1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
136 {
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
139
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
158 }
159 }
160 }
161 return 0;
162 }
163
164 /*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
171 {
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
191 }
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
204
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
216 }
217 }
218
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221
222 /**
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
229 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
232 {
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
237
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
246
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
249 /*
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 */
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
260
261 snum = first;
262 /*
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
266 */
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
287
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
291
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
297 }
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
302 }
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
306 }
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
318 }
319
320 sock_set_flag(sk, SOCK_RCU_FREE);
321
322 sk_add_node_rcu(sk, &hslot->head);
323 hslot->count++;
324 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
325
326 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
327 spin_lock(&hslot2->lock);
328 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
329 sk->sk_family == AF_INET6)
330 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
331 &hslot2->head);
332 else
333 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
334 &hslot2->head);
335 hslot2->count++;
336 spin_unlock(&hslot2->lock);
337 }
338
339 error = 0;
340 fail_unlock:
341 spin_unlock_bh(&hslot->lock);
342 fail:
343 return error;
344 }
345 EXPORT_SYMBOL(udp_lib_get_port);
346
udp_v4_get_port(struct sock * sk,unsigned short snum)347 int udp_v4_get_port(struct sock *sk, unsigned short snum)
348 {
349 unsigned int hash2_nulladdr =
350 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
351 unsigned int hash2_partial =
352 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
353
354 /* precompute partial secondary hash */
355 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
356 return udp_lib_get_port(sk, snum, hash2_nulladdr);
357 }
358
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)359 static int compute_score(struct sock *sk, struct net *net,
360 __be32 saddr, __be16 sport,
361 __be32 daddr, unsigned short hnum,
362 int dif, int sdif)
363 {
364 int score;
365 struct inet_sock *inet;
366 bool dev_match;
367
368 if (!net_eq(sock_net(sk), net) ||
369 udp_sk(sk)->udp_port_hash != hnum ||
370 ipv6_only_sock(sk))
371 return -1;
372
373 if (sk->sk_rcv_saddr != daddr)
374 return -1;
375
376 score = (sk->sk_family == PF_INET) ? 2 : 1;
377
378 inet = inet_sk(sk);
379 if (inet->inet_daddr) {
380 if (inet->inet_daddr != saddr)
381 return -1;
382 score += 4;
383 }
384
385 if (inet->inet_dport) {
386 if (inet->inet_dport != sport)
387 return -1;
388 score += 4;
389 }
390
391 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
392 dif, sdif);
393 if (!dev_match)
394 return -1;
395 if (sk->sk_bound_dev_if)
396 score += 4;
397
398 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
399 score++;
400 return score;
401 }
402
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)403 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
404 const __u16 lport, const __be32 faddr,
405 const __be16 fport)
406 {
407 static u32 udp_ehash_secret __read_mostly;
408
409 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
410
411 return __inet_ehashfn(laddr, lport, faddr, fport,
412 udp_ehash_secret + net_hash_mix(net));
413 }
414
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)415 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
416 struct sk_buff *skb,
417 __be32 saddr, __be16 sport,
418 __be32 daddr, unsigned short hnum)
419 {
420 struct sock *reuse_sk = NULL;
421 u32 hash;
422
423 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
424 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
425 reuse_sk = reuseport_select_sock(sk, hash, skb,
426 sizeof(struct udphdr));
427 }
428 return reuse_sk;
429 }
430
431 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)432 static struct sock *udp4_lib_lookup2(struct net *net,
433 __be32 saddr, __be16 sport,
434 __be32 daddr, unsigned int hnum,
435 int dif, int sdif,
436 struct udp_hslot *hslot2,
437 struct sk_buff *skb)
438 {
439 struct sock *sk, *result;
440 int score, badness;
441
442 result = NULL;
443 badness = 0;
444 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
445 score = compute_score(sk, net, saddr, sport,
446 daddr, hnum, dif, sdif);
447 if (score > badness) {
448 badness = score;
449 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
450 if (!result) {
451 result = sk;
452 continue;
453 }
454
455 /* Fall back to scoring if group has connections */
456 if (!reuseport_has_conns(sk))
457 return result;
458
459 /* Reuseport logic returned an error, keep original score. */
460 if (IS_ERR(result))
461 continue;
462
463 badness = compute_score(result, net, saddr, sport,
464 daddr, hnum, dif, sdif);
465
466 }
467 }
468 return result;
469 }
470
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)471 static struct sock *udp4_lookup_run_bpf(struct net *net,
472 struct udp_table *udptable,
473 struct sk_buff *skb,
474 __be32 saddr, __be16 sport,
475 __be32 daddr, u16 hnum)
476 {
477 struct sock *sk, *reuse_sk;
478 bool no_reuseport;
479
480 if (udptable != &udp_table)
481 return NULL; /* only UDP is supported */
482
483 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
484 saddr, sport, daddr, hnum, &sk);
485 if (no_reuseport || IS_ERR_OR_NULL(sk))
486 return sk;
487
488 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
489 if (reuse_sk)
490 sk = reuse_sk;
491 return sk;
492 }
493
494 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
495 * harder than this. -DaveM
496 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)497 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
498 __be16 sport, __be32 daddr, __be16 dport, int dif,
499 int sdif, struct udp_table *udptable, struct sk_buff *skb)
500 {
501 unsigned short hnum = ntohs(dport);
502 unsigned int hash2, slot2;
503 struct udp_hslot *hslot2;
504 struct sock *result, *sk;
505
506 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
507 slot2 = hash2 & udptable->mask;
508 hslot2 = &udptable->hash2[slot2];
509
510 /* Lookup connected or non-wildcard socket */
511 result = udp4_lib_lookup2(net, saddr, sport,
512 daddr, hnum, dif, sdif,
513 hslot2, skb);
514 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
515 goto done;
516
517 /* Lookup redirect from BPF */
518 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
519 sk = udp4_lookup_run_bpf(net, udptable, skb,
520 saddr, sport, daddr, hnum);
521 if (sk) {
522 result = sk;
523 goto done;
524 }
525 }
526
527 /* Got non-wildcard socket or error on first lookup */
528 if (result)
529 goto done;
530
531 /* Lookup wildcard sockets */
532 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
533 slot2 = hash2 & udptable->mask;
534 hslot2 = &udptable->hash2[slot2];
535
536 result = udp4_lib_lookup2(net, saddr, sport,
537 htonl(INADDR_ANY), hnum, dif, sdif,
538 hslot2, skb);
539 done:
540 if (IS_ERR(result))
541 return NULL;
542 return result;
543 }
544 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
545
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)546 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
547 __be16 sport, __be16 dport,
548 struct udp_table *udptable)
549 {
550 const struct iphdr *iph = ip_hdr(skb);
551
552 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
553 iph->daddr, dport, inet_iif(skb),
554 inet_sdif(skb), udptable, skb);
555 }
556
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)557 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
558 __be16 sport, __be16 dport)
559 {
560 const struct iphdr *iph = ip_hdr(skb);
561
562 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
563 iph->daddr, dport, inet_iif(skb),
564 inet_sdif(skb), &udp_table, NULL);
565 }
566 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
567
568 /* Must be called under rcu_read_lock().
569 * Does increment socket refcount.
570 */
571 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)572 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
573 __be32 daddr, __be16 dport, int dif)
574 {
575 struct sock *sk;
576
577 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
578 dif, 0, &udp_table, NULL);
579 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
580 sk = NULL;
581 return sk;
582 }
583 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
584 #endif
585
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)586 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
587 __be16 loc_port, __be32 loc_addr,
588 __be16 rmt_port, __be32 rmt_addr,
589 int dif, int sdif, unsigned short hnum)
590 {
591 struct inet_sock *inet = inet_sk(sk);
592
593 if (!net_eq(sock_net(sk), net) ||
594 udp_sk(sk)->udp_port_hash != hnum ||
595 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
596 (inet->inet_dport != rmt_port && inet->inet_dport) ||
597 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
598 ipv6_only_sock(sk) ||
599 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
600 return false;
601 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
602 return false;
603 return true;
604 }
605
606 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
607 EXPORT_SYMBOL(udp_encap_needed_key);
608
609 #if IS_ENABLED(CONFIG_IPV6)
610 DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
611 EXPORT_SYMBOL(udpv6_encap_needed_key);
612 #endif
613
udp_encap_enable(void)614 void udp_encap_enable(void)
615 {
616 static_branch_inc(&udp_encap_needed_key);
617 }
618 EXPORT_SYMBOL(udp_encap_enable);
619
udp_encap_disable(void)620 void udp_encap_disable(void)
621 {
622 static_branch_dec(&udp_encap_needed_key);
623 }
624 EXPORT_SYMBOL(udp_encap_disable);
625
626 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
627 * through error handlers in encapsulations looking for a match.
628 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)629 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
630 {
631 int i;
632
633 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
634 int (*handler)(struct sk_buff *skb, u32 info);
635 const struct ip_tunnel_encap_ops *encap;
636
637 encap = rcu_dereference(iptun_encaps[i]);
638 if (!encap)
639 continue;
640 handler = encap->err_handler;
641 if (handler && !handler(skb, info))
642 return 0;
643 }
644
645 return -ENOENT;
646 }
647
648 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
649 * reversing source and destination port: this will match tunnels that force the
650 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
651 * lwtunnels might actually break this assumption by being configured with
652 * different destination ports on endpoints, in this case we won't be able to
653 * trace ICMP messages back to them.
654 *
655 * If this doesn't match any socket, probe tunnels with arbitrary destination
656 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
657 * we've sent packets to won't necessarily match the local destination port.
658 *
659 * Then ask the tunnel implementation to match the error against a valid
660 * association.
661 *
662 * Return an error if we can't find a match, the socket if we need further
663 * processing, zero otherwise.
664 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)665 static struct sock *__udp4_lib_err_encap(struct net *net,
666 const struct iphdr *iph,
667 struct udphdr *uh,
668 struct udp_table *udptable,
669 struct sk_buff *skb, u32 info)
670 {
671 int network_offset, transport_offset;
672 struct sock *sk;
673
674 network_offset = skb_network_offset(skb);
675 transport_offset = skb_transport_offset(skb);
676
677 /* Network header needs to point to the outer IPv4 header inside ICMP */
678 skb_reset_network_header(skb);
679
680 /* Transport header needs to point to the UDP header */
681 skb_set_transport_header(skb, iph->ihl << 2);
682
683 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
684 iph->saddr, uh->dest, skb->dev->ifindex, 0,
685 udptable, NULL);
686 if (sk) {
687 int (*lookup)(struct sock *sk, struct sk_buff *skb);
688 struct udp_sock *up = udp_sk(sk);
689
690 lookup = READ_ONCE(up->encap_err_lookup);
691 if (!lookup || lookup(sk, skb))
692 sk = NULL;
693 }
694
695 if (!sk)
696 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
697
698 skb_set_transport_header(skb, transport_offset);
699 skb_set_network_header(skb, network_offset);
700
701 return sk;
702 }
703
704 /*
705 * This routine is called by the ICMP module when it gets some
706 * sort of error condition. If err < 0 then the socket should
707 * be closed and the error returned to the user. If err > 0
708 * it's just the icmp type << 8 | icmp code.
709 * Header points to the ip header of the error packet. We move
710 * on past this. Then (as it used to claim before adjustment)
711 * header points to the first 8 bytes of the udp header. We need
712 * to find the appropriate port.
