1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252
253 skb_set_kcov_handle(skb, kcov_common_handle());
254
255 out:
256 return skb;
257 nodata:
258 kmem_cache_free(cache, skb);
259 skb = NULL;
260 goto out;
261 }
262 EXPORT_SYMBOL(__alloc_skb);
263
264 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)265 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
266 void *data, unsigned int frag_size)
267 {
268 struct skb_shared_info *shinfo;
269 unsigned int size = frag_size ? : ksize(data);
270
271 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
272
273 /* Assumes caller memset cleared SKB */
274 skb->truesize = SKB_TRUESIZE(size);
275 refcount_set(&skb->users, 1);
276 skb->head = data;
277 skb->data = data;
278 skb_reset_tail_pointer(skb);
279 skb->end = skb->tail + size;
280 skb->mac_header = (typeof(skb->mac_header))~0U;
281 skb->transport_header = (typeof(skb->transport_header))~0U;
282
283 /* make sure we initialize shinfo sequentially */
284 shinfo = skb_shinfo(skb);
285 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
286 atomic_set(&shinfo->dataref, 1);
287
288 skb_set_kcov_handle(skb, kcov_common_handle());
289
290 return skb;
291 }
292
293 /**
294 * __build_skb - build a network buffer
295 * @data: data buffer provided by caller
296 * @frag_size: size of data, or 0 if head was kmalloced
297 *
298 * Allocate a new &sk_buff. Caller provides space holding head and
299 * skb_shared_info. @data must have been allocated by kmalloc() only if
300 * @frag_size is 0, otherwise data should come from the page allocator
301 * or vmalloc()
302 * The return is the new skb buffer.
303 * On a failure the return is %NULL, and @data is not freed.
304 * Notes :
305 * Before IO, driver allocates only data buffer where NIC put incoming frame
306 * Driver should add room at head (NET_SKB_PAD) and
307 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
308 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
309 * before giving packet to stack.
310 * RX rings only contains data buffers, not full skbs.
311 */
__build_skb(void * data,unsigned int frag_size)312 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
313 {
314 struct sk_buff *skb;
315
316 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
317 if (unlikely(!skb))
318 return NULL;
319
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321
322 return __build_skb_around(skb, data, frag_size);
323 }
324
325 /* build_skb() is wrapper over __build_skb(), that specifically
326 * takes care of skb->head and skb->pfmemalloc
327 * This means that if @frag_size is not zero, then @data must be backed
328 * by a page fragment, not kmalloc() or vmalloc()
329 */
build_skb(void * data,unsigned int frag_size)330 struct sk_buff *build_skb(void *data, unsigned int frag_size)
331 {
332 struct sk_buff *skb = __build_skb(data, frag_size);
333
334 if (skb && frag_size) {
335 skb->head_frag = 1;
336 if (page_is_pfmemalloc(virt_to_head_page(data)))
337 skb->pfmemalloc = 1;
338 }
339 return skb;
340 }
341 EXPORT_SYMBOL(build_skb);
342
343 /**
344 * build_skb_around - build a network buffer around provided skb
345 * @skb: sk_buff provide by caller, must be memset cleared
346 * @data: data buffer provided by caller
347 * @frag_size: size of data, or 0 if head was kmalloced
348 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)349 struct sk_buff *build_skb_around(struct sk_buff *skb,
350 void *data, unsigned int frag_size)
351 {
352 if (unlikely(!skb))
353 return NULL;
354
355 skb = __build_skb_around(skb, data, frag_size);
356
357 if (skb && frag_size) {
358 skb->head_frag = 1;
359 if (page_is_pfmemalloc(virt_to_head_page(data)))
360 skb->pfmemalloc = 1;
361 }
362 return skb;
363 }
364 EXPORT_SYMBOL(build_skb_around);
365
366 #define NAPI_SKB_CACHE_SIZE 64
367
368 struct napi_alloc_cache {
369 struct page_frag_cache page;
370 unsigned int skb_count;
371 void *skb_cache[NAPI_SKB_CACHE_SIZE];
372 };
373
374 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
375 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
376
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)377 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
378 {
379 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
380
381 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
382 }
383
napi_alloc_frag(unsigned int fragsz)384 void *napi_alloc_frag(unsigned int fragsz)
385 {
386 fragsz = SKB_DATA_ALIGN(fragsz);
387
388 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
389 }
390 EXPORT_SYMBOL(napi_alloc_frag);
391
392 /**
393 * netdev_alloc_frag - allocate a page fragment
394 * @fragsz: fragment size
395 *
396 * Allocates a frag from a page for receive buffer.
397 * Uses GFP_ATOMIC allocations.
398 */
netdev_alloc_frag(unsigned int fragsz)399 void *netdev_alloc_frag(unsigned int fragsz)
400 {
401 struct page_frag_cache *nc;
402 void *data;
403
404 fragsz = SKB_DATA_ALIGN(fragsz);
405 if (in_irq() || irqs_disabled()) {
406 nc = this_cpu_ptr(&netdev_alloc_cache);
407 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
408 } else {
409 local_bh_disable();
410 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
411 local_bh_enable();
412 }
413 return data;
414 }
415 EXPORT_SYMBOL(netdev_alloc_frag);
416
417 /**
418 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
419 * @dev: network device to receive on
420 * @len: length to allocate
421 * @gfp_mask: get_free_pages mask, passed to alloc_skb
422 *
423 * Allocate a new &sk_buff and assign it a usage count of one. The
424 * buffer has NET_SKB_PAD headroom built in. Users should allocate
425 * the headroom they think they need without accounting for the
426 * built in space. The built in space is used for optimisations.
427 *
428 * %NULL is returned if there is no free memory.
429 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)430 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
431 gfp_t gfp_mask)
432 {
433 struct page_frag_cache *nc;
434 struct sk_buff *skb;
435 bool pfmemalloc;
436 void *data;
437
438 len += NET_SKB_PAD;
439
440 /* If requested length is either too small or too big,
441 * we use kmalloc() for skb->head allocation.
442 */
443 if (len <= SKB_WITH_OVERHEAD(1024) ||
444 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
445 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
446 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
447 if (!skb)
448 goto skb_fail;
449 goto skb_success;
450 }
451
452 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
453 len = SKB_DATA_ALIGN(len);
454
455 if (sk_memalloc_socks())
456 gfp_mask |= __GFP_MEMALLOC;
457
458 if (in_irq() || irqs_disabled()) {
459 nc = this_cpu_ptr(&netdev_alloc_cache);
460 data = page_frag_alloc(nc, len, gfp_mask);
461 pfmemalloc = nc->pfmemalloc;
462 } else {
463 local_bh_disable();
464 nc = this_cpu_ptr(&napi_alloc_cache.page);
465 data = page_frag_alloc(nc, len, gfp_mask);
466 pfmemalloc = nc->pfmemalloc;
467 local_bh_enable();
468 }
469
470 if (unlikely(!data))
471 return NULL;
472
473 skb = __build_skb(data, len);
474 if (unlikely(!skb)) {
475 skb_free_frag(data);
476 return NULL;
477 }
478
479 if (pfmemalloc)
480 skb->pfmemalloc = 1;
481 skb->head_frag = 1;
482
483 skb_success:
484 skb_reserve(skb, NET_SKB_PAD);
485 skb->dev = dev;
486
487 skb_fail:
488 return skb;
489 }
490 EXPORT_SYMBOL(__netdev_alloc_skb);
491
492 /**
493 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
494 * @napi: napi instance this buffer was allocated for
495 * @len: length to allocate
496 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
497 *
498 * Allocate a new sk_buff for use in NAPI receive. This buffer will
499 * attempt to allocate the head from a special reserved region used
500 * only for NAPI Rx allocation. By doing this we can save several
501 * CPU cycles by avoiding having to disable and re-enable IRQs.
502 *
503 * %NULL is returned if there is no free memory.
504 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)505 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
506 gfp_t gfp_mask)
507 {
508 struct napi_alloc_cache *nc;
509 struct sk_buff *skb;
510 void *data;
511
512 len += NET_SKB_PAD + NET_IP_ALIGN;
513
514 /* If requested length is either too small or too big,
515 * we use kmalloc() for skb->head allocation.
516 */
517 if (len <= SKB_WITH_OVERHEAD(1024) ||
518 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
519 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
520 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
521 if (!skb)
522 goto skb_fail;
523 goto skb_success;
524 }
525
526 nc = this_cpu_ptr(&napi_alloc_cache);
527 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
528 len = SKB_DATA_ALIGN(len);
529
530 if (sk_memalloc_socks())
531 gfp_mask |= __GFP_MEMALLOC;
532
533 data = page_frag_alloc(&nc->page, len, gfp_mask);
534 if (unlikely(!data))
535 return NULL;
536
537 skb = __build_skb(data, len);
538 if (unlikely(!skb)) {
539 skb_free_frag(data);
540 return NULL;
541 }
542
543 if (nc->page.pfmemalloc)
544 skb->pfmemalloc = 1;
545 skb->head_frag = 1;
546
547 skb_success:
548 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
549 skb->dev = napi->dev;
550
551 skb_fail:
552 return skb;
553 }
554 EXPORT_SYMBOL(__napi_alloc_skb);
555
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)556 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
557 int size, unsigned int truesize)
558 {
559 skb_fill_page_desc(skb, i, page, off, size);
560 skb->len += size;
561 skb->data_len += size;
562 skb->truesize += truesize;
563 }
564 EXPORT_SYMBOL(skb_add_rx_frag);
565
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)566 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
567 unsigned int truesize)
568 {
569 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
570
571 skb_frag_size_add(frag, size);
572 skb->len += size;
573 skb->data_len += size;
574 skb->truesize += truesize;
575 }
576 EXPORT_SYMBOL(skb_coalesce_rx_frag);
577
skb_drop_list(struct sk_buff ** listp)578 static void skb_drop_list(struct sk_buff **listp)
579 {
580 kfree_skb_list(*listp);
581 *listp = NULL;
582 }
583
skb_drop_fraglist(struct sk_buff * skb)584 static inline void skb_drop_fraglist(struct sk_buff *skb)
585 {
586 skb_drop_list(&skb_shinfo(skb)->frag_list);
587 }
588
skb_clone_fraglist(struct sk_buff * skb)589 static void skb_clone_fraglist(struct sk_buff *skb)
590 {
591 struct sk_buff *list;
592
593 skb_walk_frags(skb, list)
594 skb_get(list);
595 }
596
skb_free_head(struct sk_buff * skb)597 static void skb_free_head(struct sk_buff *skb)
598 {
599 unsigned char *head = skb->head;
600
601 if (skb->head_frag)
602 skb_free_frag(head);
603 else
604 kfree(head);
605 }
606
skb_release_data(struct sk_buff * skb)607 static void skb_release_data(struct sk_buff *skb)
608 {
609 struct skb_shared_info *shinfo = skb_shinfo(skb);
610 int i;
611
612 if (skb->cloned &&
613 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
614 &shinfo->dataref))
615 return;
616
617 for (i = 0; i < shinfo->nr_frags; i++)
618 __skb_frag_unref(&shinfo->frags[i]);
619
620 if (shinfo->frag_list)
621 kfree_skb_list(shinfo->frag_list);
622
623 skb_zcopy_clear(skb, true);
624 skb_free_head(skb);
625 }
626
627 /*
628 * Free an skbuff by memory without cleaning the state.
629 */
kfree_skbmem(struct sk_buff * skb)630 static void kfree_skbmem(struct sk_buff *skb)
631 {
632 struct sk_buff_fclones *fclones;
633
634 switch (skb->fclone) {
635 case SKB_FCLONE_UNAVAILABLE:
636 kmem_cache_free(skbuff_head_cache, skb);
637 return;
638
639 case SKB_FCLONE_ORIG:
640 fclones = container_of(skb, struct sk_buff_fclones, skb1);
641
642 /* We usually free the clone (TX completion) before original skb
643 * This test would have no chance to be true for the clone,
644 * while here, branch prediction will be good.
645 */
646 if (refcount_read(&fclones->fclone_ref) == 1)
647 goto fastpath;
648 break;
649
650 default: /* SKB_FCLONE_CLONE */
651 fclones = container_of(skb, struct sk_buff_fclones, skb2);
652 break;
653 }
654 if (!refcount_dec_and_test(&fclones->fclone_ref))
655 return;
656 fastpath:
657 kmem_cache_free(skbuff_fclone_cache, fclones);
658 }
659
skb_release_head_state(struct sk_buff * skb)660 void skb_release_head_state(struct sk_buff *skb)
661 {
662 skb_dst_drop(skb);
663 if (skb->destructor) {
664 WARN_ON(in_irq());
665 skb->destructor(skb);
666 }
667 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
668 nf_conntrack_put(skb_nfct(skb));
669 #endif
670 skb_ext_put(skb);
671 }
672
673 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)674 static void skb_release_all(struct sk_buff *skb)
675 {
676 skb_release_head_state(skb);
677 if (likely(skb->head))
678 skb_release_data(skb);
679 }
680
681 /**
682 * __kfree_skb - private function
683 * @skb: buffer
684 *
685 * Free an sk_buff. Release anything attached to the buffer.
686 * Clean the state. This is an internal helper function. Users should
687 * always call kfree_skb
688 */
689
__kfree_skb(struct sk_buff * skb)690 void __kfree_skb(struct sk_buff *skb)
691 {
692 skb_release_all(skb);
693 kfree_skbmem(skb);
694 }
695 EXPORT_SYMBOL(__kfree_skb);
696
697 /**
698 * kfree_skb - free an sk_buff
699 * @skb: buffer to free
700 *
701 * Drop a reference to the buffer and free it if the usage count has
702 * hit zero.
703 */
kfree_skb(struct sk_buff * skb)704 void kfree_skb(struct sk_buff *skb)
705 {
706 if (!skb_unref(skb))
707 return;
708
709 trace_kfree_skb(skb, __builtin_return_address(0));
710 __kfree_skb(skb);
711 }
712 EXPORT_SYMBOL(kfree_skb);
713
kfree_skb_list(struct sk_buff * segs)714 void kfree_skb_list(struct sk_buff *segs)
715 {
716 while (segs) {
717 struct sk_buff *next = segs->next;
718
719 kfree_skb(segs);
720 segs = next;
721 }
722 }
723 EXPORT_SYMBOL(kfree_skb_list);
724
725 /* Dump skb information and contents.
726 *
727 * Must only be called from net_ratelimit()-ed paths.
728 *
729 * Dumps whole packets if full_pkt, only headers otherwise.
730 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)731 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
732 {
733 struct skb_shared_info *sh = skb_shinfo(skb);
734 struct net_device *dev = skb->dev;
735 struct sock *sk = skb->sk;
736 struct sk_buff *list_skb;
737 bool has_mac, has_trans;
738 int headroom, tailroom;
739 int i, len, seg_len;
740
741 if (full_pkt)
742 len = skb->len;
743 else
744 len = min_t(int, skb->len, MAX_HEADER + 128);
745
746 headroom = skb_headroom(skb);
747 tailroom = skb_tailroom(skb);
748
749 has_mac = skb_mac_header_was_set(skb);
750 has_trans = skb_transport_header_was_set(skb);
751
752 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
753 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
754 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
755 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
756 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
757 level, skb->len, headroom, skb_headlen(skb), tailroom,
758 has_mac ? skb->mac_header : -1,
759 has_mac ? skb_mac_header_len(skb) : -1,
760 skb->network_header,
761 has_trans ? skb_network_header_len(skb) : -1,
762 has_trans ? skb->transport_header : -1,
763 sh->tx_flags, sh->nr_frags,
764 sh->gso_size, sh->gso_type, sh->gso_segs,
765 skb->csum, skb->ip_summed, skb->csum_complete_sw,
766 skb->csum_valid, skb->csum_level,
767 skb->hash, skb->sw_hash, skb->l4_hash,
768 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
769
770 if (dev)
771 printk("%sdev name=%s feat=%pNF\n",
772 level, dev->name, &dev->features);
773 if (sk)
774 printk("%ssk family=%hu type=%u proto=%u\n",
775 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
776
777 if (full_pkt && headroom)
778 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
779 16, 1, skb->head, headroom, false);
780
781 seg_len = min_t(int, skb_headlen(skb), len);
782 if (seg_len)
783 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
784 16, 1, skb->data, seg_len, false);
785 len -= seg_len;
786
787 if (full_pkt && tailroom)
788 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
789 16, 1, skb_tail_pointer(skb), tailroom, false);
790
791 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
792 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
793 u32 p_off, p_len, copied;
794 struct page *p;
795 u8 *vaddr;
796
797 skb_frag_foreach_page(frag, skb_frag_off(frag),
798 skb_frag_size(frag), p, p_off, p_len,
799 copied) {
800 seg_len = min_t(int, p_len, len);
801 vaddr = kmap_atomic(p);
802 print_hex_dump(level, "skb frag: ",
803 DUMP_PREFIX_OFFSET,
804 16, 1, vaddr + p_off, seg_len, false);
805 kunmap_atomic(vaddr);
806 len -= seg_len;
807 if (!len)
808 break;
809 }
810 }
811
812 if (full_pkt && skb_has_frag_list(skb)) {
813 printk("skb fraglist:\n");
814 skb_walk_frags(skb, list_skb)
815 skb_dump(level, list_skb, true);
816 }
817 }
818 EXPORT_SYMBOL(skb_dump);
819
820 /**
821 * skb_tx_error - report an sk_buff xmit error
822 * @skb: buffer that triggered an error
823 *
824 * Report xmit error if a device callback is tracking this skb.
825 * skb must be freed afterwards.
826 */
skb_tx_error(struct sk_buff * skb)827 void skb_tx_error(struct sk_buff *skb)
828 {
829 skb_zcopy_clear(skb, true);
830 }
831 EXPORT_SYMBOL(skb_tx_error);
832
833 #ifdef CONFIG_TRACEPOINTS
834 /**
835 * consume_skb - free an skbuff
836 * @skb: buffer to free
837 *
838 * Drop a ref to the buffer and free it if the usage count has hit zero
839 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
840 * is being dropped after a failure and notes that
841 */
consume_skb(struct sk_buff * skb)842 void consume_skb(struct sk_buff *skb)
843 {
844 if (!skb_unref(skb))
845 return;
846
847 trace_consume_skb(skb);
848 __kfree_skb(skb);
849 }
850 EXPORT_SYMBOL(consume_skb);
851 #endif
852
853 /**
854 * consume_stateless_skb - free an skbuff, assuming it is stateless
855 * @skb: buffer to free
856 *
857 * Alike consume_skb(), but this variant assumes that this is the last
858 * skb reference and all the head states have been already dropped
859 */
__consume_stateless_skb(struct sk_buff * skb)860 void __consume_stateless_skb(struct sk_buff *skb)
861 {
862 trace_consume_skb(skb);
863 skb_release_data(skb);
864 kfree_skbmem(skb);
865 }
866
__kfree_skb_flush(void)867 void __kfree_skb_flush(void)
868 {
869 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
870
871 /* flush skb_cache if containing objects */
872 if (nc->skb_count) {
873 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
874 nc->skb_cache);
875 nc->skb_count = 0;
876 }
877 }
878
_kfree_skb_defer(struct sk_buff * skb)879 static inline void _kfree_skb_defer(struct sk_buff *skb)
880 {
881 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
882
883 /* drop skb->head and call any destructors for packet */
884 skb_release_all(skb);
885
886 /* record skb to CPU local list */
887 nc->skb_cache[nc->skb_count++] = skb;
888
889 #ifdef CONFIG_SLUB
890 /* SLUB writes into objects when freeing */
891 prefetchw(skb);
892 #endif
893
894 /* flush skb_cache if it is filled */
895 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
896 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
897 nc->skb_cache);
898 nc->skb_count = 0;
899 }
900 }
__kfree_skb_defer(struct sk_buff * skb)901 void __kfree_skb_defer(struct sk_buff *skb)
902 {
903 _kfree_skb_defer(skb);
904 }
905
napi_consume_skb(struct sk_buff * skb,int budget)906 void napi_consume_skb(struct sk_buff *skb, int budget)
907 {
908 /* Zero budget indicate non-NAPI context called us, like netpoll */
909 if (unlikely(!budget)) {
910 dev_consume_skb_any(skb);
911 return;
912 }
913
914 if (!skb_unref(skb))
915 return;
916
917 /* if reaching here SKB is ready to free */
918 trace_consume_skb(skb);
919
920 /* if SKB is a clone, don't handle this case */
921 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
922 __kfree_skb(skb);
923 return;
924 }
925
926 _kfree_skb_defer(skb);
927 }
928 EXPORT_SYMBOL(napi_consume_skb);
929
930 /* Make sure a field is enclosed inside headers_start/headers_end section */
931 #define CHECK_SKB_FIELD(field) \
932 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
933 offsetof(struct sk_buff, headers_start)); \
934 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
935 offsetof(struct sk_buff, headers_end)); \
936
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)937 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
938 {
939 new->tstamp = old->tstamp;
940 /* We do not copy old->sk */
941 new->dev = old->dev;
942 memcpy(new->cb, old->cb, sizeof(old->cb));
943 skb_dst_copy(new, old);
944 __skb_ext_copy(new, old);
945 __nf_copy(new, old, false);
946
947 /* Note : this field could be in headers_start/headers_end section
948 * It is not yet because we do not want to have a 16 bit hole
949 */
950 new->queue_mapping = old->queue_mapping;
951
952 memcpy(&new->headers_start, &old->headers_start,
953 offsetof(struct sk_buff, headers_end) -
954 offsetof(struct sk_buff, headers_start));
955 CHECK_SKB_FIELD(protocol);
956 CHECK_SKB_FIELD(csum);
957 CHECK_SKB_FIELD(hash);
958 CHECK_SKB_FIELD(priority);
959 CHECK_SKB_FIELD(skb_iif);
960 CHECK_SKB_FIELD(vlan_proto);
961 CHECK_SKB_FIELD(vlan_tci);
962 CHECK_SKB_FIELD(transport_header);
963 CHECK_SKB_FIELD(network_header);
964 CHECK_SKB_FIELD(mac_header);
965 CHECK_SKB_FIELD(inner_protocol);
966 CHECK_SKB_FIELD(inner_transport_header);
967 CHECK_SKB_FIELD(inner_network_header);
968 CHECK_SKB_FIELD(inner_mac_header);
969 CHECK_SKB_FIELD(mark);
970 #ifdef CONFIG_NETWORK_SECMARK
971 CHECK_SKB_FIELD(secmark);
972 #endif
973 #ifdef CONFIG_NET_RX_BUSY_POLL
974 CHECK_SKB_FIELD(napi_id);
975 #endif
976 #ifdef CONFIG_XPS
977 CHECK_SKB_FIELD(sender_cpu);
978 #endif
979 #ifdef CONFIG_NET_SCHED
980 CHECK_SKB_FIELD(tc_index);
981 #endif
982
983 }
984
985 /*
986 * You should not add any new code to this function. Add it to
987 * __copy_skb_header above instead.
