1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
50
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
58
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
71
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_submit_inode_data_buffers);
95 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
96 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
97 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
98 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
99 EXPORT_SYMBOL(jbd2_inode_cache);
100
101 static int jbd2_journal_create_slab(size_t slab_size);
102
103 #ifdef CONFIG_JBD2_DEBUG
__jbd2_debug(int level,const char * file,const char * func,unsigned int line,const char * fmt,...)104 void __jbd2_debug(int level, const char *file, const char *func,
105 unsigned int line, const char *fmt, ...)
106 {
107 struct va_format vaf;
108 va_list args;
109
110 if (level > jbd2_journal_enable_debug)
111 return;
112 va_start(args, fmt);
113 vaf.fmt = fmt;
114 vaf.va = &args;
115 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
116 va_end(args);
117 }
118 EXPORT_SYMBOL(__jbd2_debug);
119 #endif
120
121 /* Checksumming functions */
jbd2_verify_csum_type(journal_t * j,journal_superblock_t * sb)122 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 {
124 if (!jbd2_journal_has_csum_v2or3_feature(j))
125 return 1;
126
127 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
128 }
129
jbd2_superblock_csum(journal_t * j,journal_superblock_t * sb)130 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 {
132 __u32 csum;
133 __be32 old_csum;
134
135 old_csum = sb->s_checksum;
136 sb->s_checksum = 0;
137 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
138 sb->s_checksum = old_csum;
139
140 return cpu_to_be32(csum);
141 }
142
143 /*
144 * Helper function used to manage commit timeouts
145 */
146
commit_timeout(struct timer_list * t)147 static void commit_timeout(struct timer_list *t)
148 {
149 journal_t *journal = from_timer(journal, t, j_commit_timer);
150
151 wake_up_process(journal->j_task);
152 }
153
154 /*
155 * kjournald2: The main thread function used to manage a logging device
156 * journal.
157 *
158 * This kernel thread is responsible for two things:
159 *
160 * 1) COMMIT: Every so often we need to commit the current state of the
161 * filesystem to disk. The journal thread is responsible for writing
162 * all of the metadata buffers to disk. If a fast commit is ongoing
163 * journal thread waits until it's done and then continues from
164 * there on.
165 *
166 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
167 * of the data in that part of the log has been rewritten elsewhere on
168 * the disk. Flushing these old buffers to reclaim space in the log is
169 * known as checkpointing, and this thread is responsible for that job.
170 */
171
kjournald2(void * arg)172 static int kjournald2(void *arg)
173 {
174 journal_t *journal = arg;
175 transaction_t *transaction;
176
177 /*
178 * Set up an interval timer which can be used to trigger a commit wakeup
179 * after the commit interval expires
180 */
181 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
182
183 set_freezable();
184
185 /* Record that the journal thread is running */
186 journal->j_task = current;
187 wake_up(&journal->j_wait_done_commit);
188
189 /*
190 * Make sure that no allocations from this kernel thread will ever
191 * recurse to the fs layer because we are responsible for the
192 * transaction commit and any fs involvement might get stuck waiting for
193 * the trasn. commit.
194 */
195 memalloc_nofs_save();
196
197 /*
198 * And now, wait forever for commit wakeup events.
199 */
200 write_lock(&journal->j_state_lock);
201
202 loop:
203 if (journal->j_flags & JBD2_UNMOUNT)
204 goto end_loop;
205
206 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
207 journal->j_commit_sequence, journal->j_commit_request);
208
209 if (journal->j_commit_sequence != journal->j_commit_request) {
210 jbd_debug(1, "OK, requests differ\n");
211 write_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 jbd2_journal_commit_transaction(journal);
214 write_lock(&journal->j_state_lock);
215 goto loop;
216 }
217
218 wake_up(&journal->j_wait_done_commit);
219 if (freezing(current)) {
220 /*
221 * The simpler the better. Flushing journal isn't a
222 * good idea, because that depends on threads that may
223 * be already stopped.
224 */
225 jbd_debug(1, "Now suspending kjournald2\n");
226 write_unlock(&journal->j_state_lock);
227 try_to_freeze();
228 write_lock(&journal->j_state_lock);
229 } else {
230 /*
231 * We assume on resume that commits are already there,
232 * so we don't sleep
233 */
234 DEFINE_WAIT(wait);
235 int should_sleep = 1;
236
237 prepare_to_wait(&journal->j_wait_commit, &wait,
238 TASK_INTERRUPTIBLE);
239 if (journal->j_commit_sequence != journal->j_commit_request)
240 should_sleep = 0;
241 transaction = journal->j_running_transaction;
242 if (transaction && time_after_eq(jiffies,
243 transaction->t_expires))
244 should_sleep = 0;
245 if (journal->j_flags & JBD2_UNMOUNT)
246 should_sleep = 0;
247 if (should_sleep) {
248 write_unlock(&journal->j_state_lock);
249 schedule();
250 write_lock(&journal->j_state_lock);
251 }
252 finish_wait(&journal->j_wait_commit, &wait);
253 }
254
255 jbd_debug(1, "kjournald2 wakes\n");
256
257 /*
258 * Were we woken up by a commit wakeup event?
259 */
260 transaction = journal->j_running_transaction;
261 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
262 journal->j_commit_request = transaction->t_tid;
263 jbd_debug(1, "woke because of timeout\n");
264 }
265 goto loop;
266
267 end_loop:
268 del_timer_sync(&journal->j_commit_timer);
269 journal->j_task = NULL;
270 wake_up(&journal->j_wait_done_commit);
271 jbd_debug(1, "Journal thread exiting.\n");
272 write_unlock(&journal->j_state_lock);
273 return 0;
274 }
275
jbd2_journal_start_thread(journal_t * journal)276 static int jbd2_journal_start_thread(journal_t *journal)
277 {
278 struct task_struct *t;
279
280 t = kthread_run(kjournald2, journal, "jbd2/%s",
281 journal->j_devname);
282 if (IS_ERR(t))
283 return PTR_ERR(t);
284
285 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
286 return 0;
287 }
288
journal_kill_thread(journal_t * journal)289 static void journal_kill_thread(journal_t *journal)
290 {
291 write_lock(&journal->j_state_lock);
292 journal->j_flags |= JBD2_UNMOUNT;
293
294 while (journal->j_task) {
295 write_unlock(&journal->j_state_lock);
296 wake_up(&journal->j_wait_commit);
297 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
298 write_lock(&journal->j_state_lock);
299 }
300 write_unlock(&journal->j_state_lock);
301 }
302
303 /*
304 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
305 *
306 * Writes a metadata buffer to a given disk block. The actual IO is not
307 * performed but a new buffer_head is constructed which labels the data
308 * to be written with the correct destination disk block.
309 *
310 * Any magic-number escaping which needs to be done will cause a
311 * copy-out here. If the buffer happens to start with the
312 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
313 * magic number is only written to the log for descripter blocks. In
314 * this case, we copy the data and replace the first word with 0, and we
315 * return a result code which indicates that this buffer needs to be
316 * marked as an escaped buffer in the corresponding log descriptor
317 * block. The missing word can then be restored when the block is read
318 * during recovery.
319 *
320 * If the source buffer has already been modified by a new transaction
321 * since we took the last commit snapshot, we use the frozen copy of
322 * that data for IO. If we end up using the existing buffer_head's data
323 * for the write, then we have to make sure nobody modifies it while the
324 * IO is in progress. do_get_write_access() handles this.
325 *
326 * The function returns a pointer to the buffer_head to be used for IO.
327 *
328 *
329 * Return value:
330 * <0: Error
331 * >=0: Finished OK
332 *
333 * On success:
334 * Bit 0 set == escape performed on the data
335 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
336 */
337
jbd2_journal_write_metadata_buffer(transaction_t * transaction,struct journal_head * jh_in,struct buffer_head ** bh_out,sector_t blocknr)338 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
339 struct journal_head *jh_in,
340 struct buffer_head **bh_out,
341 sector_t blocknr)
342 {
343 int need_copy_out = 0;
344 int done_copy_out = 0;
345 int do_escape = 0;
346 char *mapped_data;
347 struct buffer_head *new_bh;
348 struct page *new_page;
349 unsigned int new_offset;
350 struct buffer_head *bh_in = jh2bh(jh_in);
351 journal_t *journal = transaction->t_journal;
352
353 /*
354 * The buffer really shouldn't be locked: only the current committing
355 * transaction is allowed to write it, so nobody else is allowed
356 * to do any IO.
357 *
358 * akpm: except if we're journalling data, and write() output is
359 * also part of a shared mapping, and another thread has
360 * decided to launch a writepage() against this buffer.
361 */
362 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
363
364 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
365
366 /* keep subsequent assertions sane */
367 atomic_set(&new_bh->b_count, 1);
368
369 spin_lock(&jh_in->b_state_lock);
370 repeat:
371 /*
372 * If a new transaction has already done a buffer copy-out, then
373 * we use that version of the data for the commit.
374 */
375 if (jh_in->b_frozen_data) {
376 done_copy_out = 1;
377 new_page = virt_to_page(jh_in->b_frozen_data);
378 new_offset = offset_in_page(jh_in->b_frozen_data);
379 } else {
380 new_page = jh2bh(jh_in)->b_page;
381 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
382 }
383
384 mapped_data = kmap_atomic(new_page);
385 /*
386 * Fire data frozen trigger if data already wasn't frozen. Do this
387 * before checking for escaping, as the trigger may modify the magic
388 * offset. If a copy-out happens afterwards, it will have the correct
389 * data in the buffer.
390 */
391 if (!done_copy_out)
392 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
393 jh_in->b_triggers);
394
395 /*
396 * Check for escaping
397 */
398 if (*((__be32 *)(mapped_data + new_offset)) ==
399 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
400 need_copy_out = 1;
401 do_escape = 1;
402 }
403 kunmap_atomic(mapped_data);
404
405 /*
406 * Do we need to do a data copy?
407 */
408 if (need_copy_out && !done_copy_out) {
409 char *tmp;
410
411 spin_unlock(&jh_in->b_state_lock);
412 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
413 if (!tmp) {
414 brelse(new_bh);
415 return -ENOMEM;
416 }
417 spin_lock(&jh_in->b_state_lock);
418 if (jh_in->b_frozen_data) {
419 jbd2_free(tmp, bh_in->b_size);
420 goto repeat;
421 }
422
423 jh_in->b_frozen_data = tmp;
424 mapped_data = kmap_atomic(new_page);
425 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
426 kunmap_atomic(mapped_data);
427
428 new_page = virt_to_page(tmp);
429 new_offset = offset_in_page(tmp);
430 done_copy_out = 1;
431
432 /*
433 * This isn't strictly necessary, as we're using frozen
434 * data for the escaping, but it keeps consistency with
435 * b_frozen_data usage.
436 */
437 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 }
439
440 /*
441 * Did we need to do an escaping? Now we've done all the
442 * copying, we can finally do so.
443 */
444 if (do_escape) {
445 mapped_data = kmap_atomic(new_page);
446 *((unsigned int *)(mapped_data + new_offset)) = 0;
447 kunmap_atomic(mapped_data);
448 }
449
450 set_bh_page(new_bh, new_page, new_offset);
451 new_bh->b_size = bh_in->b_size;
452 new_bh->b_bdev = journal->j_dev;
453 new_bh->b_blocknr = blocknr;
454 new_bh->b_private = bh_in;
455 set_buffer_mapped(new_bh);
456 set_buffer_dirty(new_bh);
457
458 *bh_out = new_bh;
459
460 /*
461 * The to-be-written buffer needs to get moved to the io queue,
462 * and the original buffer whose contents we are shadowing or
463 * copying is moved to the transaction's shadow queue.
464 */
465 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
466 spin_lock(&journal->j_list_lock);
467 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
468 spin_unlock(&journal->j_list_lock);
469 set_buffer_shadow(bh_in);
470 spin_unlock(&jh_in->b_state_lock);
471
472 return do_escape | (done_copy_out << 1);
473 }
474
475 /*
476 * Allocation code for the journal file. Manage the space left in the
477 * journal, so that we can begin checkpointing when appropriate.
478 */
479
480 /*
481 * Called with j_state_lock locked for writing.
482 * Returns true if a transaction commit was started.
483 */
__jbd2_log_start_commit(journal_t * journal,tid_t target)484 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
485 {
486 /* Return if the txn has already requested to be committed */
487 if (journal->j_commit_request == target)
488 return 0;
489
490 /*
491 * The only transaction we can possibly wait upon is the
492 * currently running transaction (if it exists). Otherwise,
493 * the target tid must be an old one.