713 */
714
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)715 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
716 {
717 struct inet_sock *inet;
718 const struct iphdr *iph = (const struct iphdr *)skb->data;
719 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
720 const int type = icmp_hdr(skb)->type;
721 const int code = icmp_hdr(skb)->code;
722 bool tunnel = false;
723 struct sock *sk;
724 int harderr;
725 int err;
726 struct net *net = dev_net(skb->dev);
727
728 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
729 iph->saddr, uh->source, skb->dev->ifindex,
730 inet_sdif(skb), udptable, NULL);
731 if (!sk) {
732 /* No socket for error: try tunnels before discarding */
733 sk = ERR_PTR(-ENOENT);
734 if (static_branch_unlikely(&udp_encap_needed_key)) {
735 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
736 info);
737 if (!sk)
738 return 0;
739 }
740
741 if (IS_ERR(sk)) {
742 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
743 return PTR_ERR(sk);
744 }
745
746 tunnel = true;
747 }
748
749 err = 0;
750 harderr = 0;
751 inet = inet_sk(sk);
752
753 switch (type) {
754 default:
755 case ICMP_TIME_EXCEEDED:
756 err = EHOSTUNREACH;
757 break;
758 case ICMP_SOURCE_QUENCH:
759 goto out;
760 case ICMP_PARAMETERPROB:
761 err = EPROTO;
762 harderr = 1;
763 break;
764 case ICMP_DEST_UNREACH:
765 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
766 ipv4_sk_update_pmtu(skb, sk, info);
767 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
768 err = EMSGSIZE;
769 harderr = 1;
770 break;
771 }
772 goto out;
773 }
774 err = EHOSTUNREACH;
775 if (code <= NR_ICMP_UNREACH) {
776 harderr = icmp_err_convert[code].fatal;
777 err = icmp_err_convert[code].errno;
778 }
779 break;
780 case ICMP_REDIRECT:
781 ipv4_sk_redirect(skb, sk);
782 goto out;
783 }
784
785 /*
786 * RFC1122: OK. Passes ICMP errors back to application, as per
787 * 4.1.3.3.
788 */
789 if (tunnel) {
790 /* ...not for tunnels though: we don't have a sending socket */
791 goto out;
792 }
793 if (!inet->recverr) {
794 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
795 goto out;
796 } else
797 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
798
799 sk->sk_err = err;
800 sk->sk_error_report(sk);
801 out:
802 return 0;
803 }
804
udp_err(struct sk_buff * skb,u32 info)805 int udp_err(struct sk_buff *skb, u32 info)
806 {
807 return __udp4_lib_err(skb, info, &udp_table);
808 }
809
810 /*
811 * Throw away all pending data and cancel the corking. Socket is locked.
812 */
udp_flush_pending_frames(struct sock * sk)813 void udp_flush_pending_frames(struct sock *sk)
814 {
815 struct udp_sock *up = udp_sk(sk);
816
817 if (up->pending) {
818 up->len = 0;
819 up->pending = 0;
820 ip_flush_pending_frames(sk);
821 }
822 }
823 EXPORT_SYMBOL(udp_flush_pending_frames);
824
825 /**
826 * udp4_hwcsum - handle outgoing HW checksumming
827 * @skb: sk_buff containing the filled-in UDP header
828 * (checksum field must be zeroed out)
829 * @src: source IP address
830 * @dst: destination IP address
831 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)832 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
833 {
834 struct udphdr *uh = udp_hdr(skb);
835 int offset = skb_transport_offset(skb);
836 int len = skb->len - offset;
837 int hlen = len;
838 __wsum csum = 0;
839
840 if (!skb_has_frag_list(skb)) {
841 /*
842 * Only one fragment on the socket.
843 */
844 skb->csum_start = skb_transport_header(skb) - skb->head;
845 skb->csum_offset = offsetof(struct udphdr, check);
846 uh->check = ~csum_tcpudp_magic(src, dst, len,
847 IPPROTO_UDP, 0);
848 } else {
849 struct sk_buff *frags;
850
851 /*
852 * HW-checksum won't work as there are two or more
853 * fragments on the socket so that all csums of sk_buffs
854 * should be together
855 */
856 skb_walk_frags(skb, frags) {
857 csum = csum_add(csum, frags->csum);
858 hlen -= frags->len;
859 }
860
861 csum = skb_checksum(skb, offset, hlen, csum);
862 skb->ip_summed = CHECKSUM_NONE;
863
864 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
865 if (uh->check == 0)
866 uh->check = CSUM_MANGLED_0;
867 }
868 }
869 EXPORT_SYMBOL_GPL(udp4_hwcsum);
870
871 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
872 * for the simple case like when setting the checksum for a UDP tunnel.
873 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)874 void udp_set_csum(bool nocheck, struct sk_buff *skb,
875 __be32 saddr, __be32 daddr, int len)
876 {
877 struct udphdr *uh = udp_hdr(skb);
878
879 if (nocheck) {
880 uh->check = 0;
881 } else if (skb_is_gso(skb)) {
882 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
883 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
884 uh->check = 0;
885 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
886 if (uh->check == 0)
887 uh->check = CSUM_MANGLED_0;
888 } else {
889 skb->ip_summed = CHECKSUM_PARTIAL;
890 skb->csum_start = skb_transport_header(skb) - skb->head;
891 skb->csum_offset = offsetof(struct udphdr, check);
892 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
893 }
894 }
895 EXPORT_SYMBOL(udp_set_csum);
896
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)897 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
898 struct inet_cork *cork)
899 {
900 struct sock *sk = skb->sk;
901 struct inet_sock *inet = inet_sk(sk);
902 struct udphdr *uh;
903 int err = 0;
904 int is_udplite = IS_UDPLITE(sk);
905 int offset = skb_transport_offset(skb);
906 int len = skb->len - offset;
907 int datalen = len - sizeof(*uh);
908 __wsum csum = 0;
909
910 /*
911 * Create a UDP header
912 */
913 uh = udp_hdr(skb);
914 uh->source = inet->inet_sport;
915 uh->dest = fl4->fl4_dport;
916 uh->len = htons(len);
917 uh->check = 0;
918
919 if (cork->gso_size) {
920 const int hlen = skb_network_header_len(skb) +
921 sizeof(struct udphdr);
922
923 if (hlen + cork->gso_size > cork->fragsize) {
924 kfree_skb(skb);
925 return -EINVAL;
926 }
927 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
928 kfree_skb(skb);
929 return -EINVAL;
930 }
931 if (sk->sk_no_check_tx) {
932 kfree_skb(skb);
933 return -EINVAL;
934 }
935 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
936 dst_xfrm(skb_dst(skb))) {
937 kfree_skb(skb);
938 return -EIO;
939 }
940
941 if (datalen > cork->gso_size) {
942 skb_shinfo(skb)->gso_size = cork->gso_size;
943 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
944 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
945 cork->gso_size);
946 }
947 goto csum_partial;
948 }
949
950 if (is_udplite) /* UDP-Lite */
951 csum = udplite_csum(skb);
952
953 else if (sk->sk_no_check_tx) { /* UDP csum off */
954
955 skb->ip_summed = CHECKSUM_NONE;
956 goto send;
957
958 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
959 csum_partial:
960
961 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
962 goto send;
963
964 } else
965 csum = udp_csum(skb);
966
967 /* add protocol-dependent pseudo-header */
968 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
969 sk->sk_protocol, csum);
970 if (uh->check == 0)
971 uh->check = CSUM_MANGLED_0;
972
973 send:
974 err = ip_send_skb(sock_net(sk), skb);
975 if (err) {
976 if (err == -ENOBUFS && !inet->recverr) {
977 UDP_INC_STATS(sock_net(sk),
978 UDP_MIB_SNDBUFERRORS, is_udplite);
979 err = 0;
980 }
981 } else
982 UDP_INC_STATS(sock_net(sk),
983 UDP_MIB_OUTDATAGRAMS, is_udplite);
984 return err;
985 }
986
987 /*
988 * Push out all pending data as one UDP datagram. Socket is locked.
989 */
udp_push_pending_frames(struct sock * sk)990 int udp_push_pending_frames(struct sock *sk)
991 {
992 struct udp_sock *up = udp_sk(sk);
993 struct inet_sock *inet = inet_sk(sk);
994 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
995 struct sk_buff *skb;
996 int err = 0;
997
998 skb = ip_finish_skb(sk, fl4);
999 if (!skb)
1000 goto out;
1001
1002 err = udp_send_skb(skb, fl4, &inet->cork.base);
1003
1004 out:
1005 up->len = 0;
1006 up->pending = 0;
1007 return err;
1008 }
1009 EXPORT_SYMBOL(udp_push_pending_frames);
1010
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1011 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1012 {
1013 switch (cmsg->cmsg_type) {
1014 case UDP_SEGMENT:
1015 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1016 return -EINVAL;
1017 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1018 return 0;
1019 default:
1020 return -EINVAL;
1021 }
1022 }
1023
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1024 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1025 {
1026 struct cmsghdr *cmsg;
1027 bool need_ip = false;
1028 int err;
1029
1030 for_each_cmsghdr(cmsg, msg) {
1031 if (!CMSG_OK(msg, cmsg))
1032 return -EINVAL;
1033
1034 if (cmsg->cmsg_level != SOL_UDP) {
1035 need_ip = true;
1036 continue;
1037 }
1038
1039 err = __udp_cmsg_send(cmsg, gso_size);
1040 if (err)
1041 return err;
1042 }
1043
1044 return need_ip;
1045 }
1046 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1047
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1048 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1049 {
1050 struct inet_sock *inet = inet_sk(sk);
1051 struct udp_sock *up = udp_sk(sk);
1052 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1053 struct flowi4 fl4_stack;
1054 struct flowi4 *fl4;
1055 int ulen = len;
1056 struct ipcm_cookie ipc;
1057 struct rtable *rt = NULL;
1058 int free = 0;
1059 int connected = 0;
1060 __be32 daddr, faddr, saddr;
1061 __be16 dport;
1062 u8 tos;
1063 int err, is_udplite = IS_UDPLITE(sk);
1064 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1065 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1066 struct sk_buff *skb;
1067 struct ip_options_data opt_copy;
1068
1069 if (len > 0xFFFF)
1070 return -EMSGSIZE;
1071
1072 /*
1073 * Check the flags.
1074 */
1075
1076 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1077 return -EOPNOTSUPP;
1078
1079 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1080
1081 fl4 = &inet->cork.fl.u.ip4;
1082 if (up->pending) {
1083 /*
1084 * There are pending frames.
1085 * The socket lock must be held while it's corked.
1086 */
1087 lock_sock(sk);
1088 if (likely(up->pending)) {
1089 if (unlikely(up->pending != AF_INET)) {
1090 release_sock(sk);
1091 return -EINVAL;
1092 }
1093 goto do_append_data;
1094 }
1095 release_sock(sk);
1096 }
1097 ulen += sizeof(struct udphdr);
1098
1099 /*
1100 * Get and verify the address.
1101 */
1102 if (usin) {
1103 if (msg->msg_namelen < sizeof(*usin))
1104 return -EINVAL;
1105 if (usin->sin_family != AF_INET) {
1106 if (usin->sin_family != AF_UNSPEC)
1107 return -EAFNOSUPPORT;
1108 }
1109
1110 daddr = usin->sin_addr.s_addr;
1111 dport = usin->sin_port;
1112 if (dport == 0)
1113 return -EINVAL;
1114 } else {
1115 if (sk->sk_state != TCP_ESTABLISHED)
1116 return -EDESTADDRREQ;
1117 daddr = inet->inet_daddr;
1118 dport = inet->inet_dport;
1119 /* Open fast path for connected socket.
