1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
66 sizeof(struct nat_entry)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt[TOTAL_NAT]++;
181 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
182 return ne;
183 }
184
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)185 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 {
187 struct nat_entry *ne;
188
189 ne = radix_tree_lookup(&nm_i->nat_root, n);
190
191 /* for recent accessed nat entry, move it to tail of lru list */
192 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
193 spin_lock(&nm_i->nat_list_lock);
194 if (!list_empty(&ne->list))
195 list_move_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197 }
198
199 return ne;
200 }
201
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)202 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
203 nid_t start, unsigned int nr, struct nat_entry **ep)
204 {
205 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
206 }
207
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)208 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 {
210 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
211 nm_i->nat_cnt[TOTAL_NAT]--;
212 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
213 __free_nat_entry(e);
214 }
215
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)216 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218 {
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233 }
234
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)235 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237 {
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->nat_cnt[DIRTY_NAT]++;
259 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
260 set_nat_flag(ne, IS_DIRTY, true);
261 refresh_list:
262 spin_lock(&nm_i->nat_list_lock);
263 if (new_ne)
264 list_del_init(&ne->list);
265 else
266 list_move_tail(&ne->list, &head->entry_list);
267 spin_unlock(&nm_i->nat_list_lock);
268 }
269
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)270 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
271 struct nat_entry_set *set, struct nat_entry *ne)
272 {
273 spin_lock(&nm_i->nat_list_lock);
274 list_move_tail(&ne->list, &nm_i->nat_entries);
275 spin_unlock(&nm_i->nat_list_lock);
276
277 set_nat_flag(ne, IS_DIRTY, false);
278 set->entry_cnt--;
279 nm_i->nat_cnt[DIRTY_NAT]--;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
281 }
282
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)283 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
284 nid_t start, unsigned int nr, struct nat_entry_set **ep)
285 {
286 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
287 start, nr);
288 }
289
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)290 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
291 {
292 return NODE_MAPPING(sbi) == page->mapping &&
293 IS_DNODE(page) && is_cold_node(page);
294 }
295
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)296 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
297 {
298 spin_lock_init(&sbi->fsync_node_lock);
299 INIT_LIST_HEAD(&sbi->fsync_node_list);
300 sbi->fsync_seg_id = 0;
301 sbi->fsync_node_num = 0;
302 }
303
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)304 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
305 struct page *page)
306 {
307 struct fsync_node_entry *fn;
308 unsigned long flags;
309 unsigned int seq_id;
310
311 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
312
313 get_page(page);
314 fn->page = page;
315 INIT_LIST_HEAD(&fn->list);
316
317 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
318 list_add_tail(&fn->list, &sbi->fsync_node_list);
319 fn->seq_id = sbi->fsync_seg_id++;
320 seq_id = fn->seq_id;
321 sbi->fsync_node_num++;
322 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
323
324 return seq_id;
325 }
326
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)327 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
328 {
329 struct fsync_node_entry *fn;
330 unsigned long flags;
331
332 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
333 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
334 if (fn->page == page) {
335 list_del(&fn->list);
336 sbi->fsync_node_num--;
337 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
338 kmem_cache_free(fsync_node_entry_slab, fn);
339 put_page(page);
340 return;
341 }
342 }
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344 f2fs_bug_on(sbi, 1);
345 }
346
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)347 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
348 {
349 unsigned long flags;
350
351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
352 sbi->fsync_seg_id = 0;
353 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
354 }
355
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)356 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
357 {
358 struct f2fs_nm_info *nm_i = NM_I(sbi);
359 struct nat_entry *e;
360 bool need = false;
361
362 down_read(&nm_i->nat_tree_lock);
363 e = __lookup_nat_cache(nm_i, nid);
364 if (e) {
365 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
366 !get_nat_flag(e, HAS_FSYNCED_INODE))
367 need = true;
368 }
369 up_read(&nm_i->nat_tree_lock);
370 return need;
371 }
372
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)373 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
374 {
375 struct f2fs_nm_info *nm_i = NM_I(sbi);
376 struct nat_entry *e;
377 bool is_cp = true;
378
379 down_read(&nm_i->nat_tree_lock);
380 e = __lookup_nat_cache(nm_i, nid);
381 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
382 is_cp = false;
383 up_read(&nm_i->nat_tree_lock);
384 return is_cp;
385 }
386
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)387 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
388 {
389 struct f2fs_nm_info *nm_i = NM_I(sbi);
390 struct nat_entry *e;
391 bool need_update = true;
392
393 down_read(&nm_i->nat_tree_lock);
394 e = __lookup_nat_cache(nm_i, ino);
395 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
396 (get_nat_flag(e, IS_CHECKPOINTED) ||
397 get_nat_flag(e, HAS_FSYNCED_INODE)))
398 need_update = false;
399 up_read(&nm_i->nat_tree_lock);
400 return need_update;
401 }
402
403 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)404 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
405 struct f2fs_nat_entry *ne)
406 {
407 struct f2fs_nm_info *nm_i = NM_I(sbi);
408 struct nat_entry *new, *e;
409
410 new = __alloc_nat_entry(nid, false);
411 if (!new)
412 return;
413
414 down_write(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, nid);
416 if (!e)
417 e = __init_nat_entry(nm_i, new, ne, false);
418 else
419 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
420 nat_get_blkaddr(e) !=
421 le32_to_cpu(ne->block_addr) ||
422 nat_get_version(e) != ne->version);
423 up_write(&nm_i->nat_tree_lock);
424 if (e != new)
425 __free_nat_entry(new);
426 }
427
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)428 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
429 block_t new_blkaddr, bool fsync_done)
430 {
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *e;
433 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, ni->nid);
437 if (!e) {
438 e = __init_nat_entry(nm_i, new, NULL, true);
439 copy_node_info(&e->ni, ni);
440 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
441 } else if (new_blkaddr == NEW_ADDR) {
442 /*
443 * when nid is reallocated,
444 * previous nat entry can be remained in nat cache.
445 * So, reinitialize it with new information.
446 */
447 copy_node_info(&e->ni, ni);
448 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
449 }
450 /* let's free early to reduce memory consumption */
451 if (e != new)
452 __free_nat_entry(new);
453
454 /* sanity check */
455 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
457 new_blkaddr == NULL_ADDR);
458 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
459 new_blkaddr == NEW_ADDR);
460 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
461 new_blkaddr == NEW_ADDR);
462
463 /* increment version no as node is removed */
464 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
465 unsigned char version = nat_get_version(e);
466 nat_set_version(e, inc_node_version(version));
467 }
468
469 /* change address */
470 nat_set_blkaddr(e, new_blkaddr);
471 if (!__is_valid_data_blkaddr(new_blkaddr))
472 set_nat_flag(e, IS_CHECKPOINTED, false);
473 __set_nat_cache_dirty(nm_i, e);
474
475 /* update fsync_mark if its inode nat entry is still alive */
476 if (ni->nid != ni->ino)
477 e = __lookup_nat_cache(nm_i, ni->ino);
478 if (e) {
479 if (fsync_done && ni->nid == ni->ino)
480 set_nat_flag(e, HAS_FSYNCED_INODE, true);
481 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
482 }
483 up_write(&nm_i->nat_tree_lock);
484 }
485
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)486 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
487 {
488 struct f2fs_nm_info *nm_i = NM_I(sbi);
489 int nr = nr_shrink;
490
491 if (!down_write_trylock(&nm_i->nat_tree_lock))
492 return 0;
493
494 spin_lock(&nm_i->nat_list_lock);
495 while (nr_shrink) {
496 struct nat_entry *ne;
497
498 if (list_empty(&nm_i->nat_entries))
499 break;
500
501 ne = list_first_entry(&nm_i->nat_entries,
502 struct nat_entry, list);
503 list_del(&ne->list);
504 spin_unlock(&nm_i->nat_list_lock);
505
506 __del_from_nat_cache(nm_i, ne);
507 nr_shrink--;
508
509 spin_lock(&nm_i->nat_list_lock);
510 }
511 spin_unlock(&nm_i->nat_list_lock);
512
513 up_write(&nm_i->nat_tree_lock);
514 return nr - nr_shrink;
515 }
516
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)517 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
518 struct node_info *ni)
519 {
520 struct f2fs_nm_info *nm_i = NM_I(sbi);
521 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
522 struct f2fs_journal *journal = curseg->journal;
523 nid_t start_nid = START_NID(nid);
524 struct f2fs_nat_block *nat_blk;
525 struct page *page = NULL;
526 struct f2fs_nat_entry ne;
527 struct nat_entry *e;
528 pgoff_t index;
529 block_t blkaddr;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572 cache:
573 blkaddr = le32_to_cpu(ne.block_addr);
574 if (__is_valid_data_blkaddr(blkaddr) &&
575 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
576 return -EFAULT;
577
578 /* cache nat entry */
579 cache_nat_entry(sbi, nid, &ne);
580 return 0;
581 }
582
583 /*
584 * readahead MAX_RA_NODE number of node pages.
585 */
f2fs_ra_node_pages(struct page * parent,int start,int n)586 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 {
588 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
589 struct blk_plug plug;
590 int i, end;
591 nid_t nid;
592
593 blk_start_plug(&plug);
594
595 /* Then, try readahead for siblings of the desired node */
596 end = start + n;
597 end = min(end, NIDS_PER_BLOCK);
598 for (i = start; i < end; i++) {
599 nid = get_nid(parent, i, false);
600 f2fs_ra_node_page(sbi, nid);
601 }
602
603 blk_finish_plug(&plug);
604 }
605
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)606 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 {
608 const long direct_index = ADDRS_PER_INODE(dn->inode);
609 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
610 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
611 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
612 int cur_level = dn->cur_level;
613 int max_level = dn->max_level;
614 pgoff_t base = 0;
615
616 if (!dn->max_level)
617 return pgofs + 1;
618
619 while (max_level-- > cur_level)
620 skipped_unit *= NIDS_PER_BLOCK;
621
622 switch (dn->max_level) {
623 case 3:
624 base += 2 * indirect_blks;
625 fallthrough;
626 case 2:
627 base += 2 * direct_blks;
628 fallthrough;
629 case 1:
630 base += direct_index;
631 break;
632 default:
633 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
634 }
635
636 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
637 }
638
639 /*
640 * The maximum depth is four.
641 * Offset[0] will have raw inode offset.
