• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2020 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 		if (chan == 14)
84 			return MHZ_TO_KHZ(2484);
85 		else if (chan < 14)
86 			return MHZ_TO_KHZ(2407 + chan * 5);
87 		break;
88 	case NL80211_BAND_5GHZ:
89 		if (chan >= 182 && chan <= 196)
90 			return MHZ_TO_KHZ(4000 + chan * 5);
91 		else
92 			return MHZ_TO_KHZ(5000 + chan * 5);
93 		break;
94 	case NL80211_BAND_6GHZ:
95 		/* see 802.11ax D6.1 27.3.23.2 */
96 		if (chan == 2)
97 			return MHZ_TO_KHZ(5935);
98 		if (chan <= 233)
99 			return MHZ_TO_KHZ(5950 + chan * 5);
100 		break;
101 	case NL80211_BAND_60GHZ:
102 		if (chan < 7)
103 			return MHZ_TO_KHZ(56160 + chan * 2160);
104 		break;
105 	case NL80211_BAND_S1GHZ:
106 		return 902000 + chan * 500;
107 	default:
108 		;
109 	}
110 	return 0; /* not supported */
111 }
112 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113 
114 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)115 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
116 {
117 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
118 		return NL80211_CHAN_WIDTH_20_NOHT;
119 
120 	/*S1G defines a single allowed channel width per channel.
121 	 * Extract that width here.
122 	 */
123 	if (chan->flags & IEEE80211_CHAN_1MHZ)
124 		return NL80211_CHAN_WIDTH_1;
125 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
126 		return NL80211_CHAN_WIDTH_2;
127 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
128 		return NL80211_CHAN_WIDTH_4;
129 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
130 		return NL80211_CHAN_WIDTH_8;
131 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
132 		return NL80211_CHAN_WIDTH_16;
133 
134 	pr_err("unknown channel width for channel at %dKHz?\n",
135 	       ieee80211_channel_to_khz(chan));
136 
137 	return NL80211_CHAN_WIDTH_1;
138 }
139 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
140 
ieee80211_freq_khz_to_channel(u32 freq)141 int ieee80211_freq_khz_to_channel(u32 freq)
142 {
143 	/* TODO: just handle MHz for now */
144 	freq = KHZ_TO_MHZ(freq);
145 
146 	/* see 802.11 17.3.8.3.2 and Annex J */
147 	if (freq == 2484)
148 		return 14;
149 	else if (freq < 2484)
150 		return (freq - 2407) / 5;
151 	else if (freq >= 4910 && freq <= 4980)
152 		return (freq - 4000) / 5;
153 	else if (freq < 5925)
154 		return (freq - 5000) / 5;
155 	else if (freq == 5935)
156 		return 2;
157 	else if (freq <= 45000) /* DMG band lower limit */
158 		/* see 802.11ax D6.1 27.3.22.2 */
159 		return (freq - 5950) / 5;
160 	else if (freq >= 58320 && freq <= 70200)
161 		return (freq - 56160) / 2160;
162 	else
163 		return 0;
164 }
165 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
166 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)167 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
168 						    u32 freq)
169 {
170 	enum nl80211_band band;
171 	struct ieee80211_supported_band *sband;
172 	int i;
173 
174 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
175 		sband = wiphy->bands[band];
176 
177 		if (!sband)
178 			continue;
179 
180 		for (i = 0; i < sband->n_channels; i++) {
181 			struct ieee80211_channel *chan = &sband->channels[i];
182 
183 			if (ieee80211_channel_to_khz(chan) == freq)
184 				return chan;
185 		}
186 	}
187 
188 	return NULL;
189 }
190 EXPORT_SYMBOL(ieee80211_get_channel_khz);
191 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)192 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
193 {
194 	int i, want;
195 
196 	switch (sband->band) {
197 	case NL80211_BAND_5GHZ:
198 	case NL80211_BAND_6GHZ:
199 		want = 3;
200 		for (i = 0; i < sband->n_bitrates; i++) {
201 			if (sband->bitrates[i].bitrate == 60 ||
202 			    sband->bitrates[i].bitrate == 120 ||
203 			    sband->bitrates[i].bitrate == 240) {
204 				sband->bitrates[i].flags |=
205 					IEEE80211_RATE_MANDATORY_A;
206 				want--;
207 			}
208 		}
209 		WARN_ON(want);
