1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
57
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
60
61 #include "internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
65
66 #ifdef CONFIG_HYPERHOLD_FILE_LRU
67 #include <linux/memcg_policy.h>
68 #endif
69
70 #ifdef CONFIG_RECLAIM_ACCT
71 #include <linux/reclaim_acct.h>
72 #endif
73
74 #ifdef ARCH_HAS_PREFETCHW
75 #define prefetchw_prev_lru_page(_page, _base, _field) \
76 do { \
77 if ((_page)->lru.prev != _base) { \
78 struct page *prev; \
79 \
80 prev = lru_to_page(&(_page->lru)); \
81 prefetchw(&prev->_field); \
82 } \
83 } while (0)
84 #else
85 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
86 #endif
87
88 #ifdef CONFIG_HYPERHOLD_FILE_LRU
89 unsigned int enough_inactive_file = 1;
90 #endif
91
92 /*
93 * From 0 .. 200. Higher means more swappy.
94 */
95 int vm_swappiness = 60;
96
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)97 static void set_task_reclaim_state(struct task_struct *task,
98 struct reclaim_state *rs)
99 {
100 /* Check for an overwrite */
101 WARN_ON_ONCE(rs && task->reclaim_state);
102
103 /* Check for the nulling of an already-nulled member */
104 WARN_ON_ONCE(!rs && !task->reclaim_state);
105
106 task->reclaim_state = rs;
107 }
108
109 static LIST_HEAD(shrinker_list);
110 static DECLARE_RWSEM(shrinker_rwsem);
111
112 #ifdef CONFIG_MEMCG
113
114 static DEFINE_IDR(shrinker_idr);
115 static int shrinker_nr_max;
116
prealloc_memcg_shrinker(struct shrinker * shrinker)117 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
118 {
119 int id, ret = -ENOMEM;
120
121 down_write(&shrinker_rwsem);
122 /* This may call shrinker, so it must use down_read_trylock() */
123 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
124 if (id < 0)
125 goto unlock;
126
127 if (id >= shrinker_nr_max) {
128 if (memcg_expand_shrinker_maps(id)) {
129 idr_remove(&shrinker_idr, id);
130 goto unlock;
131 }
132
133 shrinker_nr_max = id + 1;
134 }
135 shrinker->id = id;
136 ret = 0;
137 unlock:
138 up_write(&shrinker_rwsem);
139 return ret;
140 }
141
unregister_memcg_shrinker(struct shrinker * shrinker)142 static void unregister_memcg_shrinker(struct shrinker *shrinker)
143 {
144 int id = shrinker->id;
145
146 BUG_ON(id < 0);
147
148 lockdep_assert_held(&shrinker_rwsem);
149
150 idr_remove(&shrinker_idr, id);
151 }
152
cgroup_reclaim(struct scan_control * sc)153 bool cgroup_reclaim(struct scan_control *sc)
154 {
155 return sc->target_mem_cgroup;
156 }
157
158 /**
159 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
160 * @sc: scan_control in question
161 *
162 * The normal page dirty throttling mechanism in balance_dirty_pages() is
163 * completely broken with the legacy memcg and direct stalling in
164 * shrink_page_list() is used for throttling instead, which lacks all the
165 * niceties such as fairness, adaptive pausing, bandwidth proportional
166 * allocation and configurability.
167 *
168 * This function tests whether the vmscan currently in progress can assume
169 * that the normal dirty throttling mechanism is operational.
170 */
writeback_throttling_sane(struct scan_control * sc)171 bool writeback_throttling_sane(struct scan_control *sc)
172 {
173 if (!cgroup_reclaim(sc))
174 return true;
175 #ifdef CONFIG_CGROUP_WRITEBACK
176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177 return true;
178 #endif
179 return false;
180 }
181 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)182 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
183 {
184 return 0;
185 }
186
unregister_memcg_shrinker(struct shrinker * shrinker)187 static void unregister_memcg_shrinker(struct shrinker *shrinker)
188 {
189 }
190
cgroup_reclaim(struct scan_control * sc)191 bool cgroup_reclaim(struct scan_control *sc)
192 {
193 return false;
194 }
195
writeback_throttling_sane(struct scan_control * sc)196 bool writeback_throttling_sane(struct scan_control *sc)
197 {
198 return true;
199 }
200 #endif
201
202 /*
203 * This misses isolated pages which are not accounted for to save counters.
204 * As the data only determines if reclaim or compaction continues, it is
205 * not expected that isolated pages will be a dominating factor.
206 */
zone_reclaimable_pages(struct zone * zone)207 unsigned long zone_reclaimable_pages(struct zone *zone)
208 {
209 unsigned long nr;
210
211 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
213 if (get_nr_swap_pages() > 0)
214 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
216 /*
217 * If there are no reclaimable file-backed or anonymous pages,
218 * ensure zones with sufficient free pages are not skipped.
219 * This prevents zones like DMA32 from being ignored in reclaim
220 * scenarios where they can still help alleviate memory pressure.
221 */
222 if (nr == 0)
223 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
224 return nr;
225 }
226
227 /**
228 * lruvec_lru_size - Returns the number of pages on the given LRU list.
229 * @lruvec: lru vector
230 * @lru: lru to use
231 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
232 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)233 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
234 {
235 unsigned long size = 0;
236 int zid;
237
238 #ifdef CONFIG_HYPERHOLD_FILE_LRU
239 if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
240 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
241 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
242
243 if (!managed_zone(zone))
244 continue;
245
246 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
247 }
248
249 return size;
250 }
251 #endif
252 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
253 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
254
255 if (!managed_zone(zone))
256 continue;
257
258 if (!mem_cgroup_disabled())
259 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
260 else
261 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
262 }
263 return size;
264 }
265
266 /*
267 * Add a shrinker callback to be called from the vm.
268 */
prealloc_shrinker(struct shrinker * shrinker)269 int prealloc_shrinker(struct shrinker *shrinker)
270 {
271 unsigned int size = sizeof(*shrinker->nr_deferred);
272
273 if (shrinker->flags & SHRINKER_NUMA_AWARE)
274 size *= nr_node_ids;
275
276 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
277 if (!shrinker->nr_deferred)
278 return -ENOMEM;
279
280 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
281 if (prealloc_memcg_shrinker(shrinker))
282 goto free_deferred;
283 }
284
285 return 0;
286
287 free_deferred:
288 kfree(shrinker->nr_deferred);
289 shrinker->nr_deferred = NULL;
290 return -ENOMEM;
291 }
292
free_prealloced_shrinker(struct shrinker * shrinker)293 void free_prealloced_shrinker(struct shrinker *shrinker)
294 {
295 if (!shrinker->nr_deferred)
296 return;
297
298 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
299 down_write(&shrinker_rwsem);
300 unregister_memcg_shrinker(shrinker);
301 up_write(&shrinker_rwsem);
302 }
303
304 kfree(shrinker->nr_deferred);
305 shrinker->nr_deferred = NULL;
306 }
307
register_shrinker_prepared(struct shrinker * shrinker)308 void register_shrinker_prepared(struct shrinker *shrinker)
309 {
310 down_write(&shrinker_rwsem);
311 list_add_tail(&shrinker->list, &shrinker_list);
312 shrinker->flags |= SHRINKER_REGISTERED;
313 up_write(&shrinker_rwsem);
314 }
315
register_shrinker(struct shrinker * shrinker)316 int register_shrinker(struct shrinker *shrinker)
317 {
318 int err = prealloc_shrinker(shrinker);
319
320 if (err)
321 return err;
322 register_shrinker_prepared(shrinker);
323 return 0;
324 }
325 EXPORT_SYMBOL(register_shrinker);
326
327 /*
328 * Remove one
329 */
unregister_shrinker(struct shrinker * shrinker)330 void unregister_shrinker(struct shrinker *shrinker)
331 {
332 if (!(shrinker->flags & SHRINKER_REGISTERED))
333 return;
334
335 down_write(&shrinker_rwsem);
336 list_del(&shrinker->list);
337 shrinker->flags &= ~SHRINKER_REGISTERED;
338 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
339 unregister_memcg_shrinker(shrinker);
340 up_write(&shrinker_rwsem);
341
342 kfree(shrinker->nr_deferred);
343 shrinker->nr_deferred = NULL;
344 }
345 EXPORT_SYMBOL(unregister_shrinker);
346
347 #define SHRINK_BATCH 128
348
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)349 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
350 struct shrinker *shrinker, int priority)
351 {
352 unsigned long freed = 0;
353 unsigned long long delta;
354 long total_scan;
355 long freeable;
356 long nr;
357 long new_nr;
358 int nid = shrinkctl->nid;
359 long batch_size = shrinker->batch ? shrinker->batch
360 : SHRINK_BATCH;
361 long scanned = 0, next_deferred;
362
363 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
364 nid = 0;
365
366 freeable = shrinker->count_objects(shrinker, shrinkctl);
367 if (freeable == 0 || freeable == SHRINK_EMPTY)
368 return freeable;
369
370 /*
371 * copy the current shrinker scan count into a local variable
372 * and zero it so that other concurrent shrinker invocations
373 * don't also do this scanning work.
374 */
375 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
376
377 total_scan = nr;
378 if (shrinker->seeks) {
379 delta = freeable >> priority;
380 delta *= 4;
381 do_div(delta, shrinker->seeks);
382 } else {
383 /*
384 * These objects don't require any IO to create. Trim
385 * them aggressively under memory pressure to keep
386 * them from causing refetches in the IO caches.
387 */
388 delta = freeable / 2;
389 }
390
391 total_scan += delta;
392 if (total_scan < 0) {
393 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
394 shrinker->scan_objects, total_scan);
395 total_scan = freeable;
396 next_deferred = nr;
397 } else
398 next_deferred = total_scan;
399
400 /*
401 * We need to avoid excessive windup on filesystem shrinkers
402 * due to large numbers of GFP_NOFS allocations causing the
403 * shrinkers to return -1 all the time. This results in a large
404 * nr being built up so when a shrink that can do some work
405 * comes along it empties the entire cache due to nr >>>
406 * freeable. This is bad for sustaining a working set in
407 * memory.
408 *
409 * Hence only allow the shrinker to scan the entire cache when
410 * a large delta change is calculated directly.
411 */
412 if (delta < freeable / 4)
413 total_scan = min(total_scan, freeable / 2);
414
415 /*
416 * Avoid risking looping forever due to too large nr value:
417 * never try to free more than twice the estimate number of
418 * freeable entries.
419 */
420 if (total_scan > freeable * 2)
421 total_scan = freeable * 2;
422
423 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
424 freeable, delta, total_scan, priority);
425
426 /*
427 * Normally, we should not scan less than batch_size objects in one
428 * pass to avoid too frequent shrinker calls, but if the slab has less
429 * than batch_size objects in total and we are really tight on memory,
430 * we will try to reclaim all available objects, otherwise we can end
431 * up failing allocations although there are plenty of reclaimable
432 * objects spread over several slabs with usage less than the
433 * batch_size.
434 *
435 * We detect the "tight on memory" situations by looking at the total
436 * number of objects we want to scan (total_scan). If it is greater
437 * than the total number of objects on slab (freeable), we must be
438 * scanning at high prio and therefore should try to reclaim as much as
439 * possible.
440 */
441 while (total_scan >= batch_size ||
442 total_scan >= freeable) {
443 unsigned long ret;
444 unsigned long nr_to_scan = min(batch_size, total_scan);
445
446 shrinkctl->nr_to_scan = nr_to_scan;
447 shrinkctl->nr_scanned = nr_to_scan;
448 ret = shrinker->scan_objects(shrinker, shrinkctl);
449 if (ret == SHRINK_STOP)
450 break;
451 freed += ret;
452
453 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
454 total_scan -= shrinkctl->nr_scanned;
455 scanned += shrinkctl->nr_scanned;
456
457 cond_resched();
458 }
459
460 if (next_deferred >= scanned)
461 next_deferred -= scanned;
462 else
463 next_deferred = 0;
464 /*
465 * move the unused scan count back into the shrinker in a
466 * manner that handles concurrent updates. If we exhausted the
467 * scan, there is no need to do an update.
468 */
469 if (next_deferred > 0)
470 new_nr = atomic_long_add_return(next_deferred,
471 &shrinker->nr_deferred[nid]);
472 else
473 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
474
475 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
476 return freed;
477 }
478
479 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)480 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
481 struct mem_cgroup *memcg, int priority)
482 {
483 struct memcg_shrinker_map *map;
484 unsigned long ret, freed = 0;
485 int i;
486
487 if (!mem_cgroup_online(memcg))
488 return 0;
489
490 if (!down_read_trylock(&shrinker_rwsem))
491 return 0;
492
493 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
494 true);
495 if (unlikely(!map))
496 goto unlock;
497
498 for_each_set_bit(i, map->map, shrinker_nr_max) {
499 struct shrink_control sc = {
500 .gfp_mask = gfp_mask,
501 .nid = nid,
502 .memcg = memcg,
503 };
504 struct shrinker *shrinker;
505
506 shrinker = idr_find(&shrinker_idr, i);
507 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
508 if (!shrinker)
509 clear_bit(i, map->map);
510 continue;
511 }
512
513 /* Call non-slab shrinkers even though kmem is disabled */
514 if (!memcg_kmem_enabled() &&
515 !(shrinker->flags & SHRINKER_NONSLAB))
516 continue;
517
518 ret = do_shrink_slab(&sc, shrinker, priority);
519 if (ret == SHRINK_EMPTY) {
520 clear_bit(i, map->map);
521 /*
522 * After the shrinker reported that it had no objects to
523 * free, but before we cleared the corresponding bit in
524 * the memcg shrinker map, a new object might have been
525 * added. To make sure, we have the bit set in this
526 * case, we invoke the shrinker one more time and reset
527 * the bit if it reports that it is not empty anymore.
528 * The memory barrier here pairs with the barrier in
529 * memcg_set_shrinker_bit():
530 *
531 * list_lru_add() shrink_slab_memcg()
532 * list_add_tail() clear_bit()
533 * <MB> <MB>
534 * set_bit() do_shrink_slab()
535 */
536 smp_mb__after_atomic();
537 ret = do_shrink_slab(&sc, shrinker, priority);
538 if (ret == SHRINK_EMPTY)
539 ret = 0;
540 else
541 memcg_set_shrinker_bit(memcg, nid, i);
542 }
543 freed += ret;
544
545 if (rwsem_is_contended(&shrinker_rwsem)) {
546 freed = freed ? : 1;
547 break;
548 }
549 }
550 unlock:
551 up_read(&shrinker_rwsem);
552 return freed;
553 }
554 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)555 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
556 struct mem_cgroup *memcg, int priority)
557 {
558 return 0;
559 }
560 #endif /* CONFIG_MEMCG */
561
562 /**
563 * shrink_slab - shrink slab caches
564 * @gfp_mask: allocation context
565 * @nid: node whose slab caches to target
566 * @memcg: memory cgroup whose slab caches to target
567 * @priority: the reclaim priority
568 *
569 * Call the shrink functions to age shrinkable caches.
570 *
571 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
572 * unaware shrinkers will receive a node id of 0 instead.
573 *
574 * @memcg specifies the memory cgroup to target. Unaware shrinkers
575 * are called only if it is the root cgroup.
576 *
577 * @priority is sc->priority, we take the number of objects and >> by priority
578 * in order to get the scan target.
579 *
580 * Returns the number of reclaimed slab objects.
581 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)582 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
583 struct mem_cgroup *memcg,
584 int priority)
585 {
586 unsigned long ret, freed = 0;
587 struct shrinker *shrinker;
588
589 /*
590 * The root memcg might be allocated even though memcg is disabled
591 * via "cgroup_disable=memory" boot parameter. This could make
592 * mem_cgroup_is_root() return false, then just run memcg slab
593 * shrink, but skip global shrink. This may result in premature
594 * oom.
595 */
596 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
597 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
598
599 if (!down_read_trylock(&shrinker_rwsem))
600 goto out;
601
602 list_for_each_entry(shrinker, &shrinker_list, list) {
603 struct shrink_control sc = {
604 .gfp_mask = gfp_mask,
605 .nid = nid,
606 .memcg = memcg,
607 };
608
609 #ifdef CONFIG_RECLAIM_ACCT
610 reclaimacct_substage_start(RA_SHRINKSLAB);
611 #endif
612 ret = do_shrink_slab(&sc, shrinker, priority);
613 if (ret == SHRINK_EMPTY)
614 ret = 0;
615 freed += ret;
616 #ifdef CONFIG_RECLAIM_ACCT
617 reclaimacct_substage_end(RA_SHRINKSLAB, ret, shrinker);
618 #endif
619 /*
620 * Bail out if someone want to register a new shrinker to
621 * prevent the registration from being stalled for long periods
622 * by parallel ongoing shrinking.
623 */
624 if (rwsem_is_contended(&shrinker_rwsem)) {
625 freed = freed ? : 1;
626 break;
627 }
628 }
629
630 up_read(&shrinker_rwsem);
631 out:
632 cond_resched();
633 return freed;
634 }
635
drop_slab_node(int nid)636 void drop_slab_node(int nid)
637 {
638 unsigned long freed;
639 int shift = 0;
640
641 do {
642 struct mem_cgroup *memcg = NULL;
643
644 if (fatal_signal_pending(current))
645 return;
646
647 freed = 0;
648 memcg = mem_cgroup_iter(NULL, NULL, NULL);
649 do {
650 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
651 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
652 } while ((freed >> shift++) > 1);
653 }
654
drop_slab(void)655 void drop_slab(void)
656 {
657 int nid;
658
659 for_each_online_node(nid)
660 drop_slab_node(nid);
661 }
662
is_page_cache_freeable(struct page * page)663 static inline int is_page_cache_freeable(struct page *page)
664 {
665 /*
666 * A freeable page cache page is referenced only by the caller
667 * that isolated the page, the page cache and optional buffer
668 * heads at page->private.