642 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])643 static int get_node_path(struct inode *inode, long block,
644 int offset[4], unsigned int noffset[4])
645 {
646 const long direct_index = ADDRS_PER_INODE(inode);
647 const long direct_blks = ADDRS_PER_BLOCK(inode);
648 const long dptrs_per_blk = NIDS_PER_BLOCK;
649 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
650 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
651 int n = 0;
652 int level = 0;
653
654 noffset[0] = 0;
655
656 if (block < direct_index) {
657 offset[n] = block;
658 goto got;
659 }
660 block -= direct_index;
661 if (block < direct_blks) {
662 offset[n++] = NODE_DIR1_BLOCK;
663 noffset[n] = 1;
664 offset[n] = block;
665 level = 1;
666 goto got;
667 }
668 block -= direct_blks;
669 if (block < direct_blks) {
670 offset[n++] = NODE_DIR2_BLOCK;
671 noffset[n] = 2;
672 offset[n] = block;
673 level = 1;
674 goto got;
675 }
676 block -= direct_blks;
677 if (block < indirect_blks) {
678 offset[n++] = NODE_IND1_BLOCK;
679 noffset[n] = 3;
680 offset[n++] = block / direct_blks;
681 noffset[n] = 4 + offset[n - 1];
682 offset[n] = block % direct_blks;
683 level = 2;
684 goto got;
685 }
686 block -= indirect_blks;
687 if (block < indirect_blks) {
688 offset[n++] = NODE_IND2_BLOCK;
689 noffset[n] = 4 + dptrs_per_blk;
690 offset[n++] = block / direct_blks;
691 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
692 offset[n] = block % direct_blks;
693 level = 2;
694 goto got;
695 }
696 block -= indirect_blks;
697 if (block < dindirect_blks) {
698 offset[n++] = NODE_DIND_BLOCK;
699 noffset[n] = 5 + (dptrs_per_blk * 2);
700 offset[n++] = block / indirect_blks;
701 noffset[n] = 6 + (dptrs_per_blk * 2) +
702 offset[n - 1] * (dptrs_per_blk + 1);
703 offset[n++] = (block / direct_blks) % dptrs_per_blk;
704 noffset[n] = 7 + (dptrs_per_blk * 2) +
705 offset[n - 2] * (dptrs_per_blk + 1) +
706 offset[n - 1];
707 offset[n] = block % direct_blks;
708 level = 3;
709 goto got;
710 } else {
711 return -E2BIG;
712 }
713 got:
714 return level;
715 }
716
717 /*
718 * Caller should call f2fs_put_dnode(dn).
719 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
720 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
721 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
723 {
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
732
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
736
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
739
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
744 }
745
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
751 }
752
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
758
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
762
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
768 }
769
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
776 }
777
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
786 }
787 done = true;
788 }
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
794 }
795
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
802 }
803 }
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
807 }
808 }
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = f2fs_data_blkaddr(dn);
813 return 0;
814
815 release_pages:
816 f2fs_put_page(parent, 1);
817 if (i > 1)
818 f2fs_put_page(npage[0], 0);
819 release_out:
820 dn->inode_page = NULL;
821 dn->node_page = NULL;
822 if (err == -ENOENT) {
823 dn->cur_level = i;
824 dn->max_level = level;
825 dn->ofs_in_node = offset[level];
826 }
827 return err;
828 }
829
truncate_node(struct dnode_of_data * dn)830 static int truncate_node(struct dnode_of_data *dn)
831 {
832 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
833 struct node_info ni;
834 int err;
835 pgoff_t index;
836
837 err = f2fs_get_node_info(sbi, dn->nid, &ni);
838 if (err)
839 return err;
840
841 if (ni.blk_addr != NEW_ADDR &&
842 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC_ENHANCE)) {
843 f2fs_err(sbi,
844 "nat entry is corrupted, run fsck to fix it, ino:%u, "
845 "nid:%u, blkaddr:%u", ni.ino, ni.nid, ni.blk_addr);
846 set_sbi_flag(sbi, SBI_NEED_FSCK);
847 return -EFSCORRUPTED;
848 }
849
850 /* Deallocate node address */
851 f2fs_invalidate_blocks(sbi, ni.blk_addr);
852 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
853 set_node_addr(sbi, &ni, NULL_ADDR, false);
854
855 if (dn->nid == dn->inode->i_ino) {
856 f2fs_remove_orphan_inode(sbi, dn->nid);
857 dec_valid_inode_count(sbi);
858 f2fs_inode_synced(dn->inode);
859 }
860
861 clear_node_page_dirty(dn->node_page);
862 set_sbi_flag(sbi, SBI_IS_DIRTY);
863
864 index = dn->node_page->index;
865 f2fs_put_page(dn->node_page, 1);
866
867 invalidate_mapping_pages(NODE_MAPPING(sbi),
868 index, index);
869
870 dn->node_page = NULL;
871 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
872
873 return 0;
874 }
875
truncate_dnode(struct dnode_of_data * dn)876 static int truncate_dnode(struct dnode_of_data *dn)
877 {
878 struct page *page;
879 int err;
880
881 if (dn->nid == 0)
882 return 1;
883
884 /* get direct node */
885 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
886 if (PTR_ERR(page) == -ENOENT)
887 return 1;
888 else if (IS_ERR(page))
889 return PTR_ERR(page);
890
891 /* Make dnode_of_data for parameter */
892 dn->node_page = page;
893 dn->ofs_in_node = 0;
894 f2fs_truncate_data_blocks(dn);
895 err = truncate_node(dn);
896 if (err) {
897 f2fs_put_page(page, 1);
898 return err;
899 }
900
901 return 1;
902 }
903
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)904 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
905 int ofs, int depth)
906 {
907 struct dnode_of_data rdn = *dn;
908 struct page *page;
909 struct f2fs_node *rn;
910 nid_t child_nid;
911 unsigned int child_nofs;
912 int freed = 0;
913 int i, ret;
914
915 if (dn->nid == 0)
916 return NIDS_PER_BLOCK + 1;
917
918 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
919
920 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
921 if (IS_ERR(page)) {
922 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
923 return PTR_ERR(page);
924 }
925
926 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
927
928 rn = F2FS_NODE(page);
929 if (depth < 3) {
930 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
931 child_nid = le32_to_cpu(rn->in.nid[i]);
932 if (child_nid == 0)
933 continue;
934 rdn.nid = child_nid;
935 ret = truncate_dnode(&rdn);
936 if (ret < 0)
937 goto out_err;
938 if (set_nid(page, i, 0, false))
939 dn->node_changed = true;
940 }
941 } else {
942 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
943 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
944 child_nid = le32_to_cpu(rn->in.nid[i]);
945 if (child_nid == 0) {
946 child_nofs += NIDS_PER_BLOCK + 1;
947 continue;
948 }
949 rdn.nid = child_nid;
950 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
951 if (ret == (NIDS_PER_BLOCK + 1)) {
952 if (set_nid(page, i, 0, false))
953 dn->node_changed = true;
954 child_nofs += ret;
955 } else if (ret < 0 && ret != -ENOENT) {
956 goto out_err;
957 }
958 }
959 freed = child_nofs;
960 }
961
962 if (!ofs) {
963 /* remove current indirect node */
964 dn->node_page = page;
965 ret = truncate_node(dn);
966 if (ret)
967 goto out_err;
968 freed++;
969 } else {
970 f2fs_put_page(page, 1);
971 }
972 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
973 return freed;
974
975 out_err:
976 f2fs_put_page(page, 1);
977 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
978 return ret;
979 }
980
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)981 static int truncate_partial_nodes(struct dnode_of_data *dn,
982 struct f2fs_inode *ri, int *offset, int depth)
983 {
984 struct page *pages[2];
985 nid_t nid[3];
986 nid_t child_nid;
987 int err = 0;
988 int i;
989 int idx = depth - 2;
990
991 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
992 if (!nid[0])
993 return 0;
994
995 /* get indirect nodes in the path */
996 for (i = 0; i < idx + 1; i++) {
997 /* reference count'll be increased */
998 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
999 if (IS_ERR(pages[i])) {
1000 err = PTR_ERR(pages[i]);
1001 idx = i - 1;
1002 goto fail;
1003 }
1004 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1005 }
1006
1007 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1008
1009 /* free direct nodes linked to a partial indirect node */
1010 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1011 child_nid = get_nid(pages[idx], i, false);
1012 if (!child_nid)
1013 continue;
1014 dn->nid = child_nid;
1015 err = truncate_dnode(dn);
1016 if (err < 0)
1017 goto fail;
1018 if (set_nid(pages[idx], i, 0, false))
1019 dn->node_changed = true;
1020 }
1021
1022 if (offset[idx + 1] == 0) {
1023 dn->node_page = pages[idx];
1024 dn->nid = nid[idx];
1025 err = truncate_node(dn);
1026 if (err)
1027 goto fail;
1028 } else {
1029 f2fs_put_page(pages[idx], 1);
1030 }
1031 offset[idx]++;
1032 offset[idx + 1] = 0;
1033 idx--;
1034 fail:
1035 for (i = idx; i >= 0; i--)
1036 f2fs_put_page(pages[i], 1);
1037
1038 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1039
1040 return err;
1041 }
1042
1043 /*
1044 * All the block addresses of data and nodes should be nullified.
1045 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1046 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1047 {
1048 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1049 int err = 0, cont = 1;
1050 int level, offset[4], noffset[4];
1051 unsigned int nofs = 0;
1052 struct f2fs_inode *ri;
1053 struct dnode_of_data dn;
1054 struct page *page;
1055
1056 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1057
1058 level = get_node_path(inode, from, offset, noffset);
1059 if (level < 0) {
1060 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1061 return level;
1062 }
1063
1064 page = f2fs_get_node_page(sbi, inode->i_ino);
1065 if (IS_ERR(page)) {
1066 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1067 return PTR_ERR(page);
1068 }
1069
1070 set_new_dnode(&dn, inode, page, NULL, 0);
1071 unlock_page(page);
1072
1073 ri = F2FS_INODE(page);
1074 switch (level) {
1075 case 0:
1076 case 1:
1077 nofs = noffset[1];
1078 break;
1079 case 2:
1080 nofs = noffset[1];
1081 if (!offset[level - 1])
1082 goto skip_partial;
1083 err = truncate_partial_nodes(&dn, ri, offset, level);
1084 if (err < 0 && err != -ENOENT)
1085 goto fail;
1086 nofs += 1 + NIDS_PER_BLOCK;
1087 break;
1088 case 3:
1089 nofs = 5 + 2 * NIDS_PER_BLOCK;
1090 if (!offset[level - 1])
1091 goto skip_partial;
1092 err = truncate_partial_nodes(&dn, ri, offset, level);
1093 if (err < 0 && err != -ENOENT)
1094 goto fail;
1095 break;
1096 default:
1097 BUG();
1098 }
1099
1100 skip_partial:
1101 while (cont) {
1102 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1103 switch (offset[0]) {
1104 case NODE_DIR1_BLOCK:
1105 case NODE_DIR2_BLOCK:
1106 err = truncate_dnode(&dn);
1107 break;
1108
1109 case NODE_IND1_BLOCK:
1110 case NODE_IND2_BLOCK:
1111 err = truncate_nodes(&dn, nofs, offset[1], 2);
1112 break;
1113
1114 case NODE_DIND_BLOCK:
1115 err = truncate_nodes(&dn, nofs, offset[1], 3);
1116 cont = 0;
1117 break;
1118
1119 default:
1120 BUG();
1121 }
1122 if (err < 0 && err != -ENOENT)
1123 goto fail;
1124 if (offset[1] == 0 &&
1125 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1126 lock_page(page);
1127 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1128 f2fs_wait_on_page_writeback(page, NODE, true, true);
1129 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1130 set_page_dirty(page);
1131 unlock_page(page);
1132 }
1133 offset[1] = 0;
1134 offset[0]++;
1135 nofs += err;
1136 }
1137 fail:
1138 f2fs_put_page(page, 0);
1139 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1140 return err > 0 ? 0 : err;
1141 }
1142
1143 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1144 int f2fs_truncate_xattr_node(struct inode *inode)
1145 {
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1148 struct dnode_of_data dn;
1149 struct page *npage;
1150 int err;
1151
1152 if (!nid)
1153 return 0;
1154
1155 npage = f2fs_get_node_page(sbi, nid);
1156 if (IS_ERR(npage))
1157 return PTR_ERR(npage);
1158
1159 set_new_dnode(&dn, inode, NULL, npage, nid);
1160 err = truncate_node(&dn);
1161 if (err) {
1162 f2fs_put_page(npage, 1);
1163 return err;
1164 }
1165
1166 f2fs_i_xnid_write(inode, 0);
1167
1168 return 0;
1169 }
1170
1171 /*
1172 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1173 * f2fs_unlock_op().
