1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 */
4
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
9 *
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
21 * this list is empty, indicating outstanding flush operations have completed.
22 *
23 * BPF syscalls may race with BPF program calls on any of the update, delete
24 * or lookup operations. As noted above the xchg() operation also keep the
25 * netdev_map consistent in this case. From the devmap side BPF programs
26 * calling into these operations are the same as multiple user space threads
27 * making system calls.
28 *
29 * Finally, any of the above may race with a netdev_unregister notifier. The
30 * unregister notifier must search for net devices in the map structure that
31 * contain a reference to the net device and remove them. This is a two step
32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33 * check to see if the ifindex is the same as the net_device being removed.
34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
35 * removed, in the case of a concurrent update or delete operation it is
36 * possible that the initially referenced dev is no longer in the map. As the
37 * notifier hook walks the map we know that new dev references can not be
38 * added by the user because core infrastructure ensures dev_get_by_index()
39 * calls will fail at this point.
40 *
41 * The devmap_hash type is a map type which interprets keys as ifindexes and
42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
43 * densely packed instead of having holes in the lookup array for unused
44 * ifindexes. The setup and packet enqueue/send code is shared between the two
45 * types of devmap; only the lookup and insertion is different.
46 */
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
51
52 #define DEV_CREATE_FLAG_MASK \
53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
54
55 struct xdp_dev_bulk_queue {
56 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 struct list_head flush_node;
58 struct net_device *dev;
59 struct net_device *dev_rx;
60 unsigned int count;
61 };
62
63 struct bpf_dtab_netdev {
64 struct net_device *dev; /* must be first member, due to tracepoint */
65 struct hlist_node index_hlist;
66 struct bpf_dtab *dtab;
67 struct bpf_prog *xdp_prog;
68 struct rcu_head rcu;
69 unsigned int idx;
70 struct bpf_devmap_val val;
71 };
72
73 struct bpf_dtab {
74 struct bpf_map map;
75 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 struct list_head list;
77
78 /* these are only used for DEVMAP_HASH type maps */
79 struct hlist_head *dev_index_head;
80 spinlock_t index_lock;
81 unsigned int items;
82 u32 n_buckets;
83 };
84
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
88
dev_map_create_hash(unsigned int entries,int numa_node)89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 int numa_node)
91 {
92 int i;
93 struct hlist_head *hash;
94
95 hash = bpf_map_area_alloc((u64) entries * sizeof(*hash), numa_node);
96 if (hash != NULL)
97 for (i = 0; i < entries; i++)
98 INIT_HLIST_HEAD(&hash[i]);
99
100 return hash;
101 }
102
dev_map_index_hash(struct bpf_dtab * dtab,int idx)103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 int idx)
105 {
106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
107 }
108
dev_map_init_map(struct bpf_dtab * dtab,union bpf_attr * attr)109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
110 {
111 u32 valsize = attr->value_size;
112 u64 cost = 0;
113 int err;
114
115 /* check sanity of attributes. 2 value sizes supported:
116 * 4 bytes: ifindex
117 * 8 bytes: ifindex + prog fd
118 */
119 if (attr->max_entries == 0 || attr->key_size != 4 ||
120 (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
121 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
122 attr->map_flags & ~DEV_CREATE_FLAG_MASK)
123 return -EINVAL;
124
125 /* Lookup returns a pointer straight to dev->ifindex, so make sure the
126 * verifier prevents writes from the BPF side
127 */
128 attr->map_flags |= BPF_F_RDONLY_PROG;
129
130
131 bpf_map_init_from_attr(&dtab->map, attr);
132
133 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
134 /* hash table size must be power of 2; roundup_pow_of_two() can
135 * overflow into UB on 32-bit arches, so check that first
136 */
137 if (dtab->map.max_entries > 1UL << 31)