669 */
670 int page_cache_pins = thp_nr_pages(page);
671 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
672 }
673
may_write_to_inode(struct inode * inode)674 static int may_write_to_inode(struct inode *inode)
675 {
676 if (current->flags & PF_SWAPWRITE)
677 return 1;
678 if (!inode_write_congested(inode))
679 return 1;
680 if (inode_to_bdi(inode) == current->backing_dev_info)
681 return 1;
682 return 0;
683 }
684
685 /*
686 * We detected a synchronous write error writing a page out. Probably
687 * -ENOSPC. We need to propagate that into the address_space for a subsequent
688 * fsync(), msync() or close().
689 *
690 * The tricky part is that after writepage we cannot touch the mapping: nothing
691 * prevents it from being freed up. But we have a ref on the page and once
692 * that page is locked, the mapping is pinned.
693 *
694 * We're allowed to run sleeping lock_page() here because we know the caller has
695 * __GFP_FS.
696 */
handle_write_error(struct address_space * mapping,struct page * page,int error)697 static void handle_write_error(struct address_space *mapping,
698 struct page *page, int error)
699 {
700 lock_page(page);
701 if (page_mapping(page) == mapping)
702 mapping_set_error(mapping, error);
703 unlock_page(page);
704 }
705
706 /* possible outcome of pageout() */
707 typedef enum {
708 /* failed to write page out, page is locked */
709 PAGE_KEEP,
710 /* move page to the active list, page is locked */
711 PAGE_ACTIVATE,
712 /* page has been sent to the disk successfully, page is unlocked */
713 PAGE_SUCCESS,
714 /* page is clean and locked */
715 PAGE_CLEAN,
716 } pageout_t;
717
718 /*
719 * pageout is called by shrink_page_list() for each dirty page.
720 * Calls ->writepage().
721 */
pageout(struct page * page,struct address_space * mapping)722 static pageout_t pageout(struct page *page, struct address_space *mapping)
723 {
724 /*
725 * If the page is dirty, only perform writeback if that write
726 * will be non-blocking. To prevent this allocation from being
727 * stalled by pagecache activity. But note that there may be
728 * stalls if we need to run get_block(). We could test
729 * PagePrivate for that.
730 *
731 * If this process is currently in __generic_file_write_iter() against
732 * this page's queue, we can perform writeback even if that
733 * will block.
734 *
735 * If the page is swapcache, write it back even if that would
736 * block, for some throttling. This happens by accident, because
737 * swap_backing_dev_info is bust: it doesn't reflect the
738 * congestion state of the swapdevs. Easy to fix, if needed.
739 */
740 if (!is_page_cache_freeable(page))
741 return PAGE_KEEP;
742 if (!mapping) {
743 /*
744 * Some data journaling orphaned pages can have
745 * page->mapping == NULL while being dirty with clean buffers.
746 */
747 if (page_has_private(page)) {
748 if (try_to_free_buffers(page)) {
749 ClearPageDirty(page);
750 pr_info("%s: orphaned page\n", __func__);
751 return PAGE_CLEAN;
752 }
753 }
754 return PAGE_KEEP;
755 }
756 if (mapping->a_ops->writepage == NULL)
757 return PAGE_ACTIVATE;
758 if (!may_write_to_inode(mapping->host))
759 return PAGE_KEEP;
760
761 if (clear_page_dirty_for_io(page)) {
762 int res;
763 struct writeback_control wbc = {
764 .sync_mode = WB_SYNC_NONE,
765 .nr_to_write = SWAP_CLUSTER_MAX,
766 .range_start = 0,
767 .range_end = LLONG_MAX,
768 .for_reclaim = 1,
769 };
770
771 SetPageReclaim(page);
772 res = mapping->a_ops->writepage(page, &wbc);
773 if (res < 0)
774 handle_write_error(mapping, page, res);
775 if (res == AOP_WRITEPAGE_ACTIVATE) {
776 ClearPageReclaim(page);
777 return PAGE_ACTIVATE;
778 }
779
780 if (!PageWriteback(page)) {
781 /* synchronous write or broken a_ops? */
782 ClearPageReclaim(page);
783 }
784 trace_mm_vmscan_writepage(page);
785 inc_node_page_state(page, NR_VMSCAN_WRITE);
786 return PAGE_SUCCESS;
787 }
788
789 return PAGE_CLEAN;
790 }
791
792 /*
793 * Same as remove_mapping, but if the page is removed from the mapping, it
794 * gets returned with a refcount of 0.
795 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)796 static int __remove_mapping(struct address_space *mapping, struct page *page,
797 bool reclaimed, struct mem_cgroup *target_memcg)
798 {
799 unsigned long flags;
800 int refcount;
801 void *shadow = NULL;
802
803 BUG_ON(!PageLocked(page));
804 BUG_ON(mapping != page_mapping(page));
805
806 xa_lock_irqsave(&mapping->i_pages, flags);
807 /*
808 * The non racy check for a busy page.
809 *
810 * Must be careful with the order of the tests. When someone has
811 * a ref to the page, it may be possible that they dirty it then
812 * drop the reference. So if PageDirty is tested before page_count
813 * here, then the following race may occur:
814 *
815 * get_user_pages(&page);
816 * [user mapping goes away]
817 * write_to(page);
818 * !PageDirty(page) [good]
819 * SetPageDirty(page);
820 * put_page(page);
821 * !page_count(page) [good, discard it]
822 *
823 * [oops, our write_to data is lost]
824 *
825 * Reversing the order of the tests ensures such a situation cannot
826 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
827 * load is not satisfied before that of page->_refcount.
828 *
829 * Note that if SetPageDirty is always performed via set_page_dirty,
830 * and thus under the i_pages lock, then this ordering is not required.
831 */
832 refcount = 1 + compound_nr(page);
833 if (!page_ref_freeze(page, refcount))
834 goto cannot_free;
835 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
836 if (unlikely(PageDirty(page))) {
837 page_ref_unfreeze(page, refcount);
838 goto cannot_free;
839 }
840
841 if (PageSwapCache(page)) {
842 swp_entry_t swap = { .val = page_private(page) };
843 mem_cgroup_swapout(page, swap);
844 if (reclaimed && !mapping_exiting(mapping))
845 shadow = workingset_eviction(page, target_memcg);
846 __delete_from_swap_cache(page, swap, shadow);
847 xa_unlock_irqrestore(&mapping->i_pages, flags);
848 put_swap_page(page, swap);
849 } else {
850 void (*freepage)(struct page *);
851
852 freepage = mapping->a_ops->freepage;
853 /*
854 * Remember a shadow entry for reclaimed file cache in
855 * order to detect refaults, thus thrashing, later on.
856 *
857 * But don't store shadows in an address space that is
858 * already exiting. This is not just an optimization,
859 * inode reclaim needs to empty out the radix tree or
860 * the nodes are lost. Don't plant shadows behind its
861 * back.
862 *
863 * We also don't store shadows for DAX mappings because the
864 * only page cache pages found in these are zero pages
865 * covering holes, and because we don't want to mix DAX
866 * exceptional entries and shadow exceptional entries in the
867 * same address_space.
868 */
869 if (reclaimed && page_is_file_lru(page) &&
870 !mapping_exiting(mapping) && !dax_mapping(mapping))
871 shadow = workingset_eviction(page, target_memcg);
872 __delete_from_page_cache(page, shadow);
873 xa_unlock_irqrestore(&mapping->i_pages, flags);
874
875 if (freepage != NULL)
876 freepage(page);
877 }
878
879 return 1;
880
881 cannot_free:
882 xa_unlock_irqrestore(&mapping->i_pages, flags);
883 return 0;
884 }
885
886 /*
887 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
888 * someone else has a ref on the page, abort and return 0. If it was
889 * successfully detached, return 1. Assumes the caller has a single ref on
890 * this page.
891 */
remove_mapping(struct address_space * mapping,struct page * page)892 int remove_mapping(struct address_space *mapping, struct page *page)
893 {
894 if (__remove_mapping(mapping, page, false, NULL)) {
895 /*
896 * Unfreezing the refcount with 1 rather than 2 effectively
897 * drops the pagecache ref for us without requiring another
898 * atomic operation.
899 */
900 page_ref_unfreeze(page, 1);
901 return 1;
902 }
903 return 0;
904 }
905
906 /**
907 * putback_lru_page - put previously isolated page onto appropriate LRU list
908 * @page: page to be put back to appropriate lru list
909 *
910 * Add previously isolated @page to appropriate LRU list.
911 * Page may still be unevictable for other reasons.
912 *
913 * lru_lock must not be held, interrupts must be enabled.
914 */
putback_lru_page(struct page * page)915 void putback_lru_page(struct page *page)
916 {
917 lru_cache_add(page);
918 put_page(page); /* drop ref from isolate */
919 }
920
921 enum page_references {
922 PAGEREF_RECLAIM,
923 PAGEREF_RECLAIM_CLEAN,
924 PAGEREF_RECLAIM_PURGEABLE,
925 PAGEREF_KEEP,
926 PAGEREF_ACTIVATE,
927 };
928
page_check_references(struct page * page,struct scan_control * sc)929 static enum page_references page_check_references(struct page *page,
930 struct scan_control *sc)
931 {
932 int referenced_ptes, referenced_page;
933 unsigned long vm_flags;
934
935 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
936 &vm_flags);
937 referenced_page = TestClearPageReferenced(page);
938
939 /*
940 * Mlock lost the isolation race with us. Let try_to_unmap()
941 * move the page to the unevictable list.
942 */
943 if (vm_flags & VM_LOCKED)
944 return PAGEREF_RECLAIM;
945
946 #ifdef CONFIG_MEM_PURGEABLE
947 if (vm_flags & VM_PURGEABLE)
948 return PAGEREF_RECLAIM_PURGEABLE;
949 #endif
950 if (referenced_ptes) {
951 /*
952 * All mapped pages start out with page table
953 * references from the instantiating fault, so we need
954 * to look twice if a mapped file page is used more
955 * than once.
956 *
957 * Mark it and spare it for another trip around the
958 * inactive list. Another page table reference will
959 * lead to its activation.
960 *
961 * Note: the mark is set for activated pages as well
962 * so that recently deactivated but used pages are
963 * quickly recovered.
964 */
965 SetPageReferenced(page);
966
967 if (referenced_page || referenced_ptes > 1)
968 return PAGEREF_ACTIVATE;
969
970 /*
971 * Activate file-backed executable pages after first usage.
972 */
973 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
974 return PAGEREF_ACTIVATE;
975
976 return PAGEREF_KEEP;
977 }
978
979 /* Reclaim if clean, defer dirty pages to writeback */
980 if (referenced_page && !PageSwapBacked(page))
981 return PAGEREF_RECLAIM_CLEAN;
982
983 return PAGEREF_RECLAIM;
984 }
985
986 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)987 static void page_check_dirty_writeback(struct page *page,
988 bool *dirty, bool *writeback)
989 {
990 struct address_space *mapping;
991
992 /*
993 * Anonymous pages are not handled by flushers and must be written
994 * from reclaim context. Do not stall reclaim based on them
995 */
996 if (!page_is_file_lru(page) ||
997 (PageAnon(page) && !PageSwapBacked(page))) {
998 *dirty = false;
999 *writeback = false;
1000 return;
1001 }
1002
1003 /* By default assume that the page flags are accurate */
1004 *dirty = PageDirty(page);
1005 *writeback = PageWriteback(page);
1006
1007 /* Verify dirty/writeback state if the filesystem supports it */
1008 if (!page_has_private(page))
1009 return;
1010
1011 mapping = page_mapping(page);
1012 if (mapping && mapping->a_ops->is_dirty_writeback)
1013 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1014 }
1015
1016 /*
1017 * shrink_page_list() returns the number of reclaimed pages
1018 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1019 unsigned int shrink_page_list(struct list_head *page_list,
1020 struct pglist_data *pgdat,
1021 struct scan_control *sc,
1022 struct reclaim_stat *stat,
1023 bool ignore_references)
1024 {
1025 LIST_HEAD(ret_pages);
1026 LIST_HEAD(free_pages);
1027 unsigned int nr_reclaimed = 0;
1028 unsigned int pgactivate = 0;
1029
1030 memset(stat, 0, sizeof(*stat));
1031 cond_resched();
1032
1033 while (!list_empty(page_list)) {
1034 struct address_space *mapping;
1035 struct page *page;
1036 enum page_references references = PAGEREF_RECLAIM;
1037 bool dirty, writeback, may_enter_fs;
1038 unsigned int nr_pages;
1039
1040 cond_resched();
1041
1042 page = lru_to_page(page_list);
1043 list_del(&page->lru);
1044
1045 if (!trylock_page(page))
1046 goto keep;
1047
1048 VM_BUG_ON_PAGE(PageActive(page), page);
1049
1050 nr_pages = compound_nr(page);
1051
1052 /* Account the number of base pages even though THP */
1053 sc->nr_scanned += nr_pages;
1054
1055 if (unlikely(!page_evictable(page)))
1056 goto activate_locked;
1057
1058 if (!sc->may_unmap && page_mapped(page))
1059 goto keep_locked;
1060
1061 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1062 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1063
1064 /*
1065 * The number of dirty pages determines if a node is marked
1066 * reclaim_congested which affects wait_iff_congested. kswapd
1067 * will stall and start writing pages if the tail of the LRU
1068 * is all dirty unqueued pages.
1069 */
1070 page_check_dirty_writeback(page, &dirty, &writeback);
1071 if (dirty || writeback)
1072 stat->nr_dirty++;
1073
1074 if (dirty && !writeback)
1075 stat->nr_unqueued_dirty++;
1076
1077 /*
1078 * Treat this page as congested if the underlying BDI is or if
1079 * pages are cycling through the LRU so quickly that the
1080 * pages marked for immediate reclaim are making it to the
1081 * end of the LRU a second time.
1082 */
1083 mapping = page_mapping(page);
1084 if (((dirty || writeback) && mapping &&
1085 inode_write_congested(mapping->host)) ||
1086 (writeback && PageReclaim(page)))
1087 stat->nr_congested++;
1088
1089 /*
1090 * If a page at the tail of the LRU is under writeback, there
1091 * are three cases to consider.
1092 *
1093 * 1) If reclaim is encountering an excessive number of pages
1094 * under writeback and this page is both under writeback and
1095 * PageReclaim then it indicates that pages are being queued
1096 * for IO but are being recycled through the LRU before the
1097 * IO can complete. Waiting on the page itself risks an
1098 * indefinite stall if it is impossible to writeback the
1099 * page due to IO error or disconnected storage so instead
1100 * note that the LRU is being scanned too quickly and the
1101 * caller can stall after page list has been processed.
1102 *
1103 * 2) Global or new memcg reclaim encounters a page that is
1104 * not marked for immediate reclaim, or the caller does not
1105 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1106 * not to fs). In this case mark the page for immediate
1107 * reclaim and continue scanning.
1108 *
1109 * Require may_enter_fs because we would wait on fs, which
1110 * may not have submitted IO yet. And the loop driver might
1111 * enter reclaim, and deadlock if it waits on a page for
1112 * which it is needed to do the write (loop masks off
1113 * __GFP_IO|__GFP_FS for this reason); but more thought
1114 * would probably show more reasons.
1115 *
1116 * 3) Legacy memcg encounters a page that is already marked
1117 * PageReclaim. memcg does not have any dirty pages
1118 * throttling so we could easily OOM just because too many
1119 * pages are in writeback and there is nothing else to
1120 * reclaim. Wait for the writeback to complete.
1121 *
1122 * In cases 1) and 2) we activate the pages to get them out of
1123 * the way while we continue scanning for clean pages on the
1124 * inactive list and refilling from the active list. The
1125 * observation here is that waiting for disk writes is more
1126 * expensive than potentially causing reloads down the line.
1127 * Since they're marked for immediate reclaim, they won't put
1128 * memory pressure on the cache working set any longer than it
1129 * takes to write them to disk.
1130 */
1131 if (PageWriteback(page)) {
1132 /* Case 1 above */
1133 if (current_is_kswapd() &&
1134 PageReclaim(page) &&
1135 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1136 stat->nr_immediate++;
1137 goto activate_locked;
1138
1139 /* Case 2 above */
1140 } else if (writeback_throttling_sane(sc) ||
1141 !PageReclaim(page) || !may_enter_fs) {
1142 /*
1143 * This is slightly racy - end_page_writeback()
1144 * might have just cleared PageReclaim, then
1145 * setting PageReclaim here end up interpreted
1146 * as PageReadahead - but that does not matter
1147 * enough to care. What we do want is for this
1148 * page to have PageReclaim set next time memcg
1149 * reclaim reaches the tests above, so it will
1150 * then wait_on_page_writeback() to avoid OOM;
1151 * and it's also appropriate in global reclaim.