1174 */
f2fs_remove_inode_page(struct inode * inode)1175 int f2fs_remove_inode_page(struct inode *inode)
1176 {
1177 struct dnode_of_data dn;
1178 int err;
1179
1180 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1181 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1182 if (err)
1183 return err;
1184
1185 err = f2fs_truncate_xattr_node(inode);
1186 if (err) {
1187 f2fs_put_dnode(&dn);
1188 return err;
1189 }
1190
1191 /* remove potential inline_data blocks */
1192 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1193 S_ISLNK(inode->i_mode))
1194 f2fs_truncate_data_blocks_range(&dn, 1);
1195
1196 /* 0 is possible, after f2fs_new_inode() has failed */
1197 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1198 f2fs_put_dnode(&dn);
1199 return -EIO;
1200 }
1201
1202 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1203 f2fs_warn(F2FS_I_SB(inode),
1204 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1205 inode->i_ino, (unsigned long long)inode->i_blocks);
1206 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1207 }
1208
1209 /* will put inode & node pages */
1210 err = truncate_node(&dn);
1211 if (err) {
1212 f2fs_put_dnode(&dn);
1213 return err;
1214 }
1215 return 0;
1216 }
1217
f2fs_new_inode_page(struct inode * inode)1218 struct page *f2fs_new_inode_page(struct inode *inode)
1219 {
1220 struct dnode_of_data dn;
1221
1222 /* allocate inode page for new inode */
1223 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1224
1225 /* caller should f2fs_put_page(page, 1); */
1226 return f2fs_new_node_page(&dn, 0);
1227 }
1228
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1229 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1230 {
1231 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1232 struct node_info new_ni;
1233 struct page *page;
1234 int err;
1235
1236 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1237 return ERR_PTR(-EPERM);
1238
1239 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1240 if (!page)
1241 return ERR_PTR(-ENOMEM);
1242
1243 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1244 goto fail;
1245
1246 #ifdef CONFIG_F2FS_CHECK_FS
1247 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1248 if (err) {
1249 dec_valid_node_count(sbi, dn->inode, !ofs);
1250 goto fail;
1251 }
1252 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1253 err = -EFSCORRUPTED;
1254 set_sbi_flag(sbi, SBI_NEED_FSCK);
1255 goto fail;
1256 }
1257 #endif
1258 new_ni.nid = dn->nid;
1259 new_ni.ino = dn->inode->i_ino;
1260 new_ni.blk_addr = NULL_ADDR;
1261 new_ni.flag = 0;
1262 new_ni.version = 0;
1263 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1264
1265 f2fs_wait_on_page_writeback(page, NODE, true, true);
1266 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1267 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1268 if (!PageUptodate(page))
1269 SetPageUptodate(page);
1270 if (set_page_dirty(page))
1271 dn->node_changed = true;
1272
1273 if (f2fs_has_xattr_block(ofs))
1274 f2fs_i_xnid_write(dn->inode, dn->nid);
1275
1276 if (ofs == 0)
1277 inc_valid_inode_count(sbi);
1278 return page;
1279
1280 fail:
1281 clear_node_page_dirty(page);
1282 f2fs_put_page(page, 1);
1283 return ERR_PTR(err);
1284 }
1285
1286 /*
1287 * Caller should do after getting the following values.
1288 * 0: f2fs_put_page(page, 0)
1289 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1290 */
read_node_page(struct page * page,int op_flags)1291 static int read_node_page(struct page *page, int op_flags)
1292 {
1293 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1294 struct node_info ni;
1295 struct f2fs_io_info fio = {
1296 .sbi = sbi,
1297 .type = NODE,
1298 .op = REQ_OP_READ,
1299 .op_flags = op_flags,
1300 .page = page,
1301 .encrypted_page = NULL,
1302 };
1303 int err;
1304
1305 if (PageUptodate(page)) {
1306 if (!f2fs_inode_chksum_verify(sbi, page)) {
1307 ClearPageUptodate(page);
1308 return -EFSBADCRC;
1309 }
1310 return LOCKED_PAGE;
1311 }
1312
1313 err = f2fs_get_node_info(sbi, page->index, &ni);
1314 if (err)
1315 return err;
1316
1317 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1318 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1319 ClearPageUptodate(page);
1320 return -ENOENT;
1321 }
1322
1323 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1324
1325 err = f2fs_submit_page_bio(&fio);
1326
1327 if (!err)
1328 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1329
1330 return err;
1331 }
1332
1333 /*
1334 * Readahead a node page
1335 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1336 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1337 {
1338 struct page *apage;
1339 int err;
1340
1341 if (!nid)
1342 return;
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return;
1345
1346 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1347 if (apage)
1348 return;
1349
1350 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351 if (!apage)
1352 return;
1353
1354 err = read_node_page(apage, REQ_RAHEAD);
1355 f2fs_put_page(apage, err ? 1 : 0);
1356 }
1357
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1358 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1359 struct page *parent, int start)
1360 {
1361 struct page *page;
1362 int err;
1363
1364 if (!nid)
1365 return ERR_PTR(-ENOENT);
1366 if (f2fs_check_nid_range(sbi, nid))
1367 return ERR_PTR(-EINVAL);
1368 repeat:
1369 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1370 if (!page)
1371 return ERR_PTR(-ENOMEM);
1372
1373 err = read_node_page(page, 0);
1374 if (err < 0) {
1375 f2fs_put_page(page, 1);
1376 return ERR_PTR(err);
1377 } else if (err == LOCKED_PAGE) {
1378 err = 0;
1379 goto page_hit;
1380 }
1381
1382 if (parent)
1383 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1384
1385 lock_page(page);
1386
1387 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1388 f2fs_put_page(page, 1);
1389 goto repeat;
1390 }
1391
1392 if (unlikely(!PageUptodate(page))) {
1393 err = -EIO;
1394 goto out_err;
1395 }
1396
1397 if (!f2fs_inode_chksum_verify(sbi, page)) {
1398 err = -EFSBADCRC;
1399 goto out_err;
1400 }
1401 page_hit:
1402 if(unlikely(nid != nid_of_node(page))) {
1403 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1404 nid, nid_of_node(page), ino_of_node(page),
1405 ofs_of_node(page), cpver_of_node(page),
1406 next_blkaddr_of_node(page));
1407 set_sbi_flag(sbi, SBI_NEED_FSCK);
1408 err = -EINVAL;
1409 out_err:
1410 ClearPageUptodate(page);
1411 f2fs_put_page(page, 1);
1412 return ERR_PTR(err);
1413 }
1414 return page;
1415 }
1416
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1417 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1418 {
1419 return __get_node_page(sbi, nid, NULL, 0);
1420 }
1421
f2fs_get_node_page_ra(struct page * parent,int start)1422 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1423 {
1424 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1425 nid_t nid = get_nid(parent, start, false);
1426
1427 return __get_node_page(sbi, nid, parent, start);
1428 }
1429
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1430 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1431 {
1432 struct inode *inode;
1433 struct page *page;
1434 int ret;
1435
1436 /* should flush inline_data before evict_inode */
1437 inode = ilookup(sbi->sb, ino);
1438 if (!inode)
1439 return;
1440
1441 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1442 FGP_LOCK|FGP_NOWAIT, 0);
1443 if (!page)
1444 goto iput_out;
1445
1446 if (!PageUptodate(page))
1447 goto page_out;
1448
1449 if (!PageDirty(page))
1450 goto page_out;
1451
1452 if (!clear_page_dirty_for_io(page))
1453 goto page_out;
1454
1455 ret = f2fs_write_inline_data(inode, page);
1456 inode_dec_dirty_pages(inode);
1457 f2fs_remove_dirty_inode(inode);
1458 if (ret)
1459 set_page_dirty(page);
1460 page_out:
1461 f2fs_put_page(page, 1);
1462 iput_out:
1463 iput(inode);
1464 }
1465
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1466 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1467 {
1468 pgoff_t index;
1469 struct pagevec pvec;
1470 struct page *last_page = NULL;
1471 int nr_pages;
1472
1473 pagevec_init(&pvec);
1474 index = 0;
1475
1476 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1477 PAGECACHE_TAG_DIRTY))) {
1478 int i;
1479
1480 for (i = 0; i < nr_pages; i++) {
1481 struct page *page = pvec.pages[i];
1482
1483 if (unlikely(f2fs_cp_error(sbi))) {
1484 f2fs_put_page(last_page, 0);
1485 pagevec_release(&pvec);
1486 return ERR_PTR(-EIO);
1487 }
1488
1489 if (!IS_DNODE(page) || !is_cold_node(page))
1490 continue;
1491 if (ino_of_node(page) != ino)
1492 continue;
1493
1494 lock_page(page);
1495
1496 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1497 continue_unlock:
1498 unlock_page(page);
1499 continue;
1500 }
1501 if (ino_of_node(page) != ino)
1502 goto continue_unlock;
1503
1504 if (!PageDirty(page)) {
1505 /* someone wrote it for us */
1506 goto continue_unlock;
1507 }
1508
1509 if (last_page)
1510 f2fs_put_page(last_page, 0);
1511
1512 get_page(page);
1513 last_page = page;
1514 unlock_page(page);
1515 }
1516 pagevec_release(&pvec);
1517 cond_resched();
1518 }
1519 return last_page;
1520 }
1521
