1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
108 ;
109 }
110 return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 return NL80211_CHAN_WIDTH_20_NOHT;
119
120 /*S1G defines a single allowed channel width per channel.
121 * Extract that width here.
122 */
123 if (chan->flags & IEEE80211_CHAN_1MHZ)
124 return NL80211_CHAN_WIDTH_1;
125 else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 return NL80211_CHAN_WIDTH_2;
127 else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 return NL80211_CHAN_WIDTH_4;
129 else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 return NL80211_CHAN_WIDTH_8;
131 else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 return NL80211_CHAN_WIDTH_16;
133
134 pr_err("unknown channel width for channel at %dKHz?\n",
135 ieee80211_channel_to_khz(chan));
136
137 return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 /* TODO: just handle MHz for now */
144 freq = KHZ_TO_MHZ(freq);
145
146 /* see 802.11 17.3.8.3.2 and Annex J */
147 if (freq == 2484)
148 return 14;
149 else if (freq < 2484)
150 return (freq - 2407) / 5;
151 else if (freq >= 4910 && freq <= 4980)
152 return (freq - 4000) / 5;
153 else if (freq < 5925)
154 return (freq - 5000) / 5;
155 else if (freq == 5935)
156 return 2;
157 else if (freq <= 45000) /* DMG band lower limit */
158 /* see 802.11ax D6.1 27.3.22.2 */
159 return (freq - 5950) / 5;
160 else if (freq >= 58320 && freq <= 70200)
161 return (freq - 56160) / 2160;
162 else
163 return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 u32 freq)
169 {
170 enum nl80211_band band;
171 struct ieee80211_supported_band *sband;
172 int i;
173
174 for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 sband = wiphy->bands[band];
176
177 if (!sband)
178 continue;
179
180 for (i = 0; i < sband->n_channels; i++) {
181 struct ieee80211_channel *chan = &sband->channels[i];
182
183 if (ieee80211_channel_to_khz(chan) == freq)
184 return chan;
185 }
186 }
187
188 return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 int i, want;
195
196 switch (sband->band) {
197 case NL80211_BAND_5GHZ:
198 case NL80211_BAND_6GHZ:
199 want = 3;
200 for (i = 0; i < sband->n_bitrates; i++) {
201 if (sband->bitrates[i].bitrate == 60 ||
202 sband->bitrates[i].bitrate == 120 ||
203 sband->bitrates[i].bitrate == 240) {
204 sband->bitrates[i].flags |=
205 IEEE80211_RATE_MANDATORY_A;
206 want--;
207 }
208 }
209 WARN_ON(want);
210 break;
211 case NL80211_BAND_2GHZ:
212 want = 7;
213 for (i = 0; i < sband->n_bitrates; i++) {
214 switch (sband->bitrates[i].bitrate) {
215 case 10:
216 case 20:
217 case 55:
218 case 110:
219 sband->bitrates[i].flags |=
220 IEEE80211_RATE_MANDATORY_B |
221 IEEE80211_RATE_MANDATORY_G;
222 want--;
223 break;
224 case 60:
225 case 120:
226 case 240:
227 sband->bitrates[i].flags |=
228 IEEE80211_RATE_MANDATORY_G;
229 want--;
230 fallthrough;
231 default:
232 sband->bitrates[i].flags |=
233 IEEE80211_RATE_ERP_G;
234 break;
235 }
236 }
237 WARN_ON(want != 0 && want != 3);
238 break;
239 case NL80211_BAND_60GHZ:
240 /* check for mandatory HT MCS 1..4 */
241 WARN_ON(!sband->ht_cap.ht_supported);
242 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 break;
244 case NL80211_BAND_S1GHZ:
245 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 * mandatory is ok.
247 */
248 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 break;
250 case NUM_NL80211_BANDS:
251 default:
252 WARN_ON(1);
253 break;
254 }
255 }
256
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 enum nl80211_band band;
260
261 for (band = 0; band < NUM_NL80211_BANDS; band++)
262 if (wiphy->bands[band])
263 set_mandatory_flags_band(wiphy->bands[band]);
264 }
265
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 int i;
269 for (i = 0; i < wiphy->n_cipher_suites; i++)
270 if (cipher == wiphy->cipher_suites[i])
271 return true;
272 return false;
273 }
274
275 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278 struct wiphy *wiphy = &rdev->wiphy;
279 int i;
280
281 for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 switch (wiphy->cipher_suites[i]) {
283 case WLAN_CIPHER_SUITE_AES_CMAC:
284 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 return true;
288 }
289 }
290
291 return false;
292 }
293
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 int key_idx, bool pairwise)
296 {
297 int max_key_idx;
298
299 if (pairwise)
300 max_key_idx = 3;
301 else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 max_key_idx = 7;
306 else if (cfg80211_igtk_cipher_supported(rdev))
307 max_key_idx = 5;
308 else
309 max_key_idx = 3;
310
311 if (key_idx < 0 || key_idx > max_key_idx)
312 return false;
313
314 return true;
315 }
316
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 struct key_params *params, int key_idx,
319 bool pairwise, const u8 *mac_addr)
320 {
321 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 return -EINVAL;
323
324 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 return -EINVAL;
326
327 if (pairwise && !mac_addr)
328 return -EINVAL;
329
330 switch (params->cipher) {
331 case WLAN_CIPHER_SUITE_TKIP:
332 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 if ((pairwise && key_idx) ||
334 params->mode != NL80211_KEY_RX_TX)
335 return -EINVAL;
336 break;
337 case WLAN_CIPHER_SUITE_CCMP:
338 case WLAN_CIPHER_SUITE_CCMP_256:
339 case WLAN_CIPHER_SUITE_GCMP:
340 case WLAN_CIPHER_SUITE_GCMP_256:
341 /* IEEE802.11-2016 allows only 0 and - when supporting
342 * Extended Key ID - 1 as index for pairwise keys.
343 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 * the driver supports Extended Key ID.
345 * @NL80211_KEY_SET_TX can't be set when installing and
346 * validating a key.
347 */
348 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 params->mode == NL80211_KEY_SET_TX)
350 return -EINVAL;
351 if (wiphy_ext_feature_isset(&rdev->wiphy,
352 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 if (pairwise && (key_idx < 0 || key_idx > 1))
354 return -EINVAL;
355 } else if (pairwise && key_idx) {
356 return -EINVAL;
357 }
358 break;
359 case WLAN_CIPHER_SUITE_AES_CMAC:
360 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 /* Disallow BIP (group-only) cipher as pairwise cipher */
364 if (pairwise)
365 return -EINVAL;
366 if (key_idx < 4)
367 return -EINVAL;
368 break;
369 case WLAN_CIPHER_SUITE_WEP40:
370 case WLAN_CIPHER_SUITE_WEP104:
371 if (key_idx > 3)
372 return -EINVAL;
373 default:
374 break;
375 }
376
377 switch (params->cipher) {
378 case WLAN_CIPHER_SUITE_WEP40:
379 if (params->key_len != WLAN_KEY_LEN_WEP40)
380 return -EINVAL;
381 break;
382 case WLAN_CIPHER_SUITE_TKIP:
383 if (params->key_len != WLAN_KEY_LEN_TKIP)
384 return -EINVAL;
385 break;
386 case WLAN_CIPHER_SUITE_CCMP:
387 if (params->key_len != WLAN_KEY_LEN_CCMP)
388 return -EINVAL;
389 break;
390 case WLAN_CIPHER_SUITE_CCMP_256:
391 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392 return -EINVAL;
393 break;
394 case WLAN_CIPHER_SUITE_GCMP:
395 if (params->key_len != WLAN_KEY_LEN_GCMP)
396 return -EINVAL;
397 break;
398 case WLAN_CIPHER_SUITE_GCMP_256:
399 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400 return -EINVAL;
401 break;
402 case WLAN_CIPHER_SUITE_WEP104:
403 if (params->key_len != WLAN_KEY_LEN_WEP104)
404 return -EINVAL;
405 break;
406 case WLAN_CIPHER_SUITE_AES_CMAC:
407 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408 return -EINVAL;
409 break;
410 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412 return -EINVAL;
413 break;
414 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416 return -EINVAL;
417 break;
418 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420 return -EINVAL;
421 break;
422 default:
423 /*
424 * We don't know anything about this algorithm,
425 * allow using it -- but the driver must check
426 * all parameters! We still check below whether
427 * or not the driver supports this algorithm,
428 * of course.