1152 */
1153 SetPageReclaim(page);
1154 stat->nr_writeback++;
1155 goto activate_locked;
1156
1157 /* Case 3 above */
1158 } else {
1159 unlock_page(page);
1160 wait_on_page_writeback(page);
1161 /* then go back and try same page again */
1162 list_add_tail(&page->lru, page_list);
1163 continue;
1164 }
1165 }
1166
1167 if (!ignore_references)
1168 references = page_check_references(page, sc);
1169
1170 switch (references) {
1171 case PAGEREF_ACTIVATE:
1172 goto activate_locked;
1173 case PAGEREF_KEEP:
1174 stat->nr_ref_keep += nr_pages;
1175 goto keep_locked;
1176 case PAGEREF_RECLAIM:
1177 case PAGEREF_RECLAIM_CLEAN:
1178 case PAGEREF_RECLAIM_PURGEABLE:
1179 ; /* try to reclaim the page below */
1180 }
1181
1182 /*
1183 * Anonymous process memory has backing store?
1184 * Try to allocate it some swap space here.
1185 * Lazyfree page could be freed directly
1186 */
1187 if (PageAnon(page) && PageSwapBacked(page)) {
1188 if (!PageSwapCache(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1189 if (!(sc->gfp_mask & __GFP_IO))
1190 goto keep_locked;
1191 if (page_maybe_dma_pinned(page))
1192 goto keep_locked;
1193 if (PageTransHuge(page)) {
1194 /* cannot split THP, skip it */
1195 if (!can_split_huge_page(page, NULL))
1196 goto activate_locked;
1197 /*
1198 * Split pages without a PMD map right
1199 * away. Chances are some or all of the
1200 * tail pages can be freed without IO.
1201 */
1202 if (!compound_mapcount(page) &&
1203 split_huge_page_to_list(page,
1204 page_list))
1205 goto activate_locked;
1206 }
1207 if (!add_to_swap(page)) {
1208 if (!PageTransHuge(page))
1209 goto activate_locked_split;
1210 /* Fallback to swap normal pages */
1211 if (split_huge_page_to_list(page,
1212 page_list))
1213 goto activate_locked;
1214 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1215 count_vm_event(THP_SWPOUT_FALLBACK);
1216 #endif
1217 if (!add_to_swap(page))
1218 goto activate_locked_split;
1219 }
1220
1221 may_enter_fs = true;
1222
1223 /* Adding to swap updated mapping */
1224 mapping = page_mapping(page);
1225 }
1226 } else if (unlikely(PageTransHuge(page))) {
1227 /* Split file THP */
1228 if (split_huge_page_to_list(page, page_list))
1229 goto keep_locked;
1230 }
1231
1232 /*
1233 * THP may get split above, need minus tail pages and update
1234 * nr_pages to avoid accounting tail pages twice.
1235 *
1236 * The tail pages that are added into swap cache successfully
1237 * reach here.
1238 */
1239 if ((nr_pages > 1) && !PageTransHuge(page)) {
1240 sc->nr_scanned -= (nr_pages - 1);
1241 nr_pages = 1;
1242 }
1243
1244 /*
1245 * The page is mapped into the page tables of one or more
1246 * processes. Try to unmap it here.
1247 */
1248 if (page_mapped(page)) {
1249 enum ttu_flags flags = TTU_BATCH_FLUSH;
1250 bool was_swapbacked = PageSwapBacked(page);
1251
1252 if (unlikely(PageTransHuge(page)))
1253 flags |= TTU_SPLIT_HUGE_PMD;
1254
1255 if (!try_to_unmap(page, flags)) {
1256 stat->nr_unmap_fail += nr_pages;
1257 if (!was_swapbacked && PageSwapBacked(page))
1258 stat->nr_lazyfree_fail += nr_pages;
1259 goto activate_locked;
1260 }
1261 }
1262
1263 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1264 /*
1265 * Only kswapd can writeback filesystem pages
1266 * to avoid risk of stack overflow. But avoid
1267 * injecting inefficient single-page IO into
1268 * flusher writeback as much as possible: only
1269 * write pages when we've encountered many
1270 * dirty pages, and when we've already scanned
1271 * the rest of the LRU for clean pages and see
1272 * the same dirty pages again (PageReclaim).
1273 */
1274 if (page_is_file_lru(page) &&
1275 (!current_is_kswapd() || !PageReclaim(page) ||
1276 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1277 /*
1278 * Immediately reclaim when written back.
1279 * Similar in principal to deactivate_page()
1280 * except we already have the page isolated
1281 * and know it's dirty
1282 */
1283 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1284 SetPageReclaim(page);
1285
1286 goto activate_locked;
1287 }
1288
1289 if (references == PAGEREF_RECLAIM_CLEAN)
1290 goto keep_locked;
1291 if (!may_enter_fs)
1292 goto keep_locked;
1293 if (!sc->may_writepage)
1294 goto keep_locked;
1295
1296 /*
1297 * Page is dirty. Flush the TLB if a writable entry
1298 * potentially exists to avoid CPU writes after IO
1299 * starts and then write it out here.
1300 */
1301 try_to_unmap_flush_dirty();
1302 switch (pageout(page, mapping)) {
1303 case PAGE_KEEP:
1304 goto keep_locked;
1305 case PAGE_ACTIVATE:
1306 goto activate_locked;
1307 case PAGE_SUCCESS:
1308 stat->nr_pageout += thp_nr_pages(page);
1309
1310 if (PageWriteback(page))
1311 goto keep;
1312 if (PageDirty(page))
1313 goto keep;
1314
1315 /*
1316 * A synchronous write - probably a ramdisk. Go
1317 * ahead and try to reclaim the page.
1318 */
1319 if (!trylock_page(page))
1320 goto keep;
1321 if (PageDirty(page) || PageWriteback(page))
1322 goto keep_locked;
1323 mapping = page_mapping(page);
1324 case PAGE_CLEAN:
1325 ; /* try to free the page below */
1326 }
1327 }
1328
1329 /*
1330 * If the page has buffers, try to free the buffer mappings
1331 * associated with this page. If we succeed we try to free
1332 * the page as well.
1333 *
1334 * We do this even if the page is PageDirty().
1335 * try_to_release_page() does not perform I/O, but it is
1336 * possible for a page to have PageDirty set, but it is actually
1337 * clean (all its buffers are clean). This happens if the
1338 * buffers were written out directly, with submit_bh(). ext3
1339 * will do this, as well as the blockdev mapping.
1340 * try_to_release_page() will discover that cleanness and will
1341 * drop the buffers and mark the page clean - it can be freed.
1342 *
1343 * Rarely, pages can have buffers and no ->mapping. These are
1344 * the pages which were not successfully invalidated in
1345 * truncate_complete_page(). We try to drop those buffers here
1346 * and if that worked, and the page is no longer mapped into
1347 * process address space (page_count == 1) it can be freed.
1348 * Otherwise, leave the page on the LRU so it is swappable.
1349 */
1350 if (page_has_private(page)) {
1351 if (!try_to_release_page(page, sc->gfp_mask))
1352 goto activate_locked;
1353 if (!mapping && page_count(page) == 1) {
1354 unlock_page(page);
1355 if (put_page_testzero(page))
1356 goto free_it;
1357 else {
1358 /*
1359 * rare race with speculative reference.
1360 * the speculative reference will free
1361 * this page shortly, so we may
1362 * increment nr_reclaimed here (and
1363 * leave it off the LRU).
1364 */
1365 nr_reclaimed++;
1366 continue;
1367 }
1368 }
1369 }
1370
1371 if (PageAnon(page) &&
1372 (!PageSwapBacked(page) ||
1373 references == PAGEREF_RECLAIM_PURGEABLE)) {
1374 /* follow __remove_mapping for reference */
1375 if (!page_ref_freeze(page, 1))
1376 goto keep_locked;
1377 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1378 page_ref_unfreeze(page, 1);
1379 goto keep_locked;
1380 }
1381
1382 count_vm_event(PGLAZYFREED);
1383 count_memcg_page_event(page, PGLAZYFREED);
1384 } else if (!mapping || !__remove_mapping(mapping, page, true,
1385 sc->target_mem_cgroup))
1386 goto keep_locked;
1387
1388 unlock_page(page);
1389 free_it:
1390 /*
1391 * THP may get swapped out in a whole, need account
1392 * all base pages.
1393 */
1394 nr_reclaimed += nr_pages;
1395
1396 /*
1397 * Is there need to periodically free_page_list? It would
1398 * appear not as the counts should be low
1399 */
1400 if (unlikely(PageTransHuge(page)))
1401 destroy_compound_page(page);
1402 else
1403 list_add(&page->lru, &free_pages);
1404 continue;
1405
1406 activate_locked_split:
1407 /*
1408 * The tail pages that are failed to add into swap cache
1409 * reach here. Fixup nr_scanned and nr_pages.
1410 */
1411 if (nr_pages > 1) {
1412 sc->nr_scanned -= (nr_pages - 1);
1413 nr_pages = 1;
1414 }
1415 activate_locked:
1416 /* Not a candidate for swapping, so reclaim swap space. */
1417 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1418 PageMlocked(page)))
1419 try_to_free_swap(page);
1420 VM_BUG_ON_PAGE(PageActive(page), page);
1421 if (!PageMlocked(page)) {
1422 int type = page_is_file_lru(page);
1423 SetPageActive(page);
1424 stat->nr_activate[type] += nr_pages;
1425 count_memcg_page_event(page, PGACTIVATE);
1426 }
1427 keep_locked:
1428 unlock_page(page);
1429 keep:
1430 list_add(&page->lru, &ret_pages);
1431 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1432 }
1433
1434 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1435
1436 mem_cgroup_uncharge_list(&free_pages);
1437 try_to_unmap_flush();
1438 free_unref_page_list(&free_pages);
1439
1440 list_splice(&ret_pages, page_list);
1441 count_vm_events(PGACTIVATE, pgactivate);
1442
1443 return nr_reclaimed;
1444 }
1445
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1446 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1447 struct list_head *page_list)
1448 {
1449 struct scan_control sc = {
1450 .gfp_mask = GFP_KERNEL,
1451 .priority = DEF_PRIORITY,
1452 .may_unmap = 1,
1453 };
1454 struct reclaim_stat stat;
1455 unsigned int nr_reclaimed;
1456 struct page *page, *next;
1457 LIST_HEAD(clean_pages);
1458
1459 list_for_each_entry_safe(page, next, page_list, lru) {
1460 if (page_is_file_lru(page) && !PageDirty(page) &&
1461 !__PageMovable(page) && !PageUnevictable(page)) {
1462 ClearPageActive(page);
1463 list_move(&page->lru, &clean_pages);
1464 }
1465 }
1466
1467 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1468 &stat, true);
1469 list_splice(&clean_pages, page_list);
1470 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1471 -(long)nr_reclaimed);
1472 /*
1473 * Since lazyfree pages are isolated from file LRU from the beginning,
1474 * they will rotate back to anonymous LRU in the end if it failed to
1475 * discard so isolated count will be mismatched.
1476 * Compensate the isolated count for both LRU lists.
1477 */
1478 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1479 stat.nr_lazyfree_fail);
1480 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1481 -(long)stat.nr_lazyfree_fail);
1482 return nr_reclaimed;
1483 }
1484
1485 /*
1486 * Attempt to remove the specified page from its LRU. Only take this page
1487 * if it is of the appropriate PageActive status. Pages which are being
1488 * freed elsewhere are also ignored.
1489 *
1490 * page: page to consider
1491 * mode: one of the LRU isolation modes defined above
1492 *
1493 * returns 0 on success, -ve errno on failure.
1494 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1495 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1496 {
1497 int ret = -EINVAL;
1498
1499 /* Only take pages on the LRU. */
1500 if (!PageLRU(page))
1501 return ret;
1502
1503 /* Compaction should not handle unevictable pages but CMA can do so */
1504 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1505 return ret;
1506
1507 ret = -EBUSY;
1508
1509 /*
1510 * To minimise LRU disruption, the caller can indicate that it only
1511 * wants to isolate pages it will be able to operate on without
1512 * blocking - clean pages for the most part.
1513 *
1514 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1515 * that it is possible to migrate without blocking
1516 */
1517 if (mode & ISOLATE_ASYNC_MIGRATE) {
1518 /* All the caller can do on PageWriteback is block */
1519 if (PageWriteback(page))
1520 return ret;
1521
1522 if (PageDirty(page)) {
1523 struct address_space *mapping;
1524 bool migrate_dirty;
1525
1526 /*
1527 * Only pages without mappings or that have a
1528 * ->migratepage callback are possible to migrate
1529 * without blocking. However, we can be racing with
1530 * truncation so it's necessary to lock the page
1531 * to stabilise the mapping as truncation holds
1532 * the page lock until after the page is removed
1533 * from the page cache.
1534 */
1535 if (!trylock_page(page))
1536 return ret;
1537
1538 mapping = page_mapping(page);
1539 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1540 unlock_page(page);
1541 if (!migrate_dirty)
1542 return ret;
1543 }
1544 }
1545
1546 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1547 return ret;
1548
1549 if (likely(get_page_unless_zero(page))) {
1550 /*
1551 * Be careful not to clear PageLRU until after we're
1552 * sure the page is not being freed elsewhere -- the
1553 * page release code relies on it.
1554 */
1555 ClearPageLRU(page);
1556 ret = 0;
1557 }
1558
1559 return ret;
1560 }
1561
1562
1563 /*
1564 * Update LRU sizes after isolating pages. The LRU size updates must
1565 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1566 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1567 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1568 enum lru_list lru, unsigned long *nr_zone_taken)
1569 {
1570 int zid;
1571
1572 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1573 if (!nr_zone_taken[zid])
1574 continue;
1575
1576 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1577 }
1578
1579 }
1580
1581 /**
1582 * pgdat->lru_lock is heavily contended. Some of the functions that
1583 * shrink the lists perform better by taking out a batch of pages
1584 * and working on them outside the LRU lock.
1585 *
1586 * For pagecache intensive workloads, this function is the hottest
1587 * spot in the kernel (apart from copy_*_user functions).
1588 *
1589 * Appropriate locks must be held before calling this function.
1590 *
1591 * @nr_to_scan: The number of eligible pages to look through on the list.
1592 * @lruvec: The LRU vector to pull pages from.
1593 * @dst: The temp list to put pages on to.
1594 * @nr_scanned: The number of pages that were scanned.
1595 * @sc: The scan_control struct for this reclaim session
1596 * @lru: LRU list id for isolating
1597 *
1598 * returns how many pages were moved onto *@dst.
1599 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1600 unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1601 struct lruvec *lruvec, struct list_head *dst,
1602 unsigned long *nr_scanned, struct scan_control *sc,
1603 enum lru_list lru)
1604 {
1605 struct list_head *src = &lruvec->lists[lru];
1606 unsigned long nr_taken = 0;
1607 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1608 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1609 unsigned long skipped = 0;
1610 unsigned long scan, total_scan, nr_pages;
1611 LIST_HEAD(pages_skipped);
1612 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1613
1614 total_scan = 0;
1615 scan = 0;
1616 while (scan < nr_to_scan && !list_empty(src)) {
1617 struct page *page;
1618
1619 page = lru_to_page(src);
1620 prefetchw_prev_lru_page(page, src, flags);
1621
1622 VM_BUG_ON_PAGE(!PageLRU(page), page);
1623
1624 nr_pages = compound_nr(page);
1625 total_scan += nr_pages;
1626
1627 if (page_zonenum(page) > sc->reclaim_idx) {
1628 list_move(&page->lru, &pages_skipped);
1629 nr_skipped[page_zonenum(page)] += nr_pages;
1630 continue;
1631 }
1632
1633 /*
1634 * Do not count skipped pages because that makes the function
1635 * return with no isolated pages if the LRU mostly contains
1636 * ineligible pages. This causes the VM to not reclaim any
1637 * pages, triggering a premature OOM.
1638 *
1639 * Account all tail pages of THP. This would not cause
1640 * premature OOM since __isolate_lru_page() returns -EBUSY
1641 * only when the page is being freed somewhere else.
1642 */
1643 scan += nr_pages;
1644 switch (__isolate_lru_page(page, mode)) {
1645 case 0:
1646 nr_taken += nr_pages;
1647 nr_zone_taken[page_zonenum(page)] += nr_pages;
1648 list_move(&page->lru, dst);
1649 break;
1650
1651 case -EBUSY:
1652 /* else it is being freed elsewhere */
1653 list_move(&page->lru, src);
1654 continue;
1655
1656 default:
1657 BUG();
1658 }
1659 }
1660
1661 /*
1662 * Splice any skipped pages to the start of the LRU list. Note that
1663 * this disrupts the LRU order when reclaiming for lower zones but
1664 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1665 * scanning would soon rescan the same pages to skip and put the
1666 * system at risk of premature OOM.
1667 */
1668 if (!list_empty(&pages_skipped)) {
1669 int zid;
1670
1671 list_splice(&pages_skipped, src);
1672 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1673 if (!nr_skipped[zid])
1674 continue;
1675
1676 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1677 skipped += nr_skipped[zid];
1678 }
1679 }
1680 *nr_scanned = total_scan;
1681 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1682 total_scan, skipped, nr_taken, mode, lru);
1683 update_lru_sizes(lruvec, lru, nr_zone_taken);
1684 return nr_taken;
1685 }
1686
1687 /**
1688 * isolate_lru_page - tries to isolate a page from its LRU list
1689 * @page: page to isolate from its LRU list
1690 *
1691 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1692 * vmstat statistic corresponding to whatever LRU list the page was on.
