• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <linux/xpm.h>
25 #include <trace/events/writeback.h>
26 #include "internal.h"
27 
28 /*
29  * Inode locking rules:
30  *
31  * inode->i_lock protects:
32  *   inode->i_state, inode->i_hash, __iget()
33  * Inode LRU list locks protect:
34  *   inode->i_sb->s_inode_lru, inode->i_lru
35  * inode->i_sb->s_inode_list_lock protects:
36  *   inode->i_sb->s_inodes, inode->i_sb_list
37  * bdi->wb.list_lock protects:
38  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
39  * inode_hash_lock protects:
40  *   inode_hashtable, inode->i_hash
41  *
42  * Lock ordering:
43  *
44  * inode->i_sb->s_inode_list_lock
45  *   inode->i_lock
46  *     Inode LRU list locks
47  *
48  * bdi->wb.list_lock
49  *   inode->i_lock
50  *
51  * inode_hash_lock
52  *   inode->i_sb->s_inode_list_lock
53  *   inode->i_lock
54  *
55  * iunique_lock
56  *   inode_hash_lock
57  */
58 
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 static struct hlist_head *inode_hashtable __read_mostly;
62 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
63 
64 /*
65  * Empty aops. Can be used for the cases where the user does not
66  * define any of the address_space operations.
67  */
68 const struct address_space_operations empty_aops = {
69 };
70 EXPORT_SYMBOL(empty_aops);
71 
72 /*
73  * Statistics gathering..
74  */
75 struct inodes_stat_t inodes_stat;
76 
77 static DEFINE_PER_CPU(unsigned long, nr_inodes);
78 static DEFINE_PER_CPU(unsigned long, nr_unused);
79 
80 static struct kmem_cache *inode_cachep __read_mostly;
81 
get_nr_inodes(void)82 static long get_nr_inodes(void)
83 {
84 	int i;
85 	long sum = 0;
86 	for_each_possible_cpu(i)
87 		sum += per_cpu(nr_inodes, i);
88 	return sum < 0 ? 0 : sum;
89 }
90 
get_nr_inodes_unused(void)91 static inline long get_nr_inodes_unused(void)
92 {
93 	int i;
94 	long sum = 0;
95 	for_each_possible_cpu(i)
96 		sum += per_cpu(nr_unused, i);
97 	return sum < 0 ? 0 : sum;
98 }
99 
get_nr_dirty_inodes(void)100 long get_nr_dirty_inodes(void)
101 {
102 	/* not actually dirty inodes, but a wild approximation */
103 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
104 	return nr_dirty > 0 ? nr_dirty : 0;
105 }
106 
107 /*
108  * Handle nr_inode sysctl
109  */
110 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)111 int proc_nr_inodes(struct ctl_table *table, int write,
112 		   void *buffer, size_t *lenp, loff_t *ppos)
113 {
114 	inodes_stat.nr_inodes = get_nr_inodes();
115 	inodes_stat.nr_unused = get_nr_inodes_unused();
116 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
117 }
118 #endif
119 
no_open(struct inode * inode,struct file * file)120 static int no_open(struct inode *inode, struct file *file)
121 {
122 	return -ENXIO;
123 }
124 
125 /**
126  * inode_init_always - perform inode structure initialisation
127  * @sb: superblock inode belongs to
128  * @inode: inode to initialise
129  *
130  * These are initializations that need to be done on every inode
131  * allocation as the fields are not initialised by slab allocation.
132  */
inode_init_always(struct super_block * sb,struct inode * inode)133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 	static const struct inode_operations empty_iops;
136 	static const struct file_operations no_open_fops = {.open = no_open};
137 	struct address_space *const mapping = &inode->i_data;
138 
139 	inode->i_sb = sb;
140 	inode->i_blkbits = sb->s_blocksize_bits;
141 	inode->i_flags = 0;
142 	atomic64_set(&inode->i_sequence, 0);
143 	atomic_set(&inode->i_count, 1);
144 	inode->i_op = &empty_iops;
145 	inode->i_fop = &no_open_fops;
146 	inode->__i_nlink = 1;
147 	inode->i_opflags = 0;
148 	if (sb->s_xattr)
149 		inode->i_opflags |= IOP_XATTR;
150 	i_uid_write(inode, 0);
151 	i_gid_write(inode, 0);
152 	atomic_set(&inode->i_writecount, 0);
153 	inode->i_size = 0;
154 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 	inode->i_blocks = 0;
156 	inode->i_bytes = 0;
157 	inode->i_generation = 0;
158 	inode->i_pipe = NULL;
159 	inode->i_bdev = NULL;
160 	inode->i_cdev = NULL;
161 	inode->i_link = NULL;
162 	inode->i_dir_seq = 0;
163 	inode->i_rdev = 0;
164 	inode->dirtied_when = 0;
165 
166 #ifdef CONFIG_CGROUP_WRITEBACK
167 	inode->i_wb_frn_winner = 0;
168 	inode->i_wb_frn_avg_time = 0;
169 	inode->i_wb_frn_history = 0;
170 #endif
171 
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	inode->i_private = NULL;
194 	inode->i_mapping = mapping;
195 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199 
200 #ifdef CONFIG_FSNOTIFY
201 	inode->i_fsnotify_mask = 0;
202 #endif
203 	inode->i_flctx = NULL;
204 
205 	if (unlikely(security_inode_alloc(inode)))
206 		return -ENOMEM;
207 	this_cpu_inc(nr_inodes);
208 
209 	return 0;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212 
free_inode_nonrcu(struct inode * inode)213 void free_inode_nonrcu(struct inode *inode)
214 {
215 	kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218 
i_callback(struct rcu_head * head)219 static void i_callback(struct rcu_head *head)
220 {
221 	struct inode *inode = container_of(head, struct inode, i_rcu);
222 	if (inode->free_inode)
223 		inode->free_inode(inode);
224 	else
225 		free_inode_nonrcu(inode);
226 }
227 
alloc_inode(struct super_block * sb)228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 	const struct super_operations *ops = sb->s_op;
231 	struct inode *inode;
232 
233 	if (ops->alloc_inode)
234 		inode = ops->alloc_inode(sb);
235 	else
236 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237 
238 	if (!inode)
239 		return NULL;
240 
241 	if (unlikely(inode_init_always(sb, inode))) {
242 		if (ops->destroy_inode) {
243 			ops->destroy_inode(inode);
244 			if (!ops->free_inode)
245 				return NULL;
246 		}
247 		inode->free_inode = ops->free_inode;
248 		i_callback(&inode->i_rcu);
249 		return NULL;
250 	}
251 
252 	return inode;
253 }
254 
__destroy_inode(struct inode * inode)255 void __destroy_inode(struct inode *inode)
256 {
257 	BUG_ON(inode_has_buffers(inode));
258 	inode_detach_wb(inode);
259 	security_inode_free(inode);
260 	fsnotify_inode_delete(inode);
261 	locks_free_lock_context(inode);
262 	xpm_delete_cache_node_hook(inode);
263 	if (!inode->i_nlink) {
264 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 		atomic_long_dec(&inode->i_sb->s_remove_count);
266 	}
267 
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
destroy_inode(struct inode * inode)278 static void destroy_inode(struct inode *inode)
279 {
280 	const struct super_operations *ops = inode->i_sb->s_op;
281 
282 	BUG_ON(!list_empty(&inode->i_lru));
283 	__destroy_inode(inode);
284 	if (ops->destroy_inode) {
285 		ops->destroy_inode(inode);
286 		if (!ops->free_inode)
287 			return;
288 	}
289 	inode->free_inode = ops->free_inode;
290 	call_rcu(&inode->i_rcu, i_callback);
291 }
292 
293 /**
294  * drop_nlink - directly drop an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  In cases
299  * where we are attempting to track writes to the
300  * filesystem, a decrement to zero means an imminent
301  * write when the file is truncated and actually unlinked
302  * on the filesystem.
303  */
drop_nlink(struct inode * inode)304 void drop_nlink(struct inode *inode)
305 {
306 	WARN_ON(inode->i_nlink == 0);
307 	inode->__i_nlink--;
308 	if (!inode->i_nlink)
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312 
313 /**
314  * clear_nlink - directly zero an inode's link count
315  * @inode: inode
316  *
317  * This is a low-level filesystem helper to replace any
318  * direct filesystem manipulation of i_nlink.  See
319  * drop_nlink() for why we care about i_nlink hitting zero.
320  */
clear_nlink(struct inode * inode)321 void clear_nlink(struct inode *inode)
322 {
323 	if (inode->i_nlink) {
324 		inode->__i_nlink = 0;
325 		atomic_long_inc(&inode->i_sb->s_remove_count);
326 	}
327 }
328 EXPORT_SYMBOL(clear_nlink);
329 
330 /**
331  * set_nlink - directly set an inode's link count
332  * @inode: inode
333  * @nlink: new nlink (should be non-zero)
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.
337  */
set_nlink(struct inode * inode,unsigned int nlink)338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 	if (!nlink) {
341 		clear_nlink(inode);
342 	} else {
343 		/* Yes, some filesystems do change nlink from zero to one */
344 		if (inode->i_nlink == 0)
345 			atomic_long_dec(&inode->i_sb->s_remove_count);
346 
347 		inode->__i_nlink = nlink;
348 	}
349 }
350 EXPORT_SYMBOL(set_nlink);
351 
352 /**
353  * inc_nlink - directly increment an inode's link count
354  * @inode: inode
355  *
356  * This is a low-level filesystem helper to replace any
357  * direct filesystem manipulation of i_nlink.  Currently,
358  * it is only here for parity with dec_nlink().
359  */
inc_nlink(struct inode * inode)360 void inc_nlink(struct inode *inode)
361 {
362 	if (unlikely(inode->i_nlink == 0)) {
363 		WARN_ON(!(inode->i_state & I_LINKABLE));
364 		atomic_long_dec(&inode->i_sb->s_remove_count);
365 	}
366 
367 	inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370 
__address_space_init_once(struct address_space * mapping)371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 	init_rwsem(&mapping->i_mmap_rwsem);
375 	INIT_LIST_HEAD(&mapping->private_list);
376 	spin_lock_init(&mapping->private_lock);
377 	mapping->i_mmap = RB_ROOT_CACHED;
378 }
379 
address_space_init_once(struct address_space * mapping)380 void address_space_init_once(struct address_space *mapping)
381 {
382 	memset(mapping, 0, sizeof(*mapping));
383 	__address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386 
387 /*
388  * These are initializations that only need to be done
389  * once, because the fields are idempotent across use
390  * of the inode, so let the slab aware of that.