1120 Route will not be used, if at least one option is set.
1121 */
1122 connected = 1;
1123 }
1124
1125 ipcm_init_sk(&ipc, inet);
1126 ipc.gso_size = READ_ONCE(up->gso_size);
1127
1128 if (msg->msg_controllen) {
1129 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1130 if (err > 0)
1131 err = ip_cmsg_send(sk, msg, &ipc,
1132 sk->sk_family == AF_INET6);
1133 if (unlikely(err < 0)) {
1134 kfree(ipc.opt);
1135 return err;
1136 }
1137 if (ipc.opt)
1138 free = 1;
1139 connected = 0;
1140 }
1141 if (!ipc.opt) {
1142 struct ip_options_rcu *inet_opt;
1143
1144 rcu_read_lock();
1145 inet_opt = rcu_dereference(inet->inet_opt);
1146 if (inet_opt) {
1147 memcpy(&opt_copy, inet_opt,
1148 sizeof(*inet_opt) + inet_opt->opt.optlen);
1149 ipc.opt = &opt_copy.opt;
1150 }
1151 rcu_read_unlock();
1152 }
1153
1154 if (cgroup_bpf_enabled && !connected) {
1155 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1156 (struct sockaddr *)usin, &ipc.addr);
1157 if (err)
1158 goto out_free;
1159 if (usin) {
1160 if (usin->sin_port == 0) {
1161 /* BPF program set invalid port. Reject it. */
1162 err = -EINVAL;
1163 goto out_free;
1164 }
1165 daddr = usin->sin_addr.s_addr;
1166 dport = usin->sin_port;
1167 }
1168 }
1169
1170 saddr = ipc.addr;
1171 ipc.addr = faddr = daddr;
1172
1173 if (ipc.opt && ipc.opt->opt.srr) {
1174 if (!daddr) {
1175 err = -EINVAL;
1176 goto out_free;
1177 }
1178 faddr = ipc.opt->opt.faddr;
1179 connected = 0;
1180 }
1181 tos = get_rttos(&ipc, inet);
1182 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1183 (msg->msg_flags & MSG_DONTROUTE) ||
1184 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1185 tos |= RTO_ONLINK;
1186 connected = 0;
1187 }
1188
1189 if (ipv4_is_multicast(daddr)) {
1190 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1191 ipc.oif = inet->mc_index;
1192 if (!saddr)
1193 saddr = inet->mc_addr;
1194 connected = 0;
1195 } else if (!ipc.oif) {
1196 ipc.oif = inet->uc_index;
1197 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1198 /* oif is set, packet is to local broadcast and
1199 * uc_index is set. oif is most likely set
1200 * by sk_bound_dev_if. If uc_index != oif check if the
1201 * oif is an L3 master and uc_index is an L3 slave.
1202 * If so, we want to allow the send using the uc_index.
1203 */
1204 if (ipc.oif != inet->uc_index &&
1205 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1206 inet->uc_index)) {
1207 ipc.oif = inet->uc_index;
1208 }
1209 }
1210
1211 if (connected)
1212 rt = (struct rtable *)sk_dst_check(sk, 0);
1213
1214 if (!rt) {
1215 struct net *net = sock_net(sk);
1216 __u8 flow_flags = inet_sk_flowi_flags(sk);
1217
1218 fl4 = &fl4_stack;
1219
1220 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1221 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1222 flow_flags,
1223 faddr, saddr, dport, inet->inet_sport,
1224 sk->sk_uid);
1225
1226 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1227 rt = ip_route_output_flow(net, fl4, sk);
1228 if (IS_ERR(rt)) {
1229 err = PTR_ERR(rt);
1230 rt = NULL;
1231 if (err == -ENETUNREACH)
1232 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1233 goto out;
1234 }
1235
1236 err = -EACCES;
1237 if ((rt->rt_flags & RTCF_BROADCAST) &&
1238 !sock_flag(sk, SOCK_BROADCAST))
1239 goto out;
1240 if (connected)
1241 sk_dst_set(sk, dst_clone(&rt->dst));
1242 }
1243
1244 if (msg->msg_flags&MSG_CONFIRM)
1245 goto do_confirm;
1246 back_from_confirm:
1247
1248 saddr = fl4->saddr;
1249 if (!ipc.addr)
1250 daddr = ipc.addr = fl4->daddr;
1251
1252 /* Lockless fast path for the non-corking case. */
1253 if (!corkreq) {
1254 struct inet_cork cork;
1255
1256 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1257 sizeof(struct udphdr), &ipc, &rt,
1258 &cork, msg->msg_flags);
1259 err = PTR_ERR(skb);
1260 if (!IS_ERR_OR_NULL(skb))
1261 err = udp_send_skb(skb, fl4, &cork);
1262 goto out;
1263 }
1264
1265 lock_sock(sk);
1266 if (unlikely(up->pending)) {
1267 /* The socket is already corked while preparing it. */
1268 /* ... which is an evident application bug. --ANK */
1269 release_sock(sk);
1270
1271 net_dbg_ratelimited("socket already corked\n");
1272 err = -EINVAL;
1273 goto out;
1274 }
1275 /*
1276 * Now cork the socket to pend data.
1277 */
1278 fl4 = &inet->cork.fl.u.ip4;
1279 fl4->daddr = daddr;
1280 fl4->saddr = saddr;
1281 fl4->fl4_dport = dport;
1282 fl4->fl4_sport = inet->inet_sport;
1283 up->pending = AF_INET;
1284
1285 do_append_data:
1286 up->len += ulen;
1287 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1288 sizeof(struct udphdr), &ipc, &rt,
1289 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1290 if (err)
1291 udp_flush_pending_frames(sk);
1292 else if (!corkreq)
1293 err = udp_push_pending_frames(sk);
1294 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1295 up->pending = 0;
1296 release_sock(sk);
1297
1298 out:
1299 ip_rt_put(rt);
1300 out_free:
1301 if (free)
1302 kfree(ipc.opt);
1303 if (!err)
1304 return len;
1305 /*
1306 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1307 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1308 * we don't have a good statistic (IpOutDiscards but it can be too many
1309 * things). We could add another new stat but at least for now that
1310 * seems like overkill.
1311 */
1312 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1313 UDP_INC_STATS(sock_net(sk),
1314 UDP_MIB_SNDBUFERRORS, is_udplite);
1315 }
1316 return err;
1317
1318 do_confirm:
1319 if (msg->msg_flags & MSG_PROBE)
1320 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1321 if (!(msg->msg_flags&MSG_PROBE) || len)
1322 goto back_from_confirm;
1323 err = 0;
1324 goto out;
1325 }
1326 EXPORT_SYMBOL(udp_sendmsg);
1327
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1328 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1329 size_t size, int flags)
1330 {
1331 struct inet_sock *inet = inet_sk(sk);
1332 struct udp_sock *up = udp_sk(sk);
1333 int ret;
1334
1335 if (flags & MSG_SENDPAGE_NOTLAST)
1336 flags |= MSG_MORE;
1337
1338 if (!up->pending) {
1339 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1340
1341 /* Call udp_sendmsg to specify destination address which
1342 * sendpage interface can't pass.
1343 * This will succeed only when the socket is connected.
1344 */
1345 ret = udp_sendmsg(sk, &msg, 0);
1346 if (ret < 0)
1347 return ret;
1348 }
1349
1350 lock_sock(sk);
1351
1352 if (unlikely(!up->pending)) {
1353 release_sock(sk);
1354
1355 net_dbg_ratelimited("cork failed\n");
1356 return -EINVAL;
1357 }
1358
1359 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1360 page, offset, size, flags);
1361 if (ret == -EOPNOTSUPP) {
1362 release_sock(sk);
1363 return sock_no_sendpage(sk->sk_socket, page, offset,
1364 size, flags);
1365 }
1366 if (ret < 0) {
1367 udp_flush_pending_frames(sk);
1368 goto out;
1369 }
1370
1371 up->len += size;
1372 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1373 ret = udp_push_pending_frames(sk);
1374 if (!ret)
1375 ret = size;
1376 out:
1377 release_sock(sk);
1378 return ret;
1379 }
1380
1381 #define UDP_SKB_IS_STATELESS 0x80000000
1382
1383 /* all head states (dst, sk, nf conntrack) except skb extensions are
1384 * cleared by udp_rcv().
1385 *
1386 * We need to preserve secpath, if present, to eventually process
1387 * IP_CMSG_PASSSEC at recvmsg() time.
1388 *
1389 * Other extensions can be cleared.
1390 */
udp_try_make_stateless(struct sk_buff * skb)1391 static bool udp_try_make_stateless(struct sk_buff *skb)
1392 {
1393 if (!skb_has_extensions(skb))
1394 return true;
1395
1396 if (!secpath_exists(skb)) {
1397 skb_ext_reset(skb);
1398 return true;
1399 }
1400
1401 return false;
1402 }
1403
udp_set_dev_scratch(struct sk_buff * skb)1404 static void udp_set_dev_scratch(struct sk_buff *skb)
1405 {
1406 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1407
1408 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1409 scratch->_tsize_state = skb->truesize;
1410 #if BITS_PER_LONG == 64
1411 scratch->len = skb->len;
1412 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1413 scratch->is_linear = !skb_is_nonlinear(skb);
1414 #endif
1415 if (udp_try_make_stateless(skb))
1416 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1417 }
1418
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1419 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1420 {
1421 /* We come here after udp_lib_checksum_complete() returned 0.
1422 * This means that __skb_checksum_complete() might have
1423 * set skb->csum_valid to 1.
1424 * On 64bit platforms, we can set csum_unnecessary
1425 * to true, but only if the skb is not shared.
1426 */
1427 #if BITS_PER_LONG == 64
1428 if (!skb_shared(skb))
1429 udp_skb_scratch(skb)->csum_unnecessary = true;
1430 #endif
1431 }
1432
udp_skb_truesize(struct sk_buff * skb)1433 static int udp_skb_truesize(struct sk_buff *skb)
1434 {
1435 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1436 }
1437
udp_skb_has_head_state(struct sk_buff * skb)1438 static bool udp_skb_has_head_state(struct sk_buff *skb)
1439 {
1440 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1441 }
1442
1443 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1444 static void udp_rmem_release(struct sock *sk, int size, int partial,
1445 bool rx_queue_lock_held)
1446 {
1447 struct udp_sock *up = udp_sk(sk);
1448 struct sk_buff_head *sk_queue;
1449 int amt;
1450
1451 if (likely(partial)) {
1452 up->forward_deficit += size;
1453 size = up->forward_deficit;
1454 if (size < (sk->sk_rcvbuf >> 2) &&
1455 !skb_queue_empty(&up->reader_queue))
1456 return;
1457 } else {
1458 size += up->forward_deficit;
1459 }
1460 up->forward_deficit = 0;
1461
1462 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1463 * if the called don't held it already
1464 */
1465 sk_queue = &sk->sk_receive_queue;
1466 if (!rx_queue_lock_held)
1467 spin_lock(&sk_queue->lock);
1468
1469
1470 sk->sk_forward_alloc += size;
1471 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1472 sk->sk_forward_alloc -= amt;
1473
1474 if (amt)
1475 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1476
1477 atomic_sub(size, &sk->sk_rmem_alloc);
1478
1479 /* this can save us from acquiring the rx queue lock on next receive */
1480 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1481
1482 if (!rx_queue_lock_held)
1483 spin_unlock(&sk_queue->lock);
1484 }
1485
1486 /* Note: called with reader_queue.lock held.