138 return -EINVAL;
139
140 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
141 cost += (u64) sizeof(struct hlist_head) * dtab->n_buckets;
142 } else {
143 cost += (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
144 }
145
146 /* if map size is larger than memlock limit, reject it */
147 err = bpf_map_charge_init(&dtab->map.memory, cost);
148 if (err)
149 return -EINVAL;
150
151 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
152 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
153 dtab->map.numa_node);
154 if (!dtab->dev_index_head)
155 goto free_charge;
156
157 spin_lock_init(&dtab->index_lock);
158 } else {
159 dtab->netdev_map = bpf_map_area_alloc((u64) dtab->map.max_entries *
160 sizeof(struct bpf_dtab_netdev *),
161 dtab->map.numa_node);
162 if (!dtab->netdev_map)
163 goto free_charge;
164 }
165
166 return 0;
167
168 free_charge:
169 bpf_map_charge_finish(&dtab->map.memory);
170 return -ENOMEM;
171 }
172
dev_map_alloc(union bpf_attr * attr)173 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
174 {
175 struct bpf_dtab *dtab;
176 int err;
177
178 if (!capable(CAP_NET_ADMIN))
179 return ERR_PTR(-EPERM);
180
181 dtab = kzalloc(sizeof(*dtab), GFP_USER);
182 if (!dtab)
183 return ERR_PTR(-ENOMEM);
184
185 err = dev_map_init_map(dtab, attr);
186 if (err) {
187 kfree(dtab);
188 return ERR_PTR(err);
189 }
190
191 spin_lock(&dev_map_lock);
192 list_add_tail_rcu(&dtab->list, &dev_map_list);
193 spin_unlock(&dev_map_lock);
194
195 return &dtab->map;
196 }
197
dev_map_free(struct bpf_map * map)198 static void dev_map_free(struct bpf_map *map)
199 {
200 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
201 u32 i;
202
203 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
204 * so the programs (can be more than one that used this map) were
205 * disconnected from events. The following synchronize_rcu() guarantees
206 * both rcu read critical sections complete and waits for
207 * preempt-disable regions (NAPI being the relevant context here) so we
208 * are certain there will be no further reads against the netdev_map and
209 * all flush operations are complete. Flush operations can only be done
210 * from NAPI context for this reason.
211 */
212
213 spin_lock(&dev_map_lock);
214 list_del_rcu(&dtab->list);
215 spin_unlock(&dev_map_lock);
216
217 bpf_clear_redirect_map(map);
218 synchronize_rcu();
219
220 /* Make sure prior __dev_map_entry_free() have completed. */
221 rcu_barrier();
222
223 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
224 for (i = 0; i < dtab->n_buckets; i++) {
225 struct bpf_dtab_netdev *dev;
226 struct hlist_head *head;
227 struct hlist_node *next;
228
229 head = dev_map_index_hash(dtab, i);
230
231 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
232 hlist_del_rcu(&dev->index_hlist);
233 if (dev->xdp_prog)
234 bpf_prog_put(dev->xdp_prog);
235 dev_put(dev->dev);
236 kfree(dev);
237 }
238 }
239
240 bpf_map_area_free(dtab->dev_index_head);
241 } else {
242 for (i = 0; i < dtab->map.max_entries; i++) {
243 struct bpf_dtab_netdev *dev;
244
245 dev = dtab->netdev_map[i];
246 if (!dev)
247 continue;
248
249 if (dev->xdp_prog)
250 bpf_prog_put(dev->xdp_prog);
251 dev_put(dev->dev);
252 kfree(dev);
253 }
254
255 bpf_map_area_free(dtab->netdev_map);
256 }
257
258 kfree(dtab);
259 }
260
dev_map_get_next_key(struct bpf_map * map,void * key,void * next_key)261 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
262 {
263 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
264 u32 index = key ? *(u32 *)key : U32_MAX;
265 u32 *next = next_key;
266
267 if (index >= dtab->map.max_entries) {
268 *next = 0;
269 return 0;
270 }
271
272 if (index == dtab->map.max_entries - 1)
273 return -ENOENT;
274 *next = index + 1;
275 return 0;
276 }
277
__dev_map_hash_lookup_elem(struct bpf_map * map,u32 key)278 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
279 {
280 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
281 struct hlist_head *head = dev_map_index_hash(dtab, key);
282 struct bpf_dtab_netdev *dev;
283
284 hlist_for_each_entry_rcu(dev, head, index_hlist,
285 lockdep_is_held(&dtab->index_lock))
286 if (dev->idx == key)
287 return dev;
288
289 return NULL;
290 }
291
dev_map_hash_get_next_key(struct bpf_map * map,void * key,void * next_key)292 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