988 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)989 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
990 {
991 #define C(x) n->x = skb->x
992
993 n->next = n->prev = NULL;
994 n->sk = NULL;
995 __copy_skb_header(n, skb);
996
997 C(len);
998 C(data_len);
999 C(mac_len);
1000 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1001 n->cloned = 1;
1002 n->nohdr = 0;
1003 n->peeked = 0;
1004 C(pfmemalloc);
1005 n->destructor = NULL;
1006 C(tail);
1007 C(end);
1008 C(head);
1009 C(head_frag);
1010 C(data);
1011 C(truesize);
1012 refcount_set(&n->users, 1);
1013
1014 atomic_inc(&(skb_shinfo(skb)->dataref));
1015 skb->cloned = 1;
1016
1017 return n;
1018 #undef C
1019 }
1020
1021 /**
1022 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1023 * @first: first sk_buff of the msg
1024 */
alloc_skb_for_msg(struct sk_buff * first)1025 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1026 {
1027 struct sk_buff *n;
1028
1029 n = alloc_skb(0, GFP_ATOMIC);
1030 if (!n)
1031 return NULL;
1032
1033 n->len = first->len;
1034 n->data_len = first->len;
1035 n->truesize = first->truesize;
1036
1037 skb_shinfo(n)->frag_list = first;
1038
1039 __copy_skb_header(n, first);
1040 n->destructor = NULL;
1041
1042 return n;
1043 }
1044 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1045
1046 /**
1047 * skb_morph - morph one skb into another
1048 * @dst: the skb to receive the contents
1049 * @src: the skb to supply the contents
1050 *
1051 * This is identical to skb_clone except that the target skb is
1052 * supplied by the user.
1053 *
1054 * The target skb is returned upon exit.
1055 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1056 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1057 {
1058 skb_release_all(dst);
1059 return __skb_clone(dst, src);
1060 }
1061 EXPORT_SYMBOL_GPL(skb_morph);
1062
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1063 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1064 {
1065 unsigned long max_pg, num_pg, new_pg, old_pg;
1066 struct user_struct *user;
1067
1068 if (capable(CAP_IPC_LOCK) || !size)
1069 return 0;
1070
1071 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1072 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1073 user = mmp->user ? : current_user();
1074
1075 do {
1076 old_pg = atomic_long_read(&user->locked_vm);
1077 new_pg = old_pg + num_pg;
1078 if (new_pg > max_pg)
1079 return -ENOBUFS;
1080 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1081 old_pg);
1082
1083 if (!mmp->user) {
1084 mmp->user = get_uid(user);
1085 mmp->num_pg = num_pg;
1086 } else {
1087 mmp->num_pg += num_pg;
1088 }
1089
1090 return 0;
1091 }
1092 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1093
mm_unaccount_pinned_pages(struct mmpin * mmp)1094 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1095 {
1096 if (mmp->user) {
1097 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1098 free_uid(mmp->user);
1099 }
1100 }
1101 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1102
sock_zerocopy_alloc(struct sock * sk,size_t size)1103 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1104 {
1105 struct ubuf_info *uarg;
1106 struct sk_buff *skb;
1107
1108 WARN_ON_ONCE(!in_task());
1109
1110 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1111 if (!skb)
1112 return NULL;
1113
1114 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1115 uarg = (void *)skb->cb;
1116 uarg->mmp.user = NULL;
1117
1118 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1119 kfree_skb(skb);
1120 return NULL;
1121 }
1122
1123 uarg->callback = sock_zerocopy_callback;
1124 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1125 uarg->len = 1;
1126 uarg->bytelen = size;
1127 uarg->zerocopy = 1;
1128 refcount_set(&uarg->refcnt, 1);
1129 sock_hold(sk);
1130
1131 return uarg;
1132 }
1133 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1134
skb_from_uarg(struct ubuf_info * uarg)1135 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1136 {
1137 return container_of((void *)uarg, struct sk_buff, cb);
1138 }
1139
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1140 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1141 struct ubuf_info *uarg)
1142 {
1143 if (uarg) {
1144 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1145 u32 bytelen, next;
1146
1147 /* realloc only when socket is locked (TCP, UDP cork),
1148 * so uarg->len and sk_zckey access is serialized
1149 */
1150 if (!sock_owned_by_user(sk)) {
1151 WARN_ON_ONCE(1);
1152 return NULL;
1153 }
1154
1155 bytelen = uarg->bytelen + size;
1156 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1157 /* TCP can create new skb to attach new uarg */
1158 if (sk->sk_type == SOCK_STREAM)
1159 goto new_alloc;
1160 return NULL;
1161 }
1162
1163 next = (u32)atomic_read(&sk->sk_zckey);
1164 if ((u32)(uarg->id + uarg->len) == next) {
1165 if (mm_account_pinned_pages(&uarg->mmp, size))
1166 return NULL;
1167 uarg->len++;
1168 uarg->bytelen = bytelen;
1169 atomic_set(&sk->sk_zckey, ++next);
1170
1171 /* no extra ref when appending to datagram (MSG_MORE) */
1172 if (sk->sk_type == SOCK_STREAM)
1173 sock_zerocopy_get(uarg);
1174
1175 return uarg;
1176 }
1177 }
1178
1179 new_alloc:
1180 return sock_zerocopy_alloc(sk, size);
1181 }
1182 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1183
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1184 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1185 {
1186 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1187 u32 old_lo, old_hi;
1188 u64 sum_len;
1189
1190 old_lo = serr->ee.ee_info;
1191 old_hi = serr->ee.ee_data;
1192 sum_len = old_hi - old_lo + 1ULL + len;
1193
1194 if (sum_len >= (1ULL << 32))
1195 return false;
1196
1197 if (lo != old_hi + 1)
1198 return false;
1199
1200 serr->ee.ee_data += len;
1201 return true;
1202 }
1203
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1204 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1205 {
1206 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1207 struct sock_exterr_skb *serr;
1208 struct sock *sk = skb->sk;
1209 struct sk_buff_head *q;
1210 unsigned long flags;
1211 u32 lo, hi;
1212 u16 len;
1213
1214 mm_unaccount_pinned_pages(&uarg->mmp);
1215
1216 /* if !len, there was only 1 call, and it was aborted
1217 * so do not queue a completion notification
1218 */
1219 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1220 goto release;
1221
1222 len = uarg->len;
1223 lo = uarg->id;
1224 hi = uarg->id + len - 1;
1225
1226 serr = SKB_EXT_ERR(skb);
1227 memset(serr, 0, sizeof(*serr));
1228 serr->ee.ee_errno = 0;
1229 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1230 serr->ee.ee_data = hi;
1231 serr->ee.ee_info = lo;
1232 if (!success)
1233 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1234
1235 q = &sk->sk_error_queue;
1236 spin_lock_irqsave(&q->lock, flags);
1237 tail = skb_peek_tail(q);
1238 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1239 !skb_zerocopy_notify_extend(tail, lo, len)) {
1240 __skb_queue_tail(q, skb);
1241 skb = NULL;
1242 }
1243 spin_unlock_irqrestore(&q->lock, flags);
1244
1245 sk->sk_error_report(sk);
1246
1247 release:
1248 consume_skb(skb);
1249 sock_put(sk);
1250 }
1251 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1252
sock_zerocopy_put(struct ubuf_info * uarg)1253 void sock_zerocopy_put(struct ubuf_info *uarg)
1254 {
1255 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1256 if (uarg->callback)
1257 uarg->callback(uarg, uarg->zerocopy);
1258 else
1259 consume_skb(skb_from_uarg(uarg));
1260 }
1261 }
1262 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1263
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1264 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1265 {
1266 if (uarg) {
1267 struct sock *sk = skb_from_uarg(uarg)->sk;
1268
1269 atomic_dec(&sk->sk_zckey);
1270 uarg->len--;
1271
1272 if (have_uref)
1273 sock_zerocopy_put(uarg);
1274 }
1275 }
1276 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1277
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1278 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1279 {
1280 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1281 }
1282 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1283
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1284 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1285 struct msghdr *msg, int len,
1286 struct ubuf_info *uarg)
1287 {
1288 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1289 struct iov_iter orig_iter = msg->msg_iter;
1290 int err, orig_len = skb->len;
1291
1292 /* An skb can only point to one uarg. This edge case happens when
1293 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1294 */
1295 if (orig_uarg && uarg != orig_uarg)
1296 return -EEXIST;
1297
1298 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1299 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1300 struct sock *save_sk = skb->sk;
1301
1302 /* Streams do not free skb on error. Reset to prev state. */
1303 msg->msg_iter = orig_iter;
1304 skb->sk = sk;
1305 ___pskb_trim(skb, orig_len);
1306 skb->sk = save_sk;
1307 return err;
1308 }
1309
1310 skb_zcopy_set(skb, uarg, NULL);
1311 return skb->len - orig_len;
1312 }
1313 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1314
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1315 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1316 gfp_t gfp_mask)
1317 {
1318 if (skb_zcopy(orig)) {
1319 if (skb_zcopy(nskb)) {
1320 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1321 if (!gfp_mask) {
1322 WARN_ON_ONCE(1);
1323 return -ENOMEM;
1324 }
1325 if (skb_uarg(nskb) == skb_uarg(orig))
1326 return 0;
1327 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1328 return -EIO;
1329 }
1330 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1331 }
1332 return 0;
1333 }
1334
1335 /**
1336 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1337 * @skb: the skb to modify
1338 * @gfp_mask: allocation priority
1339 *
1340 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1341 * It will copy all frags into kernel and drop the reference
1342 * to userspace pages.
1343 *
1344 * If this function is called from an interrupt gfp_mask() must be
1345 * %GFP_ATOMIC.
1346 *
1347 * Returns 0 on success or a negative error code on failure
1348 * to allocate kernel memory to copy to.
1349 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1350 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1351 {
1352 int num_frags = skb_shinfo(skb)->nr_frags;
1353 struct page *page, *head = NULL;
1354 int i, new_frags;
1355 u32 d_off;
1356
1357 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1358 return -EINVAL;
1359
1360 if (!num_frags)
1361 goto release;
1362
1363 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1364 for (i = 0; i < new_frags; i++) {
1365 page = alloc_page(gfp_mask);
1366 if (!page) {
1367 while (head) {
1368 struct page *next = (struct page *)page_private(head);
1369 put_page(head);
1370 head = next;
1371 }
1372 return -ENOMEM;
1373 }
1374 set_page_private(page, (unsigned long)head);
1375 head = page;
1376 }
1377
1378 page = head;
1379 d_off = 0;
1380 for (i = 0; i < num_frags; i++) {
1381 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1382 u32 p_off, p_len, copied;
1383 struct page *p;
1384 u8 *vaddr;
1385
1386 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1387 p, p_off, p_len, copied) {
1388 u32 copy, done = 0;
1389 vaddr = kmap_atomic(p);
1390
1391 while (done < p_len) {
1392 if (d_off == PAGE_SIZE) {
1393 d_off = 0;
1394 page = (struct page *)page_private(page);
1395 }
1396 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1397 memcpy(page_address(page) + d_off,
1398 vaddr + p_off + done, copy);
1399 done += copy;
1400 d_off += copy;
1401 }
1402 kunmap_atomic(vaddr);
1403 }
1404 }
1405
1406 /* skb frags release userspace buffers */
1407 for (i = 0; i < num_frags; i++)
1408 skb_frag_unref(skb, i);
1409
1410 /* skb frags point to kernel buffers */
1411 for (i = 0; i < new_frags - 1; i++) {
1412 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1413 head = (struct page *)page_private(head);
1414 }
1415 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1416 skb_shinfo(skb)->nr_frags = new_frags;
1417
1418 release:
1419 skb_zcopy_clear(skb, false);
1420 return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1423
1424 /**
1425 * skb_clone - duplicate an sk_buff
1426 * @skb: buffer to clone
1427 * @gfp_mask: allocation priority
1428 *
1429 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1430 * copies share the same packet data but not structure. The new
1431 * buffer has a reference count of 1. If the allocation fails the
1432 * function returns %NULL otherwise the new buffer is returned.
1433 *
1434 * If this function is called from an interrupt gfp_mask() must be
1435 * %GFP_ATOMIC.
1436 */
1437
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1438 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1439 {
1440 struct sk_buff_fclones *fclones = container_of(skb,
1441 struct sk_buff_fclones,
1442 skb1);
1443 struct sk_buff *n;
1444
1445 if (skb_orphan_frags(skb, gfp_mask))
1446 return NULL;
1447
1448 if (skb->fclone == SKB_FCLONE_ORIG &&
1449 refcount_read(&fclones->fclone_ref) == 1) {
1450 n = &fclones->skb2;
1451 refcount_set(&fclones->fclone_ref, 2);
1452 } else {
1453 if (skb_pfmemalloc(skb))
1454 gfp_mask |= __GFP_MEMALLOC;
1455
1456 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1457 if (!n)
1458 return NULL;
1459
1460 n->fclone = SKB_FCLONE_UNAVAILABLE;
1461 }
1462
1463 return __skb_clone(n, skb);
1464 }
1465 EXPORT_SYMBOL(skb_clone);
1466
skb_headers_offset_update(struct sk_buff * skb,int off)1467 void skb_headers_offset_update(struct sk_buff *skb, int off)
1468 {
1469 /* Only adjust this if it actually is csum_start rather than csum */
1470 if (skb->ip_summed == CHECKSUM_PARTIAL)
1471 skb->csum_start += off;
1472 /* {transport,network,mac}_header and tail are relative to skb->head */
1473 skb->transport_header += off;
1474 skb->network_header += off;
1475 if (skb_mac_header_was_set(skb))
1476 skb->mac_header += off;
1477 skb->inner_transport_header += off;
1478 skb->inner_network_header += off;
1479 skb->inner_mac_header += off;
1480 }
1481 EXPORT_SYMBOL(skb_headers_offset_update);
1482
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1483 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1484 {
1485 __copy_skb_header(new, old);
1486
1487 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1488 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1489 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1490 }
1491 EXPORT_SYMBOL(skb_copy_header);
1492
skb_alloc_rx_flag(const struct sk_buff * skb)1493 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1494 {
1495 if (skb_pfmemalloc(skb))
1496 return SKB_ALLOC_RX;
1497 return 0;
1498 }
1499
1500 /**
1501 * skb_copy - create private copy of an sk_buff
1502 * @skb: buffer to copy
1503 * @gfp_mask: allocation priority
1504 *
1505 * Make a copy of both an &sk_buff and its data. This is used when the
1506 * caller wishes to modify the data and needs a private copy of the
1507 * data to alter. Returns %NULL on failure or the pointer to the buffer
1508 * on success. The returned buffer has a reference count of 1.
1509 *
1510 * As by-product this function converts non-linear &sk_buff to linear
1511 * one, so that &sk_buff becomes completely private and caller is allowed
1512 * to modify all the data of returned buffer. This means that this
1513 * function is not recommended for use in circumstances when only
1514 * header is going to be modified. Use pskb_copy() instead.
1515 */
1516
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1517 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1518 {
1519 struct sk_buff *n;
1520 unsigned int size;
1521 int headerlen;
1522
1523 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1524 return NULL;
1525
1526 headerlen = skb_headroom(skb);
1527 size = skb_end_offset(skb) + skb->data_len;
1528 n = __alloc_skb(size, gfp_mask,
1529 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1530 if (!n)
1531 return NULL;
1532
1533 /* Set the data pointer */
1534 skb_reserve(n, headerlen);
1535 /* Set the tail pointer and length */
1536 skb_put(n, skb->len);
1537
1538 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1539
1540 skb_copy_header(n, skb);
1541 return n;
1542 }
1543 EXPORT_SYMBOL(skb_copy);
1544
1545 /**
1546 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1547 * @skb: buffer to copy
1548 * @headroom: headroom of new skb
1549 * @gfp_mask: allocation priority
1550 * @fclone: if true allocate the copy of the skb from the fclone
1551 * cache instead of the head cache; it is recommended to set this
1552 * to true for the cases where the copy will likely be cloned
1553 *
1554 * Make a copy of both an &sk_buff and part of its data, located
1555 * in header. Fragmented data remain shared. This is used when
1556 * the caller wishes to modify only header of &sk_buff and needs
1557 * private copy of the header to alter. Returns %NULL on failure
1558 * or the pointer to the buffer on success.
1559 * The returned buffer has a reference count of 1.
1560 */
1561
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1562 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1563 gfp_t gfp_mask, bool fclone)
1564 {
1565 unsigned int size = skb_headlen(skb) + headroom;
1566 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1567 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1568
1569 if (!n)
1570 goto out;
1571
1572 /* Set the data pointer */
1573 skb_reserve(n, headroom);
1574 /* Set the tail pointer and length */
1575 skb_put(n, skb_headlen(skb));
1576 /* Copy the bytes */
1577 skb_copy_from_linear_data(skb, n->data, n->len);
1578
1579 n->truesize += skb->data_len;
1580 n->data_len = skb->data_len;
1581 n->len = skb->len;
1582
1583 if (skb_shinfo(skb)->nr_frags) {
1584 int i;
1585
1586 if (skb_orphan_frags(skb, gfp_mask) ||
1587 skb_zerocopy_clone(n, skb, gfp_mask)) {
1588 kfree_skb(n);
1589 n = NULL;
1590 goto out;
1591 }
1592 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1593 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1594 skb_frag_ref(skb, i);
1595 }
1596 skb_shinfo(n)->nr_frags = i;
1597 }
1598
1599 if (skb_has_frag_list(skb)) {
1600 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1601 skb_clone_fraglist(n);
1602 }
1603
1604 skb_copy_header(n, skb);
1605 out:
1606 return n;
1607 }
1608 EXPORT_SYMBOL(__pskb_copy_fclone);
1609
1610 /**
1611 * pskb_expand_head - reallocate header of &sk_buff
1612 * @skb: buffer to reallocate
1613 * @nhead: room to add at head
1614 * @ntail: room to add at tail
1615 * @gfp_mask: allocation priority
1616 *
1617 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1618 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1619 * reference count of 1. Returns zero in the case of success or error,
1620 * if expansion failed. In the last case, &sk_buff is not changed.
1621 *
1622 * All the pointers pointing into skb header may change and must be
1623 * reloaded after call to this function.
1624 */
1625
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1626 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1627 gfp_t gfp_mask)
1628 {
1629 int i, osize = skb_end_offset(skb);
1630 int size = osize + nhead + ntail;
1631 long off;
1632 u8 *data;
1633
1634 BUG_ON(nhead < 0);
1635
1636 BUG_ON(skb_shared(skb));
1637
1638 size = SKB_DATA_ALIGN(size);
1639
1640 if (skb_pfmemalloc(skb))
1641 gfp_mask |= __GFP_MEMALLOC;
1642 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1643 gfp_mask, NUMA_NO_NODE, NULL);
1644 if (!data)
1645 goto nodata;
1646 size = SKB_WITH_OVERHEAD(ksize(data));
1647
1648 /* Copy only real data... and, alas, header. This should be
1649 * optimized for the cases when header is void.
1650 */
1651 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1652
1653 memcpy((struct skb_shared_info *)(data + size),
1654 skb_shinfo(skb),
1655 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1656
1657 /*
1658 * if shinfo is shared we must drop the old head gracefully, but if it
1659 * is not we can just drop the old head and let the existing refcount
1660 * be since all we did is relocate the values
1661 */
1662 if (skb_cloned(skb)) {
1663 if (skb_orphan_frags(skb, gfp_mask))
1664 goto nofrags;
1665 if (skb_zcopy(skb))
1666 refcount_inc(&skb_uarg(skb)->refcnt);
1667 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1668 skb_frag_ref(skb, i);
1669
1670 if (skb_has_frag_list(skb))
1671 skb_clone_fraglist(skb);
1672
1673 skb_release_data(skb);
1674 } else {
1675 skb_free_head(skb);
1676 }
1677 off = (data + nhead) - skb->head;
1678
1679 skb->head = data;
1680 skb->head_frag = 0;
1681 skb->data += off;
1682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1683 skb->end = size;
1684 off = nhead;
1685 #else
1686 skb->end = skb->head + size;
1687 #endif
1688 skb->tail += off;
1689 skb_headers_offset_update(skb, nhead);
1690 skb->cloned = 0;
1691 skb->hdr_len = 0;
1692 skb->nohdr = 0;
1693 atomic_set(&skb_shinfo(skb)->dataref, 1);
1694
1695 skb_metadata_clear(skb);
1696
1697 /* It is not generally safe to change skb->truesize.
1698 * For the moment, we really care of rx path, or
1699 * when skb is orphaned (not attached to a socket).
1700 */
1701 if (!skb->sk || skb->destructor == sock_edemux)
1702 skb->truesize += size - osize;
1703
1704 return 0;
1705
1706 nofrags:
1707 kfree(data);
1708 nodata:
1709 return -ENOMEM;
1710 }
1711 EXPORT_SYMBOL(pskb_expand_head);
1712
1713 /* Make private copy of skb with writable head and some headroom */
1714
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1715 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1716 {
1717 struct sk_buff *skb2;
1718 int delta = headroom - skb_headroom(skb);
1719
1720 if (delta <= 0)
1721 skb2 = pskb_copy(skb, GFP_ATOMIC);
1722 else {
1723 skb2 = skb_clone(skb, GFP_ATOMIC);
1724 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1725 GFP_ATOMIC)) {
1726 kfree_skb(skb2);
1727 skb2 = NULL;
1728 }
1729 }
1730 return skb2;
1731 }
1732 EXPORT_SYMBOL(skb_realloc_headroom);
1733
1734 /**
1735 * skb_copy_expand - copy and expand sk_buff
1736 * @skb: buffer to copy
1737 * @newheadroom: new free bytes at head
1738 * @newtailroom: new free bytes at tail
1739 * @gfp_mask: allocation priority
1740 *
1741 * Make a copy of both an &sk_buff and its data and while doing so
1742 * allocate additional space.
1743 *
1744 * This is used when the caller wishes to modify the data and needs a
1745 * private copy of the data to alter as well as more space for new fields.
1746 * Returns %NULL on failure or the pointer to the buffer
1747 * on success. The returned buffer has a reference count of 1.
1748 *
1749 * You must pass %GFP_ATOMIC as the allocation priority if this function
1750 * is called from an interrupt.