429 */
430 break;
431 }
432
433 if (params->seq) {
434 switch (params->cipher) {
435 case WLAN_CIPHER_SUITE_WEP40:
436 case WLAN_CIPHER_SUITE_WEP104:
437 /* These ciphers do not use key sequence */
438 return -EINVAL;
439 case WLAN_CIPHER_SUITE_TKIP:
440 case WLAN_CIPHER_SUITE_CCMP:
441 case WLAN_CIPHER_SUITE_CCMP_256:
442 case WLAN_CIPHER_SUITE_GCMP:
443 case WLAN_CIPHER_SUITE_GCMP_256:
444 case WLAN_CIPHER_SUITE_AES_CMAC:
445 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448 if (params->seq_len != 6)
449 return -EINVAL;
450 break;
451 }
452 }
453
454 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455 return -EINVAL;
456
457 return 0;
458 }
459
ieee80211_hdrlen(__le16 fc)460 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461 {
462 unsigned int hdrlen = 24;
463
464 if (ieee80211_is_ext(fc)) {
465 hdrlen = 4;
466 goto out;
467 }
468
469 if (ieee80211_is_data(fc)) {
470 if (ieee80211_has_a4(fc))
471 hdrlen = 30;
472 if (ieee80211_is_data_qos(fc)) {
473 hdrlen += IEEE80211_QOS_CTL_LEN;
474 if (ieee80211_has_order(fc))
475 hdrlen += IEEE80211_HT_CTL_LEN;
476 }
477 goto out;
478 }
479
480 if (ieee80211_is_mgmt(fc)) {
481 if (ieee80211_has_order(fc))
482 hdrlen += IEEE80211_HT_CTL_LEN;
483 goto out;
484 }
485
486 if (ieee80211_is_ctl(fc)) {
487 /*
488 * ACK and CTS are 10 bytes, all others 16. To see how
489 * to get this condition consider
490 * subtype mask: 0b0000000011110000 (0x00F0)
491 * ACK subtype: 0b0000000011010000 (0x00D0)
492 * CTS subtype: 0b0000000011000000 (0x00C0)
493 * bits that matter: ^^^ (0x00E0)
494 * value of those: 0b0000000011000000 (0x00C0)
495 */
496 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497 hdrlen = 10;
498 else
499 hdrlen = 16;
500 }
501 out:
502 return hdrlen;
503 }
504 EXPORT_SYMBOL(ieee80211_hdrlen);
505
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)506 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507 {
508 const struct ieee80211_hdr *hdr =
509 (const struct ieee80211_hdr *)skb->data;
510 unsigned int hdrlen;
511
512 if (unlikely(skb->len < 10))
513 return 0;
514 hdrlen = ieee80211_hdrlen(hdr->frame_control);
515 if (unlikely(hdrlen > skb->len))
516 return 0;
517 return hdrlen;
518 }
519 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520
__ieee80211_get_mesh_hdrlen(u8 flags)521 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522 {
523 int ae = flags & MESH_FLAGS_AE;
524 /* 802.11-2012, 8.2.4.7.3 */
525 switch (ae) {
526 default:
527 case 0:
528 return 6;
529 case MESH_FLAGS_AE_A4:
530 return 12;
531 case MESH_FLAGS_AE_A5_A6:
532 return 18;
533 }
534 }
535
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)536 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537 {
538 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539 }
540 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)542 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543 const u8 *addr, enum nl80211_iftype iftype,
544 u8 data_offset, bool is_amsdu)
545 {
546 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547 struct {
548 u8 hdr[ETH_ALEN] __aligned(2);
549 __be16 proto;
550 } payload;
551 struct ethhdr tmp;
552 u16 hdrlen;
553 u8 mesh_flags = 0;
554
555 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556 return -1;
557
558 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559 if (skb->len < hdrlen + 8)
560 return -1;
561
562 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
563 * header
564 * IEEE 802.11 address fields:
565 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566 * 0 0 DA SA BSSID n/a
567 * 0 1 DA BSSID SA n/a
568 * 1 0 BSSID SA DA n/a
569 * 1 1 RA TA DA SA
570 */
571 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573
574 if (iftype == NL80211_IFTYPE_MESH_POINT)
575 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576
577 mesh_flags &= MESH_FLAGS_AE;
578
579 switch (hdr->frame_control &
580 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581 case cpu_to_le16(IEEE80211_FCTL_TODS):
582 if (unlikely(iftype != NL80211_IFTYPE_AP &&
583 iftype != NL80211_IFTYPE_AP_VLAN &&
584 iftype != NL80211_IFTYPE_P2P_GO))
585 return -1;
586 break;
587 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589 iftype != NL80211_IFTYPE_MESH_POINT &&
590 iftype != NL80211_IFTYPE_AP_VLAN &&
591 iftype != NL80211_IFTYPE_STATION))
592 return -1;
593 if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 if (mesh_flags == MESH_FLAGS_AE_A4)
595 return -1;
596 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 skb_copy_bits(skb, hdrlen +
598 offsetof(struct ieee80211s_hdr, eaddr1),
599 tmp.h_dest, 2 * ETH_ALEN);
600 }
601 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602 }
603 break;
604 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 if ((iftype != NL80211_IFTYPE_STATION &&
606 iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 iftype != NL80211_IFTYPE_MESH_POINT) ||
608 (is_multicast_ether_addr(tmp.h_dest) &&
609 ether_addr_equal(tmp.h_source, addr)))
610 return -1;
611 if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 return -1;
614 if (mesh_flags == MESH_FLAGS_AE_A4)
615 skb_copy_bits(skb, hdrlen +
616 offsetof(struct ieee80211s_hdr, eaddr1),
617 tmp.h_source, ETH_ALEN);
618 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619 }
620 break;
621 case cpu_to_le16(0):
622 if (iftype != NL80211_IFTYPE_ADHOC &&
623 iftype != NL80211_IFTYPE_STATION &&
624 iftype != NL80211_IFTYPE_OCB)
625 return -1;
626 break;
627 }
628
629 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 tmp.h_proto = payload.proto;
631
632 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633 tmp.h_proto != htons(ETH_P_AARP) &&
634 tmp.h_proto != htons(ETH_P_IPX)) ||
635 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 /* remove RFC1042 or Bridge-Tunnel encapsulation and
637 * replace EtherType */
638 hdrlen += ETH_ALEN + 2;
639 else
640 tmp.h_proto = htons(skb->len - hdrlen);
641
642 pskb_pull(skb, hdrlen);
643
644 if (!ehdr)
645 ehdr = skb_push(skb, sizeof(struct ethhdr));
646 memcpy(ehdr, &tmp, sizeof(tmp));
647
648 return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651
652 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 void *ptr, int len, int size)
655 {
656 struct skb_shared_info *sh = skb_shinfo(skb);
657 int page_offset;
658
659 get_page(page);
660 page_offset = ptr - page_address(page);
661 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663
664 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 int offset, int len)
667 {
668 struct skb_shared_info *sh = skb_shinfo(skb);
669 const skb_frag_t *frag = &sh->frags[0];
670 struct page *frag_page;
671 void *frag_ptr;
672 int frag_len, frag_size;
673 int head_size = skb->len - skb->data_len;
674 int cur_len;
675
676 frag_page = virt_to_head_page(skb->head);
677 frag_ptr = skb->data;
678 frag_size = head_size;
679
680 while (offset >= frag_size) {
681 offset -= frag_size;
682 frag_page = skb_frag_page(frag);
683 frag_ptr = skb_frag_address(frag);
684 frag_size = skb_frag_size(frag);
685 frag++;
686 }
687
688 frag_ptr += offset;
689 frag_len = frag_size - offset;
690
691 cur_len = min(len, frag_len);
692
693 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 len -= cur_len;
695
696 while (len > 0) {
697 frag_len = skb_frag_size(frag);
698 cur_len = min(len, frag_len);
699 __frame_add_frag(frame, skb_frag_page(frag),
700 skb_frag_address(frag), cur_len, frag_len);
701 len -= cur_len;
702 frag++;
703 }
704 }
705
706 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 int offset, int len, bool reuse_frag)
709 {
710 struct sk_buff *frame;
711 int cur_len = len;
712
713 if (skb->len - offset < len)
714 return NULL;
715
716 /*
717 * When reusing framents, copy some data to the head to simplify
718 * ethernet header handling and speed up protocol header processing
719 * in the stack later.