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1522 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1523 struct writeback_control *wbc, bool do_balance,
1524 enum iostat_type io_type, unsigned int *seq_id)
1525 {
1526 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1527 nid_t nid;
1528 struct node_info ni;
1529 struct f2fs_io_info fio = {
1530 .sbi = sbi,
1531 .ino = ino_of_node(page),
1532 .type = NODE,
1533 .op = REQ_OP_WRITE,
1534 .op_flags = wbc_to_write_flags(wbc),
1535 .page = page,
1536 .encrypted_page = NULL,
1537 .submitted = false,
1538 .io_type = io_type,
1539 .io_wbc = wbc,
1540 };
1541 unsigned int seq;
1542
1543 trace_f2fs_writepage(page, NODE);
1544
1545 if (unlikely(f2fs_cp_error(sbi))) {
1546 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1547 ClearPageUptodate(page);
1548 dec_page_count(sbi, F2FS_DIRTY_NODES);
1549 unlock_page(page);
1550 return 0;
1551 }
1552 goto redirty_out;
1553 }
1554
1555 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1556 goto redirty_out;
1557
1558 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1559 wbc->sync_mode == WB_SYNC_NONE &&
1560 IS_DNODE(page) && is_cold_node(page))
1561 goto redirty_out;
1562
1563 /* get old block addr of this node page */
1564 nid = nid_of_node(page);
1565 f2fs_bug_on(sbi, page->index != nid);
1566
1567 if (f2fs_get_node_info(sbi, nid, &ni))
1568 goto redirty_out;
1569
1570 if (wbc->for_reclaim) {
1571 if (!down_read_trylock(&sbi->node_write))
1572 goto redirty_out;
1573 } else {
1574 down_read(&sbi->node_write);
1575 }
1576
1577 /* This page is already truncated */
1578 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1579 ClearPageUptodate(page);
1580 dec_page_count(sbi, F2FS_DIRTY_NODES);
1581 up_read(&sbi->node_write);
1582 unlock_page(page);
1583 return 0;
1584 }
1585
1586 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1587 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1588 DATA_GENERIC_ENHANCE)) {
1589 up_read(&sbi->node_write);
1590 goto redirty_out;
1591 }
1592
1593 if (atomic && !test_opt(sbi, NOBARRIER))
1594 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1595
1596 /* should add to global list before clearing PAGECACHE status */
1597 if (f2fs_in_warm_node_list(sbi, page)) {
1598 seq = f2fs_add_fsync_node_entry(sbi, page);
1599 if (seq_id)
1600 *seq_id = seq;
1601 }
1602
1603 set_page_writeback(page);
1604 ClearPageError(page);
1605
1606 fio.old_blkaddr = ni.blk_addr;
1607 f2fs_do_write_node_page(nid, &fio);
1608 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1609 dec_page_count(sbi, F2FS_DIRTY_NODES);
1610 up_read(&sbi->node_write);
1611
1612 if (wbc->for_reclaim) {
1613 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1614 submitted = NULL;
1615 }
1616
1617 unlock_page(page);
1618
1619 if (unlikely(f2fs_cp_error(sbi))) {
1620 f2fs_submit_merged_write(sbi, NODE);
1621 submitted = NULL;
1622 }
1623 if (submitted)
1624 *submitted = fio.submitted;
1625
1626 if (do_balance)
1627 f2fs_balance_fs(sbi, false);
1628 return 0;
1629
1630 redirty_out:
1631 redirty_page_for_writepage(wbc, page);
1632 return AOP_WRITEPAGE_ACTIVATE;
1633 }
1634
f2fs_move_node_page(struct page * node_page,int gc_type)1635 int f2fs_move_node_page(struct page *node_page, int gc_type)
1636 {
1637 int err = 0;
1638
1639 if (gc_type == FG_GC) {
1640 struct writeback_control wbc = {
1641 .sync_mode = WB_SYNC_ALL,
1642 .nr_to_write = 1,
1643 .for_reclaim = 0,
1644 };
1645
1646 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1647
1648 set_page_dirty(node_page);
1649
1650 if (!clear_page_dirty_for_io(node_page)) {
1651 err = -EAGAIN;
1652 goto out_page;
1653 }
1654
1655 if (__write_node_page(node_page, false, NULL,
1656 &wbc, false, FS_GC_NODE_IO, NULL)) {
1657 err = -EAGAIN;
1658 unlock_page(node_page);
1659 }
1660 goto release_page;
1661 } else {
1662 /* set page dirty and write it */
1663 if (!PageWriteback(node_page))
1664 set_page_dirty(node_page);
1665 }
1666 out_page:
1667 unlock_page(node_page);
1668 release_page:
1669 f2fs_put_page(node_page, 0);
1670 return err;
1671 }
1672
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1673 static int f2fs_write_node_page(struct page *page,
1674 struct writeback_control *wbc)
1675 {
1676 return __write_node_page(page, false, NULL, wbc, false,
1677 FS_NODE_IO, NULL);
1678 }
1679
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1680 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1681 struct writeback_control *wbc, bool atomic,
1682 unsigned int *seq_id)
1683 {
1684 pgoff_t index;
1685 struct pagevec pvec;
1686 int ret = 0;
1687 struct page *last_page = NULL;
1688 bool marked = false;
1689 nid_t ino = inode->i_ino;
1690 int nr_pages;
1691 int nwritten = 0;
1692
1693 if (atomic) {
1694 last_page = last_fsync_dnode(sbi, ino);
1695 if (IS_ERR_OR_NULL(last_page))
1696 return PTR_ERR_OR_ZERO(last_page);
1697 }
1698 retry:
1699 pagevec_init(&pvec);
1700 index = 0;
1701
1702 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1703 PAGECACHE_TAG_DIRTY))) {
1704 int i;
1705
1706 for (i = 0; i < nr_pages; i++) {
1707 struct page *page = pvec.pages[i];
1708 bool submitted = false;
1709
1710 if (unlikely(f2fs_cp_error(sbi))) {
1711 f2fs_put_page(last_page, 0);
1712 pagevec_release(&pvec);
1713 ret = -EIO;
1714 goto out;
1715 }
1716
1717 if (!IS_DNODE(page) || !is_cold_node(page))
1718 continue;
1719 if (ino_of_node(page) != ino)
1720 continue;
1721
1722 lock_page(page);
1723
1724 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1725 continue_unlock:
1726 unlock_page(page);
1727 continue;
1728 }
1729 if (ino_of_node(page) != ino)
1730 goto continue_unlock;
1731
1732 if (!PageDirty(page) && page != last_page) {
1733 /* someone wrote it for us */
1734 goto continue_unlock;
1735 }
1736
1737 f2fs_wait_on_page_writeback(page, NODE, true, true);
1738
1739 set_fsync_mark(page, 0);
1740 set_dentry_mark(page, 0);
1741
1742 if (!atomic || page == last_page) {
1743 set_fsync_mark(page, 1);
1744 if (IS_INODE(page)) {
1745 if (is_inode_flag_set(inode,
1746 FI_DIRTY_INODE))
1747 f2fs_update_inode(inode, page);
1748 set_dentry_mark(page,
1749 f2fs_need_dentry_mark(sbi, ino));
1750 }
1751 /* may be written by other thread */
1752 if (!PageDirty(page))
1753 set_page_dirty(page);
1754 }
1755
1756 if (!clear_page_dirty_for_io(page))
1757 goto continue_unlock;
1758
1759 ret = __write_node_page(page, atomic &&
1760 page == last_page,
1761 &submitted, wbc, true,
1762 FS_NODE_IO, seq_id);
1763 if (ret) {
1764 unlock_page(page);
1765 f2fs_put_page(last_page, 0);
1766 break;
1767 } else if (submitted) {
1768 nwritten++;
1769 }
1770
1771 if (page == last_page) {
1772 f2fs_put_page(page, 0);
1773 marked = true;
1774 break;
1775 }
1776 }
1777 pagevec_release(&pvec);
1778 cond_resched();
1779
1780 if (ret || marked)
1781 break;
1782 }
1783 if (!ret && atomic && !marked) {
1784 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1785 ino, last_page->index);
1786 lock_page(last_page);
1787 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1788 set_page_dirty(last_page);
1789 unlock_page(last_page);
1790 goto retry;
1791 }
1792 out:
1793 if (nwritten)
1794 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1795 return ret ? -EIO: 0;
1796 }
1797
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1798 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1799 {
1800 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1801 bool clean;
1802
1803 if (inode->i_ino != ino)
1804 return 0;
1805
1806 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1807 return 0;
1808
1809 spin_lock(&sbi->inode_lock[DIRTY_META]);
1810 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1811 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1812
1813 if (clean)
1814 return 0;
1815
1816 inode = igrab(inode);
1817 if (!inode)
1818 return 0;
1819 return 1;
1820 }
1821
flush_dirty_inode(struct page * page)1822 static bool flush_dirty_inode(struct page *page)
1823 {
1824 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1825 struct inode *inode;
1826 nid_t ino = ino_of_node(page);
1827
1828 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1829 if (!inode)
1830 return false;
1831
1832 f2fs_update_inode(inode, page);
1833 unlock_page(page);
1834
1835 iput(inode);
1836 return true;
1837 }
1838
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1839 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1840 {
1841 pgoff_t index = 0;
1842 struct pagevec pvec;
1843 int nr_pages;
1844
1845 pagevec_init(&pvec);
1846
1847 while ((nr_pages = pagevec_lookup_tag(&pvec,
1848 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1849 int i;
1850
1851 for (i = 0; i < nr_pages; i++) {
1852 struct page *page = pvec.pages[i];
1853
1854 if (!IS_DNODE(page))
1855 continue;
1856
1857 lock_page(page);
1858
1859 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1860 continue_unlock:
1861 unlock_page(page);
1862 continue;
1863 }
1864
1865 if (!PageDirty(page)) {
1866 /* someone wrote it for us */
1867 goto continue_unlock;
1868 }
1869
1870 /* flush inline_data, if it's async context. */
1871 if (is_inline_node(page)) {
1872 clear_inline_node(page);
1873 unlock_page(page);
1874 flush_inline_data(sbi, ino_of_node(page));
1875 continue;
1876 }
1877 unlock_page(page);
1878 }
1879 pagevec_release(&pvec);