210 		break;
211 	case NL80211_BAND_2GHZ:
212 		want = 7;
213 		for (i = 0; i < sband->n_bitrates; i++) {
214 			switch (sband->bitrates[i].bitrate) {
215 			case 10:
216 			case 20:
217 			case 55:
218 			case 110:
219 				sband->bitrates[i].flags |=
220 					IEEE80211_RATE_MANDATORY_B |
221 					IEEE80211_RATE_MANDATORY_G;
222 				want--;
223 				break;
224 			case 60:
225 			case 120:
226 			case 240:
227 				sband->bitrates[i].flags |=
228 					IEEE80211_RATE_MANDATORY_G;
229 				want--;
230 				fallthrough;
231 			default:
232 				sband->bitrates[i].flags |=
233 					IEEE80211_RATE_ERP_G;
234 				break;
235 			}
236 		}
237 		WARN_ON(want != 0 && want != 3);
238 		break;
239 	case NL80211_BAND_60GHZ:
240 		/* check for mandatory HT MCS 1..4 */
241 		WARN_ON(!sband->ht_cap.ht_supported);
242 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
243 		break;
244 	case NL80211_BAND_S1GHZ:
245 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
246 		 * mandatory is ok.
247 		 */
248 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
249 		break;
250 	case NUM_NL80211_BANDS:
251 	default:
252 		WARN_ON(1);
253 		break;
254 	}
255 }
256 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)257 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
258 {
259 	enum nl80211_band band;
260 
261 	for (band = 0; band < NUM_NL80211_BANDS; band++)
262 		if (wiphy->bands[band])
263 			set_mandatory_flags_band(wiphy->bands[band]);
264 }
265 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)266 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
267 {
268 	int i;
269 	for (i = 0; i < wiphy->n_cipher_suites; i++)
270 		if (cipher == wiphy->cipher_suites[i])
271 			return true;
272 	return false;
273 }
274 
275 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)276 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
277 {
278 	struct wiphy *wiphy = &rdev->wiphy;
279 	int i;
280 
281 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
282 		switch (wiphy->cipher_suites[i]) {
283 		case WLAN_CIPHER_SUITE_AES_CMAC:
284 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
285 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
286 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
287 			return true;
288 		}
289 	}
290 
291 	return false;
292 }
293 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)294 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
295 			    int key_idx, bool pairwise)
296 {
297 	int max_key_idx;
298 
299 	if (pairwise)
300 		max_key_idx = 3;
301 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
302 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
303 		 wiphy_ext_feature_isset(&rdev->wiphy,
304 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
305 		max_key_idx = 7;
306 	else if (cfg80211_igtk_cipher_supported(rdev))
307 		max_key_idx = 5;
308 	else
309 		max_key_idx = 3;
310 
311 	if (key_idx < 0 || key_idx > max_key_idx)
312 		return false;
313 
314 	return true;
315 }
316 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)317 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
318 				   struct key_params *params, int key_idx,
319 				   bool pairwise, const u8 *mac_addr)
320 {
321 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
322 		return -EINVAL;
323 
324 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
325 		return -EINVAL;
326 
327 	if (pairwise && !mac_addr)
328 		return -EINVAL;
329 
330 	switch (params->cipher) {
331 	case WLAN_CIPHER_SUITE_TKIP:
332 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
333 		if ((pairwise && key_idx) ||
334 		    params->mode != NL80211_KEY_RX_TX)
335 			return -EINVAL;
336 		break;
337 	case WLAN_CIPHER_SUITE_CCMP:
338 	case WLAN_CIPHER_SUITE_CCMP_256:
339 	case WLAN_CIPHER_SUITE_GCMP:
340 	case WLAN_CIPHER_SUITE_GCMP_256:
341 		/* IEEE802.11-2016 allows only 0 and - when supporting
342 		 * Extended Key ID - 1 as index for pairwise keys.