1751 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1752 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1753 int newheadroom, int newtailroom,
1754 gfp_t gfp_mask)
1755 {
1756 /*
1757 * Allocate the copy buffer
1758 */
1759 int head_copy_len, head_copy_off;
1760 struct sk_buff *n;
1761 int oldheadroom;
1762
1763 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST))
1764 return NULL;
1765
1766 oldheadroom = skb_headroom(skb);
1767 n = __alloc_skb(newheadroom + skb->len + newtailroom,
1768 gfp_mask, skb_alloc_rx_flag(skb),
1769 NUMA_NO_NODE);
1770 if (!n)
1771 return NULL;
1772
1773 skb_reserve(n, newheadroom);
1774
1775 /* Set the tail pointer and length */
1776 skb_put(n, skb->len);
1777
1778 head_copy_len = oldheadroom;
1779 head_copy_off = 0;
1780 if (newheadroom <= head_copy_len)
1781 head_copy_len = newheadroom;
1782 else
1783 head_copy_off = newheadroom - head_copy_len;
1784
1785 /* Copy the linear header and data. */
1786 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1787 skb->len + head_copy_len));
1788
1789 skb_copy_header(n, skb);
1790
1791 skb_headers_offset_update(n, newheadroom - oldheadroom);
1792
1793 return n;
1794 }
1795 EXPORT_SYMBOL(skb_copy_expand);
1796
1797 /**
1798 * __skb_pad - zero pad the tail of an skb
1799 * @skb: buffer to pad
1800 * @pad: space to pad
1801 * @free_on_error: free buffer on error
1802 *
1803 * Ensure that a buffer is followed by a padding area that is zero
1804 * filled. Used by network drivers which may DMA or transfer data
1805 * beyond the buffer end onto the wire.
1806 *
1807 * May return error in out of memory cases. The skb is freed on error
1808 * if @free_on_error is true.
1809 */
1810
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1811 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1812 {
1813 int err;
1814 int ntail;
1815
1816 /* If the skbuff is non linear tailroom is always zero.. */
1817 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1818 memset(skb->data+skb->len, 0, pad);
1819 return 0;
1820 }
1821
1822 ntail = skb->data_len + pad - (skb->end - skb->tail);
1823 if (likely(skb_cloned(skb) || ntail > 0)) {
1824 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1825 if (unlikely(err))
1826 goto free_skb;
1827 }
1828
1829 /* FIXME: The use of this function with non-linear skb's really needs
1830 * to be audited.
1831 */
1832 err = skb_linearize(skb);
1833 if (unlikely(err))
1834 goto free_skb;
1835
1836 memset(skb->data + skb->len, 0, pad);
1837 return 0;
1838
1839 free_skb:
1840 if (free_on_error)
1841 kfree_skb(skb);
1842 return err;
1843 }
1844 EXPORT_SYMBOL(__skb_pad);
1845
1846 /**
1847 * pskb_put - add data to the tail of a potentially fragmented buffer
1848 * @skb: start of the buffer to use
1849 * @tail: tail fragment of the buffer to use
1850 * @len: amount of data to add
1851 *
1852 * This function extends the used data area of the potentially
1853 * fragmented buffer. @tail must be the last fragment of @skb -- or
1854 * @skb itself. If this would exceed the total buffer size the kernel
1855 * will panic. A pointer to the first byte of the extra data is
1856 * returned.
1857 */
1858
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1859 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1860 {
1861 if (tail != skb) {
1862 skb->data_len += len;
1863 skb->len += len;
1864 }
1865 return skb_put(tail, len);
1866 }
1867 EXPORT_SYMBOL_GPL(pskb_put);
1868
1869 /**
1870 * skb_put - add data to a buffer
1871 * @skb: buffer to use
1872 * @len: amount of data to add
1873 *
1874 * This function extends the used data area of the buffer. If this would
1875 * exceed the total buffer size the kernel will panic. A pointer to the
1876 * first byte of the extra data is returned.
1877 */
skb_put(struct sk_buff * skb,unsigned int len)1878 void *skb_put(struct sk_buff *skb, unsigned int len)
1879 {
1880 void *tmp = skb_tail_pointer(skb);
1881 SKB_LINEAR_ASSERT(skb);
1882 skb->tail += len;
1883 skb->len += len;
1884 if (unlikely(skb->tail > skb->end))
1885 skb_over_panic(skb, len, __builtin_return_address(0));
1886 return tmp;
1887 }
1888 EXPORT_SYMBOL(skb_put);
1889
1890 /**
1891 * skb_push - add data to the start of a buffer
1892 * @skb: buffer to use
1893 * @len: amount of data to add
1894 *
1895 * This function extends the used data area of the buffer at the buffer
1896 * start. If this would exceed the total buffer headroom the kernel will
1897 * panic. A pointer to the first byte of the extra data is returned.
1898 */
skb_push(struct sk_buff * skb,unsigned int len)1899 void *skb_push(struct sk_buff *skb, unsigned int len)
1900 {
1901 skb->data -= len;
1902 skb->len += len;
1903 if (unlikely(skb->data < skb->head))
1904 skb_under_panic(skb, len, __builtin_return_address(0));
1905 return skb->data;
1906 }
1907 EXPORT_SYMBOL(skb_push);
1908
1909 /**
1910 * skb_pull - remove data from the start of a buffer
1911 * @skb: buffer to use
1912 * @len: amount of data to remove
1913 *
1914 * This function removes data from the start of a buffer, returning
1915 * the memory to the headroom. A pointer to the next data in the buffer
1916 * is returned. Once the data has been pulled future pushes will overwrite
1917 * the old data.
1918 */
skb_pull(struct sk_buff * skb,unsigned int len)1919 void *skb_pull(struct sk_buff *skb, unsigned int len)
1920 {
1921 return skb_pull_inline(skb, len);
1922 }
1923 EXPORT_SYMBOL(skb_pull);
1924
1925 /**
1926 * skb_trim - remove end from a buffer
1927 * @skb: buffer to alter
1928 * @len: new length
1929 *
1930 * Cut the length of a buffer down by removing data from the tail. If
1931 * the buffer is already under the length specified it is not modified.
1932 * The skb must be linear.
1933 */
skb_trim(struct sk_buff * skb,unsigned int len)1934 void skb_trim(struct sk_buff *skb, unsigned int len)
1935 {
1936 if (skb->len > len)
1937 __skb_trim(skb, len);
1938 }
1939 EXPORT_SYMBOL(skb_trim);
1940
1941 /* Trims skb to length len. It can change skb pointers.
1942 */
1943
___pskb_trim(struct sk_buff * skb,unsigned int len)1944 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1945 {
1946 struct sk_buff **fragp;
1947 struct sk_buff *frag;
1948 int offset = skb_headlen(skb);
1949 int nfrags = skb_shinfo(skb)->nr_frags;
1950 int i;
1951 int err;
1952
1953 if (skb_cloned(skb) &&
1954 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1955 return err;
1956
1957 i = 0;
1958 if (offset >= len)
1959 goto drop_pages;
1960
1961 for (; i < nfrags; i++) {
1962 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1963
1964 if (end < len) {
1965 offset = end;
1966 continue;
1967 }
1968
1969 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1970
1971 drop_pages:
1972 skb_shinfo(skb)->nr_frags = i;
1973
1974 for (; i < nfrags; i++)
1975 skb_frag_unref(skb, i);
1976
1977 if (skb_has_frag_list(skb))
1978 skb_drop_fraglist(skb);
1979 goto done;
1980 }
1981
1982 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1983 fragp = &frag->next) {
1984 int end = offset + frag->len;
1985
1986 if (skb_shared(frag)) {
1987 struct sk_buff *nfrag;
1988
1989 nfrag = skb_clone(frag, GFP_ATOMIC);
1990 if (unlikely(!nfrag))
1991 return -ENOMEM;
1992
1993 nfrag->next = frag->next;
1994 consume_skb(frag);
1995 frag = nfrag;
1996 *fragp = frag;
1997 }
1998
1999 if (end < len) {
2000 offset = end;
2001 continue;
2002 }
2003
2004 if (end > len &&
2005 unlikely((err = pskb_trim(frag, len - offset))))
2006 return err;
2007
2008 if (frag->next)
2009 skb_drop_list(&frag->next);
2010 break;
2011 }
2012
2013 done:
2014 if (len > skb_headlen(skb)) {
2015 skb->data_len -= skb->len - len;
2016 skb->len = len;
2017 } else {
2018 skb->len = len;
2019 skb->data_len = 0;
2020 skb_set_tail_pointer(skb, len);
2021 }
2022
2023 if (!skb->sk || skb->destructor == sock_edemux)
2024 skb_condense(skb);
2025 return 0;
2026 }
2027 EXPORT_SYMBOL(___pskb_trim);
2028
2029 /* Note : use pskb_trim_rcsum() instead of calling this directly
2030 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2031 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2032 {
2033 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2034 int delta = skb->len - len;
2035
2036 skb->csum = csum_block_sub(skb->csum,
2037 skb_checksum(skb, len, delta, 0),
2038 len);
2039 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2040 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2041 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2042
2043 if (offset + sizeof(__sum16) > hdlen)
2044 return -EINVAL;
2045 }
2046 return __pskb_trim(skb, len);
2047 }
2048 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2049
2050 /**
2051 * __pskb_pull_tail - advance tail of skb header
2052 * @skb: buffer to reallocate
2053 * @delta: number of bytes to advance tail
2054 *
2055 * The function makes a sense only on a fragmented &sk_buff,
2056 * it expands header moving its tail forward and copying necessary
2057 * data from fragmented part.
2058 *
2059 * &sk_buff MUST have reference count of 1.
2060 *
2061 * Returns %NULL (and &sk_buff does not change) if pull failed
2062 * or value of new tail of skb in the case of success.
2063 *
2064 * All the pointers pointing into skb header may change and must be
2065 * reloaded after call to this function.
2066 */
2067
2068 /* Moves tail of skb head forward, copying data from fragmented part,
2069 * when it is necessary.
2070 * 1. It may fail due to malloc failure.
2071 * 2. It may change skb pointers.
2072 *
2073 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2074 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2075 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2076 {
2077 /* If skb has not enough free space at tail, get new one
2078 * plus 128 bytes for future expansions. If we have enough
2079 * room at tail, reallocate without expansion only if skb is cloned.
2080 */
2081 int i, k, eat = (skb->tail + delta) - skb->end;
2082
2083 if (eat > 0 || skb_cloned(skb)) {
2084 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2085 GFP_ATOMIC))
2086 return NULL;
2087 }
2088
2089 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2090 skb_tail_pointer(skb), delta));
2091
2092 /* Optimization: no fragments, no reasons to preestimate
2093 * size of pulled pages. Superb.
2094 */
2095 if (!skb_has_frag_list(skb))
2096 goto pull_pages;
2097
2098 /* Estimate size of pulled pages. */
2099 eat = delta;
2100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2101 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2102
2103 if (size >= eat)
2104 goto pull_pages;
2105 eat -= size;
2106 }
2107
2108 /* If we need update frag list, we are in troubles.
2109 * Certainly, it is possible to add an offset to skb data,
2110 * but taking into account that pulling is expected to
2111 * be very rare operation, it is worth to fight against
2112 * further bloating skb head and crucify ourselves here instead.
2113 * Pure masohism, indeed. 8)8)
2114 */
2115 if (eat) {
2116 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2117 struct sk_buff *clone = NULL;
2118 struct sk_buff *insp = NULL;
2119
2120 do {
2121 if (list->len <= eat) {
2122 /* Eaten as whole. */
2123 eat -= list->len;
2124 list = list->next;
2125 insp = list;
2126 } else {
2127 /* Eaten partially. */
2128 if (skb_is_gso(skb) && !list->head_frag &&
2129 skb_headlen(list))
2130 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2131
2132 if (skb_shared(list)) {
2133 /* Sucks! We need to fork list. :-( */
2134 clone = skb_clone(list, GFP_ATOMIC);
2135 if (!clone)
2136 return NULL;
2137 insp = list->next;
2138 list = clone;
2139 } else {
2140 /* This may be pulled without
2141 * problems. */
2142 insp = list;
2143 }
2144 if (!pskb_pull(list, eat)) {
2145 kfree_skb(clone);
2146 return NULL;
2147 }
2148 break;
2149 }
2150 } while (eat);
2151
2152 /* Free pulled out fragments. */
2153 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2154 skb_shinfo(skb)->frag_list = list->next;
2155 consume_skb(list);
2156 }
2157 /* And insert new clone at head. */
2158 if (clone) {
2159 clone->next = list;
2160 skb_shinfo(skb)->frag_list = clone;
2161 }
2162 }
2163 /* Success! Now we may commit changes to skb data. */
2164
2165 pull_pages:
2166 eat = delta;
2167 k = 0;
2168 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2169 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2170
2171 if (size <= eat) {
2172 skb_frag_unref(skb, i);
2173 eat -= size;
2174 } else {
2175 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2176
2177 *frag = skb_shinfo(skb)->frags[i];
2178 if (eat) {
2179 skb_frag_off_add(frag, eat);
2180 skb_frag_size_sub(frag, eat);
2181 if (!i)
2182 goto end;
2183 eat = 0;
2184 }
2185 k++;
2186 }
2187 }
2188 skb_shinfo(skb)->nr_frags = k;
2189
2190 end:
2191 skb->tail += delta;
2192 skb->data_len -= delta;
2193
2194 if (!skb->data_len)
2195 skb_zcopy_clear(skb, false);
2196
2197 return skb_tail_pointer(skb);
2198 }
2199 EXPORT_SYMBOL(__pskb_pull_tail);
2200
2201 /**
2202 * skb_copy_bits - copy bits from skb to kernel buffer
2203 * @skb: source skb
2204 * @offset: offset in source
2205 * @to: destination buffer
2206 * @len: number of bytes to copy
2207 *
2208 * Copy the specified number of bytes from the source skb to the
2209 * destination buffer.
2210 *
2211 * CAUTION ! :
2212 * If its prototype is ever changed,
2213 * check arch/{*}/net/{*}.S files,
2214 * since it is called from BPF assembly code.
2215 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2216 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2217 {
2218 int start = skb_headlen(skb);
2219 struct sk_buff *frag_iter;
2220 int i, copy;
2221
2222 if (offset > (int)skb->len - len)
2223 goto fault;
2224
2225 /* Copy header. */
2226 if ((copy = start - offset) > 0) {
2227 if (copy > len)
2228 copy = len;
2229 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2230 if ((len -= copy) == 0)
2231 return 0;
2232 offset += copy;
2233 to += copy;
2234 }
2235
2236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2237 int end;
2238 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2239
2240 WARN_ON(start > offset + len);
2241
2242 end = start + skb_frag_size(f);
2243 if ((copy = end - offset) > 0) {
2244 u32 p_off, p_len, copied;
2245 struct page *p;
2246 u8 *vaddr;
2247
2248 if (copy > len)
2249 copy = len;
2250
2251 skb_frag_foreach_page(f,
2252 skb_frag_off(f) + offset - start,
2253 copy, p, p_off, p_len, copied) {
2254 vaddr = kmap_atomic(p);
2255 memcpy(to + copied, vaddr + p_off, p_len);
2256 kunmap_atomic(vaddr);
2257 }
2258
2259 if ((len -= copy) == 0)
2260 return 0;
2261 offset += copy;
2262 to += copy;
2263 }
2264 start = end;
2265 }
2266
2267 skb_walk_frags(skb, frag_iter) {
2268 int end;
2269
2270 WARN_ON(start > offset + len);
2271
2272 end = start + frag_iter->len;
2273 if ((copy = end - offset) > 0) {
2274 if (copy > len)
2275 copy = len;
2276 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2277 goto fault;
2278 if ((len -= copy) == 0)
2279 return 0;
2280 offset += copy;
2281 to += copy;
2282 }
2283 start = end;
2284 }
2285
2286 if (!len)
2287 return 0;
2288
2289 fault:
2290 return -EFAULT;
2291 }
2292 EXPORT_SYMBOL(skb_copy_bits);
2293
2294 /*
2295 * Callback from splice_to_pipe(), if we need to release some pages
2296 * at the end of the spd in case we error'ed out in filling the pipe.
2297 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2298 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2299 {
2300 put_page(spd->pages[i]);
2301 }
2302
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2303 static struct page *linear_to_page(struct page *page, unsigned int *len,
2304 unsigned int *offset,
2305 struct sock *sk)
2306 {
2307 struct page_frag *pfrag = sk_page_frag(sk);
2308
2309 if (!sk_page_frag_refill(sk, pfrag))
2310 return NULL;
2311
2312 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2313
2314 memcpy(page_address(pfrag->page) + pfrag->offset,
2315 page_address(page) + *offset, *len);
2316 *offset = pfrag->offset;
2317 pfrag->offset += *len;
2318
2319 return pfrag->page;
2320 }
2321
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2322 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2323 struct page *page,
2324 unsigned int offset)
2325 {
2326 return spd->nr_pages &&
2327 spd->pages[spd->nr_pages - 1] == page &&
2328 (spd->partial[spd->nr_pages - 1].offset +
2329 spd->partial[spd->nr_pages - 1].len == offset);
2330 }
2331
2332 /*
2333 * Fill page/offset/length into spd, if it can hold more pages.
2334 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2335 static bool spd_fill_page(struct splice_pipe_desc *spd,
2336 struct pipe_inode_info *pipe, struct page *page,
2337 unsigned int *len, unsigned int offset,
2338 bool linear,
2339 struct sock *sk)
2340 {
2341 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2342 return true;
2343
2344 if (linear) {
2345 page = linear_to_page(page, len, &offset, sk);
2346 if (!page)
2347 return true;
2348 }
2349 if (spd_can_coalesce(spd, page, offset)) {
2350 spd->partial[spd->nr_pages - 1].len += *len;
2351 return false;
2352 }
2353 get_page(page);
2354 spd->pages[spd->nr_pages] = page;
2355 spd->partial[spd->nr_pages].len = *len;
2356 spd->partial[spd->nr_pages].offset = offset;
2357 spd->nr_pages++;
2358
2359 return false;
2360 }
2361
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2362 static bool __splice_segment(struct page *page, unsigned int poff,
2363 unsigned int plen, unsigned int *off,
2364 unsigned int *len,
2365 struct splice_pipe_desc *spd, bool linear,
2366 struct sock *sk,
2367 struct pipe_inode_info *pipe)
2368 {
2369 if (!*len)
2370 return true;
2371
2372 /* skip this segment if already processed */
2373 if (*off >= plen) {
2374 *off -= plen;
2375 return false;
2376 }
2377
2378 /* ignore any bits we already processed */
2379 poff += *off;
2380 plen -= *off;
2381 *off = 0;
2382
2383 do {
2384 unsigned int flen = min(*len, plen);
2385
2386 if (spd_fill_page(spd, pipe, page, &flen, poff,
2387 linear, sk))
2388 return true;
2389 poff += flen;
2390 plen -= flen;
2391 *len -= flen;
2392 } while (*len && plen);
2393
2394 return false;
2395 }
2396
2397 /*
2398 * Map linear and fragment data from the skb to spd. It reports true if the
2399 * pipe is full or if we already spliced the requested length.
2400 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2401 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2402 unsigned int *offset, unsigned int *len,
2403 struct splice_pipe_desc *spd, struct sock *sk)
2404 {
2405 int seg;
2406 struct sk_buff *iter;
2407
2408 /* map the linear part :
2409 * If skb->head_frag is set, this 'linear' part is backed by a
2410 * fragment, and if the head is not shared with any clones then
2411 * we can avoid a copy since we own the head portion of this page.
2412 */
2413 if (__splice_segment(virt_to_page(skb->data),
2414 (unsigned long) skb->data & (PAGE_SIZE - 1),
2415 skb_headlen(skb),
2416 offset, len, spd,
2417 skb_head_is_locked(skb),
2418 sk, pipe))
2419 return true;
2420
2421 /*
2422 * then map the fragments
2423 */
2424 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2425 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2426
2427 if (__splice_segment(skb_frag_page(f),
2428 skb_frag_off(f), skb_frag_size(f),
2429 offset, len, spd, false, sk, pipe))
2430 return true;
2431 }
2432
2433 skb_walk_frags(skb, iter) {
2434 if (*offset >= iter->len) {
2435 *offset -= iter->len;
2436 continue;
2437 }
2438 /* __skb_splice_bits() only fails if the output has no room
2439 * left, so no point in going over the frag_list for the error
2440 * case.
2441 */
2442 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2443 return true;
2444 }
2445
2446 return false;
2447 }
2448
2449 /*
2450 * Map data from the skb to a pipe. Should handle both the linear part,
2451 * the fragments, and the frag list.
2452 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2453 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2454 struct pipe_inode_info *pipe, unsigned int tlen,
2455 unsigned int flags)
2456 {
2457 struct partial_page partial[MAX_SKB_FRAGS];
2458 struct page *pages[MAX_SKB_FRAGS];
2459 struct splice_pipe_desc spd = {
2460 .pages = pages,
2461 .partial = partial,
2462 .nr_pages_max = MAX_SKB_FRAGS,
2463 .ops = &nosteal_pipe_buf_ops,
2464 .spd_release = sock_spd_release,
2465 };
2466 int ret = 0;
2467
2468 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2469
2470 if (spd.nr_pages)
2471 ret = splice_to_pipe(pipe, &spd);
2472
2473 return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(skb_splice_bits);
2476
2477 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2478 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2479 int len)
2480 {
2481 unsigned int orig_len = len;
2482 struct sk_buff *head = skb;
2483 unsigned short fragidx;
2484 int slen, ret;
2485
2486 do_frag_list:
2487
2488 /* Deal with head data */
2489 while (offset < skb_headlen(skb) && len) {
2490 struct kvec kv;
2491 struct msghdr msg;
2492
2493 slen = min_t(int, len, skb_headlen(skb) - offset);
2494 kv.iov_base = skb->data + offset;
2495 kv.iov_len = slen;
2496 memset(&msg, 0, sizeof(msg));
2497 msg.msg_flags = MSG_DONTWAIT;
2498
2499 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2500 if (ret <= 0)
2501 goto error;
2502
2503 offset += ret;
2504 len -= ret;
2505 }
2506
2507 /* All the data was skb head? */
2508 if (!len)
2509 goto out;
2510
2511 /* Make offset relative to start of frags */
2512 offset -= skb_headlen(skb);
2513
2514 /* Find where we are in frag list */
2515 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2516 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2517
2518 if (offset < skb_frag_size(frag))
2519 break;
2520
2521 offset -= skb_frag_size(frag);
2522 }
2523
2524 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2525 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2526
2527 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2528
2529 while (slen) {
2530 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2531 skb_frag_off(frag) + offset,
2532 slen, MSG_DONTWAIT);
2533 if (ret <= 0)
2534 goto error;
2535
2536 len -= ret;
2537 offset += ret;
2538 slen -= ret;
2539 }
2540
2541 offset = 0;
2542 }
2543
2544 if (len) {
2545 /* Process any frag lists */
2546
2547 if (skb == head) {
2548 if (skb_has_frag_list(skb)) {
2549 skb = skb_shinfo(skb)->frag_list;
2550 goto do_frag_list;
2551 }
2552 } else if (skb->next) {
2553 skb = skb->next;
2554 goto do_frag_list;
2555 }
2556 }
2557
2558 out:
2559 return orig_len - len;
2560
2561 error:
2562 return orig_len == len ? ret : orig_len - len;
2563 }
2564 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2565
2566 /**
2567 * skb_store_bits - store bits from kernel buffer to skb
2568 * @skb: destination buffer
2569 * @offset: offset in destination
2570 * @from: source buffer
2571 * @len: number of bytes to copy
2572 *
2573 * Copy the specified number of bytes from the source buffer to the
2574 * destination skb. This function handles all the messy bits of
2575 * traversing fragment lists and such.