391  */
inode_init_once(struct inode * inode)392 void inode_init_once(struct inode *inode)
393 {
394 	memset(inode, 0, sizeof(*inode));
395 	INIT_HLIST_NODE(&inode->i_hash);
396 	INIT_LIST_HEAD(&inode->i_devices);
397 	INIT_LIST_HEAD(&inode->i_io_list);
398 	INIT_LIST_HEAD(&inode->i_wb_list);
399 	INIT_LIST_HEAD(&inode->i_lru);
400 	__address_space_init_once(&inode->i_data);
401 	i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404 
init_once(void * foo)405 static void init_once(void *foo)
406 {
407 	struct inode *inode = (struct inode *) foo;
408 
409 	inode_init_once(inode);
410 }
411 
412 /*
413  * inode->i_lock must be held
414  */
__iget(struct inode * inode)415 void __iget(struct inode *inode)
416 {
417 	atomic_inc(&inode->i_count);
418 }
419 
420 /*
421  * get additional reference to inode; caller must already hold one.
422  */
ihold(struct inode * inode)423 void ihold(struct inode *inode)
424 {
425 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428 
inode_lru_list_add(struct inode * inode)429 static void inode_lru_list_add(struct inode *inode)
430 {
431 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 		this_cpu_inc(nr_unused);
433 	else
434 		inode->i_state |= I_REFERENCED;
435 }
436 
437 /*
438  * Add inode to LRU if needed (inode is unused and clean).
439  *
440  * Needs inode->i_lock held.
441  */
inode_add_lru(struct inode * inode)442 void inode_add_lru(struct inode *inode)
443 {
444 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
445 				I_FREEING | I_WILL_FREE)) &&
446 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
447 		inode_lru_list_add(inode);
448 }
449 
450 
inode_lru_list_del(struct inode * inode)451 static void inode_lru_list_del(struct inode *inode)
452 {
453 
454 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
455 		this_cpu_dec(nr_unused);
456 }
457 
inode_pin_lru_isolating(struct inode * inode)458 static void inode_pin_lru_isolating(struct inode *inode)
459 {
460 	lockdep_assert_held(&inode->i_lock);
461 	WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
462 	inode->i_state |= I_LRU_ISOLATING;
463 }
464 
inode_unpin_lru_isolating(struct inode * inode)465 static void inode_unpin_lru_isolating(struct inode *inode)
466 {
467 	spin_lock(&inode->i_lock);
468 	WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
469 	inode->i_state &= ~I_LRU_ISOLATING;
470 	smp_mb();
471 	wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
472 	spin_unlock(&inode->i_lock);
473 }
474 
inode_wait_for_lru_isolating(struct inode * inode)475 static void inode_wait_for_lru_isolating(struct inode *inode)
476 {
477 	spin_lock(&inode->i_lock);
478 	if (inode->i_state & I_LRU_ISOLATING) {
479 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
480 		wait_queue_head_t *wqh;
481 
482 		wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
483 		spin_unlock(&inode->i_lock);
484 		__wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
485 		spin_lock(&inode->i_lock);
486 		WARN_ON(inode->i_state & I_LRU_ISOLATING);
487 	}
488 	spin_unlock(&inode->i_lock);
489 }
490 
491 /**
492  * inode_sb_list_add - add inode to the superblock list of inodes
493  * @inode: inode to add
494  */
inode_sb_list_add(struct inode * inode)495 void inode_sb_list_add(struct inode *inode)
496 {
497 	spin_lock(&inode->i_sb->s_inode_list_lock);
498 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
499 	spin_unlock(&inode->i_sb->s_inode_list_lock);
500 }
501 EXPORT_SYMBOL_GPL(inode_sb_list_add);
502 
inode_sb_list_del(struct inode * inode)503 static inline void inode_sb_list_del(struct inode *inode)
504 {
505 	if (!list_empty(&inode->i_sb_list)) {
506 		spin_lock(&inode->i_sb->s_inode_list_lock);
507 		list_del_init(&inode->i_sb_list);
508 		spin_unlock(&inode->i_sb->s_inode_list_lock);
509 	}
510 }
511 
hash(struct super_block * sb,unsigned long hashval)512 static unsigned long hash(struct super_block *sb, unsigned long hashval)
513 {
514 	unsigned long tmp;
515 
516 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
517 			L1_CACHE_BYTES;
518 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
519 	return tmp & i_hash_mask;
520 }
521 
522 /**
523  *	__insert_inode_hash - hash an inode
524  *	@inode: unhashed inode
525  *	@hashval: unsigned long value used to locate this object in the
526  *		inode_hashtable.
527  *
528  *	Add an inode to the inode hash for this superblock.
529  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)530 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
531 {
532 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
533 
534 	spin_lock(&inode_hash_lock);
535 	spin_lock(&inode->i_lock);
536 	hlist_add_head_rcu(&inode->i_hash, b);
537 	spin_unlock(&inode->i_lock);
538 	spin_unlock(&inode_hash_lock);
539 }
540 EXPORT_SYMBOL(__insert_inode_hash);
541 
542 /**
543  *	__remove_inode_hash - remove an inode from the hash
544  *	@inode: inode to unhash
545  *
546  *	Remove an inode from the superblock.
547  */
__remove_inode_hash(struct inode * inode)548 void __remove_inode_hash(struct inode *inode)
549 {
550 	spin_lock(&inode_hash_lock);
551 	spin_lock(&inode->i_lock);
552 	hlist_del_init_rcu(&inode->i_hash);
553 	spin_unlock(&inode->i_lock);
554 	spin_unlock(&inode_hash_lock);
555 }
556 EXPORT_SYMBOL(__remove_inode_hash);
557 
clear_inode(struct inode * inode)558 void clear_inode(struct inode *inode)
559 {
560 	/*
561 	 * We have to cycle the i_pages lock here because reclaim can be in the
562 	 * process of removing the last page (in __delete_from_page_cache())
563 	 * and we must not free the mapping under it.
564 	 */
565 	xa_lock_irq(&inode->i_data.i_pages);
566 	BUG_ON(inode->i_data.nrpages);
567 	BUG_ON(inode->i_data.nrexceptional);
568 	xa_unlock_irq(&inode->i_data.i_pages);
569 	BUG_ON(!list_empty(&inode->i_data.private_list));
570 	BUG_ON(!(inode->i_state & I_FREEING));
571 	BUG_ON(inode->i_state & I_CLEAR);
572 	BUG_ON(!list_empty(&inode->i_wb_list));
573 	/* don't need i_lock here, no concurrent mods to i_state */
574 	inode->i_state = I_FREEING | I_CLEAR;
575 }
576 EXPORT_SYMBOL(clear_inode);
577 
578 /*
579  * Free the inode passed in, removing it from the lists it is still connected
580  * to. We remove any pages still attached to the inode and wait for any IO that
581  * is still in progress before finally destroying the inode.
582  *
583  * An inode must already be marked I_FREEING so that we avoid the inode being
584  * moved back onto lists if we race with other code that manipulates the lists
585  * (e.g. writeback_single_inode). The caller is responsible for setting this.
586  *
587  * An inode must already be removed from the LRU list before being evicted from
588  * the cache. This should occur atomically with setting the I_FREEING state
589  * flag, so no inodes here should ever be on the LRU when being evicted.
590  */
evict(struct inode * inode)591 static void evict(struct inode *inode)
592 {
593 	const struct super_operations *op = inode->i_sb->s_op;
594 
595 	BUG_ON(!(inode->i_state & I_FREEING));
596 	BUG_ON(!list_empty(&inode->i_lru));
597 
598 	if (!list_empty(&inode->i_io_list))
599 		inode_io_list_del(inode);
600 
601 	inode_sb_list_del(inode);
602 
603 	inode_wait_for_lru_isolating(inode);
604 
605 	/*
606 	 * Wait for flusher thread to be done with the inode so that filesystem
607 	 * does not start destroying it while writeback is still running. Since
608 	 * the inode has I_FREEING set, flusher thread won't start new work on
609 	 * the inode.  We just have to wait for running writeback to finish.
610 	 */
611 	inode_wait_for_writeback(inode);
612 
613 	if (op->evict_inode) {
614 		op->evict_inode(inode);
615 	} else {
616 		truncate_inode_pages_final(&inode->i_data);
617 		clear_inode(inode);
618 	}
619 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
620 		bd_forget(inode);
621 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
622 		cd_forget(inode);
623 
624 	remove_inode_hash(inode);
625 
626 	spin_lock(&inode->i_lock);
627 	wake_up_bit(&inode->i_state, __I_NEW);
628 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
629 	spin_unlock(&inode->i_lock);
630 
631 	destroy_inode(inode);
632 }
633 
634 /*
635  * dispose_list - dispose of the contents of a local list
636  * @head: the head of the list to free
637  *
638  * Dispose-list gets a local list with local inodes in it, so it doesn't
639  * need to worry about list corruption and SMP locks.
640  */
dispose_list(struct list_head * head)641 static void dispose_list(struct list_head *head)
642 {
643 	while (!list_empty(head)) {
644 		struct inode *inode;
645 
646 		inode = list_first_entry(head, struct inode, i_lru);
647 		list_del_init(&inode->i_lru);
648 
649 		evict(inode);
650 		cond_resched();
651 	}
652 }
653 
654 /**
655  * evict_inodes	- evict all evictable inodes for a superblock
656  * @sb:		superblock to operate on
657  *
658  * Make sure that no inodes with zero refcount are retained.  This is
659  * called by superblock shutdown after having SB_ACTIVE flag removed,
660  * so any inode reaching zero refcount during or after that call will
661  * be immediately evicted.