494 */
495 if (journal->j_running_transaction &&
496 journal->j_running_transaction->t_tid == target) {
497 /*
498 * We want a new commit: OK, mark the request and wakeup the
499 * commit thread. We do _not_ do the commit ourselves.
500 */
501
502 journal->j_commit_request = target;
503 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
504 journal->j_commit_request,
505 journal->j_commit_sequence);
506 journal->j_running_transaction->t_requested = jiffies;
507 wake_up(&journal->j_wait_commit);
508 return 1;
509 } else if (!tid_geq(journal->j_commit_request, target))
510 /* This should never happen, but if it does, preserve
511 the evidence before kjournald goes into a loop and
512 increments j_commit_sequence beyond all recognition. */
513 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
514 journal->j_commit_request,
515 journal->j_commit_sequence,
516 target, journal->j_running_transaction ?
517 journal->j_running_transaction->t_tid : 0);
518 return 0;
519 }
520
jbd2_log_start_commit(journal_t * journal,tid_t tid)521 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
522 {
523 int ret;
524
525 write_lock(&journal->j_state_lock);
526 ret = __jbd2_log_start_commit(journal, tid);
527 write_unlock(&journal->j_state_lock);
528 return ret;
529 }
530
531 /*
532 * Force and wait any uncommitted transactions. We can only force the running
533 * transaction if we don't have an active handle, otherwise, we will deadlock.
534 * Returns: <0 in case of error,
535 * 0 if nothing to commit,
536 * 1 if transaction was successfully committed.
537 */
__jbd2_journal_force_commit(journal_t * journal)538 static int __jbd2_journal_force_commit(journal_t *journal)
539 {
540 transaction_t *transaction = NULL;
541 tid_t tid;
542 int need_to_start = 0, ret = 0;
543
544 read_lock(&journal->j_state_lock);
545 if (journal->j_running_transaction && !current->journal_info) {
546 transaction = journal->j_running_transaction;
547 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
548 need_to_start = 1;
549 } else if (journal->j_committing_transaction)
550 transaction = journal->j_committing_transaction;
551
552 if (!transaction) {
553 /* Nothing to commit */
554 read_unlock(&journal->j_state_lock);
555 return 0;
556 }
557 tid = transaction->t_tid;
558 read_unlock(&journal->j_state_lock);
559 if (need_to_start)
560 jbd2_log_start_commit(journal, tid);
561 ret = jbd2_log_wait_commit(journal, tid);
562 if (!ret)
563 ret = 1;
564
565 return ret;
566 }
567
568 /**
569 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
570 * calling process is not within transaction.
571 *
572 * @journal: journal to force
573 * Returns true if progress was made.
574 *
575 * This is used for forcing out undo-protected data which contains
576 * bitmaps, when the fs is running out of space.
577 */
jbd2_journal_force_commit_nested(journal_t * journal)578 int jbd2_journal_force_commit_nested(journal_t *journal)
579 {
580 int ret;
581
582 ret = __jbd2_journal_force_commit(journal);
583 return ret > 0;
584 }
585
586 /**
587 * jbd2_journal_force_commit() - force any uncommitted transactions
588 * @journal: journal to force
589 *
590 * Caller want unconditional commit. We can only force the running transaction
591 * if we don't have an active handle, otherwise, we will deadlock.
592 */
jbd2_journal_force_commit(journal_t * journal)593 int jbd2_journal_force_commit(journal_t *journal)
594 {
595 int ret;
596
597 J_ASSERT(!current->journal_info);
598 ret = __jbd2_journal_force_commit(journal);
599 if (ret > 0)
600 ret = 0;
601 return ret;
602 }
603
604 /*
605 * Start a commit of the current running transaction (if any). Returns true
606 * if a transaction is going to be committed (or is currently already
607 * committing), and fills its tid in at *ptid
608 */
jbd2_journal_start_commit(journal_t * journal,tid_t * ptid)609 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
610 {
611 int ret = 0;
612
613 write_lock(&journal->j_state_lock);
614 if (journal->j_running_transaction) {
615 tid_t tid = journal->j_running_transaction->t_tid;
616
617 __jbd2_log_start_commit(journal, tid);
618 /* There's a running transaction and we've just made sure
619 * it's commit has been scheduled. */
620 if (ptid)
621 *ptid = tid;
622 ret = 1;
623 } else if (journal->j_committing_transaction) {
624 /*
625 * If commit has been started, then we have to wait for
626 * completion of that transaction.
627 */
628 if (ptid)
629 *ptid = journal->j_committing_transaction->t_tid;
630 ret = 1;
631 }
632 write_unlock(&journal->j_state_lock);
633 return ret;
634 }
635
636 /*
637 * Return 1 if a given transaction has not yet sent barrier request
638 * connected with a transaction commit. If 0 is returned, transaction
639 * may or may not have sent the barrier. Used to avoid sending barrier
640 * twice in common cases.
641 */
jbd2_trans_will_send_data_barrier(journal_t * journal,tid_t tid)642 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
643 {
644 int ret = 0;
645 transaction_t *commit_trans;
646
647 if (!(journal->j_flags & JBD2_BARRIER))
648 return 0;
649 read_lock(&journal->j_state_lock);
650 /* Transaction already committed? */
651 if (tid_geq(journal->j_commit_sequence, tid))
652 goto out;
653 commit_trans = journal->j_committing_transaction;
654 if (!commit_trans || commit_trans->t_tid != tid) {
655 ret = 1;
656 goto out;
657 }
658 /*
659 * Transaction is being committed and we already proceeded to
660 * submitting a flush to fs partition?
661 */
662 if (journal->j_fs_dev != journal->j_dev) {
663 if (!commit_trans->t_need_data_flush ||
664 commit_trans->t_state >= T_COMMIT_DFLUSH)
665 goto out;
666 } else {
667 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
668 goto out;
669 }
670 ret = 1;
671 out:
672 read_unlock(&journal->j_state_lock);
673 return ret;
674 }
675 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
676
677 /*
678 * Wait for a specified commit to complete.
679 * The caller may not hold the journal lock.
680 */
jbd2_log_wait_commit(journal_t * journal,tid_t tid)681 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
682 {
683 int err = 0;
684
685 read_lock(&journal->j_state_lock);
686 #ifdef CONFIG_PROVE_LOCKING
687 /*
688 * Some callers make sure transaction is already committing and in that
689 * case we cannot block on open handles anymore. So don't warn in that
690 * case.
691 */
692 if (tid_gt(tid, journal->j_commit_sequence) &&
693 (!journal->j_committing_transaction ||
694 journal->j_committing_transaction->t_tid != tid)) {
695 read_unlock(&journal->j_state_lock);
696 jbd2_might_wait_for_commit(journal);
697 read_lock(&journal->j_state_lock);
698 }
699 #endif
700 #ifdef CONFIG_JBD2_DEBUG
701 if (!tid_geq(journal->j_commit_request, tid)) {
702 printk(KERN_ERR
703 "%s: error: j_commit_request=%u, tid=%u\n",
704 __func__, journal->j_commit_request, tid);
705 }
706 #endif
707 while (tid_gt(tid, journal->j_commit_sequence)) {
708 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
709 tid, journal->j_commit_sequence);
710 read_unlock(&journal->j_state_lock);
711 wake_up(&journal->j_wait_commit);
712 wait_event(journal->j_wait_done_commit,
713 !tid_gt(tid, journal->j_commit_sequence));
714 read_lock(&journal->j_state_lock);
715 }
716 read_unlock(&journal->j_state_lock);
717
718 if (unlikely(is_journal_aborted(journal)))
719 err = -EIO;
720 return err;
721 }
722
723 /*
724 * Start a fast commit. If there's an ongoing fast or full commit wait for
725 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
726 * if a fast commit is not needed, either because there's an already a commit
727 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
728 * commit has yet been performed.
729 */
jbd2_fc_begin_commit(journal_t * journal,tid_t tid)730 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
731 {
732 if (unlikely(is_journal_aborted(journal)))
733 return -EIO;
734 /*
735 * Fast commits only allowed if at least one full commit has
736 * been processed.
737 */
738 if (!journal->j_stats.ts_tid)
739 return -EINVAL;
740
741 write_lock(&journal->j_state_lock);
742 if (tid <= journal->j_commit_sequence) {
743 write_unlock(&journal->j_state_lock);
744 return -EALREADY;
745 }
746
747 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
748 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
749 DEFINE_WAIT(wait);
750
751 prepare_to_wait(&journal->j_fc_wait, &wait,
752 TASK_UNINTERRUPTIBLE);
753 write_unlock(&journal->j_state_lock);
754 schedule();
755 finish_wait(&journal->j_fc_wait, &wait);
756 return -EALREADY;
757 }
758 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
759 write_unlock(&journal->j_state_lock);
760 jbd2_journal_lock_updates(journal);
761
762 return 0;
763 }
764 EXPORT_SYMBOL(jbd2_fc_begin_commit);
765
766 /*
767 * Stop a fast commit. If fallback is set, this function starts commit of
768 * TID tid before any other fast commit can start.
769 */
__jbd2_fc_end_commit(journal_t * journal,tid_t tid,bool fallback)770 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
771 {
772 jbd2_journal_unlock_updates(journal);
773 if (journal->j_fc_cleanup_callback)
774 journal->j_fc_cleanup_callback(journal, 0);
775 write_lock(&journal->j_state_lock);
776 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
777 if (fallback)
778 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
779 write_unlock(&journal->j_state_lock);
780 wake_up(&journal->j_fc_wait);
781 if (fallback)
782 return jbd2_complete_transaction(journal, tid);
783 return 0;
784 }
785
jbd2_fc_end_commit(journal_t * journal)786 int jbd2_fc_end_commit(journal_t *journal)
787 {
788 return __jbd2_fc_end_commit(journal, 0, false);
789 }
790 EXPORT_SYMBOL(jbd2_fc_end_commit);
791
jbd2_fc_end_commit_fallback(journal_t * journal)792 int jbd2_fc_end_commit_fallback(journal_t *journal)
793 {
794 tid_t tid;
795
796 read_lock(&journal->j_state_lock);
797 tid = journal->j_running_transaction ?
798 journal->j_running_transaction->t_tid : 0;
799 read_unlock(&journal->j_state_lock);
800 return __jbd2_fc_end_commit(journal, tid, true);
801 }
802 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
803
804 /* Return 1 when transaction with given tid has already committed. */
jbd2_transaction_committed(journal_t * journal,tid_t tid)805 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
806 {
807 int ret = 1;
808
809 read_lock(&journal->j_state_lock);
810 if (journal->j_running_transaction &&
811 journal->j_running_transaction->t_tid == tid)
812 ret = 0;
813 if (journal->j_committing_transaction &&
814 journal->j_committing_transaction->t_tid == tid)
815 ret = 0;
816 read_unlock(&journal->j_state_lock);
817 return ret;
818 }
819 EXPORT_SYMBOL(jbd2_transaction_committed);
820
821 /*
822 * When this function returns the transaction corresponding to tid
823 * will be completed. If the transaction has currently running, start
824 * committing that transaction before waiting for it to complete. If
825 * the transaction id is stale, it is by definition already completed,
826 * so just return SUCCESS.