1693 *
1694 * Returns 0 if the page was removed from an LRU list.
1695 * Returns -EBUSY if the page was not on an LRU list.
1696 *
1697 * The returned page will have PageLRU() cleared. If it was found on
1698 * the active list, it will have PageActive set. If it was found on
1699 * the unevictable list, it will have the PageUnevictable bit set. That flag
1700 * may need to be cleared by the caller before letting the page go.
1701 *
1702 * The vmstat statistic corresponding to the list on which the page was
1703 * found will be decremented.
1704 *
1705 * Restrictions:
1706 *
1707 * (1) Must be called with an elevated refcount on the page. This is a
1708 * fundamental difference from isolate_lru_pages (which is called
1709 * without a stable reference).
1710 * (2) the lru_lock must not be held.
1711 * (3) interrupts must be enabled.
1712 */
isolate_lru_page(struct page * page)1713 int isolate_lru_page(struct page *page)
1714 {
1715 int ret = -EBUSY;
1716
1717 VM_BUG_ON_PAGE(!page_count(page), page);
1718 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1719
1720 if (PageLRU(page)) {
1721 pg_data_t *pgdat = page_pgdat(page);
1722 struct lruvec *lruvec;
1723
1724 spin_lock_irq(&pgdat->lru_lock);
1725 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1726 if (PageLRU(page)) {
1727 int lru = page_lru(page);
1728 get_page(page);
1729 ClearPageLRU(page);
1730 del_page_from_lru_list(page, lruvec, lru);
1731 ret = 0;
1732 }
1733 spin_unlock_irq(&pgdat->lru_lock);
1734 }
1735 return ret;
1736 }
1737
1738 /*
1739 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1740 * then get rescheduled. When there are massive number of tasks doing page
1741 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1742 * the LRU list will go small and be scanned faster than necessary, leading to
1743 * unnecessary swapping, thrashing and OOM.
1744 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1745 static int too_many_isolated(struct pglist_data *pgdat, int file,
1746 struct scan_control *sc)
1747 {
1748 unsigned long inactive, isolated;
1749
1750 if (current_is_kswapd())
1751 return 0;
1752
1753 if (!writeback_throttling_sane(sc))
1754 return 0;
1755
1756 if (file) {
1757 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1759 } else {
1760 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1761 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1762 }
1763
1764 /*
1765 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1766 * won't get blocked by normal direct-reclaimers, forming a circular
1767 * deadlock.
1768 */
1769 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1770 inactive >>= 3;
1771
1772 return isolated > inactive;
1773 }
1774
1775 /*
1776 * This moves pages from @list to corresponding LRU list.
1777 *
1778 * We move them the other way if the page is referenced by one or more
1779 * processes, from rmap.
1780 *
1781 * If the pages are mostly unmapped, the processing is fast and it is
1782 * appropriate to hold zone_lru_lock across the whole operation. But if
1783 * the pages are mapped, the processing is slow (page_referenced()) so we
1784 * should drop zone_lru_lock around each page. It's impossible to balance
1785 * this, so instead we remove the pages from the LRU while processing them.
1786 * It is safe to rely on PG_active against the non-LRU pages in here because
1787 * nobody will play with that bit on a non-LRU page.
1788 *
1789 * The downside is that we have to touch page->_refcount against each page.
1790 * But we had to alter page->flags anyway.
1791 *
1792 * Returns the number of pages moved to the given lruvec.
1793 */
1794
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1795 unsigned move_pages_to_lru(struct lruvec *lruvec, struct list_head *list)
1796 {
1797 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1798 int nr_pages, nr_moved = 0;
1799 LIST_HEAD(pages_to_free);
1800 struct page *page;
1801 enum lru_list lru;
1802 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1803 bool prot;
1804 bool file;
1805 #endif
1806
1807 while (!list_empty(list)) {
1808 page = lru_to_page(list);
1809 VM_BUG_ON_PAGE(PageLRU(page), page);
1810 if (unlikely(!page_evictable(page))) {
1811 list_del(&page->lru);
1812 spin_unlock_irq(&pgdat->lru_lock);
1813 putback_lru_page(page);
1814 spin_lock_irq(&pgdat->lru_lock);
1815 continue;
1816 }
1817 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1818
1819 SetPageLRU(page);
1820 lru = page_lru(page);
1821
1822 nr_pages = thp_nr_pages(page);
1823 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1824 list_move(&page->lru, &lruvec->lists[lru]);
1825
1826 if (put_page_testzero(page)) {
1827 __ClearPageLRU(page);
1828 __ClearPageActive(page);
1829 del_page_from_lru_list(page, lruvec, lru);
1830
1831 if (unlikely(PageCompound(page))) {
1832 spin_unlock_irq(&pgdat->lru_lock);
1833 destroy_compound_page(page);
1834 spin_lock_irq(&pgdat->lru_lock);
1835 } else
1836 list_add(&page->lru, &pages_to_free);
1837 } else {
1838 nr_moved += nr_pages;
1839 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1840 if (PageActive(page)) {
1841 prot = is_prot_page(page);
1842 file = page_is_file_lru(page);
1843 if (!prot && file) {
1844 lruvec = node_lruvec(pgdat);
1845 workingset_age_nonresident(lruvec,
1846 nr_pages);
1847 } else {
1848 workingset_age_nonresident(lruvec,
1849 nr_pages);
1850 }
1851 }
1852 #else
1853 if (PageActive(page))
1854 workingset_age_nonresident(lruvec, nr_pages);
1855 #endif
1856 }
1857 }
1858
1859 /*
1860 * To save our caller's stack, now use input list for pages to free.
1861 */
1862 list_splice(&pages_to_free, list);
1863
1864 return nr_moved;
1865 }
1866
1867 /*
1868 * If a kernel thread (such as nfsd for loop-back mounts) services
1869 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1870 * In that case we should only throttle if the backing device it is
1871 * writing to is congested. In other cases it is safe to throttle.
1872 */
current_may_throttle(void)1873 int current_may_throttle(void)
1874 {
1875 return !(current->flags & PF_LOCAL_THROTTLE) ||
1876 current->backing_dev_info == NULL ||
1877 bdi_write_congested(current->backing_dev_info);
1878 }
1879
1880 /*
1881 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1882 * of reclaimed pages
1883 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1884 unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1885 struct scan_control *sc, enum lru_list lru)
1886 {
1887 LIST_HEAD(page_list);
1888 unsigned long nr_scanned;
1889 unsigned int nr_reclaimed = 0;
1890 unsigned long nr_taken;
1891 struct reclaim_stat stat;
1892 bool file = is_file_lru(lru);
1893 enum vm_event_item item;
1894 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1895 bool stalled = false;
1896
1897 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1898 if (stalled)
1899 return 0;
1900
1901 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1902 sc->isolate_count++;
1903 #endif
1904 /* wait a bit for the reclaimer. */
1905 msleep(100);
1906 stalled = true;
1907
1908 /* We are about to die and free our memory. Return now. */
1909 if (fatal_signal_pending(current))
1910 return SWAP_CLUSTER_MAX;
1911 }
1912
1913 lru_add_drain();
1914
1915 spin_lock_irq(&pgdat->lru_lock);
1916
1917 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1918 &nr_scanned, sc, lru);
1919
1920 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1921 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1922 if (!cgroup_reclaim(sc))
1923 __count_vm_events(item, nr_scanned);
1924 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1925 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1926
1927 spin_unlock_irq(&pgdat->lru_lock);
1928
1929 if (nr_taken == 0)
1930 return 0;
1931
1932 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1933
1934 spin_lock_irq(&pgdat->lru_lock);
1935
1936 move_pages_to_lru(lruvec, &page_list);
1937
1938 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1939 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1940 if (file)
1941 lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout);
1942 else
1943 lru_note_cost(lruvec, file, stat.nr_pageout);
1944 #else
1945 lru_note_cost(lruvec, file, stat.nr_pageout);
1946
1947 #endif
1948
1949 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1950 if (!cgroup_reclaim(sc))
1951 __count_vm_events(item, nr_reclaimed);
1952 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1953 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1954
1955 spin_unlock_irq(&pgdat->lru_lock);
1956
1957 mem_cgroup_uncharge_list(&page_list);
1958 free_unref_page_list(&page_list);
1959
1960 /*
1961 * If dirty pages are scanned that are not queued for IO, it
1962 * implies that flushers are not doing their job. This can
1963 * happen when memory pressure pushes dirty pages to the end of
1964 * the LRU before the dirty limits are breached and the dirty
1965 * data has expired. It can also happen when the proportion of
1966 * dirty pages grows not through writes but through memory
1967 * pressure reclaiming all the clean cache. And in some cases,
1968 * the flushers simply cannot keep up with the allocation
1969 * rate. Nudge the flusher threads in case they are asleep.
1970 */
1971 if (stat.nr_unqueued_dirty == nr_taken)
1972 wakeup_flusher_threads(WB_REASON_VMSCAN);
1973
1974 sc->nr.dirty += stat.nr_dirty;
1975 sc->nr.congested += stat.nr_congested;
1976 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1977 sc->nr.writeback += stat.nr_writeback;
1978 sc->nr.immediate += stat.nr_immediate;
1979 sc->nr.taken += nr_taken;
1980 if (file)
1981 sc->nr.file_taken += nr_taken;
1982
1983 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1984 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1985 return nr_reclaimed;
1986 }
1987
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1988 void shrink_active_list(unsigned long nr_to_scan,
1989 struct lruvec *lruvec,
1990 struct scan_control *sc,
1991 enum lru_list lru)
1992 {
1993 unsigned long nr_taken;
1994 unsigned long nr_scanned;
1995 unsigned long vm_flags;
1996 LIST_HEAD(l_hold); /* The pages which were snipped off */
1997 LIST_HEAD(l_active);
1998 LIST_HEAD(l_inactive);
1999 struct page *page;
2000 unsigned nr_deactivate, nr_activate;
2001 unsigned nr_rotated = 0;
2002 int file = is_file_lru(lru);
2003 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2004
2005 lru_add_drain();
2006
2007 spin_lock_irq(&pgdat->lru_lock);
2008
2009 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2010 &nr_scanned, sc, lru);
2011
2012 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2013
2014 if (!cgroup_reclaim(sc))
2015 __count_vm_events(PGREFILL, nr_scanned);
2016 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2017
2018 spin_unlock_irq(&pgdat->lru_lock);
2019
2020 while (!list_empty(&l_hold)) {
2021 cond_resched();
2022 page = lru_to_page(&l_hold);
2023 list_del(&page->lru);
2024
2025 if (unlikely(!page_evictable(page))) {
2026 putback_lru_page(page);
2027 continue;
2028 }
2029
2030 if (unlikely(buffer_heads_over_limit)) {
2031 if (page_has_private(page) && trylock_page(page)) {
2032 if (page_has_private(page))
2033 try_to_release_page(page, 0);
2034 unlock_page(page);
2035 }
2036 }
2037
2038 if (page_referenced(page, 0, sc->target_mem_cgroup,
2039 &vm_flags)) {
2040 /*
2041 * Identify referenced, file-backed active pages and
2042 * give them one more trip around the active list. So
2043 * that executable code get better chances to stay in
2044 * memory under moderate memory pressure. Anon pages
2045 * are not likely to be evicted by use-once streaming
2046 * IO, plus JVM can create lots of anon VM_EXEC pages,
2047 * so we ignore them here.
2048 */
2049 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2050 nr_rotated += thp_nr_pages(page);
2051 list_add(&page->lru, &l_active);
2052 continue;
2053 }
2054 }
2055
2056 ClearPageActive(page); /* we are de-activating */
2057 SetPageWorkingset(page);
2058 list_add(&page->lru, &l_inactive);
2059 }
2060
2061 /*
2062 * Move pages back to the lru list.
2063 */
2064 spin_lock_irq(&pgdat->lru_lock);
2065
2066 nr_activate = move_pages_to_lru(lruvec, &l_active);
2067 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2068 /* Keep all free pages in l_active list */
2069 list_splice(&l_inactive, &l_active);
2070
2071 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2072 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2073
2074 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2075 spin_unlock_irq(&pgdat->lru_lock);
2076
2077 mem_cgroup_uncharge_list(&l_active);
2078 free_unref_page_list(&l_active);
2079 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2080 nr_deactivate, nr_rotated, sc->priority, file);
2081 }
2082
reclaim_pages(struct list_head * page_list)2083 unsigned long reclaim_pages(struct list_head *page_list)
2084 {
2085 int nid = NUMA_NO_NODE;
2086 unsigned int nr_reclaimed = 0;
2087 LIST_HEAD(node_page_list);
2088 struct reclaim_stat dummy_stat;
2089 struct page *page;
2090 struct scan_control sc = {
2091 .gfp_mask = GFP_KERNEL,
2092 .priority = DEF_PRIORITY,
2093 .may_writepage = 1,
2094 .may_unmap = 1,
2095 .may_swap = 1,
2096 };
2097
2098 while (!list_empty(page_list)) {
2099 page = lru_to_page(page_list);
2100 if (nid == NUMA_NO_NODE) {
2101 nid = page_to_nid(page);
2102 INIT_LIST_HEAD(&node_page_list);
2103 }
2104
2105 if (nid == page_to_nid(page)) {
2106 ClearPageActive(page);
2107 list_move(&page->lru, &node_page_list);
2108 continue;
2109 }
2110
2111 nr_reclaimed += shrink_page_list(&node_page_list,
2112 NODE_DATA(nid),
2113 &sc, &dummy_stat, false);
2114 while (!list_empty(&node_page_list)) {
2115 page = lru_to_page(&node_page_list);
2116 list_del(&page->lru);
2117 putback_lru_page(page);
2118 }
2119
2120 nid = NUMA_NO_NODE;
2121 }
2122
2123 if (!list_empty(&node_page_list)) {
2124 nr_reclaimed += shrink_page_list(&node_page_list,
2125 NODE_DATA(nid),
2126 &sc, &dummy_stat, false);
2127 while (!list_empty(&node_page_list)) {
2128 page = lru_to_page(&node_page_list);
2129 list_del(&page->lru);
2130 putback_lru_page(page);
2131 }
2132 }
2133
2134 return nr_reclaimed;
2135 }
2136
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2137 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2138 struct lruvec *lruvec, struct scan_control *sc)
2139 {
2140 #ifdef CONFIG_RECLAIM_ACCT
2141 unsigned long nr_reclaimed;
2142 unsigned int stub;
2143
2144 stub = is_file_lru(lru) ? RA_SHRINKFILE : RA_SHRINKANON;
2145 reclaimacct_substage_start(stub);
2146 #endif
2147 if (is_active_lru(lru)) {
2148 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2149 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2150 else
2151 sc->skipped_deactivate = 1;
2152 #ifdef CONFIG_RECLAIM_ACCT
2153 reclaimacct_substage_end(stub, 0, NULL);
2154 #endif
2155 return 0;
2156 }
2157
2158 #ifdef CONFIG_RECLAIM_ACCT
2159 nr_reclaimed = shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2160 reclaimacct_substage_end(stub, nr_reclaimed, NULL);
2161 return nr_reclaimed;
2162 #else
2163 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2164 #endif
2165 }
2166
2167 /*
2168 * The inactive anon list should be small enough that the VM never has
2169 * to do too much work.
2170 *
2171 * The inactive file list should be small enough to leave most memory
2172 * to the established workingset on the scan-resistant active list,
2173 * but large enough to avoid thrashing the aggregate readahead window.
2174 *
2175 * Both inactive lists should also be large enough that each inactive
2176 * page has a chance to be referenced again before it is reclaimed.
2177 *
2178 * If that fails and refaulting is observed, the inactive list grows.
2179 *
2180 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2181 * on this LRU, maintained by the pageout code. An inactive_ratio
2182 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2183 *
2184 * total target max
2185 * memory ratio inactive
2186 * -------------------------------------
2187 * 10MB 1 5MB
2188 * 100MB 1 50MB
2189 * 1GB 3 250MB
2190 * 10GB 10 0.9GB
2191 * 100GB 31 3GB
2192 * 1TB 101 10GB
2193 * 10TB 320 32GB
2194 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2195 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2196 {
2197 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2198 unsigned long inactive, active;
2199 unsigned long inactive_ratio;
2200 unsigned long gb;
2201
2202 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2203 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2204
2205 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2206 if (gb)
2207 inactive_ratio = int_sqrt(10 * gb);
2208 else
2209 inactive_ratio = 1;
2210
2211 return inactive * inactive_ratio < active;
2212 }
2213
2214 /*
2215 * Determine how aggressively the anon and file LRU lists should be
2216 * scanned. The relative value of each set of LRU lists is determined
2217 * by looking at the fraction of the pages scanned we did rotate back
2218 * onto the active list instead of evict.