662  */
evict_inodes(struct super_block * sb)663 void evict_inodes(struct super_block *sb)
664 {
665 	struct inode *inode, *next;
666 	LIST_HEAD(dispose);
667 
668 again:
669 	spin_lock(&sb->s_inode_list_lock);
670 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
671 		if (atomic_read(&inode->i_count))
672 			continue;
673 
674 		spin_lock(&inode->i_lock);
675 		if (atomic_read(&inode->i_count)) {
676 			spin_unlock(&inode->i_lock);
677 			continue;
678 		}
679 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
680 			spin_unlock(&inode->i_lock);
681 			continue;
682 		}
683 
684 		inode->i_state |= I_FREEING;
685 		inode_lru_list_del(inode);
686 		spin_unlock(&inode->i_lock);
687 		list_add(&inode->i_lru, &dispose);
688 
689 		/*
690 		 * We can have a ton of inodes to evict at unmount time given
691 		 * enough memory, check to see if we need to go to sleep for a
692 		 * bit so we don't livelock.
693 		 */
694 		if (need_resched()) {
695 			spin_unlock(&sb->s_inode_list_lock);
696 			cond_resched();
697 			dispose_list(&dispose);
698 			goto again;
699 		}
700 	}
701 	spin_unlock(&sb->s_inode_list_lock);
702 
703 	dispose_list(&dispose);
704 }
705 EXPORT_SYMBOL_GPL(evict_inodes);
706 
707 /**
708  * invalidate_inodes	- attempt to free all inodes on a superblock
709  * @sb:		superblock to operate on
710  * @kill_dirty: flag to guide handling of dirty inodes
711  *
712  * Attempts to free all inodes for a given superblock.  If there were any
713  * busy inodes return a non-zero value, else zero.
714  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
715  * them as busy.
716  */
invalidate_inodes(struct super_block * sb,bool kill_dirty)717 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
718 {
719 	int busy = 0;
720 	struct inode *inode, *next;
721 	LIST_HEAD(dispose);
722 
723 again:
724 	spin_lock(&sb->s_inode_list_lock);
725 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
726 		spin_lock(&inode->i_lock);
727 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
728 			spin_unlock(&inode->i_lock);
729 			continue;
730 		}
731 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
732 			spin_unlock(&inode->i_lock);
733 			busy = 1;
734 			continue;
735 		}
736 		if (atomic_read(&inode->i_count)) {
737 			spin_unlock(&inode->i_lock);
738 			busy = 1;
739 			continue;
740 		}
741 
742 		inode->i_state |= I_FREEING;
743 		inode_lru_list_del(inode);
744 		spin_unlock(&inode->i_lock);
745 		list_add(&inode->i_lru, &dispose);
746 		if (need_resched()) {
747 			spin_unlock(&sb->s_inode_list_lock);
748 			cond_resched();
749 			dispose_list(&dispose);
750 			goto again;
751 		}
752 	}
753 	spin_unlock(&sb->s_inode_list_lock);
754 
755 	dispose_list(&dispose);
756 
757 	return busy;
758 }
759 
760 /*
761  * Isolate the inode from the LRU in preparation for freeing it.
762  *
763  * Any inodes which are pinned purely because of attached pagecache have their
764  * pagecache removed.  If the inode has metadata buffers attached to
765  * mapping->private_list then try to remove them.
766  *
767  * If the inode has the I_REFERENCED flag set, then it means that it has been
768  * used recently - the flag is set in iput_final(). When we encounter such an
769  * inode, clear the flag and move it to the back of the LRU so it gets another
770  * pass through the LRU before it gets reclaimed. This is necessary because of
771  * the fact we are doing lazy LRU updates to minimise lock contention so the
772  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
773  * with this flag set because they are the inodes that are out of order.
774  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)775 static enum lru_status inode_lru_isolate(struct list_head *item,
776 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
777 {
778 	struct list_head *freeable = arg;
779 	struct inode	*inode = container_of(item, struct inode, i_lru);
780 
781 	/*
782 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
783 	 * If we fail to get the lock, just skip it.
784 	 */
785 	if (!spin_trylock(&inode->i_lock))
786 		return LRU_SKIP;
787 
788 	/*
789 	 * Referenced or dirty inodes are still in use. Give them another pass
790 	 * through the LRU as we canot reclaim them now.
791 	 */
792 	if (atomic_read(&inode->i_count) ||
793 	    (inode->i_state & ~I_REFERENCED)) {
794 		list_lru_isolate(lru, &inode->i_lru);
795 		spin_unlock(&inode->i_lock);
796 		this_cpu_dec(nr_unused);
797 		return LRU_REMOVED;
798 	}
799 
800 	/* recently referenced inodes get one more pass */
801 	if (inode->i_state & I_REFERENCED) {
802 		inode->i_state &= ~I_REFERENCED;
803 		spin_unlock(&inode->i_lock);
804 		return LRU_ROTATE;
805 	}
806 
807 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
808 		inode_pin_lru_isolating(inode);
809 		spin_unlock(&inode->i_lock);
810 		spin_unlock(lru_lock);
811 		if (remove_inode_buffers(inode)) {
812 			unsigned long reap;
813 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
814 			if (current_is_kswapd())
815 				__count_vm_events(KSWAPD_INODESTEAL, reap);
816 			else
817 				__count_vm_events(PGINODESTEAL, reap);
818 			if (current->reclaim_state)
819 				current->reclaim_state->reclaimed_slab += reap;
820 		}
821 		inode_unpin_lru_isolating(inode);
822 		spin_lock(lru_lock);
823 		return LRU_RETRY;
824 	}
825 
826 	WARN_ON(inode->i_state & I_NEW);
827 	inode->i_state |= I_FREEING;
828 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
829 	spin_unlock(&inode->i_lock);
830 
831 	this_cpu_dec(nr_unused);
832 	return LRU_REMOVED;
833 }
834 
835 /*
836  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
837  * This is called from the superblock shrinker function with a number of inodes
838  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
839  * then are freed outside inode_lock by dispose_list().
840  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)841 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
842 {
843 	LIST_HEAD(freeable);
844 	long freed;
845 
846 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
847 				     inode_lru_isolate, &freeable);
848 	dispose_list(&freeable);
849 	return freed;
850 }
851 
852 static void __wait_on_freeing_inode(struct inode *inode);
853 /*
854  * Called with the inode lock held.
855  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)856 static struct inode *find_inode(struct super_block *sb,
857 				struct hlist_head *head,
858 				int (*test)(struct inode *, void *),
859 				void *data)
860 {
861 	struct inode *inode = NULL;
862 
863 repeat:
864 	hlist_for_each_entry(inode, head, i_hash) {
865 		if (inode->i_sb != sb)
866 			continue;
867 		if (!test(inode, data))
868 			continue;
869 		spin_lock(&inode->i_lock);
870 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
871 			__wait_on_freeing_inode(inode);
872 			goto repeat;
873 		}
874 		if (unlikely(inode->i_state & I_CREATING)) {
875 			spin_unlock(&inode->i_lock);
876 			return ERR_PTR(-ESTALE);
877 		}
878 		__iget(inode);
879 		spin_unlock(&inode->i_lock);
880 		return inode;
881 	}
882 	return NULL;
883 }
884 
885 /*
886  * find_inode_fast is the fast path version of find_inode, see the comment at
887  * iget_locked for details.
888  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)889 static struct inode *find_inode_fast(struct super_block *sb,
890 				struct hlist_head *head, unsigned long ino)
891 {
892 	struct inode *inode = NULL;
893 
894 repeat:
895 	hlist_for_each_entry(inode, head, i_hash) {
896 		if (inode->i_ino != ino)
897 			continue;
898 		if (inode->i_sb != sb)
899 			continue;
900 		spin_lock(&inode->i_lock);
901 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
902 			__wait_on_freeing_inode(inode);
903 			goto repeat;
904 		}
905 		if (unlikely(inode->i_state & I_CREATING)) {
906 			spin_unlock(&inode->i_lock);
907 			return ERR_PTR(-ESTALE);
908 		}
909 		__iget(inode);
910 		spin_unlock(&inode->i_lock);
911 		return inode;
912 	}
913 	return NULL;
914 }
915 
916 /*
917  * Each cpu owns a range of LAST_INO_BATCH numbers.
918  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
919  * to renew the exhausted range.
920  *
921  * This does not significantly increase overflow rate because every CPU can
922  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
923  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
924  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
925  * overflow rate by 2x, which does not seem too significant.
926  *
927  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
928  * error if st_ino won't fit in target struct field. Use 32bit counter
929  * here to attempt to avoid that.
930  */
931 #define LAST_INO_BATCH 1024
932 static DEFINE_PER_CPU(unsigned int, last_ino);
933 
get_next_ino(void)934 unsigned int get_next_ino(void)
935 {
936 	unsigned int *p = &get_cpu_var(last_ino);
937 	unsigned int res = *p;
938 
939 #ifdef CONFIG_SMP
940 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
941 		static atomic_t shared_last_ino;
942 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
943 
944 		res = next - LAST_INO_BATCH;
945 	}
946 #endif
947 
948 	res++;
949 	/* get_next_ino should not provide a 0 inode number */
950 	if (unlikely(!res))
951 		res++;
952 	*p = res;
953 	put_cpu_var(last_ino);
954 	return res;
955 }
956 EXPORT_SYMBOL(get_next_ino);
957 
958 /**
959  *	new_inode_pseudo 	- obtain an inode
960  *	@sb: superblock
961  *
962  *	Allocates a new inode for given superblock.