2576 */
2577
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2578 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2579 {
2580 int start = skb_headlen(skb);
2581 struct sk_buff *frag_iter;
2582 int i, copy;
2583
2584 if (offset > (int)skb->len - len)
2585 goto fault;
2586
2587 if ((copy = start - offset) > 0) {
2588 if (copy > len)
2589 copy = len;
2590 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2591 if ((len -= copy) == 0)
2592 return 0;
2593 offset += copy;
2594 from += copy;
2595 }
2596
2597 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2598 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2599 int end;
2600
2601 WARN_ON(start > offset + len);
2602
2603 end = start + skb_frag_size(frag);
2604 if ((copy = end - offset) > 0) {
2605 u32 p_off, p_len, copied;
2606 struct page *p;
2607 u8 *vaddr;
2608
2609 if (copy > len)
2610 copy = len;
2611
2612 skb_frag_foreach_page(frag,
2613 skb_frag_off(frag) + offset - start,
2614 copy, p, p_off, p_len, copied) {
2615 vaddr = kmap_atomic(p);
2616 memcpy(vaddr + p_off, from + copied, p_len);
2617 kunmap_atomic(vaddr);
2618 }
2619
2620 if ((len -= copy) == 0)
2621 return 0;
2622 offset += copy;
2623 from += copy;
2624 }
2625 start = end;
2626 }
2627
2628 skb_walk_frags(skb, frag_iter) {
2629 int end;
2630
2631 WARN_ON(start > offset + len);
2632
2633 end = start + frag_iter->len;
2634 if ((copy = end - offset) > 0) {
2635 if (copy > len)
2636 copy = len;
2637 if (skb_store_bits(frag_iter, offset - start,
2638 from, copy))
2639 goto fault;
2640 if ((len -= copy) == 0)
2641 return 0;
2642 offset += copy;
2643 from += copy;
2644 }
2645 start = end;
2646 }
2647 if (!len)
2648 return 0;
2649
2650 fault:
2651 return -EFAULT;
2652 }
2653 EXPORT_SYMBOL(skb_store_bits);
2654
2655 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2656 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2657 __wsum csum, const struct skb_checksum_ops *ops)
2658 {
2659 int start = skb_headlen(skb);
2660 int i, copy = start - offset;
2661 struct sk_buff *frag_iter;
2662 int pos = 0;
2663
2664 /* Checksum header. */
2665 if (copy > 0) {
2666 if (copy > len)
2667 copy = len;
2668 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2669 skb->data + offset, copy, csum);
2670 if ((len -= copy) == 0)
2671 return csum;
2672 offset += copy;
2673 pos = copy;
2674 }
2675
2676 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2677 int end;
2678 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2679
2680 WARN_ON(start > offset + len);
2681
2682 end = start + skb_frag_size(frag);
2683 if ((copy = end - offset) > 0) {
2684 u32 p_off, p_len, copied;
2685 struct page *p;
2686 __wsum csum2;
2687 u8 *vaddr;
2688
2689 if (copy > len)
2690 copy = len;
2691
2692 skb_frag_foreach_page(frag,
2693 skb_frag_off(frag) + offset - start,
2694 copy, p, p_off, p_len, copied) {
2695 vaddr = kmap_atomic(p);
2696 csum2 = INDIRECT_CALL_1(ops->update,
2697 csum_partial_ext,
2698 vaddr + p_off, p_len, 0);
2699 kunmap_atomic(vaddr);
2700 csum = INDIRECT_CALL_1(ops->combine,
2701 csum_block_add_ext, csum,
2702 csum2, pos, p_len);
2703 pos += p_len;
2704 }
2705
2706 if (!(len -= copy))
2707 return csum;
2708 offset += copy;
2709 }
2710 start = end;
2711 }
2712
2713 skb_walk_frags(skb, frag_iter) {
2714 int end;
2715
2716 WARN_ON(start > offset + len);
2717
2718 end = start + frag_iter->len;
2719 if ((copy = end - offset) > 0) {
2720 __wsum csum2;
2721 if (copy > len)
2722 copy = len;
2723 csum2 = __skb_checksum(frag_iter, offset - start,
2724 copy, 0, ops);
2725 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2726 csum, csum2, pos, copy);
2727 if ((len -= copy) == 0)
2728 return csum;
2729 offset += copy;
2730 pos += copy;
2731 }
2732 start = end;
2733 }
2734 BUG_ON(len);
2735
2736 return csum;
2737 }
2738 EXPORT_SYMBOL(__skb_checksum);
2739
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2740 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2741 int len, __wsum csum)
2742 {
2743 const struct skb_checksum_ops ops = {
2744 .update = csum_partial_ext,
2745 .combine = csum_block_add_ext,
2746 };
2747
2748 return __skb_checksum(skb, offset, len, csum, &ops);
2749 }
2750 EXPORT_SYMBOL(skb_checksum);
2751
2752 /* Both of above in one bottle. */
2753
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2754 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2755 u8 *to, int len)
2756 {
2757 int start = skb_headlen(skb);
2758 int i, copy = start - offset;
2759 struct sk_buff *frag_iter;
2760 int pos = 0;
2761 __wsum csum = 0;
2762
2763 /* Copy header. */
2764 if (copy > 0) {
2765 if (copy > len)
2766 copy = len;
2767 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2768 copy);
2769 if ((len -= copy) == 0)
2770 return csum;
2771 offset += copy;
2772 to += copy;
2773 pos = copy;
2774 }
2775
2776 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2777 int end;
2778
2779 WARN_ON(start > offset + len);
2780
2781 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2782 if ((copy = end - offset) > 0) {
2783 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2784 u32 p_off, p_len, copied;
2785 struct page *p;
2786 __wsum csum2;
2787 u8 *vaddr;
2788
2789 if (copy > len)
2790 copy = len;
2791
2792 skb_frag_foreach_page(frag,
2793 skb_frag_off(frag) + offset - start,
2794 copy, p, p_off, p_len, copied) {
2795 vaddr = kmap_atomic(p);
2796 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2797 to + copied,
2798 p_len);
2799 kunmap_atomic(vaddr);
2800 csum = csum_block_add(csum, csum2, pos);
2801 pos += p_len;
2802 }
2803
2804 if (!(len -= copy))
2805 return csum;
2806 offset += copy;
2807 to += copy;
2808 }
2809 start = end;
2810 }
2811
2812 skb_walk_frags(skb, frag_iter) {
2813 __wsum csum2;
2814 int end;
2815
2816 WARN_ON(start > offset + len);
2817
2818 end = start + frag_iter->len;
2819 if ((copy = end - offset) > 0) {
2820 if (copy > len)
2821 copy = len;
2822 csum2 = skb_copy_and_csum_bits(frag_iter,
2823 offset - start,
2824 to, copy);
2825 csum = csum_block_add(csum, csum2, pos);
2826 if ((len -= copy) == 0)
2827 return csum;
2828 offset += copy;
2829 to += copy;
2830 pos += copy;
2831 }
2832 start = end;
2833 }
2834 BUG_ON(len);
2835 return csum;
2836 }
2837 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2838
__skb_checksum_complete_head(struct sk_buff * skb,int len)2839 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2840 {
2841 __sum16 sum;
2842
2843 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2844 /* See comments in __skb_checksum_complete(). */
2845 if (likely(!sum)) {
2846 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2847 !skb->csum_complete_sw)
2848 netdev_rx_csum_fault(skb->dev, skb);
2849 }
2850 if (!skb_shared(skb))
2851 skb->csum_valid = !sum;
2852 return sum;
2853 }
2854 EXPORT_SYMBOL(__skb_checksum_complete_head);
2855
2856 /* This function assumes skb->csum already holds pseudo header's checksum,
2857 * which has been changed from the hardware checksum, for example, by
2858 * __skb_checksum_validate_complete(). And, the original skb->csum must
2859 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2860 *
2861 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2862 * zero. The new checksum is stored back into skb->csum unless the skb is
2863 * shared.
2864 */
__skb_checksum_complete(struct sk_buff * skb)2865 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2866 {
2867 __wsum csum;
2868 __sum16 sum;
2869
2870 csum = skb_checksum(skb, 0, skb->len, 0);
2871
2872 sum = csum_fold(csum_add(skb->csum, csum));
2873 /* This check is inverted, because we already knew the hardware
2874 * checksum is invalid before calling this function. So, if the
2875 * re-computed checksum is valid instead, then we have a mismatch
2876 * between the original skb->csum and skb_checksum(). This means either
2877 * the original hardware checksum is incorrect or we screw up skb->csum
2878 * when moving skb->data around.
2879 */
2880 if (likely(!sum)) {
2881 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2882 !skb->csum_complete_sw)
2883 netdev_rx_csum_fault(skb->dev, skb);
2884 }
2885
2886 if (!skb_shared(skb)) {
2887 /* Save full packet checksum */
2888 skb->csum = csum;
2889 skb->ip_summed = CHECKSUM_COMPLETE;
2890 skb->csum_complete_sw = 1;
2891 skb->csum_valid = !sum;
2892 }
2893
2894 return sum;
2895 }
2896 EXPORT_SYMBOL(__skb_checksum_complete);
2897
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2898 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2899 {
2900 net_warn_ratelimited(
2901 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2902 __func__);
2903 return 0;
2904 }
2905
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2906 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2907 int offset, int len)
2908 {
2909 net_warn_ratelimited(
2910 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2911 __func__);
2912 return 0;
2913 }
2914
2915 static const struct skb_checksum_ops default_crc32c_ops = {
2916 .update = warn_crc32c_csum_update,
2917 .combine = warn_crc32c_csum_combine,
2918 };
2919
2920 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2921 &default_crc32c_ops;
2922 EXPORT_SYMBOL(crc32c_csum_stub);
2923
2924 /**
2925 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2926 * @from: source buffer
2927 *
2928 * Calculates the amount of linear headroom needed in the 'to' skb passed
2929 * into skb_zerocopy().
2930 */
2931 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2932 skb_zerocopy_headlen(const struct sk_buff *from)
2933 {
2934 unsigned int hlen = 0;
2935
2936 if (!from->head_frag ||
2937 skb_headlen(from) < L1_CACHE_BYTES ||
2938 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
2939 hlen = skb_headlen(from);
2940 if (!hlen)
2941 hlen = from->len;
2942 }
2943
2944 if (skb_has_frag_list(from))
2945 hlen = from->len;
2946
2947 return hlen;
2948 }
2949 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2950
2951 /**
2952 * skb_zerocopy - Zero copy skb to skb
2953 * @to: destination buffer
2954 * @from: source buffer
2955 * @len: number of bytes to copy from source buffer
2956 * @hlen: size of linear headroom in destination buffer
2957 *
2958 * Copies up to `len` bytes from `from` to `to` by creating references
2959 * to the frags in the source buffer.
2960 *
2961 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2962 * headroom in the `to` buffer.
2963 *
2964 * Return value:
2965 * 0: everything is OK
2966 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2967 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2968 */
2969 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2970 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2971 {
2972 int i, j = 0;
2973 int plen = 0; /* length of skb->head fragment */
2974 int ret;
2975 struct page *page;
2976 unsigned int offset;
2977
2978 BUG_ON(!from->head_frag && !hlen);
2979
2980 /* dont bother with small payloads */
2981 if (len <= skb_tailroom(to))
2982 return skb_copy_bits(from, 0, skb_put(to, len), len);
2983
2984 if (hlen) {
2985 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2986 if (unlikely(ret))
2987 return ret;
2988 len -= hlen;
2989 } else {
2990 plen = min_t(int, skb_headlen(from), len);
2991 if (plen) {
2992 page = virt_to_head_page(from->head);
2993 offset = from->data - (unsigned char *)page_address(page);
2994 __skb_fill_page_desc(to, 0, page, offset, plen);
2995 get_page(page);
2996 j = 1;
2997 len -= plen;
2998 }
2999 }
3000
3001 to->truesize += len + plen;
3002 to->len += len + plen;
3003 to->data_len += len + plen;
3004
3005 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3006 skb_tx_error(from);
3007 return -ENOMEM;
3008 }
3009 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3010
3011 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3012 int size;
3013
3014 if (!len)
3015 break;
3016 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3017 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3018 len);
3019 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3020 len -= size;
3021 skb_frag_ref(to, j);
3022 j++;
3023 }
3024 skb_shinfo(to)->nr_frags = j;
3025
3026 return 0;
3027 }
3028 EXPORT_SYMBOL_GPL(skb_zerocopy);
3029
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3030 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3031 {
3032 __wsum csum;
3033 long csstart;
3034
3035 if (skb->ip_summed == CHECKSUM_PARTIAL)
3036 csstart = skb_checksum_start_offset(skb);
3037 else
3038 csstart = skb_headlen(skb);
3039
3040 BUG_ON(csstart > skb_headlen(skb));
3041
3042 skb_copy_from_linear_data(skb, to, csstart);
3043
3044 csum = 0;
3045 if (csstart != skb->len)
3046 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3047 skb->len - csstart);
3048
3049 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3050 long csstuff = csstart + skb->csum_offset;
3051
3052 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3053 }
3054 }
3055 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3056
3057 /**
3058 * skb_dequeue - remove from the head of the queue
3059 * @list: list to dequeue from
3060 *
3061 * Remove the head of the list. The list lock is taken so the function
3062 * may be used safely with other locking list functions. The head item is
3063 * returned or %NULL if the list is empty.
3064 */
3065
skb_dequeue(struct sk_buff_head * list)3066 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3067 {
3068 unsigned long flags;
3069 struct sk_buff *result;
3070
3071 spin_lock_irqsave(&list->lock, flags);
3072 result = __skb_dequeue(list);
3073 spin_unlock_irqrestore(&list->lock, flags);
3074 return result;
3075 }
3076 EXPORT_SYMBOL(skb_dequeue);
3077
3078 /**
3079 * skb_dequeue_tail - remove from the tail of the queue
3080 * @list: list to dequeue from
3081 *
3082 * Remove the tail of the list. The list lock is taken so the function
3083 * may be used safely with other locking list functions. The tail item is
3084 * returned or %NULL if the list is empty.
3085 */
skb_dequeue_tail(struct sk_buff_head * list)3086 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3087 {
3088 unsigned long flags;
3089 struct sk_buff *result;
3090
3091 spin_lock_irqsave(&list->lock, flags);
3092 result = __skb_dequeue_tail(list);
3093 spin_unlock_irqrestore(&list->lock, flags);
3094 return result;
3095 }
3096 EXPORT_SYMBOL(skb_dequeue_tail);
3097
3098 /**
3099 * skb_queue_purge - empty a list
3100 * @list: list to empty
3101 *
3102 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3103 * the list and one reference dropped. This function takes the list
3104 * lock and is atomic with respect to other list locking functions.
3105 */
skb_queue_purge(struct sk_buff_head * list)3106 void skb_queue_purge(struct sk_buff_head *list)
3107 {
3108 struct sk_buff *skb;
3109 while ((skb = skb_dequeue(list)) != NULL)
3110 kfree_skb(skb);
3111 }
3112 EXPORT_SYMBOL(skb_queue_purge);
3113
3114 /**
3115 * skb_rbtree_purge - empty a skb rbtree
3116 * @root: root of the rbtree to empty
3117 * Return value: the sum of truesizes of all purged skbs.
3118 *
3119 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3120 * the list and one reference dropped. This function does not take
3121 * any lock. Synchronization should be handled by the caller (e.g., TCP
3122 * out-of-order queue is protected by the socket lock).
3123 */
skb_rbtree_purge(struct rb_root * root)3124 unsigned int skb_rbtree_purge(struct rb_root *root)
3125 {
3126 struct rb_node *p = rb_first(root);
3127 unsigned int sum = 0;
3128
3129 while (p) {
3130 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3131
3132 p = rb_next(p);
3133 rb_erase(&skb->rbnode, root);
3134 sum += skb->truesize;
3135 kfree_skb(skb);
3136 }
3137 return sum;
3138 }
3139
3140 /**
3141 * skb_queue_head - queue a buffer at the list head
3142 * @list: list to use
3143 * @newsk: buffer to queue
3144 *
3145 * Queue a buffer at the start of the list. This function takes the
3146 * list lock and can be used safely with other locking &sk_buff functions
3147 * safely.
3148 *
3149 * A buffer cannot be placed on two lists at the same time.
3150 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3151 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3152 {
3153 unsigned long flags;
3154
3155 spin_lock_irqsave(&list->lock, flags);
3156 __skb_queue_head(list, newsk);
3157 spin_unlock_irqrestore(&list->lock, flags);
3158 }
3159 EXPORT_SYMBOL(skb_queue_head);
3160
3161 /**
3162 * skb_queue_tail - queue a buffer at the list tail
3163 * @list: list to use
3164 * @newsk: buffer to queue
3165 *
3166 * Queue a buffer at the tail of the list. This function takes the
3167 * list lock and can be used safely with other locking &sk_buff functions
3168 * safely.
3169 *
3170 * A buffer cannot be placed on two lists at the same time.
3171 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3172 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3173 {
3174 unsigned long flags;
3175
3176 spin_lock_irqsave(&list->lock, flags);
3177 __skb_queue_tail(list, newsk);
3178 spin_unlock_irqrestore(&list->lock, flags);
3179 }
3180 EXPORT_SYMBOL(skb_queue_tail);
3181
3182 /**
3183 * skb_unlink - remove a buffer from a list
3184 * @skb: buffer to remove
3185 * @list: list to use
3186 *
3187 * Remove a packet from a list. The list locks are taken and this
3188 * function is atomic with respect to other list locked calls
3189 *
3190 * You must know what list the SKB is on.
3191 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3192 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3193 {
3194 unsigned long flags;
3195
3196 spin_lock_irqsave(&list->lock, flags);
3197 __skb_unlink(skb, list);
3198 spin_unlock_irqrestore(&list->lock, flags);
3199 }
3200 EXPORT_SYMBOL(skb_unlink);
3201
3202 /**
3203 * skb_append - append a buffer
3204 * @old: buffer to insert after
3205 * @newsk: buffer to insert
3206 * @list: list to use
3207 *
3208 * Place a packet after a given packet in a list. The list locks are taken
3209 * and this function is atomic with respect to other list locked calls.
3210 * A buffer cannot be placed on two lists at the same time.
3211 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3212 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3213 {
3214 unsigned long flags;
3215
3216 spin_lock_irqsave(&list->lock, flags);
3217 __skb_queue_after(list, old, newsk);
3218 spin_unlock_irqrestore(&list->lock, flags);
3219 }
3220 EXPORT_SYMBOL(skb_append);
3221
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3222 static inline void skb_split_inside_header(struct sk_buff *skb,
3223 struct sk_buff* skb1,
3224 const u32 len, const int pos)
3225 {
3226 int i;
3227
3228 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3229 pos - len);
3230 /* And move data appendix as is. */
3231 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3232 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3233
3234 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3235 skb_shinfo(skb)->nr_frags = 0;
3236 skb1->data_len = skb->data_len;
3237 skb1->len += skb1->data_len;
3238 skb->data_len = 0;
3239 skb->len = len;
3240 skb_set_tail_pointer(skb, len);
3241 }
3242
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3243 static inline void skb_split_no_header(struct sk_buff *skb,
3244 struct sk_buff* skb1,
3245 const u32 len, int pos)
3246 {
3247 int i, k = 0;
3248 const int nfrags = skb_shinfo(skb)->nr_frags;
3249
3250 skb_shinfo(skb)->nr_frags = 0;
3251 skb1->len = skb1->data_len = skb->len - len;
3252 skb->len = len;
3253 skb->data_len = len - pos;
3254
3255 for (i = 0; i < nfrags; i++) {
3256 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3257
3258 if (pos + size > len) {
3259 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3260
3261 if (pos < len) {
3262 /* Split frag.
3263 * We have two variants in this case:
3264 * 1. Move all the frag to the second
3265 * part, if it is possible. F.e.
3266 * this approach is mandatory for TUX,
3267 * where splitting is expensive.
3268 * 2. Split is accurately. We make this.
3269 */
3270 skb_frag_ref(skb, i);
3271 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3272 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3273 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3274 skb_shinfo(skb)->nr_frags++;
3275 }
3276 k++;
3277 } else
3278 skb_shinfo(skb)->nr_frags++;
3279 pos += size;
3280 }
3281 skb_shinfo(skb1)->nr_frags = k;
3282 }
3283
3284 /**
3285 * skb_split - Split fragmented skb to two parts at length len.
3286 * @skb: the buffer to split
3287 * @skb1: the buffer to receive the second part
3288 * @len: new length for skb
3289 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3290 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3291 {
3292 int pos = skb_headlen(skb);
3293
3294 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3295 SKBTX_SHARED_FRAG;
3296 skb_zerocopy_clone(skb1, skb, 0);
3297 if (len < pos) /* Split line is inside header. */
3298 skb_split_inside_header(skb, skb1, len, pos);
3299 else /* Second chunk has no header, nothing to copy. */
3300 skb_split_no_header(skb, skb1, len, pos);
3301 }
3302 EXPORT_SYMBOL(skb_split);
3303
3304 /* Shifting from/to a cloned skb is a no-go.
3305 *
3306 * Caller cannot keep skb_shinfo related pointers past calling here!
3307 */
skb_prepare_for_shift(struct sk_buff * skb)3308 static int skb_prepare_for_shift(struct sk_buff *skb)
3309 {
3310 int ret = 0;
3311
3312 if (skb_cloned(skb)) {
3313 /* Save and restore truesize: pskb_expand_head() may reallocate
3314 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3315 * cannot change truesize at this point.