1487 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1488 * This avoids a cache line miss while receive_queue lock is held.
1489 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1490 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1491 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1492 {
1493 prefetch(&skb->data);
1494 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1495 }
1496 EXPORT_SYMBOL(udp_skb_destructor);
1497
1498 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1499 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1500 {
1501 prefetch(&skb->data);
1502 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1503 }
1504
1505 /* Idea of busylocks is to let producers grab an extra spinlock
1506 * to relieve pressure on the receive_queue spinlock shared by consumer.
1507 * Under flood, this means that only one producer can be in line
1508 * trying to acquire the receive_queue spinlock.
1509 * These busylock can be allocated on a per cpu manner, instead of a
1510 * per socket one (that would consume a cache line per socket)
1511 */
1512 static int udp_busylocks_log __read_mostly;
1513 static spinlock_t *udp_busylocks __read_mostly;
1514
busylock_acquire(void * ptr)1515 static spinlock_t *busylock_acquire(void *ptr)
1516 {
1517 spinlock_t *busy;
1518
1519 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1520 spin_lock(busy);
1521 return busy;
1522 }
1523
busylock_release(spinlock_t * busy)1524 static void busylock_release(spinlock_t *busy)
1525 {
1526 if (busy)
1527 spin_unlock(busy);
1528 }
1529
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1530 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1531 {
1532 struct sk_buff_head *list = &sk->sk_receive_queue;
1533 int rmem, delta, amt, err = -ENOMEM;
1534 spinlock_t *busy = NULL;
1535 int size;
1536
1537 /* try to avoid the costly atomic add/sub pair when the receive
1538 * queue is full; always allow at least a packet
1539 */
1540 rmem = atomic_read(&sk->sk_rmem_alloc);
1541 if (rmem > sk->sk_rcvbuf)
1542 goto drop;
1543
1544 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1545 * having linear skbs :
1546 * - Reduce memory overhead and thus increase receive queue capacity
1547 * - Less cache line misses at copyout() time
1548 * - Less work at consume_skb() (less alien page frag freeing)
1549 */
1550 if (rmem > (sk->sk_rcvbuf >> 1)) {
1551 skb_condense(skb);
1552
1553 busy = busylock_acquire(sk);
1554 }
1555 size = skb->truesize;
1556 udp_set_dev_scratch(skb);
1557
1558 /* we drop only if the receive buf is full and the receive
1559 * queue contains some other skb
1560 */
1561 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1562 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1563 goto uncharge_drop;
1564
1565 spin_lock(&list->lock);
1566 if (size >= sk->sk_forward_alloc) {
1567 amt = sk_mem_pages(size);
1568 delta = amt << SK_MEM_QUANTUM_SHIFT;
1569 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1570 err = -ENOBUFS;
1571 spin_unlock(&list->lock);
1572 goto uncharge_drop;
1573 }
1574
1575 sk->sk_forward_alloc += delta;
1576 }
1577
1578 sk->sk_forward_alloc -= size;
1579
1580 /* no need to setup a destructor, we will explicitly release the
1581 * forward allocated memory on dequeue
1582 */
1583 sock_skb_set_dropcount(sk, skb);
1584
1585 __skb_queue_tail(list, skb);
1586 spin_unlock(&list->lock);
1587
1588 if (!sock_flag(sk, SOCK_DEAD))
1589 sk->sk_data_ready(sk);
1590
1591 busylock_release(busy);
1592 return 0;
1593
1594 uncharge_drop:
1595 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1596
1597 drop:
1598 atomic_inc(&sk->sk_drops);
1599 busylock_release(busy);
1600 return err;
1601 }
1602 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1603
udp_destruct_common(struct sock * sk)1604 void udp_destruct_common(struct sock *sk)
1605 {
1606 /* reclaim completely the forward allocated memory */
1607 struct udp_sock *up = udp_sk(sk);
1608 unsigned int total = 0;
1609 struct sk_buff *skb;
1610
1611 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1612 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1613 total += skb->truesize;
1614 kfree_skb(skb);
1615 }
1616 udp_rmem_release(sk, total, 0, true);
1617 }
1618 EXPORT_SYMBOL_GPL(udp_destruct_common);
1619
udp_destruct_sock(struct sock * sk)1620 static void udp_destruct_sock(struct sock *sk)
1621 {
1622 udp_destruct_common(sk);
1623 inet_sock_destruct(sk);
1624 }
1625
udp_init_sock(struct sock * sk)1626 int udp_init_sock(struct sock *sk)
1627 {
1628 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1629 sk->sk_destruct = udp_destruct_sock;
1630 return 0;
1631 }
1632
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1633 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1634 {
1635 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1636 bool slow = lock_sock_fast(sk);
1637
1638 sk_peek_offset_bwd(sk, len);
1639 unlock_sock_fast(sk, slow);
1640 }
1641
1642 if (!skb_unref(skb))
1643 return;
1644
1645 /* In the more common cases we cleared the head states previously,
1646 * see __udp_queue_rcv_skb().
1647 */
1648 if (unlikely(udp_skb_has_head_state(skb)))
1649 skb_release_head_state(skb);
1650 __consume_stateless_skb(skb);
1651 }
1652 EXPORT_SYMBOL_GPL(skb_consume_udp);
1653
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1654 static struct sk_buff *__first_packet_length(struct sock *sk,
1655 struct sk_buff_head *rcvq,
1656 int *total)
1657 {
1658 struct sk_buff *skb;
1659
1660 while ((skb = skb_peek(rcvq)) != NULL) {
1661 if (udp_lib_checksum_complete(skb)) {
1662 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1663 IS_UDPLITE(sk));
1664 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1665 IS_UDPLITE(sk));
1666 atomic_inc(&sk->sk_drops);
1667 __skb_unlink(skb, rcvq);
1668 *total += skb->truesize;
1669 kfree_skb(skb);
1670 } else {
1671 udp_skb_csum_unnecessary_set(skb);
1672 break;
1673 }
1674 }
1675 return skb;
1676 }
1677
1678 /**
1679 * first_packet_length - return length of first packet in receive queue
1680 * @sk: socket
1681 *
1682 * Drops all bad checksum frames, until a valid one is found.
1683 * Returns the length of found skb, or -1 if none is found.
1684 */
first_packet_length(struct sock * sk)1685 static int first_packet_length(struct sock *sk)
1686 {
1687 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1688 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1689 struct sk_buff *skb;
1690 int total = 0;
1691 int res;
1692
1693 spin_lock_bh(&rcvq->lock);
1694 skb = __first_packet_length(sk, rcvq, &total);
1695 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1696 spin_lock(&sk_queue->lock);
1697 skb_queue_splice_tail_init(sk_queue, rcvq);
1698 spin_unlock(&sk_queue->lock);
1699
1700 skb = __first_packet_length(sk, rcvq, &total);
1701 }
1702 res = skb ? skb->len : -1;
1703 if (total)
1704 udp_rmem_release(sk, total, 1, false);
1705 spin_unlock_bh(&rcvq->lock);
1706 return res;
1707 }
1708
1709 /*
1710 * IOCTL requests applicable to the UDP protocol
1711 */
1712
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1713 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1714 {
1715 switch (cmd) {
1716 case SIOCOUTQ:
1717 {
1718 int amount = sk_wmem_alloc_get(sk);
1719
1720 return put_user(amount, (int __user *)arg);
1721 }
1722
1723 case SIOCINQ:
1724 {
1725 int amount = max_t(int, 0, first_packet_length(sk));
1726
1727 return put_user(amount, (int __user *)arg);
1728 }
1729
1730 default:
1731 return -ENOIOCTLCMD;
1732 }
1733
1734 return 0;
1735 }
1736 EXPORT_SYMBOL(udp_ioctl);
1737
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1738 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1739 int noblock, int *off, int *err)
1740 {
1741 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1742 struct sk_buff_head *queue;
1743 struct sk_buff *last;
1744 long timeo;
1745 int error;
1746
1747 queue = &udp_sk(sk)->reader_queue;
1748 flags |= noblock ? MSG_DONTWAIT : 0;
1749 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1750 do {
1751 struct sk_buff *skb;
1752
1753 error = sock_error(sk);
1754 if (error)
1755 break;
1756
1757 error = -EAGAIN;
1758 do {
1759 spin_lock_bh(&queue->lock);
1760 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1761 err, &last);
1762 if (skb) {
1763 if (!(flags & MSG_PEEK))
1764 udp_skb_destructor(sk, skb);
1765 spin_unlock_bh(&queue->lock);
1766 return skb;
1767 }
1768
1769 if (skb_queue_empty_lockless(sk_queue)) {
1770 spin_unlock_bh(&queue->lock);
1771 goto busy_check;
1772 }
1773
1774 /* refill the reader queue and walk it again
1775 * keep both queues locked to avoid re-acquiring
1776 * the sk_receive_queue lock if fwd memory scheduling
1777 * is needed.
1778 */
1779 spin_lock(&sk_queue->lock);
1780 skb_queue_splice_tail_init(sk_queue, queue);
1781
1782 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1783 err, &last);
1784 if (skb && !(flags & MSG_PEEK))
1785 udp_skb_dtor_locked(sk, skb);
1786 spin_unlock(&sk_queue->lock);
1787 spin_unlock_bh(&queue->lock);
1788 if (skb)
1789 return skb;
1790
1791 busy_check:
1792 if (!sk_can_busy_loop(sk))
1793 break;
1794
1795 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1796 } while (!skb_queue_empty_lockless(sk_queue));
1797
1798 /* sk_queue is empty, reader_queue may contain peeked packets */
1799 } while (timeo &&
1800 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1801 &error, &timeo,
1802 (struct sk_buff *)sk_queue));
1803
1804 *err = error;
1805 return NULL;
1806 }
1807 EXPORT_SYMBOL(__skb_recv_udp);
1808
1809 /*
1810 * This should be easy, if there is something there we
1811 * return it, otherwise we block.
1812 */
1813
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1814 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1815 int flags, int *addr_len)
1816 {
1817 struct inet_sock *inet = inet_sk(sk);
1818 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1819 struct sk_buff *skb;
1820 unsigned int ulen, copied;
1821 int off, err, peeking = flags & MSG_PEEK;
1822 int is_udplite = IS_UDPLITE(sk);
1823 bool checksum_valid = false;
1824
1825 if (flags & MSG_ERRQUEUE)
1826 return ip_recv_error(sk, msg, len, addr_len);
1827
1828 try_again:
1829 off = sk_peek_offset(sk, flags);
1830 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1831 if (!skb)
1832 return err;
1833
1834 ulen = udp_skb_len(skb);
1835 copied = len;
1836 if (copied > ulen - off)
1837 copied = ulen - off;
1838 else if (copied < ulen)
1839 msg->msg_flags |= MSG_TRUNC;
1840
1841 /*
1842 * If checksum is needed at all, try to do it while copying the
1843 * data. If the data is truncated, or if we only want a partial
1844 * coverage checksum (UDP-Lite), do it before the copy.