293 void *next_key)
294 {
295 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
296 u32 idx, *next = next_key;
297 struct bpf_dtab_netdev *dev, *next_dev;
298 struct hlist_head *head;
299 int i = 0;
300
301 if (!key)
302 goto find_first;
303
304 idx = *(u32 *)key;
305
306 dev = __dev_map_hash_lookup_elem(map, idx);
307 if (!dev)
308 goto find_first;
309
310 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
311 struct bpf_dtab_netdev, index_hlist);
312
313 if (next_dev) {
314 *next = next_dev->idx;
315 return 0;
316 }
317
318 i = idx & (dtab->n_buckets - 1);
319 i++;
320
321 find_first:
322 for (; i < dtab->n_buckets; i++) {
323 head = dev_map_index_hash(dtab, i);
324
325 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
326 struct bpf_dtab_netdev,
327 index_hlist);
328 if (next_dev) {
329 *next = next_dev->idx;
330 return 0;
331 }
332 }
333
334 return -ENOENT;
335 }
336
dev_map_can_have_prog(struct bpf_map * map)337 bool dev_map_can_have_prog(struct bpf_map *map)
338 {
339 if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
340 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
341 map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
342 return true;
343
344 return false;
345 }
346
bq_xmit_all(struct xdp_dev_bulk_queue * bq,u32 flags)347 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
348 {
349 struct net_device *dev = bq->dev;
350 int sent = 0, drops = 0, err = 0;
351 int i;
352
353 if (unlikely(!bq->count))
354 return;
355
356 for (i = 0; i < bq->count; i++) {
357 struct xdp_frame *xdpf = bq->q[i];
358
359 prefetch(xdpf);
360 }
361
362 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
363 if (sent < 0) {
364 err = sent;
365 sent = 0;
366 goto error;
367 }
368 drops = bq->count - sent;
369 out:
370 bq->count = 0;
371
372 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
373 bq->dev_rx = NULL;
374 __list_del_clearprev(&bq->flush_node);
375 return;
376 error:
377 /* If ndo_xdp_xmit fails with an errno, no frames have been
378 * xmit'ed and it's our responsibility to them free all.
379 */
380 for (i = 0; i < bq->count; i++) {
381 struct xdp_frame *xdpf = bq->q[i];
382
383 xdp_return_frame_rx_napi(xdpf);
384 drops++;
385 }
386 goto out;
387 }
388
389 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
390 * from the driver before returning from its napi->poll() routine. The poll()
391 * routine is called either from busy_poll context or net_rx_action signaled
392 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
393 * net device can be torn down. On devmap tear down we ensure the flush list
394 * is empty before completing to ensure all flush operations have completed.
395 * When drivers update the bpf program they may need to ensure any flush ops
396 * are also complete. Using synchronize_rcu or call_rcu will suffice for this
397 * because both wait for napi context to exit.
398 */
__dev_flush(void)399 void __dev_flush(void)
400 {
401 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
402 struct xdp_dev_bulk_queue *bq, *tmp;
403
404 list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
405 bq_xmit_all(bq, XDP_XMIT_FLUSH);
406 }
407
408 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
409 * update happens in parallel here a dev_put wont happen until after reading the
410 * ifindex.
411 */
__dev_map_lookup_elem(struct bpf_map * map,u32 key)412 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
413 {
414 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
415 struct bpf_dtab_netdev *obj;
416
417 if (key >= map->max_entries)
418 return NULL;
419
420 obj = READ_ONCE(dtab->netdev_map[key]);
421 return obj;
422 }
423
424 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
425 * Thus, safe percpu variable access.
426 */
bq_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)427 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
428 struct net_device *dev_rx)
429 {
430 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
431 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
432
433 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
434 bq_xmit_all(bq, 0);
435
436 /* Ingress dev_rx will be the same for all xdp_frame's in
437 * bulk_queue, because bq stored per-CPU and must be flushed
438 * from net_device drivers NAPI func end.
