• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #ifdef CONFIG_NEWIP
72 #include <uapi/linux/nip_addr.h>
73 #endif
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 					printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93 
94 /* This is the per-socket lock.  The spinlock provides a synchronization
95  * between user contexts and software interrupt processing, whereas the
96  * mini-semaphore synchronizes multiple users amongst themselves.
97  */
98 typedef struct {
99 	spinlock_t		slock;
100 	int			owned;
101 	wait_queue_head_t	wq;
102 	/*
103 	 * We express the mutex-alike socket_lock semantics
104 	 * to the lock validator by explicitly managing
105 	 * the slock as a lock variant (in addition to
106 	 * the slock itself):
107 	 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 	struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112 
113 struct sock;
114 struct proto;
115 struct net;
116 
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119 
120 /**
121  *	struct sock_common - minimal network layer representation of sockets
122  *	@skc_daddr: Foreign IPv4 addr
123  *	@skc_rcv_saddr: Bound local IPv4 addr
124  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_ipv6only: socket is IPV6 only
135  *	@skc_net_refcnt: socket is using net ref counting
136  *	@skc_bound_dev_if: bound device index if != 0
137  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
138  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139  *	@skc_prot: protocol handlers inside a network family
140  *	@skc_net: reference to the network namespace of this socket
141  *	@skc_v6_daddr: IPV6 destination address
142  *	@skc_v6_rcv_saddr: IPV6 source address
143  *	@skc_cookie: socket's cookie value
144  *	@skc_node: main hash linkage for various protocol lookup tables
145  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146  *	@skc_tx_queue_mapping: tx queue number for this connection
147  *	@skc_rx_queue_mapping: rx queue number for this connection
148  *	@skc_flags: place holder for sk_flags
149  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151  *	@skc_listener: connection request listener socket (aka rsk_listener)
152  *		[union with @skc_flags]
153  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154  *		[union with @skc_flags]
155  *	@skc_incoming_cpu: record/match cpu processing incoming packets
156  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157  *		[union with @skc_incoming_cpu]
158  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159  *		[union with @skc_incoming_cpu]
160  *	@skc_refcnt: reference count
161  *
162  *	This is the minimal network layer representation of sockets, the header
163  *	for struct sock and struct inet_timewait_sock.
164  */
165 struct sock_common {
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_node	skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 #if IS_ENABLED(CONFIG_NEWIP)
206 	struct nip_addr		nip_daddr;	/* NIP */
207 	struct nip_addr		nip_rcv_saddr;	/* NIP */
208 #endif
209 
210 	atomic64_t		skc_cookie;
211 
212 	/* following fields are padding to force
213 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
214 	 * assuming IPV6 is enabled. We use this padding differently
215 	 * for different kind of 'sockets'
216 	 */
217 	union {
218 		unsigned long	skc_flags;
219 		struct sock	*skc_listener; /* request_sock */
220 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
221 	};
222 	/*
223 	 * fields between dontcopy_begin/dontcopy_end
224 	 * are not copied in sock_copy()
225 	 */
226 	/* private: */
227 	int			skc_dontcopy_begin[0];
228 	/* public: */
229 	union {
230 		struct hlist_node	skc_node;
231 		struct hlist_nulls_node skc_nulls_node;
232 	};
233 	unsigned short		skc_tx_queue_mapping;
234 #ifdef CONFIG_XPS
235 	unsigned short		skc_rx_queue_mapping;
236 #endif
237 	union {
238 		int		skc_incoming_cpu;
239 		u32		skc_rcv_wnd;
240 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
241 	};
242 
243 	refcount_t		skc_refcnt;
244 	/* private: */
245 	int                     skc_dontcopy_end[0];
246 	union {
247 		u32		skc_rxhash;
248 		u32		skc_window_clamp;
249 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
250 	};
251 	/* public: */
252 };
253 
254 struct bpf_local_storage;
255 
256 /**
257   *	struct sock - network layer representation of sockets
258   *	@__sk_common: shared layout with inet_timewait_sock
259   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
260   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
261   *	@sk_lock:	synchronizer
262   *	@sk_kern_sock: True if sock is using kernel lock classes
263   *	@sk_rcvbuf: size of receive buffer in bytes
264   *	@sk_wq: sock wait queue and async head
265   *	@sk_rx_dst: receive input route used by early demux
266   *	@sk_dst_cache: destination cache
267   *	@sk_dst_pending_confirm: need to confirm neighbour
268   *	@sk_policy: flow policy
269   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
270   *	@sk_receive_queue: incoming packets
271   *	@sk_wmem_alloc: transmit queue bytes committed
272   *	@sk_tsq_flags: TCP Small Queues flags
273   *	@sk_write_queue: Packet sending queue
274   *	@sk_omem_alloc: "o" is "option" or "other"
275   *	@sk_wmem_queued: persistent queue size
276   *	@sk_forward_alloc: space allocated forward
277   *	@sk_napi_id: id of the last napi context to receive data for sk
278   *	@sk_ll_usec: usecs to busypoll when there is no data
279   *	@sk_allocation: allocation mode
280   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
281   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
282   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
283   *	@sk_sndbuf: size of send buffer in bytes
284   *	@__sk_flags_offset: empty field used to determine location of bitfield
285   *	@sk_padding: unused element for alignment
286   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
287   *	@sk_no_check_rx: allow zero checksum in RX packets
288   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
289   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
290   *	@sk_route_forced_caps: static, forced route capabilities
291   *		(set in tcp_init_sock())
292   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
293   *	@sk_gso_max_size: Maximum GSO segment size to build
294   *	@sk_gso_max_segs: Maximum number of GSO segments
295   *	@sk_pacing_shift: scaling factor for TCP Small Queues
296   *	@sk_lingertime: %SO_LINGER l_linger setting
297   *	@sk_backlog: always used with the per-socket spinlock held
298   *	@sk_callback_lock: used with the callbacks in the end of this struct
299   *	@sk_error_queue: rarely used
300   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
301   *			  IPV6_ADDRFORM for instance)
302   *	@sk_err: last error
303   *	@sk_err_soft: errors that don't cause failure but are the cause of a
304   *		      persistent failure not just 'timed out'
305   *	@sk_drops: raw/udp drops counter
306   *	@sk_ack_backlog: current listen backlog
307   *	@sk_max_ack_backlog: listen backlog set in listen()
308   *	@sk_uid: user id of owner
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_pid: &struct pid for this socket's peer
313   *	@sk_peer_cred: %SO_PEERCRED setting
314   *	@sk_rcvlowat: %SO_RCVLOWAT setting
315   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
316   *	@sk_sndtimeo: %SO_SNDTIMEO setting
317   *	@sk_txhash: computed flow hash for use on transmit
318   *	@sk_filter: socket filtering instructions
319   *	@sk_timer: sock cleanup timer
320   *	@sk_stamp: time stamp of last packet received
321   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322   *	@sk_tsflags: SO_TIMESTAMPING socket options
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
332   *	@sk_security: used by security modules
333   *	@sk_mark: generic packet mark
334   *	@sk_cgrp_data: cgroup data for this cgroup
335   *	@sk_memcg: this socket's memory cgroup association
336   *	@sk_write_pending: a write to stream socket waits to start
337   *	@sk_wait_pending: number of threads blocked on this socket
338   *	@sk_state_change: callback to indicate change in the state of the sock
339   *	@sk_data_ready: callback to indicate there is data to be processed
340   *	@sk_write_space: callback to indicate there is bf sending space available
341   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342   *	@sk_backlog_rcv: callback to process the backlog
343   *	@sk_validate_xmit_skb: ptr to an optional validate function
344   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345   *	@sk_reuseport_cb: reuseport group container
346   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347   *	@sk_rcu: used during RCU grace period
348   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
351   *	@sk_txtime_unused: unused txtime flags
352   */
353 struct sock {
354 	/*
355 	 * Now struct inet_timewait_sock also uses sock_common, so please just
356 	 * don't add nothing before this first member (__sk_common) --acme
357 	 */
358 	struct sock_common	__sk_common;
359 #define sk_node			__sk_common.skc_node
360 #define sk_nulls_node		__sk_common.skc_nulls_node
361 #define sk_refcnt		__sk_common.skc_refcnt
362 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_XPS
364 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365 #endif
366 
367 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369 #define sk_hash			__sk_common.skc_hash
370 #define sk_portpair		__sk_common.skc_portpair
371 #define sk_num			__sk_common.skc_num
372 #define sk_dport		__sk_common.skc_dport
373 #define sk_addrpair		__sk_common.skc_addrpair
374 #define sk_daddr		__sk_common.skc_daddr
375 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376 #define sk_family		__sk_common.skc_family
377 #define sk_state		__sk_common.skc_state
378 #define sk_reuse		__sk_common.skc_reuse
379 #define sk_reuseport		__sk_common.skc_reuseport
380 #define sk_ipv6only		__sk_common.skc_ipv6only
381 #define sk_net_refcnt		__sk_common.skc_net_refcnt
382 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383 #define sk_bind_node		__sk_common.skc_bind_node
384 #define sk_prot			__sk_common.skc_prot
385 #define sk_net			__sk_common.skc_net
386 #define sk_v6_daddr		__sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388 #define sk_cookie		__sk_common.skc_cookie
389 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390 #define sk_flags		__sk_common.skc_flags
391 #define sk_rxhash		__sk_common.skc_rxhash
392 
393 	socket_lock_t		sk_lock;
394 	atomic_t		sk_drops;
395 	int			sk_rcvlowat;
396 	struct sk_buff_head	sk_error_queue;
397 	struct sk_buff		*sk_rx_skb_cache;
398 	struct sk_buff_head	sk_receive_queue;
399 	/*
400 	 * The backlog queue is special, it is always used with
401 	 * the per-socket spinlock held and requires low latency
402 	 * access. Therefore we special case it's implementation.
403 	 * Note : rmem_alloc is in this structure to fill a hole
404 	 * on 64bit arches, not because its logically part of
405 	 * backlog.