827 */
jbd2_complete_transaction(journal_t * journal,tid_t tid)828 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
829 {
830 int need_to_wait = 1;
831
832 read_lock(&journal->j_state_lock);
833 if (journal->j_running_transaction &&
834 journal->j_running_transaction->t_tid == tid) {
835 if (journal->j_commit_request != tid) {
836 /* transaction not yet started, so request it */
837 read_unlock(&journal->j_state_lock);
838 jbd2_log_start_commit(journal, tid);
839 goto wait_commit;
840 }
841 } else if (!(journal->j_committing_transaction &&
842 journal->j_committing_transaction->t_tid == tid))
843 need_to_wait = 0;
844 read_unlock(&journal->j_state_lock);
845 if (!need_to_wait)
846 return 0;
847 wait_commit:
848 return jbd2_log_wait_commit(journal, tid);
849 }
850 EXPORT_SYMBOL(jbd2_complete_transaction);
851
852 /*
853 * Log buffer allocation routines:
854 */
855
jbd2_journal_next_log_block(journal_t * journal,unsigned long long * retp)856 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
857 {
858 unsigned long blocknr;
859
860 write_lock(&journal->j_state_lock);
861 J_ASSERT(journal->j_free > 1);
862
863 blocknr = journal->j_head;
864 journal->j_head++;
865 journal->j_free--;
866 if (journal->j_head == journal->j_last)
867 journal->j_head = journal->j_first;
868 write_unlock(&journal->j_state_lock);
869 return jbd2_journal_bmap(journal, blocknr, retp);
870 }
871
872 /* Map one fast commit buffer for use by the file system */
jbd2_fc_get_buf(journal_t * journal,struct buffer_head ** bh_out)873 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
874 {
875 unsigned long long pblock;
876 unsigned long blocknr;
877 int ret = 0;
878 struct buffer_head *bh;
879 int fc_off;
880
881 *bh_out = NULL;
882
883 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) {
884 fc_off = journal->j_fc_off;
885 blocknr = journal->j_fc_first + fc_off;
886 journal->j_fc_off++;
887 } else {
888 ret = -EINVAL;
889 }
890
891 if (ret)
892 return ret;
893
894 ret = jbd2_journal_bmap(journal, blocknr, &pblock);
895 if (ret)
896 return ret;
897
898 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
899 if (!bh)
900 return -ENOMEM;
901
902
903 journal->j_fc_wbuf[fc_off] = bh;
904
905 *bh_out = bh;
906
907 return 0;
908 }
909 EXPORT_SYMBOL(jbd2_fc_get_buf);
910
911 /*
912 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
913 * for completion.
914 */
jbd2_fc_wait_bufs(journal_t * journal,int num_blks)915 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
916 {
917 struct buffer_head *bh;
918 int i, j_fc_off;
919
920 j_fc_off = journal->j_fc_off;
921
922 /*
923 * Wait in reverse order to minimize chances of us being woken up before
924 * all IOs have completed
925 */
926 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
927 bh = journal->j_fc_wbuf[i];
928 wait_on_buffer(bh);
929 /*
930 * Update j_fc_off so jbd2_fc_release_bufs can release remain
931 * buffer head.
932 */
933 if (unlikely(!buffer_uptodate(bh))) {
934 journal->j_fc_off = i + 1;
935 return -EIO;
936 }
937 put_bh(bh);
938 journal->j_fc_wbuf[i] = NULL;
939 }
940
941 return 0;
942 }
943 EXPORT_SYMBOL(jbd2_fc_wait_bufs);
944
945 /*
946 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
947 * for completion.
948 */
jbd2_fc_release_bufs(journal_t * journal)949 int jbd2_fc_release_bufs(journal_t *journal)
950 {
951 struct buffer_head *bh;
952 int i, j_fc_off;
953
954 j_fc_off = journal->j_fc_off;
955
956 /*
957 * Wait in reverse order to minimize chances of us being woken up before
958 * all IOs have completed
959 */
960 for (i = j_fc_off - 1; i >= 0; i--) {
961 bh = journal->j_fc_wbuf[i];
962 if (!bh)
963 break;
964 put_bh(bh);
965 journal->j_fc_wbuf[i] = NULL;
966 }
967
968 return 0;
969 }
970 EXPORT_SYMBOL(jbd2_fc_release_bufs);
971
972 /*
973 * Conversion of logical to physical block numbers for the journal
974 *
975 * On external journals the journal blocks are identity-mapped, so
976 * this is a no-op. If needed, we can use j_blk_offset - everything is
977 * ready.
978 */
jbd2_journal_bmap(journal_t * journal,unsigned long blocknr,unsigned long long * retp)979 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
980 unsigned long long *retp)
981 {
982 int err = 0;
983 unsigned long long ret;
984 sector_t block = 0;
985
986 if (journal->j_inode) {
987 block = blocknr;
988 ret = bmap(journal->j_inode, &block);
989
990 if (ret || !block) {
991 printk(KERN_ALERT "%s: journal block not found "
992 "at offset %lu on %s\n",
993 __func__, blocknr, journal->j_devname);
994 err = -EIO;
995 jbd2_journal_abort(journal, err);
996 } else {
997 *retp = block;
998 }
999
1000 } else {
1001 *retp = blocknr; /* +journal->j_blk_offset */
1002 }
1003 return err;
1004 }
1005
1006 /*
1007 * We play buffer_head aliasing tricks to write data/metadata blocks to
1008 * the journal without copying their contents, but for journal
1009 * descriptor blocks we do need to generate bona fide buffers.
1010 *
1011 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
1012 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
1013 * But we don't bother doing that, so there will be coherency problems with
1014 * mmaps of blockdevs which hold live JBD-controlled filesystems.
1015 */
1016 struct buffer_head *
jbd2_journal_get_descriptor_buffer(transaction_t * transaction,int type)1017 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
1018 {
1019 journal_t *journal = transaction->t_journal;
1020 struct buffer_head *bh;
1021 unsigned long long blocknr;
1022 journal_header_t *header;
1023 int err;
1024
1025 err = jbd2_journal_next_log_block(journal, &blocknr);
1026
1027 if (err)
1028 return NULL;
1029
1030 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
1031 if (!bh)
1032 return NULL;
1033 atomic_dec(&transaction->t_outstanding_credits);
1034 lock_buffer(bh);
1035 memset(bh->b_data, 0, journal->j_blocksize);
1036 header = (journal_header_t *)bh->b_data;
1037 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
1038 header->h_blocktype = cpu_to_be32(type);
1039 header->h_sequence = cpu_to_be32(transaction->t_tid);
1040 set_buffer_uptodate(bh);
1041 unlock_buffer(bh);
1042 BUFFER_TRACE(bh, "return this buffer");
1043 return bh;
1044 }
1045
jbd2_descriptor_block_csum_set(journal_t * j,struct buffer_head * bh)1046 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
1047 {
1048 struct jbd2_journal_block_tail *tail;
1049 __u32 csum;
1050
1051 if (!jbd2_journal_has_csum_v2or3(j))
1052 return;
1053
1054 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
1055 sizeof(struct jbd2_journal_block_tail));
1056 tail->t_checksum = 0;
1057 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
1058 tail->t_checksum = cpu_to_be32(csum);
1059 }
1060
1061 /*
1062 * Return tid of the oldest transaction in the journal and block in the journal
1063 * where the transaction starts.
1064 *
1065 * If the journal is now empty, return which will be the next transaction ID
1066 * we will write and where will that transaction start.
1067 *
1068 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1069 * it can.
1070 */
jbd2_journal_get_log_tail(journal_t * journal,tid_t * tid,unsigned long * block)1071 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1072 unsigned long *block)
1073 {
1074 transaction_t *transaction;
1075 int ret;
1076
1077 read_lock(&journal->j_state_lock);
1078 spin_lock(&journal->j_list_lock);
1079 transaction = journal->j_checkpoint_transactions;
1080 if (transaction) {
1081 *tid = transaction->t_tid;
1082 *block = transaction->t_log_start;
1083 } else if ((transaction = journal->j_committing_transaction) != NULL) {
1084 *tid = transaction->t_tid;
1085 *block = transaction->t_log_start;
1086 } else if ((transaction = journal->j_running_transaction) != NULL) {
1087 *tid = transaction->t_tid;
1088 *block = journal->j_head;
1089 } else {
1090 *tid = journal->j_transaction_sequence;
1091 *block = journal->j_head;
1092 }
1093 ret = tid_gt(*tid, journal->j_tail_sequence);
1094 spin_unlock(&journal->j_list_lock);
1095 read_unlock(&journal->j_state_lock);
1096
1097 return ret;
1098 }
1099
1100 /*
1101 * Update information in journal structure and in on disk journal superblock
1102 * about log tail. This function does not check whether information passed in
1103 * really pushes log tail further. It's responsibility of the caller to make
1104 * sure provided log tail information is valid (e.g. by holding
1105 * j_checkpoint_mutex all the time between computing log tail and calling this
1106 * function as is the case with jbd2_cleanup_journal_tail()).
1107 *
1108 * Requires j_checkpoint_mutex
1109 */
__jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1110 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1111 {
1112 unsigned long freed;
1113 int ret;
1114
1115 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1116
1117 /*
1118 * We cannot afford for write to remain in drive's caches since as
1119 * soon as we update j_tail, next transaction can start reusing journal
1120 * space and if we lose sb update during power failure we'd replay
1121 * old transaction with possibly newly overwritten data.
1122 */
1123 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
1124 REQ_SYNC | REQ_FUA);
1125 if (ret)
1126 goto out;
1127
1128 write_lock(&journal->j_state_lock);
1129 freed = block - journal->j_tail;
1130 if (block < journal->j_tail)
1131 freed += journal->j_last - journal->j_first;
1132
1133 trace_jbd2_update_log_tail(journal, tid, block, freed);
1134 jbd_debug(1,
1135 "Cleaning journal tail from %u to %u (offset %lu), "
1136 "freeing %lu\n",
1137 journal->j_tail_sequence, tid, block, freed);
1138
1139 journal->j_free += freed;
1140 journal->j_tail_sequence = tid;
1141 journal->j_tail = block;
1142 write_unlock(&journal->j_state_lock);
1143
1144 out:
1145 return ret;
1146 }
1147
1148 /*
1149 * This is a variation of __jbd2_update_log_tail which checks for validity of
1150 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1151 * with other threads updating log tail.
1152 */
jbd2_update_log_tail(journal_t * journal,tid_t tid,unsigned long block)1153 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1154 {
1155 mutex_lock_io(&journal->j_checkpoint_mutex);
1156 if (tid_gt(tid, journal->j_tail_sequence))
1157 __jbd2_update_log_tail(journal, tid, block);
1158 mutex_unlock(&journal->j_checkpoint_mutex);
1159 }
1160
1161 struct jbd2_stats_proc_session {
1162 journal_t *journal;
1163 struct transaction_stats_s *stats;
1164 int start;
1165 int max;
1166 };
1167
jbd2_seq_info_start(struct seq_file * seq,loff_t * pos)1168 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1169 {
1170 return *pos ? NULL : SEQ_START_TOKEN;
1171 }
1172
jbd2_seq_info_next(struct seq_file * seq,void * v,loff_t * pos)1173 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1174 {
1175 (*pos)++;
1176 return NULL;
1177 }
1178
jbd2_seq_info_show(struct seq_file * seq,void * v)1179 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1180 {
1181 struct jbd2_stats_proc_session *s = seq->private;
1182
1183 if (v != SEQ_START_TOKEN)
1184 return 0;
1185 seq_printf(seq, "%lu transactions (%lu requested), "
1186 "each up to %u blocks\n",
1187 s->stats->ts_tid, s->stats->ts_requested,
1188 s->journal->j_max_transaction_buffers);
1189 if (s->stats->ts_tid == 0)
1190 return 0;
1191 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1192 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1193 seq_printf(seq, " %ums request delay\n",
1194 (s->stats->ts_requested == 0) ? 0 :
1195 jiffies_to_msecs(s->stats->run.rs_request_delay /
1196 s->stats->ts_requested));
1197 seq_printf(seq, " %ums running transaction\n",
1198 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1199 seq_printf(seq, " %ums transaction was being locked\n",
1200 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1201 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1202 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1203 seq_printf(seq, " %ums logging transaction\n",
1204 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1205 seq_printf(seq, " %lluus average transaction commit time\n",
1206 div_u64(s->journal->j_average_commit_time, 1000));
1207 seq_printf(seq, " %lu handles per transaction\n",
1208 s->stats->run.rs_handle_count / s->stats->ts_tid);
1209 seq_printf(seq, " %lu blocks per transaction\n",
1210 s->stats->run.rs_blocks / s->stats->ts_tid);
1211 seq_printf(seq, " %lu logged blocks per transaction\n",
1212 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1213 return 0;
1214 }
1215
jbd2_seq_info_stop(struct seq_file * seq,void * v)1216 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1217 {
1218 }
1219
1220 static const struct seq_operations jbd2_seq_info_ops = {
1221 .start = jbd2_seq_info_start,
1222 .next = jbd2_seq_info_next,
1223 .stop = jbd2_seq_info_stop,
1224 .show = jbd2_seq_info_show,
1225 };
1226
jbd2_seq_info_open(struct inode * inode,struct file * file)1227 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1228 {
1229 journal_t *journal = PDE_DATA(inode);
1230 struct jbd2_stats_proc_session *s;
1231 int rc, size;
1232
1233 s = kmalloc(sizeof(*s), GFP_KERNEL);
1234 if (s == NULL)
1235 return -ENOMEM;
1236 size = sizeof(struct transaction_stats_s);
1237 s->stats = kmalloc(size, GFP_KERNEL);
1238 if (s->stats == NULL) {
1239 kfree(s);
1240 return -ENOMEM;
1241 }
1242 spin_lock(&journal->j_history_lock);
1243 memcpy(s->stats, &journal->j_stats, size);
1244 s->journal = journal;
1245 spin_unlock(&journal->j_history_lock);
1246
1247 rc = seq_open(file, &jbd2_seq_info_ops);
1248 if (rc == 0) {
1249 struct seq_file *m = file->private_data;
1250 m->private = s;
1251 } else {
1252 kfree(s->stats);
1253 kfree(s);
1254 }
1255 return rc;
1256
1257 }
1258
jbd2_seq_info_release(struct inode * inode,struct file * file)1259 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1260 {
1261 struct seq_file *seq = file->private_data;
1262 struct jbd2_stats_proc_session *s = seq->private;
1263 kfree(s->stats);
1264 kfree(s);
1265 return seq_release(inode, file);
1266 }
1267
1268 static const struct proc_ops jbd2_info_proc_ops = {
1269 .proc_open = jbd2_seq_info_open,
1270 .proc_read = seq_read,
1271 .proc_lseek = seq_lseek,
1272 .proc_release = jbd2_seq_info_release,
1273 };
1274
1275 static struct proc_dir_entry *proc_jbd2_stats;
1276
jbd2_stats_proc_init(journal_t * journal)1277 static void jbd2_stats_proc_init(journal_t *journal)
1278 {
1279 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1280 if (journal->j_proc_entry) {
1281 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1282 &jbd2_info_proc_ops, journal);
1283 }
1284 }
1285
jbd2_stats_proc_exit(journal_t * journal)1286 static void jbd2_stats_proc_exit(journal_t *journal)
1287 {
1288 remove_proc_entry("info", journal->j_proc_entry);
1289 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1290 }
1291
1292 /* Minimum size of descriptor tag */
jbd2_min_tag_size(void)1293 static int jbd2_min_tag_size(void)
1294 {
1295 /*
1296 * Tag with 32-bit block numbers does not use last four bytes of the
1297 * structure
1298 */
1299 return sizeof(journal_block_tag_t) - 4;
1300 }
1301
1302 /**
1303 * jbd2_journal_shrink_scan()
1304 *
1305 * Scan the checkpointed buffer on the checkpoint list and release the
1306 * journal_head.