3316 */
3317 unsigned int save_truesize = skb->truesize;
3318
3319 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3320 skb->truesize = save_truesize;
3321 }
3322 return ret;
3323 }
3324
3325 /**
3326 * skb_shift - Shifts paged data partially from skb to another
3327 * @tgt: buffer into which tail data gets added
3328 * @skb: buffer from which the paged data comes from
3329 * @shiftlen: shift up to this many bytes
3330 *
3331 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3332 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3333 * It's up to caller to free skb if everything was shifted.
3334 *
3335 * If @tgt runs out of frags, the whole operation is aborted.
3336 *
3337 * Skb cannot include anything else but paged data while tgt is allowed
3338 * to have non-paged data as well.
3339 *
3340 * TODO: full sized shift could be optimized but that would need
3341 * specialized skb free'er to handle frags without up-to-date nr_frags.
3342 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3343 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3344 {
3345 int from, to, merge, todo;
3346 skb_frag_t *fragfrom, *fragto;
3347
3348 BUG_ON(shiftlen > skb->len);
3349
3350 if (skb_headlen(skb))
3351 return 0;
3352 if (skb_zcopy(tgt) || skb_zcopy(skb))
3353 return 0;
3354
3355 todo = shiftlen;
3356 from = 0;
3357 to = skb_shinfo(tgt)->nr_frags;
3358 fragfrom = &skb_shinfo(skb)->frags[from];
3359
3360 /* Actual merge is delayed until the point when we know we can
3361 * commit all, so that we don't have to undo partial changes
3362 */
3363 if (!to ||
3364 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3365 skb_frag_off(fragfrom))) {
3366 merge = -1;
3367 } else {
3368 merge = to - 1;
3369
3370 todo -= skb_frag_size(fragfrom);
3371 if (todo < 0) {
3372 if (skb_prepare_for_shift(skb) ||
3373 skb_prepare_for_shift(tgt))
3374 return 0;
3375
3376 /* All previous frag pointers might be stale! */
3377 fragfrom = &skb_shinfo(skb)->frags[from];
3378 fragto = &skb_shinfo(tgt)->frags[merge];
3379
3380 skb_frag_size_add(fragto, shiftlen);
3381 skb_frag_size_sub(fragfrom, shiftlen);
3382 skb_frag_off_add(fragfrom, shiftlen);
3383
3384 goto onlymerged;
3385 }
3386
3387 from++;
3388 }
3389
3390 /* Skip full, not-fitting skb to avoid expensive operations */
3391 if ((shiftlen == skb->len) &&
3392 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3393 return 0;
3394
3395 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3396 return 0;
3397
3398 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3399 if (to == MAX_SKB_FRAGS)
3400 return 0;
3401
3402 fragfrom = &skb_shinfo(skb)->frags[from];
3403 fragto = &skb_shinfo(tgt)->frags[to];
3404
3405 if (todo >= skb_frag_size(fragfrom)) {
3406 *fragto = *fragfrom;
3407 todo -= skb_frag_size(fragfrom);
3408 from++;
3409 to++;
3410
3411 } else {
3412 __skb_frag_ref(fragfrom);
3413 skb_frag_page_copy(fragto, fragfrom);
3414 skb_frag_off_copy(fragto, fragfrom);
3415 skb_frag_size_set(fragto, todo);
3416
3417 skb_frag_off_add(fragfrom, todo);
3418 skb_frag_size_sub(fragfrom, todo);
3419 todo = 0;
3420
3421 to++;
3422 break;
3423 }
3424 }
3425
3426 /* Ready to "commit" this state change to tgt */
3427 skb_shinfo(tgt)->nr_frags = to;
3428
3429 if (merge >= 0) {
3430 fragfrom = &skb_shinfo(skb)->frags[0];
3431 fragto = &skb_shinfo(tgt)->frags[merge];
3432
3433 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3434 __skb_frag_unref(fragfrom);
3435 }
3436
3437 /* Reposition in the original skb */
3438 to = 0;
3439 while (from < skb_shinfo(skb)->nr_frags)
3440 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3441 skb_shinfo(skb)->nr_frags = to;
3442
3443 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3444
3445 onlymerged:
3446 /* Most likely the tgt won't ever need its checksum anymore, skb on
3447 * the other hand might need it if it needs to be resent
3448 */
3449 tgt->ip_summed = CHECKSUM_PARTIAL;
3450 skb->ip_summed = CHECKSUM_PARTIAL;
3451
3452 /* Yak, is it really working this way? Some helper please? */
3453 skb->len -= shiftlen;
3454 skb->data_len -= shiftlen;
3455 skb->truesize -= shiftlen;
3456 tgt->len += shiftlen;
3457 tgt->data_len += shiftlen;
3458 tgt->truesize += shiftlen;
3459
3460 return shiftlen;
3461 }
3462
3463 /**
3464 * skb_prepare_seq_read - Prepare a sequential read of skb data
3465 * @skb: the buffer to read
3466 * @from: lower offset of data to be read
3467 * @to: upper offset of data to be read
3468 * @st: state variable
3469 *
3470 * Initializes the specified state variable. Must be called before
3471 * invoking skb_seq_read() for the first time.
3472 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3473 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3474 unsigned int to, struct skb_seq_state *st)
3475 {
3476 st->lower_offset = from;
3477 st->upper_offset = to;
3478 st->root_skb = st->cur_skb = skb;
3479 st->frag_idx = st->stepped_offset = 0;
3480 st->frag_data = NULL;
3481 }
3482 EXPORT_SYMBOL(skb_prepare_seq_read);
3483
3484 /**
3485 * skb_seq_read - Sequentially read skb data
3486 * @consumed: number of bytes consumed by the caller so far
3487 * @data: destination pointer for data to be returned
3488 * @st: state variable
3489 *
3490 * Reads a block of skb data at @consumed relative to the
3491 * lower offset specified to skb_prepare_seq_read(). Assigns
3492 * the head of the data block to @data and returns the length
3493 * of the block or 0 if the end of the skb data or the upper
3494 * offset has been reached.
3495 *
3496 * The caller is not required to consume all of the data
3497 * returned, i.e. @consumed is typically set to the number
3498 * of bytes already consumed and the next call to
3499 * skb_seq_read() will return the remaining part of the block.
3500 *
3501 * Note 1: The size of each block of data returned can be arbitrary,
3502 * this limitation is the cost for zerocopy sequential
3503 * reads of potentially non linear data.
3504 *
3505 * Note 2: Fragment lists within fragments are not implemented
3506 * at the moment, state->root_skb could be replaced with
3507 * a stack for this purpose.
3508 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3509 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3510 struct skb_seq_state *st)
3511 {
3512 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3513 skb_frag_t *frag;
3514
3515 if (unlikely(abs_offset >= st->upper_offset)) {
3516 if (st->frag_data) {
3517 kunmap_atomic(st->frag_data);
3518 st->frag_data = NULL;
3519 }
3520 return 0;
3521 }
3522
3523 next_skb:
3524 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3525
3526 if (abs_offset < block_limit && !st->frag_data) {
3527 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3528 return block_limit - abs_offset;
3529 }
3530
3531 if (st->frag_idx == 0 && !st->frag_data)
3532 st->stepped_offset += skb_headlen(st->cur_skb);
3533
3534 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3535 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3536 block_limit = skb_frag_size(frag) + st->stepped_offset;
3537
3538 if (abs_offset < block_limit) {
3539 if (!st->frag_data)
3540 st->frag_data = kmap_atomic(skb_frag_page(frag));
3541
3542 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3543 (abs_offset - st->stepped_offset);
3544
3545 return block_limit - abs_offset;
3546 }
3547
3548 if (st->frag_data) {
3549 kunmap_atomic(st->frag_data);
3550 st->frag_data = NULL;
3551 }
3552
3553 st->frag_idx++;
3554 st->stepped_offset += skb_frag_size(frag);
3555 }
3556
3557 if (st->frag_data) {
3558 kunmap_atomic(st->frag_data);
3559 st->frag_data = NULL;
3560 }
3561
3562 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3563 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3564 st->frag_idx = 0;
3565 goto next_skb;
3566 } else if (st->cur_skb->next) {
3567 st->cur_skb = st->cur_skb->next;
3568 st->frag_idx = 0;
3569 goto next_skb;
3570 }
3571
3572 return 0;
3573 }
3574 EXPORT_SYMBOL(skb_seq_read);
3575
3576 /**
3577 * skb_abort_seq_read - Abort a sequential read of skb data
3578 * @st: state variable
3579 *
3580 * Must be called if skb_seq_read() was not called until it
3581 * returned 0.
3582 */
skb_abort_seq_read(struct skb_seq_state * st)3583 void skb_abort_seq_read(struct skb_seq_state *st)
3584 {
3585 if (st->frag_data)
3586 kunmap_atomic(st->frag_data);
3587 }
3588 EXPORT_SYMBOL(skb_abort_seq_read);
3589
3590 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3591
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3592 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3593 struct ts_config *conf,
3594 struct ts_state *state)
3595 {
3596 return skb_seq_read(offset, text, TS_SKB_CB(state));
3597 }
3598
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3599 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3600 {
3601 skb_abort_seq_read(TS_SKB_CB(state));
3602 }
3603
3604 /**
3605 * skb_find_text - Find a text pattern in skb data
3606 * @skb: the buffer to look in
3607 * @from: search offset
3608 * @to: search limit
3609 * @config: textsearch configuration
3610 *
3611 * Finds a pattern in the skb data according to the specified
3612 * textsearch configuration. Use textsearch_next() to retrieve
3613 * subsequent occurrences of the pattern. Returns the offset
3614 * to the first occurrence or UINT_MAX if no match was found.
3615 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3616 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3617 unsigned int to, struct ts_config *config)
3618 {
3619 struct ts_state state;
3620 unsigned int ret;
3621
3622 config->get_next_block = skb_ts_get_next_block;
3623 config->finish = skb_ts_finish;
3624
3625 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3626
3627 ret = textsearch_find(config, &state);
3628 return (ret <= to - from ? ret : UINT_MAX);
3629 }
3630 EXPORT_SYMBOL(skb_find_text);
3631
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3632 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3633 int offset, size_t size)
3634 {
3635 int i = skb_shinfo(skb)->nr_frags;
3636
3637 if (skb_can_coalesce(skb, i, page, offset)) {
3638 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3639 } else if (i < MAX_SKB_FRAGS) {
3640 get_page(page);
3641 skb_fill_page_desc(skb, i, page, offset, size);
3642 } else {
3643 return -EMSGSIZE;
3644 }
3645
3646 return 0;
3647 }
3648 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3649
3650 /**
3651 * skb_pull_rcsum - pull skb and update receive checksum
3652 * @skb: buffer to update
3653 * @len: length of data pulled
3654 *
3655 * This function performs an skb_pull on the packet and updates
3656 * the CHECKSUM_COMPLETE checksum. It should be used on
3657 * receive path processing instead of skb_pull unless you know
3658 * that the checksum difference is zero (e.g., a valid IP header)
3659 * or you are setting ip_summed to CHECKSUM_NONE.
3660 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3661 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3662 {
3663 unsigned char *data = skb->data;
3664
3665 BUG_ON(len > skb->len);
3666 __skb_pull(skb, len);
3667 skb_postpull_rcsum(skb, data, len);
3668 return skb->data;
3669 }
3670 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3671
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3672 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3673 {
3674 skb_frag_t head_frag;
3675 struct page *page;
3676
3677 page = virt_to_head_page(frag_skb->head);
3678 __skb_frag_set_page(&head_frag, page);
3679 skb_frag_off_set(&head_frag, frag_skb->data -
3680 (unsigned char *)page_address(page));
3681 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3682 return head_frag;
3683 }
3684
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3685 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3686 netdev_features_t features,
3687 unsigned int offset)
3688 {
3689 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3690 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3691 unsigned int delta_truesize = 0;
3692 unsigned int delta_len = 0;
3693 struct sk_buff *tail = NULL;
3694 struct sk_buff *nskb, *tmp;
3695 int err;
3696
3697 skb_push(skb, -skb_network_offset(skb) + offset);
3698
3699 /* Ensure the head is writeable before touching the shared info */
3700 err = skb_unclone(skb, GFP_ATOMIC);
3701 if (err)
3702 goto err_linearize;
3703
3704 skb_shinfo(skb)->frag_list = NULL;
3705
3706 while (list_skb) {
3707 nskb = list_skb;
3708 list_skb = list_skb->next;
3709
3710 err = 0;
3711 delta_truesize += nskb->truesize;
3712 if (skb_shared(nskb)) {
3713 tmp = skb_clone(nskb, GFP_ATOMIC);
3714 if (tmp) {
3715 consume_skb(nskb);
3716 nskb = tmp;
3717 err = skb_unclone(nskb, GFP_ATOMIC);
3718 } else {
3719 err = -ENOMEM;
3720 }
3721 }
3722
3723 if (!tail)
3724 skb->next = nskb;
3725 else
3726 tail->next = nskb;
3727
3728 if (unlikely(err)) {
3729 nskb->next = list_skb;
3730 goto err_linearize;
3731 }
3732
3733 tail = nskb;
3734
3735 delta_len += nskb->len;
3736
3737 skb_push(nskb, -skb_network_offset(nskb) + offset);
3738
3739 skb_release_head_state(nskb);
3740 __copy_skb_header(nskb, skb);
3741
3742 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3743 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3744 nskb->data - tnl_hlen,
3745 offset + tnl_hlen);
3746
3747 if (skb_needs_linearize(nskb, features) &&
3748 __skb_linearize(nskb))
3749 goto err_linearize;
3750 }
3751
3752 skb->truesize = skb->truesize - delta_truesize;
3753 skb->data_len = skb->data_len - delta_len;
3754 skb->len = skb->len - delta_len;
3755
3756 skb_gso_reset(skb);
3757
3758 skb->prev = tail;
3759
3760 if (skb_needs_linearize(skb, features) &&
3761 __skb_linearize(skb))
3762 goto err_linearize;
3763
3764 skb_get(skb);
3765
3766 return skb;
3767
3768 err_linearize:
3769 kfree_skb_list(skb->next);
3770 skb->next = NULL;
3771 return ERR_PTR(-ENOMEM);
3772 }
3773 EXPORT_SYMBOL_GPL(skb_segment_list);
3774
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3775 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3776 {
3777 if (unlikely(p->len + skb->len >= 65536))
3778 return -E2BIG;
3779
3780 if (NAPI_GRO_CB(p)->last == p)
3781 skb_shinfo(p)->frag_list = skb;
3782 else
3783 NAPI_GRO_CB(p)->last->next = skb;
3784
3785 skb_pull(skb, skb_gro_offset(skb));
3786
3787 NAPI_GRO_CB(p)->last = skb;
3788 NAPI_GRO_CB(p)->count++;
3789 p->data_len += skb->len;
3790 p->truesize += skb->truesize;
3791 p->len += skb->len;
3792
3793 NAPI_GRO_CB(skb)->same_flow = 1;
3794
3795 return 0;
3796 }
3797
3798 /**
3799 * skb_segment - Perform protocol segmentation on skb.
3800 * @head_skb: buffer to segment
3801 * @features: features for the output path (see dev->features)
3802 *
3803 * This function performs segmentation on the given skb. It returns
3804 * a pointer to the first in a list of new skbs for the segments.
3805 * In case of error it returns ERR_PTR(err).
3806 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3807 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3808 netdev_features_t features)
3809 {
3810 struct sk_buff *segs = NULL;
3811 struct sk_buff *tail = NULL;
3812 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3813 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3814 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3815 unsigned int offset = doffset;
3816 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3817 unsigned int partial_segs = 0;
3818 unsigned int headroom;
3819 unsigned int len = head_skb->len;
3820 struct sk_buff *frag_skb;
3821 skb_frag_t *frag;
3822 __be16 proto;
3823 bool csum, sg;
3824 int err = -ENOMEM;
3825 int i = 0;
3826 int nfrags, pos;
3827
3828 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
3829 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
3830 struct sk_buff *check_skb;
3831
3832 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
3833 if (skb_headlen(check_skb) && !check_skb->head_frag) {
3834 /* gso_size is untrusted, and we have a frag_list with
3835 * a linear non head_frag item.
3836 *
3837 * If head_skb's headlen does not fit requested gso_size,
3838 * it means that the frag_list members do NOT terminate
3839 * on exact gso_size boundaries. Hence we cannot perform
3840 * skb_frag_t page sharing. Therefore we must fallback to
3841 * copying the frag_list skbs; we do so by disabling SG.
3842 */
3843 features &= ~NETIF_F_SG;
3844 break;
3845 }
3846 }
3847 }
3848
3849 __skb_push(head_skb, doffset);
3850 proto = skb_network_protocol(head_skb, NULL);
3851 if (unlikely(!proto))
3852 return ERR_PTR(-EINVAL);
3853
3854 sg = !!(features & NETIF_F_SG);
3855 csum = !!can_checksum_protocol(features, proto);
3856
3857 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3858 if (!(features & NETIF_F_GSO_PARTIAL)) {
3859 struct sk_buff *iter;
3860 unsigned int frag_len;
3861
3862 if (!list_skb ||
3863 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3864 goto normal;
3865
3866 /* If we get here then all the required
3867 * GSO features except frag_list are supported.
3868 * Try to split the SKB to multiple GSO SKBs
3869 * with no frag_list.
3870 * Currently we can do that only when the buffers don't
3871 * have a linear part and all the buffers except
3872 * the last are of the same length.
3873 */
3874 frag_len = list_skb->len;
3875 skb_walk_frags(head_skb, iter) {
3876 if (frag_len != iter->len && iter->next)
3877 goto normal;
3878 if (skb_headlen(iter) && !iter->head_frag)
3879 goto normal;
3880
3881 len -= iter->len;
3882 }
3883
3884 if (len != frag_len)
3885 goto normal;
3886 }
3887
3888 /* GSO partial only requires that we trim off any excess that
3889 * doesn't fit into an MSS sized block, so take care of that
3890 * now.
3891 * Cap len to not accidentally hit GSO_BY_FRAGS.
3892 */
3893 partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
3894 if (partial_segs > 1)
3895 mss *= partial_segs;
3896 else
3897 partial_segs = 0;
3898 }
3899
3900 normal:
3901 headroom = skb_headroom(head_skb);
3902 pos = skb_headlen(head_skb);
3903
3904 if (skb_orphan_frags(head_skb, GFP_ATOMIC))
3905 return ERR_PTR(-ENOMEM);
3906
3907 nfrags = skb_shinfo(head_skb)->nr_frags;
3908 frag = skb_shinfo(head_skb)->frags;
3909 frag_skb = head_skb;
3910
3911 do {
3912 struct sk_buff *nskb;
3913 skb_frag_t *nskb_frag;
3914 int hsize;
3915 int size;
3916
3917 if (unlikely(mss == GSO_BY_FRAGS)) {
3918 len = list_skb->len;
3919 } else {
3920 len = head_skb->len - offset;
3921 if (len > mss)
3922 len = mss;
3923 }
3924
3925 hsize = skb_headlen(head_skb) - offset;
3926 if (hsize < 0)
3927 hsize = 0;
3928 if (hsize > len || !sg)
3929 hsize = len;
3930
3931 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3932 (skb_headlen(list_skb) == len || sg)) {
3933 BUG_ON(skb_headlen(list_skb) > len);
3934
3935 nskb = skb_clone(list_skb, GFP_ATOMIC);
3936 if (unlikely(!nskb))
3937 goto err;
3938
3939 i = 0;
3940 nfrags = skb_shinfo(list_skb)->nr_frags;
3941 frag = skb_shinfo(list_skb)->frags;
3942 frag_skb = list_skb;
3943 pos += skb_headlen(list_skb);
3944
3945 while (pos < offset + len) {
3946 BUG_ON(i >= nfrags);
3947
3948 size = skb_frag_size(frag);
3949 if (pos + size > offset + len)
3950 break;
3951
3952 i++;
3953 pos += size;
3954 frag++;
3955 }
3956
3957 list_skb = list_skb->next;
3958
3959 if (unlikely(pskb_trim(nskb, len))) {
3960 kfree_skb(nskb);
3961 goto err;
3962 }
3963
3964 hsize = skb_end_offset(nskb);
3965 if (skb_cow_head(nskb, doffset + headroom)) {
3966 kfree_skb(nskb);
3967 goto err;
3968 }
3969
3970 nskb->truesize += skb_end_offset(nskb) - hsize;
3971 skb_release_head_state(nskb);
3972 __skb_push(nskb, doffset);
3973 } else {
3974 nskb = __alloc_skb(hsize + doffset + headroom,
3975 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3976 NUMA_NO_NODE);
3977
3978 if (unlikely(!nskb))
3979 goto err;
3980
3981 skb_reserve(nskb, headroom);
3982 __skb_put(nskb, doffset);
3983 }
3984
3985 if (segs)
3986 tail->next = nskb;
3987 else
3988 segs = nskb;
3989 tail = nskb;
3990
3991 __copy_skb_header(nskb, head_skb);
3992
3993 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3994 skb_reset_mac_len(nskb);
3995
3996 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3997 nskb->data - tnl_hlen,
3998 doffset + tnl_hlen);
3999
4000 if (nskb->len == len + doffset)
4001 goto perform_csum_check;
4002
4003 if (!sg) {
4004 if (!csum) {
4005 if (!nskb->remcsum_offload)
4006 nskb->ip_summed = CHECKSUM_NONE;
4007 SKB_GSO_CB(nskb)->csum =
4008 skb_copy_and_csum_bits(head_skb, offset,
4009 skb_put(nskb,
4010 len),
4011 len);
4012 SKB_GSO_CB(nskb)->csum_start =
4013 skb_headroom(nskb) + doffset;
4014 } else {
4015 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4016 goto err;
4017 }
4018 continue;
4019 }
4020
4021 nskb_frag = skb_shinfo(nskb)->frags;
4022
4023 skb_copy_from_linear_data_offset(head_skb, offset,
4024 skb_put(nskb, hsize), hsize);
4025
4026 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
4027 SKBTX_SHARED_FRAG;
4028
4029 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4030 goto err;
4031
4032 while (pos < offset + len) {
4033 if (i >= nfrags) {
4034 if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4035 skb_zerocopy_clone(nskb, list_skb,
4036 GFP_ATOMIC))
4037 goto err;
4038
4039 i = 0;
4040 nfrags = skb_shinfo(list_skb)->nr_frags;
4041 frag = skb_shinfo(list_skb)->frags;
4042 frag_skb = list_skb;
4043 if (!skb_headlen(list_skb)) {
4044 BUG_ON(!nfrags);
4045 } else {
4046 BUG_ON(!list_skb->head_frag);
4047
4048 /* to make room for head_frag. */
4049 i--;
4050 frag--;
4051 }
4052
4053 list_skb = list_skb->next;
4054 }
4055
4056 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4057 MAX_SKB_FRAGS)) {
4058 net_warn_ratelimited(
4059 "skb_segment: too many frags: %u %u\n",
4060 pos, mss);
4061 err = -EINVAL;
4062 goto err;
4063 }
4064
4065 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4066 __skb_frag_ref(nskb_frag);
4067 size = skb_frag_size(nskb_frag);
4068
4069 if (pos < offset) {
4070 skb_frag_off_add(nskb_frag, offset - pos);
4071 skb_frag_size_sub(nskb_frag, offset - pos);
4072 }
4073
4074 skb_shinfo(nskb)->nr_frags++;
4075
4076 if (pos + size <= offset + len) {
4077 i++;
4078 frag++;
4079 pos += size;
4080 } else {
4081 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4082 goto skip_fraglist;
4083 }
4084
4085 nskb_frag++;
4086 }
4087
4088 skip_fraglist:
4089 nskb->data_len = len - hsize;
4090 nskb->len += nskb->data_len;
4091 nskb->truesize += nskb->data_len;
4092
4093 perform_csum_check:
4094 if (!csum) {
4095 if (skb_has_shared_frag(nskb) &&
4096 __skb_linearize(nskb))
4097 goto err;
4098
4099 if (!nskb->remcsum_offload)
4100 nskb->ip_summed = CHECKSUM_NONE;
4101 SKB_GSO_CB(nskb)->csum =
4102 skb_checksum(nskb, doffset,
4103 nskb->len - doffset, 0);
4104 SKB_GSO_CB(nskb)->csum_start =
4105 skb_headroom(nskb) + doffset;
4106 }
4107 } while ((offset += len) < head_skb->len);
4108
4109 /* Some callers want to get the end of the list.