720 */
721 if (reuse_frag)
722 cur_len = min_t(int, len, 32);
723
724 /*
725 * Allocate and reserve two bytes more for payload
726 * alignment since sizeof(struct ethhdr) is 14.
727 */
728 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 if (!frame)
730 return NULL;
731
732 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734
735 len -= cur_len;
736 if (!len)
737 return frame;
738
739 offset += cur_len;
740 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741
742 return frame;
743 }
744
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 const u8 *addr, enum nl80211_iftype iftype,
747 const unsigned int extra_headroom,
748 const u8 *check_da, const u8 *check_sa)
749 {
750 unsigned int hlen = ALIGN(extra_headroom, 4);
751 struct sk_buff *frame = NULL;
752 u16 ethertype;
753 u8 *payload;
754 int offset = 0;
755 struct ethhdr eth;
756 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 bool reuse_skb = false;
758 bool last = false;
759
760 while (!last) {
761 int remaining = skb->len - offset;
762 unsigned int subframe_len;
763 int len;
764 u8 padding;
765
766 if (sizeof(eth) > remaining)
767 goto purge;
768
769 skb_copy_bits(skb, offset, ð, sizeof(eth));
770 len = ntohs(eth.h_proto);
771 subframe_len = sizeof(struct ethhdr) + len;
772 padding = (4 - subframe_len) & 0x3;
773
774 /* the last MSDU has no padding */
775 if (subframe_len > remaining)
776 goto purge;
777 /* mitigate A-MSDU aggregation injection attacks */
778 if (ether_addr_equal(eth.h_dest, rfc1042_header))
779 goto purge;
780
781 offset += sizeof(struct ethhdr);
782 last = remaining <= subframe_len + padding;
783
784 /* FIXME: should we really accept multicast DA? */
785 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
786 !ether_addr_equal(check_da, eth.h_dest)) ||
787 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
788 offset += len + padding;
789 continue;
790 }
791
792 /* reuse skb for the last subframe */
793 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
794 skb_pull(skb, offset);
795 frame = skb;
796 reuse_skb = true;
797 } else {
798 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
799 reuse_frag);
800 if (!frame)
801 goto purge;
802
803 offset += len + padding;
804 }
805
806 skb_reset_network_header(frame);
807 frame->dev = skb->dev;
808 frame->priority = skb->priority;
809
810 payload = frame->data;
811 ethertype = (payload[6] << 8) | payload[7];
812 if (likely((ether_addr_equal(payload, rfc1042_header) &&
813 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
814 ether_addr_equal(payload, bridge_tunnel_header))) {
815 eth.h_proto = htons(ethertype);
816 skb_pull(frame, ETH_ALEN + 2);
817 }
818
819 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
820 __skb_queue_tail(list, frame);
821 }
822
823 if (!reuse_skb)
824 dev_kfree_skb(skb);
825
826 return;
827
828 purge:
829 __skb_queue_purge(list);
830 dev_kfree_skb(skb);
831 }
832 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
833
834 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)835 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
836 struct cfg80211_qos_map *qos_map)
837 {
838 unsigned int dscp;
839 unsigned char vlan_priority;
840 unsigned int ret;
841
842 /* skb->priority values from 256->263 are magic values to
843 * directly indicate a specific 802.1d priority. This is used
844 * to allow 802.1d priority to be passed directly in from VLAN
845 * tags, etc.
846 */
847 if (skb->priority >= 256 && skb->priority <= 263) {
848 ret = skb->priority - 256;
849 goto out;
850 }
851
852 if (skb_vlan_tag_present(skb)) {
853 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
854 >> VLAN_PRIO_SHIFT;
855 if (vlan_priority > 0) {
856 ret = vlan_priority;
857 goto out;
858 }
859 }
860
861 switch (skb->protocol) {
862 case htons(ETH_P_IP):
863 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
864 break;
865 case htons(ETH_P_IPV6):
866 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
867 break;
868 case htons(ETH_P_MPLS_UC):
869 case htons(ETH_P_MPLS_MC): {
870 struct mpls_label mpls_tmp, *mpls;
871
872 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
873 sizeof(*mpls), &mpls_tmp);
874 if (!mpls)
875 return 0;
876
877 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
878 >> MPLS_LS_TC_SHIFT;
879 goto out;
880 }
881 case htons(ETH_P_80221):
882 /* 802.21 is always network control traffic */
883 return 7;
884 default:
885 return 0;
886 }
887
888 if (qos_map) {
889 unsigned int i, tmp_dscp = dscp >> 2;
890
891 for (i = 0; i < qos_map->num_des; i++) {
892 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
893 ret = qos_map->dscp_exception[i].up;
894 goto out;
895 }
896 }
897
898 for (i = 0; i < 8; i++) {
899 if (tmp_dscp >= qos_map->up[i].low &&
900 tmp_dscp <= qos_map->up[i].high) {
901 ret = i;
902 goto out;
903 }
904 }
905 }
906
907 ret = dscp >> 5;
908 out:
909 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
910 }
911 EXPORT_SYMBOL(cfg80211_classify8021d);
912
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)913 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
914 {
915 const struct cfg80211_bss_ies *ies;
916
917 ies = rcu_dereference(bss->ies);
918 if (!ies)
919 return NULL;
920
921 return cfg80211_find_elem(id, ies->data, ies->len);
922 }
923 EXPORT_SYMBOL(ieee80211_bss_get_elem);
924
cfg80211_upload_connect_keys(struct wireless_dev * wdev)925 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
926 {
927 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
928 struct net_device *dev = wdev->netdev;
929 int i;
930
931 if (!wdev->connect_keys)
932 return;
933
934 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
935 if (!wdev->connect_keys->params[i].cipher)
936 continue;
937 if (rdev_add_key(rdev, dev, i, false, NULL,
938 &wdev->connect_keys->params[i])) {
939 netdev_err(dev, "failed to set key %d\n", i);
940 continue;
941 }
942 if (wdev->connect_keys->def == i &&
943 rdev_set_default_key(rdev, dev, i, true, true)) {
944 netdev_err(dev, "failed to set defkey %d\n", i);
945 continue;
946 }
947 }
948
949 kfree_sensitive(wdev->connect_keys);
950 wdev->connect_keys = NULL;
951 }
952
cfg80211_process_wdev_events(struct wireless_dev * wdev)953 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
954 {
955 struct cfg80211_event *ev;
956 unsigned long flags;
957
958 spin_lock_irqsave(&wdev->event_lock, flags);
959 while (!list_empty(&wdev->event_list)) {
960 ev = list_first_entry(&wdev->event_list,
961 struct cfg80211_event, list);
962 list_del(&ev->list);
963 spin_unlock_irqrestore(&wdev->event_lock, flags);
964
965 wdev_lock(wdev);
966 switch (ev->type) {
967 case EVENT_CONNECT_RESULT:
968 __cfg80211_connect_result(
969 wdev->netdev,
970 &ev->cr,
971 ev->cr.status == WLAN_STATUS_SUCCESS);
972 break;
973 case EVENT_ROAMED:
974 __cfg80211_roamed(wdev, &ev->rm);
975 break;
976 case EVENT_DISCONNECTED:
977 __cfg80211_disconnected(wdev->netdev,
978 ev->dc.ie, ev->dc.ie_len,
979 ev->dc.reason,
980 !ev->dc.locally_generated);
981 break;
982 case EVENT_IBSS_JOINED:
983 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
984 ev->ij.channel);
985 break;
986 case EVENT_STOPPED:
987 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
988 break;
989 case EVENT_PORT_AUTHORIZED:
990 __cfg80211_port_authorized(wdev, ev->pa.bssid);
991 break;
992 }
993 wdev_unlock(wdev);
994
995 kfree(ev);
996
997 spin_lock_irqsave(&wdev->event_lock, flags);
998 }
999 spin_unlock_irqrestore(&wdev->event_lock, flags);
1000 }
1001
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1002 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1003 {
1004 struct wireless_dev *wdev;
1005
1006 ASSERT_RTNL();
1007
1008 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1009 cfg80211_process_wdev_events(wdev);
1010 }
1011
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1012 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1013 struct net_device *dev, enum nl80211_iftype ntype,
1014 struct vif_params *params)
1015 {
1016 int err;
1017 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1018
1019 ASSERT_RTNL();
1020
1021 /* don't support changing VLANs, you just re-create them */
1022 if (otype == NL80211_IFTYPE_AP_VLAN)
1023 return -EOPNOTSUPP;
1024
1025 /* cannot change into P2P device or NAN */
1026 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1027 ntype == NL80211_IFTYPE_NAN)
1028 return -EOPNOTSUPP;
1029
1030 if (!rdev->ops->change_virtual_intf ||
1031 !(rdev->wiphy.interface_modes & (1 << ntype)))
1032 return -EOPNOTSUPP;
1033
1034 if (ntype != otype) {
1035 /* if it's part of a bridge, reject changing type to station/ibss */
1036 if (netif_is_bridge_port(dev) &&
1037 (ntype == NL80211_IFTYPE_ADHOC ||
1038 ntype == NL80211_IFTYPE_STATION ||
1039 ntype == NL80211_IFTYPE_P2P_CLIENT))
1040 return -EBUSY;
1041
1042 dev->ieee80211_ptr->use_4addr = false;
1043 dev->ieee80211_ptr->mesh_id_up_len = 0;
1044 wdev_lock(dev->ieee80211_ptr);
1045 rdev_set_qos_map(rdev, dev, NULL);
1046 wdev_unlock(dev->ieee80211_ptr);
1047
1048 switch (otype) {
1049 case NL80211_IFTYPE_AP:
1050 case NL80211_IFTYPE_P2P_GO:
1051 cfg80211_stop_ap(rdev, dev, true);
1052 break;
1053 case NL80211_IFTYPE_ADHOC:
1054 cfg80211_leave_ibss(rdev, dev, false);
1055 break;
1056 case NL80211_IFTYPE_STATION:
1057 case NL80211_IFTYPE_P2P_CLIENT:
1058 wdev_lock(dev->ieee80211_ptr);
1059 cfg80211_disconnect(rdev, dev,
1060 WLAN_REASON_DEAUTH_LEAVING, true);
1061 wdev_unlock(dev->ieee80211_ptr);
1062 break;
1063 case NL80211_IFTYPE_MESH_POINT:
1064 /* mesh should be handled? */
1065 break;
1066 case NL80211_IFTYPE_OCB:
1067 cfg80211_leave_ocb(rdev, dev);
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 cfg80211_process_rdev_events(rdev);
1074 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1075 }
1076
1077 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1078
1079 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1080
1081 if (!err && params && params->use_4addr != -1)
1082 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1083
1084 if (!err) {
1085 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1086 switch (ntype) {
1087 case NL80211_IFTYPE_STATION:
1088 if (dev->ieee80211_ptr->use_4addr)
1089 break;
1090 fallthrough;
1091 case NL80211_IFTYPE_OCB:
1092 case NL80211_IFTYPE_P2P_CLIENT:
1093 case NL80211_IFTYPE_ADHOC:
1094 dev->priv_flags |= IFF_DONT_BRIDGE;
1095 break;
1096 case NL80211_IFTYPE_P2P_GO:
1097 case NL80211_IFTYPE_AP:
1098 case NL80211_IFTYPE_AP_VLAN:
1099 case NL80211_IFTYPE_WDS:
1100 case NL80211_IFTYPE_MESH_POINT:
1101 /* bridging OK */
1102 break;
1103 case NL80211_IFTYPE_MONITOR:
1104 /* monitor can't bridge anyway */
1105 break;
1106 case NL80211_IFTYPE_UNSPECIFIED:
1107 case NUM_NL80211_IFTYPES:
1108 /* not happening */
1109 break;
1110 case NL80211_IFTYPE_P2P_DEVICE:
1111 case NL80211_IFTYPE_NAN:
1112 WARN_ON(1);
1113 break;
1114 }
1115 }
1116
1117 if (!err && ntype != otype && netif_running(dev)) {
1118 cfg80211_update_iface_num(rdev, ntype, 1);
1119 cfg80211_update_iface_num(rdev, otype, -1);
1120 }
1121
1122 return err;
1123 }
1124
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1125 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1126 {
1127 int modulation, streams, bitrate;
1128
1129 /* the formula below does only work for MCS values smaller than 32 */
1130 if (WARN_ON_ONCE(rate->mcs >= 32))
1131 return 0;
1132
1133 modulation = rate->mcs & 7;
1134 streams = (rate->mcs >> 3) + 1;
1135
1136 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1137
1138 if (modulation < 4)
1139 bitrate *= (modulation + 1);
1140 else if (modulation == 4)
1141 bitrate *= (modulation + 2);
1142 else
1143 bitrate *= (modulation + 3);
1144
1145 bitrate *= streams;
1146
1147 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1148 bitrate = (bitrate / 9) * 10;
1149
1150 /* do NOT round down here */
1151 return (bitrate + 50000) / 100000;
1152 }
1153
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1154 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1155 {
1156 static const u32 __mcs2bitrate[] = {
1157 /* control PHY */
1158 [0] = 275,
1159 /* SC PHY */
1160 [1] = 3850,
1161 [2] = 7700,
1162 [3] = 9625,
1163 [4] = 11550,
1164 [5] = 12512, /* 1251.25 mbps */
1165 [6] = 15400,
1166 [7] = 19250,
1167 [8] = 23100,
1168 [9] = 25025,
1169 [10] = 30800,
1170 [11] = 38500,
1171 [12] = 46200,
1172 /* OFDM PHY */
1173 [13] = 6930,
1174 [14] = 8662, /* 866.25 mbps */
1175 [15] = 13860,
1176 [16] = 17325,
1177 [17] = 20790,
1178 [18] = 27720,
1179 [19] = 34650,
1180 [20] = 41580,
1181 [21] = 45045,
1182 [22] = 51975,
1183 [23] = 62370,
1184 [24] = 67568, /* 6756.75 mbps */
1185 /* LP-SC PHY */
1186 [25] = 6260,
1187 [26] = 8340,
1188 [27] = 11120,
1189 [28] = 12510,
1190 [29] = 16680,
1191 [30] = 22240,
1192 [31] = 25030,
1193 };
1194
1195 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1196 return 0;
1197
1198 return __mcs2bitrate[rate->mcs];
1199 }
1200
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1201 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1202 {
1203 static const u32 __mcs2bitrate[] = {
1204 /* control PHY */
1205 [0] = 275,
1206 /* SC PHY */
1207 [1] = 3850,
1208 [2] = 7700,
1209 [3] = 9625,
1210 [4] = 11550,
1211 [5] = 12512, /* 1251.25 mbps */
1212 [6] = 13475,
1213 [7] = 15400,
1214 [8] = 19250,
1215 [9] = 23100,
1216 [10] = 25025,
1217 [11] = 26950,
1218 [12] = 30800,
1219 [13] = 38500,
1220 [14] = 46200,
1221 [15] = 50050,
1222 [16] = 53900,
1223 [17] = 57750,
1224 [18] = 69300,
1225 [19] = 75075,
1226 [20] = 80850,
1227 };
1228
1229 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1230 return 0;
1231
1232 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1233 }
1234
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1235 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1236 {
1237 static const u32 base[4][10] = {
1238 { 6500000,
1239 13000000,
1240 19500000,
1241 26000000,
1242 39000000,
1243 52000000,
1244 58500000,
1245 65000000,
1246 78000000,
1247 /* not in the spec, but some devices use this: */
1248 86500000,
1249 },
1250 { 13500000,
1251 27000000,
1252 40500000,
1253 54000000,
1254 81000000,
1255 108000000,
1256 121500000,
1257 135000000,
1258 162000000,
1259 180000000,
1260 },
1261 { 29300000,
1262 58500000,
1263 87800000,
1264 117000000,