1307 */
jbd2_journal_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1308 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1309 struct shrink_control *sc)
1310 {
1311 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1312 unsigned long nr_to_scan = sc->nr_to_scan;
1313 unsigned long nr_shrunk;
1314 unsigned long count;
1315
1316 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1317 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1318
1319 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1320
1321 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1322 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1323
1324 return nr_shrunk;
1325 }
1326
1327 /**
1328 * jbd2_journal_shrink_count()
1329 *
1330 * Count the number of checkpoint buffers on the checkpoint list.
1331 */
jbd2_journal_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1332 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1333 struct shrink_control *sc)
1334 {
1335 journal_t *journal = container_of(shrink, journal_t, j_shrinker);
1336 unsigned long count;
1337
1338 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1339 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1340
1341 return count;
1342 }
1343
1344 /*
1345 * Management for journal control blocks: functions to create and
1346 * destroy journal_t structures, and to initialise and read existing
1347 * journal blocks from disk. */
1348
1349 /* First: create and setup a journal_t object in memory. We initialise
1350 * very few fields yet: that has to wait until we have created the
1351 * journal structures from from scratch, or loaded them from disk. */
1352
journal_init_common(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1353 static journal_t *journal_init_common(struct block_device *bdev,
1354 struct block_device *fs_dev,
1355 unsigned long long start, int len, int blocksize)
1356 {
1357 static struct lock_class_key jbd2_trans_commit_key;
1358 journal_t *journal;
1359 int err;
1360 struct buffer_head *bh;
1361 int n;
1362
1363 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1364 if (!journal)
1365 return NULL;
1366
1367 init_waitqueue_head(&journal->j_wait_transaction_locked);
1368 init_waitqueue_head(&journal->j_wait_done_commit);
1369 init_waitqueue_head(&journal->j_wait_commit);
1370 init_waitqueue_head(&journal->j_wait_updates);
1371 init_waitqueue_head(&journal->j_wait_reserved);
1372 init_waitqueue_head(&journal->j_fc_wait);
1373 mutex_init(&journal->j_abort_mutex);
1374 mutex_init(&journal->j_barrier);
1375 mutex_init(&journal->j_checkpoint_mutex);
1376 spin_lock_init(&journal->j_revoke_lock);
1377 spin_lock_init(&journal->j_list_lock);
1378 rwlock_init(&journal->j_state_lock);
1379
1380 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1381 journal->j_min_batch_time = 0;
1382 journal->j_max_batch_time = 15000; /* 15ms */
1383 atomic_set(&journal->j_reserved_credits, 0);
1384
1385 /* The journal is marked for error until we succeed with recovery! */
1386 journal->j_flags = JBD2_ABORT;
1387
1388 /* Set up a default-sized revoke table for the new mount. */
1389 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1390 if (err)
1391 goto err_cleanup;
1392
1393 spin_lock_init(&journal->j_history_lock);
1394
1395 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1396 &jbd2_trans_commit_key, 0);
1397
1398 /* journal descriptor can store up to n blocks -bzzz */
1399 journal->j_blocksize = blocksize;
1400 journal->j_dev = bdev;
1401 journal->j_fs_dev = fs_dev;
1402 journal->j_blk_offset = start;
1403 journal->j_total_len = len;
1404 /* We need enough buffers to write out full descriptor block. */
1405 n = journal->j_blocksize / jbd2_min_tag_size();
1406 journal->j_wbufsize = n;
1407 journal->j_fc_wbuf = NULL;
1408 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1409 GFP_KERNEL);
1410 if (!journal->j_wbuf)
1411 goto err_cleanup;
1412
1413 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1414 if (!bh) {
1415 pr_err("%s: Cannot get buffer for journal superblock\n",
1416 __func__);
1417 goto err_cleanup;
1418 }
1419 journal->j_sb_buffer = bh;
1420 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1421
1422 journal->j_shrink_transaction = NULL;
1423 journal->j_shrinker.scan_objects = jbd2_journal_shrink_scan;
1424 journal->j_shrinker.count_objects = jbd2_journal_shrink_count;
1425 journal->j_shrinker.seeks = DEFAULT_SEEKS;
1426 journal->j_shrinker.batch = journal->j_max_transaction_buffers;
1427
1428 if (percpu_counter_init(&journal->j_checkpoint_jh_count, 0, GFP_KERNEL))
1429 goto err_cleanup;
1430
1431 if (register_shrinker(&journal->j_shrinker)) {
1432 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1433 goto err_cleanup;
1434 }
1435 return journal;
1436
1437 err_cleanup:
1438 brelse(journal->j_sb_buffer);
1439 kfree(journal->j_wbuf);
1440 jbd2_journal_destroy_revoke(journal);
1441 kfree(journal);
1442 return NULL;
1443 }
1444
1445 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1446 *
1447 * Create a journal structure assigned some fixed set of disk blocks to
1448 * the journal. We don't actually touch those disk blocks yet, but we
1449 * need to set up all of the mapping information to tell the journaling
1450 * system where the journal blocks are.
1451 *
1452 */
1453
1454 /**
1455 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1456 * @bdev: Block device on which to create the journal
1457 * @fs_dev: Device which hold journalled filesystem for this journal.
1458 * @start: Block nr Start of journal.
1459 * @len: Length of the journal in blocks.
1460 * @blocksize: blocksize of journalling device
1461 *
1462 * Returns: a newly created journal_t *
1463 *
1464 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1465 * range of blocks on an arbitrary block device.
1466 *
1467 */
jbd2_journal_init_dev(struct block_device * bdev,struct block_device * fs_dev,unsigned long long start,int len,int blocksize)1468 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1469 struct block_device *fs_dev,
1470 unsigned long long start, int len, int blocksize)
1471 {
1472 journal_t *journal;
1473
1474 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1475 if (!journal)
1476 return NULL;
1477
1478 bdevname(journal->j_dev, journal->j_devname);
1479 strreplace(journal->j_devname, '/', '!');
1480 jbd2_stats_proc_init(journal);
1481
1482 return journal;
1483 }
1484
1485 /**
1486 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1487 * @inode: An inode to create the journal in
1488 *
1489 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1490 * the journal. The inode must exist already, must support bmap() and
1491 * must have all data blocks preallocated.
1492 */
jbd2_journal_init_inode(struct inode * inode)1493 journal_t *jbd2_journal_init_inode(struct inode *inode)
1494 {
1495 journal_t *journal;
1496 sector_t blocknr;
1497 char *p;
1498 int err = 0;
1499
1500 blocknr = 0;
1501 err = bmap(inode, &blocknr);
1502
1503 if (err || !blocknr) {
1504 pr_err("%s: Cannot locate journal superblock\n",
1505 __func__);
1506 return NULL;
1507 }
1508
1509 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1510 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1511 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1512
1513 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1514 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1515 inode->i_sb->s_blocksize);
1516 if (!journal)
1517 return NULL;
1518
1519 journal->j_inode = inode;
1520 bdevname(journal->j_dev, journal->j_devname);
1521 p = strreplace(journal->j_devname, '/', '!');
1522 sprintf(p, "-%lu", journal->j_inode->i_ino);
1523 jbd2_stats_proc_init(journal);
1524
1525 return journal;
1526 }
1527
1528 /*
1529 * If the journal init or create aborts, we need to mark the journal
1530 * superblock as being NULL to prevent the journal destroy from writing
1531 * back a bogus superblock.
1532 */
journal_fail_superblock(journal_t * journal)1533 static void journal_fail_superblock(journal_t *journal)
1534 {
1535 struct buffer_head *bh = journal->j_sb_buffer;
1536 brelse(bh);
1537 journal->j_sb_buffer = NULL;
1538 }
1539
1540 /*
1541 * Given a journal_t structure, initialise the various fields for
1542 * startup of a new journaling session. We use this both when creating
1543 * a journal, and after recovering an old journal to reset it for
1544 * subsequent use.
1545 */
1546
journal_reset(journal_t * journal)1547 static int journal_reset(journal_t *journal)
1548 {
1549 journal_superblock_t *sb = journal->j_superblock;
1550 unsigned long long first, last;
1551
1552 first = be32_to_cpu(sb->s_first);
1553 last = be32_to_cpu(sb->s_maxlen);
1554 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1555 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1556 first, last);
1557 journal_fail_superblock(journal);
1558 return -EINVAL;
1559 }
1560
1561 journal->j_first = first;
1562 journal->j_last = last;
1563
1564 journal->j_head = journal->j_first;
1565 journal->j_tail = journal->j_first;
1566 journal->j_free = journal->j_last - journal->j_first;
1567
1568 journal->j_tail_sequence = journal->j_transaction_sequence;
1569 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1570 journal->j_commit_request = journal->j_commit_sequence;
1571
1572 journal->j_max_transaction_buffers = jbd2_journal_get_max_txn_bufs(journal);
1573
1574 /*
1575 * Now that journal recovery is done, turn fast commits off here. This
1576 * way, if fast commit was enabled before the crash but if now FS has
1577 * disabled it, we don't enable fast commits.
1578 */
1579 jbd2_clear_feature_fast_commit(journal);
1580
1581 /*
1582 * As a special case, if the on-disk copy is already marked as needing
1583 * no recovery (s_start == 0), then we can safely defer the superblock
1584 * update until the next commit by setting JBD2_FLUSHED. This avoids
1585 * attempting a write to a potential-readonly device.
1586 */
1587 if (sb->s_start == 0) {
1588 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1589 "(start %ld, seq %u, errno %d)\n",
1590 journal->j_tail, journal->j_tail_sequence,
1591 journal->j_errno);
1592 journal->j_flags |= JBD2_FLUSHED;
1593 } else {
1594 /* Lock here to make assertions happy... */
1595 mutex_lock_io(&journal->j_checkpoint_mutex);
1596 /*
1597 * Update log tail information. We use REQ_FUA since new
1598 * transaction will start reusing journal space and so we
1599 * must make sure information about current log tail is on
1600 * disk before that.