963  *	Inode wont be chained in superblock s_inodes list
964  *	This means :
965  *	- fs can't be unmount
966  *	- quotas, fsnotify, writeback can't work
967  */
new_inode_pseudo(struct super_block * sb)968 struct inode *new_inode_pseudo(struct super_block *sb)
969 {
970 	struct inode *inode = alloc_inode(sb);
971 
972 	if (inode) {
973 		spin_lock(&inode->i_lock);
974 		inode->i_state = 0;
975 		spin_unlock(&inode->i_lock);
976 		INIT_LIST_HEAD(&inode->i_sb_list);
977 	}
978 	return inode;
979 }
980 
981 /**
982  *	new_inode 	- obtain an inode
983  *	@sb: superblock
984  *
985  *	Allocates a new inode for given superblock. The default gfp_mask
986  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
987  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
988  *	for the page cache are not reclaimable or migratable,
989  *	mapping_set_gfp_mask() must be called with suitable flags on the
990  *	newly created inode's mapping
991  *
992  */
new_inode(struct super_block * sb)993 struct inode *new_inode(struct super_block *sb)
994 {
995 	struct inode *inode;
996 
997 	spin_lock_prefetch(&sb->s_inode_list_lock);
998 
999 	inode = new_inode_pseudo(sb);
1000 	if (inode)
1001 		inode_sb_list_add(inode);
1002 	return inode;
1003 }
1004 EXPORT_SYMBOL(new_inode);
1005 
1006 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1007 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1008 {
1009 	if (S_ISDIR(inode->i_mode)) {
1010 		struct file_system_type *type = inode->i_sb->s_type;
1011 
1012 		/* Set new key only if filesystem hasn't already changed it */
1013 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1014 			/*
1015 			 * ensure nobody is actually holding i_mutex
1016 			 */
1017 			// mutex_destroy(&inode->i_mutex);
1018 			init_rwsem(&inode->i_rwsem);
1019 			lockdep_set_class(&inode->i_rwsem,
1020 					  &type->i_mutex_dir_key);
1021 		}
1022 	}
1023 }
1024 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1025 #endif
1026 
1027 /**
1028  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1029  * @inode:	new inode to unlock
1030  *
1031  * Called when the inode is fully initialised to clear the new state of the
1032  * inode and wake up anyone waiting for the inode to finish initialisation.
1033  */
unlock_new_inode(struct inode * inode)1034 void unlock_new_inode(struct inode *inode)
1035 {
1036 	lockdep_annotate_inode_mutex_key(inode);
1037 	spin_lock(&inode->i_lock);
1038 	WARN_ON(!(inode->i_state & I_NEW));
1039 	inode->i_state &= ~I_NEW & ~I_CREATING;
1040 	smp_mb();
1041 	wake_up_bit(&inode->i_state, __I_NEW);
1042 	spin_unlock(&inode->i_lock);
1043 }
1044 EXPORT_SYMBOL(unlock_new_inode);
1045 
discard_new_inode(struct inode * inode)1046 void discard_new_inode(struct inode *inode)
1047 {
1048 	lockdep_annotate_inode_mutex_key(inode);
1049 	spin_lock(&inode->i_lock);
1050 	WARN_ON(!(inode->i_state & I_NEW));
1051 	inode->i_state &= ~I_NEW;
1052 	smp_mb();
1053 	wake_up_bit(&inode->i_state, __I_NEW);
1054 	spin_unlock(&inode->i_lock);
1055 	iput(inode);
1056 }
1057 EXPORT_SYMBOL(discard_new_inode);
1058 
1059 /**
1060  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1061  *
1062  * Lock any non-NULL argument. The caller must make sure that if he is passing
1063  * in two directories, one is not ancestor of the other.  Zero, one or two
1064  * objects may be locked by this function.
1065  *
1066  * @inode1: first inode to lock
1067  * @inode2: second inode to lock
1068  * @subclass1: inode lock subclass for the first lock obtained
1069  * @subclass2: inode lock subclass for the second lock obtained
1070  */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1071 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1072 		     unsigned subclass1, unsigned subclass2)
1073 {
1074 	if (!inode1 || !inode2) {
1075 		/*
1076 		 * Make sure @subclass1 will be used for the acquired lock.
1077 		 * This is not strictly necessary (no current caller cares) but
1078 		 * let's keep things consistent.
1079 		 */
1080 		if (!inode1)
1081 			swap(inode1, inode2);
1082 		goto lock;
1083 	}
1084 
1085 	/*
1086 	 * If one object is directory and the other is not, we must make sure
1087 	 * to lock directory first as the other object may be its child.
1088 	 */
1089 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1090 		if (inode1 > inode2)
1091 			swap(inode1, inode2);
1092 	} else if (!S_ISDIR(inode1->i_mode))
1093 		swap(inode1, inode2);
1094 lock:
1095 	if (inode1)
1096 		inode_lock_nested(inode1, subclass1);
1097 	if (inode2 && inode2 != inode1)
1098 		inode_lock_nested(inode2, subclass2);
1099 }
1100 
1101 /**
1102  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1103  *
1104  * Lock any non-NULL argument that is not a directory.
1105  * Zero, one or two objects may be locked by this function.
1106  *
1107  * @inode1: first inode to lock
1108  * @inode2: second inode to lock
1109  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1110 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1111 {
1112 	if (inode1 > inode2)
1113 		swap(inode1, inode2);
1114 
1115 	if (inode1 && !S_ISDIR(inode1->i_mode))
1116 		inode_lock(inode1);
1117 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1118 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1119 }
1120 EXPORT_SYMBOL(lock_two_nondirectories);
1121 
1122 /**
1123  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1124  * @inode1: first inode to unlock
1125  * @inode2: second inode to unlock
1126  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1127 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1128 {
1129 	if (inode1 && !S_ISDIR(inode1->i_mode))
1130 		inode_unlock(inode1);
1131 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1132 		inode_unlock(inode2);
1133 }
1134 EXPORT_SYMBOL(unlock_two_nondirectories);
1135 
1136 /**
1137  * inode_insert5 - obtain an inode from a mounted file system
1138  * @inode:	pre-allocated inode to use for insert to cache
1139  * @hashval:	hash value (usually inode number) to get
1140  * @test:	callback used for comparisons between inodes
1141  * @set:	callback used to initialize a new struct inode
1142  * @data:	opaque data pointer to pass to @test and @set
1143  *
1144  * Search for the inode specified by @hashval and @data in the inode cache,
1145  * and if present it is return it with an increased reference count. This is
1146  * a variant of iget5_locked() for callers that don't want to fail on memory
1147  * allocation of inode.
1148  *
1149  * If the inode is not in cache, insert the pre-allocated inode to cache and
1150  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1151  * to fill it in before unlocking it via unlock_new_inode().
1152  *
1153  * Note both @test and @set are called with the inode_hash_lock held, so can't
1154  * sleep.
1155  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1156 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1157 			    int (*test)(struct inode *, void *),
1158 			    int (*set)(struct inode *, void *), void *data)
1159 {
1160 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1161 	struct inode *old;
1162 	bool creating = inode->i_state & I_CREATING;
1163 
1164 again:
1165 	spin_lock(&inode_hash_lock);
1166 	old = find_inode(inode->i_sb, head, test, data);
1167 	if (unlikely(old)) {
1168 		/*
1169 		 * Uhhuh, somebody else created the same inode under us.
1170 		 * Use the old inode instead of the preallocated one.
1171 		 */
1172 		spin_unlock(&inode_hash_lock);
1173 		if (IS_ERR(old))
1174 			return NULL;
1175 		wait_on_inode(old);
1176 		if (unlikely(inode_unhashed(old))) {
1177 			iput(old);
1178 			goto again;
1179 		}
1180 		return old;
1181 	}
1182 
1183 	if (set && unlikely(set(inode, data))) {
1184 		inode = NULL;
1185 		goto unlock;
1186 	}
1187 
1188 	/*
1189 	 * Return the locked inode with I_NEW set, the
1190 	 * caller is responsible for filling in the contents
1191 	 */
1192 	spin_lock(&inode->i_lock);
1193 	inode->i_state |= I_NEW;
1194 	hlist_add_head_rcu(&inode->i_hash, head);
1195 	spin_unlock(&inode->i_lock);
1196 	if (!creating)
1197 		inode_sb_list_add(inode);
1198 unlock:
1199 	spin_unlock(&inode_hash_lock);
1200 
1201 	return inode;
1202 }
1203 EXPORT_SYMBOL(inode_insert5);
1204 
1205 /**
1206  * iget5_locked - obtain an inode from a mounted file system
1207  * @sb:		super block of file system
1208  * @hashval:	hash value (usually inode number) to get
1209  * @test:	callback used for comparisons between inodes
1210  * @set:	callback used to initialize a new struct inode
1211  * @data:	opaque data pointer to pass to @test and @set
1212  *
1213  * Search for the inode specified by @hashval and @data in the inode cache,
1214  * and if present it is return it with an increased reference count. This is
1215  * a generalized version of iget_locked() for file systems where the inode
1216  * number is not sufficient for unique identification of an inode.
1217  *
1218  * If the inode is not in cache, allocate a new inode and return it locked,
1219  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1220  * before unlocking it via unlock_new_inode().
1221  *
1222  * Note both @test and @set are called with the inode_hash_lock held, so can't
1223  * sleep.
1224  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1225 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1226 		int (*test)(struct inode *, void *),
1227 		int (*set)(struct inode *, void *), void *data)
1228 {
1229 	struct inode *inode = ilookup5(sb, hashval, test, data);
1230 
1231 	if (!inode) {
1232 		struct inode *new = alloc_inode(sb);
1233 
1234 		if (new) {
1235 			new->i_state = 0;
1236 			inode = inode_insert5(new, hashval, test, set, data);
1237 			if (unlikely(inode != new))
1238 				destroy_inode(new);
1239 		}
1240 	}
1241 	return inode;
1242 }
1243 EXPORT_SYMBOL(iget5_locked);
1244 
1245 /**
1246  * iget_locked - obtain an inode from a mounted file system
1247  * @sb:		super block of file system
1248  * @ino:	inode number to get
1249  *
1250  * Search for the inode specified by @ino in the inode cache and if present
1251  * return it with an increased reference count. This is for file systems
1252  * where the inode number is sufficient for unique identification of an inode.
1253  *
1254  * If the inode is not in cache, allocate a new inode and return it locked,
1255  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1256  * before unlocking it via unlock_new_inode().
