 	/* 1: invalidate the previous xattr nid */
2649 	err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2650 	if (err)
2651 		return err;
2652 
2653 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2654 	dec_valid_node_count(sbi, inode, false);
2655 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2656 
2657 recover_xnid:
2658 	/* 2: update xattr nid in inode */
2659 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2660 		return -ENOSPC;
2661 
2662 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2663 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2664 	if (IS_ERR(xpage)) {
2665 		f2fs_alloc_nid_failed(sbi, new_xnid);
2666 		return PTR_ERR(xpage);
2667 	}
2668 
2669 	f2fs_alloc_nid_done(sbi, new_xnid);
2670 	f2fs_update_inode_page(inode);
2671 
2672 	/* 3: update and set xattr node page dirty */
2673 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2674 
2675 	set_page_dirty(xpage);
2676 	f2fs_put_page(xpage, 1);
2677 
2678 	return 0;
2679 }
2680 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2681 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2682 {
2683 	struct f2fs_inode *src, *dst;
2684 	nid_t ino = ino_of_node(page);
2685 	struct node_info old_ni, new_ni;
2686 	struct page *ipage;
2687 	int err;
2688 
2689 	err = f2fs_get_node_info(sbi, ino, &old_ni);
2690 	if (err)
2691 		return err;
2692 
2693 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2694 		return -EINVAL;
2695 retry:
2696 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2697 	if (!ipage) {
2698 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2699 		goto retry;
2700 	}
2701 
2702 	/* Should not use this inode from free nid list */
2703 	remove_free_nid(sbi, ino);
2704 
2705 	if (!PageUptodate(ipage))
2706 		SetPageUptodate(ipage);
2707 	fill_node_footer(ipage, ino, ino, 0, true);
2708 	set_cold_node(ipage, false);
2709 
2710 	src = F2FS_INODE(page);
2711 	dst = F2FS_INODE(ipage);
2712 
2713 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2714 	dst->i_size = 0;
2715 	dst->i_blocks = cpu_to_le64(1);
2716 	dst->i_links = cpu_to_le32(1);
2717 	dst->i_xattr_nid = 0;
2718 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2719 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2720 		dst->i_extra_isize = src->i_extra_isize;
2721 
2722 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2723 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2724 							i_inline_xattr_size))
2725 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2726 
2727 		if (f2fs_sb_has_project_quota(sbi) &&
2728 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2729 								i_projid))
2730 			dst->i_projid = src->i_projid;
2731 
2732 		if (f2fs_sb_has_inode_crtime(sbi) &&
2733 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2734 							i_crtime_nsec)) {
2735 			dst->i_crtime = src->i_crtime;
2736 			dst->i_crtime_nsec = src->i_crtime_nsec;
2737 		}
2738 	}
2739 
2740 	new_ni = old_ni;
2741 	new_ni.ino = ino;
2742 
2743 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2744 		WARN_ON(1);
2745 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2746 	inc_valid_inode_count(sbi);
2747 	set_page_dirty(ipage);
2748 	f2fs_put_page(ipage, 1);
2749 	return 0;
2750 }
2751 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2752 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2753 			unsigned int segno, struct f2fs_summary_block *sum)
2754 {
2755 	struct f2fs_node *rn;
2756 	struct f2fs_summary *sum_entry;
2757 	block_t addr;
2758 	int i, idx, last_offset, nrpages;
2759 
2760 	/* scan the node segment */
2761 	last_offset = sbi->blocks_per_seg;
2762 	addr = START_BLOCK(sbi, segno);
2763 	sum_entry = &sum->entries[0];
2764 
2765 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2766 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2767 
2768 		/* readahead node pages */
2769 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2770 
2771 		for (idx = addr; idx < addr + nrpages; idx++) {
2772 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2773 
2774 			if (IS_ERR(page))
2775 				return PTR_ERR(page);
2776 
2777 			rn = F2FS_NODE(page);
2778 			sum_entry->nid = rn->footer.nid;
2779 			sum_entry->version = 0;
2780 			sum_entry->ofs_in_node = 0;
2781 			sum_entry++;
2782 			f2fs_put_page(page, 1);
2783 		}
2784 
2785 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2786 							addr + nrpages);
2787 	}
2788 	return 0;
2789 }
2790 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2791 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2792 {
2793 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2794 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2795 	struct f2fs_journal *journal = curseg->journal;
2796 	int i;
2797 
2798 	down_write(&curseg->journal_rwsem);
2799 	for (i = 0; i < nats_in_cursum(journal); i++) {
2800 		struct nat_entry *ne;
2801 		struct f2fs_nat_entry raw_ne;
2802 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2803 
2804 		if (f2fs_check_nid_range(sbi, nid))
2805 			continue;
2806 
2807 		raw_ne = nat_in_journal(journal, i);
2808 
2809 		ne = __lookup_nat_cache(nm_i, nid);
2810 		if (!ne) {
2811 			ne = __alloc_nat_entry(nid, true);
2812 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2813 		}
2814 
2815 		/*
2816 		 * if a free nat in journal has not been used after last
2817 		 * checkpoint, we should remove it from available nids,
2818 		 * since later we will add it again.