1601 */
1602 jbd2_journal_update_sb_log_tail(journal,
1603 journal->j_tail_sequence,
1604 journal->j_tail,
1605 REQ_SYNC | REQ_FUA);
1606 mutex_unlock(&journal->j_checkpoint_mutex);
1607 }
1608 return jbd2_journal_start_thread(journal);
1609 }
1610
1611 /*
1612 * This function expects that the caller will have locked the journal
1613 * buffer head, and will return with it unlocked
1614 */
jbd2_write_superblock(journal_t * journal,int write_flags)1615 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1616 {
1617 struct buffer_head *bh = journal->j_sb_buffer;
1618 journal_superblock_t *sb = journal->j_superblock;
1619 int ret;
1620
1621 /* Buffer got discarded which means block device got invalidated */
1622 if (!buffer_mapped(bh)) {
1623 unlock_buffer(bh);
1624 return -EIO;
1625 }
1626
1627 if (!(journal->j_flags & JBD2_BARRIER))
1628 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1629
1630 trace_jbd2_write_superblock(journal, write_flags);
1631
1632 if (buffer_write_io_error(bh)) {
1633 /*
1634 * Oh, dear. A previous attempt to write the journal
1635 * superblock failed. This could happen because the
1636 * USB device was yanked out. Or it could happen to
1637 * be a transient write error and maybe the block will
1638 * be remapped. Nothing we can do but to retry the
1639 * write and hope for the best.
1640 */
1641 printk(KERN_ERR "JBD2: previous I/O error detected "
1642 "for journal superblock update for %s.\n",
1643 journal->j_devname);
1644 clear_buffer_write_io_error(bh);
1645 set_buffer_uptodate(bh);
1646 }
1647 if (jbd2_journal_has_csum_v2or3(journal))
1648 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1649 get_bh(bh);
1650 bh->b_end_io = end_buffer_write_sync;
1651 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1652 wait_on_buffer(bh);
1653 if (buffer_write_io_error(bh)) {
1654 clear_buffer_write_io_error(bh);
1655 set_buffer_uptodate(bh);
1656 ret = -EIO;
1657 }
1658 if (ret) {
1659 printk(KERN_ERR "JBD2: Error %d detected when updating "
1660 "journal superblock for %s.\n", ret,
1661 journal->j_devname);
1662 if (!is_journal_aborted(journal))
1663 jbd2_journal_abort(journal, ret);
1664 }
1665
1666 return ret;
1667 }
1668
1669 /**
1670 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1671 * @journal: The journal to update.
1672 * @tail_tid: TID of the new transaction at the tail of the log
1673 * @tail_block: The first block of the transaction at the tail of the log
1674 * @write_op: With which operation should we write the journal sb
1675 *
1676 * Update a journal's superblock information about log tail and write it to
1677 * disk, waiting for the IO to complete.
1678 */
jbd2_journal_update_sb_log_tail(journal_t * journal,tid_t tail_tid,unsigned long tail_block,int write_op)1679 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1680 unsigned long tail_block, int write_op)
1681 {
1682 journal_superblock_t *sb = journal->j_superblock;
1683 int ret;
1684
1685 if (is_journal_aborted(journal))
1686 return -EIO;
1687 if (test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags)) {
1688 jbd2_journal_abort(journal, -EIO);
1689 return -EIO;
1690 }
1691
1692 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1693 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1694 tail_block, tail_tid);
1695
1696 lock_buffer(journal->j_sb_buffer);
1697 sb->s_sequence = cpu_to_be32(tail_tid);
1698 sb->s_start = cpu_to_be32(tail_block);
1699
1700 ret = jbd2_write_superblock(journal, write_op);
1701 if (ret)
1702 goto out;
1703
1704 /* Log is no longer empty */
1705 write_lock(&journal->j_state_lock);
1706 WARN_ON(!sb->s_sequence);
1707 journal->j_flags &= ~JBD2_FLUSHED;
1708 write_unlock(&journal->j_state_lock);
1709
1710 out:
1711 return ret;
1712 }
1713
1714 /**
1715 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1716 * @journal: The journal to update.
1717 * @write_op: With which operation should we write the journal sb
1718 *
1719 * Update a journal's dynamic superblock fields to show that journal is empty.
1720 * Write updated superblock to disk waiting for IO to complete.
1721 */
jbd2_mark_journal_empty(journal_t * journal,int write_op)1722 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1723 {
1724 journal_superblock_t *sb = journal->j_superblock;
1725 bool had_fast_commit = false;
1726
1727 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1728 lock_buffer(journal->j_sb_buffer);
1729 if (sb->s_start == 0) { /* Is it already empty? */
1730 unlock_buffer(journal->j_sb_buffer);
1731 return;
1732 }
1733
1734 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1735 journal->j_tail_sequence);
1736
1737 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1738 sb->s_start = cpu_to_be32(0);
1739 if (jbd2_has_feature_fast_commit(journal)) {
1740 /*
1741 * When journal is clean, no need to commit fast commit flag and
1742 * make file system incompatible with older kernels.
1743 */
1744 jbd2_clear_feature_fast_commit(journal);
1745 had_fast_commit = true;
1746 }
1747
1748 jbd2_write_superblock(journal, write_op);
1749
1750 if (had_fast_commit)
1751 jbd2_set_feature_fast_commit(journal);
1752
1753 /* Log is no longer empty */
1754 write_lock(&journal->j_state_lock);
1755 journal->j_flags |= JBD2_FLUSHED;
1756 write_unlock(&journal->j_state_lock);
1757 }
1758
1759
1760 /**
1761 * jbd2_journal_update_sb_errno() - Update error in the journal.
1762 * @journal: The journal to update.
1763 *
1764 * Update a journal's errno. Write updated superblock to disk waiting for IO
1765 * to complete.
1766 */
jbd2_journal_update_sb_errno(journal_t * journal)1767 void jbd2_journal_update_sb_errno(journal_t *journal)
1768 {
1769 journal_superblock_t *sb = journal->j_superblock;
1770 int errcode;
1771
1772 lock_buffer(journal->j_sb_buffer);
1773 errcode = journal->j_errno;
1774 if (errcode == -ESHUTDOWN)
1775 errcode = 0;
1776 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1777 sb->s_errno = cpu_to_be32(errcode);
1778
1779 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1780 }
1781 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1782
journal_revoke_records_per_block(journal_t * journal)1783 static int journal_revoke_records_per_block(journal_t *journal)
1784 {
1785 int record_size;
1786 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1787
1788 if (jbd2_has_feature_64bit(journal))
1789 record_size = 8;
1790 else
1791 record_size = 4;
1792
1793 if (jbd2_journal_has_csum_v2or3(journal))
1794 space -= sizeof(struct jbd2_journal_block_tail);
1795 return space / record_size;
1796 }
1797
1798 /*
1799 * Read the superblock for a given journal, performing initial
1800 * validation of the format.
1801 */
journal_get_superblock(journal_t * journal)1802 static int journal_get_superblock(journal_t *journal)
1803 {
1804 struct buffer_head *bh;
1805 journal_superblock_t *sb;
1806 int err = -EIO;
1807
1808 bh = journal->j_sb_buffer;
1809
1810 J_ASSERT(bh != NULL);
1811 if (!buffer_uptodate(bh)) {
1812 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1813 wait_on_buffer(bh);
1814 if (!buffer_uptodate(bh)) {
1815 printk(KERN_ERR
1816 "JBD2: IO error reading journal superblock\n");
1817 goto out;
1818 }
1819 }
1820
1821 if (buffer_verified(bh))
1822 return 0;
1823
1824 sb = journal->j_superblock;
1825
1826 err = -EINVAL;
1827
1828 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1829 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1830 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1831 goto out;
1832 }
1833
1834 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1835 case JBD2_SUPERBLOCK_V1:
1836 journal->j_format_version = 1;
1837 break;
1838 case JBD2_SUPERBLOCK_V2:
1839 journal->j_format_version = 2;
1840 break;
1841 default:
1842 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1843 goto out;
1844 }
1845
1846 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1847 journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1848 else if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1849 printk(KERN_WARNING "JBD2: journal file too short\n");
1850 goto out;
1851 }
1852
1853 if (be32_to_cpu(sb->s_first) == 0 ||
1854 be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1855 printk(KERN_WARNING
1856 "JBD2: Invalid start block of journal: %u\n",
1857 be32_to_cpu(sb->s_first));
1858 goto out;
1859 }
1860
1861 if (jbd2_has_feature_csum2(journal) &&
1862 jbd2_has_feature_csum3(journal)) {
1863 /* Can't have checksum v2 and v3 at the same time! */
1864 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1865 "at the same time!\n");
1866 goto out;
1867 }
1868
1869 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1870 jbd2_has_feature_checksum(journal)) {
1871 /* Can't have checksum v1 and v2 on at the same time! */
1872 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1873 "at the same time!\n");
1874 goto out;
1875 }
1876
1877 if (!jbd2_verify_csum_type(journal, sb)) {
1878 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1879 goto out;
1880 }
1881
1882 /* Load the checksum driver */
1883 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1884 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1885 if (IS_ERR(journal->j_chksum_driver)) {
1886 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1887 err = PTR_ERR(journal->j_chksum_driver);
1888 journal->j_chksum_driver = NULL;
1889 goto out;
1890 }
1891 }
1892
1893 if (jbd2_journal_has_csum_v2or3(journal)) {
1894 /* Check superblock checksum */
1895 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1896 printk(KERN_ERR "JBD2: journal checksum error\n");
1897 err = -EFSBADCRC;
1898 goto out;
1899 }
1900
1901 /* Precompute checksum seed for all metadata */
1902 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1903 sizeof(sb->s_uuid));
1904 }
1905
1906 journal->j_revoke_records_per_block =
1907 journal_revoke_records_per_block(journal);
1908 set_buffer_verified(bh);
1909
1910 return 0;
1911
1912 out:
1913 journal_fail_superblock(journal);
1914 return err;
1915 }
1916
1917 /*
1918 * Load the on-disk journal superblock and read the key fields into the
1919 * journal_t.
1920 */
1921
load_superblock(journal_t * journal)1922 static int load_superblock(journal_t *journal)
1923 {
1924 int err;
1925 journal_superblock_t *sb;
1926 int num_fc_blocks;
1927
1928 err = journal_get_superblock(journal);
1929 if (err)
1930 return err;
1931
1932 sb = journal->j_superblock;
1933
1934 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1935 journal->j_tail = be32_to_cpu(sb->s_start);
1936 journal->j_first = be32_to_cpu(sb->s_first);
1937 journal->j_errno = be32_to_cpu(sb->s_errno);
1938 journal->j_last = be32_to_cpu(sb->s_maxlen);
1939
1940 if (jbd2_has_feature_fast_commit(journal)) {
1941 journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1942 num_fc_blocks = be32_to_cpu(sb->s_num_fc_blks);
1943 if (!num_fc_blocks)
1944 num_fc_blocks = JBD2_MIN_FC_BLOCKS;
1945 if (journal->j_last - num_fc_blocks >= JBD2_MIN_JOURNAL_BLOCKS)
1946 journal->j_last = journal->j_fc_last - num_fc_blocks;
1947 journal->j_fc_first = journal->j_last + 1;
1948 journal->j_fc_off = 0;
1949 }
1950
1951 return 0;
1952 }
1953
1954
1955 /**
1956 * jbd2_journal_load() - Read journal from disk.
1957 * @journal: Journal to act on.
1958 *
1959 * Given a journal_t structure which tells us which disk blocks contain
1960 * a journal, read the journal from disk to initialise the in-memory
1961 * structures.
1962 */
jbd2_journal_load(journal_t * journal)1963 int jbd2_journal_load(journal_t *journal)
1964 {
1965 int err;
1966 journal_superblock_t *sb;
1967
1968 err = load_superblock(journal);
1969 if (err)
1970 return err;
1971
1972 sb = journal->j_superblock;
1973 /* If this is a V2 superblock, then we have to check the
1974 * features flags on it. */
1975
1976 if (journal->j_format_version >= 2) {
1977 if ((sb->s_feature_ro_compat &
1978 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1979 (sb->s_feature_incompat &
1980 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1981 printk(KERN_WARNING
1982 "JBD2: Unrecognised features on journal\n");
1983 return -EINVAL;
1984 }
1985 }
1986
1987 /*
1988 * Create a slab for this blocksize
1989 */
1990 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1991 if (err)
1992 return err;
1993
1994 /* Let the recovery code check whether it needs to recover any
1995 * data from the journal. */
1996 if (jbd2_journal_recover(journal))
1997 goto recovery_error;
1998
1999 if (journal->j_failed_commit) {
2000 printk(KERN_ERR "JBD2: journal transaction %u on %s "
2001 "is corrupt.\n", journal->j_failed_commit,
2002 journal->j_devname);
2003 return -EFSCORRUPTED;
2004 }
2005 /*
2006 * clear JBD2_ABORT flag initialized in journal_init_common
2007 * here to update log tail information with the newest seq.