1257  */
iget_locked(struct super_block * sb,unsigned long ino)1258 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1259 {
1260 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1261 	struct inode *inode;
1262 again:
1263 	spin_lock(&inode_hash_lock);
1264 	inode = find_inode_fast(sb, head, ino);
1265 	spin_unlock(&inode_hash_lock);
1266 	if (inode) {
1267 		if (IS_ERR(inode))
1268 			return NULL;
1269 		wait_on_inode(inode);
1270 		if (unlikely(inode_unhashed(inode))) {
1271 			iput(inode);
1272 			goto again;
1273 		}
1274 		return inode;
1275 	}
1276 
1277 	inode = alloc_inode(sb);
1278 	if (inode) {
1279 		struct inode *old;
1280 
1281 		spin_lock(&inode_hash_lock);
1282 		/* We released the lock, so.. */
1283 		old = find_inode_fast(sb, head, ino);
1284 		if (!old) {
1285 			inode->i_ino = ino;
1286 			spin_lock(&inode->i_lock);
1287 			inode->i_state = I_NEW;
1288 			hlist_add_head_rcu(&inode->i_hash, head);
1289 			spin_unlock(&inode->i_lock);
1290 			inode_sb_list_add(inode);
1291 			spin_unlock(&inode_hash_lock);
1292 
1293 			/* Return the locked inode with I_NEW set, the
1294 			 * caller is responsible for filling in the contents
1295 			 */
1296 			return inode;
1297 		}
1298 
1299 		/*
1300 		 * Uhhuh, somebody else created the same inode under
1301 		 * us. Use the old inode instead of the one we just
1302 		 * allocated.
1303 		 */
1304 		spin_unlock(&inode_hash_lock);
1305 		destroy_inode(inode);
1306 		if (IS_ERR(old))
1307 			return NULL;
1308 		inode = old;
1309 		wait_on_inode(inode);
1310 		if (unlikely(inode_unhashed(inode))) {
1311 			iput(inode);
1312 			goto again;
1313 		}
1314 	}
1315 	return inode;
1316 }
1317 EXPORT_SYMBOL(iget_locked);
1318 
1319 /*
1320  * search the inode cache for a matching inode number.
1321  * If we find one, then the inode number we are trying to
1322  * allocate is not unique and so we should not use it.
1323  *
1324  * Returns 1 if the inode number is unique, 0 if it is not.
1325  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1326 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1327 {
1328 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1329 	struct inode *inode;
1330 
1331 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1332 		if (inode->i_ino == ino && inode->i_sb == sb)
1333 			return 0;
1334 	}
1335 	return 1;
1336 }
1337 
1338 /**
1339  *	iunique - get a unique inode number
1340  *	@sb: superblock
1341  *	@max_reserved: highest reserved inode number
1342  *
1343  *	Obtain an inode number that is unique on the system for a given
1344  *	superblock. This is used by file systems that have no natural
1345  *	permanent inode numbering system. An inode number is returned that
1346  *	is higher than the reserved limit but unique.
1347  *
1348  *	BUGS:
1349  *	With a large number of inodes live on the file system this function
1350  *	currently becomes quite slow.
1351  */
iunique(struct super_block * sb,ino_t max_reserved)1352 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1353 {
1354 	/*
1355 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1356 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1357 	 * here to attempt to avoid that.
1358 	 */
1359 	static DEFINE_SPINLOCK(iunique_lock);
1360 	static unsigned int counter;
1361 	ino_t res;
1362 
1363 	rcu_read_lock();
1364 	spin_lock(&iunique_lock);
1365 	do {
1366 		if (counter <= max_reserved)
1367 			counter = max_reserved + 1;
1368 		res = counter++;
1369 	} while (!test_inode_iunique(sb, res));
1370 	spin_unlock(&iunique_lock);
1371 	rcu_read_unlock();
1372 
1373 	return res;
1374 }
1375 EXPORT_SYMBOL(iunique);
1376 
igrab(struct inode * inode)1377 struct inode *igrab(struct inode *inode)
1378 {
1379 	spin_lock(&inode->i_lock);
1380 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1381 		__iget(inode);
1382 		spin_unlock(&inode->i_lock);
1383 	} else {
1384 		spin_unlock(&inode->i_lock);
1385 		/*
1386 		 * Handle the case where s_op->clear_inode is not been
1387 		 * called yet, and somebody is calling igrab
1388 		 * while the inode is getting freed.
1389 		 */
1390 		inode = NULL;
1391 	}
1392 	return inode;
1393 }
1394 EXPORT_SYMBOL(igrab);
1395 
1396 /**
1397  * ilookup5_nowait - search for an inode in the inode cache
1398  * @sb:		super block of file system to search
1399  * @hashval:	hash value (usually inode number) to search for
1400  * @test:	callback used for comparisons between inodes
1401  * @data:	opaque data pointer to pass to @test
1402  *
1403  * Search for the inode specified by @hashval and @data in the inode cache.
1404  * If the inode is in the cache, the inode is returned with an incremented
1405  * reference count.
1406  *
1407  * Note: I_NEW is not waited upon so you have to be very careful what you do
1408  * with the returned inode.  You probably should be using ilookup5() instead.
1409  *
1410  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1411  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1412 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1413 		int (*test)(struct inode *, void *), void *data)
1414 {
1415 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1416 	struct inode *inode;
1417 
1418 	spin_lock(&inode_hash_lock);
1419 	inode = find_inode(sb, head, test, data);
1420 	spin_unlock(&inode_hash_lock);
1421 
1422 	return IS_ERR(inode) ? NULL : inode;
1423 }
1424 EXPORT_SYMBOL(ilookup5_nowait);
1425 
1426 /**
1427  * ilookup5 - search for an inode in the inode cache
1428  * @sb:		super block of file system to search
1429  * @hashval:	hash value (usually inode number) to search for
1430  * @test:	callback used for comparisons between inodes
1431  * @data:	opaque data pointer to pass to @test
1432  *
1433  * Search for the inode specified by @hashval and @data in the inode cache,
1434  * and if the inode is in the cache, return the inode with an incremented
1435  * reference count.  Waits on I_NEW before returning the inode.
1436  * returned with an incremented reference count.
1437  *
1438  * This is a generalized version of ilookup() for file systems where the
1439  * inode number is not sufficient for unique identification of an inode.
1440  *
1441  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1442  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1443 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1444 		int (*test)(struct inode *, void *), void *data)
1445 {
1446 	struct inode *inode;
1447 again:
1448 	inode = ilookup5_nowait(sb, hashval, test, data);
1449 	if (inode) {
1450 		wait_on_inode(inode);
1451 		if (unlikely(inode_unhashed(inode))) {
1452 			iput(inode);
1453 			goto again;
1454 		}
1455 	}
1456 	return inode;
1457 }
1458 EXPORT_SYMBOL(ilookup5);
1459 
1460 /**
1461  * ilookup - search for an inode in the inode cache
1462  * @sb:		super block of file system to search
1463  * @ino:	inode number to search for
1464  *
1465  * Search for the inode @ino in the inode cache, and if the inode is in the
1466  * cache, the inode is returned with an incremented reference count.
1467  */
ilookup(struct super_block * sb,unsigned long ino)1468 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1469 {
1470 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1471 	struct inode *inode;
1472 again:
1473 	spin_lock(&inode_hash_lock);
1474 	inode = find_inode_fast(sb, head, ino);
1475 	spin_unlock(&inode_hash_lock);
1476 
1477 	if (inode) {
1478 		if (IS_ERR(inode))
1479 			return NULL;
1480 		wait_on_inode(inode);
1481 		if (unlikely(inode_unhashed(inode))) {
1482 			iput(inode);
1483 			goto again;
1484 		}
1485 	}
1486 	return inode;
1487 }
1488 EXPORT_SYMBOL(ilookup);
1489 
1490 /**
1491  * find_inode_nowait - find an inode in the inode cache
1492  * @sb:		super block of file system to search
1493  * @hashval:	hash value (usually inode number) to search for
1494  * @match:	callback used for comparisons between inodes
1495  * @data:	opaque data pointer to pass to @match
1496  *
1497  * Search for the inode specified by @hashval and @data in the inode
1498  * cache, where the helper function @match will return 0 if the inode
1499  * does not match, 1 if the inode does match, and -1 if the search
1500  * should be stopped.  The @match function must be responsible for
1501  * taking the i_lock spin_lock and checking i_state for an inode being
1502  * freed or being initialized, and incrementing the reference count
1503  * before returning 1.  It also must not sleep, since it is called with
1504  * the inode_hash_lock spinlock held.
1505  *
1506  * This is a even more generalized version of ilookup5() when the
1507  * function must never block --- find_inode() can block in
1508  * __wait_on_freeing_inode() --- or when the caller can not increment
1509  * the reference count because the resulting iput() might cause an
1510  * inode eviction.  The tradeoff is that the @match funtion must be
1511  * very carefully implemented.
1512  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1513 struct inode *find_inode_nowait(struct super_block *sb,
1514 				unsigned long hashval,
1515 				int (*match)(struct inode *, unsigned long,
1516 					     void *),
1517 				void *data)
1518 {
1519 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1520 	struct inode *inode, *ret_inode = NULL;
1521 	int mval;
1522 
1523 	spin_lock(&inode_hash_lock);
1524 	hlist_for_each_entry(inode, head, i_hash) {
1525 		if (inode->i_sb != sb)
1526 			continue;
1527 		mval = match(inode, hashval, data);
1528 		if (mval == 0)
1529 			continue;
1530 		if (mval == 1)
1531 			ret_inode = inode;
1532 		goto out;
1533 	}
1534 out:
1535 	spin_unlock(&inode_hash_lock);
1536 	return ret_inode;
1537 }
1538 EXPORT_SYMBOL(find_inode_nowait);
1539 
1540 /**
1541  * find_inode_rcu - find an inode in the inode cache
1542  * @sb:		Super block of file system to search
1543  * @hashval:	Key to hash
1544  * @test:	Function to test match on an inode
1545  * @data:	Data for test function
1546  *
1547  * Search for the inode specified by @hashval and @data in the inode cache,
1548  * where the helper function @test will return 0 if the inode does not match
1549  * and 1 if it does.  The @test function must be responsible for taking the
1550  * i_lock spin_lock and checking i_state for an inode being freed or being
1551  * initialized.
1552  *
1553  * If successful, this will return the inode for which the @test function
1554  * returned 1 and NULL otherwise.
1555  *
1556  * The @test function is not permitted to take a ref on any inode presented.
1557  * It is also not permitted to sleep.
1558  *
1559  * The caller must hold the RCU read lock.