1845 */
1846
1847 if (copied < ulen || peeking ||
1848 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1849 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1850 !__udp_lib_checksum_complete(skb);
1851 if (!checksum_valid)
1852 goto csum_copy_err;
1853 }
1854
1855 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1856 if (udp_skb_is_linear(skb))
1857 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1858 else
1859 err = skb_copy_datagram_msg(skb, off, msg, copied);
1860 } else {
1861 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1862
1863 if (err == -EINVAL)
1864 goto csum_copy_err;
1865 }
1866
1867 if (unlikely(err)) {
1868 if (!peeking) {
1869 atomic_inc(&sk->sk_drops);
1870 UDP_INC_STATS(sock_net(sk),
1871 UDP_MIB_INERRORS, is_udplite);
1872 }
1873 kfree_skb(skb);
1874 return err;
1875 }
1876
1877 if (!peeking)
1878 UDP_INC_STATS(sock_net(sk),
1879 UDP_MIB_INDATAGRAMS, is_udplite);
1880
1881 sock_recv_ts_and_drops(msg, sk, skb);
1882
1883 /* Copy the address. */
1884 if (sin) {
1885 sin->sin_family = AF_INET;
1886 sin->sin_port = udp_hdr(skb)->source;
1887 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1888 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1889 *addr_len = sizeof(*sin);
1890
1891 if (cgroup_bpf_enabled)
1892 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1893 (struct sockaddr *)sin);
1894 }
1895
1896 if (udp_sk(sk)->gro_enabled)
1897 udp_cmsg_recv(msg, sk, skb);
1898
1899 if (inet->cmsg_flags)
1900 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1901
1902 err = copied;
1903 if (flags & MSG_TRUNC)
1904 err = ulen;
1905
1906 skb_consume_udp(sk, skb, peeking ? -err : err);
1907 return err;
1908
1909 csum_copy_err:
1910 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1911 udp_skb_destructor)) {
1912 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1913 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1914 }
1915 kfree_skb(skb);
1916
1917 /* starting over for a new packet, but check if we need to yield */
1918 cond_resched();
1919 msg->msg_flags &= ~MSG_TRUNC;
1920 goto try_again;
1921 }
1922
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1923 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1924 {
1925 /* This check is replicated from __ip4_datagram_connect() and
1926 * intended to prevent BPF program called below from accessing bytes
1927 * that are out of the bound specified by user in addr_len.
1928 */
1929 if (addr_len < sizeof(struct sockaddr_in))
1930 return -EINVAL;
1931
1932 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1933 }
1934 EXPORT_SYMBOL(udp_pre_connect);
1935
__udp_disconnect(struct sock * sk,int flags)1936 int __udp_disconnect(struct sock *sk, int flags)
1937 {
1938 struct inet_sock *inet = inet_sk(sk);
1939 /*
1940 * 1003.1g - break association.
1941 */
1942
1943 sk->sk_state = TCP_CLOSE;
1944 inet->inet_daddr = 0;
1945 inet->inet_dport = 0;
1946 sock_rps_reset_rxhash(sk);
1947 sk->sk_bound_dev_if = 0;
1948 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1949 inet_reset_saddr(sk);
1950 if (sk->sk_prot->rehash &&
1951 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1952 sk->sk_prot->rehash(sk);
1953 }
1954
1955 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1956 sk->sk_prot->unhash(sk);
1957 inet->inet_sport = 0;
1958 }
1959 sk_dst_reset(sk);
1960 return 0;
1961 }
1962 EXPORT_SYMBOL(__udp_disconnect);
1963
udp_disconnect(struct sock * sk,int flags)1964 int udp_disconnect(struct sock *sk, int flags)
1965 {
1966 lock_sock(sk);
1967 __udp_disconnect(sk, flags);
1968 release_sock(sk);
1969 return 0;
1970 }
1971 EXPORT_SYMBOL(udp_disconnect);
1972
udp_lib_unhash(struct sock * sk)1973 void udp_lib_unhash(struct sock *sk)
1974 {
1975 if (sk_hashed(sk)) {
1976 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1977 struct udp_hslot *hslot, *hslot2;
1978
1979 hslot = udp_hashslot(udptable, sock_net(sk),
1980 udp_sk(sk)->udp_port_hash);
1981 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1982
1983 spin_lock_bh(&hslot->lock);
1984 if (rcu_access_pointer(sk->sk_reuseport_cb))
1985 reuseport_detach_sock(sk);
1986 if (sk_del_node_init_rcu(sk)) {
1987 hslot->count--;
1988 inet_sk(sk)->inet_num = 0;
1989 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1990
1991 spin_lock(&hslot2->lock);
1992 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1993 hslot2->count--;
1994 spin_unlock(&hslot2->lock);
1995 }
1996 spin_unlock_bh(&hslot->lock);
1997 }
1998 }
1999 EXPORT_SYMBOL(udp_lib_unhash);
2000
2001 /*
2002 * inet_rcv_saddr was changed, we must rehash secondary hash
2003 */
udp_lib_rehash(struct sock * sk,u16 newhash)2004 void udp_lib_rehash(struct sock *sk, u16 newhash)
2005 {
2006 if (sk_hashed(sk)) {
2007 struct udp_table *udptable = sk->sk_prot->h.udp_table;
2008 struct udp_hslot *hslot, *hslot2, *nhslot2;
2009
2010 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2011 nhslot2 = udp_hashslot2(udptable, newhash);
2012 udp_sk(sk)->udp_portaddr_hash = newhash;
2013
2014 if (hslot2 != nhslot2 ||
2015 rcu_access_pointer(sk->sk_reuseport_cb)) {
2016 hslot = udp_hashslot(udptable, sock_net(sk),
2017 udp_sk(sk)->udp_port_hash);
2018 /* we must lock primary chain too */
2019 spin_lock_bh(&hslot->lock);
2020 if (rcu_access_pointer(sk->sk_reuseport_cb))
2021 reuseport_detach_sock(sk);
2022
2023 if (hslot2 != nhslot2) {
2024 spin_lock(&hslot2->lock);
2025 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2026 hslot2->count--;
2027 spin_unlock(&hslot2->lock);
2028
2029 spin_lock(&nhslot2->lock);
2030 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2031 &nhslot2->head);
2032 nhslot2->count++;
2033 spin_unlock(&nhslot2->lock);
2034 }
2035
2036 spin_unlock_bh(&hslot->lock);
2037 }
2038 }
2039 }
2040 EXPORT_SYMBOL(udp_lib_rehash);
2041
udp_v4_rehash(struct sock * sk)2042 void udp_v4_rehash(struct sock *sk)
2043 {
2044 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2045 inet_sk(sk)->inet_rcv_saddr,
2046 inet_sk(sk)->inet_num);
2047 udp_lib_rehash(sk, new_hash);
2048 }
2049
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2050 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2051 {
2052 int rc;
2053
2054 if (inet_sk(sk)->inet_daddr) {
2055 sock_rps_save_rxhash(sk, skb);
2056 sk_mark_napi_id(sk, skb);
2057 sk_incoming_cpu_update(sk);
2058 } else {
2059 sk_mark_napi_id_once(sk, skb);
2060 }
2061
2062 rc = __udp_enqueue_schedule_skb(sk, skb);
2063 if (rc < 0) {
2064 int is_udplite = IS_UDPLITE(sk);
2065
2066 /* Note that an ENOMEM error is charged twice */
2067 if (rc == -ENOMEM)
2068 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2069 is_udplite);
2070 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2071 kfree_skb(skb);
2072 trace_udp_fail_queue_rcv_skb(rc, sk);
2073 return -1;
2074 }
2075
2076 return 0;
2077 }
2078
2079 /* returns:
2080 * -1: error
2081 * 0: success
2082 * >0: "udp encap" protocol resubmission
2083 *
2084 * Note that in the success and error cases, the skb is assumed to
2085 * have either been requeued or freed.
2086 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2087 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2088 {
2089 struct udp_sock *up = udp_sk(sk);
2090 int is_udplite = IS_UDPLITE(sk);
2091
2092 /*
2093 * Charge it to the socket, dropping if the queue is full.
2094 */
2095 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2096 goto drop;
2097 nf_reset_ct(skb);
2098
2099 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2100 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2101
2102 /*
2103 * This is an encapsulation socket so pass the skb to
2104 * the socket's udp_encap_rcv() hook. Otherwise, just
2105 * fall through and pass this up the UDP socket.
2106 * up->encap_rcv() returns the following value:
2107 * =0 if skb was successfully passed to the encap
2108 * handler or was discarded by it.
2109 * >0 if skb should be passed on to UDP.
2110 * <0 if skb should be resubmitted as proto -N
2111 */
2112
2113 /* if we're overly short, let UDP handle it */
2114 encap_rcv = READ_ONCE(up->encap_rcv);
2115 if (encap_rcv) {
2116 int ret;
2117
2118 /* Verify checksum before giving to encap */
2119 if (udp_lib_checksum_complete(skb))
2120 goto csum_error;
2121
2122 ret = encap_rcv(sk, skb);
2123 if (ret <= 0) {
2124 __UDP_INC_STATS(sock_net(sk),
2125 UDP_MIB_INDATAGRAMS,
2126 is_udplite);
2127 return -ret;
2128 }
2129 }
2130
2131 /* FALLTHROUGH -- it's a UDP Packet */
2132 }
2133
2134 /*
2135 * UDP-Lite specific tests, ignored on UDP sockets
2136 */
2137 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2138
2139 /*
2140 * MIB statistics other than incrementing the error count are
2141 * disabled for the following two types of errors: these depend
2142 * on the application settings, not on the functioning of the
2143 * protocol stack as such.
2144 *
2145 * RFC 3828 here recommends (sec 3.3): "There should also be a
2146 * way ... to ... at least let the receiving application block
2147 * delivery of packets with coverage values less than a value
2148 * provided by the application."
2149 */
2150 if (up->pcrlen == 0) { /* full coverage was set */
2151 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2152 UDP_SKB_CB(skb)->cscov, skb->len);
2153 goto drop;
2154 }
2155 /* The next case involves violating the min. coverage requested
2156 * by the receiver. This is subtle: if receiver wants x and x is
2157 * greater than the buffersize/MTU then receiver will complain
2158 * that it wants x while sender emits packets of smaller size y.
2159 * Therefore the above ...()->partial_cov statement is essential.
2160 */
2161 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2162 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2163 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2164 goto drop;
2165 }
2166 }
2167
2168 prefetch(&sk->sk_rmem_alloc);
2169 if (rcu_access_pointer(sk->sk_filter) &&
2170 udp_lib_checksum_complete(skb))
2171 goto csum_error;
2172
2173 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2174 goto drop;
2175
2176 udp_csum_pull_header(skb);
2177
2178 ipv4_pktinfo_prepare(sk, skb);
2179 return __udp_queue_rcv_skb(sk, skb);
2180
2181 csum_error:
2182 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2183 drop:
2184 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2185 atomic_inc(&sk->sk_drops);
2186 kfree_skb(skb);
2187 return -1;
2188 }
2189
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2190 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2191 {
2192 struct sk_buff *next, *segs;
2193 int ret;
2194
2195 if (likely(!udp_unexpected_gso(sk, skb)))
2196 return udp_queue_rcv_one_skb(sk, skb);
2197
2198 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2199 __skb_push(skb, -skb_mac_offset(skb));
2200 segs = udp_rcv_segment(sk, skb, true);
2201 skb_list_walk_safe(segs, skb, next) {
2202 __skb_pull(skb, skb_transport_offset(skb));
2203 ret = udp_queue_rcv_one_skb(sk, skb);
2204 if (ret > 0)
2205 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2206 }
2207 return 0;
2208 }
2209
2210 /* For TCP sockets, sk_rx_dst is protected by socket lock
2211 * For UDP, we use xchg() to guard against concurrent changes.