2219 *
2220 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2221 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2222 */
2223 #ifndef CONFIG_HYPERHOLD_FILE_LRU
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2224 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2225 unsigned long *nr)
2226 {
2227 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2228 unsigned long anon_cost, file_cost, total_cost;
2229 int swappiness = mem_cgroup_swappiness(memcg);
2230 u64 fraction[ANON_AND_FILE];
2231 u64 denominator = 0; /* gcc */
2232 enum scan_balance scan_balance;
2233 unsigned long ap, fp;
2234 enum lru_list lru;
2235
2236 /* If we have no swap space, do not bother scanning anon pages. */
2237 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2238 scan_balance = SCAN_FILE;
2239 goto out;
2240 }
2241
2242 /*
2243 * Global reclaim will swap to prevent OOM even with no
2244 * swappiness, but memcg users want to use this knob to
2245 * disable swapping for individual groups completely when
2246 * using the memory controller's swap limit feature would be
2247 * too expensive.
2248 */
2249 if (cgroup_reclaim(sc) && !swappiness) {
2250 scan_balance = SCAN_FILE;
2251 goto out;
2252 }
2253
2254 /*
2255 * Do not apply any pressure balancing cleverness when the
2256 * system is close to OOM, scan both anon and file equally
2257 * (unless the swappiness setting disagrees with swapping).
2258 */
2259 if (!sc->priority && swappiness) {
2260 scan_balance = SCAN_EQUAL;
2261 goto out;
2262 }
2263
2264 /*
2265 * If the system is almost out of file pages, force-scan anon.
2266 */
2267 if (sc->file_is_tiny) {
2268 scan_balance = SCAN_ANON;
2269 goto out;
2270 }
2271
2272 /*
2273 * If there is enough inactive page cache, we do not reclaim
2274 * anything from the anonymous working right now.
2275 */
2276 if (sc->cache_trim_mode) {
2277 scan_balance = SCAN_FILE;
2278 goto out;
2279 }
2280
2281 scan_balance = SCAN_FRACT;
2282 /*
2283 * Calculate the pressure balance between anon and file pages.
2284 *
2285 * The amount of pressure we put on each LRU is inversely
2286 * proportional to the cost of reclaiming each list, as
2287 * determined by the share of pages that are refaulting, times
2288 * the relative IO cost of bringing back a swapped out
2289 * anonymous page vs reloading a filesystem page (swappiness).
2290 *
2291 * Although we limit that influence to ensure no list gets
2292 * left behind completely: at least a third of the pressure is
2293 * applied, before swappiness.
2294 *
2295 * With swappiness at 100, anon and file have equal IO cost.
2296 */
2297 total_cost = sc->anon_cost + sc->file_cost;
2298 anon_cost = total_cost + sc->anon_cost;
2299 file_cost = total_cost + sc->file_cost;
2300 total_cost = anon_cost + file_cost;
2301
2302 ap = swappiness * (total_cost + 1);
2303 ap /= anon_cost + 1;
2304
2305 fp = (200 - swappiness) * (total_cost + 1);
2306 fp /= file_cost + 1;
2307
2308 fraction[0] = ap;
2309 fraction[1] = fp;
2310 denominator = ap + fp;
2311 out:
2312 for_each_evictable_lru(lru) {
2313 int file = is_file_lru(lru);
2314 unsigned long lruvec_size;
2315 unsigned long low, min;
2316 unsigned long scan;
2317
2318 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2319 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2320 &min, &low);
2321
2322 if (min || low) {
2323 /*
2324 * Scale a cgroup's reclaim pressure by proportioning
2325 * its current usage to its memory.low or memory.min
2326 * setting.
2327 *
2328 * This is important, as otherwise scanning aggression
2329 * becomes extremely binary -- from nothing as we
2330 * approach the memory protection threshold, to totally
2331 * nominal as we exceed it. This results in requiring
2332 * setting extremely liberal protection thresholds. It
2333 * also means we simply get no protection at all if we
2334 * set it too low, which is not ideal.
2335 *
2336 * If there is any protection in place, we reduce scan
2337 * pressure by how much of the total memory used is
2338 * within protection thresholds.
2339 *
2340 * There is one special case: in the first reclaim pass,
2341 * we skip over all groups that are within their low
2342 * protection. If that fails to reclaim enough pages to
2343 * satisfy the reclaim goal, we come back and override
2344 * the best-effort low protection. However, we still
2345 * ideally want to honor how well-behaved groups are in
2346 * that case instead of simply punishing them all
2347 * equally. As such, we reclaim them based on how much
2348 * memory they are using, reducing the scan pressure
2349 * again by how much of the total memory used is under
2350 * hard protection.
2351 */
2352 unsigned long cgroup_size = mem_cgroup_size(memcg);
2353 unsigned long protection;
2354
2355 /* memory.low scaling, make sure we retry before OOM */
2356 if (!sc->memcg_low_reclaim && low > min) {
2357 protection = low;
2358 sc->memcg_low_skipped = 1;
2359 } else {
2360 protection = min;
2361 }
2362
2363 /* Avoid TOCTOU with earlier protection check */
2364 cgroup_size = max(cgroup_size, protection);
2365
2366 scan = lruvec_size - lruvec_size * protection /
2367 (cgroup_size + 1);
2368
2369 /*
2370 * Minimally target SWAP_CLUSTER_MAX pages to keep
2371 * reclaim moving forwards, avoiding decrementing
2372 * sc->priority further than desirable.
2373 */
2374 scan = max(scan, SWAP_CLUSTER_MAX);
2375 } else {
2376 scan = lruvec_size;
2377 }
2378
2379 scan >>= sc->priority;
2380
2381 /*
2382 * If the cgroup's already been deleted, make sure to
2383 * scrape out the remaining cache.
2384 */
2385 if (!scan && !mem_cgroup_online(memcg))
2386 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2387
2388 switch (scan_balance) {
2389 case SCAN_EQUAL:
2390 /* Scan lists relative to size */
2391 break;
2392 case SCAN_FRACT:
2393 /*
2394 * Scan types proportional to swappiness and
2395 * their relative recent reclaim efficiency.
2396 * Make sure we don't miss the last page on
2397 * the offlined memory cgroups because of a
2398 * round-off error.
2399 */
2400 scan = mem_cgroup_online(memcg) ?
2401 div64_u64(scan * fraction[file], denominator) :
2402 DIV64_U64_ROUND_UP(scan * fraction[file],
2403 denominator);
2404 break;
2405 case SCAN_FILE:
2406 case SCAN_ANON:
2407 /* Scan one type exclusively */
2408 if ((scan_balance == SCAN_FILE) != file)
2409 scan = 0;
2410 break;
2411 default:
2412 /* Look ma, no brain */
2413 BUG();
2414 }
2415
2416 nr[lru] = scan;
2417 }
2418 }
2419
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2420 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2421 {
2422 unsigned long nr[NR_LRU_LISTS];
2423 unsigned long targets[NR_LRU_LISTS];
2424 unsigned long nr_to_scan;
2425 enum lru_list lru;
2426 unsigned long nr_reclaimed = 0;
2427 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2428 bool proportional_reclaim;
2429 struct blk_plug plug;
2430
2431 get_scan_count(lruvec, sc, nr);
2432
2433 /* Record the original scan target for proportional adjustments later */
2434 memcpy(targets, nr, sizeof(nr));
2435
2436 /*
2437 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2438 * event that can occur when there is little memory pressure e.g.
2439 * multiple streaming readers/writers. Hence, we do not abort scanning
2440 * when the requested number of pages are reclaimed when scanning at
2441 * DEF_PRIORITY on the assumption that the fact we are direct
2442 * reclaiming implies that kswapd is not keeping up and it is best to
2443 * do a batch of work at once. For memcg reclaim one check is made to
2444 * abort proportional reclaim if either the file or anon lru has already
2445 * dropped to zero at the first pass.
2446 */
2447 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2448 sc->priority == DEF_PRIORITY);
2449
2450 blk_start_plug(&plug);
2451 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2452 nr[LRU_INACTIVE_FILE]) {
2453 unsigned long nr_anon, nr_file, percentage;
2454 unsigned long nr_scanned;
2455
2456 for_each_evictable_lru(lru) {
2457 if (nr[lru]) {
2458 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2459 nr[lru] -= nr_to_scan;
2460
2461 nr_reclaimed += shrink_list(lru, nr_to_scan,
2462 lruvec, sc);
2463 }
2464 }
2465
2466 cond_resched();
2467
2468 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
2469 continue;
2470
2471 /*
2472 * For kswapd and memcg, reclaim at least the number of pages
2473 * requested. Ensure that the anon and file LRUs are scanned
2474 * proportionally what was requested by get_scan_count(). We
2475 * stop reclaiming one LRU and reduce the amount scanning
2476 * proportional to the original scan target.
2477 */
2478 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2479 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2480
2481 /*
2482 * It's just vindictive to attack the larger once the smaller
2483 * has gone to zero. And given the way we stop scanning the
2484 * smaller below, this makes sure that we only make one nudge
2485 * towards proportionality once we've got nr_to_reclaim.
2486 */
2487 if (!nr_file || !nr_anon)
2488 break;
2489
2490 if (nr_file > nr_anon) {
2491 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2492 targets[LRU_ACTIVE_ANON] + 1;
2493 lru = LRU_BASE;
2494 percentage = nr_anon * 100 / scan_target;
2495 } else {
2496 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2497 targets[LRU_ACTIVE_FILE] + 1;
2498 lru = LRU_FILE;
2499 percentage = nr_file * 100 / scan_target;
2500 }
2501
2502 /* Stop scanning the smaller of the LRU */
2503 nr[lru] = 0;
2504 nr[lru + LRU_ACTIVE] = 0;
2505
2506 /*
2507 * Recalculate the other LRU scan count based on its original
2508 * scan target and the percentage scanning already complete
2509 */
2510 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2511 nr_scanned = targets[lru] - nr[lru];
2512 nr[lru] = targets[lru] * (100 - percentage) / 100;
2513 nr[lru] -= min(nr[lru], nr_scanned);
2514
2515 lru += LRU_ACTIVE;
2516 nr_scanned = targets[lru] - nr[lru];
2517 nr[lru] = targets[lru] * (100 - percentage) / 100;
2518 nr[lru] -= min(nr[lru], nr_scanned);
2519 }
2520 blk_finish_plug(&plug);
2521 sc->nr_reclaimed += nr_reclaimed;
2522
2523 /*
2524 * Even if we did not try to evict anon pages at all, we want to
2525 * rebalance the anon lru active/inactive ratio.
2526 */
2527 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2528 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2529 sc, LRU_ACTIVE_ANON);
2530 }
2531 #endif
2532
2533 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2534 static bool in_reclaim_compaction(struct scan_control *sc)
2535 {
2536 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2537 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2538 sc->priority < DEF_PRIORITY - 2))
2539 return true;
2540
2541 return false;
2542 }
2543
2544 /*
2545 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2546 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2547 * true if more pages should be reclaimed such that when the page allocator
2548 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2549 * It will give up earlier than that if there is difficulty reclaiming pages.
2550 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2551 inline bool should_continue_reclaim(struct pglist_data *pgdat,
2552 unsigned long nr_reclaimed,
2553 struct scan_control *sc)
2554 {
2555 unsigned long pages_for_compaction;
2556 unsigned long inactive_lru_pages;
2557 int z;
2558
2559 /* If not in reclaim/compaction mode, stop */
2560 if (!in_reclaim_compaction(sc))
2561 return false;
2562
2563 /*
2564 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2565 * number of pages that were scanned. This will return to the caller
2566 * with the risk reclaim/compaction and the resulting allocation attempt
2567 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2568 * allocations through requiring that the full LRU list has been scanned
2569 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2570 * scan, but that approximation was wrong, and there were corner cases
2571 * where always a non-zero amount of pages were scanned.
2572 */
2573 if (!nr_reclaimed)
2574 return false;
2575
2576 /* If compaction would go ahead or the allocation would succeed, stop */
2577 for (z = 0; z <= sc->reclaim_idx; z++) {
2578 struct zone *zone = &pgdat->node_zones[z];
2579 if (!managed_zone(zone))
2580 continue;
2581
2582 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2583 case COMPACT_SUCCESS:
2584 case COMPACT_CONTINUE:
2585 return false;
2586 default:
2587 /* check next zone */
2588 ;
2589 }
2590 }
2591
2592 /*
2593 * If we have not reclaimed enough pages for compaction and the
2594 * inactive lists are large enough, continue reclaiming
2595 */
2596 pages_for_compaction = compact_gap(sc->order);
2597 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2598 if (get_nr_swap_pages() > 0)
2599 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2600
2601 return inactive_lru_pages > pages_for_compaction;
2602 }
2603
2604 #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2605 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2606 {
2607 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2608 struct mem_cgroup *memcg;
2609
2610 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2611 do {
2612 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2613 unsigned long reclaimed;
2614 unsigned long scanned;
2615
2616 /*
2617 * This loop can become CPU-bound when target memcgs
2618 * aren't eligible for reclaim - either because they
2619 * don't have any reclaimable pages, or because their
2620 * memory is explicitly protected. Avoid soft lockups.
2621 */
2622 cond_resched();
2623
2624 mem_cgroup_calculate_protection(target_memcg, memcg);
2625
2626 if (mem_cgroup_below_min(memcg)) {
2627 /*
2628 * Hard protection.
2629 * If there is no reclaimable memory, OOM.
2630 */
2631 continue;
2632 } else if (mem_cgroup_below_low(memcg)) {
2633 /*
2634 * Soft protection.
2635 * Respect the protection only as long as
2636 * there is an unprotected supply
2637 * of reclaimable memory from other cgroups.
2638 */
2639 if (!sc->memcg_low_reclaim) {
2640 sc->memcg_low_skipped = 1;
2641 continue;
2642 }
2643 memcg_memory_event(memcg, MEMCG_LOW);
2644 }
2645
2646 reclaimed = sc->nr_reclaimed;
2647 scanned = sc->nr_scanned;
2648
2649 shrink_lruvec(lruvec, sc);
2650
2651 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2652 sc->priority);
2653
2654 /* Record the group's reclaim efficiency */
2655 vmpressure(sc->gfp_mask, memcg, false,
2656 sc->nr_scanned - scanned,
2657 sc->nr_reclaimed - reclaimed);
2658
2659 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2660 }
2661
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2662 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2663 {
2664 struct reclaim_state *reclaim_state = current->reclaim_state;
2665 unsigned long nr_reclaimed, nr_scanned;
2666 struct lruvec *target_lruvec;
2667 bool reclaimable = false;
2668 unsigned long file;
2669
2670 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2671
2672 again:
2673 memset(&sc->nr, 0, sizeof(sc->nr));
2674
2675 nr_reclaimed = sc->nr_reclaimed;
2676 nr_scanned = sc->nr_scanned;
2677
2678 /*
2679 * Determine the scan balance between anon and file LRUs.
2680 */
2681 spin_lock_irq(&pgdat->lru_lock);
2682 sc->anon_cost = target_lruvec->anon_cost;
2683 sc->file_cost = target_lruvec->file_cost;
2684 spin_unlock_irq(&pgdat->lru_lock);
2685
2686 /*
2687 * Target desirable inactive:active list ratios for the anon
2688 * and file LRU lists.
2689 */
2690 if (!sc->force_deactivate) {
2691 unsigned long refaults;
2692
2693 refaults = lruvec_page_state(target_lruvec,
2694 WORKINGSET_ACTIVATE_ANON);
2695 if (refaults != target_lruvec->refaults[0] ||
2696 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2697 sc->may_deactivate |= DEACTIVATE_ANON;
2698 else
2699 sc->may_deactivate &= ~DEACTIVATE_ANON;
2700
2701 /*
2702 * When refaults are being observed, it means a new
2703 * workingset is being established. Deactivate to get
2704 * rid of any stale active pages quickly.
2705 */
2706 refaults = lruvec_page_state(target_lruvec,
2707 WORKINGSET_ACTIVATE_FILE);
2708 if (refaults != target_lruvec->refaults[1] ||
2709 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2710 sc->may_deactivate |= DEACTIVATE_FILE;
2711 else
2712 sc->may_deactivate &= ~DEACTIVATE_FILE;
2713 } else
2714 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2715
2716 /*
2717 * If we have plenty of inactive file pages that aren't
2718 * thrashing, try to reclaim those first before touching
2719 * anonymous pages.
2720 */
2721 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2722 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2723 sc->cache_trim_mode = 1;
2724 else
2725 sc->cache_trim_mode = 0;
2726
2727 /*
2728 * Prevent the reclaimer from falling into the cache trap: as
2729 * cache pages start out inactive, every cache fault will tip
2730 * the scan balance towards the file LRU. And as the file LRU
2731 * shrinks, so does the window for rotation from references.
2732 * This means we have a runaway feedback loop where a tiny
2733 * thrashing file LRU becomes infinitely more attractive than
2734 * anon pages. Try to detect this based on file LRU size.
2735 */
2736 if (!cgroup_reclaim(sc)) {
2737 unsigned long total_high_wmark = 0;
2738 unsigned long free, anon;
2739 int z;
2740
2741 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2742 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2743 node_page_state(pgdat, NR_INACTIVE_FILE);
2744
2745 for (z = 0; z < MAX_NR_ZONES; z++) {
2746 struct zone *zone = &pgdat->node_zones[z];
2747 if (!managed_zone(zone))
2748 continue;
2749
2750 total_high_wmark += high_wmark_pages(zone);
2751 }
2752
2753 /*
2754 * Consider anon: if that's low too, this isn't a
2755 * runaway file reclaim problem, but rather just
2756 * extreme pressure. Reclaim as per usual then.