1560  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1561 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1562 			     int (*test)(struct inode *, void *), void *data)
1563 {
1564 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1565 	struct inode *inode;
1566 
1567 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1568 			 "suspicious find_inode_rcu() usage");
1569 
1570 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1571 		if (inode->i_sb == sb &&
1572 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1573 		    test(inode, data))
1574 			return inode;
1575 	}
1576 	return NULL;
1577 }
1578 EXPORT_SYMBOL(find_inode_rcu);
1579 
1580 /**
1581  * find_inode_by_rcu - Find an inode in the inode cache
1582  * @sb:		Super block of file system to search
1583  * @ino:	The inode number to match
1584  *
1585  * Search for the inode specified by @hashval and @data in the inode cache,
1586  * where the helper function @test will return 0 if the inode does not match
1587  * and 1 if it does.  The @test function must be responsible for taking the
1588  * i_lock spin_lock and checking i_state for an inode being freed or being
1589  * initialized.
1590  *
1591  * If successful, this will return the inode for which the @test function
1592  * returned 1 and NULL otherwise.
1593  *
1594  * The @test function is not permitted to take a ref on any inode presented.
1595  * It is also not permitted to sleep.
1596  *
1597  * The caller must hold the RCU read lock.
1598  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1599 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1600 				    unsigned long ino)
1601 {
1602 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1603 	struct inode *inode;
1604 
1605 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1606 			 "suspicious find_inode_by_ino_rcu() usage");
1607 
1608 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1609 		if (inode->i_ino == ino &&
1610 		    inode->i_sb == sb &&
1611 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1612 		    return inode;
1613 	}
1614 	return NULL;
1615 }
1616 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1617 
insert_inode_locked(struct inode * inode)1618 int insert_inode_locked(struct inode *inode)
1619 {
1620 	struct super_block *sb = inode->i_sb;
1621 	ino_t ino = inode->i_ino;
1622 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1623 
1624 	while (1) {
1625 		struct inode *old = NULL;
1626 		spin_lock(&inode_hash_lock);
1627 		hlist_for_each_entry(old, head, i_hash) {
1628 			if (old->i_ino != ino)
1629 				continue;
1630 			if (old->i_sb != sb)
1631 				continue;
1632 			spin_lock(&old->i_lock);
1633 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1634 				spin_unlock(&old->i_lock);
1635 				continue;
1636 			}
1637 			break;
1638 		}
1639 		if (likely(!old)) {
1640 			spin_lock(&inode->i_lock);
1641 			inode->i_state |= I_NEW | I_CREATING;
1642 			hlist_add_head_rcu(&inode->i_hash, head);
1643 			spin_unlock(&inode->i_lock);
1644 			spin_unlock(&inode_hash_lock);
1645 			return 0;
1646 		}
1647 		if (unlikely(old->i_state & I_CREATING)) {
1648 			spin_unlock(&old->i_lock);
1649 			spin_unlock(&inode_hash_lock);
1650 			return -EBUSY;
1651 		}
1652 		__iget(old);
1653 		spin_unlock(&old->i_lock);
1654 		spin_unlock(&inode_hash_lock);
1655 		wait_on_inode(old);
1656 		if (unlikely(!inode_unhashed(old))) {
1657 			iput(old);
1658 			return -EBUSY;
1659 		}
1660 		iput(old);
1661 	}
1662 }
1663 EXPORT_SYMBOL(insert_inode_locked);
1664 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1665 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1666 		int (*test)(struct inode *, void *), void *data)
1667 {
1668 	struct inode *old;
1669 
1670 	inode->i_state |= I_CREATING;
1671 	old = inode_insert5(inode, hashval, test, NULL, data);
1672 
1673 	if (old != inode) {
1674 		iput(old);
1675 		return -EBUSY;
1676 	}
1677 	return 0;
1678 }
1679 EXPORT_SYMBOL(insert_inode_locked4);
1680 
1681 
generic_delete_inode(struct inode * inode)1682 int generic_delete_inode(struct inode *inode)
1683 {
1684 	return 1;
1685 }
1686 EXPORT_SYMBOL(generic_delete_inode);
1687 
1688 /*
1689  * Called when we're dropping the last reference
1690  * to an inode.
1691  *
1692  * Call the FS "drop_inode()" function, defaulting to
1693  * the legacy UNIX filesystem behaviour.  If it tells
1694  * us to evict inode, do so.  Otherwise, retain inode
1695  * in cache if fs is alive, sync and evict if fs is
1696  * shutting down.
1697  */
iput_final(struct inode * inode)1698 static void iput_final(struct inode *inode)
1699 {
1700 	struct super_block *sb = inode->i_sb;
1701 	const struct super_operations *op = inode->i_sb->s_op;
1702 	unsigned long state;
1703 	int drop;
1704 
1705 	WARN_ON(inode->i_state & I_NEW);
1706 
1707 	if (op->drop_inode)
1708 		drop = op->drop_inode(inode);
1709 	else
1710 		drop = generic_drop_inode(inode);
1711 
1712 	if (!drop &&
1713 	    !(inode->i_state & I_DONTCACHE) &&
1714 	    (sb->s_flags & SB_ACTIVE)) {
1715 		inode_add_lru(inode);
1716 		spin_unlock(&inode->i_lock);
1717 		return;
1718 	}
1719 
1720 	state = inode->i_state;
1721 	if (!drop) {
1722 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1723 		spin_unlock(&inode->i_lock);
1724 
1725 		write_inode_now(inode, 1);
1726 
1727 		spin_lock(&inode->i_lock);
1728 		state = inode->i_state;
1729 		WARN_ON(state & I_NEW);
1730 		state &= ~I_WILL_FREE;
1731 	}
1732 
1733 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1734 	if (!list_empty(&inode->i_lru))
1735 		inode_lru_list_del(inode);
1736 	spin_unlock(&inode->i_lock);
1737 
1738 	evict(inode);
1739 }
1740 
1741 /**
1742  *	iput	- put an inode
1743  *	@inode: inode to put
1744  *
1745  *	Puts an inode, dropping its usage count. If the inode use count hits
1746  *	zero, the inode is then freed and may also be destroyed.
1747  *
1748  *	Consequently, iput() can sleep.
1749  */
iput(struct inode * inode)1750 void iput(struct inode *inode)
1751 {
1752 	if (!inode)
1753 		return;
1754 	BUG_ON(inode->i_state & I_CLEAR);
1755 retry:
1756 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1757 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1758 			atomic_inc(&inode->i_count);
1759 			spin_unlock(&inode->i_lock);
1760 			trace_writeback_lazytime_iput(inode);
1761 			mark_inode_dirty_sync(inode);
1762 			goto retry;
1763 		}
1764 		iput_final(inode);
1765 	}
1766 }
1767 EXPORT_SYMBOL(iput);
1768 
1769 #ifdef CONFIG_BLOCK
1770 /**
1771  *	bmap	- find a block number in a file
1772  *	@inode:  inode owning the block number being requested
1773  *	@block: pointer containing the block to find
1774  *
1775  *	Replaces the value in ``*block`` with the block number on the device holding
1776  *	corresponding to the requested block number in the file.
1777  *	That is, asked for block 4 of inode 1 the function will replace the
1778  *	4 in ``*block``, with disk block relative to the disk start that holds that
1779  *	block of the file.
1780  *
1781  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1782  *	hole, returns 0 and ``*block`` is also set to 0.
1783  */
bmap(struct inode * inode,sector_t * block)1784 int bmap(struct inode *inode, sector_t *block)
1785 {
1786 	if (!inode->i_mapping->a_ops->bmap)
1787 		return -EINVAL;
1788 
1789 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1790 	return 0;
1791 }
1792 EXPORT_SYMBOL(bmap);
1793 #endif
1794 
1795 /*
1796  * With relative atime, only update atime if the previous atime is
1797  * earlier than either the ctime or mtime or if at least a day has
1798  * passed since the last atime update.
1799  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1800 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1801 			     struct timespec64 now)
1802 {
1803 
1804 	if (!(mnt->mnt_flags & MNT_RELATIME))
1805 		return 1;
1806 	/*
1807 	 * Is mtime younger than atime? If yes, update atime:
1808 	 */
1809 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1810 		return 1;
1811 	/*
1812 	 * Is ctime younger than atime? If yes, update atime:
1813 	 */
1814 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1815 		return 1;
1816 
1817 	/*
1818 	 * Is the previous atime value older than a day? If yes,
1819 	 * update atime:
1820 	 */
1821 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1822 		return 1;
1823 	/*
1824 	 * Good, we can skip the atime update:
1825 	 */
1826 	return 0;
1827 }
1828 
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1829 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1830 {
1831 	int iflags = I_DIRTY_TIME;
1832 	bool dirty = false;
1833 
1834 	if (flags & S_ATIME)
1835 		inode->i_atime = *time;
1836 	if (flags & S_VERSION)
1837 		dirty = inode_maybe_inc_iversion(inode, false);
1838 	if (flags & S_CTIME)
1839 		inode->i_ctime = *time;
1840 	if (flags & S_MTIME)
1841 		inode->i_mtime = *time;
1842 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1843 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1844 		dirty = true;
1845 
1846 	if (dirty)
1847 		iflags |= I_DIRTY_SYNC;
1848 	__mark_inode_dirty(inode, iflags);
1849 	return 0;
1850 }
1851 EXPORT_SYMBOL(generic_update_time);
1852 
1853 /*
1854  * This does the actual work of updating an inodes time or version.  Must have
1855  * had called mnt_want_write() before calling this.
1856  */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1857 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1858 {
1859 	if (inode->i_op->update_time)
1860 		return inode->i_op->update_time(inode, time, flags);
1861 	return generic_update_time(inode, time, flags);
1862 }
1863 EXPORT_SYMBOL(inode_update_time);
1864 
1865 /**
1866  *	touch_atime	-	update the access time
1867  *	@path: the &struct path to update
1868  *	@inode: inode to update
1869  *
1870  *	Update the accessed time on an inode and mark it for writeback.
1871  *	This function automatically handles read only file systems and media,
1872  *	as well as the "noatime" flag and inode specific "noatime" markers.