2212 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2213 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2214 {
2215 struct dst_entry *old;
2216
2217 if (dst_hold_safe(dst)) {
2218 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2219 dst_release(old);
2220 return old != dst;
2221 }
2222 return false;
2223 }
2224 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2225
2226 /*
2227 * Multicasts and broadcasts go to each listener.
2228 *
2229 * Note: called only from the BH handler context.
2230 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2231 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2232 struct udphdr *uh,
2233 __be32 saddr, __be32 daddr,
2234 struct udp_table *udptable,
2235 int proto)
2236 {
2237 struct sock *sk, *first = NULL;
2238 unsigned short hnum = ntohs(uh->dest);
2239 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2240 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2241 unsigned int offset = offsetof(typeof(*sk), sk_node);
2242 int dif = skb->dev->ifindex;
2243 int sdif = inet_sdif(skb);
2244 struct hlist_node *node;
2245 struct sk_buff *nskb;
2246
2247 if (use_hash2) {
2248 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2249 udptable->mask;
2250 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2251 start_lookup:
2252 hslot = &udptable->hash2[hash2];
2253 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2254 }
2255
2256 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2257 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2258 uh->source, saddr, dif, sdif, hnum))
2259 continue;
2260
2261 if (!first) {
2262 first = sk;
2263 continue;
2264 }
2265 nskb = skb_clone(skb, GFP_ATOMIC);
2266
2267 if (unlikely(!nskb)) {
2268 atomic_inc(&sk->sk_drops);
2269 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2270 IS_UDPLITE(sk));
2271 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2272 IS_UDPLITE(sk));
2273 continue;
2274 }
2275 if (udp_queue_rcv_skb(sk, nskb) > 0)
2276 consume_skb(nskb);
2277 }
2278
2279 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2280 if (use_hash2 && hash2 != hash2_any) {
2281 hash2 = hash2_any;
2282 goto start_lookup;
2283 }
2284
2285 if (first) {
2286 if (udp_queue_rcv_skb(first, skb) > 0)
2287 consume_skb(skb);
2288 } else {
2289 kfree_skb(skb);
2290 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2291 proto == IPPROTO_UDPLITE);
2292 }
2293 return 0;
2294 }
2295
2296 /* Initialize UDP checksum. If exited with zero value (success),
2297 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2298 * Otherwise, csum completion requires checksumming packet body,
2299 * including udp header and folding it to skb->csum.
2300 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2301 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2302 int proto)
2303 {
2304 int err;
2305
2306 UDP_SKB_CB(skb)->partial_cov = 0;
2307 UDP_SKB_CB(skb)->cscov = skb->len;
2308
2309 if (proto == IPPROTO_UDPLITE) {
2310 err = udplite_checksum_init(skb, uh);
2311 if (err)
2312 return err;
2313
2314 if (UDP_SKB_CB(skb)->partial_cov) {
2315 skb->csum = inet_compute_pseudo(skb, proto);
2316 return 0;
2317 }
2318 }
2319
2320 /* Note, we are only interested in != 0 or == 0, thus the
2321 * force to int.
2322 */
2323 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2324 inet_compute_pseudo);
2325 if (err)
2326 return err;
2327
2328 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2329 /* If SW calculated the value, we know it's bad */
2330 if (skb->csum_complete_sw)
2331 return 1;
2332
2333 /* HW says the value is bad. Let's validate that.
2334 * skb->csum is no longer the full packet checksum,
2335 * so don't treat it as such.
2336 */
2337 skb_checksum_complete_unset(skb);
2338 }
2339
2340 return 0;
2341 }
2342
2343 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2344 * return code conversion for ip layer consumption
2345 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2346 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2347 struct udphdr *uh)
2348 {
2349 int ret;
2350
2351 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2352 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2353
2354 ret = udp_queue_rcv_skb(sk, skb);
2355
2356 /* a return value > 0 means to resubmit the input, but
2357 * it wants the return to be -protocol, or 0
2358 */
2359 if (ret > 0)
2360 return -ret;
2361 return 0;
2362 }
2363
2364 /*
2365 * All we need to do is get the socket, and then do a checksum.
2366 */
2367
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2368 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2369 int proto)
2370 {
2371 struct sock *sk;
2372 struct udphdr *uh;
2373 unsigned short ulen;
2374 struct rtable *rt = skb_rtable(skb);
2375 __be32 saddr, daddr;
2376 struct net *net = dev_net(skb->dev);
2377 bool refcounted;
2378
2379 /*
2380 * Validate the packet.
2381 */
2382 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2383 goto drop; /* No space for header. */
2384
2385 uh = udp_hdr(skb);
2386 ulen = ntohs(uh->len);
2387 saddr = ip_hdr(skb)->saddr;
2388 daddr = ip_hdr(skb)->daddr;
2389
2390 if (ulen > skb->len)
2391 goto short_packet;
2392
2393 if (proto == IPPROTO_UDP) {
2394 /* UDP validates ulen. */
2395 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2396 goto short_packet;
2397 uh = udp_hdr(skb);
2398 }
2399
2400 if (udp4_csum_init(skb, uh, proto))
2401 goto csum_error;
2402
2403 sk = skb_steal_sock(skb, &refcounted);
2404 if (sk) {
2405 struct dst_entry *dst = skb_dst(skb);
2406 int ret;
2407
2408 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2409 udp_sk_rx_dst_set(sk, dst);
2410
2411 ret = udp_unicast_rcv_skb(sk, skb, uh);
2412 if (refcounted)
2413 sock_put(sk);
2414 return ret;
2415 }
2416
2417 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2418 return __udp4_lib_mcast_deliver(net, skb, uh,
2419 saddr, daddr, udptable, proto);
2420
2421 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2422 if (sk)
2423 return udp_unicast_rcv_skb(sk, skb, uh);
2424
2425 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2426 goto drop;
2427 nf_reset_ct(skb);
2428
2429 /* No socket. Drop packet silently, if checksum is wrong */
2430 if (udp_lib_checksum_complete(skb))
2431 goto csum_error;
2432
2433 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2434 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2435
2436 /*
2437 * Hmm. We got an UDP packet to a port to which we
2438 * don't wanna listen. Ignore it.
2439 */
2440 kfree_skb(skb);
2441 return 0;
2442
2443 short_packet:
2444 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2445 proto == IPPROTO_UDPLITE ? "Lite" : "",
2446 &saddr, ntohs(uh->source),
2447 ulen, skb->len,
2448 &daddr, ntohs(uh->dest));
2449 goto drop;
2450
2451 csum_error:
2452 /*
2453 * RFC1122: OK. Discards the bad packet silently (as far as
2454 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2455 */
2456 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2457 proto == IPPROTO_UDPLITE ? "Lite" : "",
2458 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2459 ulen);
2460 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2461 drop:
2462 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2463 kfree_skb(skb);
2464 return 0;
2465 }
2466
2467 /* We can only early demux multicast if there is a single matching socket.
2468 * If more than one socket found returns NULL
2469 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2470 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2471 __be16 loc_port, __be32 loc_addr,
2472 __be16 rmt_port, __be32 rmt_addr,
2473 int dif, int sdif)
2474 {
2475 struct sock *sk, *result;
2476 unsigned short hnum = ntohs(loc_port);
2477 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2478 struct udp_hslot *hslot = &udp_table.hash[slot];
2479
2480 /* Do not bother scanning a too big list */
2481 if (hslot->count > 10)
2482 return NULL;
2483
2484 result = NULL;
2485 sk_for_each_rcu(sk, &hslot->head) {
2486 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2487 rmt_port, rmt_addr, dif, sdif, hnum)) {
2488 if (result)
2489 return NULL;
2490 result = sk;
2491 }
2492 }
2493
2494 return result;
2495 }
2496
2497 /* For unicast we should only early demux connected sockets or we can
2498 * break forwarding setups. The chains here can be long so only check
2499 * if the first socket is an exact match and if not move on.
2500 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2501 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2502 __be16 loc_port, __be32 loc_addr,
2503 __be16 rmt_port, __be32 rmt_addr,
2504 int dif, int sdif)
2505 {
2506 unsigned short hnum = ntohs(loc_port);
2507 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2508 unsigned int slot2 = hash2 & udp_table.mask;
2509 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2510 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2511 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2512 struct sock *sk;
2513
2514 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2515 if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2516 return sk;
2517 /* Only check first socket in chain */
2518 break;
2519 }
2520 return NULL;
2521 }
2522
udp_v4_early_demux(struct sk_buff * skb)2523 int udp_v4_early_demux(struct sk_buff *skb)
2524 {
2525 struct net *net = dev_net(skb->dev);
2526 struct in_device *in_dev = NULL;
2527 const struct iphdr *iph;
2528 const struct udphdr *uh;
2529 struct sock *sk = NULL;
2530 struct dst_entry *dst;
2531 int dif = skb->dev->ifindex;
2532 int sdif = inet_sdif(skb);
2533 int ours;
2534
2535 /* validate the packet */
2536 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2537 return 0;
2538
2539 iph = ip_hdr(skb);
2540 uh = udp_hdr(skb);
2541
2542 if (skb->pkt_type == PACKET_MULTICAST) {
2543 in_dev = __in_dev_get_rcu(skb->dev);
2544
2545 if (!in_dev)
2546 return 0;
2547
2548 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2549 iph->protocol);
2550 if (!ours)
2551 return 0;
2552
2553 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2554 uh->source, iph->saddr,
2555 dif, sdif);
2556 } else if (skb->pkt_type == PACKET_HOST) {
2557 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2558 uh->source, iph->saddr, dif, sdif);
2559 }
2560
2561 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2562 return 0;
2563
2564 skb->sk = sk;
2565 skb->destructor = sock_efree;
2566 dst = rcu_dereference(sk->sk_rx_dst);
2567
2568 if (dst)
2569 dst = dst_check(dst, 0);
2570 if (dst) {
2571 u32 itag = 0;
2572
2573 /* set noref for now.