2819 		 */
2820 		if (!get_nat_flag(ne, IS_DIRTY) &&
2821 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2822 			spin_lock(&nm_i->nid_list_lock);
2823 			nm_i->available_nids--;
2824 			spin_unlock(&nm_i->nid_list_lock);
2825 		}
2826 
2827 		__set_nat_cache_dirty(nm_i, ne);
2828 	}
2829 	update_nats_in_cursum(journal, -i);
2830 	up_write(&curseg->journal_rwsem);
2831 }
2832 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2833 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2834 						struct list_head *head, int max)
2835 {
2836 	struct nat_entry_set *cur;
2837 
2838 	if (nes->entry_cnt >= max)
2839 		goto add_out;
2840 
2841 	list_for_each_entry(cur, head, set_list) {
2842 		if (cur->entry_cnt >= nes->entry_cnt) {
2843 			list_add(&nes->set_list, cur->set_list.prev);
2844 			return;
2845 		}
2846 	}
2847 add_out:
2848 	list_add_tail(&nes->set_list, head);
2849 }
2850 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2851 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2852 						struct page *page)
2853 {
2854 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2855 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2856 	struct f2fs_nat_block *nat_blk = page_address(page);
2857 	int valid = 0;
2858 	int i = 0;
2859 
2860 	if (!enabled_nat_bits(sbi, NULL))
2861 		return;
2862 
2863 	if (nat_index == 0) {
2864 		valid = 1;
2865 		i = 1;
2866 	}
2867 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2868 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2869 			valid++;
2870 	}
2871 	if (valid == 0) {
2872 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2873 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2874 		return;
2875 	}
2876 
2877 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2878 	if (valid == NAT_ENTRY_PER_BLOCK)
2879 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2880 	else
2881 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2882 }
2883 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2884 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2885 		struct nat_entry_set *set, struct cp_control *cpc)
2886 {
2887 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2888 	struct f2fs_journal *journal = curseg->journal;
2889 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2890 	bool to_journal = true;
2891 	struct f2fs_nat_block *nat_blk;
2892 	struct nat_entry *ne, *cur;
2893 	struct page *page = NULL;
2894 
2895 	/*
2896 	 * there are two steps to flush nat entries:
2897 	 * #1, flush nat entries to journal in current hot data summary block.
2898 	 * #2, flush nat entries to nat page.
2899 	 */
2900 	if (enabled_nat_bits(sbi, cpc) ||
2901 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2902 		to_journal = false;
2903 
2904 	if (to_journal) {
2905 		down_write(&curseg->journal_rwsem);
2906 	} else {
2907 		page = get_next_nat_page(sbi, start_nid);
2908 		if (IS_ERR(page))
2909 			return PTR_ERR(page);
2910 
2911 		nat_blk = page_address(page);
2912 		f2fs_bug_on(sbi, !nat_blk);
2913 	}
2914 
2915 	/* flush dirty nats in nat entry set */
2916 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2917 		struct f2fs_nat_entry *raw_ne;
2918 		nid_t nid = nat_get_nid(ne);
2919 		int offset;
2920 
2921 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2922 
2923 		if (to_journal) {
2924 			offset = f2fs_lookup_journal_in_cursum(journal,
2925 							NAT_JOURNAL, nid, 1);
2926 			f2fs_bug_on(sbi, offset < 0);
2927 			raw_ne = &nat_in_journal(journal, offset);
2928 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2929 		} else {
2930 			raw_ne = &nat_blk->entries[nid - start_nid];
2931 		}
2932 		raw_nat_from_node_info(raw_ne, &ne->ni);
2933 		nat_reset_flag(ne);
2934 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2935 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2936 			add_free_nid(sbi, nid, false, true);
2937 		} else {
2938 			spin_lock(&NM_I(sbi)->nid_list_lock);
2939 			update_free_nid_bitmap(sbi, nid, false, false);
2940 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2941 		}
2942 	}
2943 
2944 	if (to_journal) {
2945 		up_write(&curseg->journal_rwsem);
2946 	} else {
2947 		__update_nat_bits(sbi, start_nid, page);
2948 		f2fs_put_page(page, 1);
2949 	}
2950 
2951 	/* Allow dirty nats by node block allocation in write_begin */
2952 	if (!set->entry_cnt) {
2953 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2954 		kmem_cache_free(nat_entry_set_slab, set);
2955 	}
2956 	return 0;
2957 }
2958 
2959 /*
2960  * This function is called during the checkpointing process.