1873  */
atime_needs_update(const struct path * path,struct inode * inode)1874 bool atime_needs_update(const struct path *path, struct inode *inode)
1875 {
1876 	struct vfsmount *mnt = path->mnt;
1877 	struct timespec64 now;
1878 
1879 	if (inode->i_flags & S_NOATIME)
1880 		return false;
1881 
1882 	/* Atime updates will likely cause i_uid and i_gid to be written
1883 	 * back improprely if their true value is unknown to the vfs.
1884 	 */
1885 	if (HAS_UNMAPPED_ID(inode))
1886 		return false;
1887 
1888 	if (IS_NOATIME(inode))
1889 		return false;
1890 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1891 		return false;
1892 
1893 	if (mnt->mnt_flags & MNT_NOATIME)
1894 		return false;
1895 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1896 		return false;
1897 
1898 	now = current_time(inode);
1899 
1900 	if (!relatime_need_update(mnt, inode, now))
1901 		return false;
1902 
1903 	if (timespec64_equal(&inode->i_atime, &now))
1904 		return false;
1905 
1906 	return true;
1907 }
1908 
touch_atime(const struct path * path)1909 void touch_atime(const struct path *path)
1910 {
1911 	struct vfsmount *mnt = path->mnt;
1912 	struct inode *inode = d_inode(path->dentry);
1913 	struct timespec64 now;
1914 
1915 	if (!atime_needs_update(path, inode))
1916 		return;
1917 
1918 	if (!sb_start_write_trylock(inode->i_sb))
1919 		return;
1920 
1921 	if (__mnt_want_write(mnt) != 0)
1922 		goto skip_update;
1923 	/*
1924 	 * File systems can error out when updating inodes if they need to
1925 	 * allocate new space to modify an inode (such is the case for
1926 	 * Btrfs), but since we touch atime while walking down the path we
1927 	 * really don't care if we failed to update the atime of the file,
1928 	 * so just ignore the return value.
1929 	 * We may also fail on filesystems that have the ability to make parts
1930 	 * of the fs read only, e.g. subvolumes in Btrfs.
1931 	 */
1932 	now = current_time(inode);
1933 	inode_update_time(inode, &now, S_ATIME);
1934 	__mnt_drop_write(mnt);
1935 skip_update:
1936 	sb_end_write(inode->i_sb);
1937 }
1938 EXPORT_SYMBOL(touch_atime);
1939 
1940 /*
1941  * Return mask of changes for notify_change() that need to be done as a
1942  * response to write or truncate. Return 0 if nothing has to be changed.
1943  * Negative value on error (change should be denied).
1944  */
dentry_needs_remove_privs(struct dentry * dentry)1945 int dentry_needs_remove_privs(struct dentry *dentry)
1946 {
1947 	struct inode *inode = d_inode(dentry);
1948 	int mask = 0;
1949 	int ret;
1950 
1951 	if (IS_NOSEC(inode))
1952 		return 0;
1953 
1954 	mask = setattr_should_drop_suidgid(inode);
1955 	ret = security_inode_need_killpriv(dentry);
1956 	if (ret < 0)
1957 		return ret;
1958 	if (ret)
1959 		mask |= ATTR_KILL_PRIV;
1960 	return mask;
1961 }
1962 
__remove_privs(struct dentry * dentry,int kill)1963 static int __remove_privs(struct dentry *dentry, int kill)
1964 {
1965 	struct iattr newattrs;
1966 
1967 	newattrs.ia_valid = ATTR_FORCE | kill;
1968 	/*
1969 	 * Note we call this on write, so notify_change will not
1970 	 * encounter any conflicting delegations:
1971 	 */
1972 	return notify_change(dentry, &newattrs, NULL);
1973 }
1974 
1975 /*
1976  * Remove special file priviledges (suid, capabilities) when file is written
1977  * to or truncated.
1978  */
file_remove_privs(struct file * file)1979 int file_remove_privs(struct file *file)
1980 {
1981 	struct dentry *dentry = file_dentry(file);
1982 	struct inode *inode = file_inode(file);
1983 	int kill;
1984 	int error = 0;
1985 
1986 	/*
1987 	 * Fast path for nothing security related.
1988 	 * As well for non-regular files, e.g. blkdev inodes.
1989 	 * For example, blkdev_write_iter() might get here
1990 	 * trying to remove privs which it is not allowed to.
1991 	 */
1992 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1993 		return 0;
1994 
1995 	kill = dentry_needs_remove_privs(dentry);
1996 	if (kill < 0)
1997 		return kill;
1998 	if (kill)
1999 		error = __remove_privs(dentry, kill);
2000 	if (!error)
2001 		inode_has_no_xattr(inode);
2002 
2003 	return error;
2004 }
2005 EXPORT_SYMBOL(file_remove_privs);
2006 
2007 /**
2008  *	file_update_time	-	update mtime and ctime time
2009  *	@file: file accessed
2010  *
2011  *	Update the mtime and ctime members of an inode and mark the inode
2012  *	for writeback.  Note that this function is meant exclusively for
2013  *	usage in the file write path of filesystems, and filesystems may
2014  *	choose to explicitly ignore update via this function with the
2015  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
2016  *	timestamps are handled by the server.  This can return an error for
2017  *	file systems who need to allocate space in order to update an inode.
2018  */
2019 
file_update_time(struct file * file)2020 int file_update_time(struct file *file)
2021 {
2022 	struct inode *inode = file_inode(file);
2023 	struct timespec64 now;
2024 	int sync_it = 0;
2025 	int ret;
2026 
2027 	/* First try to exhaust all avenues to not sync */
2028 	if (IS_NOCMTIME(inode))
2029 		return 0;
2030 
2031 	now = current_time(inode);
2032 	if (!timespec64_equal(&inode->i_mtime, &now))
2033 		sync_it = S_MTIME;
2034 
2035 	if (!timespec64_equal(&inode->i_ctime, &now))
2036 		sync_it |= S_CTIME;
2037 
2038 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2039 		sync_it |= S_VERSION;
2040 
2041 	if (!sync_it)
2042 		return 0;
2043 
2044 	/* Finally allowed to write? Takes lock. */
2045 	if (__mnt_want_write_file(file))
2046 		return 0;
2047 
2048 	ret = inode_update_time(inode, &now, sync_it);
2049 	__mnt_drop_write_file(file);
2050 
2051 	return ret;
2052 }
2053 EXPORT_SYMBOL(file_update_time);
2054 
2055 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2056 int file_modified(struct file *file)
2057 {
2058 	int err;
2059 
2060 	/*
2061 	 * Clear the security bits if the process is not being run by root.
2062 	 * This keeps people from modifying setuid and setgid binaries.
2063 	 */
2064 	err = file_remove_privs(file);
2065 	if (err)
2066 		return err;
2067 
2068 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2069 		return 0;
2070 
2071 	return file_update_time(file);
2072 }
2073 EXPORT_SYMBOL(file_modified);
2074 
inode_needs_sync(struct inode * inode)2075 int inode_needs_sync(struct inode *inode)
2076 {
2077 	if (IS_SYNC(inode))
2078 		return 1;
2079 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2080 		return 1;
2081 	return 0;
2082 }
2083 EXPORT_SYMBOL(inode_needs_sync);
2084 
2085 /*
2086  * If we try to find an inode in the inode hash while it is being
2087  * deleted, we have to wait until the filesystem completes its
2088  * deletion before reporting that it isn't found.  This function waits
2089  * until the deletion _might_ have completed.  Callers are responsible
2090  * to recheck inode state.
2091  *
2092  * It doesn't matter if I_NEW is not set initially, a call to
2093  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2094  * will DTRT.
2095  */
__wait_on_freeing_inode(struct inode * inode)2096 static void __wait_on_freeing_inode(struct inode *inode)
2097 {
2098 	wait_queue_head_t *wq;
2099 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2100 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2101 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2102 	spin_unlock(&inode->i_lock);
2103 	spin_unlock(&inode_hash_lock);
2104 	schedule();
2105 	finish_wait(wq, &wait.wq_entry);
2106 	spin_lock(&inode_hash_lock);
2107 }
2108 
2109 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2110 static int __init set_ihash_entries(char *str)
2111 {
2112 	if (!str)
2113 		return 0;
2114 	ihash_entries = simple_strtoul(str, &str, 0);
2115 	return 1;
2116 }
2117 __setup("ihash_entries=", set_ihash_entries);
2118 
2119 /*
2120  * Initialize the waitqueues and inode hash table.
2121  */
inode_init_early(void)2122 void __init inode_init_early(void)
2123 {
2124 	/* If hashes are distributed across NUMA nodes, defer
2125 	 * hash allocation until vmalloc space is available.
2126 	 */
2127 	if (hashdist)
2128 		return;
2129 
2130 	inode_hashtable =
2131 		alloc_large_system_hash("Inode-cache",
2132 					sizeof(struct hlist_head),
2133 					ihash_entries,
2134 					14,
2135 					HASH_EARLY | HASH_ZERO,
2136 					&i_hash_shift,
2137 					&i_hash_mask,
2138 					0,
2139 					0);
2140 }
2141 
inode_init(void)2142 void __init inode_init(void)
2143 {
2144 	/* inode slab cache */
2145 	inode_cachep = kmem_cache_create("inode_cache",
2146 					 sizeof(struct inode),
2147 					 0,
2148 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2149 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2150 					 init_once);
2151 
2152 	/* Hash may have been set up in inode_init_early */
2153 	if (!hashdist)
2154 		return;
2155 
2156 	inode_hashtable =
2157 		alloc_large_system_hash("Inode-cache",
2158 					sizeof(struct hlist_head),
2159 					ihash_entries,
2160 					14,
2161 					HASH_ZERO,
2162 					&i_hash_shift,
2163 					&i_hash_mask,
2164 					0,
2165 					0);
2166 }
2167 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2168 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2169 {
2170 	inode->i_mode = mode;
2171 	if (S_ISCHR(mode)) {
2172 		inode->i_fop = &def_chr_fops;
2173 		inode->i_rdev = rdev;
2174 	} else if (S_ISBLK(mode)) {
2175 		inode->i_fop = &def_blk_fops;
2176 		inode->i_rdev = rdev;
2177 	} else if (S_ISFIFO(mode))
2178 		inode->i_fop = &pipefifo_fops;
2179 	else if (S_ISSOCK(mode))
2180 		;	/* leave it no_open_fops */
2181 	else
2182 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2183 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2184 				  inode->i_ino);
2185 }
2186 EXPORT_SYMBOL(init_special_inode);
2187 
2188 /**
2189  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2190  * @inode: New inode
2191  * @dir: Directory inode
2192  * @mode: mode of the new inode
2193  */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2194 void inode_init_owner(struct inode *inode, const struct inode *dir,
2195 			umode_t mode)
2196 {
2197 	inode->i_uid = current_fsuid();
2198 	if (dir && dir->i_mode & S_ISGID) {
2199 		inode->i_gid = dir->i_gid;
2200 
2201 		/* Directories are special, and always inherit S_ISGID */
2202 		if (S_ISDIR(mode))
2203 			mode |= S_ISGID;
2204 	} else
2205 		inode->i_gid = current_fsgid();
2206 	inode->i_mode = mode;
2207 }
2208 EXPORT_SYMBOL(inode_init_owner);
2209 
2210 /**
2211  * inode_owner_or_capable - check current task permissions to inode
2212  * @inode: inode being checked
2213  *
2214  * Return true if current either has CAP_FOWNER in a namespace with the
2215  * inode owner uid mapped, or owns the file.