2757 */
2758 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2759
2760 sc->file_is_tiny =
2761 file + free <= total_high_wmark &&
2762 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2763 anon >> sc->priority;
2764 }
2765
2766 shrink_node_memcgs(pgdat, sc);
2767
2768 if (reclaim_state) {
2769 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2770 reclaim_state->reclaimed_slab = 0;
2771 }
2772
2773 /* Record the subtree's reclaim efficiency */
2774 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2775 sc->nr_scanned - nr_scanned,
2776 sc->nr_reclaimed - nr_reclaimed);
2777
2778 if (sc->nr_reclaimed - nr_reclaimed)
2779 reclaimable = true;
2780
2781 if (current_is_kswapd()) {
2782 /*
2783 * If reclaim is isolating dirty pages under writeback,
2784 * it implies that the long-lived page allocation rate
2785 * is exceeding the page laundering rate. Either the
2786 * global limits are not being effective at throttling
2787 * processes due to the page distribution throughout
2788 * zones or there is heavy usage of a slow backing
2789 * device. The only option is to throttle from reclaim
2790 * context which is not ideal as there is no guarantee
2791 * the dirtying process is throttled in the same way
2792 * balance_dirty_pages() manages.
2793 *
2794 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2795 * count the number of pages under pages flagged for
2796 * immediate reclaim and stall if any are encountered
2797 * in the nr_immediate check below.
2798 */
2799 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2800 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2801
2802 /* Allow kswapd to start writing pages during reclaim.*/
2803 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2804 set_bit(PGDAT_DIRTY, &pgdat->flags);
2805
2806 /*
2807 * If kswapd scans pages marked for immediate
2808 * reclaim and under writeback (nr_immediate), it
2809 * implies that pages are cycling through the LRU
2810 * faster than they are written so also forcibly stall.
2811 */
2812 if (sc->nr.immediate)
2813 congestion_wait(BLK_RW_ASYNC, HZ/10);
2814 }
2815
2816 /*
2817 * Tag a node/memcg as congested if all the dirty pages
2818 * scanned were backed by a congested BDI and
2819 * wait_iff_congested will stall.
2820 *
2821 * Legacy memcg will stall in page writeback so avoid forcibly
2822 * stalling in wait_iff_congested().
2823 */
2824 if ((current_is_kswapd() ||
2825 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2826 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2827 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2828
2829 /*
2830 * Stall direct reclaim for IO completions if underlying BDIs
2831 * and node is congested. Allow kswapd to continue until it
2832 * starts encountering unqueued dirty pages or cycling through
2833 * the LRU too quickly.
2834 */
2835 if (!current_is_kswapd() && current_may_throttle() &&
2836 !sc->hibernation_mode &&
2837 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2838 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2839
2840 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2841 sc))
2842 goto again;
2843
2844 /*
2845 * Kswapd gives up on balancing particular nodes after too
2846 * many failures to reclaim anything from them and goes to
2847 * sleep. On reclaim progress, reset the failure counter. A
2848 * successful direct reclaim run will revive a dormant kswapd.
2849 */
2850 if (reclaimable)
2851 pgdat->kswapd_failures = 0;
2852 }
2853 #endif
2854
2855 /*
2856 * Returns true if compaction should go ahead for a costly-order request, or
2857 * the allocation would already succeed without compaction. Return false if we
2858 * should reclaim first.
2859 */
compaction_ready(struct zone * zone,struct scan_control * sc)2860 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2861 {
2862 unsigned long watermark;
2863 enum compact_result suitable;
2864
2865 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2866 if (suitable == COMPACT_SUCCESS)
2867 /* Allocation should succeed already. Don't reclaim. */
2868 return true;
2869 if (suitable == COMPACT_SKIPPED)
2870 /* Compaction cannot yet proceed. Do reclaim. */
2871 return false;
2872
2873 /*
2874 * Compaction is already possible, but it takes time to run and there
2875 * are potentially other callers using the pages just freed. So proceed
2876 * with reclaim to make a buffer of free pages available to give
2877 * compaction a reasonable chance of completing and allocating the page.
2878 * Note that we won't actually reclaim the whole buffer in one attempt
2879 * as the target watermark in should_continue_reclaim() is lower. But if
2880 * we are already above the high+gap watermark, don't reclaim at all.
2881 */
2882 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2883
2884 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2885 }
2886
2887 /*
2888 * This is the direct reclaim path, for page-allocating processes. We only
2889 * try to reclaim pages from zones which will satisfy the caller's allocation
2890 * request.
2891 *
2892 * If a zone is deemed to be full of pinned pages then just give it a light
2893 * scan then give up on it.
2894 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2895 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2896 {
2897 struct zoneref *z;
2898 struct zone *zone;
2899 unsigned long nr_soft_reclaimed;
2900 unsigned long nr_soft_scanned;
2901 gfp_t orig_mask;
2902 pg_data_t *last_pgdat = NULL;
2903
2904 /*
2905 * If the number of buffer_heads in the machine exceeds the maximum
2906 * allowed level, force direct reclaim to scan the highmem zone as
2907 * highmem pages could be pinning lowmem pages storing buffer_heads
2908 */
2909 orig_mask = sc->gfp_mask;
2910 if (buffer_heads_over_limit) {
2911 sc->gfp_mask |= __GFP_HIGHMEM;
2912 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2913 }
2914
2915 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2916 sc->reclaim_idx, sc->nodemask) {
2917 /*
2918 * Take care memory controller reclaiming has small influence
2919 * to global LRU.
2920 */
2921 if (!cgroup_reclaim(sc)) {
2922 if (!cpuset_zone_allowed(zone,
2923 GFP_KERNEL | __GFP_HARDWALL))
2924 continue;
2925
2926 /*
2927 * If we already have plenty of memory free for
2928 * compaction in this zone, don't free any more.
2929 * Even though compaction is invoked for any
2930 * non-zero order, only frequent costly order
2931 * reclamation is disruptive enough to become a
2932 * noticeable problem, like transparent huge
2933 * page allocations.
2934 */
2935 if (IS_ENABLED(CONFIG_COMPACTION) &&
2936 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2937 compaction_ready(zone, sc)) {
2938 sc->compaction_ready = true;
2939 continue;
2940 }
2941
2942 /*
2943 * Shrink each node in the zonelist once. If the
2944 * zonelist is ordered by zone (not the default) then a
2945 * node may be shrunk multiple times but in that case
2946 * the user prefers lower zones being preserved.
2947 */
2948 if (zone->zone_pgdat == last_pgdat)
2949 continue;
2950
2951 /*
2952 * This steals pages from memory cgroups over softlimit
2953 * and returns the number of reclaimed pages and
2954 * scanned pages. This works for global memory pressure
2955 * and balancing, not for a memcg's limit.
2956 */
2957 nr_soft_scanned = 0;
2958 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2959 sc->order, sc->gfp_mask,
2960 &nr_soft_scanned);
2961 sc->nr_reclaimed += nr_soft_reclaimed;
2962 sc->nr_scanned += nr_soft_scanned;
2963 /* need some check for avoid more shrink_zone() */
2964 }
2965
2966 /* See comment about same check for global reclaim above */
2967 if (zone->zone_pgdat == last_pgdat)
2968 continue;
2969 last_pgdat = zone->zone_pgdat;
2970 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2971 shrink_node_hyperhold(zone->zone_pgdat, sc);
2972 #else
2973 shrink_node(zone->zone_pgdat, sc);
2974 #endif
2975 }
2976
2977 /*
2978 * Restore to original mask to avoid the impact on the caller if we
2979 * promoted it to __GFP_HIGHMEM.
2980 */
2981 sc->gfp_mask = orig_mask;
2982 }
2983
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2984 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2985 {
2986 struct lruvec *target_lruvec;
2987 unsigned long refaults;
2988
2989 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2990 struct lruvec *lruvec;
2991
2992 lruvec = node_lruvec(pgdat);
2993 lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
2994 lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
2995 #endif
2996
2997 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2998 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2999 target_lruvec->refaults[0] = refaults;
3000 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3001 target_lruvec->refaults[1] = refaults;
3002 }
3003
3004 /*
3005 * This is the main entry point to direct page reclaim.
3006 *
3007 * If a full scan of the inactive list fails to free enough memory then we
3008 * are "out of memory" and something needs to be killed.
3009 *
3010 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3011 * high - the zone may be full of dirty or under-writeback pages, which this
3012 * caller can't do much about. We kick the writeback threads and take explicit
3013 * naps in the hope that some of these pages can be written. But if the
3014 * allocating task holds filesystem locks which prevent writeout this might not
3015 * work, and the allocation attempt will fail.
3016 *
3017 * returns: 0, if no pages reclaimed
3018 * else, the number of pages reclaimed
3019 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3020 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3021 struct scan_control *sc)
3022 {
3023 int initial_priority = sc->priority;
3024 pg_data_t *last_pgdat;
3025 struct zoneref *z;
3026 struct zone *zone;
3027 retry:
3028 delayacct_freepages_start();
3029
3030 if (!cgroup_reclaim(sc))
3031 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3032
3033 do {
3034 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3035 sc->priority);
3036 sc->nr_scanned = 0;
3037 shrink_zones(zonelist, sc);
3038
3039 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3040 break;
3041
3042 if (sc->compaction_ready)
3043 break;
3044
3045 /*
3046 * If we're getting trouble reclaiming, start doing
3047 * writepage even in laptop mode.
3048 */
3049 if (sc->priority < DEF_PRIORITY - 2)
3050 sc->may_writepage = 1;
3051 } while (--sc->priority >= 0);
3052
3053 last_pgdat = NULL;
3054 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3055 sc->nodemask) {
3056 if (zone->zone_pgdat == last_pgdat)
3057 continue;
3058 last_pgdat = zone->zone_pgdat;
3059
3060 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3061
3062 if (cgroup_reclaim(sc)) {
3063 struct lruvec *lruvec;
3064
3065 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3066 zone->zone_pgdat);
3067 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3068 }
3069 }
3070
3071 delayacct_freepages_end();
3072
3073 if (sc->nr_reclaimed)
3074 return sc->nr_reclaimed;
3075
3076 /* Aborted reclaim to try compaction? don't OOM, then */
3077 if (sc->compaction_ready)
3078 return 1;
3079
3080 /*
3081 * We make inactive:active ratio decisions based on the node's
3082 * composition of memory, but a restrictive reclaim_idx or a
3083 * memory.low cgroup setting can exempt large amounts of
3084 * memory from reclaim. Neither of which are very common, so
3085 * instead of doing costly eligibility calculations of the
3086 * entire cgroup subtree up front, we assume the estimates are
3087 * good, and retry with forcible deactivation if that fails.
3088 */
3089 if (sc->skipped_deactivate) {
3090 sc->priority = initial_priority;
3091 sc->force_deactivate = 1;
3092 sc->skipped_deactivate = 0;
3093 goto retry;
3094 }
3095
3096 /* Untapped cgroup reserves? Don't OOM, retry. */
3097 if (sc->memcg_low_skipped) {
3098 sc->priority = initial_priority;
3099 sc->force_deactivate = 0;
3100 sc->memcg_low_reclaim = 1;
3101 sc->memcg_low_skipped = 0;
3102 goto retry;
3103 }
3104
3105 return 0;
3106 }
3107
allow_direct_reclaim(pg_data_t * pgdat)3108 static bool allow_direct_reclaim(pg_data_t *pgdat)
3109 {
3110 struct zone *zone;
3111 unsigned long pfmemalloc_reserve = 0;
3112 unsigned long free_pages = 0;
3113 int i;
3114 bool wmark_ok;
3115
3116 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3117 return true;
3118
3119 for (i = 0; i <= ZONE_NORMAL; i++) {
3120 zone = &pgdat->node_zones[i];
3121 if (!managed_zone(zone))
3122 continue;
3123
3124 if (!zone_reclaimable_pages(zone))
3125 continue;
3126
3127 pfmemalloc_reserve += min_wmark_pages(zone);
3128 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3129 }
3130
3131 /* If there are no reserves (unexpected config) then do not throttle */
3132 if (!pfmemalloc_reserve)
3133 return true;
3134
3135 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3136
3137 /* kswapd must be awake if processes are being throttled */
3138 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3139 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3140 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3141
3142 wake_up_interruptible(&pgdat->kswapd_wait);
3143 }
3144
3145 return wmark_ok;
3146 }
3147
3148 /*
3149 * Throttle direct reclaimers if backing storage is backed by the network
3150 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3151 * depleted. kswapd will continue to make progress and wake the processes
3152 * when the low watermark is reached.
3153 *
3154 * Returns true if a fatal signal was delivered during throttling. If this
3155 * happens, the page allocator should not consider triggering the OOM killer.
3156 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3157 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3158 nodemask_t *nodemask)
3159 {
3160 struct zoneref *z;
3161 struct zone *zone;
3162 pg_data_t *pgdat = NULL;
3163
3164 /*
3165 * Kernel threads should not be throttled as they may be indirectly
3166 * responsible for cleaning pages necessary for reclaim to make forward
3167 * progress. kjournald for example may enter direct reclaim while
3168 * committing a transaction where throttling it could forcing other
3169 * processes to block on log_wait_commit().
3170 */
3171 if (current->flags & PF_KTHREAD)
3172 goto out;
3173
3174 /*
3175 * If a fatal signal is pending, this process should not throttle.
3176 * It should return quickly so it can exit and free its memory
3177 */
3178 if (fatal_signal_pending(current))
3179 goto out;
3180
3181 /*
3182 * Check if the pfmemalloc reserves are ok by finding the first node
3183 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3184 * GFP_KERNEL will be required for allocating network buffers when
3185 * swapping over the network so ZONE_HIGHMEM is unusable.
3186 *
3187 * Throttling is based on the first usable node and throttled processes
3188 * wait on a queue until kswapd makes progress and wakes them. There
3189 * is an affinity then between processes waking up and where reclaim
3190 * progress has been made assuming the process wakes on the same node.
3191 * More importantly, processes running on remote nodes will not compete
3192 * for remote pfmemalloc reserves and processes on different nodes
3193 * should make reasonable progress.
3194 */
3195 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3196 gfp_zone(gfp_mask), nodemask) {
3197 if (zone_idx(zone) > ZONE_NORMAL)
3198 continue;
3199
3200 /* Throttle based on the first usable node */
3201 pgdat = zone->zone_pgdat;
3202 if (allow_direct_reclaim(pgdat))
3203 goto out;
3204 break;
3205 }
3206
3207 /* If no zone was usable by the allocation flags then do not throttle */
3208 if (!pgdat)
3209 goto out;
3210
3211 /* Account for the throttling */
3212 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3213
3214 /*
3215 * If the caller cannot enter the filesystem, it's possible that it
3216 * is due to the caller holding an FS lock or performing a journal
3217 * transaction in the case of a filesystem like ext[3|4]. In this case,
3218 * it is not safe to block on pfmemalloc_wait as kswapd could be
3219 * blocked waiting on the same lock. Instead, throttle for up to a
3220 * second before continuing.
3221 */
3222 if (!(gfp_mask & __GFP_FS)) {
3223 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3224 allow_direct_reclaim(pgdat), HZ);
3225
3226 goto check_pending;
3227 }
3228
3229 /* Throttle until kswapd wakes the process */
3230 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3231 allow_direct_reclaim(pgdat));
3232
3233 check_pending:
3234 if (fatal_signal_pending(current))
3235 return true;
3236
3237 out:
3238 return false;
3239 }
3240
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3241 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3242 gfp_t gfp_mask, nodemask_t *nodemask)
3243 {
3244 unsigned long nr_reclaimed;
3245 struct scan_control sc = {
3246 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3247 .gfp_mask = current_gfp_context(gfp_mask),
3248 .reclaim_idx = gfp_zone(gfp_mask),
3249 .order = order,
3250 .nodemask = nodemask,
3251 .priority = DEF_PRIORITY,
3252 .may_writepage = !laptop_mode,
3253 .may_unmap = 1,
3254 .may_swap = 1,
3255 };
3256
3257 /*
3258 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3259 * Confirm they are large enough for max values.
3260 */
3261 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3262 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3263 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3264
3265 /*
3266 * Do not enter reclaim if fatal signal was delivered while throttled.
3267 * 1 is returned so that the page allocator does not OOM kill at this
3268 * point.
3269 */
3270 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3271 return 1;
3272
3273 set_task_reclaim_state(current, &sc.reclaim_state);
3274 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3275
3276 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3277
3278 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3279 set_task_reclaim_state(current, NULL);
3280
3281 return nr_reclaimed;
3282 }
3283
3284 #ifdef CONFIG_MEMCG
3285
3286 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3287 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3288 gfp_t gfp_mask, bool noswap,
3289 pg_data_t *pgdat,
3290 unsigned long *nr_scanned)
3291 {
3292 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3293 struct scan_control sc = {
3294 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3295 .target_mem_cgroup = memcg,
3296 .may_writepage = !laptop_mode,
3297 .may_unmap = 1,
3298 .reclaim_idx = MAX_NR_ZONES - 1,
3299 .may_swap = !noswap,
3300 };
3301 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3302 unsigned long nr[NR_LRU_LISTS];
3303 #endif
3304
3305 WARN_ON_ONCE(!current->reclaim_state);
3306
3307 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3308 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3309
3310 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3311 sc.gfp_mask);
3312
3313 /*
3314 * NOTE: Although we can get the priority field, using it
3315 * here is not a good idea, since it limits the pages we can scan.
