• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #ifdef CONFIG_RECLAIM_ACCT
101 #include <linux/reclaim_acct.h>
102 #endif
103 #include <linux/mm_purgeable.h>
104 
105 #include <asm/pgalloc.h>
106 #include <linux/uaccess.h>
107 #include <asm/mmu_context.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 
111 #include <trace/events/sched.h>
112 #include <linux/hck/lite_hck_ced.h>
113 
114 #define CREATE_TRACE_POINTS
115 #include <trace/events/task.h>
116 
117 /*
118  * Minimum number of threads to boot the kernel
119  */
120 #define MIN_THREADS 20
121 
122 /*
123  * Maximum number of threads
124  */
125 #define MAX_THREADS FUTEX_TID_MASK
126 
127 /*
128  * Protected counters by write_lock_irq(&tasklist_lock)
129  */
130 unsigned long total_forks;	/* Handle normal Linux uptimes. */
131 int nr_threads;			/* The idle threads do not count.. */
132 
133 static int max_threads;		/* tunable limit on nr_threads */
134 
135 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
136 
137 static const char * const resident_page_types[] = {
138 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
139 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
140 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
141 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
142 };
143 
144 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
145 
146 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
147 
148 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)149 int lockdep_tasklist_lock_is_held(void)
150 {
151 	return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155 
nr_processes(void)156 int nr_processes(void)
157 {
158 	int cpu;
159 	int total = 0;
160 
161 	for_each_possible_cpu(cpu)
162 		total += per_cpu(process_counts, cpu);
163 
164 	return total;
165 }
166 
arch_release_task_struct(struct task_struct * tsk)167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170 
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173 
alloc_task_struct_node(int node)174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
free_task_struct(struct task_struct * tsk)179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184 
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186 
187 /*
188  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189  * kmemcache based allocator.
190  */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192 
193 #ifdef CONFIG_VMAP_STACK
194 /*
195  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196  * flush.  Try to minimize the number of calls by caching stacks.
197  */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200 
free_vm_stack_cache(unsigned int cpu)201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 	int i;
205 
206 	for (i = 0; i < NR_CACHED_STACKS; i++) {
207 		struct vm_struct *vm_stack = cached_vm_stacks[i];
208 
209 		if (!vm_stack)
210 			continue;
211 
212 		vfree(vm_stack->addr);
213 		cached_vm_stacks[i] = NULL;
214 	}
215 
216 	return 0;
217 }
218 #endif
219 
alloc_thread_stack_node(struct task_struct * tsk,int node)220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 	void *stack;
224 	int i;
225 
226 	for (i = 0; i < NR_CACHED_STACKS; i++) {
227 		struct vm_struct *s;
228 
229 		s = this_cpu_xchg(cached_stacks[i], NULL);
230 
231 		if (!s)
232 			continue;
233 
234 		/* Clear the KASAN shadow of the stack. */
235 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
236 
237 		/* Clear stale pointers from reused stack. */
238 		memset(s->addr, 0, THREAD_SIZE);
239 
240 		tsk->stack_vm_area = s;
241 		tsk->stack = s->addr;
242 		return s->addr;
243 	}
244 
245 	/*
246 	 * Allocated stacks are cached and later reused by new threads,
247 	 * so memcg accounting is performed manually on assigning/releasing
248 	 * stacks to tasks. Drop __GFP_ACCOUNT.
249 	 */
250 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 				     VMALLOC_START, VMALLOC_END,
252 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
253 				     PAGE_KERNEL,
254 				     0, node, __builtin_return_address(0));
255 
256 	/*
257 	 * We can't call find_vm_area() in interrupt context, and
258 	 * free_thread_stack() can be called in interrupt context,
259 	 * so cache the vm_struct.
260 	 */
261 	if (stack) {
262 		tsk->stack_vm_area = find_vm_area(stack);
263 		tsk->stack = stack;
264 	}
265 	return stack;
266 #else
267 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 					     THREAD_SIZE_ORDER);
269 
270 	if (likely(page)) {
271 		tsk->stack = kasan_reset_tag(page_address(page));
272 		return tsk->stack;
273 	}
274 	return NULL;
275 #endif
276 }
277 
free_thread_stack(struct task_struct * tsk)278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 	struct vm_struct *vm = task_stack_vm_area(tsk);
282 
283 	if (vm) {
284 		int i;
285 
286 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 			memcg_kmem_uncharge_page(vm->pages[i], 0);
288 
289 		for (i = 0; i < NR_CACHED_STACKS; i++) {
290 			if (this_cpu_cmpxchg(cached_stacks[i],
291 					NULL, tsk->stack_vm_area) != NULL)
292 				continue;
293 
294 			return;
295 		}
296 
297 		vfree_atomic(tsk->stack);
298 		return;
299 	}
300 #endif
301 
302 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306 
alloc_thread_stack_node(struct task_struct * tsk,int node)307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 						  int node)
309 {
310 	unsigned long *stack;
311 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 	stack = kasan_reset_tag(stack);
313 	tsk->stack = stack;
314 	return stack;
315 }
316 
free_thread_stack(struct task_struct * tsk)317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 	kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321 
thread_stack_cache_init(void)322 void thread_stack_cache_init(void)
323 {
324 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 					THREAD_SIZE, THREAD_SIZE, 0, 0,
326 					THREAD_SIZE, NULL);
327 	BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331 
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334 
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337 
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340 
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343 
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346 
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349 
vm_area_alloc(struct mm_struct * mm)350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 	struct vm_area_struct *vma;
353 
354 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 	if (vma)
356 		vma_init(vma, mm);
357 	return vma;
358 }
359 
vm_area_dup(struct vm_area_struct * orig)360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 
364 	if (new) {
365 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 		/*
368 		 * orig->shared.rb may be modified concurrently, but the clone
369 		 * will be reinitialized.
370 		 */
371 		*new = data_race(*orig);
372 		INIT_LIST_HEAD(&new->anon_vma_chain);
373 		new->vm_next = new->vm_prev = NULL;
374 		dup_anon_vma_name(orig, new);
375 	}
376 	return new;
377 }
378 
vm_area_free(struct vm_area_struct * vma)379 void vm_area_free(struct vm_area_struct *vma)
380 {
381 	free_anon_vma_name(vma);
382 	kmem_cache_free(vm_area_cachep, vma);
383 }
384 
account_kernel_stack(struct task_struct * tsk,int account)385 static void account_kernel_stack(struct task_struct *tsk, int account)
386 {
387 	void *stack = task_stack_page(tsk);
388 	struct vm_struct *vm = task_stack_vm_area(tsk);
389 
390 
391 	/* All stack pages are in the same node. */
392 	if (vm)
393 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
394 				      account * (THREAD_SIZE / 1024));
395 	else
396 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
397 				      account * (THREAD_SIZE / 1024));
398 }
399 
memcg_charge_kernel_stack(struct task_struct * tsk)400 static int memcg_charge_kernel_stack(struct task_struct *tsk)
401 {
402 #ifdef CONFIG_VMAP_STACK
403 	struct vm_struct *vm = task_stack_vm_area(tsk);
404 	int ret;
405 
406 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
407 
408 	if (vm) {
409 		int i;
410 
411 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
412 
413 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
414 			/*
415 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
416 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
417 			 * free_thread_stack() will ignore this page.
418 			 */
419 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
420 						     0);
421 			if (ret)
422 				return ret;
423 		}
424 	}
425 #endif
426 	return 0;
427 }
428 
release_task_stack(struct task_struct * tsk)429 static void release_task_stack(struct task_struct *tsk)
430 {
431 	if (WARN_ON(tsk->state != TASK_DEAD))
432 		return;  /* Better to leak the stack than to free prematurely */
433 
434 	account_kernel_stack(tsk, -1);
435 	free_thread_stack(tsk);
436 	tsk->stack = NULL;
437 #ifdef CONFIG_VMAP_STACK
438 	tsk->stack_vm_area = NULL;
439 #endif
440 }
441 
442 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)443 void put_task_stack(struct task_struct *tsk)
444 {
445 	if (refcount_dec_and_test(&tsk->stack_refcount))
446 		release_task_stack(tsk);
447 }
448 #endif
449 
free_task(struct task_struct * tsk)450 void free_task(struct task_struct *tsk)
451 {
452 #ifdef CONFIG_SECCOMP
453 	WARN_ON_ONCE(tsk->seccomp.filter);
454 #endif
455 	scs_release(tsk);
456 
457 #ifndef CONFIG_THREAD_INFO_IN_TASK
458 	/*
459 	 * The task is finally done with both the stack and thread_info,
460 	 * so free both.
461 	 */
462 	release_task_stack(tsk);
463 #else
464 	/*
465 	 * If the task had a separate stack allocation, it should be gone
466 	 * by now.
467 	 */
468 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
469 #endif
470 	rt_mutex_debug_task_free(tsk);
471 	ftrace_graph_exit_task(tsk);
472 	arch_release_task_struct(tsk);
473 	if (tsk->flags & PF_KTHREAD)
474 		free_kthread_struct(tsk);
475 	free_task_struct(tsk);
476 }
477 EXPORT_SYMBOL(free_task);
478 
479 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)480 static __latent_entropy int dup_mmap(struct mm_struct *mm,
481 					struct mm_struct *oldmm)
482 {
483 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
484 	struct rb_node **rb_link, *rb_parent;
485 	int retval;
486 	unsigned long charge;
487 	LIST_HEAD(uf);
488 
489 	uprobe_start_dup_mmap();
490 	if (mmap_write_lock_killable(oldmm)) {
491 		retval = -EINTR;
492 		goto fail_uprobe_end;
493 	}
494 	flush_cache_dup_mm(oldmm);
495 	uprobe_dup_mmap(oldmm, mm);
496 	/*
497 	 * Not linked in yet - no deadlock potential:
498 	 */
499 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
500 
501 	/* No ordering required: file already has been exposed. */
502 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
503 
504 	mm->total_vm = oldmm->total_vm;
505 	mm->data_vm = oldmm->data_vm;
506 	mm->exec_vm = oldmm->exec_vm;
507 	mm->stack_vm = oldmm->stack_vm;
508 
509 	rb_link = &mm->mm_rb.rb_node;
510 	rb_parent = NULL;
511 	pprev = &mm->mmap;
512 	retval = ksm_fork(mm, oldmm);
513 	if (retval)
514 		goto out;
515 	retval = khugepaged_fork(mm, oldmm);
516 	if (retval)
517 		goto out;
518 
519 	prev = NULL;
520 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
521 		struct file *file;
522 
523 		if (mpnt->vm_flags & VM_DONTCOPY) {
524 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
525 			continue;
526 		}
527 		charge = 0;
528 		/*
529 		 * Don't duplicate many vmas if we've been oom-killed (for
530 		 * example)
531 		 */
532 		if (fatal_signal_pending(current)) {
533 			retval = -EINTR;
534 			goto out;
535 		}
536 		if (mpnt->vm_flags & VM_ACCOUNT) {
537 			unsigned long len = vma_pages(mpnt);
538 
539 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
540 				goto fail_nomem;
541 			charge = len;
542 		}
543 		tmp = vm_area_dup(mpnt);
544 		if (!tmp)
545 			goto fail_nomem;
546 		retval = vma_dup_policy(mpnt, tmp);
547 		if (retval)
548 			goto fail_nomem_policy;
549 		tmp->vm_mm = mm;
550 		retval = dup_userfaultfd(tmp, &uf);
551 		if (retval)
552 			goto fail_nomem_anon_vma_fork;
553 		if (tmp->vm_flags & VM_WIPEONFORK) {
554 			/*
555 			 * VM_WIPEONFORK gets a clean slate in the child.
556 			 * Don't prepare anon_vma until fault since we don't
557 			 * copy page for current vma.