1880 cond_resched();
1881 }
1882 }
1883
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1884 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1885 struct writeback_control *wbc,
1886 bool do_balance, enum iostat_type io_type)
1887 {
1888 pgoff_t index;
1889 struct pagevec pvec;
1890 int step = 0;
1891 int nwritten = 0;
1892 int ret = 0;
1893 int nr_pages, done = 0;
1894
1895 pagevec_init(&pvec);
1896
1897 next_step:
1898 index = 0;
1899
1900 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1901 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1902 int i;
1903
1904 for (i = 0; i < nr_pages; i++) {
1905 struct page *page = pvec.pages[i];
1906 bool submitted = false;
1907 bool may_dirty = true;
1908
1909 /* give a priority to WB_SYNC threads */
1910 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1911 wbc->sync_mode == WB_SYNC_NONE) {
1912 done = 1;
1913 break;
1914 }
1915
1916 /*
1917 * flushing sequence with step:
1918 * 0. indirect nodes
1919 * 1. dentry dnodes
1920 * 2. file dnodes
1921 */
1922 if (step == 0 && IS_DNODE(page))
1923 continue;
1924 if (step == 1 && (!IS_DNODE(page) ||
1925 is_cold_node(page)))
1926 continue;
1927 if (step == 2 && (!IS_DNODE(page) ||
1928 !is_cold_node(page)))
1929 continue;
1930 lock_node:
1931 if (wbc->sync_mode == WB_SYNC_ALL)
1932 lock_page(page);
1933 else if (!trylock_page(page))
1934 continue;
1935
1936 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1937 continue_unlock:
1938 unlock_page(page);
1939 continue;
1940 }
1941
1942 if (!PageDirty(page)) {
1943 /* someone wrote it for us */
1944 goto continue_unlock;
1945 }
1946
1947 /* flush inline_data/inode, if it's async context. */
1948 if (!do_balance)
1949 goto write_node;
1950
1951 /* flush inline_data */
1952 if (is_inline_node(page)) {
1953 clear_inline_node(page);
1954 unlock_page(page);
1955 flush_inline_data(sbi, ino_of_node(page));
1956 goto lock_node;
1957 }
1958
1959 /* flush dirty inode */
1960 if (IS_INODE(page) && may_dirty) {
1961 may_dirty = false;
1962 if (flush_dirty_inode(page))
1963 goto lock_node;
1964 }
1965 write_node:
1966 f2fs_wait_on_page_writeback(page, NODE, true, true);
1967
1968 if (!clear_page_dirty_for_io(page))
1969 goto continue_unlock;
1970
1971 set_fsync_mark(page, 0);
1972 set_dentry_mark(page, 0);
1973
1974 ret = __write_node_page(page, false, &submitted,
1975 wbc, do_balance, io_type, NULL);
1976 if (ret)
1977 unlock_page(page);
1978 else if (submitted)
1979 nwritten++;
1980
1981 if (--wbc->nr_to_write == 0)
1982 break;
1983 }
1984 pagevec_release(&pvec);
1985 cond_resched();
1986
1987 if (wbc->nr_to_write == 0) {
1988 step = 2;
1989 break;
1990 }
1991 }
1992
1993 if (step < 2) {
1994 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1995 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1996 goto out;
1997 step++;
1998 goto next_step;
1999 }
2000 out:
2001 if (nwritten)
2002 f2fs_submit_merged_write(sbi, NODE);
2003
2004 if (unlikely(f2fs_cp_error(sbi)))
2005 return -EIO;
2006 return ret;
2007 }
2008
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2009 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2010 unsigned int seq_id)
2011 {
2012 struct fsync_node_entry *fn;
2013 struct page *page;
2014 struct list_head *head = &sbi->fsync_node_list;
2015 unsigned long flags;
2016 unsigned int cur_seq_id = 0;
2017 int ret2, ret = 0;
2018
2019 while (seq_id && cur_seq_id < seq_id) {
2020 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2021 if (list_empty(head)) {
2022 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2023 break;
2024 }
2025 fn = list_first_entry(head, struct fsync_node_entry, list);
2026 if (fn->seq_id > seq_id) {
2027 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2028 break;
2029 }
2030 cur_seq_id = fn->seq_id;
2031 page = fn->page;
2032 get_page(page);
2033 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2034
2035 f2fs_wait_on_page_writeback(page, NODE, true, false);
2036 if (TestClearPageError(page))
2037 ret = -EIO;
2038
2039 put_page(page);
2040
2041 if (ret)
2042 break;
2043 }
2044
2045 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2046 if (!ret)
2047 ret = ret2;
2048
2049 return ret;
2050 }
2051
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2052 static int f2fs_write_node_pages(struct address_space *mapping,
2053 struct writeback_control *wbc)
2054 {
2055 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2056 struct blk_plug plug;
2057 long diff;
2058
2059 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2060 goto skip_write;
2061
2062 /* balancing f2fs's metadata in background */
2063 f2fs_balance_fs_bg(sbi, true);
2064
2065 /* collect a number of dirty node pages and write together */
2066 if (wbc->sync_mode != WB_SYNC_ALL &&
2067 get_pages(sbi, F2FS_DIRTY_NODES) <
2068 nr_pages_to_skip(sbi, NODE))
2069 goto skip_write;
2070
2071 if (wbc->sync_mode == WB_SYNC_ALL)
2072 atomic_inc(&sbi->wb_sync_req[NODE]);
2073 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2074 /* to avoid potential deadlock */
2075 if (current->plug)
2076 blk_finish_plug(current->plug);
2077 goto skip_write;
2078 }
2079
2080 trace_f2fs_writepages(mapping->host, wbc, NODE);
2081
2082 diff = nr_pages_to_write(sbi, NODE, wbc);
2083 blk_start_plug(&plug);
2084 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2085 blk_finish_plug(&plug);
2086 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2087
2088 if (wbc->sync_mode == WB_SYNC_ALL)
2089 atomic_dec(&sbi->wb_sync_req[NODE]);
2090 return 0;
2091
2092 skip_write:
2093 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2094 trace_f2fs_writepages(mapping->host, wbc, NODE);
2095 return 0;
2096 }
2097
f2fs_set_node_page_dirty(struct page * page)2098 static int f2fs_set_node_page_dirty(struct page *page)
2099 {
2100 trace_f2fs_set_page_dirty(page, NODE);
2101
2102 if (!PageUptodate(page))
2103 SetPageUptodate(page);
2104 #ifdef CONFIG_F2FS_CHECK_FS
2105 if (IS_INODE(page))
2106 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2107 #endif
2108 if (!PageDirty(page)) {
2109 __set_page_dirty_nobuffers(page);
2110 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2111 f2fs_set_page_private(page, 0);
2112 f2fs_trace_pid(page);
2113 return 1;
2114 }
2115 return 0;
2116 }
2117
2118 /*
2119 * Structure of the f2fs node operations
2120 */
2121 const struct address_space_operations f2fs_node_aops = {
2122 .writepage = f2fs_write_node_page,
2123 .writepages = f2fs_write_node_pages,
2124 .set_page_dirty = f2fs_set_node_page_dirty,
2125 .invalidatepage = f2fs_invalidate_page,
2126 .releasepage = f2fs_release_page,
2127 #ifdef CONFIG_MIGRATION
2128 .migratepage = f2fs_migrate_page,
2129 #endif
2130 };
2131
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2132 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2133 nid_t n)
2134 {
2135 return radix_tree_lookup(&nm_i->free_nid_root, n);
2136 }
2137
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2138 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2139 struct free_nid *i)
2140 {
2141 struct f2fs_nm_info *nm_i = NM_I(sbi);
2142
2143 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2144 if (err)
2145 return err;
2146
2147 nm_i->nid_cnt[FREE_NID]++;
2148 list_add_tail(&i->list, &nm_i->free_nid_list);
2149 return 0;
2150 }
2151
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2152 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2153 struct free_nid *i, enum nid_state state)
2154 {
2155 struct f2fs_nm_info *nm_i = NM_I(sbi);
2156
2157 f2fs_bug_on(sbi, state != i->state);
2158 nm_i->nid_cnt[state]--;
2159 if (state == FREE_NID)
2160 list_del(&i->list);
2161 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2162 }
2163
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2164 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2165 enum nid_state org_state, enum nid_state dst_state)
2166 {
2167 struct f2fs_nm_info *nm_i = NM_I(sbi);
2168
2169 f2fs_bug_on(sbi, org_state != i->state);
2170 i->state = dst_state;
2171 nm_i->nid_cnt[org_state]--;
2172 nm_i->nid_cnt[dst_state]++;
2173
2174 switch (dst_state) {
2175 case PREALLOC_NID:
2176 list_del(&i->list);
2177 break;
2178 case FREE_NID:
2179 list_add_tail(&i->list, &nm_i->free_nid_list);
2180 break;
2181 default:
2182 BUG_ON(1);
2183 }
2184 }
2185
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2186 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2187 bool set, bool build)
2188 {
2189 struct f2fs_nm_info *nm_i = NM_I(sbi);
2190 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2191 unsigned int nid_ofs = nid - START_NID(nid);
2192
2193 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2194 return;
2195
2196 if (set) {
2197 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2198 return;
2199 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2200 nm_i->free_nid_count[nat_ofs]++;
2201 } else {
2202 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2203 return;
2204 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2205 if (!build)
2206 nm_i->free_nid_count[nat_ofs]--;
2207 }
2208 }
2209
2210 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2211 static bool add_free_nid(struct f2fs_sb_info *sbi,
2212 nid_t nid, bool build, bool update)