4110 * Put it in segs->prev to avoid walking the list.
4111 * (see validate_xmit_skb_list() for example)
4112 */
4113 segs->prev = tail;
4114
4115 if (partial_segs) {
4116 struct sk_buff *iter;
4117 int type = skb_shinfo(head_skb)->gso_type;
4118 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4119
4120 /* Update type to add partial and then remove dodgy if set */
4121 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4122 type &= ~SKB_GSO_DODGY;
4123
4124 /* Update GSO info and prepare to start updating headers on
4125 * our way back down the stack of protocols.
4126 */
4127 for (iter = segs; iter; iter = iter->next) {
4128 skb_shinfo(iter)->gso_size = gso_size;
4129 skb_shinfo(iter)->gso_segs = partial_segs;
4130 skb_shinfo(iter)->gso_type = type;
4131 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4132 }
4133
4134 if (tail->len - doffset <= gso_size)
4135 skb_shinfo(tail)->gso_size = 0;
4136 else if (tail != segs)
4137 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4138 }
4139
4140 /* Following permits correct backpressure, for protocols
4141 * using skb_set_owner_w().
4142 * Idea is to tranfert ownership from head_skb to last segment.
4143 */
4144 if (head_skb->destructor == sock_wfree) {
4145 swap(tail->truesize, head_skb->truesize);
4146 swap(tail->destructor, head_skb->destructor);
4147 swap(tail->sk, head_skb->sk);
4148 }
4149 return segs;
4150
4151 err:
4152 kfree_skb_list(segs);
4153 return ERR_PTR(err);
4154 }
4155 EXPORT_SYMBOL_GPL(skb_segment);
4156
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4157 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4158 {
4159 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4160 unsigned int offset = skb_gro_offset(skb);
4161 unsigned int headlen = skb_headlen(skb);
4162 unsigned int len = skb_gro_len(skb);
4163 unsigned int delta_truesize;
4164 struct sk_buff *lp;
4165
4166 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4167 return -E2BIG;
4168
4169 lp = NAPI_GRO_CB(p)->last;
4170 pinfo = skb_shinfo(lp);
4171
4172 if (headlen <= offset) {
4173 skb_frag_t *frag;
4174 skb_frag_t *frag2;
4175 int i = skbinfo->nr_frags;
4176 int nr_frags = pinfo->nr_frags + i;
4177
4178 if (nr_frags > MAX_SKB_FRAGS)
4179 goto merge;
4180
4181 offset -= headlen;
4182 pinfo->nr_frags = nr_frags;
4183 skbinfo->nr_frags = 0;
4184
4185 frag = pinfo->frags + nr_frags;
4186 frag2 = skbinfo->frags + i;
4187 do {
4188 *--frag = *--frag2;
4189 } while (--i);
4190
4191 skb_frag_off_add(frag, offset);
4192 skb_frag_size_sub(frag, offset);
4193
4194 /* all fragments truesize : remove (head size + sk_buff) */
4195 delta_truesize = skb->truesize -
4196 SKB_TRUESIZE(skb_end_offset(skb));
4197
4198 skb->truesize -= skb->data_len;
4199 skb->len -= skb->data_len;
4200 skb->data_len = 0;
4201
4202 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4203 goto done;
4204 } else if (skb->head_frag) {
4205 int nr_frags = pinfo->nr_frags;
4206 skb_frag_t *frag = pinfo->frags + nr_frags;
4207 struct page *page = virt_to_head_page(skb->head);
4208 unsigned int first_size = headlen - offset;
4209 unsigned int first_offset;
4210
4211 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4212 goto merge;
4213
4214 first_offset = skb->data -
4215 (unsigned char *)page_address(page) +
4216 offset;
4217
4218 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4219
4220 __skb_frag_set_page(frag, page);
4221 skb_frag_off_set(frag, first_offset);
4222 skb_frag_size_set(frag, first_size);
4223
4224 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4225 /* We dont need to clear skbinfo->nr_frags here */
4226
4227 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4228 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4229 goto done;
4230 }
4231
4232 merge:
4233 delta_truesize = skb->truesize;
4234 if (offset > headlen) {
4235 unsigned int eat = offset - headlen;
4236
4237 skb_frag_off_add(&skbinfo->frags[0], eat);
4238 skb_frag_size_sub(&skbinfo->frags[0], eat);
4239 skb->data_len -= eat;
4240 skb->len -= eat;
4241 offset = headlen;
4242 }
4243
4244 __skb_pull(skb, offset);
4245
4246 if (NAPI_GRO_CB(p)->last == p)
4247 skb_shinfo(p)->frag_list = skb;
4248 else
4249 NAPI_GRO_CB(p)->last->next = skb;
4250 NAPI_GRO_CB(p)->last = skb;
4251 __skb_header_release(skb);
4252 lp = p;
4253
4254 done:
4255 NAPI_GRO_CB(p)->count++;
4256 p->data_len += len;
4257 p->truesize += delta_truesize;
4258 p->len += len;
4259 if (lp != p) {
4260 lp->data_len += len;
4261 lp->truesize += delta_truesize;
4262 lp->len += len;
4263 }
4264 NAPI_GRO_CB(skb)->same_flow = 1;
4265 return 0;
4266 }
4267
4268 #ifdef CONFIG_SKB_EXTENSIONS
4269 #define SKB_EXT_ALIGN_VALUE 8
4270 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4271
4272 static const u8 skb_ext_type_len[] = {
4273 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4274 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4275 #endif
4276 #ifdef CONFIG_XFRM
4277 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4278 #endif
4279 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4280 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4281 #endif
4282 #if IS_ENABLED(CONFIG_MPTCP)
4283 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4284 #endif
4285 };
4286
skb_ext_total_length(void)4287 static __always_inline unsigned int skb_ext_total_length(void)
4288 {
4289 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4290 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4291 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4292 #endif
4293 #ifdef CONFIG_XFRM
4294 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4295 #endif
4296 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4297 skb_ext_type_len[TC_SKB_EXT] +
4298 #endif
4299 #if IS_ENABLED(CONFIG_MPTCP)
4300 skb_ext_type_len[SKB_EXT_MPTCP] +
4301 #endif
4302 0;
4303 }
4304
skb_extensions_init(void)4305 static void skb_extensions_init(void)
4306 {
4307 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4308 BUILD_BUG_ON(skb_ext_total_length() > 255);
4309
4310 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4311 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4312 0,
4313 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4314 NULL);
4315 }
4316 #else
skb_extensions_init(void)4317 static void skb_extensions_init(void) {}
4318 #endif
4319
skb_init(void)4320 void __init skb_init(void)
4321 {
4322 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4323 sizeof(struct sk_buff),
4324 0,
4325 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4326 offsetof(struct sk_buff, cb),
4327 sizeof_field(struct sk_buff, cb),
4328 NULL);
4329 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4330 sizeof(struct sk_buff_fclones),
4331 0,
4332 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4333 NULL);
4334 skb_extensions_init();
4335 }
4336
4337 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4338 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4339 unsigned int recursion_level)
4340 {
4341 int start = skb_headlen(skb);
4342 int i, copy = start - offset;
4343 struct sk_buff *frag_iter;
4344 int elt = 0;
4345
4346 if (unlikely(recursion_level >= 24))
4347 return -EMSGSIZE;
4348
4349 if (copy > 0) {
4350 if (copy > len)
4351 copy = len;
4352 sg_set_buf(sg, skb->data + offset, copy);
4353 elt++;
4354 if ((len -= copy) == 0)
4355 return elt;
4356 offset += copy;
4357 }
4358
4359 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4360 int end;
4361
4362 WARN_ON(start > offset + len);
4363
4364 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4365 if ((copy = end - offset) > 0) {
4366 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4367 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4368 return -EMSGSIZE;
4369
4370 if (copy > len)
4371 copy = len;
4372 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4373 skb_frag_off(frag) + offset - start);
4374 elt++;
4375 if (!(len -= copy))
4376 return elt;
4377 offset += copy;
4378 }
4379 start = end;
4380 }
4381
4382 skb_walk_frags(skb, frag_iter) {
4383 int end, ret;
4384
4385 WARN_ON(start > offset + len);
4386
4387 end = start + frag_iter->len;
4388 if ((copy = end - offset) > 0) {
4389 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4390 return -EMSGSIZE;
4391
4392 if (copy > len)
4393 copy = len;
4394 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4395 copy, recursion_level + 1);
4396 if (unlikely(ret < 0))
4397 return ret;
4398 elt += ret;
4399 if ((len -= copy) == 0)
4400 return elt;
4401 offset += copy;
4402 }
4403 start = end;
4404 }
4405 BUG_ON(len);
4406 return elt;
4407 }
4408
4409 /**
4410 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4411 * @skb: Socket buffer containing the buffers to be mapped
4412 * @sg: The scatter-gather list to map into
4413 * @offset: The offset into the buffer's contents to start mapping
4414 * @len: Length of buffer space to be mapped
4415 *
4416 * Fill the specified scatter-gather list with mappings/pointers into a
4417 * region of the buffer space attached to a socket buffer. Returns either
4418 * the number of scatterlist items used, or -EMSGSIZE if the contents
4419 * could not fit.
4420 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4421 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4422 {
4423 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4424
4425 if (nsg <= 0)
4426 return nsg;
4427
4428 sg_mark_end(&sg[nsg - 1]);
4429
4430 return nsg;
4431 }
4432 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4433
4434 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4435 * sglist without mark the sg which contain last skb data as the end.
4436 * So the caller can mannipulate sg list as will when padding new data after
4437 * the first call without calling sg_unmark_end to expend sg list.
4438 *
4439 * Scenario to use skb_to_sgvec_nomark:
4440 * 1. sg_init_table
4441 * 2. skb_to_sgvec_nomark(payload1)
4442 * 3. skb_to_sgvec_nomark(payload2)
4443 *
4444 * This is equivalent to:
4445 * 1. sg_init_table
4446 * 2. skb_to_sgvec(payload1)
4447 * 3. sg_unmark_end
4448 * 4. skb_to_sgvec(payload2)
4449 *
4450 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4451 * is more preferable.
4452 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4453 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4454 int offset, int len)
4455 {
4456 return __skb_to_sgvec(skb, sg, offset, len, 0);
4457 }
4458 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4459
4460
4461
4462 /**
4463 * skb_cow_data - Check that a socket buffer's data buffers are writable
4464 * @skb: The socket buffer to check.
4465 * @tailbits: Amount of trailing space to be added
4466 * @trailer: Returned pointer to the skb where the @tailbits space begins
4467 *
4468 * Make sure that the data buffers attached to a socket buffer are
4469 * writable. If they are not, private copies are made of the data buffers
4470 * and the socket buffer is set to use these instead.
4471 *
4472 * If @tailbits is given, make sure that there is space to write @tailbits
4473 * bytes of data beyond current end of socket buffer. @trailer will be
4474 * set to point to the skb in which this space begins.
4475 *
4476 * The number of scatterlist elements required to completely map the
4477 * COW'd and extended socket buffer will be returned.
4478 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4479 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4480 {
4481 int copyflag;
4482 int elt;
4483 struct sk_buff *skb1, **skb_p;
4484
4485 /* If skb is cloned or its head is paged, reallocate
4486 * head pulling out all the pages (pages are considered not writable
4487 * at the moment even if they are anonymous).
4488 */
4489 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4490 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4491 return -ENOMEM;
4492
4493 /* Easy case. Most of packets will go this way. */
4494 if (!skb_has_frag_list(skb)) {
4495 /* A little of trouble, not enough of space for trailer.
4496 * This should not happen, when stack is tuned to generate
4497 * good frames. OK, on miss we reallocate and reserve even more
4498 * space, 128 bytes is fair. */
4499
4500 if (skb_tailroom(skb) < tailbits &&
4501 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4502 return -ENOMEM;
4503
4504 /* Voila! */
4505 *trailer = skb;
4506 return 1;
4507 }
4508
4509 /* Misery. We are in troubles, going to mincer fragments... */
4510
4511 elt = 1;
4512 skb_p = &skb_shinfo(skb)->frag_list;
4513 copyflag = 0;
4514
4515 while ((skb1 = *skb_p) != NULL) {
4516 int ntail = 0;
4517
4518 /* The fragment is partially pulled by someone,
4519 * this can happen on input. Copy it and everything
4520 * after it. */
4521
4522 if (skb_shared(skb1))
4523 copyflag = 1;
4524
4525 /* If the skb is the last, worry about trailer. */
4526
4527 if (skb1->next == NULL && tailbits) {
4528 if (skb_shinfo(skb1)->nr_frags ||
4529 skb_has_frag_list(skb1) ||
4530 skb_tailroom(skb1) < tailbits)
4531 ntail = tailbits + 128;
4532 }
4533
4534 if (copyflag ||
4535 skb_cloned(skb1) ||
4536 ntail ||
4537 skb_shinfo(skb1)->nr_frags ||
4538 skb_has_frag_list(skb1)) {
4539 struct sk_buff *skb2;
4540
4541 /* Fuck, we are miserable poor guys... */
4542 if (ntail == 0)
4543 skb2 = skb_copy(skb1, GFP_ATOMIC);
4544 else
4545 skb2 = skb_copy_expand(skb1,
4546 skb_headroom(skb1),
4547 ntail,
4548 GFP_ATOMIC);
4549 if (unlikely(skb2 == NULL))
4550 return -ENOMEM;
4551
4552 if (skb1->sk)
4553 skb_set_owner_w(skb2, skb1->sk);
4554
4555 /* Looking around. Are we still alive?
4556 * OK, link new skb, drop old one */
4557
4558 skb2->next = skb1->next;
4559 *skb_p = skb2;
4560 kfree_skb(skb1);
4561 skb1 = skb2;
4562 }
4563 elt++;
4564 *trailer = skb1;
4565 skb_p = &skb1->next;
4566 }
4567
4568 return elt;
4569 }
4570 EXPORT_SYMBOL_GPL(skb_cow_data);
4571
sock_rmem_free(struct sk_buff * skb)4572 static void sock_rmem_free(struct sk_buff *skb)
4573 {
4574 struct sock *sk = skb->sk;
4575
4576 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4577 }
4578
skb_set_err_queue(struct sk_buff * skb)4579 static void skb_set_err_queue(struct sk_buff *skb)
4580 {
4581 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4582 * So, it is safe to (mis)use it to mark skbs on the error queue.
4583 */
4584 skb->pkt_type = PACKET_OUTGOING;
4585 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4586 }
4587
4588 /*
4589 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4590 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4591 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4592 {
4593 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4594 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4595 return -ENOMEM;
4596
4597 skb_orphan(skb);
4598 skb->sk = sk;
4599 skb->destructor = sock_rmem_free;
4600 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4601 skb_set_err_queue(skb);
4602
4603 /* before exiting rcu section, make sure dst is refcounted */
4604 skb_dst_force(skb);
4605
4606 skb_queue_tail(&sk->sk_error_queue, skb);
4607 if (!sock_flag(sk, SOCK_DEAD))
4608 sk->sk_error_report(sk);
4609 return 0;
4610 }
4611 EXPORT_SYMBOL(sock_queue_err_skb);
4612
is_icmp_err_skb(const struct sk_buff * skb)4613 static bool is_icmp_err_skb(const struct sk_buff *skb)
4614 {
4615 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4616 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4617 }
4618
sock_dequeue_err_skb(struct sock * sk)4619 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4620 {
4621 struct sk_buff_head *q = &sk->sk_error_queue;
4622 struct sk_buff *skb, *skb_next = NULL;
4623 bool icmp_next = false;
4624 unsigned long flags;
4625
4626 spin_lock_irqsave(&q->lock, flags);
4627 skb = __skb_dequeue(q);
4628 if (skb && (skb_next = skb_peek(q))) {
4629 icmp_next = is_icmp_err_skb(skb_next);
4630 if (icmp_next)
4631 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4632 }
4633 spin_unlock_irqrestore(&q->lock, flags);
4634
4635 if (is_icmp_err_skb(skb) && !icmp_next)
4636 sk->sk_err = 0;
4637
4638 if (skb_next)
4639 sk->sk_error_report(sk);
4640
4641 return skb;
4642 }
4643 EXPORT_SYMBOL(sock_dequeue_err_skb);
4644
4645 /**
4646 * skb_clone_sk - create clone of skb, and take reference to socket
4647 * @skb: the skb to clone
4648 *
4649 * This function creates a clone of a buffer that holds a reference on
4650 * sk_refcnt. Buffers created via this function are meant to be
4651 * returned using sock_queue_err_skb, or free via kfree_skb.
4652 *
4653 * When passing buffers allocated with this function to sock_queue_err_skb
4654 * it is necessary to wrap the call with sock_hold/sock_put in order to
4655 * prevent the socket from being released prior to being enqueued on
4656 * the sk_error_queue.
4657 */
skb_clone_sk(struct sk_buff * skb)4658 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4659 {
4660 struct sock *sk = skb->sk;
4661 struct sk_buff *clone;
4662
4663 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4664 return NULL;
4665
4666 clone = skb_clone(skb, GFP_ATOMIC);
4667 if (!clone) {
4668 sock_put(sk);
4669 return NULL;
4670 }
4671
4672 clone->sk = sk;
4673 clone->destructor = sock_efree;
4674
4675 return clone;
4676 }
4677 EXPORT_SYMBOL(skb_clone_sk);
4678
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4679 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4680 struct sock *sk,
4681 int tstype,
4682 bool opt_stats)
4683 {
4684 struct sock_exterr_skb *serr;
4685 int err;
4686
4687 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4688
4689 serr = SKB_EXT_ERR(skb);
4690 memset(serr, 0, sizeof(*serr));
4691 serr->ee.ee_errno = ENOMSG;
4692 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4693 serr->ee.ee_info = tstype;
4694 serr->opt_stats = opt_stats;
4695 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4696 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4697 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4698 if (sk->sk_protocol == IPPROTO_TCP &&
4699 sk->sk_type == SOCK_STREAM)
4700 serr->ee.ee_data -= sk->sk_tskey;
4701 }
4702
4703 err = sock_queue_err_skb(sk, skb);
4704
4705 if (err)
4706 kfree_skb(skb);
4707 }
4708
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4709 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4710 {
4711 bool ret;
4712
4713 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4714 return true;
4715
4716 read_lock_bh(&sk->sk_callback_lock);
4717 ret = sk->sk_socket && sk->sk_socket->file &&
4718 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4719 read_unlock_bh(&sk->sk_callback_lock);
4720 return ret;
4721 }
4722
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4723 void skb_complete_tx_timestamp(struct sk_buff *skb,
4724 struct skb_shared_hwtstamps *hwtstamps)
4725 {
4726 struct sock *sk = skb->sk;
4727
4728 if (!skb_may_tx_timestamp(sk, false))
4729 goto err;
4730
4731 /* Take a reference to prevent skb_orphan() from freeing the socket,
4732 * but only if the socket refcount is not zero.
4733 */
4734 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4735 *skb_hwtstamps(skb) = *hwtstamps;
4736 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4737 sock_put(sk);
4738 return;
4739 }
4740
4741 err:
4742 kfree_skb(skb);
4743 }
4744 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4745
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4746 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4747 struct skb_shared_hwtstamps *hwtstamps,
4748 struct sock *sk, int tstype)
4749 {
4750 struct sk_buff *skb;
4751 bool tsonly, opt_stats = false;
4752
4753 if (!sk)
4754 return;
4755
4756 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4757 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4758 return;
4759
4760 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4761 if (!skb_may_tx_timestamp(sk, tsonly))
4762 return;
4763
4764 if (tsonly) {
4765 #ifdef CONFIG_INET
4766 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4767 sk->sk_protocol == IPPROTO_TCP &&
4768 sk->sk_type == SOCK_STREAM) {
4769 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4770 opt_stats = true;
4771 } else
4772 #endif
4773 skb = alloc_skb(0, GFP_ATOMIC);
4774 } else {
4775 skb = skb_clone(orig_skb, GFP_ATOMIC);
4776
4777 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
4778 kfree_skb(skb);
4779 return;
4780 }
4781 }
4782 if (!skb)
4783 return;
4784
4785 if (tsonly) {
4786 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4787 SKBTX_ANY_TSTAMP;
4788 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4789 }
4790
4791 if (hwtstamps)
4792 *skb_hwtstamps(skb) = *hwtstamps;
4793 else
4794 skb->tstamp = ktime_get_real();
4795
4796 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4797 }
4798 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4799
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4800 void skb_tstamp_tx(struct sk_buff *orig_skb,
4801 struct skb_shared_hwtstamps *hwtstamps)
4802 {
4803 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4804 SCM_TSTAMP_SND);
4805 }
4806 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4807
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4808 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4809 {
4810 struct sock *sk = skb->sk;
4811 struct sock_exterr_skb *serr;
4812 int err = 1;
4813
4814 skb->wifi_acked_valid = 1;
4815 skb->wifi_acked = acked;
4816
4817 serr = SKB_EXT_ERR(skb);
4818 memset(serr, 0, sizeof(*serr));
4819 serr->ee.ee_errno = ENOMSG;
4820 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4821
4822 /* Take a reference to prevent skb_orphan() from freeing the socket,
4823 * but only if the socket refcount is not zero.