1265 175500000,
1266 234000000,
1267 263300000,
1268 292500000,
1269 351000000,
1270 390000000,
1271 },
1272 { 58500000,
1273 117000000,
1274 175500000,
1275 234000000,
1276 351000000,
1277 468000000,
1278 526500000,
1279 585000000,
1280 702000000,
1281 780000000,
1282 },
1283 };
1284 u32 bitrate;
1285 int idx;
1286
1287 if (rate->mcs > 9)
1288 goto warn;
1289
1290 switch (rate->bw) {
1291 case RATE_INFO_BW_160:
1292 idx = 3;
1293 break;
1294 case RATE_INFO_BW_80:
1295 idx = 2;
1296 break;
1297 case RATE_INFO_BW_40:
1298 idx = 1;
1299 break;
1300 case RATE_INFO_BW_5:
1301 case RATE_INFO_BW_10:
1302 default:
1303 goto warn;
1304 case RATE_INFO_BW_20:
1305 idx = 0;
1306 }
1307
1308 bitrate = base[idx][rate->mcs];
1309 bitrate *= rate->nss;
1310
1311 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1312 bitrate = (bitrate / 9) * 10;
1313
1314 /* do NOT round down here */
1315 return (bitrate + 50000) / 100000;
1316 warn:
1317 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1318 rate->bw, rate->mcs, rate->nss);
1319 return 0;
1320 }
1321
cfg80211_calculate_bitrate_he(struct rate_info * rate)1322 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1323 {
1324 #define SCALE 2048
1325 u16 mcs_divisors[12] = {
1326 34133, /* 16.666666... */
1327 17067, /* 8.333333... */
1328 11378, /* 5.555555... */
1329 8533, /* 4.166666... */
1330 5689, /* 2.777777... */
1331 4267, /* 2.083333... */
1332 3923, /* 1.851851... */
1333 3413, /* 1.666666... */
1334 2844, /* 1.388888... */
1335 2560, /* 1.250000... */
1336 2276, /* 1.111111... */
1337 2048, /* 1.000000... */
1338 };
1339 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1340 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1341 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1342 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1343 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1344 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1345 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1346 u64 tmp;
1347 u32 result;
1348
1349 if (WARN_ON_ONCE(rate->mcs > 11))
1350 return 0;
1351
1352 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1353 return 0;
1354 if (WARN_ON_ONCE(rate->he_ru_alloc >
1355 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1356 return 0;
1357 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1358 return 0;
1359
1360 if (rate->bw == RATE_INFO_BW_160 ||
1361 (rate->bw == RATE_INFO_BW_HE_RU &&
1362 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1363 result = rates_160M[rate->he_gi];
1364 else if (rate->bw == RATE_INFO_BW_80 ||
1365 (rate->bw == RATE_INFO_BW_HE_RU &&
1366 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1367 result = rates_969[rate->he_gi];
1368 else if (rate->bw == RATE_INFO_BW_40 ||
1369 (rate->bw == RATE_INFO_BW_HE_RU &&
1370 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1371 result = rates_484[rate->he_gi];
1372 else if (rate->bw == RATE_INFO_BW_20 ||
1373 (rate->bw == RATE_INFO_BW_HE_RU &&
1374 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1375 result = rates_242[rate->he_gi];
1376 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1377 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1378 result = rates_106[rate->he_gi];
1379 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1380 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1381 result = rates_52[rate->he_gi];
1382 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1383 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1384 result = rates_26[rate->he_gi];
1385 else {
1386 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1387 rate->bw, rate->he_ru_alloc);
1388 return 0;
1389 }
1390
1391 /* now scale to the appropriate MCS */
1392 tmp = result;
1393 tmp *= SCALE;
1394 do_div(tmp, mcs_divisors[rate->mcs]);
1395 result = tmp;
1396
1397 /* and take NSS, DCM into account */
1398 result = (result * rate->nss) / 8;
1399 if (rate->he_dcm)
1400 result /= 2;
1401
1402 return result / 10000;
1403 }
1404
cfg80211_calculate_bitrate(struct rate_info * rate)1405 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1406 {
1407 if (rate->flags & RATE_INFO_FLAGS_MCS)
1408 return cfg80211_calculate_bitrate_ht(rate);
1409 if (rate->flags & RATE_INFO_FLAGS_DMG)
1410 return cfg80211_calculate_bitrate_dmg(rate);
1411 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1412 return cfg80211_calculate_bitrate_edmg(rate);
1413 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1414 return cfg80211_calculate_bitrate_vht(rate);
1415 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1416 return cfg80211_calculate_bitrate_he(rate);
1417
1418 return rate->legacy;
1419 }
1420 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1421
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1422 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1423 enum ieee80211_p2p_attr_id attr,
1424 u8 *buf, unsigned int bufsize)
1425 {
1426 u8 *out = buf;
1427 u16 attr_remaining = 0;
1428 bool desired_attr = false;
1429 u16 desired_len = 0;
1430
1431 while (len > 0) {
1432 unsigned int iedatalen;
1433 unsigned int copy;
1434 const u8 *iedata;
1435
1436 if (len < 2)
1437 return -EILSEQ;
1438 iedatalen = ies[1];
1439 if (iedatalen + 2 > len)
1440 return -EILSEQ;
1441
1442 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1443 goto cont;
1444
1445 if (iedatalen < 4)
1446 goto cont;
1447
1448 iedata = ies + 2;
1449
1450 /* check WFA OUI, P2P subtype */
1451 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1452 iedata[2] != 0x9a || iedata[3] != 0x09)
1453 goto cont;
1454
1455 iedatalen -= 4;
1456 iedata += 4;
1457
1458 /* check attribute continuation into this IE */
1459 copy = min_t(unsigned int, attr_remaining, iedatalen);
1460 if (copy && desired_attr) {
1461 desired_len += copy;
1462 if (out) {
1463 memcpy(out, iedata, min(bufsize, copy));
1464 out += min(bufsize, copy);
1465 bufsize -= min(bufsize, copy);
1466 }
1467
1468
1469 if (copy == attr_remaining)
1470 return desired_len;
1471 }
1472
1473 attr_remaining -= copy;
1474 if (attr_remaining)
1475 goto cont;
1476
1477 iedatalen -= copy;
1478 iedata += copy;
1479
1480 while (iedatalen > 0) {
1481 u16 attr_len;
1482
1483 /* P2P attribute ID & size must fit */
1484 if (iedatalen < 3)
1485 return -EILSEQ;
1486 desired_attr = iedata[0] == attr;
1487 attr_len = get_unaligned_le16(iedata + 1);
1488 iedatalen -= 3;
1489 iedata += 3;
1490
1491 copy = min_t(unsigned int, attr_len, iedatalen);
1492
1493 if (desired_attr) {
1494 desired_len += copy;
1495 if (out) {
1496 memcpy(out, iedata, min(bufsize, copy));
1497 out += min(bufsize, copy);
1498 bufsize -= min(bufsize, copy);
1499 }
1500
1501 if (copy == attr_len)
1502 return desired_len;
1503 }
1504
1505 iedata += copy;
1506 iedatalen -= copy;
1507 attr_remaining = attr_len - copy;
1508 }
1509
1510 cont:
1511 len -= ies[1] + 2;
1512 ies += ies[1] + 2;
1513 }
1514
1515 if (attr_remaining && desired_attr)
1516 return -EILSEQ;
1517
1518 return -ENOENT;
1519 }
1520 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1521
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1522 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1523 {