343 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
344 		 * the driver supports Extended Key ID.
345 		 * @NL80211_KEY_SET_TX can't be set when installing and
346 		 * validating a key.
347 		 */
348 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
349 		    params->mode == NL80211_KEY_SET_TX)
350 			return -EINVAL;
351 		if (wiphy_ext_feature_isset(&rdev->wiphy,
352 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
353 			if (pairwise && (key_idx < 0 || key_idx > 1))
354 				return -EINVAL;
355 		} else if (pairwise && key_idx) {
356 			return -EINVAL;
357 		}
358 		break;
359 	case WLAN_CIPHER_SUITE_AES_CMAC:
360 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
361 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
362 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
363 		/* Disallow BIP (group-only) cipher as pairwise cipher */
364 		if (pairwise)
365 			return -EINVAL;
366 		if (key_idx < 4)
367 			return -EINVAL;
368 		break;
369 	case WLAN_CIPHER_SUITE_WEP40:
370 	case WLAN_CIPHER_SUITE_WEP104:
371 		if (key_idx > 3)
372 			return -EINVAL;
373 	default:
374 		break;
375 	}
376 
377 	switch (params->cipher) {
378 	case WLAN_CIPHER_SUITE_WEP40:
379 		if (params->key_len != WLAN_KEY_LEN_WEP40)
380 			return -EINVAL;
381 		break;
382 	case WLAN_CIPHER_SUITE_TKIP:
383 		if (params->key_len != WLAN_KEY_LEN_TKIP)
384 			return -EINVAL;
385 		break;
386 	case WLAN_CIPHER_SUITE_CCMP:
387 		if (params->key_len != WLAN_KEY_LEN_CCMP)
388 			return -EINVAL;
389 		break;
390 	case WLAN_CIPHER_SUITE_CCMP_256:
391 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
392 			return -EINVAL;
393 		break;
394 	case WLAN_CIPHER_SUITE_GCMP:
395 		if (params->key_len != WLAN_KEY_LEN_GCMP)
396 			return -EINVAL;
397 		break;
398 	case WLAN_CIPHER_SUITE_GCMP_256:
399 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
400 			return -EINVAL;
401 		break;
402 	case WLAN_CIPHER_SUITE_WEP104:
403 		if (params->key_len != WLAN_KEY_LEN_WEP104)
404 			return -EINVAL;
405 		break;
406 	case WLAN_CIPHER_SUITE_AES_CMAC:
407 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
408 			return -EINVAL;
409 		break;
410 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
411 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
412 			return -EINVAL;
413 		break;
414 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
415 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
416 			return -EINVAL;
417 		break;
418 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
419 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
420 			return -EINVAL;
421 		break;
422 	default:
423 		/*
424 		 * We don't know anything about this algorithm,
425 		 * allow using it -- but the driver must check
426 		 * all parameters! We still check below whether
427 		 * or not the driver supports this algorithm,
428 		 * of course.