439 */
440 if (!bq->dev_rx)
441 bq->dev_rx = dev_rx;
442
443 bq->q[bq->count++] = xdpf;
444
445 if (!bq->flush_node.prev)
446 list_add(&bq->flush_node, flush_list);
447 }
448
__xdp_enqueue(struct net_device * dev,struct xdp_buff * xdp,struct net_device * dev_rx)449 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
450 struct net_device *dev_rx)
451 {
452 struct xdp_frame *xdpf;
453 int err;
454
455 if (!dev->netdev_ops->ndo_xdp_xmit)
456 return -EOPNOTSUPP;
457
458 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
459 if (unlikely(err))
460 return err;
461
462 xdpf = xdp_convert_buff_to_frame(xdp);
463 if (unlikely(!xdpf))
464 return -EOVERFLOW;
465
466 bq_enqueue(dev, xdpf, dev_rx);
467 return 0;
468 }
469
dev_map_run_prog(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)470 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
471 struct xdp_buff *xdp,
472 struct bpf_prog *xdp_prog)
473 {
474 struct xdp_txq_info txq = { .dev = dev };
475 u32 act;
476
477 xdp_set_data_meta_invalid(xdp);
478 xdp->txq = &txq;
479
480 act = bpf_prog_run_xdp(xdp_prog, xdp);
481 switch (act) {
482 case XDP_PASS:
483 return xdp;
484 case XDP_DROP:
485 break;
486 default:
487 bpf_warn_invalid_xdp_action(act);
488 fallthrough;
489 case XDP_ABORTED:
490 trace_xdp_exception(dev, xdp_prog, act);
491 break;
492 }
493
494 xdp_return_buff(xdp);
495 return NULL;
496 }
497
dev_xdp_enqueue(struct net_device * dev,struct xdp_buff * xdp,struct net_device * dev_rx)498 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
499 struct net_device *dev_rx)
500 {
501 return __xdp_enqueue(dev, xdp, dev_rx);
502 }
503
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_buff * xdp,struct net_device * dev_rx)504 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
505 struct net_device *dev_rx)
506 {
507 struct net_device *dev = dst->dev;
508
509 if (dst->xdp_prog) {
510 xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
511 if (!xdp)
512 return 0;
513 }
514 return __xdp_enqueue(dev, xdp, dev_rx);
515 }
516
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,struct bpf_prog * xdp_prog)517 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
518 struct bpf_prog *xdp_prog)
519 {
520 int err;
521
522 err = xdp_ok_fwd_dev(dst->dev, skb->len);
523 if (unlikely(err))
524 return err;
525 skb->dev = dst->dev;
526 generic_xdp_tx(skb, xdp_prog);
527
528 return 0;
529 }
530
dev_map_lookup_elem(struct bpf_map * map,void * key)531 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
532 {
533 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
534
535 return obj ? &obj->val : NULL;
536 }
537
dev_map_hash_lookup_elem(struct bpf_map * map,void * key)538 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
539 {
540 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
541 *(u32 *)key);
542 return obj ? &obj->val : NULL;
543 }
544
__dev_map_entry_free(struct rcu_head * rcu)545 static void __dev_map_entry_free(struct rcu_head *rcu)
546 {
547 struct bpf_dtab_netdev *dev;
548
549 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
550 if (dev->xdp_prog)
551 bpf_prog_put(dev->xdp_prog);
552 dev_put(dev->dev);
553 kfree(dev);
554 }
555
dev_map_delete_elem(struct bpf_map * map,void * key)556 static int dev_map_delete_elem(struct bpf_map *map, void *key)
557 {
558 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
559 struct bpf_dtab_netdev *old_dev;
560 u32 k = *(u32 *)key;
561
562 if (k >= map->max_entries)
563 return -EINVAL;
564
565 /* Use call_rcu() here to ensure any rcu critical sections have
566 * completed as well as any flush operations because call_rcu
567 * will wait for preempt-disable region to complete, NAPI in this
568 * context. And additionally, the driver tear down ensures all
569 * soft irqs are complete before removing the net device in the
570 * case of dev_put equals zero.
571 */
572 old_dev = xchg(&dtab->netdev_map[k], NULL);
573 if (old_dev)
574 call_rcu(&old_dev->rcu, __dev_map_entry_free);
575 return 0;
576 }
577
dev_map_hash_delete_elem(struct bpf_map * map,void * key)578 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
579 {
580 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
581 struct bpf_dtab_netdev *old_dev;
582 u32 k = *(u32 *)key;
583 unsigned long flags;
584 int ret = -ENOENT;
585
586 spin_lock_irqsave(&dtab->index_lock, flags);