2213 {
2214 struct f2fs_nm_info *nm_i = NM_I(sbi);
2215 struct free_nid *i, *e;
2216 struct nat_entry *ne;
2217 int err = -EINVAL;
2218 bool ret = false;
2219
2220 /* 0 nid should not be used */
2221 if (unlikely(nid == 0))
2222 return false;
2223
2224 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2225 return false;
2226
2227 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2228 i->nid = nid;
2229 i->state = FREE_NID;
2230
2231 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2232
2233 spin_lock(&nm_i->nid_list_lock);
2234
2235 if (build) {
2236 /*
2237 * Thread A Thread B
2238 * - f2fs_create
2239 * - f2fs_new_inode
2240 * - f2fs_alloc_nid
2241 * - __insert_nid_to_list(PREALLOC_NID)
2242 * - f2fs_balance_fs_bg
2243 * - f2fs_build_free_nids
2244 * - __f2fs_build_free_nids
2245 * - scan_nat_page
2246 * - add_free_nid
2247 * - __lookup_nat_cache
2248 * - f2fs_add_link
2249 * - f2fs_init_inode_metadata
2250 * - f2fs_new_inode_page
2251 * - f2fs_new_node_page
2252 * - set_node_addr
2253 * - f2fs_alloc_nid_done
2254 * - __remove_nid_from_list(PREALLOC_NID)
2255 * - __insert_nid_to_list(FREE_NID)
2256 */
2257 ne = __lookup_nat_cache(nm_i, nid);
2258 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2259 nat_get_blkaddr(ne) != NULL_ADDR))
2260 goto err_out;
2261
2262 e = __lookup_free_nid_list(nm_i, nid);
2263 if (e) {
2264 if (e->state == FREE_NID)
2265 ret = true;
2266 goto err_out;
2267 }
2268 }
2269 ret = true;
2270 err = __insert_free_nid(sbi, i);
2271 err_out:
2272 if (update) {
2273 update_free_nid_bitmap(sbi, nid, ret, build);
2274 if (!build)
2275 nm_i->available_nids++;
2276 }
2277 spin_unlock(&nm_i->nid_list_lock);
2278 radix_tree_preload_end();
2279
2280 if (err)
2281 kmem_cache_free(free_nid_slab, i);
2282 return ret;
2283 }
2284
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2285 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2286 {
2287 struct f2fs_nm_info *nm_i = NM_I(sbi);
2288 struct free_nid *i;
2289 bool need_free = false;
2290
2291 spin_lock(&nm_i->nid_list_lock);
2292 i = __lookup_free_nid_list(nm_i, nid);
2293 if (i && i->state == FREE_NID) {
2294 __remove_free_nid(sbi, i, FREE_NID);
2295 need_free = true;
2296 }
2297 spin_unlock(&nm_i->nid_list_lock);
2298
2299 if (need_free)
2300 kmem_cache_free(free_nid_slab, i);
2301 }
2302
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2303 static int scan_nat_page(struct f2fs_sb_info *sbi,
2304 struct page *nat_page, nid_t start_nid)
2305 {
2306 struct f2fs_nm_info *nm_i = NM_I(sbi);
2307 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2308 block_t blk_addr;
2309 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2310 int i;
2311
2312 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2313
2314 i = start_nid % NAT_ENTRY_PER_BLOCK;
2315
2316 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2317 if (unlikely(start_nid >= nm_i->max_nid))
2318 break;
2319
2320 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2321
2322 if (blk_addr == NEW_ADDR)
2323 return -EINVAL;
2324
2325 if (blk_addr == NULL_ADDR) {
2326 add_free_nid(sbi, start_nid, true, true);
2327 } else {
2328 spin_lock(&NM_I(sbi)->nid_list_lock);
2329 update_free_nid_bitmap(sbi, start_nid, false, true);
2330 spin_unlock(&NM_I(sbi)->nid_list_lock);
2331 }
2332 }
2333
2334 return 0;
2335 }
2336
scan_curseg_cache(struct f2fs_sb_info * sbi)2337 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2338 {
2339 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2340 struct f2fs_journal *journal = curseg->journal;
2341 int i;
2342
2343 down_read(&curseg->journal_rwsem);
2344 for (i = 0; i < nats_in_cursum(journal); i++) {
2345 block_t addr;
2346 nid_t nid;
2347
2348 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2349 nid = le32_to_cpu(nid_in_journal(journal, i));
2350 if (addr == NULL_ADDR)
2351 add_free_nid(sbi, nid, true, false);
2352 else
2353 remove_free_nid(sbi, nid);
2354 }
2355 up_read(&curseg->journal_rwsem);
2356 }
2357
scan_free_nid_bits(struct f2fs_sb_info * sbi)2358 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2359 {
2360 struct f2fs_nm_info *nm_i = NM_I(sbi);
2361 unsigned int i, idx;
2362 nid_t nid;
2363
2364 down_read(&nm_i->nat_tree_lock);
2365
2366 for (i = 0; i < nm_i->nat_blocks; i++) {
2367 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2368 continue;
2369 if (!nm_i->free_nid_count[i])
2370 continue;
2371 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2372 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2373 NAT_ENTRY_PER_BLOCK, idx);
2374 if (idx >= NAT_ENTRY_PER_BLOCK)
2375 break;
2376
2377 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2378 add_free_nid(sbi, nid, true, false);
2379
2380 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2381 goto out;
2382 }
2383 }
2384 out:
2385 scan_curseg_cache(sbi);
2386
2387 up_read(&nm_i->nat_tree_lock);
2388 }
2389
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2390 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2391 bool sync, bool mount)
2392 {
2393 struct f2fs_nm_info *nm_i = NM_I(sbi);
2394 int i = 0, ret;
2395 nid_t nid = nm_i->next_scan_nid;
2396
2397 if (unlikely(nid >= nm_i->max_nid))
2398 nid = 0;
2399
2400 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2401 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2402
2403 /* Enough entries */
2404 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2405 return 0;
2406
2407 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2408 return 0;
2409
2410 if (!mount) {
2411 /* try to find free nids in free_nid_bitmap */
2412 scan_free_nid_bits(sbi);
2413
2414 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2415 return 0;
2416 }
2417
2418 /* readahead nat pages to be scanned */
2419 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2420 META_NAT, true);
2421
2422 down_read(&nm_i->nat_tree_lock);
2423
2424 while (1) {
2425 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2426 nm_i->nat_block_bitmap)) {
2427 struct page *page = get_current_nat_page(sbi, nid);
2428
2429 if (IS_ERR(page)) {
2430 ret = PTR_ERR(page);
2431 } else {
2432 ret = scan_nat_page(sbi, page, nid);
2433 f2fs_put_page(page, 1);
2434 }
2435
2436 if (ret) {
2437 up_read(&nm_i->nat_tree_lock);
2438 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2439 return ret;
2440 }
2441 }
2442
2443 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2444 if (unlikely(nid >= nm_i->max_nid))
2445 nid = 0;
2446
2447 if (++i >= FREE_NID_PAGES)
2448 break;
2449 }
2450
2451 /* go to the next free nat pages to find free nids abundantly */
2452 nm_i->next_scan_nid = nid;
2453
2454 /* find free nids from current sum_pages */
2455 scan_curseg_cache(sbi);
2456
2457 up_read(&nm_i->nat_tree_lock);
2458
2459 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2460 nm_i->ra_nid_pages, META_NAT, false);
2461
2462 return 0;
2463 }
2464
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2465 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2466 {
2467 int ret;
2468
2469 mutex_lock(&NM_I(sbi)->build_lock);
2470 ret = __f2fs_build_free_nids(sbi, sync, mount);
2471 mutex_unlock(&NM_I(sbi)->build_lock);
2472
2473 return ret;
2474 }
2475
2476 /*
2477 * If this function returns success, caller can obtain a new nid
2478 * from second parameter of this function.
2479 * The returned nid could be used ino as well as nid when inode is created.
2480 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2481 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2482 {
2483 struct f2fs_nm_info *nm_i = NM_I(sbi);
2484 struct free_nid *i = NULL;
2485 retry:
2486 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2487 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2488 return false;
2489 }
2490
2491 spin_lock(&nm_i->nid_list_lock);
2492
2493 if (unlikely(nm_i->available_nids == 0)) {
2494 spin_unlock(&nm_i->nid_list_lock);
2495 return false;
2496 }
2497
2498 /* We should not use stale free nids created by f2fs_build_free_nids */
2499 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2500 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2501 i = list_first_entry(&nm_i->free_nid_list,
2502 struct free_nid, list);
2503 *nid = i->nid;
2504
2505 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2506 nm_i->available_nids--;
2507
2508 update_free_nid_bitmap(sbi, *nid, false, false);
2509
2510 spin_unlock(&nm_i->nid_list_lock);
2511 return true;
2512 }
2513 spin_unlock(&nm_i->nid_list_lock);
2514
2515 /* Let's scan nat pages and its caches to get free nids */
2516 if (!f2fs_build_free_nids(sbi, true, false))
2517 goto retry;
2518 return false;
2519 }
2520
2521 /*
2522 * f2fs_alloc_nid() should be called prior to this function.
2523 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2524 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2525 {
2526 struct f2fs_nm_info *nm_i = NM_I(sbi);
2527 struct free_nid *i;
2528
2529 spin_lock(&nm_i->nid_list_lock);
2530 i = __lookup_free_nid_list(nm_i, nid);
2531 f2fs_bug_on(sbi, !i);
2532 __remove_free_nid(sbi, i, PREALLOC_NID);
2533 spin_unlock(&nm_i->nid_list_lock);
2534
2535 kmem_cache_free(free_nid_slab, i);
2536 }
2537
2538 /*
2539 * f2fs_alloc_nid() should be called prior to this function.