3316 * if we don't reclaim here, the shrink_node from balance_pgdat
3317 * will pick up pages from other mem cgroup's as well. We hack
3318 * the priority and make it zero.
3319 */
3320 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3321 nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
3322 LRU_ACTIVE_ANON, MAX_NR_ZONES);
3323 nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
3324 LRU_INACTIVE_ANON, MAX_NR_ZONES);
3325 nr[LRU_ACTIVE_FILE] = 0;
3326 nr[LRU_INACTIVE_FILE] = 0;
3327 shrink_anon_memcg(pgdat, memcg, &sc, nr);
3328 #else
3329 shrink_lruvec(lruvec, &sc);
3330 #endif
3331
3332 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3333
3334 *nr_scanned = sc.nr_scanned;
3335
3336 return sc.nr_reclaimed;
3337 }
3338
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3339 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3340 unsigned long nr_pages,
3341 gfp_t gfp_mask,
3342 bool may_swap)
3343 {
3344 unsigned long nr_reclaimed;
3345 unsigned int noreclaim_flag;
3346 struct scan_control sc = {
3347 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3348 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3349 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3350 .reclaim_idx = MAX_NR_ZONES - 1,
3351 .target_mem_cgroup = memcg,
3352 .priority = DEF_PRIORITY,
3353 .may_writepage = !laptop_mode,
3354 .may_unmap = 1,
3355 .may_swap = may_swap,
3356 };
3357 /*
3358 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3359 * equal pressure on all the nodes. This is based on the assumption that
3360 * the reclaim does not bail out early.
3361 */
3362 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3363
3364 set_task_reclaim_state(current, &sc.reclaim_state);
3365 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3366 noreclaim_flag = memalloc_noreclaim_save();
3367
3368 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3369
3370 memalloc_noreclaim_restore(noreclaim_flag);
3371 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3372 set_task_reclaim_state(current, NULL);
3373
3374 return nr_reclaimed;
3375 }
3376 #endif
3377
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3378 static void age_active_anon(struct pglist_data *pgdat,
3379 struct scan_control *sc)
3380 {
3381 struct mem_cgroup *memcg;
3382 struct lruvec *lruvec;
3383
3384 if (!total_swap_pages)
3385 return;
3386
3387 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3388 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3389 return;
3390
3391 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3392 do {
3393 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3394 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3395 sc, LRU_ACTIVE_ANON);
3396 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3397 } while (memcg);
3398 }
3399
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3400 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3401 {
3402 int i;
3403 struct zone *zone;
3404
3405 /*
3406 * Check for watermark boosts top-down as the higher zones
3407 * are more likely to be boosted. Both watermarks and boosts
3408 * should not be checked at the same time as reclaim would
3409 * start prematurely when there is no boosting and a lower
3410 * zone is balanced.
3411 */
3412 for (i = highest_zoneidx; i >= 0; i--) {
3413 zone = pgdat->node_zones + i;
3414 if (!managed_zone(zone))
3415 continue;
3416
3417 if (zone->watermark_boost)
3418 return true;
3419 }
3420
3421 return false;
3422 }
3423
3424 /*
3425 * Returns true if there is an eligible zone balanced for the request order
3426 * and highest_zoneidx
3427 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3428 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3429 {
3430 int i;
3431 unsigned long mark = -1;
3432 struct zone *zone;
3433
3434 /*
3435 * Check watermarks bottom-up as lower zones are more likely to
3436 * meet watermarks.
3437 */
3438 for (i = 0; i <= highest_zoneidx; i++) {
3439 zone = pgdat->node_zones + i;
3440
3441 if (!managed_zone(zone))
3442 continue;
3443
3444 mark = high_wmark_pages(zone);
3445 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3446 return true;
3447 }
3448
3449 /*
3450 * If a node has no populated zone within highest_zoneidx, it does not
3451 * need balancing by definition. This can happen if a zone-restricted
3452 * allocation tries to wake a remote kswapd.
3453 */
3454 if (mark == -1)
3455 return true;
3456
3457 return false;
3458 }
3459
3460 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3461 static void clear_pgdat_congested(pg_data_t *pgdat)
3462 {
3463 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3464
3465 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3466 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3467 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3468 }
3469
3470 /*
3471 * Prepare kswapd for sleeping. This verifies that there are no processes
3472 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3473 *
3474 * Returns true if kswapd is ready to sleep
3475 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3476 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3477 int highest_zoneidx)
3478 {
3479 /*
3480 * The throttled processes are normally woken up in balance_pgdat() as
3481 * soon as allow_direct_reclaim() is true. But there is a potential
3482 * race between when kswapd checks the watermarks and a process gets
3483 * throttled. There is also a potential race if processes get
3484 * throttled, kswapd wakes, a large process exits thereby balancing the
3485 * zones, which causes kswapd to exit balance_pgdat() before reaching
3486 * the wake up checks. If kswapd is going to sleep, no process should
3487 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3488 * the wake up is premature, processes will wake kswapd and get
3489 * throttled again. The difference from wake ups in balance_pgdat() is
3490 * that here we are under prepare_to_wait().
3491 */
3492 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3493 wake_up_all(&pgdat->pfmemalloc_wait);
3494
3495 /* Hopeless node, leave it to direct reclaim */
3496 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3497 return true;
3498
3499 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3500 clear_pgdat_congested(pgdat);
3501 return true;
3502 }
3503
3504 return false;
3505 }
3506
3507 /*
3508 * kswapd shrinks a node of pages that are at or below the highest usable
3509 * zone that is currently unbalanced.
3510 *
3511 * Returns true if kswapd scanned at least the requested number of pages to
3512 * reclaim or if the lack of progress was due to pages under writeback.
3513 * This is used to determine if the scanning priority needs to be raised.
3514 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3515 static bool kswapd_shrink_node(pg_data_t *pgdat,
3516 struct scan_control *sc)
3517 {
3518 struct zone *zone;
3519 int z;
3520
3521 /* Reclaim a number of pages proportional to the number of zones */
3522 sc->nr_to_reclaim = 0;
3523 for (z = 0; z <= sc->reclaim_idx; z++) {
3524 zone = pgdat->node_zones + z;
3525 if (!managed_zone(zone))
3526 continue;
3527
3528 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3529 }
3530
3531 /*
3532 * Historically care was taken to put equal pressure on all zones but
3533 * now pressure is applied based on node LRU order.
3534 */
3535 #ifdef CONFIG_HYPERHOLD_FILE_LRU
3536 shrink_node_hyperhold(pgdat, sc);
3537 #else
3538 shrink_node(pgdat, sc);
3539 #endif
3540
3541 /*
3542 * Fragmentation may mean that the system cannot be rebalanced for
3543 * high-order allocations. If twice the allocation size has been
3544 * reclaimed then recheck watermarks only at order-0 to prevent
3545 * excessive reclaim. Assume that a process requested a high-order
3546 * can direct reclaim/compact.
3547 */
3548 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3549 sc->order = 0;
3550
3551 return sc->nr_scanned >= sc->nr_to_reclaim;
3552 }
3553
3554 /*
3555 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3556 * that are eligible for use by the caller until at least one zone is
3557 * balanced.
3558 *
3559 * Returns the order kswapd finished reclaiming at.
3560 *
3561 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3562 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3563 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3564 * or lower is eligible for reclaim until at least one usable zone is
3565 * balanced.
3566 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3567 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3568 {
3569 int i;
3570 unsigned long nr_soft_reclaimed;
3571 unsigned long nr_soft_scanned;
3572 unsigned long pflags;
3573 unsigned long nr_boost_reclaim;
3574 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3575 bool boosted;
3576 struct zone *zone;
3577 struct scan_control sc = {
3578 .gfp_mask = GFP_KERNEL,
3579 .order = order,
3580 .may_unmap = 1,
3581 };
3582
3583 set_task_reclaim_state(current, &sc.reclaim_state);
3584 psi_memstall_enter(&pflags);
3585 __fs_reclaim_acquire();
3586
3587 count_vm_event(PAGEOUTRUN);
3588
3589 /*
3590 * Account for the reclaim boost. Note that the zone boost is left in
3591 * place so that parallel allocations that are near the watermark will
3592 * stall or direct reclaim until kswapd is finished.
3593 */
3594 nr_boost_reclaim = 0;
3595 for (i = 0; i <= highest_zoneidx; i++) {
3596 zone = pgdat->node_zones + i;
3597 if (!managed_zone(zone))
3598 continue;
3599
3600 nr_boost_reclaim += zone->watermark_boost;
3601 zone_boosts[i] = zone->watermark_boost;
3602 }
3603 boosted = nr_boost_reclaim;
3604
3605 restart:
3606 sc.priority = DEF_PRIORITY;
3607 do {
3608 unsigned long nr_reclaimed = sc.nr_reclaimed;
3609 bool raise_priority = true;
3610 bool balanced;
3611 bool ret;
3612
3613 sc.reclaim_idx = highest_zoneidx;
3614
3615 /*
3616 * If the number of buffer_heads exceeds the maximum allowed
3617 * then consider reclaiming from all zones. This has a dual
3618 * purpose -- on 64-bit systems it is expected that
3619 * buffer_heads are stripped during active rotation. On 32-bit
3620 * systems, highmem pages can pin lowmem memory and shrinking
3621 * buffers can relieve lowmem pressure. Reclaim may still not
3622 * go ahead if all eligible zones for the original allocation
3623 * request are balanced to avoid excessive reclaim from kswapd.
3624 */
3625 if (buffer_heads_over_limit) {
3626 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3627 zone = pgdat->node_zones + i;
3628 if (!managed_zone(zone))
3629 continue;
3630
3631 sc.reclaim_idx = i;
3632 break;
3633 }
3634 }
3635
3636 /*
3637 * If the pgdat is imbalanced then ignore boosting and preserve
3638 * the watermarks for a later time and restart. Note that the
3639 * zone watermarks will be still reset at the end of balancing
3640 * on the grounds that the normal reclaim should be enough to
3641 * re-evaluate if boosting is required when kswapd next wakes.
3642 */
3643 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3644 if (!balanced && nr_boost_reclaim) {
3645 nr_boost_reclaim = 0;
3646 goto restart;
3647 }
3648
3649 /*
3650 * If boosting is not active then only reclaim if there are no
3651 * eligible zones. Note that sc.reclaim_idx is not used as
3652 * buffer_heads_over_limit may have adjusted it.
3653 */
3654 if (!nr_boost_reclaim && balanced)
3655 goto out;
3656
3657 /* Limit the priority of boosting to avoid reclaim writeback */
3658 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3659 raise_priority = false;
3660
3661 /*
3662 * Do not writeback or swap pages for boosted reclaim. The
3663 * intent is to relieve pressure not issue sub-optimal IO
3664 * from reclaim context. If no pages are reclaimed, the
3665 * reclaim will be aborted.
3666 */
3667 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3668 sc.may_swap = !nr_boost_reclaim;
3669
3670 /*
3671 * Do some background aging of the anon list, to give
3672 * pages a chance to be referenced before reclaiming. All
3673 * pages are rotated regardless of classzone as this is
3674 * about consistent aging.
3675 */
3676 age_active_anon(pgdat, &sc);
3677
3678 /*
3679 * If we're getting trouble reclaiming, start doing writepage
3680 * even in laptop mode.
3681 */
3682 if (sc.priority < DEF_PRIORITY - 2)
3683 sc.may_writepage = 1;
3684
3685 /* Call soft limit reclaim before calling shrink_node. */
3686 sc.nr_scanned = 0;
3687 nr_soft_scanned = 0;
3688 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3689 sc.gfp_mask, &nr_soft_scanned);
3690 sc.nr_reclaimed += nr_soft_reclaimed;
3691
3692 /*
3693 * There should be no need to raise the scanning priority if
3694 * enough pages are already being scanned that that high
3695 * watermark would be met at 100% efficiency.
3696 */
3697 if (kswapd_shrink_node(pgdat, &sc))
3698 raise_priority = false;
3699
3700 /*
3701 * If the low watermark is met there is no need for processes
3702 * to be throttled on pfmemalloc_wait as they should not be
3703 * able to safely make forward progress. Wake them
3704 */
3705 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3706 allow_direct_reclaim(pgdat))
3707 wake_up_all(&pgdat->pfmemalloc_wait);
3708
3709 /* Check if kswapd should be suspending */
3710 __fs_reclaim_release();
3711 ret = try_to_freeze();
3712 __fs_reclaim_acquire();
3713 if (ret || kthread_should_stop())
3714 break;
3715
3716 /*
3717 * Raise priority if scanning rate is too low or there was no
3718 * progress in reclaiming pages
3719 */
3720 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3721 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3722
3723 /*
3724 * If reclaim made no progress for a boost, stop reclaim as
3725 * IO cannot be queued and it could be an infinite loop in
3726 * extreme circumstances.
3727 */
3728 if (nr_boost_reclaim && !nr_reclaimed)
3729 break;
3730
3731 if (raise_priority || !nr_reclaimed)
3732 sc.priority--;
3733 } while (sc.priority >= 1);
3734
3735 if (!sc.nr_reclaimed)
3736 pgdat->kswapd_failures++;
3737
3738 out:
3739 /* If reclaim was boosted, account for the reclaim done in this pass */
3740 if (boosted) {
3741 unsigned long flags;
3742
3743 for (i = 0; i <= highest_zoneidx; i++) {
3744 if (!zone_boosts[i])
3745 continue;
3746
3747 /* Increments are under the zone lock */
3748 zone = pgdat->node_zones + i;
3749 spin_lock_irqsave(&zone->lock, flags);
3750 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3751 spin_unlock_irqrestore(&zone->lock, flags);
3752 }
3753
3754 /*
3755 * As there is now likely space, wakeup kcompact to defragment
3756 * pageblocks.
3757 */
3758 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3759 }
3760
3761 snapshot_refaults(NULL, pgdat);
3762 __fs_reclaim_release();
3763 psi_memstall_leave(&pflags);
3764 set_task_reclaim_state(current, NULL);
3765
3766 /*
3767 * Return the order kswapd stopped reclaiming at as
3768 * prepare_kswapd_sleep() takes it into account. If another caller
3769 * entered the allocator slow path while kswapd was awake, order will
3770 * remain at the higher level.
3771 */
3772 return sc.order;
3773 }
3774
3775 /*
3776 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3777 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3778 * not a valid index then either kswapd runs for first time or kswapd couldn't
3779 * sleep after previous reclaim attempt (node is still unbalanced). In that
3780 * case return the zone index of the previous kswapd reclaim cycle.
3781 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3782 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3783 enum zone_type prev_highest_zoneidx)
3784 {
3785 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3786
3787 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3788 }
3789
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3790 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3791 unsigned int highest_zoneidx)
3792 {
3793 long remaining = 0;
3794 DEFINE_WAIT(wait);
3795
3796 if (freezing(current) || kthread_should_stop())
3797 return;
3798
3799 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3800
3801 /*
3802 * Try to sleep for a short interval. Note that kcompactd will only be
3803 * woken if it is possible to sleep for a short interval. This is
3804 * deliberate on the assumption that if reclaim cannot keep an
3805 * eligible zone balanced that it's also unlikely that compaction will
3806 * succeed.
3807 */
3808 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3809 /*
3810 * Compaction records what page blocks it recently failed to
3811 * isolate pages from and skips them in the future scanning.
3812 * When kswapd is going to sleep, it is reasonable to assume
3813 * that pages and compaction may succeed so reset the cache.
3814 */
3815 reset_isolation_suitable(pgdat);
3816
3817 /*
3818 * We have freed the memory, now we should compact it to make
3819 * allocation of the requested order possible.
3820 */
3821 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3822
3823 remaining = schedule_timeout(HZ/10);
3824
3825 /*
3826 * If woken prematurely then reset kswapd_highest_zoneidx and
3827 * order. The values will either be from a wakeup request or
3828 * the previous request that slept prematurely.
3829 */
3830 if (remaining) {
3831 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3832 kswapd_highest_zoneidx(pgdat,
3833 highest_zoneidx));
3834
3835 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3836 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3837 }
3838
3839 finish_wait(&pgdat->kswapd_wait, &wait);
3840 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3841 }
3842
3843 /*
3844 * After a short sleep, check if it was a premature sleep. If not, then
3845 * go fully to sleep until explicitly woken up.
3846 */
3847 if (!remaining &&
3848 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3849 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3850
3851 /*
3852 * vmstat counters are not perfectly accurate and the estimated
3853 * value for counters such as NR_FREE_PAGES can deviate from the
3854 * true value by nr_online_cpus * threshold. To avoid the zone
3855 * watermarks being breached while under pressure, we reduce the
3856 * per-cpu vmstat threshold while kswapd is awake and restore
3857 * them before going back to sleep.
3858 */
3859 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3860
3861 if (!kthread_should_stop())
3862 schedule();
3863
3864 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3865 } else {
3866 if (remaining)
3867 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3868 else
3869 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3870 }
3871 finish_wait(&pgdat->kswapd_wait, &wait);
3872 }
3873
3874 /*
3875 * The background pageout daemon, started as a kernel thread
3876 * from the init process.
3877 *
3878 * This basically trickles out pages so that we have _some_
3879 * free memory available even if there is no other activity
3880 * that frees anything up. This is needed for things like routing
3881 * etc, where we otherwise might have all activity going on in
3882 * asynchronous contexts that cannot page things out.