2961  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2962 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2963 {
2964 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2965 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2966 	struct f2fs_journal *journal = curseg->journal;
2967 	struct nat_entry_set *setvec[SETVEC_SIZE];
2968 	struct nat_entry_set *set, *tmp;
2969 	unsigned int found;
2970 	nid_t set_idx = 0;
2971 	LIST_HEAD(sets);
2972 	int err = 0;
2973 
2974 	/*
2975 	 * during unmount, let's flush nat_bits before checking
2976 	 * nat_cnt[DIRTY_NAT].
2977 	 */
2978 	if (enabled_nat_bits(sbi, cpc)) {
2979 		down_write(&nm_i->nat_tree_lock);
2980 		remove_nats_in_journal(sbi);
2981 		up_write(&nm_i->nat_tree_lock);
2982 	}
2983 
2984 	if (!nm_i->nat_cnt[DIRTY_NAT])
2985 		return 0;
2986 
2987 	down_write(&nm_i->nat_tree_lock);
2988 
2989 	/*
2990 	 * if there are no enough space in journal to store dirty nat
2991 	 * entries, remove all entries from journal and merge them
2992 	 * into nat entry set.
2993 	 */
2994 	if (enabled_nat_bits(sbi, cpc) ||
2995 		!__has_cursum_space(journal,
2996 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2997 		remove_nats_in_journal(sbi);
2998 
2999 	while ((found = __gang_lookup_nat_set(nm_i,
3000 					set_idx, SETVEC_SIZE, setvec))) {
3001 		unsigned idx;
3002 		set_idx = setvec[found - 1]->set + 1;
3003 		for (idx = 0; idx < found; idx++)
3004 			__adjust_nat_entry_set(setvec[idx], &sets,
3005 						MAX_NAT_JENTRIES(journal));
3006 	}
3007 
3008 	/* flush dirty nats in nat entry set */
3009 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3010 		err = __flush_nat_entry_set(sbi, set, cpc);
3011 		if (err)
3012 			break;
3013 	}
3014 
3015 	up_write(&nm_i->nat_tree_lock);
3016 	/* Allow dirty nats by node block allocation in write_begin */
3017 
3018 	return err;
3019 }
3020 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3021 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3022 {
3023 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3024 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3025 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3026 	unsigned int i;
3027 	__u64 cp_ver = cur_cp_version(ckpt);
3028 	block_t nat_bits_addr;
3029 
3030 	if (!enabled_nat_bits(sbi, NULL))
3031 		return 0;
3032 
3033 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3034 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3035 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3036 	if (!nm_i->nat_bits)
3037 		return -ENOMEM;
3038 
3039 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3040 						nm_i->nat_bits_blocks;
3041 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3042 		struct page *page;
3043 
3044 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3045 		if (IS_ERR(page))
3046 			return PTR_ERR(page);
3047 
3048 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3049 					page_address(page), F2FS_BLKSIZE);
3050 		f2fs_put_page(page, 1);
3051 	}
3052 
3053 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3054 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3055 		disable_nat_bits(sbi, true);
3056 		return 0;
3057 	}
3058 
3059 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3060 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3061 
3062 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3063 	return 0;
3064 }
3065 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3066 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3067 {
3068 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3069 	unsigned int i = 0;
3070 	nid_t nid, last_nid;
3071 
3072 	if (!enabled_nat_bits(sbi, NULL))
3073 		return;
3074 
3075 	for (i = 0; i < nm_i->nat_blocks; i++) {
3076 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3077 		if (i >= nm_i->nat_blocks)
3078 			break;
3079 
3080 		__set_bit_le(i, nm_i->nat_block_bitmap);
3081 
3082 		nid = i * NAT_ENTRY_PER_BLOCK;