558 			 */
559 			tmp->anon_vma = NULL;
560 		} else if (anon_vma_fork(tmp, mpnt))
561 			goto fail_nomem_anon_vma_fork;
562 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
563 		file = tmp->vm_file;
564 		if (file) {
565 			struct inode *inode = file_inode(file);
566 			struct address_space *mapping = file->f_mapping;
567 
568 			get_file(file);
569 			if (tmp->vm_flags & VM_DENYWRITE)
570 				put_write_access(inode);
571 			i_mmap_lock_write(mapping);
572 			if (tmp->vm_flags & VM_SHARED)
573 				mapping_allow_writable(mapping);
574 			flush_dcache_mmap_lock(mapping);
575 			/* insert tmp into the share list, just after mpnt */
576 			vma_interval_tree_insert_after(tmp, mpnt,
577 					&mapping->i_mmap);
578 			flush_dcache_mmap_unlock(mapping);
579 			i_mmap_unlock_write(mapping);
580 		}
581 
582 		/*
583 		 * Clear hugetlb-related page reserves for children. This only
584 		 * affects MAP_PRIVATE mappings. Faults generated by the child
585 		 * are not guaranteed to succeed, even if read-only
586 		 */
587 		if (is_vm_hugetlb_page(tmp))
588 			reset_vma_resv_huge_pages(tmp);
589 
590 		/*
591 		 * Link in the new vma and copy the page table entries.
592 		 */
593 		*pprev = tmp;
594 		pprev = &tmp->vm_next;
595 		tmp->vm_prev = prev;
596 		prev = tmp;
597 
598 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
599 		rb_link = &tmp->vm_rb.rb_right;
600 		rb_parent = &tmp->vm_rb;
601 
602 		mm->map_count++;
603 		if (!(tmp->vm_flags & VM_WIPEONFORK))
604 			retval = copy_page_range(tmp, mpnt);
605 
606 		if (tmp->vm_ops && tmp->vm_ops->open)
607 			tmp->vm_ops->open(tmp);
608 
609 		if (retval)
610 			goto out;
611 	}
612 	/* a new mm has just been created */
613 	retval = arch_dup_mmap(oldmm, mm);
614 out:
615 	mmap_write_unlock(mm);
616 	flush_tlb_mm(oldmm);
617 	mmap_write_unlock(oldmm);
618 	dup_userfaultfd_complete(&uf);
619 fail_uprobe_end:
620 	uprobe_end_dup_mmap();
621 	return retval;
622 fail_nomem_anon_vma_fork:
623 	mpol_put(vma_policy(tmp));
624 fail_nomem_policy:
625 	vm_area_free(tmp);
626 fail_nomem:
627 	retval = -ENOMEM;
628 	vm_unacct_memory(charge);
629 	goto out;
630 }
631 
mm_alloc_pgd(struct mm_struct * mm)632 static inline int mm_alloc_pgd(struct mm_struct *mm)
633 {
634 	mm_init_uxpgd(mm);
635 	mm->pgd = pgd_alloc(mm);
636 	if (unlikely(!mm->pgd))
637 		return -ENOMEM;
638 	return 0;
639 }
640 
mm_free_pgd(struct mm_struct * mm)641 static inline void mm_free_pgd(struct mm_struct *mm)
642 {
643 	pgd_free(mm, mm->pgd);
644 	mm_clear_uxpgd(mm);
645 }
646 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
648 {
649 	mmap_write_lock(oldmm);
650 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
651 	mmap_write_unlock(oldmm);
652 	return 0;
653 }
654 #define mm_alloc_pgd(mm)	(0)
655 #define mm_free_pgd(mm)
656 #endif /* CONFIG_MMU */
657 
check_mm(struct mm_struct * mm)658 static void check_mm(struct mm_struct *mm)
659 {
660 	int i;
661 
662 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
663 			 "Please make sure 'struct resident_page_types[]' is updated as well");
664 
665 	for (i = 0; i < NR_MM_COUNTERS; i++) {
666 		long x = atomic_long_read(&mm->rss_stat.count[i]);
667 
668 		if (unlikely(x))
669 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
670 				 mm, resident_page_types[i], x);
671 	}
672 
673 	if (mm_pgtables_bytes(mm))
674 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
675 				mm_pgtables_bytes(mm));
676 
677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
678 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
679 #endif
680 }
681 
682 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
683 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
684 
685 /*
686  * Called when the last reference to the mm
687  * is dropped: either by a lazy thread or by
688  * mmput. Free the page directory and the mm.
689  */
__mmdrop(struct mm_struct * mm)690 void __mmdrop(struct mm_struct *mm)
691 {
692 	BUG_ON(mm == &init_mm);
693 	WARN_ON_ONCE(mm == current->mm);
694 	WARN_ON_ONCE(mm == current->active_mm);
695 	mm_free_pgd(mm);
696 	destroy_context(mm);
697 	mmu_notifier_subscriptions_destroy(mm);
698 	check_mm(mm);
699 	put_user_ns(mm->user_ns);
700 	free_mm(mm);
701 }
702 EXPORT_SYMBOL_GPL(__mmdrop);
703 
mmdrop_async_fn(struct work_struct * work)704 static void mmdrop_async_fn(struct work_struct *work)
705 {
706 	struct mm_struct *mm;
707 
708 	mm = container_of(work, struct mm_struct, async_put_work);
709 	__mmdrop(mm);
710 }
711 
mmdrop_async(struct mm_struct * mm)712 static void mmdrop_async(struct mm_struct *mm)
713 {
714 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
715 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
716 		schedule_work(&mm->async_put_work);
717 	}
718 }
719 
free_signal_struct(struct signal_struct * sig)720 static inline void free_signal_struct(struct signal_struct *sig)
721 {
722 	taskstats_tgid_free(sig);
723 	sched_autogroup_exit(sig);
724 	/*
725 	 * __mmdrop is not safe to call from softirq context on x86 due to
726 	 * pgd_dtor so postpone it to the async context
727 	 */
728 	if (sig->oom_mm)
729 		mmdrop_async(sig->oom_mm);
730 	kmem_cache_free(signal_cachep, sig);
731 }
732 
put_signal_struct(struct signal_struct * sig)733 static inline void put_signal_struct(struct signal_struct *sig)
734 {
735 	if (refcount_dec_and_test(&sig->sigcnt))
736 		free_signal_struct(sig);
737 }
738 
__put_task_struct(struct task_struct * tsk)739 void __put_task_struct(struct task_struct *tsk)
740 {
741 	WARN_ON(!tsk->exit_state);
742 	WARN_ON(refcount_read(&tsk->usage));
743 	WARN_ON(tsk == current);
744 
745 	io_uring_free(tsk);
746 	cgroup_free(tsk);
747 	task_numa_free(tsk, true);
748 	security_task_free(tsk);
749 	exit_creds(tsk);
750 	delayacct_tsk_free(tsk);
751 	put_signal_struct(tsk->signal);
752 
753 	if (!profile_handoff_task(tsk))
754 		free_task(tsk);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct);
757 
__put_task_struct_rcu_cb(struct rcu_head * rhp)758 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
759 {
760 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
761 
762 	__put_task_struct(task);
763 }
764 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
765 
arch_task_cache_init(void)766 void __init __weak arch_task_cache_init(void) { }
767 
768 /*
769  * set_max_threads
770  */
set_max_threads(unsigned int max_threads_suggested)771 static void set_max_threads(unsigned int max_threads_suggested)
772 {
773 	u64 threads;
774 	unsigned long nr_pages = totalram_pages();
775 
776 	/*
777 	 * The number of threads shall be limited such that the thread
778 	 * structures may only consume a small part of the available memory.
779 	 */
780 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
781 		threads = MAX_THREADS;
782 	else
783 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
784 				    (u64) THREAD_SIZE * 8UL);
785 
786 	if (threads > max_threads_suggested)
787 		threads = max_threads_suggested;
788 
789 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
790 }
791 
792 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
793 /* Initialized by the architecture: */
794 int arch_task_struct_size __read_mostly;
795 #endif
796 
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)798 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
799 {
800 	/* Fetch thread_struct whitelist for the architecture. */
801 	arch_thread_struct_whitelist(offset, size);
802 
803 	/*
804 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
805 	 * adjust offset to position of thread_struct in task_struct.
806 	 */
807 	if (unlikely(*size == 0))
808 		*offset = 0;
809 	else
810 		*offset += offsetof(struct task_struct, thread);
811 }
812 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
813 
fork_init(void)814 void __init fork_init(void)
815 {
816 	int i;
817 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
818 #ifndef ARCH_MIN_TASKALIGN
819 #define ARCH_MIN_TASKALIGN	0
820 #endif
821 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
822 	unsigned long useroffset, usersize;
823 
824 	/* create a slab on which task_structs can be allocated */
825 	task_struct_whitelist(&useroffset, &usersize);
826 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
827 			arch_task_struct_size, align,
828 			SLAB_PANIC|SLAB_ACCOUNT,
829 			useroffset, usersize, NULL);
830 #endif
831 
832 	/* do the arch specific task caches init */
833 	arch_task_cache_init();
834 
835 	set_max_threads(MAX_THREADS);
836 
837 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
838 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
839 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
840 		init_task.signal->rlim[RLIMIT_NPROC];
841 
842 	for (i = 0; i < UCOUNT_COUNTS; i++) {
843 		init_user_ns.ucount_max[i] = max_threads/2;
844 	}
845 
846 #ifdef CONFIG_VMAP_STACK
847 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
848 			  NULL, free_vm_stack_cache);
849 #endif
850 
851 	scs_init();
852 
853 	lockdep_init_task(&init_task);
854 	uprobes_init();
855 }
856 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)857 int __weak arch_dup_task_struct(struct task_struct *dst,
858 					       struct task_struct *src)
859 {
860 	*dst = *src;
861 	return 0;
862 }
863 
set_task_stack_end_magic(struct task_struct * tsk)864 void set_task_stack_end_magic(struct task_struct *tsk)
865 {
866 	unsigned long *stackend;
867 
868 	stackend = end_of_stack(tsk);
869 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
870 }
871 
dup_task_struct(struct task_struct * orig,int node)872 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
873 {
874 	struct task_struct *tsk;
875 	unsigned long *stack;
876 	struct vm_struct *stack_vm_area __maybe_unused;
877 	int err;
878 
879 	if (node == NUMA_NO_NODE)
880 		node = tsk_fork_get_node(orig);
881 	tsk = alloc_task_struct_node(node);
882 	if (!tsk)
883 		return NULL;
884 
885 	stack = alloc_thread_stack_node(tsk, node);
886 	if (!stack)
887 		goto free_tsk;
888 
889 	if (memcg_charge_kernel_stack(tsk))
890 		goto free_stack;
891 
892 	stack_vm_area = task_stack_vm_area(tsk);
893 
894 	err = arch_dup_task_struct(tsk, orig);
895 
896 #ifdef CONFIG_ACCESS_TOKENID
897 	tsk->token = orig->token;
898 	tsk->ftoken = 0;
899 #endif
900 	/*
901 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
902 	 * sure they're properly initialized before using any stack-related
903 	 * functions again.
904 	 */
905 	tsk->stack = stack;
906 #ifdef CONFIG_VMAP_STACK
907 	tsk->stack_vm_area = stack_vm_area;
908 #endif
909 #ifdef CONFIG_THREAD_INFO_IN_TASK
910 	refcount_set(&tsk->stack_refcount, 1);
911 #endif
912 
913 	if (err)
914 		goto free_stack;
915 
916 	err = scs_prepare(tsk, node);
917 	if (err)
918 		goto free_stack;
919 
920 #ifdef CONFIG_SECCOMP
921 	/*
922 	 * We must handle setting up seccomp filters once we're under
923 	 * the sighand lock in case orig has changed between now and
924 	 * then. Until then, filter must be NULL to avoid messing up
925 	 * the usage counts on the error path calling free_task.
926 	 */
927 	tsk->seccomp.filter = NULL;
928 #endif
929 
930 	setup_thread_stack(tsk, orig);
931 	clear_user_return_notifier(tsk);
932 	clear_tsk_need_resched(tsk);
933 	set_task_stack_end_magic(tsk);
934 
935 #ifdef CONFIG_STACKPROTECTOR
936 	tsk->stack_canary = get_random_canary();
937 #endif
938 	if (orig->cpus_ptr == &orig->cpus_mask)
939 		tsk->cpus_ptr = &tsk->cpus_mask;
940 
941 	/*
942 	 * One for the user space visible state that goes away when reaped.
943 	 * One for the scheduler.