4824 */
4825 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4826 err = sock_queue_err_skb(sk, skb);
4827 sock_put(sk);
4828 }
4829 if (err)
4830 kfree_skb(skb);
4831 }
4832 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4833
4834 /**
4835 * skb_partial_csum_set - set up and verify partial csum values for packet
4836 * @skb: the skb to set
4837 * @start: the number of bytes after skb->data to start checksumming.
4838 * @off: the offset from start to place the checksum.
4839 *
4840 * For untrusted partially-checksummed packets, we need to make sure the values
4841 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4842 *
4843 * This function checks and sets those values and skb->ip_summed: if this
4844 * returns false you should drop the packet.
4845 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4846 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4847 {
4848 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4849 u32 csum_start = skb_headroom(skb) + (u32)start;
4850
4851 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4852 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4853 start, off, skb_headroom(skb), skb_headlen(skb));
4854 return false;
4855 }
4856 skb->ip_summed = CHECKSUM_PARTIAL;
4857 skb->csum_start = csum_start;
4858 skb->csum_offset = off;
4859 skb_set_transport_header(skb, start);
4860 return true;
4861 }
4862 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4863
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4864 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4865 unsigned int max)
4866 {
4867 if (skb_headlen(skb) >= len)
4868 return 0;
4869
4870 /* If we need to pullup then pullup to the max, so we
4871 * won't need to do it again.
4872 */
4873 if (max > skb->len)
4874 max = skb->len;
4875
4876 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4877 return -ENOMEM;
4878
4879 if (skb_headlen(skb) < len)
4880 return -EPROTO;
4881
4882 return 0;
4883 }
4884
4885 #define MAX_TCP_HDR_LEN (15 * 4)
4886
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)4887 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4888 typeof(IPPROTO_IP) proto,
4889 unsigned int off)
4890 {
4891 int err;
4892
4893 switch (proto) {
4894 case IPPROTO_TCP:
4895 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4896 off + MAX_TCP_HDR_LEN);
4897 if (!err && !skb_partial_csum_set(skb, off,
4898 offsetof(struct tcphdr,
4899 check)))
4900 err = -EPROTO;
4901 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4902
4903 case IPPROTO_UDP:
4904 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4905 off + sizeof(struct udphdr));
4906 if (!err && !skb_partial_csum_set(skb, off,
4907 offsetof(struct udphdr,
4908 check)))
4909 err = -EPROTO;
4910 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4911 }
4912
4913 return ERR_PTR(-EPROTO);
4914 }
4915
4916 /* This value should be large enough to cover a tagged ethernet header plus
4917 * maximally sized IP and TCP or UDP headers.
4918 */
4919 #define MAX_IP_HDR_LEN 128
4920
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4921 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4922 {
4923 unsigned int off;
4924 bool fragment;
4925 __sum16 *csum;
4926 int err;
4927
4928 fragment = false;
4929
4930 err = skb_maybe_pull_tail(skb,
4931 sizeof(struct iphdr),
4932 MAX_IP_HDR_LEN);
4933 if (err < 0)
4934 goto out;
4935
4936 if (ip_is_fragment(ip_hdr(skb)))
4937 fragment = true;
4938
4939 off = ip_hdrlen(skb);
4940
4941 err = -EPROTO;
4942
4943 if (fragment)
4944 goto out;
4945
4946 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4947 if (IS_ERR(csum))
4948 return PTR_ERR(csum);
4949
4950 if (recalculate)
4951 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4952 ip_hdr(skb)->daddr,
4953 skb->len - off,
4954 ip_hdr(skb)->protocol, 0);
4955 err = 0;
4956
4957 out:
4958 return err;
4959 }
4960
4961 /* This value should be large enough to cover a tagged ethernet header plus
4962 * an IPv6 header, all options, and a maximal TCP or UDP header.
4963 */
4964 #define MAX_IPV6_HDR_LEN 256
4965
4966 #define OPT_HDR(type, skb, off) \
4967 (type *)(skb_network_header(skb) + (off))
4968
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4969 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4970 {
4971 int err;
4972 u8 nexthdr;
4973 unsigned int off;
4974 unsigned int len;
4975 bool fragment;
4976 bool done;
4977 __sum16 *csum;
4978
4979 fragment = false;
4980 done = false;
4981
4982 off = sizeof(struct ipv6hdr);
4983
4984 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4985 if (err < 0)
4986 goto out;
4987
4988 nexthdr = ipv6_hdr(skb)->nexthdr;
4989
4990 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4991 while (off <= len && !done) {
4992 switch (nexthdr) {
4993 case IPPROTO_DSTOPTS:
4994 case IPPROTO_HOPOPTS:
4995 case IPPROTO_ROUTING: {
4996 struct ipv6_opt_hdr *hp;
4997
4998 err = skb_maybe_pull_tail(skb,
4999 off +
5000 sizeof(struct ipv6_opt_hdr),
5001 MAX_IPV6_HDR_LEN);
5002 if (err < 0)
5003 goto out;
5004
5005 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5006 nexthdr = hp->nexthdr;
5007 off += ipv6_optlen(hp);
5008 break;
5009 }
5010 case IPPROTO_AH: {
5011 struct ip_auth_hdr *hp;
5012
5013 err = skb_maybe_pull_tail(skb,
5014 off +
5015 sizeof(struct ip_auth_hdr),
5016 MAX_IPV6_HDR_LEN);
5017 if (err < 0)
5018 goto out;
5019
5020 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5021 nexthdr = hp->nexthdr;
5022 off += ipv6_authlen(hp);
5023 break;
5024 }
5025 case IPPROTO_FRAGMENT: {
5026 struct frag_hdr *hp;
5027
5028 err = skb_maybe_pull_tail(skb,
5029 off +
5030 sizeof(struct frag_hdr),
5031 MAX_IPV6_HDR_LEN);
5032 if (err < 0)
5033 goto out;
5034
5035 hp = OPT_HDR(struct frag_hdr, skb, off);
5036
5037 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5038 fragment = true;
5039
5040 nexthdr = hp->nexthdr;
5041 off += sizeof(struct frag_hdr);
5042 break;
5043 }
5044 default:
5045 done = true;
5046 break;
5047 }
5048 }
5049
5050 err = -EPROTO;
5051
5052 if (!done || fragment)
5053 goto out;
5054
5055 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5056 if (IS_ERR(csum))
5057 return PTR_ERR(csum);
5058
5059 if (recalculate)
5060 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5061 &ipv6_hdr(skb)->daddr,
5062 skb->len - off, nexthdr, 0);
5063 err = 0;
5064
5065 out:
5066 return err;
5067 }
5068
5069 /**
5070 * skb_checksum_setup - set up partial checksum offset
5071 * @skb: the skb to set up
5072 * @recalculate: if true the pseudo-header checksum will be recalculated
5073 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5074 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5075 {
5076 int err;
5077
5078 switch (skb->protocol) {
5079 case htons(ETH_P_IP):
5080 err = skb_checksum_setup_ipv4(skb, recalculate);
5081 break;
5082
5083 case htons(ETH_P_IPV6):
5084 err = skb_checksum_setup_ipv6(skb, recalculate);
5085 break;
5086
5087 default:
5088 err = -EPROTO;
5089 break;
5090 }
5091
5092 return err;
5093 }
5094 EXPORT_SYMBOL(skb_checksum_setup);
5095
5096 /**
5097 * skb_checksum_maybe_trim - maybe trims the given skb
5098 * @skb: the skb to check
5099 * @transport_len: the data length beyond the network header
5100 *
5101 * Checks whether the given skb has data beyond the given transport length.
5102 * If so, returns a cloned skb trimmed to this transport length.
5103 * Otherwise returns the provided skb. Returns NULL in error cases
5104 * (e.g. transport_len exceeds skb length or out-of-memory).
5105 *
5106 * Caller needs to set the skb transport header and free any returned skb if it
5107 * differs from the provided skb.
5108 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5109 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5110 unsigned int transport_len)
5111 {
5112 struct sk_buff *skb_chk;
5113 unsigned int len = skb_transport_offset(skb) + transport_len;
5114 int ret;
5115
5116 if (skb->len < len)
5117 return NULL;
5118 else if (skb->len == len)
5119 return skb;
5120
5121 skb_chk = skb_clone(skb, GFP_ATOMIC);
5122 if (!skb_chk)
5123 return NULL;
5124
5125 ret = pskb_trim_rcsum(skb_chk, len);
5126 if (ret) {
5127 kfree_skb(skb_chk);
5128 return NULL;
5129 }
5130
5131 return skb_chk;
5132 }
5133
5134 /**
5135 * skb_checksum_trimmed - validate checksum of an skb
5136 * @skb: the skb to check
5137 * @transport_len: the data length beyond the network header
5138 * @skb_chkf: checksum function to use
5139 *
5140 * Applies the given checksum function skb_chkf to the provided skb.
5141 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5142 *
5143 * If the skb has data beyond the given transport length, then a
5144 * trimmed & cloned skb is checked and returned.
5145 *
5146 * Caller needs to set the skb transport header and free any returned skb if it
5147 * differs from the provided skb.
5148 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5149 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5150 unsigned int transport_len,
5151 __sum16(*skb_chkf)(struct sk_buff *skb))
5152 {
5153 struct sk_buff *skb_chk;
5154 unsigned int offset = skb_transport_offset(skb);
5155 __sum16 ret;
5156
5157 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5158 if (!skb_chk)
5159 goto err;
5160
5161 if (!pskb_may_pull(skb_chk, offset))
5162 goto err;
5163
5164 skb_pull_rcsum(skb_chk, offset);
5165 ret = skb_chkf(skb_chk);
5166 skb_push_rcsum(skb_chk, offset);
5167
5168 if (ret)
5169 goto err;
5170
5171 return skb_chk;
5172
5173 err:
5174 if (skb_chk && skb_chk != skb)
5175 kfree_skb(skb_chk);
5176
5177 return NULL;
5178
5179 }
5180 EXPORT_SYMBOL(skb_checksum_trimmed);
5181
__skb_warn_lro_forwarding(const struct sk_buff * skb)5182 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5183 {
5184 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5185 skb->dev->name);
5186 }
5187 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5188
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5189 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5190 {
5191 if (head_stolen) {
5192 skb_release_head_state(skb);
5193 kmem_cache_free(skbuff_head_cache, skb);
5194 } else {
5195 __kfree_skb(skb);
5196 }
5197 }
5198 EXPORT_SYMBOL(kfree_skb_partial);
5199
5200 /**
5201 * skb_try_coalesce - try to merge skb to prior one
5202 * @to: prior buffer
5203 * @from: buffer to add
5204 * @fragstolen: pointer to boolean
5205 * @delta_truesize: how much more was allocated than was requested
5206 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5207 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5208 bool *fragstolen, int *delta_truesize)
5209 {
5210 struct skb_shared_info *to_shinfo, *from_shinfo;
5211 int i, delta, len = from->len;
5212
5213 *fragstolen = false;
5214
5215 if (skb_cloned(to))
5216 return false;
5217
5218 if (len <= skb_tailroom(to)) {
5219 if (len)
5220 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5221 *delta_truesize = 0;
5222 return true;
5223 }
5224
5225 to_shinfo = skb_shinfo(to);
5226 from_shinfo = skb_shinfo(from);
5227 if (to_shinfo->frag_list || from_shinfo->frag_list)
5228 return false;
5229 if (skb_zcopy(to) || skb_zcopy(from))
5230 return false;
5231
5232 if (skb_headlen(from) != 0) {
5233 struct page *page;
5234 unsigned int offset;
5235
5236 if (to_shinfo->nr_frags +
5237 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5238 return false;
5239
5240 if (skb_head_is_locked(from))
5241 return false;
5242
5243 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5244
5245 page = virt_to_head_page(from->head);
5246 offset = from->data - (unsigned char *)page_address(page);
5247
5248 skb_fill_page_desc(to, to_shinfo->nr_frags,
5249 page, offset, skb_headlen(from));
5250 *fragstolen = true;
5251 } else {
5252 if (to_shinfo->nr_frags +
5253 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5254 return false;
5255
5256 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5257 }
5258
5259 WARN_ON_ONCE(delta < len);
5260
5261 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5262 from_shinfo->frags,
5263 from_shinfo->nr_frags * sizeof(skb_frag_t));
5264 to_shinfo->nr_frags += from_shinfo->nr_frags;
5265
5266 if (!skb_cloned(from))
5267 from_shinfo->nr_frags = 0;
5268
5269 /* if the skb is not cloned this does nothing
5270 * since we set nr_frags to 0.
5271 */
5272 for (i = 0; i < from_shinfo->nr_frags; i++)
5273 __skb_frag_ref(&from_shinfo->frags[i]);
5274
5275 to->truesize += delta;
5276 to->len += len;
5277 to->data_len += len;
5278
5279 *delta_truesize = delta;
5280 return true;
5281 }
5282 EXPORT_SYMBOL(skb_try_coalesce);
5283
5284 /**
5285 * skb_scrub_packet - scrub an skb
5286 *
5287 * @skb: buffer to clean
5288 * @xnet: packet is crossing netns
5289 *
5290 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5291 * into/from a tunnel. Some information have to be cleared during these
5292 * operations.
5293 * skb_scrub_packet can also be used to clean a skb before injecting it in
5294 * another namespace (@xnet == true). We have to clear all information in the
5295 * skb that could impact namespace isolation.
5296 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5297 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5298 {
5299 skb->pkt_type = PACKET_HOST;
5300 skb->skb_iif = 0;
5301 skb->ignore_df = 0;
5302 skb_dst_drop(skb);
5303 skb_ext_reset(skb);
5304 nf_reset_ct(skb);
5305 nf_reset_trace(skb);
5306
5307 #ifdef CONFIG_NET_SWITCHDEV
5308 skb->offload_fwd_mark = 0;
5309 skb->offload_l3_fwd_mark = 0;
5310 #endif
5311
5312 if (!xnet)
5313 return;
5314
5315 ipvs_reset(skb);
5316 skb->mark = 0;
5317 skb->tstamp = 0;
5318 }
5319 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5320
5321 /**
5322 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5323 *
5324 * @skb: GSO skb
5325 *
5326 * skb_gso_transport_seglen is used to determine the real size of the
5327 * individual segments, including Layer4 headers (TCP/UDP).
5328 *
5329 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5330 */
skb_gso_transport_seglen(const struct sk_buff * skb)5331 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5332 {
5333 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5334 unsigned int thlen = 0;
5335
5336 if (skb->encapsulation) {
5337 thlen = skb_inner_transport_header(skb) -
5338 skb_transport_header(skb);
5339
5340 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5341 thlen += inner_tcp_hdrlen(skb);
5342 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5343 thlen = tcp_hdrlen(skb);
5344 } else if (unlikely(skb_is_gso_sctp(skb))) {
5345 thlen = sizeof(struct sctphdr);
5346 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5347 thlen = sizeof(struct udphdr);
5348 }
5349 /* UFO sets gso_size to the size of the fragmentation
5350 * payload, i.e. the size of the L4 (UDP) header is already
5351 * accounted for.
5352 */
5353 return thlen + shinfo->gso_size;
5354 }
5355
5356 /**
5357 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5358 *
5359 * @skb: GSO skb
5360 *
5361 * skb_gso_network_seglen is used to determine the real size of the
5362 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5363 *
5364 * The MAC/L2 header is not accounted for.
5365 */
skb_gso_network_seglen(const struct sk_buff * skb)5366 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5367 {
5368 unsigned int hdr_len = skb_transport_header(skb) -
5369 skb_network_header(skb);
5370
5371 return hdr_len + skb_gso_transport_seglen(skb);
5372 }
5373
5374 /**
5375 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5376 *
5377 * @skb: GSO skb
5378 *
5379 * skb_gso_mac_seglen is used to determine the real size of the
5380 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5381 * headers (TCP/UDP).
5382 */
skb_gso_mac_seglen(const struct sk_buff * skb)5383 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5384 {
5385 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5386
5387 return hdr_len + skb_gso_transport_seglen(skb);
5388 }
5389
5390 /**
5391 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5392 *
5393 * There are a couple of instances where we have a GSO skb, and we
5394 * want to determine what size it would be after it is segmented.
5395 *
5396 * We might want to check:
5397 * - L3+L4+payload size (e.g. IP forwarding)
5398 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5399 *
5400 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5401 *
5402 * @skb: GSO skb
5403 *
5404 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5405 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5406 *
5407 * @max_len: The maximum permissible length.
5408 *
5409 * Returns true if the segmented length <= max length.
5410 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5411 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5412 unsigned int seg_len,
5413 unsigned int max_len) {
5414 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5415 const struct sk_buff *iter;
5416
5417 if (shinfo->gso_size != GSO_BY_FRAGS)
5418 return seg_len <= max_len;
5419
5420 /* Undo this so we can re-use header sizes */
5421 seg_len -= GSO_BY_FRAGS;
5422
5423 skb_walk_frags(skb, iter) {
5424 if (seg_len + skb_headlen(iter) > max_len)
5425 return false;
5426 }
5427
5428 return true;
5429 }
5430
5431 /**
5432 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5433 *
5434 * @skb: GSO skb
5435 * @mtu: MTU to validate against
5436 *
5437 * skb_gso_validate_network_len validates if a given skb will fit a
5438 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5439 * payload.
5440 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5441 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5442 {
5443 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5444 }
5445 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5446
5447 /**
5448 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5449 *
5450 * @skb: GSO skb
5451 * @len: length to validate against
5452 *
5453 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5454 * length once split, including L2, L3 and L4 headers and the payload.
5455 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5456 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5457 {
5458 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5459 }
5460 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5461
skb_reorder_vlan_header(struct sk_buff * skb)5462 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5463 {
5464 int mac_len, meta_len;
5465 void *meta;
5466
5467 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5468 kfree_skb(skb);
5469 return NULL;
5470 }
5471
5472 mac_len = skb->data - skb_mac_header(skb);
5473 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5474 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5475 mac_len - VLAN_HLEN - ETH_TLEN);
5476 }
5477
5478 meta_len = skb_metadata_len(skb);
5479 if (meta_len) {
5480 meta = skb_metadata_end(skb) - meta_len;
5481 memmove(meta + VLAN_HLEN, meta, meta_len);
5482 }
5483
5484 skb->mac_header += VLAN_HLEN;
5485 return skb;
5486 }
5487
skb_vlan_untag(struct sk_buff * skb)5488 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5489 {
5490 struct vlan_hdr *vhdr;
5491 u16 vlan_tci;
5492
5493 if (unlikely(skb_vlan_tag_present(skb))) {
5494 /* vlan_tci is already set-up so leave this for another time */
5495 return skb;
5496 }
5497
5498 skb = skb_share_check(skb, GFP_ATOMIC);
5499 if (unlikely(!skb))
5500 goto err_free;
5501 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5502 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5503 goto err_free;
5504
5505 vhdr = (struct vlan_hdr *)skb->data;
5506 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5507 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5508
5509 skb_pull_rcsum(skb, VLAN_HLEN);
5510 vlan_set_encap_proto(skb, vhdr);
5511
5512 skb = skb_reorder_vlan_header(skb);
5513 if (unlikely(!skb))
5514 goto err_free;
5515
5516 skb_reset_network_header(skb);
5517 skb_reset_transport_header(skb);
5518 skb_reset_mac_len(skb);
5519
5520 return skb;
5521
5522 err_free:
5523 kfree_skb(skb);
5524 return NULL;
5525 }
5526 EXPORT_SYMBOL(skb_vlan_untag);
5527
skb_ensure_writable(struct sk_buff * skb,int write_len)5528 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5529 {
5530 if (!pskb_may_pull(skb, write_len))
5531 return -ENOMEM;
5532
5533 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5534 return 0;
5535
5536 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5537 }
5538 EXPORT_SYMBOL(skb_ensure_writable);
5539
5540 /* remove VLAN header from packet and update csum accordingly.
5541 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5542 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5543 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5544 {
5545 struct vlan_hdr *vhdr;
5546 int offset = skb->data - skb_mac_header(skb);
5547 int err;
5548
5549 if (WARN_ONCE(offset,
5550 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5551 offset)) {
5552 return -EINVAL;
5553 }
5554
5555 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5556 if (unlikely(err))
5557 return err;
5558
5559 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5560
5561 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5562 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5563
5564 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5565 __skb_pull(skb, VLAN_HLEN);
5566
5567 vlan_set_encap_proto(skb, vhdr);
5568 skb->mac_header += VLAN_HLEN;
5569
5570 if (skb_network_offset(skb) < ETH_HLEN)
5571 skb_set_network_header(skb, ETH_HLEN);
5572
5573 skb_reset_mac_len(skb);
5574
5575 return err;
5576 }
5577 EXPORT_SYMBOL(__skb_vlan_pop);
5578
5579 /* Pop a vlan tag either from hwaccel or from payload.
5580 * Expects skb->data at mac header.
5581 */
skb_vlan_pop(struct sk_buff * skb)5582 int skb_vlan_pop(struct sk_buff *skb)
5583 {
5584 u16 vlan_tci;
5585 __be16 vlan_proto;
5586 int err;
5587
5588 if (likely(skb_vlan_tag_present(skb))) {
5589 __vlan_hwaccel_clear_tag(skb);
5590 } else {
5591 if (unlikely(!eth_type_vlan(skb->protocol)))
5592 return 0;
5593
5594 err = __skb_vlan_pop(skb, &vlan_tci);
5595 if (err)
5596 return err;
5597 }
5598 /* move next vlan tag to hw accel tag */
5599 if (likely(!eth_type_vlan(skb->protocol)))
5600 return 0;
5601
5602 vlan_proto = skb->protocol;
5603 err = __skb_vlan_pop(skb, &vlan_tci);
5604 if (unlikely(err))
5605 return err;
5606
5607 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5608 return 0;
5609 }
5610 EXPORT_SYMBOL(skb_vlan_pop);
5611
5612 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5613 * Expects skb->data at mac header.