1524 int i;
1525
1526 /* Make sure array values are legal */
1527 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1528 return false;
1529
1530 i = 0;
1531 while (i < n_ids) {
1532 if (ids[i] == WLAN_EID_EXTENSION) {
1533 if (id_ext && (ids[i + 1] == id))
1534 return true;
1535
1536 i += 2;
1537 continue;
1538 }
1539
1540 if (ids[i] == id && !id_ext)
1541 return true;
1542
1543 i++;
1544 }
1545 return false;
1546 }
1547
skip_ie(const u8 * ies,size_t ielen,size_t pos)1548 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1549 {
1550 /* we assume a validly formed IEs buffer */
1551 u8 len = ies[pos + 1];
1552
1553 pos += 2 + len;
1554
1555 /* the IE itself must have 255 bytes for fragments to follow */
1556 if (len < 255)
1557 return pos;
1558
1559 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1560 len = ies[pos + 1];
1561 pos += 2 + len;
1562 }
1563
1564 return pos;
1565 }
1566
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1567 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1568 const u8 *ids, int n_ids,
1569 const u8 *after_ric, int n_after_ric,
1570 size_t offset)
1571 {
1572 size_t pos = offset;
1573
1574 while (pos < ielen) {
1575 u8 ext = 0;
1576
1577 if (ies[pos] == WLAN_EID_EXTENSION)
1578 ext = 2;
1579 if ((pos + ext) >= ielen)
1580 break;
1581
1582 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1583 ies[pos] == WLAN_EID_EXTENSION))
1584 break;
1585
1586 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1587 pos = skip_ie(ies, ielen, pos);
1588
1589 while (pos < ielen) {
1590 if (ies[pos] == WLAN_EID_EXTENSION)
1591 ext = 2;
1592 else
1593 ext = 0;
1594
1595 if ((pos + ext) >= ielen)
1596 break;
1597
1598 if (!ieee80211_id_in_list(after_ric,
1599 n_after_ric,
1600 ies[pos + ext],
1601 ext == 2))
1602 pos = skip_ie(ies, ielen, pos);
1603 else
1604 break;
1605 }
1606 } else {
1607 pos = skip_ie(ies, ielen, pos);
1608 }
1609 }
1610
1611 return pos;
1612 }
1613 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1614
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1615 bool ieee80211_operating_class_to_band(u8 operating_class,
1616 enum nl80211_band *band)
1617 {
1618 switch (operating_class) {
1619 case 112:
1620 case 115 ... 127:
1621 case 128 ... 130:
1622 *band = NL80211_BAND_5GHZ;
1623 return true;
1624 case 131 ... 135:
1625 *band = NL80211_BAND_6GHZ;
1626 return true;
1627 case 81:
1628 case 82:
1629 case 83:
1630 case 84:
1631 *band = NL80211_BAND_2GHZ;
1632 return true;
1633 case 180:
1634 *band = NL80211_BAND_60GHZ;
1635 return true;
1636 }
1637
1638 return false;
1639 }
1640 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1641
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1642 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1643 u8 *op_class)
1644 {
1645 u8 vht_opclass;
1646 u32 freq = chandef->center_freq1;
1647
1648 if (freq >= 2412 && freq <= 2472) {
1649 if (chandef->width > NL80211_CHAN_WIDTH_40)
1650 return false;
1651
1652 /* 2.407 GHz, channels 1..13 */
1653 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1654 if (freq > chandef->chan->center_freq)
1655 *op_class = 83; /* HT40+ */
1656 else
1657 *op_class = 84; /* HT40- */
1658 } else {
1659 *op_class = 81;
1660 }
1661
1662 return true;
1663 }
1664
1665 if (freq == 2484) {
1666 /* channel 14 is only for IEEE 802.11b */
1667 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1668 return false;
1669
1670 *op_class = 82; /* channel 14 */
1671 return true;
1672 }
1673
1674 switch (chandef->width) {
1675 case NL80211_CHAN_WIDTH_80:
1676 vht_opclass = 128;
1677 break;
1678 case NL80211_CHAN_WIDTH_160:
1679 vht_opclass = 129;
1680 break;
1681 case NL80211_CHAN_WIDTH_80P80:
1682 vht_opclass = 130;
1683 break;
1684 case NL80211_CHAN_WIDTH_10:
1685 case NL80211_CHAN_WIDTH_5:
1686 return false; /* unsupported for now */
1687 default:
1688 vht_opclass = 0;
1689 break;
1690 }
1691
1692 /* 5 GHz, channels 36..48 */
1693 if (freq >= 5180 && freq <= 5240) {
1694 if (vht_opclass) {
1695 *op_class = vht_opclass;
1696 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1697 if (freq > chandef->chan->center_freq)
1698 *op_class = 116;
1699 else
1700 *op_class = 117;
1701 } else {
1702 *op_class = 115;
1703 }
1704
1705 return true;
1706 }
1707
1708 /* 5 GHz, channels 52..64 */
1709 if (freq >= 5260 && freq <= 5320) {
1710 if (vht_opclass) {
1711 *op_class = vht_opclass;
1712 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1713 if (freq > chandef->chan->center_freq)
1714 *op_class = 119;
1715 else
1716 *op_class = 120;
1717 } else {
1718 *op_class = 118;
1719 }
1720
1721 return true;
1722 }
1723
1724 /* 5 GHz, channels 100..144 */
1725 if (freq >= 5500 && freq <= 5720) {
1726 if (vht_opclass) {
1727 *op_class = vht_opclass;
1728 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1729 if (freq > chandef->chan->center_freq)
1730 *op_class = 122;
1731 else
1732 *op_class = 123;
1733 } else {
1734 *op_class = 121;
1735 }
1736
1737 return true;
1738 }
1739
1740 /* 5 GHz, channels 149..169 */
1741 if (freq >= 5745 && freq <= 5845) {
1742 if (vht_opclass) {
1743 *op_class = vht_opclass;
1744 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1745 if (freq > chandef->chan->center_freq)
1746 *op_class = 126;
1747 else
1748 *op_class = 127;
1749 } else if (freq <= 5805) {
1750 *op_class = 124;
1751 } else {
1752 *op_class = 125;
1753 }
1754
1755 return true;
1756 }
1757
1758 /* 56.16 GHz, channel 1..4 */
1759 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1760 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1761 return false;
1762
1763 *op_class = 180;
1764 return true;
1765 }
1766
1767 /* not supported yet */
1768 return false;
1769 }
1770 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1771
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1772 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1773 u32 *beacon_int_gcd,
1774 bool *beacon_int_different)
1775 {
1776 struct wireless_dev *wdev;
1777
1778 *beacon_int_gcd = 0;
1779 *beacon_int_different = false;
1780
1781 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1782 if (!wdev->beacon_interval)
1783 continue;
1784
1785 if (!*beacon_int_gcd) {
1786 *beacon_int_gcd = wdev->beacon_interval;
1787 continue;
1788 }
1789
1790 if (wdev->beacon_interval == *beacon_int_gcd)
1791 continue;
1792
1793 *beacon_int_different = true;
1794 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1795 }
1796
1797 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1798 if (*beacon_int_gcd)
1799 *beacon_int_different = true;
1800 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1801 }
1802 }
1803
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1804 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1805 enum nl80211_iftype iftype, u32 beacon_int)
1806 {
1807 /*
1808 * This is just a basic pre-condition check; if interface combinations
1809 * are possible the driver must already be checking those with a call
1810 * to cfg80211_check_combinations(), in which case we'll validate more
1811 * through the cfg80211_calculate_bi_data() call and code in
1812 * cfg80211_iter_combinations().