429 		 */
430 		break;
431 	}
432 
433 	if (params->seq) {
434 		switch (params->cipher) {
435 		case WLAN_CIPHER_SUITE_WEP40:
436 		case WLAN_CIPHER_SUITE_WEP104:
437 			/* These ciphers do not use key sequence */
438 			return -EINVAL;
439 		case WLAN_CIPHER_SUITE_TKIP:
440 		case WLAN_CIPHER_SUITE_CCMP:
441 		case WLAN_CIPHER_SUITE_CCMP_256:
442 		case WLAN_CIPHER_SUITE_GCMP:
443 		case WLAN_CIPHER_SUITE_GCMP_256:
444 		case WLAN_CIPHER_SUITE_AES_CMAC:
445 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
446 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
447 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
448 			if (params->seq_len != 6)
449 				return -EINVAL;
450 			break;
451 		}
452 	}
453 
454 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
455 		return -EINVAL;
456 
457 	return 0;
458 }
459 
ieee80211_hdrlen(__le16 fc)460 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
461 {
462 	unsigned int hdrlen = 24;
463 
464 	if (ieee80211_is_ext(fc)) {
465 		hdrlen = 4;
466 		goto out;
467 	}
468 
469 	if (ieee80211_is_data(fc)) {
470 		if (ieee80211_has_a4(fc))
471 			hdrlen = 30;
472 		if (ieee80211_is_data_qos(fc)) {
473 			hdrlen += IEEE80211_QOS_CTL_LEN;
474 			if (ieee80211_has_order(fc))
475 				hdrlen += IEEE80211_HT_CTL_LEN;
476 		}
477 		goto out;
478 	}
479 
480 	if (ieee80211_is_mgmt(fc)) {
481 		if (ieee80211_has_order(fc))
482 			hdrlen += IEEE80211_HT_CTL_LEN;
483 		goto out;
484 	}
485 
486 	if (ieee80211_is_ctl(fc)) {
487 		/*
488 		 * ACK and CTS are 10 bytes, all others 16. To see how
489 		 * to get this condition consider
490 		 *   subtype mask:   0b0000000011110000 (0x00F0)
491 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
492 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
493 		 *   bits that matter:         ^^^      (0x00E0)
494 		 *   value of those: 0b0000000011000000 (0x00C0)
495 		 */
496 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
497 			hdrlen = 10;
498 		else
499 			hdrlen = 16;
500 	}
501 out:
502 	return hdrlen;
503 }
504 EXPORT_SYMBOL(ieee80211_hdrlen);
505 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)506 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
507 {
508 	const struct ieee80211_hdr *hdr =
509 			(const struct ieee80211_hdr *)skb->data;
510 	unsigned int hdrlen;
511 
512 	if (unlikely(skb->len < 10))
513 		return 0;
514 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
515 	if (unlikely(hdrlen > skb->len))
516 		return 0;
517 	return hdrlen;
518 }
519 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
520 
__ieee80211_get_mesh_hdrlen(u8 flags)521 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
522 {
523 	int ae = flags & MESH_FLAGS_AE;
524 	/* 802.11-2012, 8.2.4.7.3 */
525 	switch (ae) {
526 	default:
527 	case 0:
528 		return 6;
529 	case MESH_FLAGS_AE_A4:
530 		return 12;
531 	case MESH_FLAGS_AE_A5_A6:
532 		return 18;
533 	}
534 }
535 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)536 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
537 {
538 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
539 }
540 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
541 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)542 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
543 				  const u8 *addr, enum nl80211_iftype iftype,
544 				  u8 data_offset, bool is_amsdu)
545 {
546 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
547 	struct {
548 		u8 hdr[ETH_ALEN] __aligned(2);
549 		__be16 proto;
550 	} payload;
551 	struct ethhdr tmp;
552 	u16 hdrlen;
553 	u8 mesh_flags = 0;
554 
555 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
556 		return -1;
557 
558 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
559 	if (skb->len < hdrlen + 8)
560 		return -1;
561 
562 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
563 	 * header
564 	 * IEEE 802.11 address fields:
565 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
566 	 *   0     0   DA    SA    BSSID n/a
567 	 *   0     1   DA    BSSID SA    n/a
568 	 *   1     0   BSSID SA    DA    n/a
569 	 *   1     1   RA    TA    DA    SA
570 	 */
571 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
572 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
573 
574 	if (iftype == NL80211_IFTYPE_MESH_POINT)
575 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
576 
577 	mesh_flags &= MESH_FLAGS_AE;
578 
579 	switch (hdr->frame_control &
580 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
581 	case cpu_to_le16(IEEE80211_FCTL_TODS):