587
588 old_dev = __dev_map_hash_lookup_elem(map, k);
589 if (old_dev) {
590 dtab->items--;
591 hlist_del_init_rcu(&old_dev->index_hlist);
592 call_rcu(&old_dev->rcu, __dev_map_entry_free);
593 ret = 0;
594 }
595 spin_unlock_irqrestore(&dtab->index_lock, flags);
596
597 return ret;
598 }
599
__dev_map_alloc_node(struct net * net,struct bpf_dtab * dtab,struct bpf_devmap_val * val,unsigned int idx)600 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
601 struct bpf_dtab *dtab,
602 struct bpf_devmap_val *val,
603 unsigned int idx)
604 {
605 struct bpf_prog *prog = NULL;
606 struct bpf_dtab_netdev *dev;
607
608 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
609 dtab->map.numa_node);
610 if (!dev)
611 return ERR_PTR(-ENOMEM);
612
613 dev->dev = dev_get_by_index(net, val->ifindex);
614 if (!dev->dev)
615 goto err_out;
616
617 if (val->bpf_prog.fd > 0) {
618 prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
619 BPF_PROG_TYPE_XDP, false);
620 if (IS_ERR(prog))
621 goto err_put_dev;
622 if (prog->expected_attach_type != BPF_XDP_DEVMAP)
623 goto err_put_prog;
624 }
625
626 dev->idx = idx;
627 dev->dtab = dtab;
628 if (prog) {
629 dev->xdp_prog = prog;
630 dev->val.bpf_prog.id = prog->aux->id;
631 } else {
632 dev->xdp_prog = NULL;
633 dev->val.bpf_prog.id = 0;
634 }
635 dev->val.ifindex = val->ifindex;
636
637 return dev;
638 err_put_prog:
639 bpf_prog_put(prog);
640 err_put_dev:
641 dev_put(dev->dev);
642 err_out:
643 kfree(dev);
644 return ERR_PTR(-EINVAL);
645 }
646
__dev_map_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)647 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
648 void *key, void *value, u64 map_flags)
649 {
650 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
651 struct bpf_dtab_netdev *dev, *old_dev;
652 struct bpf_devmap_val val = {};
653 u32 i = *(u32 *)key;
654
655 if (unlikely(map_flags > BPF_EXIST))
656 return -EINVAL;
657 if (unlikely(i >= dtab->map.max_entries))
658 return -E2BIG;
659 if (unlikely(map_flags == BPF_NOEXIST))
660 return -EEXIST;
661
662 /* already verified value_size <= sizeof val */
663 memcpy(&val, value, map->value_size);
664
665 if (!val.ifindex) {
666 dev = NULL;
667 /* can not specify fd if ifindex is 0 */
668 if (val.bpf_prog.fd > 0)
669 return -EINVAL;
670 } else {
671 dev = __dev_map_alloc_node(net, dtab, &val, i);
672 if (IS_ERR(dev))
673 return PTR_ERR(dev);
674 }
675
676 /* Use call_rcu() here to ensure rcu critical sections have completed
677 * Remembering the driver side flush operation will happen before the
678 * net device is removed.
679 */
680 old_dev = xchg(&dtab->netdev_map[i], dev);
681 if (old_dev)
682 call_rcu(&old_dev->rcu, __dev_map_entry_free);
683
684 return 0;
685 }
686
dev_map_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)687 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
688 u64 map_flags)
689 {
690 return __dev_map_update_elem(current->nsproxy->net_ns,
691 map, key, value, map_flags);
692 }
693
__dev_map_hash_update_elem(struct net * net,struct bpf_map * map,void * key,void * value,u64 map_flags)694 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
695 void *key, void *value, u64 map_flags)
696 {
697 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
698 struct bpf_dtab_netdev *dev, *old_dev;
699 struct bpf_devmap_val val = {};
700 u32 idx = *(u32 *)key;
701 unsigned long flags;
702 int err = -EEXIST;
703
704 /* already verified value_size <= sizeof val */
705 memcpy(&val, value, map->value_size);
706
707 if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
708 return -EINVAL;
709
710 spin_lock_irqsave(&dtab->index_lock, flags);
711
712 old_dev = __dev_map_hash_lookup_elem(map, idx);
713 if (old_dev && (map_flags & BPF_NOEXIST))
714 goto out_err;
715
716 dev = __dev_map_alloc_node(net, dtab, &val, idx);
717 if (IS_ERR(dev)) {
718 err = PTR_ERR(dev);
719 goto out_err;
720 }
721
722 if (old_dev) {
723 hlist_del_rcu(&old_dev->index_hlist);
724 } else {
725 if (dtab->items >= dtab->map.max_entries) {
726 spin_unlock_irqrestore(&dtab->index_lock, flags);
727 call_rcu(&dev->rcu, __dev_map_entry_free);
728 return -E2BIG;
729 }
730 dtab->items++;
731 }
732
733 hlist_add_head_rcu(&dev->index_hlist,
734 dev_map_index_hash(dtab, idx));
735 spin_unlock_irqrestore(&dtab->index_lock, flags);