5614 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5615 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5616 {
5617 if (skb_vlan_tag_present(skb)) {
5618 int offset = skb->data - skb_mac_header(skb);
5619 int err;
5620
5621 if (WARN_ONCE(offset,
5622 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5623 offset)) {
5624 return -EINVAL;
5625 }
5626
5627 err = __vlan_insert_tag(skb, skb->vlan_proto,
5628 skb_vlan_tag_get(skb));
5629 if (err)
5630 return err;
5631
5632 skb->protocol = skb->vlan_proto;
5633 skb->mac_len += VLAN_HLEN;
5634
5635 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5636 }
5637 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5638 return 0;
5639 }
5640 EXPORT_SYMBOL(skb_vlan_push);
5641
5642 /**
5643 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5644 *
5645 * @skb: Socket buffer to modify
5646 *
5647 * Drop the Ethernet header of @skb.
5648 *
5649 * Expects that skb->data points to the mac header and that no VLAN tags are
5650 * present.
5651 *
5652 * Returns 0 on success, -errno otherwise.
5653 */
skb_eth_pop(struct sk_buff * skb)5654 int skb_eth_pop(struct sk_buff *skb)
5655 {
5656 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5657 skb_network_offset(skb) < ETH_HLEN)
5658 return -EPROTO;
5659
5660 skb_pull_rcsum(skb, ETH_HLEN);
5661 skb_reset_mac_header(skb);
5662 skb_reset_mac_len(skb);
5663
5664 return 0;
5665 }
5666 EXPORT_SYMBOL(skb_eth_pop);
5667
5668 /**
5669 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5670 *
5671 * @skb: Socket buffer to modify
5672 * @dst: Destination MAC address of the new header
5673 * @src: Source MAC address of the new header
5674 *
5675 * Prepend @skb with a new Ethernet header.
5676 *
5677 * Expects that skb->data points to the mac header, which must be empty.
5678 *
5679 * Returns 0 on success, -errno otherwise.
5680 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5681 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5682 const unsigned char *src)
5683 {
5684 struct ethhdr *eth;
5685 int err;
5686
5687 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5688 return -EPROTO;
5689
5690 err = skb_cow_head(skb, sizeof(*eth));
5691 if (err < 0)
5692 return err;
5693
5694 skb_push(skb, sizeof(*eth));
5695 skb_reset_mac_header(skb);
5696 skb_reset_mac_len(skb);
5697
5698 eth = eth_hdr(skb);
5699 ether_addr_copy(eth->h_dest, dst);
5700 ether_addr_copy(eth->h_source, src);
5701 eth->h_proto = skb->protocol;
5702
5703 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5704
5705 return 0;
5706 }
5707 EXPORT_SYMBOL(skb_eth_push);
5708
5709 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5710 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5711 __be16 ethertype)
5712 {
5713 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5714 __be16 diff[] = { ~hdr->h_proto, ethertype };
5715
5716 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5717 }
5718
5719 hdr->h_proto = ethertype;
5720 }
5721
5722 /**
5723 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5724 * the packet
5725 *
5726 * @skb: buffer
5727 * @mpls_lse: MPLS label stack entry to push
5728 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5729 * @mac_len: length of the MAC header
5730 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5731 * ethernet
5732 *
5733 * Expects skb->data at mac header.
5734 *
5735 * Returns 0 on success, -errno otherwise.
5736 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5737 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5738 int mac_len, bool ethernet)
5739 {
5740 struct mpls_shim_hdr *lse;
5741 int err;
5742
5743 if (unlikely(!eth_p_mpls(mpls_proto)))
5744 return -EINVAL;
5745
5746 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5747 if (skb->encapsulation)
5748 return -EINVAL;
5749
5750 err = skb_cow_head(skb, MPLS_HLEN);
5751 if (unlikely(err))
5752 return err;
5753
5754 if (!skb->inner_protocol) {
5755 skb_set_inner_network_header(skb, skb_network_offset(skb));
5756 skb_set_inner_protocol(skb, skb->protocol);
5757 }
5758
5759 skb_push(skb, MPLS_HLEN);
5760 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5761 mac_len);
5762 skb_reset_mac_header(skb);
5763 skb_set_network_header(skb, mac_len);
5764 skb_reset_mac_len(skb);
5765
5766 lse = mpls_hdr(skb);
5767 lse->label_stack_entry = mpls_lse;
5768 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5769
5770 if (ethernet && mac_len >= ETH_HLEN)
5771 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5772 skb->protocol = mpls_proto;
5773
5774 return 0;
5775 }
5776 EXPORT_SYMBOL_GPL(skb_mpls_push);
5777
5778 /**
5779 * skb_mpls_pop() - pop the outermost MPLS header
5780 *
5781 * @skb: buffer
5782 * @next_proto: ethertype of header after popped MPLS header
5783 * @mac_len: length of the MAC header
5784 * @ethernet: flag to indicate if the packet is ethernet
5785 *
5786 * Expects skb->data at mac header.
5787 *
5788 * Returns 0 on success, -errno otherwise.
5789 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5790 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5791 bool ethernet)
5792 {
5793 int err;
5794
5795 if (unlikely(!eth_p_mpls(skb->protocol)))
5796 return 0;
5797
5798 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5799 if (unlikely(err))
5800 return err;
5801
5802 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5803 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5804 mac_len);
5805
5806 __skb_pull(skb, MPLS_HLEN);
5807 skb_reset_mac_header(skb);
5808 skb_set_network_header(skb, mac_len);
5809
5810 if (ethernet && mac_len >= ETH_HLEN) {
5811 struct ethhdr *hdr;
5812
5813 /* use mpls_hdr() to get ethertype to account for VLANs. */
5814 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5815 skb_mod_eth_type(skb, hdr, next_proto);
5816 }
5817 skb->protocol = next_proto;
5818
5819 return 0;
5820 }
5821 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5822
5823 /**
5824 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5825 *
5826 * @skb: buffer
5827 * @mpls_lse: new MPLS label stack entry to update to
5828 *
5829 * Expects skb->data at mac header.
5830 *
5831 * Returns 0 on success, -errno otherwise.
5832 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5833 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5834 {
5835 int err;
5836
5837 if (unlikely(!eth_p_mpls(skb->protocol)))
5838 return -EINVAL;
5839
5840 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5841 if (unlikely(err))
5842 return err;
5843
5844 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5845 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5846
5847 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5848 }
5849
5850 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5851
5852 return 0;
5853 }
5854 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5855
5856 /**
5857 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5858 *
5859 * @skb: buffer
5860 *
5861 * Expects skb->data at mac header.
5862 *
5863 * Returns 0 on success, -errno otherwise.
5864 */
skb_mpls_dec_ttl(struct sk_buff * skb)5865 int skb_mpls_dec_ttl(struct sk_buff *skb)
5866 {
5867 u32 lse;
5868 u8 ttl;
5869
5870 if (unlikely(!eth_p_mpls(skb->protocol)))
5871 return -EINVAL;
5872
5873 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5874 return -ENOMEM;
5875
5876 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5877 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5878 if (!--ttl)
5879 return -EINVAL;
5880
5881 lse &= ~MPLS_LS_TTL_MASK;
5882 lse |= ttl << MPLS_LS_TTL_SHIFT;
5883
5884 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5885 }
5886 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5887
5888 /**
5889 * alloc_skb_with_frags - allocate skb with page frags
5890 *
5891 * @header_len: size of linear part
5892 * @data_len: needed length in frags
5893 * @max_page_order: max page order desired.
5894 * @errcode: pointer to error code if any
5895 * @gfp_mask: allocation mask
5896 *
5897 * This can be used to allocate a paged skb, given a maximal order for frags.
5898 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5899 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5900 unsigned long data_len,
5901 int max_page_order,
5902 int *errcode,
5903 gfp_t gfp_mask)
5904 {
5905 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5906 unsigned long chunk;
5907 struct sk_buff *skb;
5908 struct page *page;
5909 int i;
5910
5911 *errcode = -EMSGSIZE;
5912 /* Note this test could be relaxed, if we succeed to allocate
5913 * high order pages...
5914 */
5915 if (npages > MAX_SKB_FRAGS)
5916 return NULL;
5917
5918 *errcode = -ENOBUFS;
5919 skb = alloc_skb(header_len, gfp_mask);
5920 if (!skb)
5921 return NULL;
5922
5923 skb->truesize += npages << PAGE_SHIFT;
5924
5925 for (i = 0; npages > 0; i++) {
5926 int order = max_page_order;
5927
5928 while (order) {
5929 if (npages >= 1 << order) {
5930 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5931 __GFP_COMP |
5932 __GFP_NOWARN,
5933 order);
5934 if (page)
5935 goto fill_page;
5936 /* Do not retry other high order allocations */
5937 order = 1;
5938 max_page_order = 0;
5939 }
5940 order--;
5941 }
5942 page = alloc_page(gfp_mask);
5943 if (!page)
5944 goto failure;
5945 fill_page:
5946 chunk = min_t(unsigned long, data_len,
5947 PAGE_SIZE << order);
5948 skb_fill_page_desc(skb, i, page, 0, chunk);
5949 data_len -= chunk;
5950 npages -= 1 << order;
5951 }
5952 return skb;
5953
5954 failure:
5955 kfree_skb(skb);
5956 return NULL;
5957 }
5958 EXPORT_SYMBOL(alloc_skb_with_frags);
5959
5960 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5961 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5962 const int headlen, gfp_t gfp_mask)
5963 {
5964 int i;
5965 int size = skb_end_offset(skb);
5966 int new_hlen = headlen - off;
5967 u8 *data;
5968
5969 size = SKB_DATA_ALIGN(size);
5970
5971 if (skb_pfmemalloc(skb))
5972 gfp_mask |= __GFP_MEMALLOC;
5973 data = kmalloc_reserve(size +
5974 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5975 gfp_mask, NUMA_NO_NODE, NULL);
5976 if (!data)
5977 return -ENOMEM;
5978
5979 size = SKB_WITH_OVERHEAD(ksize(data));
5980
5981 /* Copy real data, and all frags */
5982 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5983 skb->len -= off;
5984
5985 memcpy((struct skb_shared_info *)(data + size),
5986 skb_shinfo(skb),
5987 offsetof(struct skb_shared_info,
5988 frags[skb_shinfo(skb)->nr_frags]));
5989 if (skb_cloned(skb)) {
5990 /* drop the old head gracefully */
5991 if (skb_orphan_frags(skb, gfp_mask)) {
5992 kfree(data);
5993 return -ENOMEM;
5994 }
5995 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5996 skb_frag_ref(skb, i);
5997 if (skb_has_frag_list(skb))
5998 skb_clone_fraglist(skb);
5999 skb_release_data(skb);
6000 } else {
6001 /* we can reuse existing recount- all we did was
6002 * relocate values
6003 */
6004 skb_free_head(skb);
6005 }
6006
6007 skb->head = data;
6008 skb->data = data;
6009 skb->head_frag = 0;
6010 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6011 skb->end = size;
6012 #else
6013 skb->end = skb->head + size;
6014 #endif
6015 skb_set_tail_pointer(skb, skb_headlen(skb));
6016 skb_headers_offset_update(skb, 0);
6017 skb->cloned = 0;
6018 skb->hdr_len = 0;
6019 skb->nohdr = 0;
6020 atomic_set(&skb_shinfo(skb)->dataref, 1);
6021
6022 return 0;
6023 }
6024
6025 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6026
6027 /* carve out the first eat bytes from skb's frag_list. May recurse into
6028 * pskb_carve()
6029 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6030 static int pskb_carve_frag_list(struct sk_buff *skb,
6031 struct skb_shared_info *shinfo, int eat,
6032 gfp_t gfp_mask)
6033 {
6034 struct sk_buff *list = shinfo->frag_list;
6035 struct sk_buff *clone = NULL;
6036 struct sk_buff *insp = NULL;
6037
6038 do {
6039 if (!list) {
6040 pr_err("Not enough bytes to eat. Want %d\n", eat);
6041 return -EFAULT;
6042 }
6043 if (list->len <= eat) {
6044 /* Eaten as whole. */
6045 eat -= list->len;
6046 list = list->next;
6047 insp = list;
6048 } else {
6049 /* Eaten partially. */
6050 if (skb_shared(list)) {
6051 clone = skb_clone(list, gfp_mask);
6052 if (!clone)
6053 return -ENOMEM;
6054 insp = list->next;
6055 list = clone;
6056 } else {
6057 /* This may be pulled without problems. */
6058 insp = list;
6059 }
6060 if (pskb_carve(list, eat, gfp_mask) < 0) {
6061 kfree_skb(clone);
6062 return -ENOMEM;
6063 }
6064 break;
6065 }
6066 } while (eat);
6067
6068 /* Free pulled out fragments. */
6069 while ((list = shinfo->frag_list) != insp) {
6070 shinfo->frag_list = list->next;
6071 consume_skb(list);
6072 }
6073 /* And insert new clone at head. */
6074 if (clone) {
6075 clone->next = list;
6076 shinfo->frag_list = clone;
6077 }
6078 return 0;
6079 }
6080
6081 /* carve off first len bytes from skb. Split line (off) is in the
6082 * non-linear part of skb
6083 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6084 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6085 int pos, gfp_t gfp_mask)
6086 {
6087 int i, k = 0;
6088 int size = skb_end_offset(skb);
6089 u8 *data;
6090 const int nfrags = skb_shinfo(skb)->nr_frags;
6091 struct skb_shared_info *shinfo;
6092
6093 size = SKB_DATA_ALIGN(size);
6094
6095 if (skb_pfmemalloc(skb))
6096 gfp_mask |= __GFP_MEMALLOC;
6097 data = kmalloc_reserve(size +
6098 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6099 gfp_mask, NUMA_NO_NODE, NULL);
6100 if (!data)
6101 return -ENOMEM;
6102
6103 size = SKB_WITH_OVERHEAD(ksize(data));
6104
6105 memcpy((struct skb_shared_info *)(data + size),
6106 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6107 if (skb_orphan_frags(skb, gfp_mask)) {
6108 kfree(data);
6109 return -ENOMEM;
6110 }
6111 shinfo = (struct skb_shared_info *)(data + size);
6112 for (i = 0; i < nfrags; i++) {
6113 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6114
6115 if (pos + fsize > off) {
6116 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6117
6118 if (pos < off) {
6119 /* Split frag.
6120 * We have two variants in this case:
6121 * 1. Move all the frag to the second
6122 * part, if it is possible. F.e.
6123 * this approach is mandatory for TUX,
6124 * where splitting is expensive.
6125 * 2. Split is accurately. We make this.
6126 */
6127 skb_frag_off_add(&shinfo->frags[0], off - pos);
6128 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6129 }
6130 skb_frag_ref(skb, i);
6131 k++;
6132 }
6133 pos += fsize;
6134 }
6135 shinfo->nr_frags = k;
6136 if (skb_has_frag_list(skb))
6137 skb_clone_fraglist(skb);
6138
6139 /* split line is in frag list */
6140 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6141 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6142 if (skb_has_frag_list(skb))
6143 kfree_skb_list(skb_shinfo(skb)->frag_list);
6144 kfree(data);
6145 return -ENOMEM;
6146 }
6147 skb_release_data(skb);
6148
6149 skb->head = data;
6150 skb->head_frag = 0;
6151 skb->data = data;
6152 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6153 skb->end = size;
6154 #else
6155 skb->end = skb->head + size;
6156 #endif
6157 skb_reset_tail_pointer(skb);
6158 skb_headers_offset_update(skb, 0);
6159 skb->cloned = 0;
6160 skb->hdr_len = 0;
6161 skb->nohdr = 0;
6162 skb->len -= off;
6163 skb->data_len = skb->len;
6164 atomic_set(&skb_shinfo(skb)->dataref, 1);
6165 return 0;
6166 }
6167
6168 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6169 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6170 {
6171 int headlen = skb_headlen(skb);
6172
6173 if (len < headlen)
6174 return pskb_carve_inside_header(skb, len, headlen, gfp);
6175 else
6176 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6177 }
6178
6179 /* Extract to_copy bytes starting at off from skb, and return this in
6180 * a new skb
6181 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6182 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6183 int to_copy, gfp_t gfp)
6184 {
6185 struct sk_buff *clone = skb_clone(skb, gfp);
6186
6187 if (!clone)
6188 return NULL;
6189
6190 if (pskb_carve(clone, off, gfp) < 0 ||
6191 pskb_trim(clone, to_copy)) {
6192 kfree_skb(clone);
6193 return NULL;
6194 }
6195 return clone;
6196 }
6197 EXPORT_SYMBOL(pskb_extract);
6198
6199 /**
6200 * skb_condense - try to get rid of fragments/frag_list if possible
6201 * @skb: buffer
6202 *
6203 * Can be used to save memory before skb is added to a busy queue.
6204 * If packet has bytes in frags and enough tail room in skb->head,
6205 * pull all of them, so that we can free the frags right now and adjust
6206 * truesize.
6207 * Notes:
6208 * We do not reallocate skb->head thus can not fail.
6209 * Caller must re-evaluate skb->truesize if needed.
6210 */
skb_condense(struct sk_buff * skb)6211 void skb_condense(struct sk_buff *skb)
6212 {
6213 if (skb->data_len) {
6214 if (skb->data_len > skb->end - skb->tail ||
6215 skb_cloned(skb))
6216 return;
6217
6218 /* Nice, we can free page frag(s) right now */
6219 __pskb_pull_tail(skb, skb->data_len);
6220 }
6221 /* At this point, skb->truesize might be over estimated,
6222 * because skb had a fragment, and fragments do not tell
6223 * their truesize.
6224 * When we pulled its content into skb->head, fragment
6225 * was freed, but __pskb_pull_tail() could not possibly
6226 * adjust skb->truesize, not knowing the frag truesize.
6227 */
6228 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6229 }
6230
6231 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6232 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6233 {
6234 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6235 }
6236
6237 /**
6238 * __skb_ext_alloc - allocate a new skb extensions storage
6239 *
6240 * @flags: See kmalloc().
6241 *
6242 * Returns the newly allocated pointer. The pointer can later attached to a
6243 * skb via __skb_ext_set().
6244 * Note: caller must handle the skb_ext as an opaque data.
6245 */
__skb_ext_alloc(gfp_t flags)6246 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6247 {
6248 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6249
6250 if (new) {
6251 memset(new->offset, 0, sizeof(new->offset));
6252 refcount_set(&new->refcnt, 1);
6253 }
6254
6255 return new;
6256 }
6257
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6258 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6259 unsigned int old_active)
6260 {
6261 struct skb_ext *new;
6262
6263 if (refcount_read(&old->refcnt) == 1)
6264 return old;
6265
6266 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6267 if (!new)
6268 return NULL;
6269
6270 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6271 refcount_set(&new->refcnt, 1);
6272
6273 #ifdef CONFIG_XFRM
6274 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6275 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6276 unsigned int i;
6277
6278 for (i = 0; i < sp->len; i++)
6279 xfrm_state_hold(sp->xvec[i]);
6280 }
6281 #endif
6282 __skb_ext_put(old);
6283 return new;
6284 }
6285
6286 /**
6287 * __skb_ext_set - attach the specified extension storage to this skb
6288 * @skb: buffer
6289 * @id: extension id
6290 * @ext: extension storage previously allocated via __skb_ext_alloc()
6291 *
6292 * Existing extensions, if any, are cleared.
6293 *
6294 * Returns the pointer to the extension.
6295 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6296 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6297 struct skb_ext *ext)
6298 {
6299 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6300
6301 skb_ext_put(skb);
6302 newlen = newoff + skb_ext_type_len[id];
6303 ext->chunks = newlen;
6304 ext->offset[id] = newoff;
6305 skb->extensions = ext;
6306 skb->active_extensions = 1 << id;
6307 return skb_ext_get_ptr(ext, id);
6308 }
6309
6310 /**
6311 * skb_ext_add - allocate space for given extension, COW if needed
6312 * @skb: buffer
6313 * @id: extension to allocate space for
6314 *
6315 * Allocates enough space for the given extension.
6316 * If the extension is already present, a pointer to that extension
6317 * is returned.
6318 *
6319 * If the skb was cloned, COW applies and the returned memory can be
6320 * modified without changing the extension space of clones buffers.
6321 *
6322 * Returns pointer to the extension or NULL on allocation failure.
6323 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6324 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6325 {
6326 struct skb_ext *new, *old = NULL;
6327 unsigned int newlen, newoff;
6328
6329 if (skb->active_extensions) {
6330 old = skb->extensions;
6331
6332 new = skb_ext_maybe_cow(old, skb->active_extensions);
6333 if (!new)
6334 return NULL;
6335
6336 if (__skb_ext_exist(new, id))
6337 goto set_active;
6338
6339 newoff = new->chunks;
6340 } else {
6341 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6342
6343 new = __skb_ext_alloc(GFP_ATOMIC);
6344 if (!new)
6345 return NULL;
6346 }
6347
6348 newlen = newoff + skb_ext_type_len[id];
6349 new->chunks = newlen;
6350 new->offset[id] = newoff;
6351 set_active:
6352 skb->extensions = new;
6353 skb->active_extensions |= 1 << id;
6354 return skb_ext_get_ptr(new, id);
6355 }
6356 EXPORT_SYMBOL(skb_ext_add);
6357
6358 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6359 static void skb_ext_put_sp(struct sec_path *sp)
6360 {
6361 unsigned int i;
6362
6363 for (i = 0; i < sp->len; i++)
6364 xfrm_state_put(sp->xvec[i]);
6365 }
6366 #endif
6367
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6368 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6369 {
6370 struct skb_ext *ext = skb->extensions;
6371
6372 skb->active_extensions &= ~(1 << id);
6373 if (skb->active_extensions == 0) {
6374 skb->extensions = NULL;
6375 __skb_ext_put(ext);
6376 #ifdef CONFIG_XFRM
6377 } else if (id == SKB_EXT_SEC_PATH &&
6378 refcount_read(&ext->refcnt) == 1) {
6379 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6380
6381 skb_ext_put_sp(sp);
6382 sp->len = 0;
6383 #endif
6384 }
6385 }
6386 EXPORT_SYMBOL(__skb_ext_del);
6387
__skb_ext_put(struct skb_ext * ext)6388 void __skb_ext_put(struct skb_ext *ext)
6389 {
6390 /* If this is last clone, nothing can increment
6391 * it after check passes. Avoids one atomic op.
6392 */
6393 if (refcount_read(&ext->refcnt) == 1)
6394 goto free_now;
6395
6396 if (!refcount_dec_and_test(&ext->refcnt))
6397 return;
6398 free_now:
6399 #ifdef CONFIG_XFRM
6400 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6401 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6402 #endif
6403
6404 kmem_cache_free(skbuff_ext_cache, ext);
6405 }
6406 EXPORT_SYMBOL(__skb_ext_put);
6407 #endif /* CONFIG_SKB_EXTENSIONS */
6408