1813 */
1814
1815 if (beacon_int < 10 || beacon_int > 10000)
1816 return -EINVAL;
1817
1818 return 0;
1819 }
1820
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1821 int cfg80211_iter_combinations(struct wiphy *wiphy,
1822 struct iface_combination_params *params,
1823 void (*iter)(const struct ieee80211_iface_combination *c,
1824 void *data),
1825 void *data)
1826 {
1827 const struct ieee80211_regdomain *regdom;
1828 enum nl80211_dfs_regions region = 0;
1829 int i, j, iftype;
1830 int num_interfaces = 0;
1831 u32 used_iftypes = 0;
1832 u32 beacon_int_gcd;
1833 bool beacon_int_different;
1834
1835 /*
1836 * This is a bit strange, since the iteration used to rely only on
1837 * the data given by the driver, but here it now relies on context,
1838 * in form of the currently operating interfaces.
1839 * This is OK for all current users, and saves us from having to
1840 * push the GCD calculations into all the drivers.
1841 * In the future, this should probably rely more on data that's in
1842 * cfg80211 already - the only thing not would appear to be any new
1843 * interfaces (while being brought up) and channel/radar data.
1844 */
1845 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1846 &beacon_int_gcd, &beacon_int_different);
1847
1848 if (params->radar_detect) {
1849 rcu_read_lock();
1850 regdom = rcu_dereference(cfg80211_regdomain);
1851 if (regdom)
1852 region = regdom->dfs_region;
1853 rcu_read_unlock();
1854 }
1855
1856 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1857 num_interfaces += params->iftype_num[iftype];
1858 if (params->iftype_num[iftype] > 0 &&
1859 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1860 used_iftypes |= BIT(iftype);
1861 }
1862
1863 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1864 const struct ieee80211_iface_combination *c;
1865 struct ieee80211_iface_limit *limits;
1866 u32 all_iftypes = 0;
1867
1868 c = &wiphy->iface_combinations[i];
1869
1870 if (num_interfaces > c->max_interfaces)
1871 continue;
1872 if (params->num_different_channels > c->num_different_channels)
1873 continue;
1874
1875 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1876 GFP_KERNEL);
1877 if (!limits)
1878 return -ENOMEM;
1879
1880 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1881 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1882 continue;
1883 for (j = 0; j < c->n_limits; j++) {
1884 all_iftypes |= limits[j].types;
1885 if (!(limits[j].types & BIT(iftype)))
1886 continue;
1887 if (limits[j].max < params->iftype_num[iftype])
1888 goto cont;
1889 limits[j].max -= params->iftype_num[iftype];
1890 }
1891 }
1892
1893 if (params->radar_detect !=
1894 (c->radar_detect_widths & params->radar_detect))
1895 goto cont;
1896
1897 if (params->radar_detect && c->radar_detect_regions &&
1898 !(c->radar_detect_regions & BIT(region)))
1899 goto cont;
1900
1901 /* Finally check that all iftypes that we're currently
1902 * using are actually part of this combination. If they
1903 * aren't then we can't use this combination and have
1904 * to continue to the next.
1905 */
1906 if ((all_iftypes & used_iftypes) != used_iftypes)
1907 goto cont;
1908
1909 if (beacon_int_gcd) {
1910 if (c->beacon_int_min_gcd &&
1911 beacon_int_gcd < c->beacon_int_min_gcd)
1912 goto cont;
1913 if (!c->beacon_int_min_gcd && beacon_int_different)
1914 goto cont;
1915 }
1916
1917 /* This combination covered all interface types and
1918 * supported the requested numbers, so we're good.