406 	 */
407 	struct {
408 		atomic_t	rmem_alloc;
409 		int		len;
410 		struct sk_buff	*head;
411 		struct sk_buff	*tail;
412 	} sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414 
415 	int			sk_forward_alloc;
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 	unsigned int		sk_ll_usec;
418 	/* ===== mostly read cache line ===== */
419 	unsigned int		sk_napi_id;
420 #endif
421 	int			sk_rcvbuf;
422 	int			sk_wait_pending;
423 
424 	struct sk_filter __rcu	*sk_filter;
425 	union {
426 		struct socket_wq __rcu	*sk_wq;
427 		/* private: */
428 		struct socket_wq	*sk_wq_raw;
429 		/* public: */
430 	};
431 #ifdef CONFIG_XFRM
432 	struct xfrm_policy __rcu *sk_policy[2];
433 #endif
434 	struct dst_entry __rcu	*sk_rx_dst;
435 	struct dst_entry __rcu	*sk_dst_cache;
436 	atomic_t		sk_omem_alloc;
437 	int			sk_sndbuf;
438 
439 	/* ===== cache line for TX ===== */
440 	int			sk_wmem_queued;
441 	refcount_t		sk_wmem_alloc;
442 	unsigned long		sk_tsq_flags;
443 	union {
444 		struct sk_buff	*sk_send_head;
445 		struct rb_root	tcp_rtx_queue;
446 	};
447 	struct sk_buff		*sk_tx_skb_cache;
448 	struct sk_buff_head	sk_write_queue;
449 	__s32			sk_peek_off;
450 	int			sk_write_pending;
451 	__u32			sk_dst_pending_confirm;
452 	u32			sk_pacing_status; /* see enum sk_pacing */
453 	long			sk_sndtimeo;
454 	struct timer_list	sk_timer;
455 	__u32			sk_priority;
456 	__u32			sk_mark;
457 	unsigned long		sk_pacing_rate; /* bytes per second */
458 	unsigned long		sk_max_pacing_rate;
459 	struct page_frag	sk_frag;
460 	netdev_features_t	sk_route_caps;
461 	netdev_features_t	sk_route_nocaps;
462 	netdev_features_t	sk_route_forced_caps;
463 	int			sk_gso_type;
464 	unsigned int		sk_gso_max_size;
465 	gfp_t			sk_allocation;
466 	__u32			sk_txhash;
467 
468 	/*
469 	 * Because of non atomicity rules, all
470 	 * changes are protected by socket lock.
471 	 */
472 	u8			sk_padding : 1,
473 				sk_kern_sock : 1,
474 				sk_no_check_tx : 1,
475 				sk_no_check_rx : 1,
476 				sk_userlocks : 4;
477 	u8			sk_pacing_shift;
478 	u16			sk_type;
479 	u16			sk_protocol;
480 	u16			sk_gso_max_segs;
481 	unsigned long	        sk_lingertime;
482 	struct proto		*sk_prot_creator;
483 	rwlock_t		sk_callback_lock;
484 	int			sk_err,
485 				sk_err_soft;
486 	u32			sk_ack_backlog;
487 	u32			sk_max_ack_backlog;
488 	kuid_t			sk_uid;
489 	spinlock_t		sk_peer_lock;
490 	struct pid		*sk_peer_pid;
491 	const struct cred	*sk_peer_cred;
492 
493 	long			sk_rcvtimeo;
494 	ktime_t			sk_stamp;
495 #if BITS_PER_LONG==32
496 	seqlock_t		sk_stamp_seq;
497 #endif
498 	u16			sk_tsflags;
499 	u8			sk_shutdown;
500 	u32			sk_tskey;
501 	atomic_t		sk_zckey;
502 
503 	u8			sk_clockid;
504 	u8			sk_txtime_deadline_mode : 1,
505 				sk_txtime_report_errors : 1,
506 				sk_txtime_unused : 6;
507 
508 	struct socket		*sk_socket;
509 	void			*sk_user_data;
510 #ifdef CONFIG_SECURITY
511 	void			*sk_security;
512 #endif
513 	struct sock_cgroup_data	sk_cgrp_data;
514 	struct mem_cgroup	*sk_memcg;
515 	void			(*sk_state_change)(struct sock *sk);
516 	void			(*sk_data_ready)(struct sock *sk);
517 	void			(*sk_write_space)(struct sock *sk);
518 	void			(*sk_error_report)(struct sock *sk);
519 	int			(*sk_backlog_rcv)(struct sock *sk,
520 						  struct sk_buff *skb);
521 #ifdef CONFIG_SOCK_VALIDATE_XMIT
522 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
523 							struct net_device *dev,
524 							struct sk_buff *skb);
525 #endif
526 	void                    (*sk_destruct)(struct sock *sk);
527 	struct sock_reuseport __rcu	*sk_reuseport_cb;
528 #ifdef CONFIG_BPF_SYSCALL
529 	struct bpf_local_storage __rcu	*sk_bpf_storage;
530 #endif
531 	struct rcu_head		sk_rcu;
532 };
533 
534 enum sk_pacing {
535 	SK_PACING_NONE		= 0,
536 	SK_PACING_NEEDED	= 1,
537 	SK_PACING_FQ		= 2,
538 };
539 
540 /* flag bits in sk_user_data
541  *
542  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
543  *   not be suitable for copying when cloning the socket. For instance,
544  *   it can point to a reference counted object. sk_user_data bottom
545  *   bit is set if pointer must not be copied.
546  *
547  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
548  *   managed/owned by a BPF reuseport array. This bit should be set
549  *   when sk_user_data's sk is added to the bpf's reuseport_array.
550  *
551  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
552  *   sk_user_data points to psock type. This bit should be set
553  *   when sk_user_data is assigned to a psock object.
554  */
555 #define SK_USER_DATA_NOCOPY	1UL
556 #define SK_USER_DATA_BPF	2UL
557 #define SK_USER_DATA_PSOCK	4UL
558 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
559 				  SK_USER_DATA_PSOCK)
560 
561 /**
562  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
563  * @sk: socket
564  */
sk_user_data_is_nocopy(const struct sock * sk)565 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
566 {
567 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
568 }
569 
570 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
571 
572 /**
573  * __rcu_dereference_sk_user_data_with_flags - return the pointer
574  * only if argument flags all has been set in sk_user_data. Otherwise
575  * return NULL
576  *
577  * @sk: socket
578  * @flags: flag bits
579  */
580 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)581 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
582 					  uintptr_t flags)
583 {
584 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
585 
586 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
587 
588 	if ((sk_user_data & flags) == flags)
589 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
590 	return NULL;
591 }
592 
593 #define rcu_dereference_sk_user_data(sk)				\
594 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
595 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
596 ({									\
597 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
598 		  __tmp2 = (uintptr_t)(flags);				\
599 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
600 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
601 	rcu_assign_pointer(__sk_user_data((sk)),			\
602 			   __tmp1 | __tmp2);				\
603 })
604 #define rcu_assign_sk_user_data(sk, ptr)				\
605 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
606 
607 /*
608  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
609  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
610  * on a socket means that the socket will reuse everybody else's port
611  * without looking at the other's sk_reuse value.
612  */
613 
614 #define SK_NO_REUSE	0
615 #define SK_CAN_REUSE	1
616 #define SK_FORCE_REUSE	2
617 
618 int sk_set_peek_off(struct sock *sk, int val);
619 
sk_peek_offset(struct sock * sk,int flags)620 static inline int sk_peek_offset(struct sock *sk, int flags)
621 {
622 	if (unlikely(flags & MSG_PEEK)) {
623 		return READ_ONCE(sk->sk_peek_off);
624 	}
625 
626 	return 0;
627 }
628 
sk_peek_offset_bwd(struct sock * sk,int val)629 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
630 {
631 	s32 off = READ_ONCE(sk->sk_peek_off);
632 
633 	if (unlikely(off >= 0)) {
634 		off = max_t(s32, off - val, 0);
635 		WRITE_ONCE(sk->sk_peek_off, off);
636 	}
637 }
638 
sk_peek_offset_fwd(struct sock * sk,int val)639 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
640 {
641 	sk_peek_offset_bwd(sk, -val);
642 }
643 
644 /*
645  * Hashed lists helper routines
646  */
sk_entry(const struct hlist_node * node)647 static inline struct sock *sk_entry(const struct hlist_node *node)
648 {
649 	return hlist_entry(node, struct sock, sk_node);
650 }
651 
__sk_head(const struct hlist_head * head)652 static inline struct sock *__sk_head(const struct hlist_head *head)
653 {
654 	return hlist_entry(head->first, struct sock, sk_node);
655 }
656 
sk_head(const struct hlist_head * head)657 static inline struct sock *sk_head(const struct hlist_head *head)
658 {
659 	return hlist_empty(head) ? NULL : __sk_head(head);
660 }
661 
__sk_nulls_head(const struct hlist_nulls_head * head)662 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
663 {
664 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
665 }
666 
sk_nulls_head(const struct hlist_nulls_head * head)667 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
668 {
669 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
670 }
671 
sk_next(const struct sock * sk)672 static inline struct sock *sk_next(const struct sock *sk)
673 {
674 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
675 }
676 
sk_nulls_next(const struct sock * sk)677 static inline struct sock *sk_nulls_next(const struct sock *sk)
678 {
679 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
680 		hlist_nulls_entry(sk->sk_nulls_node.next,
681 				  struct sock, sk_nulls_node) :
682 		NULL;
683 }
684 
sk_unhashed(const struct sock * sk)685 static inline bool sk_unhashed(const struct sock *sk)
686 {
687 	return hlist_unhashed(&sk->sk_node);
688 }
689 
sk_hashed(const struct sock * sk)690 static inline bool sk_hashed(const struct sock *sk)
691 {
692 	return !sk_unhashed(sk);
693 }
694 
sk_node_init(struct hlist_node * node)695 static inline void sk_node_init(struct hlist_node *node)
696 {
697 	node->pprev = NULL;
698 }
699 
sk_nulls_node_init(struct hlist_nulls_node * node)700 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
701 {
702 	node->pprev = NULL;
703 }
704 
__sk_del_node(struct sock * sk)705 static inline void __sk_del_node(struct sock *sk)
706 {
707 	__hlist_del(&sk->sk_node);
708 }
709 
710 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)711 static inline bool __sk_del_node_init(struct sock *sk)
712 {
713 	if (sk_hashed(sk)) {
714 		__sk_del_node(sk);
715 		sk_node_init(&sk->sk_node);
716 		return true;
717 	}
718 	return false;
719 }
720 
721 /* Grab socket reference count. This operation is valid only
722    when sk is ALREADY grabbed f.e. it is found in hash table
723    or a list and the lookup is made under lock preventing hash table
724    modifications.
725  */
726 
sock_hold(struct sock * sk)727 static __always_inline void sock_hold(struct sock *sk)
728 {
729 	refcount_inc(&sk->sk_refcnt);
730 }
731 
732 /* Ungrab socket in the context, which assumes that socket refcnt
733    cannot hit zero, f.e. it is true in context of any socketcall.