2540 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2541 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2542 {
2543 struct f2fs_nm_info *nm_i = NM_I(sbi);
2544 struct free_nid *i;
2545 bool need_free = false;
2546
2547 if (!nid)
2548 return;
2549
2550 spin_lock(&nm_i->nid_list_lock);
2551 i = __lookup_free_nid_list(nm_i, nid);
2552 f2fs_bug_on(sbi, !i);
2553
2554 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2555 __remove_free_nid(sbi, i, PREALLOC_NID);
2556 need_free = true;
2557 } else {
2558 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2559 }
2560
2561 nm_i->available_nids++;
2562
2563 update_free_nid_bitmap(sbi, nid, true, false);
2564
2565 spin_unlock(&nm_i->nid_list_lock);
2566
2567 if (need_free)
2568 kmem_cache_free(free_nid_slab, i);
2569 }
2570
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2571 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2572 {
2573 struct f2fs_nm_info *nm_i = NM_I(sbi);
2574 int nr = nr_shrink;
2575
2576 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2577 return 0;
2578
2579 if (!mutex_trylock(&nm_i->build_lock))
2580 return 0;
2581
2582 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2583 struct free_nid *i, *next;
2584 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2585
2586 spin_lock(&nm_i->nid_list_lock);
2587 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2588 if (!nr_shrink || !batch ||
2589 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2590 break;
2591 __remove_free_nid(sbi, i, FREE_NID);
2592 kmem_cache_free(free_nid_slab, i);
2593 nr_shrink--;
2594 batch--;
2595 }
2596 spin_unlock(&nm_i->nid_list_lock);
2597 }
2598
2599 mutex_unlock(&nm_i->build_lock);
2600
2601 return nr - nr_shrink;
2602 }
2603
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2604 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2605 {
2606 void *src_addr, *dst_addr;
2607 size_t inline_size;
2608 struct page *ipage;
2609 struct f2fs_inode *ri;
2610
2611 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2612 if (IS_ERR(ipage))
2613 return PTR_ERR(ipage);
2614
2615 ri = F2FS_INODE(page);
2616 if (ri->i_inline & F2FS_INLINE_XATTR) {
2617 set_inode_flag(inode, FI_INLINE_XATTR);
2618 } else {
2619 clear_inode_flag(inode, FI_INLINE_XATTR);
2620 goto update_inode;
2621 }
2622
2623 dst_addr = inline_xattr_addr(inode, ipage);
2624 src_addr = inline_xattr_addr(inode, page);
2625 inline_size = inline_xattr_size(inode);
2626
2627 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2628 memcpy(dst_addr, src_addr, inline_size);
2629 update_inode:
2630 f2fs_update_inode(inode, ipage);
2631 f2fs_put_page(ipage, 1);
2632 return 0;
2633 }
2634
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2635 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2636 {
2637 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2638 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2639 nid_t new_xnid;
2640 struct dnode_of_data dn;
2641 struct node_info ni;
2642 struct page *xpage;
2643 int err;
2644
2645 if (!prev_xnid)
2646 goto recover_xnid;
2647
2648 /* 1: invalidate the previous xattr nid */
2649 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2650 if (err)
2651 return err;
2652
2653 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2654 dec_valid_node_count(sbi, inode, false);
2655 set_node_addr(sbi, &ni, NULL_ADDR, false);
2656
2657 recover_xnid:
2658 /* 2: update xattr nid in inode */
2659 if (!f2fs_alloc_nid(sbi, &new_xnid))
2660 return -ENOSPC;
2661
2662 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2663 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2664 if (IS_ERR(xpage)) {
2665 f2fs_alloc_nid_failed(sbi, new_xnid);
2666 return PTR_ERR(xpage);
2667 }
2668
2669 f2fs_alloc_nid_done(sbi, new_xnid);
2670 f2fs_update_inode_page(inode);
2671
2672 /* 3: update and set xattr node page dirty */
2673 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2674
2675 set_page_dirty(xpage);
2676 f2fs_put_page(xpage, 1);
2677
2678 return 0;
2679 }
2680
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2681 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2682 {
2683 struct f2fs_inode *src, *dst;
2684 nid_t ino = ino_of_node(page);
2685 struct node_info old_ni, new_ni;
2686 struct page *ipage;
2687 int err;
2688
2689 err = f2fs_get_node_info(sbi, ino, &old_ni);
2690 if (err)
2691 return err;
2692
2693 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2694 return -EINVAL;
2695 retry:
2696 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2697 if (!ipage) {
2698 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2699 goto retry;
2700 }
2701
2702 /* Should not use this inode from free nid list */
2703 remove_free_nid(sbi, ino);
2704
2705 if (!PageUptodate(ipage))
2706 SetPageUptodate(ipage);
2707 fill_node_footer(ipage, ino, ino, 0, true);
2708 set_cold_node(ipage, false);
2709
2710 src = F2FS_INODE(page);
2711 dst = F2FS_INODE(ipage);
2712
2713 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2714 dst->i_size = 0;
2715 dst->i_blocks = cpu_to_le64(1);
2716 dst->i_links = cpu_to_le32(1);
2717 dst->i_xattr_nid = 0;
2718 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2719 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2720 dst->i_extra_isize = src->i_extra_isize;
2721
2722 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2723 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2724 i_inline_xattr_size))
2725 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2726
2727 if (f2fs_sb_has_project_quota(sbi) &&
2728 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2729 i_projid))
2730 dst->i_projid = src->i_projid;
2731
2732 if (f2fs_sb_has_inode_crtime(sbi) &&
2733 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2734 i_crtime_nsec)) {
2735 dst->i_crtime = src->i_crtime;
2736 dst->i_crtime_nsec = src->i_crtime_nsec;
2737 }
2738 }
2739
2740 new_ni = old_ni;
2741 new_ni.ino = ino;
2742
2743 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2744 WARN_ON(1);
2745 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2746 inc_valid_inode_count(sbi);
2747 set_page_dirty(ipage);
2748 f2fs_put_page(ipage, 1);
2749 return 0;
2750 }
2751
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2752 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2753 unsigned int segno, struct f2fs_summary_block *sum)
2754 {
2755 struct f2fs_node *rn;
2756 struct f2fs_summary *sum_entry;
2757 block_t addr;
2758 int i, idx, last_offset, nrpages;
2759
2760 /* scan the node segment */
2761 last_offset = sbi->blocks_per_seg;
2762 addr = START_BLOCK(sbi, segno);
2763 sum_entry = &sum->entries[0];
2764
2765 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2766 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2767
2768 /* readahead node pages */
2769 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2770
2771 for (idx = addr; idx < addr + nrpages; idx++) {
2772 struct page *page = f2fs_get_tmp_page(sbi, idx);
2773
2774 if (IS_ERR(page))
2775 return PTR_ERR(page);
2776
2777 rn = F2FS_NODE(page);
2778 sum_entry->nid = rn->footer.nid;
2779 sum_entry->version = 0;
2780 sum_entry->ofs_in_node = 0;
2781 sum_entry++;
2782 f2fs_put_page(page, 1);
2783 }
2784
2785 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2786 addr + nrpages);
2787 }
2788 return 0;
2789 }
2790
remove_nats_in_journal(struct f2fs_sb_info * sbi)2791 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2792 {
2793 struct f2fs_nm_info *nm_i = NM_I(sbi);
2794 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2795 struct f2fs_journal *journal = curseg->journal;
2796 int i;
2797
2798 down_write(&curseg->journal_rwsem);
2799 for (i = 0; i < nats_in_cursum(journal); i++) {
2800 struct nat_entry *ne;
2801 struct f2fs_nat_entry raw_ne;
2802 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2803
2804 if (f2fs_check_nid_range(sbi, nid))
2805 continue;
2806
2807 raw_ne = nat_in_journal(journal, i);
2808
2809 ne = __lookup_nat_cache(nm_i, nid);
2810 if (!ne) {
2811 ne = __alloc_nat_entry(nid, true);
2812 __init_nat_entry(nm_i, ne, &raw_ne, true);
2813 }
2814
2815 /*
2816 * if a free nat in journal has not been used after last
2817 * checkpoint, we should remove it from available nids,
2818 * since later we will add it again.
2819 */
2820 if (!get_nat_flag(ne, IS_DIRTY) &&
2821 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2822 spin_lock(&nm_i->nid_list_lock);
2823 nm_i->available_nids--;
2824 spin_unlock(&nm_i->nid_list_lock);
2825 }
2826
2827 __set_nat_cache_dirty(nm_i, ne);
2828 }
2829 update_nats_in_cursum(journal, -i);
2830 up_write(&curseg->journal_rwsem);
2831 }
2832
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2833 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2834 struct list_head *head, int max)
2835 {
2836 struct nat_entry_set *cur;
2837
2838 if (nes->entry_cnt >= max)
2839 goto add_out;
2840
2841 list_for_each_entry(cur, head, set_list) {
2842 if (cur->entry_cnt >= nes->entry_cnt) {
2843 list_add(&nes->set_list, cur->set_list.prev);
2844 return;
2845 }
2846 }
2847 add_out:
2848 list_add_tail(&nes->set_list, head);
2849 }
2850
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2851 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2852 struct page *page)
2853 {
2854 struct f2fs_nm_info *nm_i = NM_I(sbi);
2855 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2856 struct f2fs_nat_block *nat_blk = page_address(page);
2857 int valid = 0;
2858 int i = 0;
2859
2860 if (!enabled_nat_bits(sbi, NULL))
2861 return;
2862
2863 if (nat_index == 0) {
2864 valid = 1;
2865 i = 1;
2866 }
2867 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2868 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2869 valid++;
2870 }
2871 if (valid == 0) {
2872 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2873 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2874 return;
2875 }
2876
2877 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2878 if (valid == NAT_ENTRY_PER_BLOCK)
2879 __set_bit_le(nat_index, nm_i->full_nat_bits);
2880 else
2881 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2882 }
2883
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2884 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2885 struct nat_entry_set *set, struct cp_control *cpc)
2886 {
2887 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2888 struct f2fs_journal *journal = curseg->journal;
2889 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2890 bool to_journal = true;
2891 struct f2fs_nat_block *nat_blk;
2892 struct nat_entry *ne, *cur;
2893 struct page *page = NULL;
2894
2895 /*
2896 * there are two steps to flush nat entries:
2897 * #1, flush nat entries to journal in current hot data summary block.
2898 * #2, flush nat entries to nat page.
2899 */
2900 if (enabled_nat_bits(sbi, cpc) ||
2901 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2902 to_journal = false;
2903
2904 if (to_journal) {
2905 down_write(&curseg->journal_rwsem);
2906 } else {
2907 page = get_next_nat_page(sbi, start_nid);
2908 if (IS_ERR(page))
2909 return PTR_ERR(page);
2910
2911 nat_blk = page_address(page);
2912 f2fs_bug_on(sbi, !nat_blk);
2913 }
2914
2915 /* flush dirty nats in nat entry set */
2916 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2917 struct f2fs_nat_entry *raw_ne;
2918 nid_t nid = nat_get_nid(ne);
2919 int offset;
2920
2921 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2922
2923 if (to_journal) {
2924 offset = f2fs_lookup_journal_in_cursum(journal,
2925 NAT_JOURNAL, nid, 1);
2926 f2fs_bug_on(sbi, offset < 0);
2927 raw_ne = &nat_in_journal(journal, offset);
2928 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2929 } else {
2930 raw_ne = &nat_blk->entries[nid - start_nid];
2931 }
2932 raw_nat_from_node_info(raw_ne, &ne->ni);
2933 nat_reset_flag(ne);
2934 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2935 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2936 add_free_nid(sbi, nid, false, true);
2937 } else {
2938 spin_lock(&NM_I(sbi)->nid_list_lock);
2939 update_free_nid_bitmap(sbi, nid, false, false);
2940 spin_unlock(&NM_I(sbi)->nid_list_lock);
2941 }
2942 }
2943
2944 if (to_journal) {
2945 up_write(&curseg->journal_rwsem);
2946 } else {
2947 __update_nat_bits(sbi, start_nid, page);
2948 f2fs_put_page(page, 1);
2949 }
2950
2951 /* Allow dirty nats by node block allocation in write_begin */
2952 if (!set->entry_cnt) {
2953 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2954 kmem_cache_free(nat_entry_set_slab, set);
2955 }
2956 return 0;
2957 }
2958
2959 /*
2960 * This function is called during the checkpointing process.
2961 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2962 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2963 {
2964 struct f2fs_nm_info *nm_i = NM_I(sbi);
2965 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2966 struct f2fs_journal *journal = curseg->journal;
2967 struct nat_entry_set *setvec[SETVEC_SIZE];
2968 struct nat_entry_set *set, *tmp;
2969 unsigned int found;
2970 nid_t set_idx = 0;
2971 LIST_HEAD(sets);
2972 int err = 0;
2973
2974 /*
2975 * during unmount, let's flush nat_bits before checking
2976 * nat_cnt[DIRTY_NAT].
2977 */
2978 if (enabled_nat_bits(sbi, cpc)) {
2979 down_write(&nm_i->nat_tree_lock);
2980 remove_nats_in_journal(sbi);
2981 up_write(&nm_i->nat_tree_lock);
2982 }
2983
2984 if (!nm_i->nat_cnt[DIRTY_NAT])
2985 return 0;
2986
2987 down_write(&nm_i->nat_tree_lock);
2988
2989 /*
2990 * if there are no enough space in journal to store dirty nat
2991 * entries, remove all entries from journal and merge them
2992 * into nat entry set.