1919 */
1920
1921 (*iter)(c, data);
1922 cont:
1923 kfree(limits);
1924 }
1925
1926 return 0;
1927 }
1928 EXPORT_SYMBOL(cfg80211_iter_combinations);
1929
1930 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1931 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1932 void *data)
1933 {
1934 int *num = data;
1935 (*num)++;
1936 }
1937
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1938 int cfg80211_check_combinations(struct wiphy *wiphy,
1939 struct iface_combination_params *params)
1940 {
1941 int err, num = 0;
1942
1943 err = cfg80211_iter_combinations(wiphy, params,
1944 cfg80211_iter_sum_ifcombs, &num);
1945 if (err)
1946 return err;
1947 if (num == 0)
1948 return -EBUSY;
1949
1950 return 0;
1951 }
1952 EXPORT_SYMBOL(cfg80211_check_combinations);
1953
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1954 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1955 const u8 *rates, unsigned int n_rates,
1956 u32 *mask)
1957 {
1958 int i, j;
1959
1960 if (!sband)
1961 return -EINVAL;
1962
1963 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1964 return -EINVAL;
1965
1966 *mask = 0;
1967
1968 for (i = 0; i < n_rates; i++) {
1969 int rate = (rates[i] & 0x7f) * 5;
1970 bool found = false;
1971
1972 for (j = 0; j < sband->n_bitrates; j++) {
1973 if (sband->bitrates[j].bitrate == rate) {
1974 found = true;
1975 *mask |= BIT(j);
1976 break;
1977 }
1978 }
1979 if (!found)
1980 return -EINVAL;
1981 }
1982
1983 /*
1984 * mask must have at least one bit set here since we
1985 * didn't accept a 0-length rates array nor allowed
1986 * entries in the array that didn't exist
1987 */
1988
1989 return 0;
1990 }
1991
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1992 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1993 {
1994 enum nl80211_band band;
1995 unsigned int n_channels = 0;
1996
1997 for (band = 0; band < NUM_NL80211_BANDS; band++)
1998 if (wiphy->bands[band])
1999 n_channels += wiphy->bands[band]->n_channels;
2000
2001 return n_channels;
2002 }
2003 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2004
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2005 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2006 struct station_info *sinfo)
2007 {
2008 struct cfg80211_registered_device *rdev;
2009 struct wireless_dev *wdev;
2010
2011 wdev = dev->ieee80211_ptr;
2012 if (!wdev)
2013 return -EOPNOTSUPP;
2014
2015 rdev = wiphy_to_rdev(wdev->wiphy);
2016 if (!rdev->ops->get_station)
2017 return -EOPNOTSUPP;
2018
2019 memset(sinfo, 0, sizeof(*sinfo));
2020
2021 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2022 }
2023 EXPORT_SYMBOL(cfg80211_get_station);
2024
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2025 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2026 {
2027 int i;
2028
2029 if (!f)
2030 return;
2031
2032 kfree(f->serv_spec_info);
2033 kfree(f->srf_bf);
2034 kfree(f->srf_macs);
2035 for (i = 0; i < f->num_rx_filters; i++)
2036 kfree(f->rx_filters[i].filter);
2037
2038 for (i = 0; i < f->num_tx_filters; i++)
2039 kfree(f->tx_filters[i].filter);
2040
2041 kfree(f->rx_filters);
2042 kfree(f->tx_filters);
2043 kfree(f);
2044 }
2045 EXPORT_SYMBOL(cfg80211_free_nan_func);
2046
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2047 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2048 u32 center_freq_khz, u32 bw_khz)
2049 {
2050 u32 start_freq_khz, end_freq_khz;
2051
2052 start_freq_khz = center_freq_khz - (bw_khz / 2);
2053 end_freq_khz = center_freq_khz + (bw_khz / 2);
2054
2055 if (start_freq_khz >= freq_range->start_freq_khz &&
2056 end_freq_khz <= freq_range->end_freq_khz)
2057 return true;
2058
2059 return false;
2060 }
2061
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2062 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2063 {
2064 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2065 sizeof(*(sinfo->pertid)),
2066 gfp);
2067 if (!sinfo->pertid)
2068 return -ENOMEM;
2069
2070 return 0;
2071 }
2072 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2073
2074 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2075 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2076 const unsigned char rfc1042_header[] __aligned(2) =
2077 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2078 EXPORT_SYMBOL(rfc1042_header);
2079
2080 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2081 const unsigned char bridge_tunnel_header[] __aligned(2) =
2082 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2083 EXPORT_SYMBOL(bridge_tunnel_header);
2084
2085 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2086 struct iapp_layer2_update {
2087 u8 da[ETH_ALEN]; /* broadcast */
2088 u8 sa[ETH_ALEN]; /* STA addr */
2089 __be16 len; /* 6 */
2090 u8 dsap; /* 0 */
2091 u8 ssap; /* 0 */
2092 u8 control;
2093 u8 xid_info[3];
2094 } __packed;
2095
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2096 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2097 {
2098 struct iapp_layer2_update *msg;
2099 struct sk_buff *skb;
2100
2101 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2102 * bridge devices */
2103
2104 skb = dev_alloc_skb(sizeof(*msg));
2105 if (!skb)
2106 return;
2107 msg = skb_put(skb, sizeof(*msg));
2108
2109 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2110 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2111
2112 eth_broadcast_addr(msg->da);
2113 ether_addr_copy(msg->sa, addr);
2114 msg->len = htons(6);
2115 msg->dsap = 0;
2116 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2117 msg->control = 0xaf; /* XID response lsb.1111F101.
2118 * F=0 (no poll command; unsolicited frame) */
2119 msg->xid_info[0] = 0x81; /* XID format identifier */
2120 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2121 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2122
2123 skb->dev = dev;
2124 skb->protocol = eth_type_trans(skb, dev);
2125 memset(skb->cb, 0, sizeof(skb->cb));
2126 netif_rx_ni(skb);
2127 }
2128 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2129
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2130 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2131 enum ieee80211_vht_chanwidth bw,
2132 int mcs, bool ext_nss_bw_capable,
2133 unsigned int max_vht_nss)
2134 {
2135 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2136 int ext_nss_bw;
2137 int supp_width;
2138 int i, mcs_encoding;
2139
2140 if (map == 0xffff)
2141 return 0;
2142
2143 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2144 return 0;
2145 if (mcs <= 7)
2146 mcs_encoding = 0;
2147 else if (mcs == 8)
2148 mcs_encoding = 1;
2149 else
2150 mcs_encoding = 2;
2151
2152 if (!max_vht_nss) {
2153 /* find max_vht_nss for the given MCS */
2154 for (i = 7; i >= 0; i--) {
2155 int supp = (map >> (2 * i)) & 3;
2156
2157 if (supp == 3)
2158 continue;
2159
2160 if (supp >= mcs_encoding) {
2161 max_vht_nss = i + 1;
2162 break;
2163 }
2164 }
2165 }
2166
2167 if (!(cap->supp_mcs.tx_mcs_map &
2168 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2169 return max_vht_nss;
2170
2171 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2172 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2173 supp_width = le32_get_bits(cap->vht_cap_info,
2174 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2175
2176 /* if not capable, treat ext_nss_bw as 0 */
2177 if (!ext_nss_bw_capable)
2178 ext_nss_bw = 0;
2179
2180 /* This is invalid */
2181 if (supp_width == 3)
2182 return 0;
2183
2184 /* This is an invalid combination so pretend nothing is supported */
2185 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2186 return 0;
2187
2188 /*
2189 * Cover all the special cases according to IEEE 802.11-2016
2190 * Table 9-250. All other cases are either factor of 1 or not
2191 * valid/supported.
2192 */
2193 switch (bw) {
2194 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2195 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2196 if ((supp_width == 1 || supp_width == 2) &&
2197 ext_nss_bw == 3)
2198 return 2 * max_vht_nss;
2199 break;
2200 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2201 if (supp_width == 0 &&
2202 (ext_nss_bw == 1 || ext_nss_bw == 2))
2203 return max_vht_nss / 2;
2204 if (supp_width == 0 &&
2205 ext_nss_bw == 3)
2206 return (3 * max_vht_nss) / 4;
2207 if (supp_width == 1 &&
2208 ext_nss_bw == 3)
2209 return 2 * max_vht_nss;
2210 break;
2211 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2212 if (supp_width == 0 && ext_nss_bw == 1)
2213 return 0; /* not possible */
2214 if (supp_width == 0 &&
2215 ext_nss_bw == 2)
2216 return max_vht_nss / 2;
2217 if (supp_width == 0 &&
2218 ext_nss_bw == 3)
2219 return (3 * max_vht_nss) / 4;
2220 if (supp_width == 1 &&
2221 ext_nss_bw == 0)
2222 return 0; /* not possible */
2223 if (supp_width == 1 &&
2224 ext_nss_bw == 1)
2225 return max_vht_nss / 2;
2226 if (supp_width == 1 &&
2227 ext_nss_bw == 2)
2228 return (3 * max_vht_nss) / 4;
2229 break;
2230 }
2231
2232 /* not covered or invalid combination received */
2233 return max_vht_nss;
2234 }
2235 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2236
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2237 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2238 bool is_4addr, u8 check_swif)
2239
2240 {
2241 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2242
2243 switch (check_swif) {
2244 case 0:
2245 if (is_vlan && is_4addr)
2246 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2247 return wiphy->interface_modes & BIT(iftype);
2248 case 1:
2249 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2250 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2251 return wiphy->software_iftypes & BIT(iftype);
2252 default:
2253 break;
2254 }
2255
2256 return false;
2257 }
2258 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2259