2574 * any place which wants to hold dst has to call
2575 * dst_hold_safe()
2576 */
2577 skb_dst_set_noref(skb, dst);
2578
2579 /* for unconnected multicast sockets we need to validate
2580 * the source on each packet
2581 */
2582 if (!inet_sk(sk)->inet_daddr && in_dev)
2583 return ip_mc_validate_source(skb, iph->daddr,
2584 iph->saddr,
2585 iph->tos & IPTOS_RT_MASK,
2586 skb->dev, in_dev, &itag);
2587 }
2588 return 0;
2589 }
2590
udp_rcv(struct sk_buff * skb)2591 int udp_rcv(struct sk_buff *skb)
2592 {
2593 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2594 }
2595
udp_destroy_sock(struct sock * sk)2596 void udp_destroy_sock(struct sock *sk)
2597 {
2598 struct udp_sock *up = udp_sk(sk);
2599 bool slow = lock_sock_fast(sk);
2600
2601 /* protects from races with udp_abort() */
2602 sock_set_flag(sk, SOCK_DEAD);
2603 udp_flush_pending_frames(sk);
2604 unlock_sock_fast(sk, slow);
2605 if (static_branch_unlikely(&udp_encap_needed_key)) {
2606 if (up->encap_type) {
2607 void (*encap_destroy)(struct sock *sk);
2608 encap_destroy = READ_ONCE(up->encap_destroy);
2609 if (encap_destroy)
2610 encap_destroy(sk);
2611 }
2612 if (up->encap_enabled)
2613 static_branch_dec(&udp_encap_needed_key);
2614 }
2615 }
2616
2617 /*
2618 * Socket option code for UDP
2619 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2620 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2621 sockptr_t optval, unsigned int optlen,
2622 int (*push_pending_frames)(struct sock *))
2623 {
2624 struct udp_sock *up = udp_sk(sk);
2625 int val, valbool;
2626 int err = 0;
2627 int is_udplite = IS_UDPLITE(sk);
2628
2629 if (optlen < sizeof(int))
2630 return -EINVAL;
2631
2632 if (copy_from_sockptr(&val, optval, sizeof(val)))
2633 return -EFAULT;
2634
2635 valbool = val ? 1 : 0;
2636
2637 switch (optname) {
2638 case UDP_CORK:
2639 if (val != 0) {
2640 WRITE_ONCE(up->corkflag, 1);
2641 } else {
2642 WRITE_ONCE(up->corkflag, 0);
2643 lock_sock(sk);
2644 push_pending_frames(sk);
2645 release_sock(sk);
2646 }
2647 break;
2648
2649 case UDP_ENCAP:
2650 switch (val) {
2651 case 0:
2652 #ifdef CONFIG_XFRM
2653 case UDP_ENCAP_ESPINUDP:
2654 case UDP_ENCAP_ESPINUDP_NON_IKE:
2655 #if IS_ENABLED(CONFIG_IPV6)
2656 if (sk->sk_family == AF_INET6)
2657 WRITE_ONCE(up->encap_rcv,
2658 ipv6_stub->xfrm6_udp_encap_rcv);
2659 else
2660 #endif
2661 WRITE_ONCE(up->encap_rcv,
2662 xfrm4_udp_encap_rcv);
2663 #endif
2664 fallthrough;
2665 case UDP_ENCAP_L2TPINUDP:
2666 up->encap_type = val;
2667 lock_sock(sk);
2668 udp_tunnel_encap_enable(sk->sk_socket);
2669 release_sock(sk);
2670 break;
2671 default:
2672 err = -ENOPROTOOPT;
2673 break;
2674 }
2675 break;
2676
2677 case UDP_NO_CHECK6_TX:
2678 up->no_check6_tx = valbool;
2679 break;
2680
2681 case UDP_NO_CHECK6_RX:
2682 up->no_check6_rx = valbool;
2683 break;
2684
2685 case UDP_SEGMENT:
2686 if (val < 0 || val > USHRT_MAX)
2687 return -EINVAL;
2688 WRITE_ONCE(up->gso_size, val);
2689 break;
2690
2691 case UDP_GRO:
2692 lock_sock(sk);
2693
2694 /* when enabling GRO, accept the related GSO packet type */
2695 if (valbool)
2696 udp_tunnel_encap_enable(sk->sk_socket);
2697 up->gro_enabled = valbool;
2698 up->accept_udp_l4 = valbool;
2699 release_sock(sk);
2700 break;
2701
2702 /*
2703 * UDP-Lite's partial checksum coverage (RFC 3828).
2704 */
2705 /* The sender sets actual checksum coverage length via this option.
2706 * The case coverage > packet length is handled by send module. */
2707 case UDPLITE_SEND_CSCOV:
2708 if (!is_udplite) /* Disable the option on UDP sockets */
2709 return -ENOPROTOOPT;
2710 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2711 val = 8;
2712 else if (val > USHRT_MAX)
2713 val = USHRT_MAX;
2714 up->pcslen = val;
2715 up->pcflag |= UDPLITE_SEND_CC;
2716 break;
2717
2718 /* The receiver specifies a minimum checksum coverage value. To make
2719 * sense, this should be set to at least 8 (as done below). If zero is
2720 * used, this again means full checksum coverage. */
2721 case UDPLITE_RECV_CSCOV:
2722 if (!is_udplite) /* Disable the option on UDP sockets */
2723 return -ENOPROTOOPT;
2724 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2725 val = 8;
2726 else if (val > USHRT_MAX)
2727 val = USHRT_MAX;
2728 up->pcrlen = val;
2729 up->pcflag |= UDPLITE_RECV_CC;
2730 break;
2731
2732 default:
2733 err = -ENOPROTOOPT;
2734 break;
2735 }
2736
2737 return err;
2738 }
2739 EXPORT_SYMBOL(udp_lib_setsockopt);
2740
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2741 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2742 unsigned int optlen)
2743 {
2744 if (level == SOL_UDP || level == SOL_UDPLITE)
2745 return udp_lib_setsockopt(sk, level, optname,
2746 optval, optlen,
2747 udp_push_pending_frames);
2748 return ip_setsockopt(sk, level, optname, optval, optlen);
2749 }
2750
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2751 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2752 char __user *optval, int __user *optlen)
2753 {
2754 struct udp_sock *up = udp_sk(sk);
2755 int val, len;
2756
2757 if (get_user(len, optlen))
2758 return -EFAULT;
2759
2760 len = min_t(unsigned int, len, sizeof(int));
2761
2762 if (len < 0)
2763 return -EINVAL;
2764
2765 switch (optname) {
2766 case UDP_CORK:
2767 val = READ_ONCE(up->corkflag);
2768 break;
2769
2770 case UDP_ENCAP:
2771 val = up->encap_type;
2772 break;
2773
2774 case UDP_NO_CHECK6_TX:
2775 val = up->no_check6_tx;
2776 break;
2777
2778 case UDP_NO_CHECK6_RX:
2779 val = up->no_check6_rx;
2780 break;
2781
2782 case UDP_SEGMENT:
2783 val = READ_ONCE(up->gso_size);
2784 break;
2785
2786 case UDP_GRO:
2787 val = up->gro_enabled;
2788 break;
2789
2790 /* The following two cannot be changed on UDP sockets, the return is
2791 * always 0 (which corresponds to the full checksum coverage of UDP). */
2792 case UDPLITE_SEND_CSCOV:
2793 val = up->pcslen;
2794 break;
2795
2796 case UDPLITE_RECV_CSCOV:
2797 val = up->pcrlen;
2798 break;
2799
2800 default:
2801 return -ENOPROTOOPT;
2802 }
2803
2804 if (put_user(len, optlen))
2805 return -EFAULT;
2806 if (copy_to_user(optval, &val, len))
2807 return -EFAULT;
2808 return 0;
2809 }
2810 EXPORT_SYMBOL(udp_lib_getsockopt);
2811
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2812 int udp_getsockopt(struct sock *sk, int level, int optname,
2813 char __user *optval, int __user *optlen)
2814 {
2815 if (level == SOL_UDP || level == SOL_UDPLITE)
2816 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2817 return ip_getsockopt(sk, level, optname, optval, optlen);
2818 }
2819
2820 /**
2821 * udp_poll - wait for a UDP event.
2822 * @file: - file struct
2823 * @sock: - socket
2824 * @wait: - poll table
2825 *
2826 * This is same as datagram poll, except for the special case of
2827 * blocking sockets. If application is using a blocking fd
2828 * and a packet with checksum error is in the queue;
2829 * then it could get return from select indicating data available
2830 * but then block when reading it. Add special case code
2831 * to work around these arguably broken applications.
2832 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2833 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2834 {
2835 __poll_t mask = datagram_poll(file, sock, wait);
2836 struct sock *sk = sock->sk;
2837
2838 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2839 mask |= EPOLLIN | EPOLLRDNORM;
2840
2841 /* Check for false positives due to checksum errors */
2842 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2843 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2844 mask &= ~(EPOLLIN | EPOLLRDNORM);
2845
2846 return mask;
2847
2848 }
2849 EXPORT_SYMBOL(udp_poll);
2850
udp_abort(struct sock * sk,int err)2851 int udp_abort(struct sock *sk, int err)
2852 {
2853 lock_sock(sk);
2854
2855 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2856 * with close()
2857 */
2858 if (sock_flag(sk, SOCK_DEAD))
2859 goto out;
2860
2861 sk->sk_err = err;
2862 sk->sk_error_report(sk);
2863 __udp_disconnect(sk, 0);
2864
2865 out:
2866 release_sock(sk);
2867
2868 return 0;
2869 }
2870 EXPORT_SYMBOL_GPL(udp_abort);
2871
2872 struct proto udp_prot = {
2873 .name = "UDP",
2874 .owner = THIS_MODULE,
2875 .close = udp_lib_close,
2876 .pre_connect = udp_pre_connect,
2877 .connect = ip4_datagram_connect,
2878 .disconnect = udp_disconnect,
2879 .ioctl = udp_ioctl,
2880 .init = udp_init_sock,
2881 .destroy = udp_destroy_sock,
2882 .setsockopt = udp_setsockopt,
2883 .getsockopt = udp_getsockopt,
2884 .sendmsg = udp_sendmsg,
2885 .recvmsg = udp_recvmsg,
2886 .sendpage = udp_sendpage,
2887 .release_cb = ip4_datagram_release_cb,
2888 .hash = udp_lib_hash,
2889 .unhash = udp_lib_unhash,
2890 .rehash = udp_v4_rehash,
2891 .get_port = udp_v4_get_port,
2892 .memory_allocated = &udp_memory_allocated,
2893 .sysctl_mem = sysctl_udp_mem,
2894 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2895 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2896 .obj_size = sizeof(struct udp_sock),
2897 .h.udp_table = &udp_table,
2898 .diag_destroy = udp_abort,
2899 };
2900 EXPORT_SYMBOL(udp_prot);
2901
2902 /* ------------------------------------------------------------------------ */
2903 #ifdef CONFIG_PROC_FS
2904
udp_get_first(struct seq_file * seq,int start)2905 static struct sock *udp_get_first(struct seq_file *seq, int start)
2906 {
2907 struct sock *sk;
2908 struct udp_seq_afinfo *afinfo;
2909 struct udp_iter_state *state = seq->private;
2910 struct net *net = seq_file_net(seq);
2911
2912 if (state->bpf_seq_afinfo)
2913 afinfo = state->bpf_seq_afinfo;
2914 else
2915 afinfo = PDE_DATA(file_inode(seq->file));
2916
2917 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2918 ++state->bucket) {
2919 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2920
2921 if (hlist_empty(&hslot->head))
2922 continue;
2923
2924 spin_lock_bh(&hslot->lock);
2925 sk_for_each(sk, &hslot->head) {
2926 if (!net_eq(sock_net(sk), net))
2927 continue;
2928 if (afinfo->family == AF_UNSPEC ||
2929 sk->sk_family == afinfo->family)
2930 goto found;
2931 }
2932 spin_unlock_bh(&hslot->lock);
2933 }
2934 sk = NULL;
2935 found:
2936 return sk;
2937 }
2938
udp_get_next(struct seq_file * seq,struct sock * sk)2939 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2940 {
2941 struct udp_seq_afinfo *afinfo;
2942 struct udp_iter_state *state = seq->private;
2943 struct net *net = seq_file_net(seq);
2944
2945 if (state->bpf_seq_afinfo)
2946 afinfo = state->bpf_seq_afinfo;
2947 else
2948 afinfo = PDE_DATA(file_inode(seq->file));
2949
2950 do {
2951 sk = sk_next(sk);
2952 } while (sk && (!net_eq(sock_net(sk), net) ||