3083 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3084 
3085 		spin_lock(&NM_I(sbi)->nid_list_lock);
3086 		for (; nid < last_nid; nid++)
3087 			update_free_nid_bitmap(sbi, nid, true, true);
3088 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3089 	}
3090 
3091 	for (i = 0; i < nm_i->nat_blocks; i++) {
3092 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3093 		if (i >= nm_i->nat_blocks)
3094 			break;
3095 
3096 		__set_bit_le(i, nm_i->nat_block_bitmap);
3097 	}
3098 }
3099 
init_node_manager(struct f2fs_sb_info * sbi)3100 static int init_node_manager(struct f2fs_sb_info *sbi)
3101 {
3102 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3103 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3104 	unsigned char *version_bitmap;
3105 	unsigned int nat_segs;
3106 	int err;
3107 
3108 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3109 
3110 	/* segment_count_nat includes pair segment so divide to 2. */
3111 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3112 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3113 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3114 
3115 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3116 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3117 						F2FS_RESERVED_NODE_NUM;
3118 	nm_i->nid_cnt[FREE_NID] = 0;
3119 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3120 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3121 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3122 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3123 
3124 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3125 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3126 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3127 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3128 	INIT_LIST_HEAD(&nm_i->nat_entries);
3129 	spin_lock_init(&nm_i->nat_list_lock);
3130 
3131 	mutex_init(&nm_i->build_lock);
3132 	spin_lock_init(&nm_i->nid_list_lock);
3133 	init_rwsem(&nm_i->nat_tree_lock);
3134 
3135 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3136 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3137 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3138 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3139 					GFP_KERNEL);
3140 	if (!nm_i->nat_bitmap)
3141 		return -ENOMEM;
3142 
3143 	err = __get_nat_bitmaps(sbi);
3144 	if (err)
3145 		return err;
3146 
3147 #ifdef CONFIG_F2FS_CHECK_FS
3148 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3149 					GFP_KERNEL);
3150 	if (!nm_i->nat_bitmap_mir)
3151 		return -ENOMEM;
3152 #endif
3153 
3154 	return 0;
3155 }
3156 
init_free_nid_cache(struct f2fs_sb_info * sbi)3157 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3158 {
3159 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3160 	int i;
3161 
3162 	nm_i->free_nid_bitmap =
3163 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3164 					      nm_i->nat_blocks),
3165 			      GFP_KERNEL);
3166 	if (!nm_i->free_nid_bitmap)
3167 		return -ENOMEM;
3168 
3169 	for (i = 0; i < nm_i->nat_blocks; i++) {
3170 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3171 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3172 		if (!nm_i->free_nid_bitmap[i])
3173 			return -ENOMEM;
3174 	}
3175 
3176 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3177 								GFP_KERNEL);
3178 	if (!nm_i->nat_block_bitmap)
3179 		return -ENOMEM;
3180 
3181 	nm_i->free_nid_count =
3182 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3183 					      nm_i->nat_blocks),
3184 			      GFP_KERNEL);
3185 	if (!nm_i->free_nid_count)
3186 		return -ENOMEM;
3187 	return 0;
3188 }
3189 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3190 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3191 {
3192 	int err;
3193 
3194 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3195 							GFP_KERNEL);
3196 	if (!sbi->nm_info)
3197 		return -ENOMEM;
3198 
3199 	err = init_node_manager(sbi);
3200 	if (err)
3201 		return err;
3202 
3203 	err = init_free_nid_cache(sbi);