734  */
__sock_put(struct sock * sk)735 static __always_inline void __sock_put(struct sock *sk)
736 {
737 	refcount_dec(&sk->sk_refcnt);
738 }
739 
sk_del_node_init(struct sock * sk)740 static inline bool sk_del_node_init(struct sock *sk)
741 {
742 	bool rc = __sk_del_node_init(sk);
743 
744 	if (rc) {
745 		/* paranoid for a while -acme */
746 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
747 		__sock_put(sk);
748 	}
749 	return rc;
750 }
751 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
752 
__sk_nulls_del_node_init_rcu(struct sock * sk)753 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
754 {
755 	if (sk_hashed(sk)) {
756 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
757 		return true;
758 	}
759 	return false;
760 }
761 
sk_nulls_del_node_init_rcu(struct sock * sk)762 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
763 {
764 	bool rc = __sk_nulls_del_node_init_rcu(sk);
765 
766 	if (rc) {
767 		/* paranoid for a while -acme */
768 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
769 		__sock_put(sk);
770 	}
771 	return rc;
772 }
773 
__sk_add_node(struct sock * sk,struct hlist_head * list)774 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
775 {
776 	hlist_add_head(&sk->sk_node, list);
777 }
778 
sk_add_node(struct sock * sk,struct hlist_head * list)779 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
780 {
781 	sock_hold(sk);
782 	__sk_add_node(sk, list);
783 }
784 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)785 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
786 {
787 	sock_hold(sk);
788 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
789 	    sk->sk_family == AF_INET6)
790 		hlist_add_tail_rcu(&sk->sk_node, list);
791 	else
792 		hlist_add_head_rcu(&sk->sk_node, list);
793 }
794 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)795 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
796 {
797 	sock_hold(sk);
798 	hlist_add_tail_rcu(&sk->sk_node, list);
799 }
800 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)801 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
802 {
803 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
804 }
805 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)806 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
807 {
808 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
809 }
810 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)811 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
812 {
813 	sock_hold(sk);
814 	__sk_nulls_add_node_rcu(sk, list);
815 }
816 
__sk_del_bind_node(struct sock * sk)817 static inline void __sk_del_bind_node(struct sock *sk)
818 {
819 	__hlist_del(&sk->sk_bind_node);
820 }
821 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)822 static inline void sk_add_bind_node(struct sock *sk,
823 					struct hlist_head *list)
824 {
825 	hlist_add_head(&sk->sk_bind_node, list);
826 }
827 
828 #define sk_for_each(__sk, list) \
829 	hlist_for_each_entry(__sk, list, sk_node)
830 #define sk_for_each_rcu(__sk, list) \
831 	hlist_for_each_entry_rcu(__sk, list, sk_node)
832 #define sk_nulls_for_each(__sk, node, list) \
833 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
834 #define sk_nulls_for_each_rcu(__sk, node, list) \
835 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
836 #define sk_for_each_from(__sk) \
837 	hlist_for_each_entry_from(__sk, sk_node)
838 #define sk_nulls_for_each_from(__sk, node) \
839 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
840 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
841 #define sk_for_each_safe(__sk, tmp, list) \
842 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
843 #define sk_for_each_bound(__sk, list) \
844 	hlist_for_each_entry(__sk, list, sk_bind_node)
845 #define sk_for_each_bound_safe(__sk, tmp, list) \
846 	hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
847 
848 /**
849  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
850  * @tpos:	the type * to use as a loop cursor.
851  * @pos:	the &struct hlist_node to use as a loop cursor.
852  * @head:	the head for your list.
853  * @offset:	offset of hlist_node within the struct.
854  *
855  */
856 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
857 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
858 	     pos != NULL &&						       \
859 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
860 	     pos = rcu_dereference(hlist_next_rcu(pos)))
861 
sk_user_ns(struct sock * sk)862 static inline struct user_namespace *sk_user_ns(struct sock *sk)
863 {
864 	/* Careful only use this in a context where these parameters
865 	 * can not change and must all be valid, such as recvmsg from
866 	 * userspace.
867 	 */
868 	return sk->sk_socket->file->f_cred->user_ns;
869 }
870 
871 /* Sock flags */
872 enum sock_flags {
873 	SOCK_DEAD,
874 	SOCK_DONE,
875 	SOCK_URGINLINE,
876 	SOCK_KEEPOPEN,
877 	SOCK_LINGER,
878 	SOCK_DESTROY,
879 	SOCK_BROADCAST,
880 	SOCK_TIMESTAMP,
881 	SOCK_ZAPPED,
882 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
883 	SOCK_DBG, /* %SO_DEBUG setting */
884 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
885 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
886 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
887 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
888 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
889 	SOCK_FASYNC, /* fasync() active */
890 	SOCK_RXQ_OVFL,
891 	SOCK_ZEROCOPY, /* buffers from userspace */
892 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
893 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
894 		     * Will use last 4 bytes of packet sent from
895 		     * user-space instead.
896 		     */
897 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
898 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
899 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
900 	SOCK_TXTIME,
901 	SOCK_XDP, /* XDP is attached */
902 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
903 };
904 
905 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
906 
sock_copy_flags(struct sock * nsk,struct sock * osk)907 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
908 {
909 	nsk->sk_flags = osk->sk_flags;
910 }
911 
sock_set_flag(struct sock * sk,enum sock_flags flag)912 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
913 {
914 	__set_bit(flag, &sk->sk_flags);
915 }
916 
sock_reset_flag(struct sock * sk,enum sock_flags flag)917 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
918 {
919 	__clear_bit(flag, &sk->sk_flags);
920 }
921 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)922 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
923 				     int valbool)
924 {
925 	if (valbool)
926 		sock_set_flag(sk, bit);
927 	else
928 		sock_reset_flag(sk, bit);
929 }
930 
sock_flag(const struct sock * sk,enum sock_flags flag)931 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
932 {
933 	return test_bit(flag, &sk->sk_flags);
934 }
935 
936 #ifdef CONFIG_NET
937 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)938 static inline int sk_memalloc_socks(void)
939 {
940 	return static_branch_unlikely(&memalloc_socks_key);
941 }
942 
943 void __receive_sock(struct file *file);
944 #else
945 
sk_memalloc_socks(void)946 static inline int sk_memalloc_socks(void)
947 {
948 	return 0;
949 }
950 
__receive_sock(struct file * file)951 static inline void __receive_sock(struct file *file)
952 { }
953 #endif
954 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)955 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
956 {
957 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
958 }
959 
sk_acceptq_removed(struct sock * sk)960 static inline void sk_acceptq_removed(struct sock *sk)
961 {
962 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
963 }
964 
sk_acceptq_added(struct sock * sk)965 static inline void sk_acceptq_added(struct sock *sk)
966 {
967 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
968 }
969 
sk_acceptq_is_full(const struct sock * sk)970 static inline bool sk_acceptq_is_full(const struct sock *sk)
971 {
972 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
973 }
974 
975 /*
976  * Compute minimal free write space needed to queue new packets.
977  */
sk_stream_min_wspace(const struct sock * sk)978 static inline int sk_stream_min_wspace(const struct sock *sk)
979 {
980 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
981 }
982 
sk_stream_wspace(const struct sock * sk)983 static inline int sk_stream_wspace(const struct sock *sk)
984 {
985 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
986 }
987 
sk_wmem_queued_add(struct sock * sk,int val)988 static inline void sk_wmem_queued_add(struct sock *sk, int val)
989 {
990 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
991 }
992 
993 void sk_stream_write_space(struct sock *sk);
994 
995 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)996 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
997 {
998 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
999 	skb_dst_force(skb);
1000 
1001 	if (!sk->sk_backlog.tail)
1002 		WRITE_ONCE(sk->sk_backlog.head, skb);
1003 	else
1004 		sk->sk_backlog.tail->next = skb;
1005 
1006 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1007 	skb->next = NULL;
1008 }
1009 
1010 /*
1011  * Take into account size of receive queue and backlog queue
1012  * Do not take into account this skb truesize,
1013  * to allow even a single big packet to come.
1014  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1015 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1016 {
1017 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1018 
1019 	return qsize > limit;
1020 }
1021 
1022 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1023 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1024 					      unsigned int limit)
1025 {
1026 	if (sk_rcvqueues_full(sk, limit))
1027 		return -ENOBUFS;
1028 
1029 	/*
1030 	 * If the skb was allocated from pfmemalloc reserves, only
1031 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1032 	 * helping free memory
1033 	 */
1034 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1035 		return -ENOMEM;
1036 
1037 	__sk_add_backlog(sk, skb);
1038 	sk->sk_backlog.len += skb->truesize;
1039 	return 0;
1040 }
1041 
1042 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1043 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1044 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1045 {
1046 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1047 		return __sk_backlog_rcv(sk, skb);
1048 
1049 	return sk->sk_backlog_rcv(sk, skb);
1050 }
1051 
sk_incoming_cpu_update(struct sock * sk)1052 static inline void sk_incoming_cpu_update(struct sock *sk)
1053 {
1054 	int cpu = raw_smp_processor_id();
1055 
1056 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1057 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1058 }
1059 
sock_rps_record_flow_hash(__u32 hash)1060 static inline void sock_rps_record_flow_hash(__u32 hash)
1061 {
1062 #ifdef CONFIG_RPS
1063 	struct rps_sock_flow_table *sock_flow_table;
1064 
1065 	rcu_read_lock();
1066 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1067 	rps_record_sock_flow(sock_flow_table, hash);
1068 	rcu_read_unlock();
1069 #endif
1070 }
1071 
sock_rps_record_flow(const struct sock * sk)1072 static inline void sock_rps_record_flow(const struct sock *sk)
1073 {
1074 #ifdef CONFIG_RPS
1075 	if (static_branch_unlikely(&rfs_needed)) {
1076 		/* Reading sk->sk_rxhash might incur an expensive cache line
1077 		 * miss.
1078 		 *
1079 		 * TCP_ESTABLISHED does cover almost all states where RFS
1080 		 * might be useful, and is cheaper [1] than testing :
1081 		 *	IPv4: inet_sk(sk)->inet_daddr
1082 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1083 		 * OR	an additional socket flag
1084 		 * [1] : sk_state and sk_prot are in the same cache line.
1085 		 */
1086 		if (sk->sk_state == TCP_ESTABLISHED) {
1087 			/* This READ_ONCE() is paired with the WRITE_ONCE()
1088 			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1089 			 */
1090 			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1091 		}
1092 	}
1093 #endif
1094 }
1095 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1096 static inline void sock_rps_save_rxhash(struct sock *sk,
1097 					const struct sk_buff *skb)
1098 {
1099 #ifdef CONFIG_RPS
1100 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1101 	 * here, and another one in sock_rps_record_flow().