2008 */
2009 journal->j_flags &= ~JBD2_ABORT;
2010
2011 /* OK, we've finished with the dynamic journal bits:
2012 * reinitialise the dynamic contents of the superblock in memory
2013 * and reset them on disk. */
2014 if (journal_reset(journal))
2015 goto recovery_error;
2016
2017 journal->j_flags |= JBD2_LOADED;
2018 return 0;
2019
2020 recovery_error:
2021 printk(KERN_WARNING "JBD2: recovery failed\n");
2022 return -EIO;
2023 }
2024
2025 /**
2026 * jbd2_journal_destroy() - Release a journal_t structure.
2027 * @journal: Journal to act on.
2028 *
2029 * Release a journal_t structure once it is no longer in use by the
2030 * journaled object.
2031 * Return <0 if we couldn't clean up the journal.
2032 */
jbd2_journal_destroy(journal_t * journal)2033 int jbd2_journal_destroy(journal_t *journal)
2034 {
2035 int err = 0;
2036
2037 /* Wait for the commit thread to wake up and die. */
2038 journal_kill_thread(journal);
2039
2040 /* Force a final log commit */
2041 if (journal->j_running_transaction)
2042 jbd2_journal_commit_transaction(journal);
2043
2044 /* Force any old transactions to disk */
2045
2046 /* Totally anal locking here... */
2047 spin_lock(&journal->j_list_lock);
2048 while (journal->j_checkpoint_transactions != NULL) {
2049 spin_unlock(&journal->j_list_lock);
2050 mutex_lock_io(&journal->j_checkpoint_mutex);
2051 err = jbd2_log_do_checkpoint(journal);
2052 mutex_unlock(&journal->j_checkpoint_mutex);
2053 /*
2054 * If checkpointing failed, just free the buffers to avoid
2055 * looping forever
2056 */
2057 if (err) {
2058 jbd2_journal_destroy_checkpoint(journal);
2059 spin_lock(&journal->j_list_lock);
2060 break;
2061 }
2062 spin_lock(&journal->j_list_lock);
2063 }
2064
2065 J_ASSERT(journal->j_running_transaction == NULL);
2066 J_ASSERT(journal->j_committing_transaction == NULL);
2067 J_ASSERT(journal->j_checkpoint_transactions == NULL);
2068 spin_unlock(&journal->j_list_lock);
2069
2070 /*
2071 * OK, all checkpoint transactions have been checked, now check the
2072 * write out io error flag and abort the journal if some buffer failed
2073 * to write back to the original location, otherwise the filesystem
2074 * may become inconsistent.
2075 */
2076 if (!is_journal_aborted(journal) &&
2077 test_bit(JBD2_CHECKPOINT_IO_ERROR, &journal->j_atomic_flags))
2078 jbd2_journal_abort(journal, -EIO);
2079
2080 if (journal->j_sb_buffer) {
2081 if (!is_journal_aborted(journal)) {
2082 mutex_lock_io(&journal->j_checkpoint_mutex);
2083
2084 write_lock(&journal->j_state_lock);
2085 journal->j_tail_sequence =
2086 ++journal->j_transaction_sequence;
2087 write_unlock(&journal->j_state_lock);
2088
2089 jbd2_mark_journal_empty(journal,
2090 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2091 mutex_unlock(&journal->j_checkpoint_mutex);
2092 } else
2093 err = -EIO;
2094 brelse(journal->j_sb_buffer);
2095 }
2096
2097 if (journal->j_shrinker.flags & SHRINKER_REGISTERED) {
2098 percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2099 unregister_shrinker(&journal->j_shrinker);
2100 }
2101 if (journal->j_proc_entry)
2102 jbd2_stats_proc_exit(journal);
2103 iput(journal->j_inode);
2104 if (journal->j_revoke)
2105 jbd2_journal_destroy_revoke(journal);
2106 if (journal->j_chksum_driver)
2107 crypto_free_shash(journal->j_chksum_driver);
2108 kfree(journal->j_fc_wbuf);
2109 kfree(journal->j_wbuf);
2110 kfree(journal);
2111
2112 return err;
2113 }
2114
2115
2116 /**
2117 * jbd2_journal_check_used_features() - Check if features specified are used.
2118 * @journal: Journal to check.
2119 * @compat: bitmask of compatible features
2120 * @ro: bitmask of features that force read-only mount
2121 * @incompat: bitmask of incompatible features
2122 *
2123 * Check whether the journal uses all of a given set of
2124 * features. Return true (non-zero) if it does.
2125 **/
2126
jbd2_journal_check_used_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2127 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2128 unsigned long ro, unsigned long incompat)
2129 {
2130 journal_superblock_t *sb;
2131
2132 if (!compat && !ro && !incompat)
2133 return 1;
2134 /* Load journal superblock if it is not loaded yet. */
2135 if (journal->j_format_version == 0 &&
2136 journal_get_superblock(journal) != 0)
2137 return 0;
2138 if (journal->j_format_version == 1)
2139 return 0;
2140
2141 sb = journal->j_superblock;
2142
2143 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2144 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2145 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2146 return 1;
2147
2148 return 0;
2149 }
2150
2151 /**
2152 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2153 * @journal: Journal to check.
2154 * @compat: bitmask of compatible features
2155 * @ro: bitmask of features that force read-only mount
2156 * @incompat: bitmask of incompatible features
2157 *
2158 * Check whether the journaling code supports the use of
2159 * all of a given set of features on this journal. Return true
2160 * (non-zero) if it can. */
2161
jbd2_journal_check_available_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2162 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2163 unsigned long ro, unsigned long incompat)
2164 {
2165 if (!compat && !ro && !incompat)
2166 return 1;
2167
2168 /* We can support any known requested features iff the
2169 * superblock is in version 2. Otherwise we fail to support any
2170 * extended sb features. */
2171
2172 if (journal->j_format_version != 2)
2173 return 0;
2174
2175 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2176 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2177 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2178 return 1;
2179
2180 return 0;
2181 }
2182
2183 static int
jbd2_journal_initialize_fast_commit(journal_t * journal)2184 jbd2_journal_initialize_fast_commit(journal_t *journal)
2185 {
2186 journal_superblock_t *sb = journal->j_superblock;
2187 unsigned long long num_fc_blks;
2188
2189 num_fc_blks = be32_to_cpu(sb->s_num_fc_blks);
2190 if (num_fc_blks == 0)
2191 num_fc_blks = JBD2_MIN_FC_BLOCKS;
2192 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2193 return -ENOSPC;
2194
2195 /* Are we called twice? */
2196 WARN_ON(journal->j_fc_wbuf != NULL);
2197 journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2198 sizeof(struct buffer_head *), GFP_KERNEL);
2199 if (!journal->j_fc_wbuf)
2200 return -ENOMEM;
2201
2202 journal->j_fc_wbufsize = num_fc_blks;
2203 journal->j_fc_last = journal->j_last;
2204 journal->j_last = journal->j_fc_last - num_fc_blks;
2205 journal->j_fc_first = journal->j_last + 1;
2206 journal->j_fc_off = 0;
2207 journal->j_free = journal->j_last - journal->j_first;
2208 journal->j_max_transaction_buffers =
2209 jbd2_journal_get_max_txn_bufs(journal);
2210
2211 return 0;
2212 }
2213
2214 /**
2215 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2216 * @journal: Journal to act on.
2217 * @compat: bitmask of compatible features
2218 * @ro: bitmask of features that force read-only mount
2219 * @incompat: bitmask of incompatible features
2220 *
2221 * Mark a given journal feature as present on the
2222 * superblock. Returns true if the requested features could be set.
2223 *
2224 */
2225
jbd2_journal_set_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2226 int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2227 unsigned long ro, unsigned long incompat)
2228 {
2229 #define INCOMPAT_FEATURE_ON(f) \
2230 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2231 #define COMPAT_FEATURE_ON(f) \
2232 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2233 journal_superblock_t *sb;
2234
2235 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2236 return 1;
2237
2238 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2239 return 0;
2240
2241 /* If enabling v2 checksums, turn on v3 instead */
2242 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2243 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2244 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2245 }
2246
2247 /* Asking for checksumming v3 and v1? Only give them v3. */
2248 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2249 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2250 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2251
2252 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2253 compat, ro, incompat);
2254
2255 sb = journal->j_superblock;
2256
2257 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2258 if (jbd2_journal_initialize_fast_commit(journal)) {
2259 pr_err("JBD2: Cannot enable fast commits.\n");
2260 return 0;
2261 }
2262 }
2263
2264 /* Load the checksum driver if necessary */
2265 if ((journal->j_chksum_driver == NULL) &&
2266 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2267 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2268 if (IS_ERR(journal->j_chksum_driver)) {
2269 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2270 journal->j_chksum_driver = NULL;
2271 return 0;
2272 }
2273 /* Precompute checksum seed for all metadata */
2274 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2275 sizeof(sb->s_uuid));
2276 }
2277
2278 lock_buffer(journal->j_sb_buffer);
2279
2280 /* If enabling v3 checksums, update superblock */
2281 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2282 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2283 sb->s_feature_compat &=
2284 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
2285 }
2286
2287 /* If enabling v1 checksums, downgrade superblock */
2288 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2289 sb->s_feature_incompat &=
2290 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2291 JBD2_FEATURE_INCOMPAT_CSUM_V3);
2292
2293 sb->s_feature_compat |= cpu_to_be32(compat);
2294 sb->s_feature_ro_compat |= cpu_to_be32(ro);
2295 sb->s_feature_incompat |= cpu_to_be32(incompat);
2296 unlock_buffer(journal->j_sb_buffer);
2297 journal->j_revoke_records_per_block =
2298 journal_revoke_records_per_block(journal);
2299
2300 return 1;
2301 #undef COMPAT_FEATURE_ON
2302 #undef INCOMPAT_FEATURE_ON
2303 }
2304
2305 /*
2306 * jbd2_journal_clear_features() - Clear a given journal feature in the
2307 * superblock
2308 * @journal: Journal to act on.
2309 * @compat: bitmask of compatible features
2310 * @ro: bitmask of features that force read-only mount
2311 * @incompat: bitmask of incompatible features
2312 *
2313 * Clear a given journal feature as present on the
2314 * superblock.
2315 */
jbd2_journal_clear_features(journal_t * journal,unsigned long compat,unsigned long ro,unsigned long incompat)2316 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2317 unsigned long ro, unsigned long incompat)
2318 {
2319 journal_superblock_t *sb;
2320
2321 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2322 compat, ro, incompat);
2323
2324 sb = journal->j_superblock;
2325
2326 sb->s_feature_compat &= ~cpu_to_be32(compat);
2327 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2328 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
2329 journal->j_revoke_records_per_block =
2330 journal_revoke_records_per_block(journal);
2331 }
2332 EXPORT_SYMBOL(jbd2_journal_clear_features);
2333
2334 /**
2335 * jbd2_journal_flush() - Flush journal
2336 * @journal: Journal to act on.
2337 *
2338 * Flush all data for a given journal to disk and empty the journal.
2339 * Filesystems can use this when remounting readonly to ensure that
2340 * recovery does not need to happen on remount.
2341 */
2342
jbd2_journal_flush(journal_t * journal)2343 int jbd2_journal_flush(journal_t *journal)
2344 {
2345 int err = 0;
2346 transaction_t *transaction = NULL;
2347
2348 write_lock(&journal->j_state_lock);
2349
2350 /* Force everything buffered to the log... */
2351 if (journal->j_running_transaction) {
2352 transaction = journal->j_running_transaction;
2353 __jbd2_log_start_commit(journal, transaction->t_tid);
2354 } else if (journal->j_committing_transaction)
2355 transaction = journal->j_committing_transaction;
2356
2357 /* Wait for the log commit to complete... */
2358 if (transaction) {
2359 tid_t tid = transaction->t_tid;
2360
2361 write_unlock(&journal->j_state_lock);
2362 jbd2_log_wait_commit(journal, tid);
2363 } else {
2364 write_unlock(&journal->j_state_lock);
2365 }
2366
2367 /* ...and flush everything in the log out to disk. */
2368 spin_lock(&journal->j_list_lock);
2369 while (!err && journal->j_checkpoint_transactions != NULL) {
2370 spin_unlock(&journal->j_list_lock);
2371 mutex_lock_io(&journal->j_checkpoint_mutex);
2372 err = jbd2_log_do_checkpoint(journal);
2373 mutex_unlock(&journal->j_checkpoint_mutex);
2374 spin_lock(&journal->j_list_lock);
2375 }
2376 spin_unlock(&journal->j_list_lock);
2377
2378 if (is_journal_aborted(journal))
2379 return -EIO;
2380
2381 mutex_lock_io(&journal->j_checkpoint_mutex);
2382 if (!err) {
2383 err = jbd2_cleanup_journal_tail(journal);
2384 if (err < 0) {
2385 mutex_unlock(&journal->j_checkpoint_mutex);
2386 goto out;
2387 }
2388 err = 0;
2389 }
2390
2391 /* Finally, mark the journal as really needing no recovery.