2216  */
inode_owner_or_capable(const struct inode * inode)2217 bool inode_owner_or_capable(const struct inode *inode)
2218 {
2219 	struct user_namespace *ns;
2220 
2221 	if (uid_eq(current_fsuid(), inode->i_uid))
2222 		return true;
2223 
2224 	ns = current_user_ns();
2225 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2226 		return true;
2227 	return false;
2228 }
2229 EXPORT_SYMBOL(inode_owner_or_capable);
2230 
2231 /*
2232  * Direct i/o helper functions
2233  */
__inode_dio_wait(struct inode * inode)2234 static void __inode_dio_wait(struct inode *inode)
2235 {
2236 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2237 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2238 
2239 	do {
2240 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2241 		if (atomic_read(&inode->i_dio_count))
2242 			schedule();
2243 	} while (atomic_read(&inode->i_dio_count));
2244 	finish_wait(wq, &q.wq_entry);
2245 }
2246 
2247 /**
2248  * inode_dio_wait - wait for outstanding DIO requests to finish
2249  * @inode: inode to wait for
2250  *
2251  * Waits for all pending direct I/O requests to finish so that we can
2252  * proceed with a truncate or equivalent operation.
2253  *
2254  * Must be called under a lock that serializes taking new references
2255  * to i_dio_count, usually by inode->i_mutex.
2256  */
inode_dio_wait(struct inode * inode)2257 void inode_dio_wait(struct inode *inode)
2258 {
2259 	if (atomic_read(&inode->i_dio_count))
2260 		__inode_dio_wait(inode);
2261 }
2262 EXPORT_SYMBOL(inode_dio_wait);
2263 
2264 /*
2265  * inode_set_flags - atomically set some inode flags
2266  *
2267  * Note: the caller should be holding i_mutex, or else be sure that
2268  * they have exclusive access to the inode structure (i.e., while the
2269  * inode is being instantiated).  The reason for the cmpxchg() loop
2270  * --- which wouldn't be necessary if all code paths which modify
2271  * i_flags actually followed this rule, is that there is at least one
2272  * code path which doesn't today so we use cmpxchg() out of an abundance
2273  * of caution.
2274  *
2275  * In the long run, i_mutex is overkill, and we should probably look
2276  * at using the i_lock spinlock to protect i_flags, and then make sure
2277  * it is so documented in include/linux/fs.h and that all code follows
2278  * the locking convention!!
2279  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2280 void inode_set_flags(struct inode *inode, unsigned int flags,
2281 		     unsigned int mask)
2282 {
2283 	WARN_ON_ONCE(flags & ~mask);
2284 	set_mask_bits(&inode->i_flags, mask, flags);
2285 }
2286 EXPORT_SYMBOL(inode_set_flags);
2287 
inode_nohighmem(struct inode * inode)2288 void inode_nohighmem(struct inode *inode)
2289 {
2290 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2291 }
2292 EXPORT_SYMBOL(inode_nohighmem);
2293 
2294 /**
2295  * timestamp_truncate - Truncate timespec to a granularity
2296  * @t: Timespec
2297  * @inode: inode being updated
2298  *
2299  * Truncate a timespec to the granularity supported by the fs
2300  * containing the inode. Always rounds down. gran must
2301  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2302  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2303 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2304 {
2305 	struct super_block *sb = inode->i_sb;
2306 	unsigned int gran = sb->s_time_gran;
2307 
2308 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2309 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2310 		t.tv_nsec = 0;
2311 
2312 	/* Avoid division in the common cases 1 ns and 1 s. */
2313 	if (gran == 1)
2314 		; /* nothing */
2315 	else if (gran == NSEC_PER_SEC)
2316 		t.tv_nsec = 0;
2317 	else if (gran > 1 && gran < NSEC_PER_SEC)
2318 		t.tv_nsec -= t.tv_nsec % gran;
2319 	else
2320 		WARN(1, "invalid file time granularity: %u", gran);
2321 	return t;
2322 }
2323 EXPORT_SYMBOL(timestamp_truncate);
2324 
2325 /**
2326  * current_time - Return FS time
2327  * @inode: inode.
2328  *
2329  * Return the current time truncated to the time granularity supported by
2330  * the fs.
2331  *
2332  * Note that inode and inode->sb cannot be NULL.
2333  * Otherwise, the function warns and returns time without truncation.
2334  */
current_time(struct inode * inode)2335 struct timespec64 current_time(struct inode *inode)
2336 {
2337 	struct timespec64 now;
2338 
2339 	ktime_get_coarse_real_ts64(&now);
2340 
2341 	if (unlikely(!inode->i_sb)) {
2342 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2343 		return now;
2344 	}
2345 
2346 	return timestamp_truncate(now, inode);
2347 }
2348 EXPORT_SYMBOL(current_time);
2349 
2350 /*
2351  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2352  * configurations.
2353  *
2354  * Note: the caller should be holding i_mutex, or else be sure that they have
2355  * exclusive access to the inode structure.
2356  */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2357 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2358 			     unsigned int flags)
2359 {
2360 	/*
2361 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2362 	 * the relevant capability.
2363 	 *
2364 	 * This test looks nicer. Thanks to Pauline Middelink
2365 	 */
2366 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2367 	    !capable(CAP_LINUX_IMMUTABLE))
2368 		return -EPERM;
2369 
2370 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2371 }
2372 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2373 
2374 /*
2375  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2376  * configurations.
2377  *
2378  * Note: the caller should be holding i_mutex, or else be sure that they have
2379  * exclusive access to the inode structure.
2380  */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2381 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2382 			     struct fsxattr *fa)
2383 {
2384 	/*
2385 	 * Can't modify an immutable/append-only file unless we have
2386 	 * appropriate permission.
2387 	 */
2388 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2389 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2390 	    !capable(CAP_LINUX_IMMUTABLE))
2391 		return -EPERM;
2392 
2393 	/*
2394 	 * Project Quota ID state is only allowed to change from within the init
2395 	 * namespace. Enforce that restriction only if we are trying to change
2396 	 * the quota ID state. Everything else is allowed in user namespaces.
2397 	 */
2398 	if (current_user_ns() != &init_user_ns) {
2399 		if (old_fa->fsx_projid != fa->fsx_projid)
2400 			return -EINVAL;
2401 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2402 				FS_XFLAG_PROJINHERIT)
2403 			return -EINVAL;
2404 	}
2405 
2406 	/* Check extent size hints. */
2407 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2408 		return -EINVAL;
2409 
2410 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2411 			!S_ISDIR(inode->i_mode))
2412 		return -EINVAL;
2413 
2414 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2415 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2416 		return -EINVAL;
2417 
2418 	/*
2419 	 * It is only valid to set the DAX flag on regular files and
2420 	 * directories on filesystems.
2421 	 */
2422 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2423 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2424 		return -EINVAL;
2425 
2426 	/* Extent size hints of zero turn off the flags. */
2427 	if (fa->fsx_extsize == 0)
2428 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2429 	if (fa->fsx_cowextsize == 0)
2430 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2431 
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2435 
2436 /**
2437  * inode_set_ctime_current - set the ctime to current_time
2438  * @inode: inode
2439  *
2440  * Set the inode->i_ctime to the current value for the inode. Returns
2441  * the current value that was assigned to i_ctime.
2442  */
inode_set_ctime_current(struct inode * inode)2443 struct timespec64 inode_set_ctime_current(struct inode *inode)
2444 {
2445 	struct timespec64 now = current_time(inode);
2446 
2447 	inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2448 	return now;
2449 }
2450 EXPORT_SYMBOL(inode_set_ctime_current);
2451 
2452 /**
2453  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2454  * @inode:	inode to check
2455  * @gid:	the new/current gid of @inode
2456  *
2457  * Check wether @gid is in the caller's group list or if the caller is
2458  * privileged with CAP_FSETID over @inode. This can be used to determine
2459  * whether the setgid bit can be kept or must be dropped.
2460  *
2461  * Return: true if the caller is sufficiently privileged, false if not.
2462  */
in_group_or_capable(const struct inode * inode,kgid_t gid)2463 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2464 {
2465 	if (in_group_p(gid))
2466 		return true;
2467 	if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2468 		return true;
2469 	return false;
2470 }
2471 
2472 /**
2473  * mode_strip_sgid - handle the sgid bit for non-directories
2474  * @dir: parent directory inode
2475  * @mode: mode of the file to be created in @dir
2476  *
2477  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2478  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2479  * either in the group of the parent directory or they have CAP_FSETID
2480  * in their user namespace and are privileged over the parent directory.
2481  * In all other cases, strip the S_ISGID bit from @mode.
2482  *
2483  * Return: the new mode to use for the file
2484  */
mode_strip_sgid(const struct inode * dir,umode_t mode)2485 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2486 {
2487 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2488 		return mode;
2489 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2490 		return mode;
2491 	if (in_group_or_capable(dir, dir->i_gid))
2492 		return mode;
2493 	return mode & ~S_ISGID;
2494 }
2495 EXPORT_SYMBOL(mode_strip_sgid);
2496