1102 	 */
1103 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1104 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1105 #endif
1106 }
1107 
sock_rps_reset_rxhash(struct sock * sk)1108 static inline void sock_rps_reset_rxhash(struct sock *sk)
1109 {
1110 #ifdef CONFIG_RPS
1111 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1112 	WRITE_ONCE(sk->sk_rxhash, 0);
1113 #endif
1114 }
1115 
1116 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1117 	({	int __rc;						\
1118 		__sk->sk_wait_pending++;				\
1119 		release_sock(__sk);					\
1120 		__rc = __condition;					\
1121 		if (!__rc) {						\
1122 			*(__timeo) = wait_woken(__wait,			\
1123 						TASK_INTERRUPTIBLE,	\
1124 						*(__timeo));		\
1125 		}							\
1126 		sched_annotate_sleep();					\
1127 		lock_sock(__sk);					\
1128 		__sk->sk_wait_pending--;				\
1129 		__rc = __condition;					\
1130 		__rc;							\
1131 	})
1132 
1133 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1134 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1135 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1136 int sk_stream_error(struct sock *sk, int flags, int err);
1137 void sk_stream_kill_queues(struct sock *sk);
1138 void sk_set_memalloc(struct sock *sk);
1139 void sk_clear_memalloc(struct sock *sk);
1140 
1141 void __sk_flush_backlog(struct sock *sk);
1142 
sk_flush_backlog(struct sock * sk)1143 static inline bool sk_flush_backlog(struct sock *sk)
1144 {
1145 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1146 		__sk_flush_backlog(sk);
1147 		return true;
1148 	}
1149 	return false;
1150 }
1151 
1152 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1153 
1154 struct request_sock_ops;
1155 struct timewait_sock_ops;
1156 struct inet_hashinfo;
1157 struct raw_hashinfo;
1158 struct smc_hashinfo;
1159 struct module;
1160 
1161 /*
1162  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1163  * un-modified. Special care is taken when initializing object to zero.
1164  */
sk_prot_clear_nulls(struct sock * sk,int size)1165 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1166 {
1167 	if (offsetof(struct sock, sk_node.next) != 0)
1168 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1169 	memset(&sk->sk_node.pprev, 0,
1170 	       size - offsetof(struct sock, sk_node.pprev));
1171 }
1172 
1173 /* Networking protocol blocks we attach to sockets.
1174  * socket layer -> transport layer interface
1175  */
1176 struct proto {
1177 	void			(*close)(struct sock *sk,
1178 					long timeout);
1179 	int			(*pre_connect)(struct sock *sk,
1180 					struct sockaddr *uaddr,
1181 					int addr_len);
1182 	int			(*connect)(struct sock *sk,
1183 					struct sockaddr *uaddr,
1184 					int addr_len);
1185 	int			(*disconnect)(struct sock *sk, int flags);
1186 
1187 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1188 					  bool kern);
1189 
1190 	int			(*ioctl)(struct sock *sk, int cmd,
1191 					 unsigned long arg);
1192 	int			(*init)(struct sock *sk);
1193 	void			(*destroy)(struct sock *sk);
1194 	void			(*shutdown)(struct sock *sk, int how);
1195 	int			(*setsockopt)(struct sock *sk, int level,
1196 					int optname, sockptr_t optval,
1197 					unsigned int optlen);
1198 	int			(*getsockopt)(struct sock *sk, int level,
1199 					int optname, char __user *optval,
1200 					int __user *option);
1201 	void			(*keepalive)(struct sock *sk, int valbool);
1202 #ifdef CONFIG_COMPAT
1203 	int			(*compat_ioctl)(struct sock *sk,
1204 					unsigned int cmd, unsigned long arg);
1205 #endif
1206 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1207 					   size_t len);
1208 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1209 					   size_t len, int noblock, int flags,
1210 					   int *addr_len);
1211 	int			(*sendpage)(struct sock *sk, struct page *page,
1212 					int offset, size_t size, int flags);
1213 	int			(*bind)(struct sock *sk,
1214 					struct sockaddr *addr, int addr_len);
1215 	int			(*bind_add)(struct sock *sk,
1216 					struct sockaddr *addr, int addr_len);
1217 
1218 	int			(*backlog_rcv) (struct sock *sk,
1219 						struct sk_buff *skb);
1220 	bool			(*bpf_bypass_getsockopt)(int level,
1221 							 int optname);
1222 
1223 	void		(*release_cb)(struct sock *sk);
1224 
1225 	/* Keeping track of sk's, looking them up, and port selection methods. */
1226 	int			(*hash)(struct sock *sk);
1227 	void			(*unhash)(struct sock *sk);
1228 	void			(*rehash)(struct sock *sk);
1229 	int			(*get_port)(struct sock *sk, unsigned short snum);
1230 
1231 	/* Keeping track of sockets in use */
1232 #ifdef CONFIG_PROC_FS
1233 	unsigned int		inuse_idx;
1234 #endif
1235 
1236 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1237 	bool			(*stream_memory_read)(const struct sock *sk);
1238 	/* Memory pressure */
1239 	void			(*enter_memory_pressure)(struct sock *sk);
1240 	void			(*leave_memory_pressure)(struct sock *sk);
1241 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1242 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1243 	/*
1244 	 * Pressure flag: try to collapse.
1245 	 * Technical note: it is used by multiple contexts non atomically.
1246 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1247 	 * All the __sk_mem_schedule() is of this nature: accounting
1248 	 * is strict, actions are advisory and have some latency.
1249 	 */
1250 	unsigned long		*memory_pressure;
1251 	long			*sysctl_mem;
1252 
1253 	int			*sysctl_wmem;
1254 	int			*sysctl_rmem;
1255 	u32			sysctl_wmem_offset;
1256 	u32			sysctl_rmem_offset;
1257 
1258 	int			max_header;
1259 	bool			no_autobind;
1260 
1261 	struct kmem_cache	*slab;
1262 	unsigned int		obj_size;
1263 	slab_flags_t		slab_flags;
1264 	unsigned int		useroffset;	/* Usercopy region offset */
1265 	unsigned int		usersize;	/* Usercopy region size */
1266 
1267 	unsigned int __percpu	*orphan_count;
1268 
1269 	struct request_sock_ops	*rsk_prot;
1270 	struct timewait_sock_ops *twsk_prot;
1271 
1272 	union {
1273 		struct inet_hashinfo	*hashinfo;
1274 		struct udp_table	*udp_table;
1275 		struct raw_hashinfo	*raw_hash;
1276 		struct smc_hashinfo	*smc_hash;
1277 	} h;
1278 
1279 	struct module		*owner;
1280 
1281 	char			name[32];
1282 
1283 	struct list_head	node;
1284 #ifdef SOCK_REFCNT_DEBUG
1285 	atomic_t		socks;
1286 #endif
1287 	int			(*diag_destroy)(struct sock *sk, int err);
1288 } __randomize_layout;
1289 
1290 int proto_register(struct proto *prot, int alloc_slab);
1291 void proto_unregister(struct proto *prot);
1292 int sock_load_diag_module(int family, int protocol);
1293 
1294 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1295 static inline void sk_refcnt_debug_inc(struct sock *sk)
1296 {
1297 	atomic_inc(&sk->sk_prot->socks);
1298 }
1299 
sk_refcnt_debug_dec(struct sock * sk)1300 static inline void sk_refcnt_debug_dec(struct sock *sk)
1301 {
1302 	atomic_dec(&sk->sk_prot->socks);
1303 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1304 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1305 }
1306 
sk_refcnt_debug_release(const struct sock * sk)1307 static inline void sk_refcnt_debug_release(const struct sock *sk)
1308 {
1309 	if (refcount_read(&sk->sk_refcnt) != 1)
1310 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1311 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1312 }
1313 #else /* SOCK_REFCNT_DEBUG */
1314 #define sk_refcnt_debug_inc(sk) do { } while (0)
1315 #define sk_refcnt_debug_dec(sk) do { } while (0)
1316 #define sk_refcnt_debug_release(sk) do { } while (0)
1317 #endif /* SOCK_REFCNT_DEBUG */
1318 
__sk_stream_memory_free(const struct sock * sk,int wake)1319 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1320 {
1321 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1322 		return false;
1323 
1324 	return sk->sk_prot->stream_memory_free ?
1325 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1326 }
1327 
sk_stream_memory_free(const struct sock * sk)1328 static inline bool sk_stream_memory_free(const struct sock *sk)
1329 {
1330 	return __sk_stream_memory_free(sk, 0);
1331 }
1332 
__sk_stream_is_writeable(const struct sock * sk,int wake)1333 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1334 {
1335 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1336 	       __sk_stream_memory_free(sk, wake);
1337 }
1338 
sk_stream_is_writeable(const struct sock * sk)1339 static inline bool sk_stream_is_writeable(const struct sock *sk)
1340 {
1341 	return __sk_stream_is_writeable(sk, 0);
1342 }
1343 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1344 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1345 					    struct cgroup *ancestor)
1346 {
1347 #ifdef CONFIG_SOCK_CGROUP_DATA
1348 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1349 				    ancestor);
1350 #else
1351 	return -ENOTSUPP;
1352 #endif
1353 }
1354 
sk_has_memory_pressure(const struct sock * sk)1355 static inline bool sk_has_memory_pressure(const struct sock *sk)
1356 {
1357 	return sk->sk_prot->memory_pressure != NULL;
1358 }
1359 
sk_under_global_memory_pressure(const struct sock * sk)1360 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1361 {
1362 	return sk->sk_prot->memory_pressure &&
1363 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1364 }
1365 
sk_under_memory_pressure(const struct sock * sk)1366 static inline bool sk_under_memory_pressure(const struct sock *sk)
1367 {
1368 	if (!sk->sk_prot->memory_pressure)
1369 		return false;
1370 
1371 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1372 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1373 		return true;
1374 
1375 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1376 }
1377 
1378 static inline long
sk_memory_allocated(const struct sock * sk)1379 sk_memory_allocated(const struct sock *sk)
1380 {
1381 	return atomic_long_read(sk->sk_prot->memory_allocated);
1382 }
1383 
1384 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1385 sk_memory_allocated_add(struct sock *sk, int amt)
1386 {
1387 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1388 }
1389 
1390 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1391 sk_memory_allocated_sub(struct sock *sk, int amt)
1392 {
1393 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1394 }
1395 
sk_sockets_allocated_dec(struct sock * sk)1396 static inline void sk_sockets_allocated_dec(struct sock *sk)
1397 {
1398 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1399 }
1400 
sk_sockets_allocated_inc(struct sock * sk)1401 static inline void sk_sockets_allocated_inc(struct sock *sk)
1402 {
1403 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1404 }
1405 
1406 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1407 sk_sockets_allocated_read_positive(struct sock *sk)
1408 {
1409 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1410 }
1411 
1412 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1413 proto_sockets_allocated_sum_positive(struct proto *prot)
1414 {
1415 	return percpu_counter_sum_positive(prot->sockets_allocated);
1416 }
1417 
1418 static inline long
proto_memory_allocated(struct proto * prot)1419 proto_memory_allocated(struct proto *prot)
1420 {
1421 	return atomic_long_read(prot->memory_allocated);
1422 }
1423 
1424 static inline bool
proto_memory_pressure(struct proto * prot)1425 proto_memory_pressure(struct proto *prot)
1426 {
1427 	if (!prot->memory_pressure)
1428 		return false;
1429 	return !!READ_ONCE(*prot->memory_pressure);
1430 }
1431 
1432 
1433 #ifdef CONFIG_PROC_FS
1434 /* Called with local bh disabled */
1435 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1436 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1437 int sock_inuse_get(struct net *net);
1438 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1439 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1440 		int inc)
1441 {
1442 }
1443 #endif
1444 
1445 
1446 /* With per-bucket locks this operation is not-atomic, so that
1447  * this version is not worse.