2392 * This sets s_start==0 in the underlying superblock, which is
2393 * the magic code for a fully-recovered superblock. Any future
2394 * commits of data to the journal will restore the current
2395 * s_start value. */
2396 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2397 mutex_unlock(&journal->j_checkpoint_mutex);
2398 write_lock(&journal->j_state_lock);
2399 J_ASSERT(!journal->j_running_transaction);
2400 J_ASSERT(!journal->j_committing_transaction);
2401 J_ASSERT(!journal->j_checkpoint_transactions);
2402 J_ASSERT(journal->j_head == journal->j_tail);
2403 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2404 write_unlock(&journal->j_state_lock);
2405 out:
2406 return err;
2407 }
2408
2409 /**
2410 * jbd2_journal_wipe() - Wipe journal contents
2411 * @journal: Journal to act on.
2412 * @write: flag (see below)
2413 *
2414 * Wipe out all of the contents of a journal, safely. This will produce
2415 * a warning if the journal contains any valid recovery information.
2416 * Must be called between journal_init_*() and jbd2_journal_load().
2417 *
2418 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2419 * we merely suppress recovery.
2420 */
2421
jbd2_journal_wipe(journal_t * journal,int write)2422 int jbd2_journal_wipe(journal_t *journal, int write)
2423 {
2424 int err = 0;
2425
2426 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2427
2428 err = load_superblock(journal);
2429 if (err)
2430 return err;
2431
2432 if (!journal->j_tail)
2433 goto no_recovery;
2434
2435 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2436 write ? "Clearing" : "Ignoring");
2437
2438 err = jbd2_journal_skip_recovery(journal);
2439 if (write) {
2440 /* Lock to make assertions happy... */
2441 mutex_lock_io(&journal->j_checkpoint_mutex);
2442 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2443 mutex_unlock(&journal->j_checkpoint_mutex);
2444 }
2445
2446 no_recovery:
2447 return err;
2448 }
2449
2450 /**
2451 * jbd2_journal_abort () - Shutdown the journal immediately.
2452 * @journal: the journal to shutdown.
2453 * @errno: an error number to record in the journal indicating
2454 * the reason for the shutdown.
2455 *
2456 * Perform a complete, immediate shutdown of the ENTIRE
2457 * journal (not of a single transaction). This operation cannot be
2458 * undone without closing and reopening the journal.
2459 *
2460 * The jbd2_journal_abort function is intended to support higher level error
2461 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2462 * mode.
2463 *
2464 * Journal abort has very specific semantics. Any existing dirty,
2465 * unjournaled buffers in the main filesystem will still be written to
2466 * disk by bdflush, but the journaling mechanism will be suspended
2467 * immediately and no further transaction commits will be honoured.
2468 *
2469 * Any dirty, journaled buffers will be written back to disk without
2470 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2471 * filesystem, but we _do_ attempt to leave as much data as possible
2472 * behind for fsck to use for cleanup.
2473 *
2474 * Any attempt to get a new transaction handle on a journal which is in
2475 * ABORT state will just result in an -EROFS error return. A
2476 * jbd2_journal_stop on an existing handle will return -EIO if we have
2477 * entered abort state during the update.
2478 *
2479 * Recursive transactions are not disturbed by journal abort until the
2480 * final jbd2_journal_stop, which will receive the -EIO error.
2481 *
2482 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2483 * which will be recorded (if possible) in the journal superblock. This
2484 * allows a client to record failure conditions in the middle of a
2485 * transaction without having to complete the transaction to record the
2486 * failure to disk. ext3_error, for example, now uses this
2487 * functionality.
2488 *
2489 */
2490
jbd2_journal_abort(journal_t * journal,int errno)2491 void jbd2_journal_abort(journal_t *journal, int errno)
2492 {
2493 transaction_t *transaction;
2494
2495 /*
2496 * Lock the aborting procedure until everything is done, this avoid
2497 * races between filesystem's error handling flow (e.g. ext4_abort()),
2498 * ensure panic after the error info is written into journal's
2499 * superblock.
2500 */
2501 mutex_lock(&journal->j_abort_mutex);
2502 /*
2503 * ESHUTDOWN always takes precedence because a file system check
2504 * caused by any other journal abort error is not required after
2505 * a shutdown triggered.
2506 */
2507 write_lock(&journal->j_state_lock);
2508 if (journal->j_flags & JBD2_ABORT) {
2509 int old_errno = journal->j_errno;
2510
2511 write_unlock(&journal->j_state_lock);
2512 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2513 journal->j_errno = errno;
2514 jbd2_journal_update_sb_errno(journal);
2515 }
2516 mutex_unlock(&journal->j_abort_mutex);
2517 return;
2518 }
2519
2520 /*
2521 * Mark the abort as occurred and start current running transaction
2522 * to release all journaled buffer.
2523 */
2524 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2525
2526 journal->j_flags |= JBD2_ABORT;
2527 journal->j_errno = errno;
2528 transaction = journal->j_running_transaction;
2529 if (transaction)
2530 __jbd2_log_start_commit(journal, transaction->t_tid);
2531 write_unlock(&journal->j_state_lock);
2532
2533 /*
2534 * Record errno to the journal super block, so that fsck and jbd2
2535 * layer could realise that a filesystem check is needed.
2536 */
2537 jbd2_journal_update_sb_errno(journal);
2538 mutex_unlock(&journal->j_abort_mutex);
2539 }
2540
2541 /**
2542 * jbd2_journal_errno() - returns the journal's error state.
2543 * @journal: journal to examine.
2544 *
2545 * This is the errno number set with jbd2_journal_abort(), the last
2546 * time the journal was mounted - if the journal was stopped
2547 * without calling abort this will be 0.
2548 *
2549 * If the journal has been aborted on this mount time -EROFS will
2550 * be returned.
2551 */
jbd2_journal_errno(journal_t * journal)2552 int jbd2_journal_errno(journal_t *journal)
2553 {
2554 int err;
2555
2556 read_lock(&journal->j_state_lock);
2557 if (journal->j_flags & JBD2_ABORT)
2558 err = -EROFS;
2559 else
2560 err = journal->j_errno;
2561 read_unlock(&journal->j_state_lock);
2562 return err;
2563 }
2564
2565 /**
2566 * jbd2_journal_clear_err() - clears the journal's error state
2567 * @journal: journal to act on.
2568 *
2569 * An error must be cleared or acked to take a FS out of readonly
2570 * mode.
2571 */
jbd2_journal_clear_err(journal_t * journal)2572 int jbd2_journal_clear_err(journal_t *journal)
2573 {
2574 int err = 0;
2575
2576 write_lock(&journal->j_state_lock);
2577 if (journal->j_flags & JBD2_ABORT)
2578 err = -EROFS;
2579 else
2580 journal->j_errno = 0;
2581 write_unlock(&journal->j_state_lock);
2582 return err;
2583 }
2584
2585 /**
2586 * jbd2_journal_ack_err() - Ack journal err.
2587 * @journal: journal to act on.
2588 *
2589 * An error must be cleared or acked to take a FS out of readonly
2590 * mode.
2591 */
jbd2_journal_ack_err(journal_t * journal)2592 void jbd2_journal_ack_err(journal_t *journal)
2593 {
2594 write_lock(&journal->j_state_lock);
2595 if (journal->j_errno)
2596 journal->j_flags |= JBD2_ACK_ERR;
2597 write_unlock(&journal->j_state_lock);
2598 }
2599
jbd2_journal_blocks_per_page(struct inode * inode)2600 int jbd2_journal_blocks_per_page(struct inode *inode)
2601 {
2602 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2603 }
2604
2605 /*
2606 * helper functions to deal with 32 or 64bit block numbers.
2607 */
journal_tag_bytes(journal_t * journal)2608 size_t journal_tag_bytes(journal_t *journal)
2609 {
2610 size_t sz;
2611
2612 if (jbd2_has_feature_csum3(journal))
2613 return sizeof(journal_block_tag3_t);
2614
2615 sz = sizeof(journal_block_tag_t);
2616
2617 if (jbd2_has_feature_csum2(journal))
2618 sz += sizeof(__u16);
2619
2620 if (jbd2_has_feature_64bit(journal))
2621 return sz;
2622 else
2623 return sz - sizeof(__u32);
2624 }
2625
2626 /*
2627 * JBD memory management
2628 *
2629 * These functions are used to allocate block-sized chunks of memory
2630 * used for making copies of buffer_head data. Very often it will be
2631 * page-sized chunks of data, but sometimes it will be in
2632 * sub-page-size chunks. (For example, 16k pages on Power systems
2633 * with a 4k block file system.) For blocks smaller than a page, we
2634 * use a SLAB allocator. There are slab caches for each block size,
2635 * which are allocated at mount time, if necessary, and we only free
2636 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2637 * this reason we don't need to a mutex to protect access to
2638 * jbd2_slab[] allocating or releasing memory; only in
2639 * jbd2_journal_create_slab().
2640 */
2641 #define JBD2_MAX_SLABS 8
2642 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2643
2644 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2645 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2646 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2647 };
2648
2649
jbd2_journal_destroy_slabs(void)2650 static void jbd2_journal_destroy_slabs(void)
2651 {
2652 int i;
2653
2654 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2655 kmem_cache_destroy(jbd2_slab[i]);
2656 jbd2_slab[i] = NULL;
2657 }
2658 }
2659
jbd2_journal_create_slab(size_t size)2660 static int jbd2_journal_create_slab(size_t size)
2661 {
2662 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2663 int i = order_base_2(size) - 10;
2664 size_t slab_size;
2665
2666 if (size == PAGE_SIZE)
2667 return 0;
2668
2669 if (i >= JBD2_MAX_SLABS)
2670 return -EINVAL;
2671
2672 if (unlikely(i < 0))
2673 i = 0;
2674 mutex_lock(&jbd2_slab_create_mutex);
2675 if (jbd2_slab[i]) {
2676 mutex_unlock(&jbd2_slab_create_mutex);
2677 return 0; /* Already created */
2678 }
2679
2680 slab_size = 1 << (i+10);
2681 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2682 slab_size, 0, NULL);
2683 mutex_unlock(&jbd2_slab_create_mutex);
2684 if (!jbd2_slab[i]) {
2685 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2686 return -ENOMEM;
2687 }
2688 return 0;
2689 }
2690
get_slab(size_t size)2691 static struct kmem_cache *get_slab(size_t size)
2692 {
2693 int i = order_base_2(size) - 10;
2694
2695 BUG_ON(i >= JBD2_MAX_SLABS);
2696 if (unlikely(i < 0))
2697 i = 0;
2698 BUG_ON(jbd2_slab[i] == NULL);
2699 return jbd2_slab[i];
2700 }
2701
jbd2_alloc(size_t size,gfp_t flags)2702 void *jbd2_alloc(size_t size, gfp_t flags)
2703 {
2704 void *ptr;
2705
2706 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2707
2708 if (size < PAGE_SIZE)
2709 ptr = kmem_cache_alloc(get_slab(size), flags);
2710 else
2711 ptr = (void *)__get_free_pages(flags, get_order(size));
2712
2713 /* Check alignment; SLUB has gotten this wrong in the past,
2714 * and this can lead to user data corruption! */
2715 BUG_ON(((unsigned long) ptr) & (size-1));
2716
2717 return ptr;
2718 }
2719
jbd2_free(void * ptr,size_t size)2720 void jbd2_free(void *ptr, size_t size)
2721 {
2722 if (size < PAGE_SIZE)
2723 kmem_cache_free(get_slab(size), ptr);
2724 else
2725 free_pages((unsigned long)ptr, get_order(size));
2726 };
2727
2728 /*
2729 * Journal_head storage management
2730 */
2731 static struct kmem_cache *jbd2_journal_head_cache;
2732 #ifdef CONFIG_JBD2_DEBUG
2733 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2734 #endif
2735
jbd2_journal_init_journal_head_cache(void)2736 static int __init jbd2_journal_init_journal_head_cache(void)
2737 {
2738 J_ASSERT(!jbd2_journal_head_cache);
2739 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2740 sizeof(struct journal_head),
2741 0, /* offset */
2742 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2743 NULL); /* ctor */
2744 if (!jbd2_journal_head_cache) {
2745 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2746 return -ENOMEM;
2747 }
2748 return 0;
2749 }
2750
jbd2_journal_destroy_journal_head_cache(void)2751 static void jbd2_journal_destroy_journal_head_cache(void)
2752 {
2753 kmem_cache_destroy(jbd2_journal_head_cache);
2754 jbd2_journal_head_cache = NULL;
2755 }
2756
2757 /*
2758 * journal_head splicing and dicing
2759 */
journal_alloc_journal_head(void)2760 static struct journal_head *journal_alloc_journal_head(void)
2761 {
2762 struct journal_head *ret;
2763
2764 #ifdef CONFIG_JBD2_DEBUG
2765 atomic_inc(&nr_journal_heads);
2766 #endif
2767 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2768 if (!ret) {
2769 jbd_debug(1, "out of memory for journal_head\n");
2770 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2771 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2772 GFP_NOFS | __GFP_NOFAIL);
2773 }
2774 if (ret)
2775 spin_lock_init(&ret->b_state_lock);
2776 return ret;
2777 }
2778
journal_free_journal_head(struct journal_head * jh)2779 static void journal_free_journal_head(struct journal_head *jh)
2780 {
2781 #ifdef CONFIG_JBD2_DEBUG
2782 atomic_dec(&nr_journal_heads);
2783 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2784 #endif
2785 kmem_cache_free(jbd2_journal_head_cache, jh);
2786 }
2787
2788 /*
2789 * A journal_head is attached to a buffer_head whenever JBD has an
2790 * interest in the buffer.