582 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
583 			     iftype != NL80211_IFTYPE_AP_VLAN &&
584 			     iftype != NL80211_IFTYPE_P2P_GO))
585 			return -1;
586 		break;
587 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
588 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
589 			     iftype != NL80211_IFTYPE_MESH_POINT &&
590 			     iftype != NL80211_IFTYPE_AP_VLAN &&
591 			     iftype != NL80211_IFTYPE_STATION))
592 			return -1;
593 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
594 			if (mesh_flags == MESH_FLAGS_AE_A4)
595 				return -1;
596 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
597 				skb_copy_bits(skb, hdrlen +
598 					offsetof(struct ieee80211s_hdr, eaddr1),
599 					tmp.h_dest, 2 * ETH_ALEN);
600 			}
601 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
602 		}
603 		break;
604 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
605 		if ((iftype != NL80211_IFTYPE_STATION &&
606 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
607 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
608 		    (is_multicast_ether_addr(tmp.h_dest) &&
609 		     ether_addr_equal(tmp.h_source, addr)))
610 			return -1;
611 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
612 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
613 				return -1;
614 			if (mesh_flags == MESH_FLAGS_AE_A4)
615 				skb_copy_bits(skb, hdrlen +
616 					offsetof(struct ieee80211s_hdr, eaddr1),
617 					tmp.h_source, ETH_ALEN);
618 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
619 		}
620 		break;
621 	case cpu_to_le16(0):
622 		if (iftype != NL80211_IFTYPE_ADHOC &&
623 		    iftype != NL80211_IFTYPE_STATION &&
624 		    iftype != NL80211_IFTYPE_OCB)
625 				return -1;
626 		break;
627 	}
628 
629 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
630 	tmp.h_proto = payload.proto;
631 
632 	if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
633 		    tmp.h_proto != htons(ETH_P_AARP) &&
634 		    tmp.h_proto != htons(ETH_P_IPX)) ||
635 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
636 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
637 		 * replace EtherType */
638 		hdrlen += ETH_ALEN + 2;
639 	else
640 		tmp.h_proto = htons(skb->len - hdrlen);
641 
642 	pskb_pull(skb, hdrlen);
643 
644 	if (!ehdr)
645 		ehdr = skb_push(skb, sizeof(struct ethhdr));
646 	memcpy(ehdr, &tmp, sizeof(tmp));
647 
648 	return 0;
649 }
650 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
651 
652 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)653 __frame_add_frag(struct sk_buff *skb, struct page *page,
654 		 void *ptr, int len, int size)
655 {
656 	struct skb_shared_info *sh = skb_shinfo(skb);
657 	int page_offset;
658 
659 	get_page(page);
660 	page_offset = ptr - page_address(page);
661 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
662 }
663 
664 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)665 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
666 			    int offset, int len)
667 {
668 	struct skb_shared_info *sh = skb_shinfo(skb);
669 	const skb_frag_t *frag = &sh->frags[0];
670 	struct page *frag_page;
671 	void *frag_ptr;
672 	int frag_len, frag_size;
673 	int head_size = skb->len - skb->data_len;
674 	int cur_len;
675 
676 	frag_page = virt_to_head_page(skb->head);
677 	frag_ptr = skb->data;
678 	frag_size = head_size;
679 
680 	while (offset >= frag_size) {
681 		offset -= frag_size;
682 		frag_page = skb_frag_page(frag);
683 		frag_ptr = skb_frag_address(frag);
684 		frag_size = skb_frag_size(frag);
685 		frag++;
686 	}
687 
688 	frag_ptr += offset;
689 	frag_len = frag_size - offset;
690 
691 	cur_len = min(len, frag_len);
692 
693 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
694 	len -= cur_len;
695 
696 	while (len > 0) {
697 		frag_len = skb_frag_size(frag);
698 		cur_len = min(len, frag_len);
699 		__frame_add_frag(frame, skb_frag_page(frag),
700 				 skb_frag_address(frag), cur_len, frag_len);
701 		len -= cur_len;
702 		frag++;
703 	}
704 }
705 
706 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)707 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
708 		       int offset, int len, bool reuse_frag)
709 {
710 	struct sk_buff *frame;
711 	int cur_len = len;
712 
713 	if (skb->len - offset < len)
714 		return NULL;
715 
716 	/*
717 	 * When reusing framents, copy some data to the head to simplify
718 	 * ethernet header handling and speed up protocol header processing
719 	 * in the stack later.