1448  */
__sk_prot_rehash(struct sock * sk)1449 static inline int __sk_prot_rehash(struct sock *sk)
1450 {
1451 	sk->sk_prot->unhash(sk);
1452 	return sk->sk_prot->hash(sk);
1453 }
1454 
1455 /* About 10 seconds */
1456 #define SOCK_DESTROY_TIME (10*HZ)
1457 
1458 /* Sockets 0-1023 can't be bound to unless you are superuser */
1459 #define PROT_SOCK	1024
1460 
1461 #define SHUTDOWN_MASK	3
1462 #define RCV_SHUTDOWN	1
1463 #define SEND_SHUTDOWN	2
1464 
1465 #define SOCK_SNDBUF_LOCK	1
1466 #define SOCK_RCVBUF_LOCK	2
1467 #define SOCK_BINDADDR_LOCK	4
1468 #define SOCK_BINDPORT_LOCK	8
1469 
1470 struct socket_alloc {
1471 	struct socket socket;
1472 	struct inode vfs_inode;
1473 };
1474 
SOCKET_I(struct inode * inode)1475 static inline struct socket *SOCKET_I(struct inode *inode)
1476 {
1477 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1478 }
1479 
SOCK_INODE(struct socket * socket)1480 static inline struct inode *SOCK_INODE(struct socket *socket)
1481 {
1482 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1483 }
1484 
1485 /*
1486  * Functions for memory accounting
1487  */
1488 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1489 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1490 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1491 void __sk_mem_reclaim(struct sock *sk, int amount);
1492 
1493 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1494  * do not necessarily have 16x time more memory than 4KB ones.
1495  */
1496 #define SK_MEM_QUANTUM 4096
1497 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1498 #define SK_MEM_SEND	0
1499 #define SK_MEM_RECV	1
1500 
1501 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1502 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1503 {
1504 	long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1505 
1506 #if PAGE_SIZE > SK_MEM_QUANTUM
1507 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1508 #elif PAGE_SIZE < SK_MEM_QUANTUM
1509 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1510 #endif
1511 	return val;
1512 }
1513 
sk_mem_pages(int amt)1514 static inline int sk_mem_pages(int amt)
1515 {
1516 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1517 }
1518 
sk_has_account(struct sock * sk)1519 static inline bool sk_has_account(struct sock *sk)
1520 {
1521 	/* return true if protocol supports memory accounting */
1522 	return !!sk->sk_prot->memory_allocated;
1523 }
1524 
sk_wmem_schedule(struct sock * sk,int size)1525 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1526 {
1527 	int delta;
1528 
1529 	if (!sk_has_account(sk))
1530 		return true;
1531 	delta = size - sk->sk_forward_alloc;
1532 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1533 }
1534 
1535 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1536 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1537 {
1538 	int delta;
1539 
1540 	if (!sk_has_account(sk))
1541 		return true;
1542 	delta = size - sk->sk_forward_alloc;
1543 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1544 		skb_pfmemalloc(skb);
1545 }
1546 
sk_mem_reclaim(struct sock * sk)1547 static inline void sk_mem_reclaim(struct sock *sk)
1548 {
1549 	if (!sk_has_account(sk))
1550 		return;
1551 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1552 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1553 }
1554 
sk_mem_reclaim_partial(struct sock * sk)1555 static inline void sk_mem_reclaim_partial(struct sock *sk)
1556 {
1557 	if (!sk_has_account(sk))
1558 		return;
1559 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1560 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1561 }
1562 
sk_mem_charge(struct sock * sk,int size)1563 static inline void sk_mem_charge(struct sock *sk, int size)
1564 {
1565 	if (!sk_has_account(sk))
1566 		return;
1567 	sk->sk_forward_alloc -= size;
1568 }
1569 
sk_mem_uncharge(struct sock * sk,int size)1570 static inline void sk_mem_uncharge(struct sock *sk, int size)
1571 {
1572 	if (!sk_has_account(sk))
1573 		return;
1574 	sk->sk_forward_alloc += size;
1575 
1576 	/* Avoid a possible overflow.
1577 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1578 	 * is not called and more than 2 GBytes are released at once.
1579 	 *
1580 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1581 	 * no need to hold that much forward allocation anyway.
1582 	 */
1583 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1584 		__sk_mem_reclaim(sk, 1 << 20);
1585 }
1586 
1587 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1588 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1589 {
1590 	sk_wmem_queued_add(sk, -skb->truesize);
1591 	sk_mem_uncharge(sk, skb->truesize);
1592 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1593 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1594 		skb_ext_reset(skb);
1595 		skb_zcopy_clear(skb, true);
1596 		sk->sk_tx_skb_cache = skb;
1597 		return;
1598 	}
1599 	__kfree_skb(skb);
1600 }
1601 
sock_release_ownership(struct sock * sk)1602 static inline void sock_release_ownership(struct sock *sk)
1603 {
1604 	if (sk->sk_lock.owned) {
1605 		sk->sk_lock.owned = 0;
1606 
1607 		/* The sk_lock has mutex_unlock() semantics: */
1608 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1609 	}
1610 }
1611 
1612 /*
1613  * Macro so as to not evaluate some arguments when
1614  * lockdep is not enabled.
1615  *
1616  * Mark both the sk_lock and the sk_lock.slock as a
1617  * per-address-family lock class.
1618  */
1619 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1620 do {									\
1621 	sk->sk_lock.owned = 0;						\
1622 	init_waitqueue_head(&sk->sk_lock.wq);				\
1623 	spin_lock_init(&(sk)->sk_lock.slock);				\
1624 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1625 			sizeof((sk)->sk_lock));				\
1626 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1627 				(skey), (sname));				\
1628 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1629 } while (0)
1630 
1631 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1632 static inline bool lockdep_sock_is_held(const struct sock *sk)
1633 {
1634 	return lockdep_is_held(&sk->sk_lock) ||
1635 	       lockdep_is_held(&sk->sk_lock.slock);
1636 }
1637 #endif
1638 
1639 void lock_sock_nested(struct sock *sk, int subclass);
1640 
lock_sock(struct sock * sk)1641 static inline void lock_sock(struct sock *sk)
1642 {
1643 	lock_sock_nested(sk, 0);
1644 }
1645 
1646 void __release_sock(struct sock *sk);
1647 void release_sock(struct sock *sk);
1648 
1649 /* BH context may only use the following locking interface. */
1650 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1651 #define bh_lock_sock_nested(__sk) \
1652 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1653 				SINGLE_DEPTH_NESTING)
1654 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1655 
1656 bool lock_sock_fast(struct sock *sk);
1657 /**
1658  * unlock_sock_fast - complement of lock_sock_fast
1659  * @sk: socket
1660  * @slow: slow mode
1661  *
1662  * fast unlock socket for user context.
1663  * If slow mode is on, we call regular release_sock()
1664  */
unlock_sock_fast(struct sock * sk,bool slow)1665 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1666 {
1667 	if (slow)
1668 		release_sock(sk);
1669 	else
1670 		spin_unlock_bh(&sk->sk_lock.slock);
1671 }
1672 
1673 /* Used by processes to "lock" a socket state, so that
1674  * interrupts and bottom half handlers won't change it
1675  * from under us. It essentially blocks any incoming
1676  * packets, so that we won't get any new data or any
1677  * packets that change the state of the socket.
1678  *
1679  * While locked, BH processing will add new packets to
1680  * the backlog queue.  This queue is processed by the
1681  * owner of the socket lock right before it is released.
1682  *
1683  * Since ~2.3.5 it is also exclusive sleep lock serializing
1684  * accesses from user process context.
1685  */
1686 
sock_owned_by_me(const struct sock * sk)1687 static inline void sock_owned_by_me(const struct sock *sk)
1688 {
1689 #ifdef CONFIG_LOCKDEP
1690 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1691 #endif
1692 }
1693 
sock_not_owned_by_me(const struct sock * sk)1694 static inline void sock_not_owned_by_me(const struct sock *sk)
1695 {
1696 #ifdef CONFIG_LOCKDEP
1697 	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1698 #endif
1699 }
1700 
sock_owned_by_user(const struct sock * sk)1701 static inline bool sock_owned_by_user(const struct sock *sk)
1702 {
1703 	sock_owned_by_me(sk);
1704 	return sk->sk_lock.owned;
1705 }
1706 
sock_owned_by_user_nocheck(const struct sock * sk)1707 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1708 {
1709 	return sk->sk_lock.owned;
1710 }
1711 
1712 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1713 static inline bool sock_allow_reclassification(const struct sock *csk)
1714 {
1715 	struct sock *sk = (struct sock *)csk;
1716 
1717 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1718 }
1719 
1720 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1721 		      struct proto *prot, int kern);
1722 void sk_free(struct sock *sk);
1723 void sk_destruct(struct sock *sk);
1724 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1725 void sk_free_unlock_clone(struct sock *sk);
1726 
1727 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1728 			     gfp_t priority);
1729 void __sock_wfree(struct sk_buff *skb);
1730 void sock_wfree(struct sk_buff *skb);
1731 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1732 			     gfp_t priority);
1733 void skb_orphan_partial(struct sk_buff *skb);
1734 void sock_rfree(struct sk_buff *skb);
1735 void sock_efree(struct sk_buff *skb);
1736 #ifdef CONFIG_INET
1737 void sock_edemux(struct sk_buff *skb);
1738 void sock_pfree(struct sk_buff *skb);
1739 #else
1740 #define sock_edemux sock_efree
1741 #endif
1742 
1743 int sock_setsockopt(struct socket *sock, int level, int op,
1744 		    sockptr_t optval, unsigned int optlen);
1745 
1746 int sock_getsockopt(struct socket *sock, int level, int op,
1747 		    char __user *optval, int __user *optlen);
1748 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1749 		   bool timeval, bool time32);
1750 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1751 				    int noblock, int *errcode);
1752 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1753 				     unsigned long data_len, int noblock,
1754 				     int *errcode, int max_page_order);
1755 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1756 void sock_kfree_s(struct sock *sk, void *mem, int size);
1757 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1758 void sk_send_sigurg(struct sock *sk);
1759 
1760 struct sockcm_cookie {
1761 	u64 transmit_time;
1762 	u32 mark;
1763 	u16 tsflags;
1764 };
1765 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1766 static inline void sockcm_init(struct sockcm_cookie *sockc,
1767 			       const struct sock *sk)
1768 {
1769 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1770 }
1771 
1772 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1773 		     struct sockcm_cookie *sockc);
1774 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1775 		   struct sockcm_cookie *sockc);
1776 
1777 /*
1778  * Functions to fill in entries in struct proto_ops when a protocol
1779  * does not implement a particular function.