2953 (afinfo->family != AF_UNSPEC &&
2954 sk->sk_family != afinfo->family)));
2955
2956 if (!sk) {
2957 if (state->bucket <= afinfo->udp_table->mask)
2958 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2959 return udp_get_first(seq, state->bucket + 1);
2960 }
2961 return sk;
2962 }
2963
udp_get_idx(struct seq_file * seq,loff_t pos)2964 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2965 {
2966 struct sock *sk = udp_get_first(seq, 0);
2967
2968 if (sk)
2969 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2970 --pos;
2971 return pos ? NULL : sk;
2972 }
2973
udp_seq_start(struct seq_file * seq,loff_t * pos)2974 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2975 {
2976 struct udp_iter_state *state = seq->private;
2977 state->bucket = MAX_UDP_PORTS;
2978
2979 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2980 }
2981 EXPORT_SYMBOL(udp_seq_start);
2982
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2983 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2984 {
2985 struct sock *sk;
2986
2987 if (v == SEQ_START_TOKEN)
2988 sk = udp_get_idx(seq, 0);
2989 else
2990 sk = udp_get_next(seq, v);
2991
2992 ++*pos;
2993 return sk;
2994 }
2995 EXPORT_SYMBOL(udp_seq_next);
2996
udp_seq_stop(struct seq_file * seq,void * v)2997 void udp_seq_stop(struct seq_file *seq, void *v)
2998 {
2999 struct udp_seq_afinfo *afinfo;
3000 struct udp_iter_state *state = seq->private;
3001
3002 if (state->bpf_seq_afinfo)
3003 afinfo = state->bpf_seq_afinfo;
3004 else
3005 afinfo = PDE_DATA(file_inode(seq->file));
3006
3007 if (state->bucket <= afinfo->udp_table->mask)
3008 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3009 }
3010 EXPORT_SYMBOL(udp_seq_stop);
3011
3012 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3013 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3014 int bucket)
3015 {
3016 struct inet_sock *inet = inet_sk(sp);
3017 __be32 dest = inet->inet_daddr;
3018 __be32 src = inet->inet_rcv_saddr;
3019 __u16 destp = ntohs(inet->inet_dport);
3020 __u16 srcp = ntohs(inet->inet_sport);
3021
3022 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3023 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3024 bucket, src, srcp, dest, destp, sp->sk_state,
3025 sk_wmem_alloc_get(sp),
3026 udp_rqueue_get(sp),
3027 0, 0L, 0,
3028 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3029 0, sock_i_ino(sp),
3030 refcount_read(&sp->sk_refcnt), sp,
3031 atomic_read(&sp->sk_drops));
3032 }
3033
udp4_seq_show(struct seq_file * seq,void * v)3034 int udp4_seq_show(struct seq_file *seq, void *v)
3035 {
3036 seq_setwidth(seq, 127);
3037 if (v == SEQ_START_TOKEN)
3038 seq_puts(seq, " sl local_address rem_address st tx_queue "
3039 "rx_queue tr tm->when retrnsmt uid timeout "
3040 "inode ref pointer drops");
3041 else {
3042 struct udp_iter_state *state = seq->private;
3043
3044 udp4_format_sock(v, seq, state->bucket);
3045 }
3046 seq_pad(seq, '\n');
3047 return 0;
3048 }
3049
3050 #ifdef CONFIG_BPF_SYSCALL
3051 struct bpf_iter__udp {
3052 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3053 __bpf_md_ptr(struct udp_sock *, udp_sk);
3054 uid_t uid __aligned(8);
3055 int bucket __aligned(8);
3056 };
3057
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3058 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3059 struct udp_sock *udp_sk, uid_t uid, int bucket)
3060 {
3061 struct bpf_iter__udp ctx;
3062
3063 meta->seq_num--; /* skip SEQ_START_TOKEN */
3064 ctx.meta = meta;
3065 ctx.udp_sk = udp_sk;
3066 ctx.uid = uid;
3067 ctx.bucket = bucket;
3068 return bpf_iter_run_prog(prog, &ctx);
3069 }
3070
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3071 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3072 {
3073 struct udp_iter_state *state = seq->private;
3074 struct bpf_iter_meta meta;
3075 struct bpf_prog *prog;
3076 struct sock *sk = v;
3077 uid_t uid;
3078
3079 if (v == SEQ_START_TOKEN)
3080 return 0;
3081
3082 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3083 meta.seq = seq;
3084 prog = bpf_iter_get_info(&meta, false);
3085 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3086 }
3087
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3088 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3089 {
3090 struct bpf_iter_meta meta;
3091 struct bpf_prog *prog;
3092
3093 if (!v) {
3094 meta.seq = seq;
3095 prog = bpf_iter_get_info(&meta, true);
3096 if (prog)
3097 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3098 }
3099
3100 udp_seq_stop(seq, v);
3101 }
3102
3103 static const struct seq_operations bpf_iter_udp_seq_ops = {
3104 .start = udp_seq_start,
3105 .next = udp_seq_next,
3106 .stop = bpf_iter_udp_seq_stop,
3107 .show = bpf_iter_udp_seq_show,
3108 };
3109 #endif
3110
3111 const struct seq_operations udp_seq_ops = {
3112 .start = udp_seq_start,
3113 .next = udp_seq_next,
3114 .stop = udp_seq_stop,
3115 .show = udp4_seq_show,
3116 };
3117 EXPORT_SYMBOL(udp_seq_ops);
3118
3119 static struct udp_seq_afinfo udp4_seq_afinfo = {
3120 .family = AF_INET,
3121 .udp_table = &udp_table,
3122 };
3123
udp4_proc_init_net(struct net * net)3124 static int __net_init udp4_proc_init_net(struct net *net)
3125 {
3126 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3127 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3128 return -ENOMEM;
3129 return 0;
3130 }
3131
udp4_proc_exit_net(struct net * net)3132 static void __net_exit udp4_proc_exit_net(struct net *net)
3133 {
3134 remove_proc_entry("udp", net->proc_net);
3135 }
3136
3137 static struct pernet_operations udp4_net_ops = {
3138 .init = udp4_proc_init_net,
3139 .exit = udp4_proc_exit_net,
3140 };
3141
udp4_proc_init(void)3142 int __init udp4_proc_init(void)
3143 {
3144 return register_pernet_subsys(&udp4_net_ops);
3145 }
3146
udp4_proc_exit(void)3147 void udp4_proc_exit(void)
3148 {
3149 unregister_pernet_subsys(&udp4_net_ops);
3150 }
3151 #endif /* CONFIG_PROC_FS */
3152
3153 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3154 static int __init set_uhash_entries(char *str)
3155 {
3156 ssize_t ret;
3157
3158 if (!str)
3159 return 0;
3160
3161 ret = kstrtoul(str, 0, &uhash_entries);
3162 if (ret)
3163 return 0;
3164
3165 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3166 uhash_entries = UDP_HTABLE_SIZE_MIN;
3167 return 1;
3168 }
3169 __setup("uhash_entries=", set_uhash_entries);
3170
udp_table_init(struct udp_table * table,const char * name)3171 void __init udp_table_init(struct udp_table *table, const char *name)
3172 {
3173 unsigned int i;
3174
3175 table->hash = alloc_large_system_hash(name,
3176 2 * sizeof(struct udp_hslot),
3177 uhash_entries,
3178 21, /* one slot per 2 MB */
3179 0,
3180 &table->log,
3181 &table->mask,
3182 UDP_HTABLE_SIZE_MIN,
3183 64 * 1024);
3184
3185 table->hash2 = table->hash + (table->mask + 1);
3186 for (i = 0; i <= table->mask; i++) {
3187 INIT_HLIST_HEAD(&table->hash[i].head);
3188 table->hash[i].count = 0;
3189 spin_lock_init(&table->hash[i].lock);
3190 }
3191 for (i = 0; i <= table->mask; i++) {
3192 INIT_HLIST_HEAD(&table->hash2[i].head);
3193 table->hash2[i].count = 0;
3194 spin_lock_init(&table->hash2[i].lock);
3195 }
3196 }
3197
udp_flow_hashrnd(void)3198 u32 udp_flow_hashrnd(void)
3199 {
3200 static u32 hashrnd __read_mostly;
3201
3202 net_get_random_once(&hashrnd, sizeof(hashrnd));
3203
3204 return hashrnd;
3205 }
3206 EXPORT_SYMBOL(udp_flow_hashrnd);
3207
__udp_sysctl_init(struct net * net)3208 static void __udp_sysctl_init(struct net *net)
3209 {
3210 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3211 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3212
3213 #ifdef CONFIG_NET_L3_MASTER_DEV
3214 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3215 #endif
3216 }
3217
udp_sysctl_init(struct net * net)3218 static int __net_init udp_sysctl_init(struct net *net)
3219 {
3220 __udp_sysctl_init(net);
3221 return 0;
3222 }
3223
3224 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3225 .init = udp_sysctl_init,
3226 };
3227
3228 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3229 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3230 struct udp_sock *udp_sk, uid_t uid, int bucket)
3231
3232 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3233 {
3234 struct udp_iter_state *st = priv_data;
3235 struct udp_seq_afinfo *afinfo;
3236 int ret;
3237
3238 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3239 if (!afinfo)
3240 return -ENOMEM;
3241
3242 afinfo->family = AF_UNSPEC;
3243 afinfo->udp_table = &udp_table;
3244 st->bpf_seq_afinfo = afinfo;
3245 ret = bpf_iter_init_seq_net(priv_data, aux);
3246 if (ret)
3247 kfree(afinfo);
3248 return ret;
3249 }
3250
bpf_iter_fini_udp(void * priv_data)3251 static void bpf_iter_fini_udp(void *priv_data)
3252 {
3253 struct udp_iter_state *st = priv_data;
3254
3255 kfree(st->bpf_seq_afinfo);
3256 bpf_iter_fini_seq_net(priv_data);
3257 }
3258
3259 static const struct bpf_iter_seq_info udp_seq_info = {
3260 .seq_ops = &bpf_iter_udp_seq_ops,
3261 .init_seq_private = bpf_iter_init_udp,
3262 .fini_seq_private = bpf_iter_fini_udp,
3263 .seq_priv_size = sizeof(struct udp_iter_state),
3264 };
3265
3266 static struct bpf_iter_reg udp_reg_info = {
3267 .target = "udp",
3268 .ctx_arg_info_size = 1,
3269 .ctx_arg_info = {
3270 { offsetof(struct bpf_iter__udp, udp_sk),
3271 PTR_TO_BTF_ID_OR_NULL },
3272 },
3273 .seq_info = &udp_seq_info,
3274 };
3275
bpf_iter_register(void)3276 static void __init bpf_iter_register(void)
3277 {
3278 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3279 if (bpf_iter_reg_target(&udp_reg_info))
3280 pr_warn("Warning: could not register bpf iterator udp\n");
3281 }
3282 #endif
3283
udp_init(void)3284 void __init udp_init(void)
3285 {
3286 unsigned long limit;
3287 unsigned int i;
3288
3289 udp_table_init(&udp_table, "UDP");
3290 limit = nr_free_buffer_pages() / 8;
3291 limit = max(limit, 128UL);
3292 sysctl_udp_mem[0] = limit / 4 * 3;
3293 sysctl_udp_mem[1] = limit;
3294 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3295
3296 __udp_sysctl_init(&init_net);
3297
3298 /* 16 spinlocks per cpu */
3299 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3300 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3301 GFP_KERNEL);
3302 if (!udp_busylocks)
3303 panic("UDP: failed to alloc udp_busylocks\n");
3304 for (i = 0; i < (1U << udp_busylocks_log); i++)
3305 spin_lock_init(udp_busylocks + i);
3306
3307 if (register_pernet_subsys(&udp_sysctl_ops))
3308 panic("UDP: failed to init sysctl parameters.\n");
3309
3310 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3311 bpf_iter_register();
3312 #endif
3313 }
3314