720 	 */
721 	if (reuse_frag)
722 		cur_len = min_t(int, len, 32);
723 
724 	/*
725 	 * Allocate and reserve two bytes more for payload
726 	 * alignment since sizeof(struct ethhdr) is 14.
727 	 */
728 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
729 	if (!frame)
730 		return NULL;
731 
732 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
733 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
734 
735 	len -= cur_len;
736 	if (!len)
737 		return frame;
738 
739 	offset += cur_len;
740 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
741 
742 	return frame;
743 }
744 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)745 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
746 			      const u8 *addr, enum nl80211_iftype iftype,
747 			      const unsigned int extra_headroom,
748 			      const u8 *check_da, const u8 *check_sa)
749 {
750 	unsigned int hlen = ALIGN(extra_headroom, 4);
751 	struct sk_buff *frame = NULL;
752 	u16 ethertype;
753 	u8 *payload;
754 	int offset = 0;
755 	struct ethhdr eth;
756 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
757 	bool reuse_skb = false;
758 	bool last = false;
759 
760 	while (!last) {
761 		int remaining = skb->len - offset;
762 		unsigned int subframe_len;
763 		int len;
764 		u8 padding;
765 
766 		if (sizeof(eth) > remaining)
767 			goto purge;
768 
769 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
770 		len = ntohs(eth.h_proto);
771 		subframe_len = sizeof(struct ethhdr) + len;
772 		padding = (4 - subframe_len) & 0x3;
773 
774 		/* the last MSDU has no padding */
775 		if (subframe_len > remaining)
776 			goto purge;
777 		/* mitigate A-MSDU aggregation injection attacks */
778 		if (ether_addr_equal(eth.h_dest, rfc1042_header))
779 			goto purge;
780 
781 		offset += sizeof(struct ethhdr);
782 		last = remaining <= subframe_len + padding;
783 
784 		/* FIXME: should we really accept multicast DA? */
785 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
786 		     !ether_addr_equal(check_da, eth.h_dest)) ||
787 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
788 			offset += len + padding;
789 			continue;
790 		}
791 
792 		/* reuse skb for the last subframe */
793 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
794 			skb_pull(skb, offset);
795 			frame = skb;
796 			reuse_skb = true;
797 		} else {
798 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
799 						       reuse_frag);
800 			if (!frame)
801 				goto purge;
802 
803 			offset += len + padding;
804 		}
805 
806 		skb_reset_network_header(frame);
807 		frame->dev = skb->dev;
808 		frame->priority = skb->priority;
809 
810 		payload = frame->data;
811 		ethertype = (payload[6] << 8) | payload[7];
812 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
813 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
814 			   ether_addr_equal(payload, bridge_tunnel_header))) {
815 			eth.h_proto = htons(ethertype);
816 			skb_pull(frame, ETH_ALEN + 2);
817 		}
818 
819 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
820 		__skb_queue_tail(list, frame);
821 	}
822 
823 	if (!reuse_skb)
824 		dev_kfree_skb(skb);
825 
826 	return;
827 
828  purge:
829 	__skb_queue_purge(list);
830 	dev_kfree_skb(skb);
831 }
832 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
833 
834 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)835 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
836 				    struct cfg80211_qos_map *qos_map)
837 {
838 	unsigned int dscp;
839 	unsigned char vlan_priority;
840 	unsigned int ret;
841 
842 	/* skb->priority values from 256->263 are magic values to
843 	 * directly indicate a specific 802.1d priority.  This is used
844 	 * to allow 802.1d priority to be passed directly in from VLAN
845 	 * tags, etc.