1780  */
1781 int sock_no_bind(struct socket *, struct sockaddr *, int);
1782 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1783 int sock_no_socketpair(struct socket *, struct socket *);
1784 int sock_no_accept(struct socket *, struct socket *, int, bool);
1785 int sock_no_getname(struct socket *, struct sockaddr *, int);
1786 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1787 int sock_no_listen(struct socket *, int);
1788 int sock_no_shutdown(struct socket *, int);
1789 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1790 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1791 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1792 int sock_no_mmap(struct file *file, struct socket *sock,
1793 		 struct vm_area_struct *vma);
1794 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1795 			 size_t size, int flags);
1796 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1797 				int offset, size_t size, int flags);
1798 
1799 /*
1800  * Functions to fill in entries in struct proto_ops when a protocol
1801  * uses the inet style.
1802  */
1803 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1804 				  char __user *optval, int __user *optlen);
1805 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1806 			int flags);
1807 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1808 			   sockptr_t optval, unsigned int optlen);
1809 
1810 void sk_common_release(struct sock *sk);
1811 
1812 /*
1813  *	Default socket callbacks and setup code
1814  */
1815 
1816 /* Initialise core socket variables using an explicit uid. */
1817 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1818 
1819 /* Initialise core socket variables.
1820  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1821  */
1822 void sock_init_data(struct socket *sock, struct sock *sk);
1823 
1824 /*
1825  * Socket reference counting postulates.
1826  *
1827  * * Each user of socket SHOULD hold a reference count.
1828  * * Each access point to socket (an hash table bucket, reference from a list,
1829  *   running timer, skb in flight MUST hold a reference count.
1830  * * When reference count hits 0, it means it will never increase back.
1831  * * When reference count hits 0, it means that no references from
1832  *   outside exist to this socket and current process on current CPU
1833  *   is last user and may/should destroy this socket.
1834  * * sk_free is called from any context: process, BH, IRQ. When
1835  *   it is called, socket has no references from outside -> sk_free
1836  *   may release descendant resources allocated by the socket, but
1837  *   to the time when it is called, socket is NOT referenced by any
1838  *   hash tables, lists etc.
1839  * * Packets, delivered from outside (from network or from another process)
1840  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1841  *   when they sit in queue. Otherwise, packets will leak to hole, when
1842  *   socket is looked up by one cpu and unhasing is made by another CPU.
1843  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1844  *   (leak to backlog). Packet socket does all the processing inside
1845  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1846  *   use separate SMP lock, so that they are prone too.
1847  */
1848 
1849 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1850 static inline void sock_put(struct sock *sk)
1851 {
1852 	if (refcount_dec_and_test(&sk->sk_refcnt))
1853 		sk_free(sk);
1854 }
1855 /* Generic version of sock_put(), dealing with all sockets
1856  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1857  */
1858 void sock_gen_put(struct sock *sk);
1859 
1860 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1861 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1862 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1863 				 const int nested)
1864 {
1865 	return __sk_receive_skb(sk, skb, nested, 1, true);
1866 }
1867 
sk_tx_queue_set(struct sock * sk,int tx_queue)1868 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1869 {
1870 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1871 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1872 		return;
1873 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1874 	 * other WRITE_ONCE() because socket lock might be not held.
1875 	 */
1876 	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1877 }
1878 
1879 #define NO_QUEUE_MAPPING	USHRT_MAX
1880 
sk_tx_queue_clear(struct sock * sk)1881 static inline void sk_tx_queue_clear(struct sock *sk)
1882 {
1883 	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1884 	 * other WRITE_ONCE() because socket lock might be not held.
1885 	 */
1886 	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1887 }
1888 
sk_tx_queue_get(const struct sock * sk)1889 static inline int sk_tx_queue_get(const struct sock *sk)
1890 {
1891 	if (sk) {
1892 		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1893 		 * and sk_tx_queue_set().
1894 		 */
1895 		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1896 
1897 		if (val != NO_QUEUE_MAPPING)
1898 			return val;
1899 	}
1900 	return -1;
1901 }
1902 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1903 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1904 {
1905 #ifdef CONFIG_XPS
1906 	if (skb_rx_queue_recorded(skb)) {
1907 		u16 rx_queue = skb_get_rx_queue(skb);
1908 
1909 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1910 			return;
1911 
1912 		sk->sk_rx_queue_mapping = rx_queue;
1913 	}
1914 #endif
1915 }
1916 
sk_rx_queue_clear(struct sock * sk)1917 static inline void sk_rx_queue_clear(struct sock *sk)
1918 {
1919 #ifdef CONFIG_XPS
1920 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1921 #endif
1922 }
1923 
1924 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1925 static inline int sk_rx_queue_get(const struct sock *sk)
1926 {
1927 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1928 		return sk->sk_rx_queue_mapping;
1929 
1930 	return -1;
1931 }
1932 #endif
1933 
sk_set_socket(struct sock * sk,struct socket * sock)1934 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1935 {
1936 	sk->sk_socket = sock;
1937 }
1938 
sk_sleep(struct sock * sk)1939 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1940 {
1941 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1942 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1943 }
1944 /* Detach socket from process context.
1945  * Announce socket dead, detach it from wait queue and inode.
1946  * Note that parent inode held reference count on this struct sock,
1947  * we do not release it in this function, because protocol
1948  * probably wants some additional cleanups or even continuing
1949  * to work with this socket (TCP).
1950  */
sock_orphan(struct sock * sk)1951 static inline void sock_orphan(struct sock *sk)
1952 {
1953 	write_lock_bh(&sk->sk_callback_lock);
1954 	sock_set_flag(sk, SOCK_DEAD);
1955 	sk_set_socket(sk, NULL);
1956 	sk->sk_wq  = NULL;
1957 	write_unlock_bh(&sk->sk_callback_lock);
1958 }
1959 
sock_graft(struct sock * sk,struct socket * parent)1960 static inline void sock_graft(struct sock *sk, struct socket *parent)
1961 {
1962 	WARN_ON(parent->sk);
1963 	write_lock_bh(&sk->sk_callback_lock);
1964 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1965 	parent->sk = sk;
1966 	sk_set_socket(sk, parent);
1967 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1968 	security_sock_graft(sk, parent);
1969 	write_unlock_bh(&sk->sk_callback_lock);
1970 }
1971 
1972 kuid_t sock_i_uid(struct sock *sk);
1973 unsigned long __sock_i_ino(struct sock *sk);
1974 unsigned long sock_i_ino(struct sock *sk);
1975 
sock_net_uid(const struct net * net,const struct sock * sk)1976 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1977 {
1978 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1979 }
1980 
net_tx_rndhash(void)1981 static inline u32 net_tx_rndhash(void)
1982 {
1983 	u32 v = prandom_u32();
1984 
1985 	return v ?: 1;
1986 }
1987 
sk_set_txhash(struct sock * sk)1988 static inline void sk_set_txhash(struct sock *sk)
1989 {
1990 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1991 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1992 }
1993 
sk_rethink_txhash(struct sock * sk)1994 static inline bool sk_rethink_txhash(struct sock *sk)
1995 {
1996 	if (sk->sk_txhash) {
1997 		sk_set_txhash(sk);
1998 		return true;
1999 	}
2000 	return false;
2001 }
2002 
2003 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)2004 __sk_dst_get(struct sock *sk)
2005 {
2006 	return rcu_dereference_check(sk->sk_dst_cache,
2007 				     lockdep_sock_is_held(sk));
2008 }
2009 
2010 static inline struct dst_entry *
sk_dst_get(struct sock * sk)2011 sk_dst_get(struct sock *sk)
2012 {
2013 	struct dst_entry *dst;
2014 
2015 	rcu_read_lock();
2016 	dst = rcu_dereference(sk->sk_dst_cache);
2017 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2018 		dst = NULL;
2019 	rcu_read_unlock();
2020 	return dst;
2021 }
2022 
__dst_negative_advice(struct sock * sk)2023 static inline void __dst_negative_advice(struct sock *sk)
2024 {
2025 	struct dst_entry *dst = __sk_dst_get(sk);
2026 
2027 	if (dst && dst->ops->negative_advice)
2028 		dst->ops->negative_advice(sk, dst);
2029 }
2030 
dst_negative_advice(struct sock * sk)2031 static inline void dst_negative_advice(struct sock *sk)
2032 {
2033 	sk_rethink_txhash(sk);
2034 	__dst_negative_advice(sk);
2035 }
2036 
2037 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2038 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2039 {
2040 	struct dst_entry *old_dst;
2041 
2042 	sk_tx_queue_clear(sk);
2043 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2044 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2045 					    lockdep_sock_is_held(sk));
2046 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2047 	dst_release(old_dst);
2048 }
2049 
2050 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2051 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2052 {
2053 	struct dst_entry *old_dst;
2054 
2055 	sk_tx_queue_clear(sk);
2056 	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2057 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2058 	dst_release(old_dst);
2059 }
2060 
2061 static inline void
__sk_dst_reset(struct sock * sk)2062 __sk_dst_reset(struct sock *sk)
2063 {
2064 	__sk_dst_set(sk, NULL);
2065 }
2066 
2067 static inline void
sk_dst_reset(struct sock * sk)2068 sk_dst_reset(struct sock *sk)
2069 {
2070 	sk_dst_set(sk, NULL);
2071 }
2072 
2073 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2074 
2075 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2076 
sk_dst_confirm(struct sock * sk)2077 static inline void sk_dst_confirm(struct sock *sk)
2078 {
2079 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2080 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2081 }
2082 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2083 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2084 {
2085 	if (skb_get_dst_pending_confirm(skb)) {
2086 		struct sock *sk = skb->sk;
2087 		unsigned long now = jiffies;
2088 
2089 		/* avoid dirtying neighbour */
2090 		if (READ_ONCE(n->confirmed) != now)
2091 			WRITE_ONCE(n->confirmed, now);
2092 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2093 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2094 	}
2095 }
2096 
2097 bool sk_mc_loop(struct sock *sk);
2098 
sk_can_gso(const struct sock * sk)2099 static inline bool sk_can_gso(const struct sock *sk)
2100 {
2101 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2102 }
2103 
2104 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2105 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2106 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2107 {
2108 	sk->sk_route_nocaps |= flags;
2109 	sk->sk_route_caps &= ~flags;
2110 }