2993 */
2994 if (enabled_nat_bits(sbi, cpc) ||
2995 !__has_cursum_space(journal,
2996 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
2997 remove_nats_in_journal(sbi);
2998
2999 while ((found = __gang_lookup_nat_set(nm_i,
3000 set_idx, SETVEC_SIZE, setvec))) {
3001 unsigned idx;
3002 set_idx = setvec[found - 1]->set + 1;
3003 for (idx = 0; idx < found; idx++)
3004 __adjust_nat_entry_set(setvec[idx], &sets,
3005 MAX_NAT_JENTRIES(journal));
3006 }
3007
3008 /* flush dirty nats in nat entry set */
3009 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3010 err = __flush_nat_entry_set(sbi, set, cpc);
3011 if (err)
3012 break;
3013 }
3014
3015 up_write(&nm_i->nat_tree_lock);
3016 /* Allow dirty nats by node block allocation in write_begin */
3017
3018 return err;
3019 }
3020
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3021 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3022 {
3023 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3024 struct f2fs_nm_info *nm_i = NM_I(sbi);
3025 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3026 unsigned int i;
3027 __u64 cp_ver = cur_cp_version(ckpt);
3028 block_t nat_bits_addr;
3029
3030 if (!enabled_nat_bits(sbi, NULL))
3031 return 0;
3032
3033 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3034 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3035 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3036 if (!nm_i->nat_bits)
3037 return -ENOMEM;
3038
3039 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3040 nm_i->nat_bits_blocks;
3041 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3042 struct page *page;
3043
3044 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3045 if (IS_ERR(page))
3046 return PTR_ERR(page);
3047
3048 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3049 page_address(page), F2FS_BLKSIZE);
3050 f2fs_put_page(page, 1);
3051 }
3052
3053 cp_ver |= (cur_cp_crc(ckpt) << 32);
3054 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3055 disable_nat_bits(sbi, true);
3056 return 0;
3057 }
3058
3059 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3060 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3061
3062 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3063 return 0;
3064 }
3065
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3066 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3067 {
3068 struct f2fs_nm_info *nm_i = NM_I(sbi);
3069 unsigned int i = 0;
3070 nid_t nid, last_nid;
3071
3072 if (!enabled_nat_bits(sbi, NULL))
3073 return;
3074
3075 for (i = 0; i < nm_i->nat_blocks; i++) {
3076 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3077 if (i >= nm_i->nat_blocks)
3078 break;
3079
3080 __set_bit_le(i, nm_i->nat_block_bitmap);
3081
3082 nid = i * NAT_ENTRY_PER_BLOCK;
3083 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3084
3085 spin_lock(&NM_I(sbi)->nid_list_lock);
3086 for (; nid < last_nid; nid++)
3087 update_free_nid_bitmap(sbi, nid, true, true);
3088 spin_unlock(&NM_I(sbi)->nid_list_lock);
3089 }
3090
3091 for (i = 0; i < nm_i->nat_blocks; i++) {
3092 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3093 if (i >= nm_i->nat_blocks)
3094 break;
3095
3096 __set_bit_le(i, nm_i->nat_block_bitmap);
3097 }
3098 }
3099
init_node_manager(struct f2fs_sb_info * sbi)3100 static int init_node_manager(struct f2fs_sb_info *sbi)
3101 {
3102 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3103 struct f2fs_nm_info *nm_i = NM_I(sbi);
3104 unsigned char *version_bitmap;
3105 unsigned int nat_segs;
3106 int err;
3107
3108 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3109
3110 /* segment_count_nat includes pair segment so divide to 2. */
3111 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3112 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3113 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3114
3115 /* not used nids: 0, node, meta, (and root counted as valid node) */
3116 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3117 F2FS_RESERVED_NODE_NUM;
3118 nm_i->nid_cnt[FREE_NID] = 0;
3119 nm_i->nid_cnt[PREALLOC_NID] = 0;
3120 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3121 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3122 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3123
3124 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3125 INIT_LIST_HEAD(&nm_i->free_nid_list);
3126 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3127 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3128 INIT_LIST_HEAD(&nm_i->nat_entries);
3129 spin_lock_init(&nm_i->nat_list_lock);
3130
3131 mutex_init(&nm_i->build_lock);
3132 spin_lock_init(&nm_i->nid_list_lock);
3133 init_rwsem(&nm_i->nat_tree_lock);
3134
3135 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3136 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3137 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3138 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3139 GFP_KERNEL);
3140 if (!nm_i->nat_bitmap)
3141 return -ENOMEM;
3142
3143 err = __get_nat_bitmaps(sbi);
3144 if (err)
3145 return err;
3146
3147 #ifdef CONFIG_F2FS_CHECK_FS
3148 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3149 GFP_KERNEL);
3150 if (!nm_i->nat_bitmap_mir)
3151 return -ENOMEM;
3152 #endif
3153
3154 return 0;
3155 }
3156
init_free_nid_cache(struct f2fs_sb_info * sbi)3157 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3158 {
3159 struct f2fs_nm_info *nm_i = NM_I(sbi);
3160 int i;
3161
3162 nm_i->free_nid_bitmap =
3163 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3164 nm_i->nat_blocks),
3165 GFP_KERNEL);
3166 if (!nm_i->free_nid_bitmap)
3167 return -ENOMEM;
3168
3169 for (i = 0; i < nm_i->nat_blocks; i++) {
3170 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3171 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3172 if (!nm_i->free_nid_bitmap[i])
3173 return -ENOMEM;
3174 }
3175
3176 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3177 GFP_KERNEL);
3178 if (!nm_i->nat_block_bitmap)
3179 return -ENOMEM;
3180
3181 nm_i->free_nid_count =
3182 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3183 nm_i->nat_blocks),
3184 GFP_KERNEL);
3185 if (!nm_i->free_nid_count)
3186 return -ENOMEM;
3187 return 0;
3188 }
3189
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3190 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3191 {
3192 int err;
3193
3194 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3195 GFP_KERNEL);
3196 if (!sbi->nm_info)
3197 return -ENOMEM;
3198
3199 err = init_node_manager(sbi);
3200 if (err)
3201 return err;
3202
3203 err = init_free_nid_cache(sbi);
3204 if (err)
3205 return err;
3206
3207 /* load free nid status from nat_bits table */
3208 load_free_nid_bitmap(sbi);
3209
3210 return f2fs_build_free_nids(sbi, true, true);
3211 }
3212
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3213 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3214 {
3215 struct f2fs_nm_info *nm_i = NM_I(sbi);
3216 struct free_nid *i, *next_i;
3217 struct nat_entry *natvec[NATVEC_SIZE];
3218 struct nat_entry_set *setvec[SETVEC_SIZE];
3219 nid_t nid = 0;
3220 unsigned int found;
3221
3222 if (!nm_i)
3223 return;
3224
3225 /* destroy free nid list */
3226 spin_lock(&nm_i->nid_list_lock);
3227 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3228 __remove_free_nid(sbi, i, FREE_NID);
3229 spin_unlock(&nm_i->nid_list_lock);
3230 kmem_cache_free(free_nid_slab, i);
3231 spin_lock(&nm_i->nid_list_lock);
3232 }
3233 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3234 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3235 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3236 spin_unlock(&nm_i->nid_list_lock);
3237
3238 /* destroy nat cache */
3239 down_write(&nm_i->nat_tree_lock);
3240 while ((found = __gang_lookup_nat_cache(nm_i,
3241 nid, NATVEC_SIZE, natvec))) {
3242 unsigned idx;
3243
3244 nid = nat_get_nid(natvec[found - 1]) + 1;
3245 for (idx = 0; idx < found; idx++) {
3246 spin_lock(&nm_i->nat_list_lock);
3247 list_del(&natvec[idx]->list);
3248 spin_unlock(&nm_i->nat_list_lock);
3249
3250 __del_from_nat_cache(nm_i, natvec[idx]);
3251 }
3252 }
3253 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3254
3255 /* destroy nat set cache */
3256 nid = 0;
3257 while ((found = __gang_lookup_nat_set(nm_i,
3258 nid, SETVEC_SIZE, setvec))) {
3259 unsigned idx;
3260
3261 nid = setvec[found - 1]->set + 1;
3262 for (idx = 0; idx < found; idx++) {
3263 /* entry_cnt is not zero, when cp_error was occurred */
3264 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3265 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3266 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3267 }
3268 }
3269 up_write(&nm_i->nat_tree_lock);
3270
3271 kvfree(nm_i->nat_block_bitmap);
3272 if (nm_i->free_nid_bitmap) {
3273 int i;
3274
3275 for (i = 0; i < nm_i->nat_blocks; i++)
3276 kvfree(nm_i->free_nid_bitmap[i]);
3277 kvfree(nm_i->free_nid_bitmap);
3278 }
3279 kvfree(nm_i->free_nid_count);
3280
3281 kvfree(nm_i->nat_bitmap);
3282 kvfree(nm_i->nat_bits);
3283 #ifdef CONFIG_F2FS_CHECK_FS
3284 kvfree(nm_i->nat_bitmap_mir);
3285 #endif
3286 sbi->nm_info = NULL;
3287 kfree(nm_i);
3288 }
3289
f2fs_create_node_manager_caches(void)3290 int __init f2fs_create_node_manager_caches(void)
3291 {
3292 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3293 sizeof(struct nat_entry));
3294 if (!nat_entry_slab)
3295 goto fail;
3296
3297 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3298 sizeof(struct free_nid));
3299 if (!free_nid_slab)
3300 goto destroy_nat_entry;
3301
3302 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3303 sizeof(struct nat_entry_set));
3304 if (!nat_entry_set_slab)
3305 goto destroy_free_nid;
3306
3307 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3308 sizeof(struct fsync_node_entry));
3309 if (!fsync_node_entry_slab)
3310 goto destroy_nat_entry_set;
3311 return 0;
3312
3313 destroy_nat_entry_set:
3314 kmem_cache_destroy(nat_entry_set_slab);
3315 destroy_free_nid:
3316 kmem_cache_destroy(free_nid_slab);
3317 destroy_nat_entry:
3318 kmem_cache_destroy(nat_entry_slab);
3319 fail:
3320 return -ENOMEM;
3321 }
3322
f2fs_destroy_node_manager_caches(void)3323 void f2fs_destroy_node_manager_caches(void)
3324 {
3325 kmem_cache_destroy(fsync_node_entry_slab);
3326 kmem_cache_destroy(nat_entry_set_slab);
3327 kmem_cache_destroy(free_nid_slab);
3328 kmem_cache_destroy(nat_entry_slab);
3329 }
3330