846 	 */
847 	if (skb->priority >= 256 && skb->priority <= 263) {
848 		ret = skb->priority - 256;
849 		goto out;
850 	}
851 
852 	if (skb_vlan_tag_present(skb)) {
853 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
854 			>> VLAN_PRIO_SHIFT;
855 		if (vlan_priority > 0) {
856 			ret = vlan_priority;
857 			goto out;
858 		}
859 	}
860 
861 	switch (skb->protocol) {
862 	case htons(ETH_P_IP):
863 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
864 		break;
865 	case htons(ETH_P_IPV6):
866 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
867 		break;
868 	case htons(ETH_P_MPLS_UC):
869 	case htons(ETH_P_MPLS_MC): {
870 		struct mpls_label mpls_tmp, *mpls;
871 
872 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
873 					  sizeof(*mpls), &mpls_tmp);
874 		if (!mpls)
875 			return 0;
876 
877 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
878 			>> MPLS_LS_TC_SHIFT;
879 		goto out;
880 	}
881 	case htons(ETH_P_80221):
882 		/* 802.21 is always network control traffic */
883 		return 7;
884 	default:
885 		return 0;
886 	}
887 
888 	if (qos_map) {
889 		unsigned int i, tmp_dscp = dscp >> 2;
890 
891 		for (i = 0; i < qos_map->num_des; i++) {
892 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
893 				ret = qos_map->dscp_exception[i].up;
894 				goto out;
895 			}
896 		}
897 
898 		for (i = 0; i < 8; i++) {
899 			if (tmp_dscp >= qos_map->up[i].low &&
900 			    tmp_dscp <= qos_map->up[i].high) {
901 				ret = i;
902 				goto out;
903 			}
904 		}
905 	}
906 
907 	ret = dscp >> 5;
908 out:
909 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
910 }
911 EXPORT_SYMBOL(cfg80211_classify8021d);
912 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)913 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
914 {
915 	const struct cfg80211_bss_ies *ies;
916 
917 	ies = rcu_dereference(bss->ies);
918 	if (!ies)
919 		return NULL;
920 
921 	return cfg80211_find_elem(id, ies->data, ies->len);
922 }
923 EXPORT_SYMBOL(ieee80211_bss_get_elem);
924 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)925 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
926 {
927 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
928 	struct net_device *dev = wdev->netdev;
929 	int i;
930 
931 	if (!wdev->connect_keys)
932 		return;
933 
934 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
935 		if (!wdev->connect_keys->params[i].cipher)
936 			continue;
937 		if (rdev_add_key(rdev, dev, i, false, NULL,
938 				 &wdev->connect_keys->params[i])) {
939 			netdev_err(dev, "failed to set key %d\n", i);
940 			continue;
941 		}
942 		if (wdev->connect_keys->def == i &&
943 		    rdev_set_default_key(rdev, dev, i, true, true)) {
944 			netdev_err(dev, "failed to set defkey %d\n", i);
945 			continue;
946 		}
947 	}
948 
949 	kfree_sensitive(wdev->connect_keys);
950 	wdev->connect_keys = NULL;
951 }
952 
cfg80211_process_wdev_events(struct wireless_dev * wdev)953 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
954 {
955 	struct cfg80211_event *ev;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&wdev->event_lock, flags);
959 	while (!list_empty(&wdev->event_list)) {
960 		ev = list_first_entry(&wdev->event_list,
961 				      struct cfg80211_event, list);