3883 *
3884 * If there are applications that are active memory-allocators
3885 * (most normal use), this basically shouldn't matter.
3886 */
kswapd(void * p)3887 static int kswapd(void *p)
3888 {
3889 unsigned int alloc_order, reclaim_order;
3890 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3891 pg_data_t *pgdat = (pg_data_t*)p;
3892 struct task_struct *tsk = current;
3893 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3894 #ifdef CONFIG_RECLAIM_ACCT
3895 struct reclaim_acct ra = {0};
3896 #endif
3897
3898 if (!cpumask_empty(cpumask))
3899 set_cpus_allowed_ptr(tsk, cpumask);
3900
3901 /*
3902 * Tell the memory management that we're a "memory allocator",
3903 * and that if we need more memory we should get access to it
3904 * regardless (see "__alloc_pages()"). "kswapd" should
3905 * never get caught in the normal page freeing logic.
3906 *
3907 * (Kswapd normally doesn't need memory anyway, but sometimes
3908 * you need a small amount of memory in order to be able to
3909 * page out something else, and this flag essentially protects
3910 * us from recursively trying to free more memory as we're
3911 * trying to free the first piece of memory in the first place).
3912 */
3913 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3914 set_freezable();
3915
3916 WRITE_ONCE(pgdat->kswapd_order, 0);
3917 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3918 for ( ; ; ) {
3919 bool ret;
3920
3921 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3922 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3923 highest_zoneidx);
3924
3925 kswapd_try_sleep:
3926 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3927 highest_zoneidx);
3928
3929 /* Read the new order and highest_zoneidx */
3930 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3931 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3932 highest_zoneidx);
3933 WRITE_ONCE(pgdat->kswapd_order, 0);
3934 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3935
3936 ret = try_to_freeze();
3937 if (kthread_should_stop())
3938 break;
3939
3940 /*
3941 * We can speed up thawing tasks if we don't call balance_pgdat
3942 * after returning from the refrigerator
3943 */
3944 if (ret)
3945 continue;
3946
3947 /*
3948 * Reclaim begins at the requested order but if a high-order
3949 * reclaim fails then kswapd falls back to reclaiming for
3950 * order-0. If that happens, kswapd will consider sleeping
3951 * for the order it finished reclaiming at (reclaim_order)
3952 * but kcompactd is woken to compact for the original
3953 * request (alloc_order).
3954 */
3955 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3956 alloc_order);
3957 #ifdef CONFIG_MEMORY_MONITOR
3958 kswapd_monitor_wake_up_queue();
3959 #endif
3960 #ifdef CONFIG_RECLAIM_ACCT
3961 reclaimacct_start(KSWAPD_RECLAIM, &ra);
3962 #endif
3963 reclaim_order = balance_pgdat(pgdat, alloc_order,
3964 highest_zoneidx);
3965 #ifdef CONFIG_RECLAIM_ACCT
3966 reclaimacct_end(KSWAPD_RECLAIM);
3967 #endif
3968 if (reclaim_order < alloc_order)
3969 goto kswapd_try_sleep;
3970 }
3971
3972 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3973
3974 return 0;
3975 }
3976
3977 /*
3978 * A zone is low on free memory or too fragmented for high-order memory. If
3979 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3980 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3981 * has failed or is not needed, still wake up kcompactd if only compaction is
3982 * needed.
3983 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3984 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3985 enum zone_type highest_zoneidx)
3986 {
3987 pg_data_t *pgdat;
3988 enum zone_type curr_idx;
3989
3990 if (!managed_zone(zone))
3991 return;
3992
3993 if (!cpuset_zone_allowed(zone, gfp_flags))
3994 return;
3995
3996 pgdat = zone->zone_pgdat;
3997 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3998
3999 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4000 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4001
4002 if (READ_ONCE(pgdat->kswapd_order) < order)
4003 WRITE_ONCE(pgdat->kswapd_order, order);
4004
4005 if (!waitqueue_active(&pgdat->kswapd_wait))
4006 return;
4007
4008 /* Hopeless node, leave it to direct reclaim if possible */
4009 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4010 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4011 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4012 /*
4013 * There may be plenty of free memory available, but it's too
4014 * fragmented for high-order allocations. Wake up kcompactd
4015 * and rely on compaction_suitable() to determine if it's
4016 * needed. If it fails, it will defer subsequent attempts to
4017 * ratelimit its work.
4018 */
4019 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4020 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4021 return;
4022 }
4023
4024 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4025 gfp_flags);
4026 wake_up_interruptible(&pgdat->kswapd_wait);
4027 }
4028
4029 #ifdef CONFIG_HIBERNATION
4030 /*
4031 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4032 * freed pages.
4033 *
4034 * Rather than trying to age LRUs the aim is to preserve the overall
4035 * LRU order by reclaiming preferentially
4036 * inactive > active > active referenced > active mapped
4037 */
shrink_all_memory(unsigned long nr_to_reclaim)4038 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4039 {
4040 struct scan_control sc = {
4041 .nr_to_reclaim = nr_to_reclaim,
4042 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4043 .reclaim_idx = MAX_NR_ZONES - 1,
4044 .priority = DEF_PRIORITY,
4045 .may_writepage = 1,
4046 .may_unmap = 1,
4047 .may_swap = 1,
4048 .hibernation_mode = 1,
4049 };
4050 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4051 unsigned long nr_reclaimed;
4052 unsigned int noreclaim_flag;
4053
4054 fs_reclaim_acquire(sc.gfp_mask);
4055 noreclaim_flag = memalloc_noreclaim_save();
4056 set_task_reclaim_state(current, &sc.reclaim_state);
4057
4058 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4059
4060 set_task_reclaim_state(current, NULL);
4061 memalloc_noreclaim_restore(noreclaim_flag);
4062 fs_reclaim_release(sc.gfp_mask);
4063
4064 return nr_reclaimed;
4065 }
4066 #endif /* CONFIG_HIBERNATION */
4067
4068 /*
4069 * This kswapd start function will be called by init and node-hot-add.
4070 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4071 */
kswapd_run(int nid)4072 int kswapd_run(int nid)
4073 {
4074 pg_data_t *pgdat = NODE_DATA(nid);
4075 int ret = 0;
4076
4077 if (pgdat->kswapd)
4078 return 0;
4079
4080 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4081 if (IS_ERR(pgdat->kswapd)) {
4082 /* failure at boot is fatal */
4083 BUG_ON(system_state < SYSTEM_RUNNING);
4084 pr_err("Failed to start kswapd on node %d\n", nid);
4085 ret = PTR_ERR(pgdat->kswapd);
4086 pgdat->kswapd = NULL;
4087 }
4088 return ret;
4089 }
4090
4091 /*
4092 * Called by memory hotplug when all memory in a node is offlined. Caller must
4093 * hold mem_hotplug_begin/end().
4094 */
kswapd_stop(int nid)4095 void kswapd_stop(int nid)
4096 {
4097 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4098
4099 if (kswapd) {
4100 kthread_stop(kswapd);
4101 NODE_DATA(nid)->kswapd = NULL;
4102 }
4103 }
4104
4105 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4106 static void __init purgeable_debugfs_init(void);
4107 #endif
4108
kswapd_init(void)4109 static int __init kswapd_init(void)
4110 {
4111 int nid;
4112
4113 swap_setup();
4114 for_each_node_state(nid, N_MEMORY)
4115 kswapd_run(nid);
4116 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4117 purgeable_debugfs_init();
4118 #endif
4119 return 0;
4120 }
4121
4122 module_init(kswapd_init)
4123
4124 #ifdef CONFIG_NUMA
4125 /*
4126 * Node reclaim mode
4127 *
4128 * If non-zero call node_reclaim when the number of free pages falls below
4129 * the watermarks.
4130 */
4131 int node_reclaim_mode __read_mostly;
4132
4133 /*
4134 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4135 * ABI. New bits are OK, but existing bits can never change.
4136 */
4137 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4138 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4139 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4140
4141 /*
4142 * Priority for NODE_RECLAIM. This determines the fraction of pages
4143 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4144 * a zone.
4145 */
4146 #define NODE_RECLAIM_PRIORITY 4
4147
4148 /*
4149 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4150 * occur.
4151 */
4152 int sysctl_min_unmapped_ratio = 1;
4153
4154 /*
4155 * If the number of slab pages in a zone grows beyond this percentage then
4156 * slab reclaim needs to occur.
4157 */
4158 int sysctl_min_slab_ratio = 5;
4159
node_unmapped_file_pages(struct pglist_data * pgdat)4160 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4161 {
4162 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4163 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4164 node_page_state(pgdat, NR_ACTIVE_FILE);
4165
4166 /*
4167 * It's possible for there to be more file mapped pages than
4168 * accounted for by the pages on the file LRU lists because
4169 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4170 */
4171 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4172 }
4173
4174 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4175 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4176 {
4177 unsigned long nr_pagecache_reclaimable;
4178 unsigned long delta = 0;
4179
4180 /*
4181 * If RECLAIM_UNMAP is set, then all file pages are considered
4182 * potentially reclaimable. Otherwise, we have to worry about
4183 * pages like swapcache and node_unmapped_file_pages() provides
4184 * a better estimate
4185 */
4186 if (node_reclaim_mode & RECLAIM_UNMAP)
4187 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4188 else
4189 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4190
4191 /* If we can't clean pages, remove dirty pages from consideration */
4192 if (!(node_reclaim_mode & RECLAIM_WRITE))
4193 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4194
4195 /* Watch for any possible underflows due to delta */
4196 if (unlikely(delta > nr_pagecache_reclaimable))
4197 delta = nr_pagecache_reclaimable;
4198
4199 return nr_pagecache_reclaimable - delta;
4200 }
4201
4202 /*
4203 * Try to free up some pages from this node through reclaim.
4204 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4205 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4206 {
4207 /* Minimum pages needed in order to stay on node */
4208 const unsigned long nr_pages = 1 << order;
4209 struct task_struct *p = current;
4210 unsigned int noreclaim_flag;
4211 struct scan_control sc = {
4212 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4213 .gfp_mask = current_gfp_context(gfp_mask),
4214 .order = order,
4215 .priority = NODE_RECLAIM_PRIORITY,
4216 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4217 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4218 .may_swap = 1,
4219 .reclaim_idx = gfp_zone(gfp_mask),
4220 };
4221 unsigned long pflags;
4222
4223 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4224 sc.gfp_mask);
4225
4226 cond_resched();
4227 psi_memstall_enter(&pflags);
4228 fs_reclaim_acquire(sc.gfp_mask);
4229 /*
4230 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4231 * and we also need to be able to write out pages for RECLAIM_WRITE
4232 * and RECLAIM_UNMAP.
4233 */
4234 noreclaim_flag = memalloc_noreclaim_save();
4235 p->flags |= PF_SWAPWRITE;
4236 set_task_reclaim_state(p, &sc.reclaim_state);
4237
4238 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4239 /*
4240 * Free memory by calling shrink node with increasing
4241 * priorities until we have enough memory freed.
4242 */
4243 do {
4244 #ifdef CONFIG_HYPERHOLD_FILE_LRU
4245 shrink_node_hyperhold(pgdat, &sc);
4246 #else
4247 shrink_node(pgdat, &sc);
4248 #endif
4249 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4250 }
4251
4252 set_task_reclaim_state(p, NULL);
4253 current->flags &= ~PF_SWAPWRITE;
4254 memalloc_noreclaim_restore(noreclaim_flag);
4255 fs_reclaim_release(sc.gfp_mask);
4256 psi_memstall_leave(&pflags);
4257
4258 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4259
4260 return sc.nr_reclaimed >= nr_pages;
4261 }
4262
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4263 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4264 {
4265 int ret;
4266
4267 /*
4268 * Node reclaim reclaims unmapped file backed pages and
4269 * slab pages if we are over the defined limits.
4270 *
4271 * A small portion of unmapped file backed pages is needed for
4272 * file I/O otherwise pages read by file I/O will be immediately
4273 * thrown out if the node is overallocated. So we do not reclaim
4274 * if less than a specified percentage of the node is used by
4275 * unmapped file backed pages.
4276 */
4277 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4278 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4279 pgdat->min_slab_pages)
4280 return NODE_RECLAIM_FULL;
4281
4282 /*
4283 * Do not scan if the allocation should not be delayed.
4284 */
4285 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4286 return NODE_RECLAIM_NOSCAN;
4287
4288 /*
4289 * Only run node reclaim on the local node or on nodes that do not
4290 * have associated processors. This will favor the local processor
4291 * over remote processors and spread off node memory allocations
4292 * as wide as possible.
4293 */
4294 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4295 return NODE_RECLAIM_NOSCAN;
4296
4297 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4298 return NODE_RECLAIM_NOSCAN;
4299
4300 ret = __node_reclaim(pgdat, gfp_mask, order);
4301 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4302
4303 if (!ret)
4304 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4305
4306 return ret;
4307 }
4308 #endif
4309
4310 /**
4311 * check_move_unevictable_pages - check pages for evictability and move to
4312 * appropriate zone lru list
4313 * @pvec: pagevec with lru pages to check
4314 *
4315 * Checks pages for evictability, if an evictable page is in the unevictable
4316 * lru list, moves it to the appropriate evictable lru list. This function
4317 * should be only used for lru pages.
4318 */
check_move_unevictable_pages(struct pagevec * pvec)4319 void check_move_unevictable_pages(struct pagevec *pvec)
4320 {
4321 struct lruvec *lruvec;
4322 struct pglist_data *pgdat = NULL;
4323 int pgscanned = 0;
4324 int pgrescued = 0;
4325 int i;
4326
4327 for (i = 0; i < pvec->nr; i++) {
4328 struct page *page = pvec->pages[i];
4329 struct pglist_data *pagepgdat = page_pgdat(page);
4330 int nr_pages;
4331
4332 if (PageTransTail(page))
4333 continue;
4334
4335 nr_pages = thp_nr_pages(page);
4336 pgscanned += nr_pages;
4337
4338 if (pagepgdat != pgdat) {
4339 if (pgdat)
4340 spin_unlock_irq(&pgdat->lru_lock);
4341 pgdat = pagepgdat;
4342 spin_lock_irq(&pgdat->lru_lock);
4343 }
4344 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4345
4346 if (!PageLRU(page) || !PageUnevictable(page))
4347 continue;
4348
4349 if (page_evictable(page)) {
4350 enum lru_list lru = page_lru_base_type(page);
4351
4352 VM_BUG_ON_PAGE(PageActive(page), page);
4353 ClearPageUnevictable(page);
4354 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4355 add_page_to_lru_list(page, lruvec, lru);
4356 pgrescued += nr_pages;
4357 }
4358 }
4359
4360 if (pgdat) {
4361 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4362 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4363 spin_unlock_irq(&pgdat->lru_lock);
4364 }
4365 }
4366 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4367
4368 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
purgeable_node(pg_data_t * pgdata,struct scan_control * sc)4369 static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc)
4370 {
4371 struct mem_cgroup *memcg = NULL;
4372 unsigned long nr = 0;
4373 #ifdef CONFIG_MEMCG
4374 while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)))
4375 #endif
4376 {
4377 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata);
4378
4379 shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc);
4380 nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc);
4381 }
4382
4383 pr_info("reclaim %lu purgeable pages.\n", nr);
4384
4385 return nr;
4386 }
4387
purgeable(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4388 static int purgeable(struct ctl_table *table, int write, void *buffer,
4389 size_t *lenp, loff_t *ppos)
4390 {
4391 struct scan_control sc = {
4392 .gfp_mask = GFP_KERNEL,
4393 .order = 0,
4394 .priority = DEF_PRIORITY,
4395 .may_deactivate = DEACTIVATE_ANON,
4396 .may_writepage = 1,
4397 .may_unmap = 1,
4398 .may_swap = 1,
4399 .reclaim_idx = MAX_NR_ZONES - 1,
4400 };
4401 int nid = 0;
4402 const struct cred *cred = current_cred();
4403 if (!cred)
4404 return 0;
4405
4406 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
4407 !uid_eq(cred->euid, GLOBAL_ROOT_UID)) {
4408 pr_err("no permission to shrink purgeable heap!\n");
4409 return -EINVAL;
4410 }
4411 for_each_node_state(nid, N_MEMORY)
4412 purgeable_node(NODE_DATA(nid), &sc);
4413 return 0;
4414 }
4415
4416 static struct ctl_table ker_tab[] = {
4417 {
4418 .procname = "purgeable",
4419 .mode = 0666,
4420 .proc_handler = purgeable,
4421 },
4422 {},
4423 };
4424
4425 static struct ctl_table sys_tab[] = {
4426 {
4427 .procname = "kernel",
4428 .mode = 0555,
4429 .child = ker_tab,
4430 },
4431 {},
4432 };
4433
4434 static struct ctl_table_header *purgeable_header;
4435
purgeable_debugfs_init(void)4436 static void __init purgeable_debugfs_init(void)
4437 {
4438 purgeable_header = register_sysctl_table(sys_tab);
4439 if (!purgeable_header)
4440 pr_err("register purgeable sysctl table failed.\n");
4441 }
4442
purgeable_debugfs_exit(void)4443 static void __exit purgeable_debugfs_exit(void)
4444 {
4445 unregister_sysctl_table(purgeable_header);
4446 }
4447 #endif /* CONFIG_MEM_PURGEABLE_DEBUG */
4448