944 	 */
945 	refcount_set(&tsk->rcu_users, 2);
946 	/* One for the rcu users */
947 	refcount_set(&tsk->usage, 1);
948 #ifdef CONFIG_BLK_DEV_IO_TRACE
949 	tsk->btrace_seq = 0;
950 #endif
951 	tsk->splice_pipe = NULL;
952 	tsk->task_frag.page = NULL;
953 	tsk->wake_q.next = NULL;
954 	tsk->pf_io_worker = NULL;
955 
956 	account_kernel_stack(tsk, 1);
957 
958 	kcov_task_init(tsk);
959 
960 #ifdef CONFIG_FAULT_INJECTION
961 	tsk->fail_nth = 0;
962 #endif
963 
964 #ifdef CONFIG_BLK_CGROUP
965 	tsk->throttle_queue = NULL;
966 	tsk->use_memdelay = 0;
967 #endif
968 
969 #ifdef CONFIG_MEMCG
970 	tsk->active_memcg = NULL;
971 #endif
972 	return tsk;
973 
974 free_stack:
975 	free_thread_stack(tsk);
976 free_tsk:
977 	free_task_struct(tsk);
978 	return NULL;
979 }
980 
981 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
982 
983 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
984 
coredump_filter_setup(char * s)985 static int __init coredump_filter_setup(char *s)
986 {
987 	default_dump_filter =
988 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
989 		MMF_DUMP_FILTER_MASK;
990 	return 1;
991 }
992 
993 __setup("coredump_filter=", coredump_filter_setup);
994 
995 #include <linux/init_task.h>
996 
mm_init_aio(struct mm_struct * mm)997 static void mm_init_aio(struct mm_struct *mm)
998 {
999 #ifdef CONFIG_AIO
1000 	spin_lock_init(&mm->ioctx_lock);
1001 	mm->ioctx_table = NULL;
1002 #endif
1003 }
1004 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1005 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1006 					   struct task_struct *p)
1007 {
1008 #ifdef CONFIG_MEMCG
1009 	if (mm->owner == p)
1010 		WRITE_ONCE(mm->owner, NULL);
1011 #endif
1012 }
1013 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1014 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1015 {
1016 #ifdef CONFIG_MEMCG
1017 	mm->owner = p;
1018 #endif
1019 }
1020 
mm_init_pasid(struct mm_struct * mm)1021 static void mm_init_pasid(struct mm_struct *mm)
1022 {
1023 #ifdef CONFIG_IOMMU_SUPPORT
1024 	mm->pasid = INIT_PASID;
1025 #endif
1026 }
1027 
mm_init_uprobes_state(struct mm_struct * mm)1028 static void mm_init_uprobes_state(struct mm_struct *mm)
1029 {
1030 #ifdef CONFIG_UPROBES
1031 	mm->uprobes_state.xol_area = NULL;
1032 #endif
1033 }
1034 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1035 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1036 	struct user_namespace *user_ns)
1037 {
1038 	mm->mmap = NULL;
1039 	mm->mm_rb = RB_ROOT;
1040 	mm->vmacache_seqnum = 0;
1041 #ifdef CONFIG_RSS_THRESHOLD
1042 	mm->rss_threshold = 0;
1043 #endif
1044 	atomic_set(&mm->mm_users, 1);
1045 	atomic_set(&mm->mm_count, 1);
1046 	seqcount_init(&mm->write_protect_seq);
1047 	mmap_init_lock(mm);
1048 	INIT_LIST_HEAD(&mm->mmlist);
1049 	mm->core_state = NULL;
1050 	mm_pgtables_bytes_init(mm);
1051 	mm->map_count = 0;
1052 	mm->locked_vm = 0;
1053 	atomic_set(&mm->has_pinned, 0);
1054 	atomic64_set(&mm->pinned_vm, 0);
1055 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1056 	spin_lock_init(&mm->page_table_lock);
1057 	spin_lock_init(&mm->arg_lock);
1058 	mm_init_cpumask(mm);
1059 	mm_init_aio(mm);
1060 	mm_init_owner(mm, p);
1061 	mm_init_pasid(mm);
1062 	RCU_INIT_POINTER(mm->exe_file, NULL);
1063 	mmu_notifier_subscriptions_init(mm);
1064 	init_tlb_flush_pending(mm);
1065 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1066 	mm->pmd_huge_pte = NULL;
1067 #endif
1068 	mm_init_uprobes_state(mm);
1069 	hugetlb_count_init(mm);
1070 
1071 	if (current->mm) {
1072 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1073 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1074 	} else {
1075 		mm->flags = default_dump_filter;
1076 		mm->def_flags = 0;
1077 	}
1078 
1079 	if (mm_alloc_pgd(mm))
1080 		goto fail_nopgd;
1081 
1082 	if (init_new_context(p, mm))
1083 		goto fail_nocontext;
1084 
1085 	mm->user_ns = get_user_ns(user_ns);
1086 	return mm;
1087 
1088 fail_nocontext:
1089 	mm_free_pgd(mm);
1090 fail_nopgd:
1091 	free_mm(mm);
1092 	return NULL;
1093 }
1094 
1095 /*
1096  * Allocate and initialize an mm_struct.
1097  */
mm_alloc(void)1098 struct mm_struct *mm_alloc(void)
1099 {
1100 	struct mm_struct *mm;
1101 
1102 	mm = allocate_mm();
1103 	if (!mm)
1104 		return NULL;
1105 
1106 	memset(mm, 0, sizeof(*mm));
1107 	return mm_init(mm, current, current_user_ns());
1108 }
1109 
__mmput(struct mm_struct * mm)1110 static inline void __mmput(struct mm_struct *mm)
1111 {
1112 	VM_BUG_ON(atomic_read(&mm->mm_users));
1113 
1114 	uprobe_clear_state(mm);
1115 	exit_aio(mm);
1116 	ksm_exit(mm);
1117 	khugepaged_exit(mm); /* must run before exit_mmap */
1118 	exit_mmap(mm);
1119 	mm_put_huge_zero_page(mm);
1120 	set_mm_exe_file(mm, NULL);
1121 	if (!list_empty(&mm->mmlist)) {
1122 		spin_lock(&mmlist_lock);
1123 		list_del(&mm->mmlist);
1124 		spin_unlock(&mmlist_lock);
1125 	}
1126 	if (mm->binfmt)
1127 		module_put(mm->binfmt->module);
1128 	mmdrop(mm);
1129 }
1130 
1131 /*
1132  * Decrement the use count and release all resources for an mm.
1133  */
mmput(struct mm_struct * mm)1134 void mmput(struct mm_struct *mm)
1135 {
1136 	might_sleep();
1137 
1138 	if (atomic_dec_and_test(&mm->mm_users))
1139 		__mmput(mm);
1140 }
1141 EXPORT_SYMBOL_GPL(mmput);
1142 
1143 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1144 static void mmput_async_fn(struct work_struct *work)
1145 {
1146 	struct mm_struct *mm = container_of(work, struct mm_struct,
1147 					    async_put_work);
1148 
1149 	__mmput(mm);
1150 }
1151 
mmput_async(struct mm_struct * mm)1152 void mmput_async(struct mm_struct *mm)
1153 {
1154 	if (atomic_dec_and_test(&mm->mm_users)) {
1155 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1156 		schedule_work(&mm->async_put_work);
1157 	}
1158 }
1159 EXPORT_SYMBOL_GPL(mmput_async);
1160 #endif
1161 
1162 /**
1163  * set_mm_exe_file - change a reference to the mm's executable file
1164  *
1165  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1166  *
1167  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1168  * invocations: in mmput() nobody alive left, in execve task is single
1169  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1170  * mm->exe_file, but does so without using set_mm_exe_file() in order
1171  * to do avoid the need for any locks.
1172  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1173 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1174 {
1175 	struct file *old_exe_file;
1176 
1177 	/*
1178 	 * It is safe to dereference the exe_file without RCU as
1179 	 * this function is only called if nobody else can access
1180 	 * this mm -- see comment above for justification.
1181 	 */
1182 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1183 
1184 	if (new_exe_file)
1185 		get_file(new_exe_file);
1186 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1187 	if (old_exe_file)
1188 		fput(old_exe_file);
1189 }
1190 
1191 /**
1192  * get_mm_exe_file - acquire a reference to the mm's executable file
1193  *
1194  * Returns %NULL if mm has no associated executable file.
1195  * User must release file via fput().
1196  */
get_mm_exe_file(struct mm_struct * mm)1197 struct file *get_mm_exe_file(struct mm_struct *mm)
1198 {
1199 	struct file *exe_file;
1200 
1201 	rcu_read_lock();
1202 	exe_file = rcu_dereference(mm->exe_file);
1203 	if (exe_file && !get_file_rcu(exe_file))
1204 		exe_file = NULL;
1205 	rcu_read_unlock();
1206 	return exe_file;
1207 }
1208 EXPORT_SYMBOL(get_mm_exe_file);
1209 
1210 /**
1211  * get_task_exe_file - acquire a reference to the task's executable file
1212  *
1213  * Returns %NULL if task's mm (if any) has no associated executable file or
1214  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1215  * User must release file via fput().
1216  */
get_task_exe_file(struct task_struct * task)1217 struct file *get_task_exe_file(struct task_struct *task)
1218 {
1219 	struct file *exe_file = NULL;
1220 	struct mm_struct *mm;
1221 
1222 	task_lock(task);
1223 	mm = task->mm;
1224 	if (mm) {
1225 		if (!(task->flags & PF_KTHREAD))
1226 			exe_file = get_mm_exe_file(mm);
1227 	}
1228 	task_unlock(task);
1229 	return exe_file;
1230 }
1231 EXPORT_SYMBOL(get_task_exe_file);
1232 
1233 /**
1234  * get_task_mm - acquire a reference to the task's mm
1235  *
1236  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1237  * this kernel workthread has transiently adopted a user mm with use_mm,
1238  * to do its AIO) is not set and if so returns a reference to it, after
1239  * bumping up the use count.  User must release the mm via mmput()
1240  * after use.  Typically used by /proc and ptrace.
1241  */
get_task_mm(struct task_struct * task)1242 struct mm_struct *get_task_mm(struct task_struct *task)
1243 {
1244 	struct mm_struct *mm;
1245 
1246 	task_lock(task);
1247 	mm = task->mm;
1248 	if (mm) {
1249 		if (task->flags & PF_KTHREAD)
1250 			mm = NULL;
1251 		else
1252 			mmget(mm);
1253 	}
1254 	task_unlock(task);
1255 	return mm;
1256 }
1257 EXPORT_SYMBOL_GPL(get_task_mm);
1258 
mm_access(struct task_struct * task,unsigned int mode)1259 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1260 {
1261 	struct mm_struct *mm;
1262 	int err;
1263 
1264 	err =  down_read_killable(&task->signal->exec_update_lock);
1265 	if (err)
1266 		return ERR_PTR(err);
1267 
1268 	mm = get_task_mm(task);
1269 	if (mm && mm != current->mm &&
1270 			!ptrace_may_access(task, mode)) {
1271 		mmput(mm);
1272 		mm = ERR_PTR(-EACCES);
1273 	}
1274 	up_read(&task->signal->exec_update_lock);
1275 
1276 	return mm;
1277 }
1278 
complete_vfork_done(struct task_struct * tsk)1279 static void complete_vfork_done(struct task_struct *tsk)
1280 {
1281 	struct completion *vfork;
1282 
1283 	task_lock(tsk);
1284 	vfork = tsk->vfork_done;
1285 	if (likely(vfork)) {
1286 		tsk->vfork_done = NULL;
1287 		complete(vfork);
1288 	}
1289 	task_unlock(tsk);
1290 }
1291 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1292 static int wait_for_vfork_done(struct task_struct *child,
1293 				struct completion *vfork)
1294 {
1295 	int killed;
1296 
1297 	freezer_do_not_count();
1298 	cgroup_enter_frozen();
1299 	killed = wait_for_completion_killable(vfork);
1300 	cgroup_leave_frozen(false);
1301 	freezer_count();
1302 
1303 	if (killed) {
1304 		task_lock(child);
1305 		child->vfork_done = NULL;
1306 		task_unlock(child);
1307 	}
1308 
1309 	put_task_struct(child);
1310 	return killed;
1311 }
1312 
1313 /* Please note the differences between mmput and mm_release.