2111 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2112 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2113 					   struct iov_iter *from, char *to,
2114 					   int copy, int offset)
2115 {
2116 	if (skb->ip_summed == CHECKSUM_NONE) {
2117 		__wsum csum = 0;
2118 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2119 			return -EFAULT;
2120 		skb->csum = csum_block_add(skb->csum, csum, offset);
2121 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2122 		if (!copy_from_iter_full_nocache(to, copy, from))
2123 			return -EFAULT;
2124 	} else if (!copy_from_iter_full(to, copy, from))
2125 		return -EFAULT;
2126 
2127 	return 0;
2128 }
2129 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2130 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2131 				       struct iov_iter *from, int copy)
2132 {
2133 	int err, offset = skb->len;
2134 
2135 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2136 				       copy, offset);
2137 	if (err)
2138 		__skb_trim(skb, offset);
2139 
2140 	return err;
2141 }
2142 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2143 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2144 					   struct sk_buff *skb,
2145 					   struct page *page,
2146 					   int off, int copy)
2147 {
2148 	int err;
2149 
2150 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2151 				       copy, skb->len);
2152 	if (err)
2153 		return err;
2154 
2155 	skb->len	     += copy;
2156 	skb->data_len	     += copy;
2157 	skb->truesize	     += copy;
2158 	sk_wmem_queued_add(sk, copy);
2159 	sk_mem_charge(sk, copy);
2160 	return 0;
2161 }
2162 
2163 /**
2164  * sk_wmem_alloc_get - returns write allocations
2165  * @sk: socket
2166  *
2167  * Return: sk_wmem_alloc minus initial offset of one
2168  */
sk_wmem_alloc_get(const struct sock * sk)2169 static inline int sk_wmem_alloc_get(const struct sock *sk)
2170 {
2171 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2172 }
2173 
2174 /**
2175  * sk_rmem_alloc_get - returns read allocations
2176  * @sk: socket
2177  *
2178  * Return: sk_rmem_alloc
2179  */
sk_rmem_alloc_get(const struct sock * sk)2180 static inline int sk_rmem_alloc_get(const struct sock *sk)
2181 {
2182 	return atomic_read(&sk->sk_rmem_alloc);
2183 }
2184 
2185 /**
2186  * sk_has_allocations - check if allocations are outstanding
2187  * @sk: socket
2188  *
2189  * Return: true if socket has write or read allocations
2190  */
sk_has_allocations(const struct sock * sk)2191 static inline bool sk_has_allocations(const struct sock *sk)
2192 {
2193 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2194 }
2195 
2196 /**
2197  * skwq_has_sleeper - check if there are any waiting processes
2198  * @wq: struct socket_wq
2199  *
2200  * Return: true if socket_wq has waiting processes
2201  *
2202  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2203  * barrier call. They were added due to the race found within the tcp code.
2204  *
2205  * Consider following tcp code paths::
2206  *
2207  *   CPU1                CPU2
2208  *   sys_select          receive packet
2209  *   ...                 ...
2210  *   __add_wait_queue    update tp->rcv_nxt
2211  *   ...                 ...
2212  *   tp->rcv_nxt check   sock_def_readable
2213  *   ...                 {
2214  *   schedule               rcu_read_lock();
2215  *                          wq = rcu_dereference(sk->sk_wq);
2216  *                          if (wq && waitqueue_active(&wq->wait))
2217  *                              wake_up_interruptible(&wq->wait)
2218  *                          ...
2219  *                       }
2220  *
2221  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2222  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2223  * could then endup calling schedule and sleep forever if there are no more
2224  * data on the socket.
2225  *
2226  */
skwq_has_sleeper(struct socket_wq * wq)2227 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2228 {
2229 	return wq && wq_has_sleeper(&wq->wait);
2230 }
2231 
2232 /**
2233  * sock_poll_wait - place memory barrier behind the poll_wait call.
2234  * @filp:           file
2235  * @sock:           socket to wait on
2236  * @p:              poll_table
2237  *
2238  * See the comments in the wq_has_sleeper function.
2239  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2240 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2241 				  poll_table *p)
2242 {
2243 	if (!poll_does_not_wait(p)) {
2244 		poll_wait(filp, &sock->wq.wait, p);
2245 		/* We need to be sure we are in sync with the
2246 		 * socket flags modification.
2247 		 *
2248 		 * This memory barrier is paired in the wq_has_sleeper.
2249 		 */
2250 		smp_mb();
2251 	}
2252 }
2253 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2254 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2255 {
2256 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2257 	u32 txhash = READ_ONCE(sk->sk_txhash);
2258 
2259 	if (txhash) {
2260 		skb->l4_hash = 1;
2261 		skb->hash = txhash;
2262 	}
2263 }
2264 
2265 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2266 
2267 /*
2268  *	Queue a received datagram if it will fit. Stream and sequenced
2269  *	protocols can't normally use this as they need to fit buffers in
2270  *	and play with them.
2271  *
2272  *	Inlined as it's very short and called for pretty much every
2273  *	packet ever received.
2274  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2275 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2276 {
2277 	skb_orphan(skb);
2278 	skb->sk = sk;
2279 	skb->destructor = sock_rfree;
2280 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2281 	sk_mem_charge(sk, skb->truesize);
2282 }
2283 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2284 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2285 {
2286 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2287 		skb_orphan(skb);
2288 		skb->destructor = sock_efree;
2289 		skb->sk = sk;
2290 		return true;
2291 	}
2292 	return false;
2293 }
2294 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2295 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2296 {
2297 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2298 	if (skb) {
2299 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2300 			skb_set_owner_r(skb, sk);
2301 			return skb;
2302 		}
2303 		__kfree_skb(skb);
2304 	}
2305 	return NULL;
2306 }
2307 
2308 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2309 		    unsigned long expires);
2310 
2311 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2312 
2313 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2314 
2315 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2316 			struct sk_buff *skb, unsigned int flags,
2317 			void (*destructor)(struct sock *sk,
2318 					   struct sk_buff *skb));
2319 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2320 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2321 
2322 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2323 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2324 
2325 /*
2326  *	Recover an error report and clear atomically
2327  */
2328 
sock_error(struct sock * sk)2329 static inline int sock_error(struct sock *sk)
2330 {
2331 	int err;
2332 
2333 	/* Avoid an atomic operation for the common case.
2334 	 * This is racy since another cpu/thread can change sk_err under us.
2335 	 */
2336 	if (likely(data_race(!sk->sk_err)))
2337 		return 0;
2338 
2339 	err = xchg(&sk->sk_err, 0);
2340 	return -err;
2341 }
2342 
sock_wspace(struct sock * sk)2343 static inline unsigned long sock_wspace(struct sock *sk)
2344 {
2345 	int amt = 0;
2346 
2347 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2348 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2349 		if (amt < 0)
2350 			amt = 0;
2351 	}
2352 	return amt;
2353 }
2354 
2355 /* Note:
2356  *  We use sk->sk_wq_raw, from contexts knowing this
2357  *  pointer is not NULL and cannot disappear/change.
2358  */
sk_set_bit(int nr,struct sock * sk)2359 static inline void sk_set_bit(int nr, struct sock *sk)
2360 {
2361 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2362 	    !sock_flag(sk, SOCK_FASYNC))
2363 		return;
2364 
2365 	set_bit(nr, &sk->sk_wq_raw->flags);
2366 }
2367 
sk_clear_bit(int nr,struct sock * sk)2368 static inline void sk_clear_bit(int nr, struct sock *sk)
2369 {
2370 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2371 	    !sock_flag(sk, SOCK_FASYNC))
2372 		return;
2373 
2374 	clear_bit(nr, &sk->sk_wq_raw->flags);
2375 }
2376 
sk_wake_async(const struct sock * sk,int how,int band)2377 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2378 {
2379 	if (sock_flag(sk, SOCK_FASYNC)) {
2380 		rcu_read_lock();
2381 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2382 		rcu_read_unlock();
2383 	}
2384 }
2385 
2386 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2387  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2388  * Note: for send buffers, TCP works better if we can build two skbs at
2389  * minimum.
2390  */
2391 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2392 
2393 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2394 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2395 
sk_stream_moderate_sndbuf(struct sock * sk)2396 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2397 {
2398 	u32 val;
2399 
2400 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2401 		return;
2402 
2403 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2404 
2405 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2406 }
2407 
2408 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2409 				    bool force_schedule);
2410 
2411 /**
2412  * sk_page_frag - return an appropriate page_frag
2413  * @sk: socket
2414  *
2415  * Use the per task page_frag instead of the per socket one for
2416  * optimization when we know that we're in process context and own
2417  * everything that's associated with %current.
2418  *
2419  * Both direct reclaim and page faults can nest inside other
2420  * socket operations and end up recursing into sk_page_frag()
2421  * while it's already in use: explicitly avoid task page_frag
2422  * usage if the caller is potentially doing any of them.
2423  * This assumes that page fault handlers use the GFP_NOFS flags.
2424  *
2425  * Return: a per task page_frag if context allows that,
2426  * otherwise a per socket one.
2427  */
sk_page_frag(struct sock * sk)2428 static inline struct page_frag *sk_page_frag(struct sock *sk)
2429 {
2430 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2431 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2432 		return &current->task_frag;
2433 
2434 	return &sk->sk_frag;
2435 }
2436 
2437 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2438 
2439 /*
2440  *	Default write policy as shown to user space via poll/select/SIGIO
2441  */
sock_writeable(const struct sock * sk)2442 static inline bool sock_writeable(const struct sock *sk)
2443 {
2444 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2445 }
2446 
gfp_any(void)2447 static inline gfp_t gfp_any(void)
2448 {
2449 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2450 }
2451 
sock_rcvtimeo(const struct sock * sk,bool noblock)2452 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2453 {
2454 	return noblock ? 0 : sk->sk_rcvtimeo;
2455 }
2456 
sock_sndtimeo(const struct sock * sk,bool noblock)2457 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2458 {
2459 	return noblock ? 0 : sk->sk_sndtimeo;
2460 }
2461 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2462 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2463 {
2464 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2465 
2466 	return v ?: 1;
2467 }
2468 
2469 /* Alas, with timeout socket operations are not restartable.