3204 	if (err)
3205 		return err;
3206 
3207 	/* load free nid status from nat_bits table */
3208 	load_free_nid_bitmap(sbi);
3209 
3210 	return f2fs_build_free_nids(sbi, true, true);
3211 }
3212 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3213 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3214 {
3215 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3216 	struct free_nid *i, *next_i;
3217 	struct nat_entry *natvec[NATVEC_SIZE];
3218 	struct nat_entry_set *setvec[SETVEC_SIZE];
3219 	nid_t nid = 0;
3220 	unsigned int found;
3221 
3222 	if (!nm_i)
3223 		return;
3224 
3225 	/* destroy free nid list */
3226 	spin_lock(&nm_i->nid_list_lock);
3227 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3228 		__remove_free_nid(sbi, i, FREE_NID);
3229 		spin_unlock(&nm_i->nid_list_lock);
3230 		kmem_cache_free(free_nid_slab, i);
3231 		spin_lock(&nm_i->nid_list_lock);
3232 	}
3233 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3234 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3235 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3236 	spin_unlock(&nm_i->nid_list_lock);
3237 
3238 	/* destroy nat cache */
3239 	down_write(&nm_i->nat_tree_lock);
3240 	while ((found = __gang_lookup_nat_cache(nm_i,
3241 					nid, NATVEC_SIZE, natvec))) {
3242 		unsigned idx;
3243 
3244 		nid = nat_get_nid(natvec[found - 1]) + 1;
3245 		for (idx = 0; idx < found; idx++) {
3246 			spin_lock(&nm_i->nat_list_lock);
3247 			list_del(&natvec[idx]->list);
3248 			spin_unlock(&nm_i->nat_list_lock);
3249 
3250 			__del_from_nat_cache(nm_i, natvec[idx]);
3251 		}
3252 	}
3253 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3254 
3255 	/* destroy nat set cache */
3256 	nid = 0;
3257 	while ((found = __gang_lookup_nat_set(nm_i,
3258 					nid, SETVEC_SIZE, setvec))) {
3259 		unsigned idx;
3260 
3261 		nid = setvec[found - 1]->set + 1;
3262 		for (idx = 0; idx < found; idx++) {
3263 			/* entry_cnt is not zero, when cp_error was occurred */
3264 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3265 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3266 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3267 		}
3268 	}
3269 	up_write(&nm_i->nat_tree_lock);
3270 
3271 	kvfree(nm_i->nat_block_bitmap);
3272 	if (nm_i->free_nid_bitmap) {
3273 		int i;
3274 
3275 		for (i = 0; i < nm_i->nat_blocks; i++)
3276 			kvfree(nm_i->free_nid_bitmap[i]);
3277 		kvfree(nm_i->free_nid_bitmap);
3278 	}
3279 	kvfree(nm_i->free_nid_count);
3280 
3281 	kvfree(nm_i->nat_bitmap);
3282 	kvfree(nm_i->nat_bits);
3283 #ifdef CONFIG_F2FS_CHECK_FS
3284 	kvfree(nm_i->nat_bitmap_mir);
3285 #endif
3286 	sbi->nm_info = NULL;
3287 	kfree(nm_i);
3288 }
3289 
f2fs_create_node_manager_caches(void)3290 int __init f2fs_create_node_manager_caches(void)
3291 {
3292 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3293 			sizeof(struct nat_entry));
3294 	if (!nat_entry_slab)
3295 		goto fail;
3296 
3297 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3298 			sizeof(struct free_nid));
3299 	if (!free_nid_slab)
3300 		goto destroy_nat_entry;
3301 
3302 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3303 			sizeof(struct nat_entry_set));
3304 	if (!nat_entry_set_slab)
3305 		goto destroy_free_nid;
3306 
3307 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3308 			sizeof(struct fsync_node_entry));
3309 	if (!fsync_node_entry_slab)
3310 		goto destroy_nat_entry_set;
3311 	return 0;
3312 
3313 destroy_nat_entry_set:
3314 	kmem_cache_destroy(nat_entry_set_slab);
3315 destroy_free_nid:
3316 	kmem_cache_destroy(free_nid_slab);
3317 destroy_nat_entry:
3318 	kmem_cache_destroy(nat_entry_slab);
3319 fail:
3320 	return -ENOMEM;
3321 }
3322 
f2fs_destroy_node_manager_caches(void)3323 void f2fs_destroy_node_manager_caches(void)
3324 {
3325 	kmem_cache_destroy(fsync_node_entry_slab);
3326 	kmem_cache_destroy(nat_entry_set_slab);
3327 	kmem_cache_destroy(free_nid_slab);
3328 	kmem_cache_destroy(nat_entry_slab);
3329 }
3330