1314  * mmput is called whenever we stop holding onto a mm_struct,
1315  * error success whatever.
1316  *
1317  * mm_release is called after a mm_struct has been removed
1318  * from the current process.
1319  *
1320  * This difference is important for error handling, when we
1321  * only half set up a mm_struct for a new process and need to restore
1322  * the old one.  Because we mmput the new mm_struct before
1323  * restoring the old one. . .
1324  * Eric Biederman 10 January 1998
1325  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1326 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328 	uprobe_free_utask(tsk);
1329 
1330 	/* Get rid of any cached register state */
1331 	deactivate_mm(tsk, mm);
1332 
1333 	/*
1334 	 * Signal userspace if we're not exiting with a core dump
1335 	 * because we want to leave the value intact for debugging
1336 	 * purposes.
1337 	 */
1338 	if (tsk->clear_child_tid) {
1339 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1340 		    atomic_read(&mm->mm_users) > 1) {
1341 			/*
1342 			 * We don't check the error code - if userspace has
1343 			 * not set up a proper pointer then tough luck.
1344 			 */
1345 			put_user(0, tsk->clear_child_tid);
1346 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1347 					1, NULL, NULL, 0, 0);
1348 		}
1349 		tsk->clear_child_tid = NULL;
1350 	}
1351 
1352 	/*
1353 	 * All done, finally we can wake up parent and return this mm to him.
1354 	 * Also kthread_stop() uses this completion for synchronization.
1355 	 */
1356 	if (tsk->vfork_done)
1357 		complete_vfork_done(tsk);
1358 }
1359 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1360 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1361 {
1362 	futex_exit_release(tsk);
1363 	mm_release(tsk, mm);
1364 }
1365 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1366 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1367 {
1368 	futex_exec_release(tsk);
1369 	mm_release(tsk, mm);
1370 }
1371 
1372 /**
1373  * dup_mm() - duplicates an existing mm structure
1374  * @tsk: the task_struct with which the new mm will be associated.
1375  * @oldmm: the mm to duplicate.
1376  *
1377  * Allocates a new mm structure and duplicates the provided @oldmm structure
1378  * content into it.
1379  *
1380  * Return: the duplicated mm or NULL on failure.
1381  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1382 static struct mm_struct *dup_mm(struct task_struct *tsk,
1383 				struct mm_struct *oldmm)
1384 {
1385 	struct mm_struct *mm;
1386 	int err;
1387 
1388 	mm = allocate_mm();
1389 	if (!mm)
1390 		goto fail_nomem;
1391 
1392 	memcpy(mm, oldmm, sizeof(*mm));
1393 
1394 	if (!mm_init(mm, tsk, mm->user_ns))
1395 		goto fail_nomem;
1396 
1397 	err = dup_mmap(mm, oldmm);
1398 	if (err)
1399 		goto free_pt;
1400 
1401 	mm->hiwater_rss = get_mm_rss(mm);
1402 	mm->hiwater_vm = mm->total_vm;
1403 
1404 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1405 		goto free_pt;
1406 
1407 	return mm;
1408 
1409 free_pt:
1410 	/* don't put binfmt in mmput, we haven't got module yet */
1411 	mm->binfmt = NULL;
1412 	mm_init_owner(mm, NULL);
1413 	mmput(mm);
1414 
1415 fail_nomem:
1416 	return NULL;
1417 }
1418 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1419 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1420 {
1421 	struct mm_struct *mm, *oldmm;
1422 	int retval;
1423 
1424 	tsk->min_flt = tsk->maj_flt = 0;
1425 	tsk->nvcsw = tsk->nivcsw = 0;
1426 #ifdef CONFIG_DETECT_HUNG_TASK
1427 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1428 	tsk->last_switch_time = 0;
1429 #endif
1430 
1431 	tsk->mm = NULL;
1432 	tsk->active_mm = NULL;
1433 
1434 	/*
1435 	 * Are we cloning a kernel thread?
1436 	 *
1437 	 * We need to steal a active VM for that..
1438 	 */
1439 	oldmm = current->mm;
1440 	if (!oldmm)
1441 		return 0;
1442 
1443 	/* initialize the new vmacache entries */
1444 	vmacache_flush(tsk);
1445 
1446 	if (clone_flags & CLONE_VM) {
1447 		mmget(oldmm);
1448 		mm = oldmm;
1449 		goto good_mm;
1450 	}
1451 
1452 	retval = -ENOMEM;
1453 	mm = dup_mm(tsk, current->mm);
1454 	if (!mm)
1455 		goto fail_nomem;
1456 
1457 good_mm:
1458 	tsk->mm = mm;
1459 	tsk->active_mm = mm;
1460 	return 0;
1461 
1462 fail_nomem:
1463 	return retval;
1464 }
1465 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1466 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1467 {
1468 	struct fs_struct *fs = current->fs;
1469 	if (clone_flags & CLONE_FS) {
1470 		/* tsk->fs is already what we want */
1471 		spin_lock(&fs->lock);
1472 		if (fs->in_exec) {
1473 			spin_unlock(&fs->lock);
1474 			return -EAGAIN;
1475 		}
1476 		fs->users++;
1477 		spin_unlock(&fs->lock);
1478 		return 0;
1479 	}
1480 	tsk->fs = copy_fs_struct(fs);
1481 	if (!tsk->fs)
1482 		return -ENOMEM;
1483 	return 0;
1484 }
1485 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1486 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1487 {
1488 	struct files_struct *oldf, *newf;
1489 	int error = 0;
1490 
1491 	/*
1492 	 * A background process may not have any files ...
1493 	 */
1494 	oldf = current->files;
1495 	if (!oldf)
1496 		goto out;
1497 
1498 	if (clone_flags & CLONE_FILES) {
1499 		atomic_inc(&oldf->count);
1500 		goto out;
1501 	}
1502 
1503 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1504 	if (!newf)
1505 		goto out;
1506 
1507 	tsk->files = newf;
1508 	error = 0;
1509 out:
1510 	return error;
1511 }
1512 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1513 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1514 {
1515 #ifdef CONFIG_BLOCK
1516 	struct io_context *ioc = current->io_context;
1517 	struct io_context *new_ioc;
1518 
1519 	if (!ioc)
1520 		return 0;
1521 	/*
1522 	 * Share io context with parent, if CLONE_IO is set
1523 	 */
1524 	if (clone_flags & CLONE_IO) {
1525 		ioc_task_link(ioc);
1526 		tsk->io_context = ioc;
1527 	} else if (ioprio_valid(ioc->ioprio)) {
1528 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1529 		if (unlikely(!new_ioc))
1530 			return -ENOMEM;
1531 
1532 		new_ioc->ioprio = ioc->ioprio;
1533 		put_io_context(new_ioc);
1534 	}
1535 #endif
1536 	return 0;
1537 }
1538 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1539 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1540 {
1541 	struct sighand_struct *sig;
1542 
1543 	if (clone_flags & CLONE_SIGHAND) {
1544 		refcount_inc(&current->sighand->count);
1545 		return 0;
1546 	}
1547 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1548 	RCU_INIT_POINTER(tsk->sighand, sig);
1549 	if (!sig)
1550 		return -ENOMEM;
1551 
1552 	refcount_set(&sig->count, 1);
1553 	spin_lock_irq(&current->sighand->siglock);
1554 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1555 	spin_unlock_irq(&current->sighand->siglock);
1556 
1557 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1558 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1559 		flush_signal_handlers(tsk, 0);
1560 
1561 	return 0;
1562 }
1563 
__cleanup_sighand(struct sighand_struct * sighand)1564 void __cleanup_sighand(struct sighand_struct *sighand)
1565 {
1566 	if (refcount_dec_and_test(&sighand->count)) {
1567 		signalfd_cleanup(sighand);
1568 		/*
1569 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1570 		 * without an RCU grace period, see __lock_task_sighand().
1571 		 */
1572 		kmem_cache_free(sighand_cachep, sighand);
1573 	}
1574 }
1575 
1576 /*
1577  * Initialize POSIX timer handling for a thread group.
1578  */
posix_cpu_timers_init_group(struct signal_struct * sig)1579 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1580 {
1581 	struct posix_cputimers *pct = &sig->posix_cputimers;
1582 	unsigned long cpu_limit;
1583 
1584 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1585 	posix_cputimers_group_init(pct, cpu_limit);
1586 }
1587 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1588 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1589 {
1590 	struct signal_struct *sig;
1591 
1592 	if (clone_flags & CLONE_THREAD)
1593 		return 0;
1594 
1595 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1596 	tsk->signal = sig;
1597 	if (!sig)
1598 		return -ENOMEM;
1599 
1600 	sig->nr_threads = 1;
1601 	atomic_set(&sig->live, 1);
1602 	refcount_set(&sig->sigcnt, 1);
1603 
1604 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1605 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1606 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1607 
1608 	init_waitqueue_head(&sig->wait_chldexit);
1609 	sig->curr_target = tsk;
1610 	init_sigpending(&sig->shared_pending);
1611 	INIT_HLIST_HEAD(&sig->multiprocess);
1612 	seqlock_init(&sig->stats_lock);
1613 	prev_cputime_init(&sig->prev_cputime);
1614 
1615 #ifdef CONFIG_POSIX_TIMERS
1616 	INIT_LIST_HEAD(&sig->posix_timers);
1617 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1618 	sig->real_timer.function = it_real_fn;
1619 #endif
1620 
1621 	task_lock(current->group_leader);
1622 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1623 	task_unlock(current->group_leader);
1624 
1625 	posix_cpu_timers_init_group(sig);
1626 
1627 	tty_audit_fork(sig);
1628 	sched_autogroup_fork(sig);
1629 
1630 	sig->oom_score_adj = current->signal->oom_score_adj;
1631 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1632 
1633 	mutex_init(&sig->cred_guard_mutex);
1634 	init_rwsem(&sig->exec_update_lock);
1635 
1636 	return 0;
1637 }
1638 
copy_seccomp(struct task_struct * p)1639 static void copy_seccomp(struct task_struct *p)
1640 {
1641 #ifdef CONFIG_SECCOMP
1642 	/*
1643 	 * Must be called with sighand->lock held, which is common to
1644 	 * all threads in the group. Holding cred_guard_mutex is not
1645 	 * needed because this new task is not yet running and cannot
1646 	 * be racing exec.
1647 	 */
1648 	assert_spin_locked(&current->sighand->siglock);
1649 
1650 	/* Ref-count the new filter user, and assign it. */
1651 	get_seccomp_filter(current);
1652 	p->seccomp = current->seccomp;
1653 
1654 	/*
1655 	 * Explicitly enable no_new_privs here in case it got set
1656 	 * between the task_struct being duplicated and holding the
1657 	 * sighand lock. The seccomp state and nnp must be in sync.
1658 	 */
1659 	if (task_no_new_privs(current))
1660 		task_set_no_new_privs(p);
1661 
1662 	/*
1663 	 * If the parent gained a seccomp mode after copying thread
1664 	 * flags and between before we held the sighand lock, we have
1665 	 * to manually enable the seccomp thread flag here.