2470  * Compare this to poll().
2471  */
sock_intr_errno(long timeo)2472 static inline int sock_intr_errno(long timeo)
2473 {
2474 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2475 }
2476 
2477 struct sock_skb_cb {
2478 	u32 dropcount;
2479 };
2480 
2481 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2482  * using skb->cb[] would keep using it directly and utilize its
2483  * alignement guarantee.
2484  */
2485 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2486 			    sizeof(struct sock_skb_cb)))
2487 
2488 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2489 			    SOCK_SKB_CB_OFFSET))
2490 
2491 #define sock_skb_cb_check_size(size) \
2492 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2493 
2494 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2495 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2496 {
2497 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2498 						atomic_read(&sk->sk_drops) : 0;
2499 }
2500 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2501 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2502 {
2503 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2504 
2505 	atomic_add(segs, &sk->sk_drops);
2506 }
2507 
sock_read_timestamp(struct sock * sk)2508 static inline ktime_t sock_read_timestamp(struct sock *sk)
2509 {
2510 #if BITS_PER_LONG==32
2511 	unsigned int seq;
2512 	ktime_t kt;
2513 
2514 	do {
2515 		seq = read_seqbegin(&sk->sk_stamp_seq);
2516 		kt = sk->sk_stamp;
2517 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2518 
2519 	return kt;
2520 #else
2521 	return READ_ONCE(sk->sk_stamp);
2522 #endif
2523 }
2524 
sock_write_timestamp(struct sock * sk,ktime_t kt)2525 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2526 {
2527 #if BITS_PER_LONG==32
2528 	write_seqlock(&sk->sk_stamp_seq);
2529 	sk->sk_stamp = kt;
2530 	write_sequnlock(&sk->sk_stamp_seq);
2531 #else
2532 	WRITE_ONCE(sk->sk_stamp, kt);
2533 #endif
2534 }
2535 
2536 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2537 			   struct sk_buff *skb);
2538 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2539 			     struct sk_buff *skb);
2540 
2541 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2542 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2543 {
2544 	ktime_t kt = skb->tstamp;
2545 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2546 
2547 	/*
2548 	 * generate control messages if
2549 	 * - receive time stamping in software requested
2550 	 * - software time stamp available and wanted
2551 	 * - hardware time stamps available and wanted
2552 	 */
2553 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2554 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2555 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2556 	    (hwtstamps->hwtstamp &&
2557 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2558 		__sock_recv_timestamp(msg, sk, skb);
2559 	else
2560 		sock_write_timestamp(sk, kt);
2561 
2562 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2563 		__sock_recv_wifi_status(msg, sk, skb);
2564 }
2565 
2566 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2567 			      struct sk_buff *skb);
2568 
2569 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2570 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2571 					  struct sk_buff *skb)
2572 {
2573 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2574 			   (1UL << SOCK_RCVTSTAMP))
2575 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2576 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2577 
2578 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2579 		__sock_recv_ts_and_drops(msg, sk, skb);
2580 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2581 		sock_write_timestamp(sk, skb->tstamp);
2582 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2583 		sock_write_timestamp(sk, 0);
2584 }
2585 
2586 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2587 
2588 /**
2589  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2590  * @sk:		socket sending this packet
2591  * @tsflags:	timestamping flags to use
2592  * @tx_flags:	completed with instructions for time stamping
2593  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2594  *
2595  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2596  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2597 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2598 				      __u8 *tx_flags, __u32 *tskey)
2599 {
2600 	if (unlikely(tsflags)) {
2601 		__sock_tx_timestamp(tsflags, tx_flags);
2602 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2603 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2604 			*tskey = sk->sk_tskey++;
2605 	}
2606 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2607 		*tx_flags |= SKBTX_WIFI_STATUS;
2608 }
2609 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2610 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2611 				     __u8 *tx_flags)
2612 {
2613 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2614 }
2615 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2616 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2617 {
2618 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2619 			   &skb_shinfo(skb)->tskey);
2620 }
2621 
2622 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2623 /**
2624  * sk_eat_skb - Release a skb if it is no longer needed
2625  * @sk: socket to eat this skb from
2626  * @skb: socket buffer to eat
2627  *
2628  * This routine must be called with interrupts disabled or with the socket
2629  * locked so that the sk_buff queue operation is ok.
2630 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2631 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2632 {
2633 	__skb_unlink(skb, &sk->sk_receive_queue);
2634 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2635 	    !sk->sk_rx_skb_cache) {
2636 		sk->sk_rx_skb_cache = skb;
2637 		skb_orphan(skb);
2638 		return;
2639 	}
2640 	__kfree_skb(skb);
2641 }
2642 
2643 static inline
sock_net(const struct sock * sk)2644 struct net *sock_net(const struct sock *sk)
2645 {
2646 	return read_pnet(&sk->sk_net);
2647 }
2648 
2649 static inline
sock_net_set(struct sock * sk,struct net * net)2650 void sock_net_set(struct sock *sk, struct net *net)
2651 {
2652 	write_pnet(&sk->sk_net, net);
2653 }
2654 
2655 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2656 skb_sk_is_prefetched(struct sk_buff *skb)
2657 {
2658 #ifdef CONFIG_INET
2659 	return skb->destructor == sock_pfree;
2660 #else
2661 	return false;
2662 #endif /* CONFIG_INET */
2663 }
2664 
2665 /* This helper checks if a socket is a full socket,
2666  * ie _not_ a timewait or request socket.
2667  */
sk_fullsock(const struct sock * sk)2668 static inline bool sk_fullsock(const struct sock *sk)
2669 {
2670 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2671 }
2672 
2673 static inline bool
sk_is_refcounted(struct sock * sk)2674 sk_is_refcounted(struct sock *sk)
2675 {
2676 	/* Only full sockets have sk->sk_flags. */
2677 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2678 }
2679 
2680 /**
2681  * skb_steal_sock - steal a socket from an sk_buff
2682  * @skb: sk_buff to steal the socket from
2683  * @refcounted: is set to true if the socket is reference-counted
2684  */
2685 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2686 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2687 {
2688 	if (skb->sk) {
2689 		struct sock *sk = skb->sk;
2690 
2691 		*refcounted = true;
2692 		if (skb_sk_is_prefetched(skb))
2693 			*refcounted = sk_is_refcounted(sk);
2694 		skb->destructor = NULL;
2695 		skb->sk = NULL;
2696 		return sk;
2697 	}
2698 	*refcounted = false;
2699 	return NULL;
2700 }
2701 
2702 /* Checks if this SKB belongs to an HW offloaded socket
2703  * and whether any SW fallbacks are required based on dev.
2704  * Check decrypted mark in case skb_orphan() cleared socket.
2705  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2706 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2707 						   struct net_device *dev)
2708 {
2709 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2710 	struct sock *sk = skb->sk;
2711 
2712 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2713 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2714 #ifdef CONFIG_TLS_DEVICE
2715 	} else if (unlikely(skb->decrypted)) {
2716 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2717 		kfree_skb(skb);
2718 		skb = NULL;
2719 #endif
2720 	}
2721 #endif
2722 
2723 	return skb;
2724 }
2725 
2726 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2727  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2728  */
sk_listener(const struct sock * sk)2729 static inline bool sk_listener(const struct sock *sk)
2730 {
2731 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2732 }
2733 
2734 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2735 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2736 		       int type);
2737 
2738 bool sk_ns_capable(const struct sock *sk,
2739 		   struct user_namespace *user_ns, int cap);
2740 bool sk_capable(const struct sock *sk, int cap);
2741 bool sk_net_capable(const struct sock *sk, int cap);
2742 
2743 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2744 
2745 /* Take into consideration the size of the struct sk_buff overhead in the
2746  * determination of these values, since that is non-constant across
2747  * platforms.  This makes socket queueing behavior and performance
2748  * not depend upon such differences.
2749  */
2750 #define _SK_MEM_PACKETS		256
2751 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2752 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2753 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2754 
2755 extern __u32 sysctl_wmem_max;
2756 extern __u32 sysctl_rmem_max;
2757 
2758 extern int sysctl_tstamp_allow_data;
2759 extern int sysctl_optmem_max;
2760 
2761 extern __u32 sysctl_wmem_default;
2762 extern __u32 sysctl_rmem_default;
2763 
2764 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2765 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2766 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2767 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2768 {
2769 	/* Does this proto have per netns sysctl_wmem ? */
2770 	if (proto->sysctl_wmem_offset)
2771 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2772 
2773 	return READ_ONCE(*proto->sysctl_wmem);
2774 }
2775 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2776 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2777 {
2778 	/* Does this proto have per netns sysctl_rmem ? */
2779 	if (proto->sysctl_rmem_offset)
2780 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2781 
2782 	return READ_ONCE(*proto->sysctl_rmem);
2783 }
2784 
2785 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2786  * Some wifi drivers need to tweak it to get more chunks.
2787  * They can use this helper from their ndo_start_xmit()
2788  */
sk_pacing_shift_update(struct sock * sk,int val)2789 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2790 {
2791 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2792 		return;
2793 	WRITE_ONCE(sk->sk_pacing_shift, val);
2794 }
2795 
2796 /* if a socket is bound to a device, check that the given device
2797  * index is either the same or that the socket is bound to an L3
2798  * master device and the given device index is also enslaved to
2799  * that L3 master
2800  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2801 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2802 {
2803 	int mdif;
2804 
2805 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2806 		return true;
2807 
2808 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2809 	if (mdif && mdif == sk->sk_bound_dev_if)
2810 		return true;
2811 
2812 	return false;
2813 }
2814 
2815 void sock_def_readable(struct sock *sk);
2816 
2817 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2818 void sock_enable_timestamps(struct sock *sk);
2819 void sock_no_linger(struct sock *sk);
2820 void sock_set_keepalive(struct sock *sk);
2821 void sock_set_priority(struct sock *sk, u32 priority);
2822 void sock_set_rcvbuf(struct sock *sk, int val);
2823 void sock_set_mark(struct sock *sk, u32 val);
2824 void sock_set_reuseaddr(struct sock *sk);
2825 void sock_set_reuseport(struct sock *sk);
2826 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2827 
2828 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2829 
2830 #endif	/* _SOCK_H */
2831