2791 *
2792 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2793 * is set. This bit is tested in core kernel code where we need to take
2794 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2795 * there.
2796 *
2797 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2798 *
2799 * When a buffer has its BH_JBD bit set it is immune from being released by
2800 * core kernel code, mainly via ->b_count.
2801 *
2802 * A journal_head is detached from its buffer_head when the journal_head's
2803 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2804 * transaction (b_cp_transaction) hold their references to b_jcount.
2805 *
2806 * Various places in the kernel want to attach a journal_head to a buffer_head
2807 * _before_ attaching the journal_head to a transaction. To protect the
2808 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2809 * journal_head's b_jcount refcount by one. The caller must call
2810 * jbd2_journal_put_journal_head() to undo this.
2811 *
2812 * So the typical usage would be:
2813 *
2814 * (Attach a journal_head if needed. Increments b_jcount)
2815 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2816 * ...
2817 * (Get another reference for transaction)
2818 * jbd2_journal_grab_journal_head(bh);
2819 * jh->b_transaction = xxx;
2820 * (Put original reference)
2821 * jbd2_journal_put_journal_head(jh);
2822 */
2823
2824 /*
2825 * Give a buffer_head a journal_head.
2826 *
2827 * May sleep.
2828 */
jbd2_journal_add_journal_head(struct buffer_head * bh)2829 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2830 {
2831 struct journal_head *jh;
2832 struct journal_head *new_jh = NULL;
2833
2834 repeat:
2835 if (!buffer_jbd(bh))
2836 new_jh = journal_alloc_journal_head();
2837
2838 jbd_lock_bh_journal_head(bh);
2839 if (buffer_jbd(bh)) {
2840 jh = bh2jh(bh);
2841 } else {
2842 J_ASSERT_BH(bh,
2843 (atomic_read(&bh->b_count) > 0) ||
2844 (bh->b_page && bh->b_page->mapping));
2845
2846 if (!new_jh) {
2847 jbd_unlock_bh_journal_head(bh);
2848 goto repeat;
2849 }
2850
2851 jh = new_jh;
2852 new_jh = NULL; /* We consumed it */
2853 set_buffer_jbd(bh);
2854 bh->b_private = jh;
2855 jh->b_bh = bh;
2856 get_bh(bh);
2857 BUFFER_TRACE(bh, "added journal_head");
2858 }
2859 jh->b_jcount++;
2860 jbd_unlock_bh_journal_head(bh);
2861 if (new_jh)
2862 journal_free_journal_head(new_jh);
2863 return bh->b_private;
2864 }
2865
2866 /*
2867 * Grab a ref against this buffer_head's journal_head. If it ended up not
2868 * having a journal_head, return NULL
2869 */
jbd2_journal_grab_journal_head(struct buffer_head * bh)2870 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2871 {
2872 struct journal_head *jh = NULL;
2873
2874 jbd_lock_bh_journal_head(bh);
2875 if (buffer_jbd(bh)) {
2876 jh = bh2jh(bh);
2877 jh->b_jcount++;
2878 }
2879 jbd_unlock_bh_journal_head(bh);
2880 return jh;
2881 }
2882 EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2883
__journal_remove_journal_head(struct buffer_head * bh)2884 static void __journal_remove_journal_head(struct buffer_head *bh)
2885 {
2886 struct journal_head *jh = bh2jh(bh);
2887
2888 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2889 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2890 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2891 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2892 J_ASSERT_BH(bh, buffer_jbd(bh));
2893 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2894 BUFFER_TRACE(bh, "remove journal_head");
2895
2896 /* Unlink before dropping the lock */
2897 bh->b_private = NULL;
2898 jh->b_bh = NULL; /* debug, really */
2899 clear_buffer_jbd(bh);
2900 }
2901
journal_release_journal_head(struct journal_head * jh,size_t b_size)2902 static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2903 {
2904 if (jh->b_frozen_data) {
2905 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2906 jbd2_free(jh->b_frozen_data, b_size);
2907 }
2908 if (jh->b_committed_data) {
2909 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2910 jbd2_free(jh->b_committed_data, b_size);
2911 }
2912 journal_free_journal_head(jh);
2913 }
2914
2915 /*
2916 * Drop a reference on the passed journal_head. If it fell to zero then
2917 * release the journal_head from the buffer_head.
2918 */
jbd2_journal_put_journal_head(struct journal_head * jh)2919 void jbd2_journal_put_journal_head(struct journal_head *jh)
2920 {
2921 struct buffer_head *bh = jh2bh(jh);
2922
2923 jbd_lock_bh_journal_head(bh);
2924 J_ASSERT_JH(jh, jh->b_jcount > 0);
2925 --jh->b_jcount;
2926 if (!jh->b_jcount) {
2927 __journal_remove_journal_head(bh);
2928 jbd_unlock_bh_journal_head(bh);
2929 journal_release_journal_head(jh, bh->b_size);
2930 __brelse(bh);
2931 } else {
2932 jbd_unlock_bh_journal_head(bh);
2933 }
2934 }
2935 EXPORT_SYMBOL(jbd2_journal_put_journal_head);
2936
2937 /*
2938 * Initialize jbd inode head
2939 */
jbd2_journal_init_jbd_inode(struct jbd2_inode * jinode,struct inode * inode)2940 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2941 {
2942 jinode->i_transaction = NULL;
2943 jinode->i_next_transaction = NULL;
2944 jinode->i_vfs_inode = inode;
2945 jinode->i_flags = 0;
2946 jinode->i_dirty_start = 0;
2947 jinode->i_dirty_end = 0;
2948 INIT_LIST_HEAD(&jinode->i_list);
2949 }
2950
2951 /*
2952 * Function to be called before we start removing inode from memory (i.e.,
2953 * clear_inode() is a fine place to be called from). It removes inode from
2954 * transaction's lists.
2955 */
jbd2_journal_release_jbd_inode(journal_t * journal,struct jbd2_inode * jinode)2956 void jbd2_journal_release_jbd_inode(journal_t *journal,
2957 struct jbd2_inode *jinode)
2958 {
2959 if (!journal)
2960 return;
2961 restart:
2962 spin_lock(&journal->j_list_lock);
2963 /* Is commit writing out inode - we have to wait */
2964 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2965 wait_queue_head_t *wq;
2966 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2967 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2968 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2969 spin_unlock(&journal->j_list_lock);
2970 schedule();
2971 finish_wait(wq, &wait.wq_entry);
2972 goto restart;
2973 }
2974
2975 if (jinode->i_transaction) {
2976 list_del(&jinode->i_list);
2977 jinode->i_transaction = NULL;
2978 }
2979 spin_unlock(&journal->j_list_lock);
2980 }
2981
2982
2983 #ifdef CONFIG_PROC_FS
2984
2985 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2986
jbd2_create_jbd_stats_proc_entry(void)2987 static void __init jbd2_create_jbd_stats_proc_entry(void)
2988 {
2989 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2990 }
2991
jbd2_remove_jbd_stats_proc_entry(void)2992 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2993 {
2994 if (proc_jbd2_stats)
2995 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2996 }
2997
2998 #else
2999
3000 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3001 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3002
3003 #endif
3004
3005 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3006
jbd2_journal_init_inode_cache(void)3007 static int __init jbd2_journal_init_inode_cache(void)
3008 {
3009 J_ASSERT(!jbd2_inode_cache);
3010 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3011 if (!jbd2_inode_cache) {
3012 pr_emerg("JBD2: failed to create inode cache\n");
3013 return -ENOMEM;
3014 }
3015 return 0;
3016 }
3017
jbd2_journal_init_handle_cache(void)3018 static int __init jbd2_journal_init_handle_cache(void)
3019 {
3020 J_ASSERT(!jbd2_handle_cache);
3021 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3022 if (!jbd2_handle_cache) {
3023 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3024 return -ENOMEM;
3025 }
3026 return 0;
3027 }
3028
jbd2_journal_destroy_inode_cache(void)3029 static void jbd2_journal_destroy_inode_cache(void)
3030 {
3031 kmem_cache_destroy(jbd2_inode_cache);
3032 jbd2_inode_cache = NULL;
3033 }
3034
jbd2_journal_destroy_handle_cache(void)3035 static void jbd2_journal_destroy_handle_cache(void)
3036 {
3037 kmem_cache_destroy(jbd2_handle_cache);
3038 jbd2_handle_cache = NULL;
3039 }
3040
3041 /*
3042 * Module startup and shutdown
3043 */
3044
journal_init_caches(void)3045 static int __init journal_init_caches(void)
3046 {
3047 int ret;
3048
3049 ret = jbd2_journal_init_revoke_record_cache();
3050 if (ret == 0)
3051 ret = jbd2_journal_init_revoke_table_cache();
3052 if (ret == 0)
3053 ret = jbd2_journal_init_journal_head_cache();
3054 if (ret == 0)
3055 ret = jbd2_journal_init_handle_cache();
3056 if (ret == 0)
3057 ret = jbd2_journal_init_inode_cache();
3058 if (ret == 0)
3059 ret = jbd2_journal_init_transaction_cache();
3060 return ret;
3061 }
3062
jbd2_journal_destroy_caches(void)3063 static void jbd2_journal_destroy_caches(void)
3064 {
3065 jbd2_journal_destroy_revoke_record_cache();
3066 jbd2_journal_destroy_revoke_table_cache();
3067 jbd2_journal_destroy_journal_head_cache();
3068 jbd2_journal_destroy_handle_cache();
3069 jbd2_journal_destroy_inode_cache();
3070 jbd2_journal_destroy_transaction_cache();
3071 jbd2_journal_destroy_slabs();
3072 }
3073
journal_init(void)3074 static int __init journal_init(void)
3075 {
3076 int ret;
3077
3078 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3079
3080 ret = journal_init_caches();
3081 if (ret == 0) {
3082 jbd2_create_jbd_stats_proc_entry();
3083 } else {
3084 jbd2_journal_destroy_caches();
3085 }
3086 return ret;
3087 }
3088
journal_exit(void)3089 static void __exit journal_exit(void)
3090 {
3091 #ifdef CONFIG_JBD2_DEBUG
3092 int n = atomic_read(&nr_journal_heads);
3093 if (n)
3094 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3095 #endif
3096 jbd2_remove_jbd_stats_proc_entry();
3097 jbd2_journal_destroy_caches();
3098 }
3099
3100 MODULE_LICENSE("GPL");
3101 module_init(journal_init);
3102 module_exit(journal_exit);
3103
3104