1666 	 */
1667 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1668 		set_tsk_thread_flag(p, TIF_SECCOMP);
1669 #endif
1670 }
1671 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1672 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1673 {
1674 	current->clear_child_tid = tidptr;
1675 
1676 	return task_pid_vnr(current);
1677 }
1678 
rt_mutex_init_task(struct task_struct * p)1679 static void rt_mutex_init_task(struct task_struct *p)
1680 {
1681 	raw_spin_lock_init(&p->pi_lock);
1682 #ifdef CONFIG_RT_MUTEXES
1683 	p->pi_waiters = RB_ROOT_CACHED;
1684 	p->pi_top_task = NULL;
1685 	p->pi_blocked_on = NULL;
1686 #endif
1687 }
1688 
init_task_pid_links(struct task_struct * task)1689 static inline void init_task_pid_links(struct task_struct *task)
1690 {
1691 	enum pid_type type;
1692 
1693 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1694 		INIT_HLIST_NODE(&task->pid_links[type]);
1695 	}
1696 }
1697 
1698 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1699 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1700 {
1701 	if (type == PIDTYPE_PID)
1702 		task->thread_pid = pid;
1703 	else
1704 		task->signal->pids[type] = pid;
1705 }
1706 
rcu_copy_process(struct task_struct * p)1707 static inline void rcu_copy_process(struct task_struct *p)
1708 {
1709 #ifdef CONFIG_PREEMPT_RCU
1710 	p->rcu_read_lock_nesting = 0;
1711 	p->rcu_read_unlock_special.s = 0;
1712 	p->rcu_blocked_node = NULL;
1713 	INIT_LIST_HEAD(&p->rcu_node_entry);
1714 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1715 #ifdef CONFIG_TASKS_RCU
1716 	p->rcu_tasks_holdout = false;
1717 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1718 	p->rcu_tasks_idle_cpu = -1;
1719 #endif /* #ifdef CONFIG_TASKS_RCU */
1720 #ifdef CONFIG_TASKS_TRACE_RCU
1721 	p->trc_reader_nesting = 0;
1722 	p->trc_reader_special.s = 0;
1723 	INIT_LIST_HEAD(&p->trc_holdout_list);
1724 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1725 }
1726 
pidfd_pid(const struct file * file)1727 struct pid *pidfd_pid(const struct file *file)
1728 {
1729 	if (file->f_op == &pidfd_fops)
1730 		return file->private_data;
1731 
1732 	return ERR_PTR(-EBADF);
1733 }
1734 
pidfd_release(struct inode * inode,struct file * file)1735 static int pidfd_release(struct inode *inode, struct file *file)
1736 {
1737 	struct pid *pid = file->private_data;
1738 
1739 	file->private_data = NULL;
1740 	put_pid(pid);
1741 	return 0;
1742 }
1743 
1744 #ifdef CONFIG_PROC_FS
1745 /**
1746  * pidfd_show_fdinfo - print information about a pidfd
1747  * @m: proc fdinfo file
1748  * @f: file referencing a pidfd
1749  *
1750  * Pid:
1751  * This function will print the pid that a given pidfd refers to in the
1752  * pid namespace of the procfs instance.
1753  * If the pid namespace of the process is not a descendant of the pid
1754  * namespace of the procfs instance 0 will be shown as its pid. This is
1755  * similar to calling getppid() on a process whose parent is outside of
1756  * its pid namespace.
1757  *
1758  * NSpid:
1759  * If pid namespaces are supported then this function will also print
1760  * the pid of a given pidfd refers to for all descendant pid namespaces
1761  * starting from the current pid namespace of the instance, i.e. the
1762  * Pid field and the first entry in the NSpid field will be identical.
1763  * If the pid namespace of the process is not a descendant of the pid
1764  * namespace of the procfs instance 0 will be shown as its first NSpid
1765  * entry and no others will be shown.
1766  * Note that this differs from the Pid and NSpid fields in
1767  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1768  * the  pid namespace of the procfs instance. The difference becomes
1769  * obvious when sending around a pidfd between pid namespaces from a
1770  * different branch of the tree, i.e. where no ancestoral relation is
1771  * present between the pid namespaces:
1772  * - create two new pid namespaces ns1 and ns2 in the initial pid
1773  *   namespace (also take care to create new mount namespaces in the
1774  *   new pid namespace and mount procfs)
1775  * - create a process with a pidfd in ns1
1776  * - send pidfd from ns1 to ns2
1777  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1778  *   have exactly one entry, which is 0
1779  */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1780 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1781 {
1782 	struct pid *pid = f->private_data;
1783 	struct pid_namespace *ns;
1784 	pid_t nr = -1;
1785 
1786 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1787 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1788 		nr = pid_nr_ns(pid, ns);
1789 	}
1790 
1791 	seq_put_decimal_ll(m, "Pid:\t", nr);
1792 
1793 #ifdef CONFIG_PID_NS
1794 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1795 	if (nr > 0) {
1796 		int i;
1797 
1798 		/* If nr is non-zero it means that 'pid' is valid and that
1799 		 * ns, i.e. the pid namespace associated with the procfs
1800 		 * instance, is in the pid namespace hierarchy of pid.
1801 		 * Start at one below the already printed level.
1802 		 */
1803 		for (i = ns->level + 1; i <= pid->level; i++)
1804 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1805 	}
1806 #endif
1807 	seq_putc(m, '\n');
1808 }
1809 #endif
1810 
1811 /*
1812  * Poll support for process exit notification.
1813  */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1814 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1815 {
1816 	struct pid *pid = file->private_data;
1817 	__poll_t poll_flags = 0;
1818 
1819 	poll_wait(file, &pid->wait_pidfd, pts);
1820 
1821 	/*
1822 	 * Inform pollers only when the whole thread group exits.
1823 	 * If the thread group leader exits before all other threads in the
1824 	 * group, then poll(2) should block, similar to the wait(2) family.
1825 	 */
1826 	if (thread_group_exited(pid))
1827 		poll_flags = EPOLLIN | EPOLLRDNORM;
1828 
1829 	return poll_flags;
1830 }
1831 
1832 const struct file_operations pidfd_fops = {
1833 	.release = pidfd_release,
1834 	.poll = pidfd_poll,
1835 #ifdef CONFIG_PROC_FS
1836 	.show_fdinfo = pidfd_show_fdinfo,
1837 #endif
1838 };
1839 
__delayed_free_task(struct rcu_head * rhp)1840 static void __delayed_free_task(struct rcu_head *rhp)
1841 {
1842 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1843 
1844 	free_task(tsk);
1845 }
1846 
delayed_free_task(struct task_struct * tsk)1847 static __always_inline void delayed_free_task(struct task_struct *tsk)
1848 {
1849 	if (IS_ENABLED(CONFIG_MEMCG))
1850 		call_rcu(&tsk->rcu, __delayed_free_task);
1851 	else
1852 		free_task(tsk);
1853 }
1854 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1855 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1856 {
1857 	/* Skip if kernel thread */
1858 	if (!tsk->mm)
1859 		return;
1860 
1861 	/* Skip if spawning a thread or using vfork */
1862 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1863 		return;
1864 
1865 	/* We need to synchronize with __set_oom_adj */
1866 	mutex_lock(&oom_adj_mutex);
1867 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1868 	/* Update the values in case they were changed after copy_signal */
1869 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1870 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1871 	mutex_unlock(&oom_adj_mutex);
1872 }
1873 
1874 /*
1875  * This creates a new process as a copy of the old one,
1876  * but does not actually start it yet.
1877  *
1878  * It copies the registers, and all the appropriate
1879  * parts of the process environment (as per the clone
1880  * flags). The actual kick-off is left to the caller.
1881  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1882 static __latent_entropy struct task_struct *copy_process(
1883 					struct pid *pid,
1884 					int trace,
1885 					int node,
1886 					struct kernel_clone_args *args)
1887 {
1888 	int pidfd = -1, retval;
1889 	struct task_struct *p;
1890 	struct multiprocess_signals delayed;
1891 	struct file *pidfile = NULL;
1892 	u64 clone_flags = args->flags;
1893 	struct nsproxy *nsp = current->nsproxy;
1894 
1895 	/*
1896 	 * Don't allow sharing the root directory with processes in a different
1897 	 * namespace
1898 	 */
1899 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1900 		return ERR_PTR(-EINVAL);
1901 
1902 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1903 		return ERR_PTR(-EINVAL);
1904 
1905 	/*
1906 	 * Thread groups must share signals as well, and detached threads
1907 	 * can only be started up within the thread group.
1908 	 */
1909 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1910 		return ERR_PTR(-EINVAL);
1911 
1912 	/*
1913 	 * Shared signal handlers imply shared VM. By way of the above,
1914 	 * thread groups also imply shared VM. Blocking this case allows
1915 	 * for various simplifications in other code.
1916 	 */
1917 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1918 		return ERR_PTR(-EINVAL);
1919 
1920 	/*
1921 	 * Siblings of global init remain as zombies on exit since they are
1922 	 * not reaped by their parent (swapper). To solve this and to avoid
1923 	 * multi-rooted process trees, prevent global and container-inits
1924 	 * from creating siblings.
1925 	 */
1926 	if ((clone_flags & CLONE_PARENT) &&
1927 				current->signal->flags & SIGNAL_UNKILLABLE)
1928 		return ERR_PTR(-EINVAL);
1929 
1930 	/*
1931 	 * If the new process will be in a different pid or user namespace
1932 	 * do not allow it to share a thread group with the forking task.
1933 	 */
1934 	if (clone_flags & CLONE_THREAD) {
1935 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1936 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1937 			return ERR_PTR(-EINVAL);
1938 	}
1939 
1940 	/*
1941 	 * If the new process will be in a different time namespace
1942 	 * do not allow it to share VM or a thread group with the forking task.
1943 	 */
1944 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1945 		if (nsp->time_ns != nsp->time_ns_for_children)
1946 			return ERR_PTR(-EINVAL);
1947 	}
1948 
1949 	if (clone_flags & CLONE_PIDFD) {
1950 		/*
1951 		 * - CLONE_DETACHED is blocked so that we can potentially
1952 		 *   reuse it later for CLONE_PIDFD.
1953 		 * - CLONE_THREAD is blocked until someone really needs it.
1954 		 */
1955 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1956 			return ERR_PTR(-EINVAL);
1957 	}
1958 
1959 	/*
1960 	 * Force any signals received before this point to be delivered
1961 	 * before the fork happens.  Collect up signals sent to multiple
1962 	 * processes that happen during the fork and delay them so that
1963 	 * they appear to happen after the fork.
1964 	 */
1965 	sigemptyset(&delayed.signal);
1966 	INIT_HLIST_NODE(&delayed.node);
1967 
1968 	spin_lock_irq(&current->sighand->siglock);
1969 	if (!(clone_flags & CLONE_THREAD))
1970 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1971 	recalc_sigpending();
1972 	spin_unlock_irq(&current->sighand->siglock);
1973 	retval = -ERESTARTNOINTR;
1974 	if (task_sigpending(current))
1975 		goto fork_out;
1976 
1977 	retval = -ENOMEM;
1978 	p = dup_task_struct(current, node);
1979 	if (!p)
1980 		goto fork_out;
1981 	if (args->io_thread) {
1982 		/*
1983 		 * Mark us an IO worker, and block any signal that isn't
1984 		 * fatal or STOP
1985 		 */
1986 		p->flags |= PF_IO_WORKER;
1987 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1988 	}
1989 
1990 	/*
1991 	 * This _must_ happen before we call free_task(), i.e. before we jump
1992 	 * to any of the bad_fork_* labels. This is to avoid freeing
1993 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1994 	 * kernel threads (PF_KTHREAD).
1995 	 */
1996 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1997 	/*
1998 	 * Clear TID on mm_release()?
1999 	 */
2000 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2001 
2002 	ftrace_graph_init_task(p);
2003 
2004 	rt_mutex_init_task(p);
2005 
2006 	lockdep_assert_irqs_enabled();
2007 #ifdef CONFIG_PROVE_LOCKING
2008 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2009 #endif
2010 	retval = -EAGAIN;
2011 	if (atomic_read(&p->real_cred->user->processes) >=
2012 			task_rlimit(p, RLIMIT_NPROC)) {
2013 		if (p->real_cred->user != INIT_USER &&
2014 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2015 			goto bad_fork_free;
2016 	}
2017 	current->flags &= ~PF_NPROC_EXCEEDED;
2018 
2019 	retval = copy_creds(p, clone_flags);
2020 	if (retval < 0)
2021 		goto bad_fork_free;
2022 
2023 	/*
2024 	 * If multiple threads are within copy_process(), then this check
2025 	 * triggers too late. This doesn't hurt, the check is only there
2026 	 * to stop root fork bombs.