736
737 if (old_dev)
738 call_rcu(&old_dev->rcu, __dev_map_entry_free);
739
740 return 0;
741
742 out_err:
743 spin_unlock_irqrestore(&dtab->index_lock, flags);
744 return err;
745 }
746
dev_map_hash_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)747 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
748 u64 map_flags)
749 {
750 return __dev_map_hash_update_elem(current->nsproxy->net_ns,
751 map, key, value, map_flags);
752 }
753
754 static int dev_map_btf_id;
755 const struct bpf_map_ops dev_map_ops = {
756 .map_meta_equal = bpf_map_meta_equal,
757 .map_alloc = dev_map_alloc,
758 .map_free = dev_map_free,
759 .map_get_next_key = dev_map_get_next_key,
760 .map_lookup_elem = dev_map_lookup_elem,
761 .map_update_elem = dev_map_update_elem,
762 .map_delete_elem = dev_map_delete_elem,
763 .map_check_btf = map_check_no_btf,
764 .map_btf_name = "bpf_dtab",
765 .map_btf_id = &dev_map_btf_id,
766 };
767
768 static int dev_map_hash_map_btf_id;
769 const struct bpf_map_ops dev_map_hash_ops = {
770 .map_meta_equal = bpf_map_meta_equal,
771 .map_alloc = dev_map_alloc,
772 .map_free = dev_map_free,
773 .map_get_next_key = dev_map_hash_get_next_key,
774 .map_lookup_elem = dev_map_hash_lookup_elem,
775 .map_update_elem = dev_map_hash_update_elem,
776 .map_delete_elem = dev_map_hash_delete_elem,
777 .map_check_btf = map_check_no_btf,
778 .map_btf_name = "bpf_dtab",
779 .map_btf_id = &dev_map_hash_map_btf_id,
780 };
781
dev_map_hash_remove_netdev(struct bpf_dtab * dtab,struct net_device * netdev)782 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
783 struct net_device *netdev)
784 {
785 unsigned long flags;
786 u32 i;
787
788 spin_lock_irqsave(&dtab->index_lock, flags);
789 for (i = 0; i < dtab->n_buckets; i++) {
790 struct bpf_dtab_netdev *dev;
791 struct hlist_head *head;
792 struct hlist_node *next;
793
794 head = dev_map_index_hash(dtab, i);
795
796 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
797 if (netdev != dev->dev)
798 continue;
799
800 dtab->items--;
801 hlist_del_rcu(&dev->index_hlist);
802 call_rcu(&dev->rcu, __dev_map_entry_free);
803 }
804 }
805 spin_unlock_irqrestore(&dtab->index_lock, flags);
806 }
807
dev_map_notification(struct notifier_block * notifier,ulong event,void * ptr)808 static int dev_map_notification(struct notifier_block *notifier,
809 ulong event, void *ptr)
810 {
811 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
812 struct bpf_dtab *dtab;
813 int i, cpu;
814
815 switch (event) {
816 case NETDEV_REGISTER:
817 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
818 break;
819
820 /* will be freed in free_netdev() */
821 netdev->xdp_bulkq = alloc_percpu(struct xdp_dev_bulk_queue);
822 if (!netdev->xdp_bulkq)
823 return NOTIFY_BAD;
824
825 for_each_possible_cpu(cpu)
826 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
827 break;
828 case NETDEV_UNREGISTER:
829 /* This rcu_read_lock/unlock pair is needed because
830 * dev_map_list is an RCU list AND to ensure a delete
831 * operation does not free a netdev_map entry while we
832 * are comparing it against the netdev being unregistered.
833 */
834 rcu_read_lock();
835 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
836 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
837 dev_map_hash_remove_netdev(dtab, netdev);
838 continue;
839 }
840
841 for (i = 0; i < dtab->map.max_entries; i++) {
842 struct bpf_dtab_netdev *dev, *odev;
843
844 dev = READ_ONCE(dtab->netdev_map[i]);
845 if (!dev || netdev != dev->dev)
846 continue;
847 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
848 if (dev == odev)
849 call_rcu(&dev->rcu,
850 __dev_map_entry_free);
851 }
852 }
853 rcu_read_unlock();
854 break;
855 default:
856 break;
857 }
858 return NOTIFY_OK;
859 }
860
861 static struct notifier_block dev_map_notifier = {
862 .notifier_call = dev_map_notification,
863 };
864
dev_map_init(void)865 static int __init dev_map_init(void)
866 {
867 int cpu;
868
869 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
870 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
871 offsetof(struct _bpf_dtab_netdev, dev));
872 register_netdevice_notifier(&dev_map_notifier);
873
874 for_each_possible_cpu(cpu)
875 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
876 return 0;
877 }
878
879 subsys_initcall(dev_map_init);
880