2027 	 */
2028 	retval = -EAGAIN;
2029 	if (data_race(nr_threads >= max_threads))
2030 		goto bad_fork_cleanup_count;
2031 
2032 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2033 #ifdef CONFIG_RECLAIM_ACCT
2034 	reclaimacct_tsk_init(p);
2035 #endif
2036 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2037 	p->flags |= PF_FORKNOEXEC;
2038 	INIT_LIST_HEAD(&p->children);
2039 	INIT_LIST_HEAD(&p->sibling);
2040 	rcu_copy_process(p);
2041 	p->vfork_done = NULL;
2042 	spin_lock_init(&p->alloc_lock);
2043 
2044 	init_sigpending(&p->pending);
2045 
2046 	p->utime = p->stime = p->gtime = 0;
2047 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2048 	p->utimescaled = p->stimescaled = 0;
2049 #endif
2050 	prev_cputime_init(&p->prev_cputime);
2051 
2052 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2053 	seqcount_init(&p->vtime.seqcount);
2054 	p->vtime.starttime = 0;
2055 	p->vtime.state = VTIME_INACTIVE;
2056 #endif
2057 
2058 #ifdef CONFIG_IO_URING
2059 	p->io_uring = NULL;
2060 #endif
2061 
2062 #if defined(SPLIT_RSS_COUNTING)
2063 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2064 #endif
2065 
2066 	p->default_timer_slack_ns = current->timer_slack_ns;
2067 
2068 #ifdef CONFIG_PSI
2069 	p->psi_flags = 0;
2070 #endif
2071 
2072 	task_io_accounting_init(&p->ioac);
2073 	acct_clear_integrals(p);
2074 
2075 	posix_cputimers_init(&p->posix_cputimers);
2076 
2077 	p->io_context = NULL;
2078 	audit_set_context(p, NULL);
2079 	cgroup_fork(p);
2080 #ifdef CONFIG_NUMA
2081 	p->mempolicy = mpol_dup(p->mempolicy);
2082 	if (IS_ERR(p->mempolicy)) {
2083 		retval = PTR_ERR(p->mempolicy);
2084 		p->mempolicy = NULL;
2085 		goto bad_fork_cleanup_threadgroup_lock;
2086 	}
2087 #endif
2088 #ifdef CONFIG_CPUSETS
2089 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2090 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2091 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2092 #endif
2093 #ifdef CONFIG_TRACE_IRQFLAGS
2094 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2095 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2096 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2097 	p->softirqs_enabled		= 1;
2098 	p->softirq_context		= 0;
2099 #endif
2100 
2101 	p->pagefault_disabled = 0;
2102 
2103 #ifdef CONFIG_LOCKDEP
2104 	lockdep_init_task(p);
2105 #endif
2106 
2107 #ifdef CONFIG_DEBUG_MUTEXES
2108 	p->blocked_on = NULL; /* not blocked yet */
2109 #endif
2110 #ifdef CONFIG_BCACHE
2111 	p->sequential_io	= 0;
2112 	p->sequential_io_avg	= 0;
2113 #endif
2114 #ifdef CONFIG_BPF_SYSCALL
2115 	p->bpf_ctx = NULL;
2116 #endif
2117 
2118 	/* Perform scheduler related setup. Assign this task to a CPU. */
2119 	retval = sched_fork(clone_flags, p);
2120 	if (retval)
2121 		goto bad_fork_cleanup_policy;
2122 
2123 	retval = perf_event_init_task(p);
2124 	if (retval)
2125 		goto bad_fork_cleanup_policy;
2126 	retval = audit_alloc(p);
2127 	if (retval)
2128 		goto bad_fork_cleanup_perf;
2129 	/* copy all the process information */
2130 	shm_init_task(p);
2131 	retval = security_task_alloc(p, clone_flags);
2132 	if (retval)
2133 		goto bad_fork_cleanup_audit;
2134 	retval = copy_semundo(clone_flags, p);
2135 	if (retval)
2136 		goto bad_fork_cleanup_security;
2137 	retval = copy_files(clone_flags, p);
2138 	if (retval)
2139 		goto bad_fork_cleanup_semundo;
2140 	retval = copy_fs(clone_flags, p);
2141 	if (retval)
2142 		goto bad_fork_cleanup_files;
2143 	retval = copy_sighand(clone_flags, p);
2144 	if (retval)
2145 		goto bad_fork_cleanup_fs;
2146 	retval = copy_signal(clone_flags, p);
2147 	if (retval)
2148 		goto bad_fork_cleanup_sighand;
2149 	retval = copy_mm(clone_flags, p);
2150 	if (retval)
2151 		goto bad_fork_cleanup_signal;
2152 	retval = copy_namespaces(clone_flags, p);
2153 	if (retval)
2154 		goto bad_fork_cleanup_mm;
2155 	retval = copy_io(clone_flags, p);
2156 	if (retval)
2157 		goto bad_fork_cleanup_namespaces;
2158 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2159 	if (retval)
2160 		goto bad_fork_cleanup_io;
2161 
2162 	stackleak_task_init(p);
2163 
2164 	if (pid != &init_struct_pid) {
2165 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2166 				args->set_tid_size);
2167 		if (IS_ERR(pid)) {
2168 			retval = PTR_ERR(pid);
2169 			goto bad_fork_cleanup_thread;
2170 		}
2171 	}
2172 
2173 	/*
2174 	 * This has to happen after we've potentially unshared the file
2175 	 * descriptor table (so that the pidfd doesn't leak into the child
2176 	 * if the fd table isn't shared).
2177 	 */
2178 	if (clone_flags & CLONE_PIDFD) {
2179 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2180 		if (retval < 0)
2181 			goto bad_fork_free_pid;
2182 
2183 		pidfd = retval;
2184 
2185 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2186 					      O_RDWR | O_CLOEXEC);
2187 		if (IS_ERR(pidfile)) {
2188 			put_unused_fd(pidfd);
2189 			retval = PTR_ERR(pidfile);
2190 			goto bad_fork_free_pid;
2191 		}
2192 		get_pid(pid);	/* held by pidfile now */
2193 
2194 		retval = put_user(pidfd, args->pidfd);
2195 		if (retval)
2196 			goto bad_fork_put_pidfd;
2197 	}
2198 
2199 #ifdef CONFIG_BLOCK
2200 	p->plug = NULL;
2201 #endif
2202 	futex_init_task(p);
2203 
2204 	/*
2205 	 * sigaltstack should be cleared when sharing the same VM
2206 	 */
2207 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2208 		sas_ss_reset(p);
2209 
2210 	/*
2211 	 * Syscall tracing and stepping should be turned off in the
2212 	 * child regardless of CLONE_PTRACE.
2213 	 */
2214 	user_disable_single_step(p);
2215 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2216 #ifdef TIF_SYSCALL_EMU
2217 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2218 #endif
2219 	clear_tsk_latency_tracing(p);
2220 
2221 	/* ok, now we should be set up.. */
2222 	p->pid = pid_nr(pid);
2223 	if (clone_flags & CLONE_THREAD) {
2224 		p->group_leader = current->group_leader;
2225 		p->tgid = current->tgid;
2226 	} else {
2227 		p->group_leader = p;
2228 		p->tgid = p->pid;
2229 	}
2230 
2231 	p->nr_dirtied = 0;
2232 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2233 	p->dirty_paused_when = 0;
2234 
2235 	p->pdeath_signal = 0;
2236 	INIT_LIST_HEAD(&p->thread_group);
2237 	p->task_works = NULL;
2238 	clear_posix_cputimers_work(p);
2239 
2240 	/*
2241 	 * Ensure that the cgroup subsystem policies allow the new process to be
2242 	 * forked. It should be noted that the new process's css_set can be changed
2243 	 * between here and cgroup_post_fork() if an organisation operation is in
2244 	 * progress.
2245 	 */
2246 	retval = cgroup_can_fork(p, args);
2247 	if (retval)
2248 		goto bad_fork_put_pidfd;
2249 
2250 	/*
2251 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2252 	 * the new task on the correct runqueue. All this *before* the task
2253 	 * becomes visible.
2254 	 *
2255 	 * This isn't part of ->can_fork() because while the re-cloning is
2256 	 * cgroup specific, it unconditionally needs to place the task on a
2257 	 * runqueue.
2258 	 */
2259 	sched_cgroup_fork(p, args);
2260 
2261 	/*
2262 	 * From this point on we must avoid any synchronous user-space
2263 	 * communication until we take the tasklist-lock. In particular, we do
2264 	 * not want user-space to be able to predict the process start-time by
2265 	 * stalling fork(2) after we recorded the start_time but before it is
2266 	 * visible to the system.
2267 	 */
2268 
2269 	p->start_time = ktime_get_ns();
2270 	p->start_boottime = ktime_get_boottime_ns();
2271 
2272 	/*
2273 	 * Make it visible to the rest of the system, but dont wake it up yet.
2274 	 * Need tasklist lock for parent etc handling!
2275 	 */
2276 	write_lock_irq(&tasklist_lock);
2277 
2278 	/* CLONE_PARENT re-uses the old parent */
2279 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2280 		p->real_parent = current->real_parent;
2281 		p->parent_exec_id = current->parent_exec_id;
2282 		if (clone_flags & CLONE_THREAD)
2283 			p->exit_signal = -1;
2284 		else
2285 			p->exit_signal = current->group_leader->exit_signal;
2286 	} else {
2287 		p->real_parent = current;
2288 		p->parent_exec_id = current->self_exec_id;
2289 		p->exit_signal = args->exit_signal;
2290 	}
2291 
2292 	klp_copy_process(p);
2293 
2294 	spin_lock(&current->sighand->siglock);
2295 
2296 	rseq_fork(p, clone_flags);
2297 
2298 	/* Don't start children in a dying pid namespace */
2299 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2300 		retval = -ENOMEM;
2301 		goto bad_fork_cancel_cgroup;
2302 	}
2303 
2304 	/* Let kill terminate clone/fork in the middle */
2305 	if (fatal_signal_pending(current)) {
2306 		retval = -EINTR;
2307 		goto bad_fork_cancel_cgroup;
2308 	}
2309 
2310 	/* No more failure paths after this point. */
2311 
2312 	/*
2313 	 * Copy seccomp details explicitly here, in case they were changed
2314 	 * before holding sighand lock.
2315 	 */
2316 	copy_seccomp(p);
2317 
2318 	init_task_pid_links(p);
2319 	if (likely(p->pid)) {
2320 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2321 
2322 		init_task_pid(p, PIDTYPE_PID, pid);
2323 		if (thread_group_leader(p)) {
2324 			init_task_pid(p, PIDTYPE_TGID, pid);
2325 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2326 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2327 
2328 			if (is_child_reaper(pid)) {
2329 				ns_of_pid(pid)->child_reaper = p;
2330 				p->signal->flags |= SIGNAL_UNKILLABLE;
2331 			}
2332 			p->signal->shared_pending.signal = delayed.signal;
2333 			p->signal->tty = tty_kref_get(current->signal->tty);
2334 			/*
2335 			 * Inherit has_child_subreaper flag under the same
2336 			 * tasklist_lock with adding child to the process tree
2337 			 * for propagate_has_child_subreaper optimization.
2338 			 */
2339 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2340 							 p->real_parent->signal->is_child_subreaper;
2341 			list_add_tail(&p->sibling, &p->real_parent->children);
2342 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2343 			attach_pid(p, PIDTYPE_TGID);
2344 			attach_pid(p, PIDTYPE_PGID);
2345 			attach_pid(p, PIDTYPE_SID);
2346 			__this_cpu_inc(process_counts);
2347 		} else {
2348 			current->signal->nr_threads++;
2349 			atomic_inc(&current->signal->live);
2350 			refcount_inc(&current->signal->sigcnt);
2351 			task_join_group_stop(p);
2352 			list_add_tail_rcu(&p->thread_group,
2353 					  &p->group_leader->thread_group);
2354 			list_add_tail_rcu(&p->thread_node,
2355 					  &p->signal->thread_head);
2356 		}
2357 		attach_pid(p, PIDTYPE_PID);
2358 		nr_threads++;
2359 	}
2360 	total_forks++;
2361 	hlist_del_init(&delayed.node);
2362 	spin_unlock(&current->sighand->siglock);
2363 	syscall_tracepoint_update(p);
2364 	write_unlock_irq(&tasklist_lock);
2365 
2366 	if (pidfile)
2367 		fd_install(pidfd, pidfile);
2368 
2369 	proc_fork_connector(p);
2370 	sched_post_fork(p);
2371 	cgroup_post_fork(p, args);
2372 	perf_event_fork(p);
2373 
2374 	trace_task_newtask(p, clone_flags);
2375 	uprobe_copy_process(p, clone_flags);
2376 
2377 	copy_oom_score_adj(clone_flags, p);
2378 
2379 	return p;
2380 
2381 bad_fork_cancel_cgroup:
2382 	spin_unlock(&current->sighand->siglock);
2383 	write_unlock_irq(&tasklist_lock);
2384 	cgroup_cancel_fork(p, args);
2385 bad_fork_put_pidfd:
2386 	if (clone_flags & CLONE_PIDFD) {
2387 		fput(pidfile);
2388 		put_unused_fd(pidfd);
2389 	}
2390 bad_fork_free_pid:
2391 	if (pid != &init_struct_pid)
2392 		free_pid(pid);
2393 bad_fork_cleanup_thread:
2394 	exit_thread(p);
2395 bad_fork_cleanup_io:
2396 	if (p->io_context)
2397 		exit_io_context(p);
2398 bad_fork_cleanup_namespaces:
2399 	exit_task_namespaces(p);
2400 bad_fork_cleanup_mm:
2401 	if (p->mm) {
2402 		mm_clear_owner(p->mm, p);
2403 		mmput(p->mm);
2404 	}
2405 bad_fork_cleanup_signal:
2406 	if (!(clone_flags & CLONE_THREAD))
2407 		free_signal_struct(p->signal);
2408 bad_fork_cleanup_sighand:
2409 	__cleanup_sighand(p->sighand);
2410 bad_fork_cleanup_fs:
2411 	exit_fs(p); /* blocking */
2412 bad_fork_cleanup_files:
2413 	exit_files(p); /* blocking */
2414 bad_fork_cleanup_semundo:
2415 	exit_sem(p);
2416 bad_fork_cleanup_security:
2417 	security_task_free(p);
2418 bad_fork_cleanup_audit:
2419 	audit_free(p);
2420 bad_fork_cleanup_perf:
2421 	perf_event_free_task(p);
2422 bad_fork_cleanup_policy:
2423 	lockdep_free_task(p);
2424 	free_task_load_ptrs(p);
2425 #ifdef CONFIG_NUMA
2426 	mpol_put(p->mempolicy);
2427 bad_fork_cleanup_threadgroup_lock:
2428 #endif
2429 	delayacct_tsk_free(p);
2430 bad_fork_cleanup_count:
2431 	atomic_dec(&p->cred->user->processes);
2432 	exit_creds(p);
2433 bad_fork_free:
2434 	p->state = TASK_DEAD;
2435 	put_task_stack(p);
2436 	delayed_free_task(p);
2437 fork_out:
2438 	spin_lock_irq(&current->sighand->siglock);
2439 	hlist_del_init(&delayed.node);
2440 	spin_unlock_irq(&current->sighand->siglock);
2441 	return ERR_PTR(retval);
2442 }
2443 
init_idle_pids(struct task_struct * idle)2444 static inline void init_idle_pids(struct task_struct *idle)
2445 {
2446 	enum pid_type type;
2447 
2448 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2449 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2450 		init_task_pid(idle, type, &init_struct_pid);
2451 	}
2452 }
2453 
fork_idle(int cpu)2454 struct task_struct * __init fork_idle(int cpu)
2455 {
2456 	struct task_struct *task;
2457 	struct kernel_clone_args args = {
2458 		.flags = CLONE_VM,
2459 	};
2460 
2461 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2462 	if (!IS_ERR(task)) {
2463 		init_idle_pids(task);
2464 		init_idle(task, cpu);
2465 	}
2466 
2467 	return task;
2468 }
2469 
2470 /*
2471  * This is like kernel_clone(), but shaved down and tailored to just
2472  * creating io_uring workers. It returns a created task, or an error pointer.
2473  * The returned task is inactive, and the caller must fire it up through
2474  * wake_up_new_task(p). All signals are blocked in the created task.
2475  */
create_io_thread(int (* fn)(void *),void * arg,int node)2476 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2477 {
2478 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2479 				CLONE_IO;
2480 	struct kernel_clone_args args = {
2481 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2482 				    CLONE_UNTRACED) & ~CSIGNAL),
2483 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2484 		.stack		= (unsigned long)fn,
2485 		.stack_size	= (unsigned long)arg,
2486 		.io_thread	= 1,
2487 	};
2488 
2489 	return copy_process(NULL, 0, node, &args);
2490 }
2491 
2492 /*
2493  *  Ok, this is the main fork-routine.
2494  *
2495  * It copies the process, and if successful kick-starts
2496  * it and waits for it to finish using the VM if required.
2497  *
2498  * args->exit_signal is expected to be checked for sanity by the caller.
2499  */
kernel_clone(struct kernel_clone_args * args)2500 pid_t kernel_clone(struct kernel_clone_args *args)
2501 {
2502 	u64 clone_flags = args->flags;
2503 	struct completion vfork;
2504 	struct pid *pid;
2505 	struct task_struct *p;
2506 	int trace = 0;
2507 	pid_t nr;
2508 
2509 	/*
2510 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2511 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2512 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2513 	 * field in struct clone_args and it still doesn't make sense to have
2514 	 * them both point at the same memory location. Performing this check
2515 	 * here has the advantage that we don't need to have a separate helper
2516 	 * to check for legacy clone().
2517 	 */
2518 	if ((args->flags & CLONE_PIDFD) &&
2519 	    (args->flags & CLONE_PARENT_SETTID) &&
2520 	    (args->pidfd == args->parent_tid))
2521 		return -EINVAL;
2522 
2523 	/*
2524 	 * Determine whether and which event to report to ptracer.  When
2525 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2526 	 * requested, no event is reported; otherwise, report if the event
2527 	 * for the type of forking is enabled.
2528 	 */
2529 	if (!(clone_flags & CLONE_UNTRACED)) {
2530 		if (clone_flags & CLONE_VFORK)
2531 			trace = PTRACE_EVENT_VFORK;
2532 		else if (args->exit_signal != SIGCHLD)
2533 			trace = PTRACE_EVENT_CLONE;
2534 		else
2535 			trace = PTRACE_EVENT_FORK;
2536 
2537 		if (likely(!ptrace_event_enabled(current, trace)))
2538 			trace = 0;
2539 	}
2540 
2541 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2542 	add_latent_entropy();
2543 
2544 	if (IS_ERR(p))
2545 		return PTR_ERR(p);
2546 
2547 	/*
2548 	 * Do this prior waking up the new thread - the thread pointer
2549 	 * might get invalid after that point, if the thread exits quickly.
2550 	 */
2551 	trace_sched_process_fork(current, p);
2552 
2553 	pid = get_task_pid(p, PIDTYPE_PID);
2554 	nr = pid_vnr(pid);
2555 
2556 	if (clone_flags & CLONE_PARENT_SETTID)
2557 		put_user(nr, args->parent_tid);
2558 
2559 	if (clone_flags & CLONE_VFORK) {
2560 		p->vfork_done = &vfork;
2561 		init_completion(&vfork);
2562 		get_task_struct(p);
2563 	}
2564 
2565 	CALL_HCK_LITE_HOOK(ced_kernel_clone_lhck, p);
2566 	wake_up_new_task(p);
2567 
2568 	/* forking complete and child started to run, tell ptracer */
2569 	if (unlikely(trace))
2570 		ptrace_event_pid(trace, pid);
2571 
2572 	if (clone_flags & CLONE_VFORK) {
2573 		if (!wait_for_vfork_done(p, &vfork))
2574 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2575 	}
2576 
2577 	put_pid(pid);
2578 	return nr;
2579 }
2580 
2581 /*
2582  * Create a kernel thread.
2583  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2584 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2585 {
2586 	struct kernel_clone_args args = {
2587 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2588 				    CLONE_UNTRACED) & ~CSIGNAL),
2589 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2590 		.stack		= (unsigned long)fn,
2591 		.stack_size	= (unsigned long)arg,
2592 	};
2593 
2594 	return kernel_clone(&args);
2595 }
2596 
2597 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2598 SYSCALL_DEFINE0(fork)
2599 {
2600 #ifdef CONFIG_MMU
2601 	struct kernel_clone_args args = {
2602 		.exit_signal = SIGCHLD,
2603 	};
2604 
2605 	return kernel_clone(&args);
2606 #else
2607 	/* can not support in nommu mode */
2608 	return -EINVAL;
2609 #endif
2610 }
2611 #endif
2612 
2613 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2614 SYSCALL_DEFINE0(vfork)
2615 {
2616 	struct kernel_clone_args args = {
2617 		.flags		= CLONE_VFORK | CLONE_VM,
2618 		.exit_signal	= SIGCHLD,
2619 	};
2620 
2621 	return kernel_clone(&args);
2622 }
2623 #endif
2624 
2625 #ifdef __ARCH_WANT_SYS_CLONE
2626 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2627 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2628 		 int __user *, parent_tidptr,
2629 		 unsigned long, tls,
2630 		 int __user *, child_tidptr)
2631 #elif defined(CONFIG_CLONE_BACKWARDS2)
2632 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2633 		 int __user *, parent_tidptr,
2634 		 int __user *, child_tidptr,
2635 		 unsigned long, tls)
2636 #elif defined(CONFIG_CLONE_BACKWARDS3)
2637 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2638 		int, stack_size,
2639 		int __user *, parent_tidptr,
2640 		int __user *, child_tidptr,
2641 		unsigned long, tls)
2642 #else
2643 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2644 		 int __user *, parent_tidptr,
2645 		 int __user *, child_tidptr,
2646 		 unsigned long, tls)
2647 #endif
2648 {
2649 	struct kernel_clone_args args = {
2650 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2651 		.pidfd		= parent_tidptr,
2652 		.child_tid	= child_tidptr,
2653 		.parent_tid	= parent_tidptr,
2654 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2655 		.stack		= newsp,
2656 		.tls		= tls,
2657 	};
2658 
2659 	return kernel_clone(&args);
2660 }
2661 #endif
2662 
2663 #ifdef __ARCH_WANT_SYS_CLONE3
2664 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2665 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2666 					      struct clone_args __user *uargs,
2667 					      size_t usize)
2668 {
2669 	int err;
2670 	struct clone_args args;
2671 	pid_t *kset_tid = kargs->set_tid;
2672 
2673 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2674 		     CLONE_ARGS_SIZE_VER0);
2675 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2676 		     CLONE_ARGS_SIZE_VER1);
2677 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2678 		     CLONE_ARGS_SIZE_VER2);
2679 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2680 
2681 	if (unlikely(usize > PAGE_SIZE))
2682 		return -E2BIG;
2683 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2684 		return -EINVAL;
2685 
2686 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2687 	if (err)
2688 		return err;
2689 
2690 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2691 		return -EINVAL;
2692 
2693 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2694 		return -EINVAL;
2695 
2696 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2697 		return -EINVAL;
2698 
2699 	/*
2700 	 * Verify that higher 32bits of exit_signal are unset and that
2701 	 * it is a valid signal
2702 	 */
2703 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2704 		     !valid_signal(args.exit_signal)))
2705 		return -EINVAL;
2706 
2707 	if ((args.flags & CLONE_INTO_CGROUP) &&
2708 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2709 		return -EINVAL;
2710 
2711 	*kargs = (struct kernel_clone_args){
2712 		.flags		= args.flags,
2713 		.pidfd		= u64_to_user_ptr(args.pidfd),
2714 		.child_tid	= u64_to_user_ptr(args.child_tid),
2715 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2716 		.exit_signal	= args.exit_signal,
2717 		.stack		= args.stack,
2718 		.stack_size	= args.stack_size,
2719 		.tls		= args.tls,
2720 		.set_tid_size	= args.set_tid_size,
2721 		.cgroup		= args.cgroup,
2722 	};
2723 
2724 	if (args.set_tid &&
2725 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2726 			(kargs->set_tid_size * sizeof(pid_t))))
2727 		return -EFAULT;
2728 
2729 	kargs->set_tid = kset_tid;
2730 
2731 	return 0;
2732 }
2733 
2734 /**
2735  * clone3_stack_valid - check and prepare stack
2736  * @kargs: kernel clone args
2737  *
2738  * Verify that the stack arguments userspace gave us are sane.
2739  * In addition, set the stack direction for userspace since it's easy for us to
2740  * determine.
2741  */
clone3_stack_valid(struct kernel_clone_args * kargs)2742 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2743 {
2744 	if (kargs->stack == 0) {
2745 		if (kargs->stack_size > 0)
2746 			return false;
2747 	} else {
2748 		if (kargs->stack_size == 0)
2749 			return false;
2750 
2751 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2752 			return false;
2753 
2754 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2755 		kargs->stack += kargs->stack_size;
2756 #endif
2757 	}
2758 
2759 	return true;
2760 }
2761 
clone3_args_valid(struct kernel_clone_args * kargs)2762 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2763 {
2764 	/* Verify that no unknown flags are passed along. */
2765 	if (kargs->flags &
2766 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2767 		return false;
2768 
2769 	/*
2770 	 * - make the CLONE_DETACHED bit reuseable for clone3
2771 	 * - make the CSIGNAL bits reuseable for clone3
2772 	 */
2773 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2774 		return false;
2775 
2776 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2777 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2778 		return false;
2779 
2780 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2781 	    kargs->exit_signal)
2782 		return false;
2783 
2784 	if (!clone3_stack_valid(kargs))
2785 		return false;
2786 
2787 	return true;
2788 }
2789 
2790 /**
2791  * clone3 - create a new process with specific properties
2792  * @uargs: argument structure
2793  * @size:  size of @uargs
2794  *
2795  * clone3() is the extensible successor to clone()/clone2().
2796  * It takes a struct as argument that is versioned by its size.
2797  *
2798  * Return: On success, a positive PID for the child process.
2799  *         On error, a negative errno number.
2800  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2801 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2802 {
2803 	int err;
2804 
2805 	struct kernel_clone_args kargs;
2806 	pid_t set_tid[MAX_PID_NS_LEVEL];
2807 
2808 	kargs.set_tid = set_tid;
2809 
2810 	err = copy_clone_args_from_user(&kargs, uargs, size);
2811 	if (err)
2812 		return err;
2813 
2814 	if (!clone3_args_valid(&kargs))
2815 		return -EINVAL;
2816 
2817 	return kernel_clone(&kargs);
2818 }
2819 #endif
2820 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2821 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2822 {
2823 	struct task_struct *leader, *parent, *child;
2824 	int res;
2825 
2826 	read_lock(&tasklist_lock);
2827 	leader = top = top->group_leader;
2828 down:
2829 	for_each_thread(leader, parent) {
2830 		list_for_each_entry(child, &parent->children, sibling) {
2831 			res = visitor(child, data);
2832 			if (res) {
2833 				if (res < 0)
2834 					goto out;
2835 				leader = child;
2836 				goto down;
2837 			}
2838 up:
2839 			;
2840 		}
2841 	}
2842 
2843 	if (leader != top) {
2844 		child = leader;
2845 		parent = child->real_parent;
2846 		leader = parent->group_leader;
2847 		goto up;
2848 	}
2849 out:
2850 	read_unlock(&tasklist_lock);
2851 }
2852 
2853 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2854 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2855 #endif
2856 
sighand_ctor(void * data)2857 static void sighand_ctor(void *data)
2858 {
2859 	struct sighand_struct *sighand = data;
2860 
2861 	spin_lock_init(&sighand->siglock);
2862 	init_waitqueue_head(&sighand->signalfd_wqh);
2863 }
2864 
mm_cache_init(void)2865 void __init mm_cache_init(void)
2866 {
2867 	unsigned int mm_size;
2868 
2869 	/*
2870 	 * The mm_cpumask is located at the end of mm_struct, and is
2871 	 * dynamically sized based on the maximum CPU number this system
2872 	 * can have, taking hotplug into account (nr_cpu_ids).
2873 	 */
2874 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2875 
2876 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2877 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2878 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2879 			offsetof(struct mm_struct, saved_auxv),
2880 			sizeof_field(struct mm_struct, saved_auxv),
2881 			NULL);
2882 }
2883 
proc_caches_init(void)2884 void __init proc_caches_init(void)
2885 {
2886 	sighand_cachep = kmem_cache_create("sighand_cache",
2887 			sizeof(struct sighand_struct), 0,
2888 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2889 			SLAB_ACCOUNT, sighand_ctor);
2890 	signal_cachep = kmem_cache_create("signal_cache",
2891 			sizeof(struct signal_struct), 0,
2892 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2893 			NULL);
2894 	files_cachep = kmem_cache_create("files_cache",
2895 			sizeof(struct files_struct), 0,
2896 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2897 			NULL);
2898 	fs_cachep = kmem_cache_create("fs_cache",
2899 			sizeof(struct fs_struct), 0,
2900 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2901 			NULL);
2902 
2903 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2904 	mmap_init();
2905 	nsproxy_cache_init();
2906 }
2907 
2908 /*
2909  * Check constraints on flags passed to the unshare system call.
2910  */
check_unshare_flags(unsigned long unshare_flags)2911 static int check_unshare_flags(unsigned long unshare_flags)
2912 {
2913 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2914 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2915 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2916 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2917 				CLONE_NEWTIME))
2918 		return -EINVAL;
2919 	/*
2920 	 * Not implemented, but pretend it works if there is nothing
2921 	 * to unshare.  Note that unsharing the address space or the
2922 	 * signal handlers also need to unshare the signal queues (aka
2923 	 * CLONE_THREAD).
2924 	 */
2925 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2926 		if (!thread_group_empty(current))
2927 			return -EINVAL;
2928 	}
2929 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2930 		if (refcount_read(&current->sighand->count) > 1)
2931 			return -EINVAL;
2932 	}
2933 	if (unshare_flags & CLONE_VM) {
2934 		if (!current_is_single_threaded())
2935 			return -EINVAL;
2936 	}
2937 
2938 	return 0;
2939 }
2940 
2941 /*
2942  * Unshare the filesystem structure if it is being shared
2943  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2944 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2945 {
2946 	struct fs_struct *fs = current->fs;
2947 
2948 	if (!(unshare_flags & CLONE_FS) || !fs)
2949 		return 0;
2950 
2951 	/* don't need lock here; in the worst case we'll do useless copy */
2952 	if (fs->users == 1)
2953 		return 0;
2954 
2955 	*new_fsp = copy_fs_struct(fs);
2956 	if (!*new_fsp)
2957 		return -ENOMEM;
2958 
2959 	return 0;
2960 }
2961 
2962 /*
2963  * Unshare file descriptor table if it is being shared
2964  */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2965 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2966 	       struct files_struct **new_fdp)
2967 {
2968 	struct files_struct *fd = current->files;
2969 	int error = 0;
2970 
2971 	if ((unshare_flags & CLONE_FILES) &&
2972 	    (fd && atomic_read(&fd->count) > 1)) {
2973 		*new_fdp = dup_fd(fd, max_fds, &error);
2974 		if (!*new_fdp)
2975 			return error;
2976 	}
2977 
2978 	return 0;
2979 }
2980 
2981 /*
2982  * unshare allows a process to 'unshare' part of the process
2983  * context which was originally shared using clone.  copy_*
2984  * functions used by kernel_clone() cannot be used here directly
2985  * because they modify an inactive task_struct that is being
2986  * constructed. Here we are modifying the current, active,
2987  * task_struct.
2988  */
ksys_unshare(unsigned long unshare_flags)2989 int ksys_unshare(unsigned long unshare_flags)
2990 {
2991 	struct fs_struct *fs, *new_fs = NULL;
2992 	struct files_struct *fd, *new_fd = NULL;
2993 	struct cred *new_cred = NULL;
2994 	struct nsproxy *new_nsproxy = NULL;
2995 	int do_sysvsem = 0;
2996 	int err;
2997 
2998 	/*
2999 	 * If unsharing a user namespace must also unshare the thread group
3000 	 * and unshare the filesystem root and working directories.
3001 	 */
3002 	if (unshare_flags & CLONE_NEWUSER)
3003 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3004 	/*
3005 	 * If unsharing vm, must also unshare signal handlers.
3006 	 */
3007 	if (unshare_flags & CLONE_VM)
3008 		unshare_flags |= CLONE_SIGHAND;
3009 	/*
3010 	 * If unsharing a signal handlers, must also unshare the signal queues.
3011 	 */
3012 	if (unshare_flags & CLONE_SIGHAND)
3013 		unshare_flags |= CLONE_THREAD;
3014 	/*
3015 	 * If unsharing namespace, must also unshare filesystem information.
3016 	 */
3017 	if (unshare_flags & CLONE_NEWNS)
3018 		unshare_flags |= CLONE_FS;
3019 
3020 	err = check_unshare_flags(unshare_flags);
3021 	if (err)
3022 		goto bad_unshare_out;
3023 	/*
3024 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3025 	 * to a new ipc namespace, the semaphore arrays from the old
3026 	 * namespace are unreachable.
3027 	 */
3028 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3029 		do_sysvsem = 1;
3030 	err = unshare_fs(unshare_flags, &new_fs);
3031 	if (err)
3032 		goto bad_unshare_out;
3033 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3034 	if (err)
3035 		goto bad_unshare_cleanup_fs;
3036 	err = unshare_userns(unshare_flags, &new_cred);
3037 	if (err)
3038 		goto bad_unshare_cleanup_fd;
3039 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3040 					 new_cred, new_fs);
3041 	if (err)
3042 		goto bad_unshare_cleanup_cred;
3043 
3044 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3045 		if (do_sysvsem) {
3046 			/*
3047 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3048 			 */
3049 			exit_sem(current);
3050 		}
3051 		if (unshare_flags & CLONE_NEWIPC) {
3052 			/* Orphan segments in old ns (see sem above). */
3053 			exit_shm(current);
3054 			shm_init_task(current);
3055 		}
3056 
3057 		if (new_nsproxy)
3058 			switch_task_namespaces(current, new_nsproxy);
3059 
3060 		task_lock(current);
3061 
3062 		if (new_fs) {
3063 			fs = current->fs;
3064 			spin_lock(&fs->lock);
3065 			current->fs = new_fs;
3066 			if (--fs->users)
3067 				new_fs = NULL;
3068 			else
3069 				new_fs = fs;
3070 			spin_unlock(&fs->lock);
3071 		}
3072 
3073 		if (new_fd) {
3074 			fd = current->files;
3075 			current->files = new_fd;
3076 			new_fd = fd;
3077 		}
3078 
3079 		task_unlock(current);
3080 
3081 		if (new_cred) {
3082 			/* Install the new user namespace */
3083 			commit_creds(new_cred);
3084 			new_cred = NULL;
3085 		}
3086 	}
3087 
3088 	perf_event_namespaces(current);
3089 
3090 bad_unshare_cleanup_cred:
3091 	if (new_cred)
3092 		put_cred(new_cred);
3093 bad_unshare_cleanup_fd:
3094 	if (new_fd)
3095 		put_files_struct(new_fd);
3096 
3097 bad_unshare_cleanup_fs:
3098 	if (new_fs)
3099 		free_fs_struct(new_fs);
3100 
3101 bad_unshare_out:
3102 	return err;
3103 }
3104 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3105 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3106 {
3107 	return ksys_unshare(unshare_flags);
3108 }
3109 
3110 /*
3111  *	Helper to unshare the files of the current task.
3112  *	We don't want to expose copy_files internals to
3113  *	the exec layer of the kernel.
3114  */
3115 
unshare_files(struct files_struct ** displaced)3116 int unshare_files(struct files_struct **displaced)
3117 {
3118 	struct task_struct *task = current;
3119 	struct files_struct *copy = NULL;
3120 	int error;
3121 
3122 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3123 	if (error || !copy) {
3124 		*displaced = NULL;
3125 		return error;
3126 	}
3127 	*displaced = task->files;
3128 	task_lock(task);
3129 	task->files = copy;
3130 	task_unlock(task);
3131 	return 0;
3132 }
3133 
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3134 int sysctl_max_threads(struct ctl_table *table, int write,
3135 		       void *buffer, size_t *lenp, loff_t *ppos)
3136 {
3137 	struct ctl_table t;
3138 	int ret;
3139 	int threads = max_threads;
3140 	int min = 1;
3141 	int max = MAX_THREADS;
3142 
3143 	t = *table;
3144 	t.data = &threads;
3145 	t.extra1 = &min;
3146 	t.extra2 = &max;
3147 
3148 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3149 	if (ret || !write)
3150 		return ret;
3151 
3152 	max_threads = threads;
3153 
3154 	return 0;
3155 }
3156