962 		list_del(&ev->list);
963 		spin_unlock_irqrestore(&wdev->event_lock, flags);
964 
965 		wdev_lock(wdev);
966 		switch (ev->type) {
967 		case EVENT_CONNECT_RESULT:
968 			__cfg80211_connect_result(
969 				wdev->netdev,
970 				&ev->cr,
971 				ev->cr.status == WLAN_STATUS_SUCCESS);
972 			break;
973 		case EVENT_ROAMED:
974 			__cfg80211_roamed(wdev, &ev->rm);
975 			break;
976 		case EVENT_DISCONNECTED:
977 			__cfg80211_disconnected(wdev->netdev,
978 						ev->dc.ie, ev->dc.ie_len,
979 						ev->dc.reason,
980 						!ev->dc.locally_generated);
981 			break;
982 		case EVENT_IBSS_JOINED:
983 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
984 					       ev->ij.channel);
985 			break;
986 		case EVENT_STOPPED:
987 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
988 			break;
989 		case EVENT_PORT_AUTHORIZED:
990 			__cfg80211_port_authorized(wdev, ev->pa.bssid);
991 			break;
992 		}
993 		wdev_unlock(wdev);
994 
995 		kfree(ev);
996 
997 		spin_lock_irqsave(&wdev->event_lock, flags);
998 	}
999 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1000 }
1001 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1002 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1003 {
1004 	struct wireless_dev *wdev;
1005 
1006 	ASSERT_RTNL();
1007 
1008 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1009 		cfg80211_process_wdev_events(wdev);
1010 }
1011 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1012 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1013 			  struct net_device *dev, enum nl80211_iftype ntype,
1014 			  struct vif_params *params)
1015 {
1016 	int err;
1017 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1018 
1019 	ASSERT_RTNL();
1020 
1021 	/* don't support changing VLANs, you just re-create them */
1022 	if (otype == NL80211_IFTYPE_AP_VLAN)
1023 		return -EOPNOTSUPP;
1024 
1025 	/* cannot change into P2P device or NAN */
1026 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1027 	    ntype == NL80211_IFTYPE_NAN)
1028 		return -EOPNOTSUPP;
1029 
1030 	if (!rdev->ops->change_virtual_intf ||
1031 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1032 		return -EOPNOTSUPP;
1033 
1034 	if (ntype != otype) {
1035 		/* if it's part of a bridge, reject changing type to station/ibss */
1036 		if (netif_is_bridge_port(dev) &&
1037 		    (ntype == NL80211_IFTYPE_ADHOC ||
1038 		     ntype == NL80211_IFTYPE_STATION ||
1039 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1040 			return -EBUSY;
1041 
1042 		dev->ieee80211_ptr->use_4addr = false;
1043 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1044 		wdev_lock(dev->ieee80211_ptr);
1045 		rdev_set_qos_map(rdev, dev, NULL);
1046 		wdev_unlock(dev->ieee80211_ptr);
1047 
1048 		switch (otype) {
1049 		case NL80211_IFTYPE_AP:
1050 		case NL80211_IFTYPE_P2P_GO:
1051 			cfg80211_stop_ap(rdev, dev, true);
1052 			break;
1053 		case NL80211_IFTYPE_ADHOC:
1054 			cfg80211_leave_ibss(rdev, dev, false);
1055 			break;
1056 		case NL80211_IFTYPE_STATION:
1057 		case NL80211_IFTYPE_P2P_CLIENT:
1058 			wdev_lock(dev->ieee80211_ptr);
1059 			cfg80211_disconnect(rdev, dev,
1060 					    WLAN_REASON_DEAUTH_LEAVING, true);
1061 			wdev_unlock(dev->ieee80211_ptr);
1062 			break;
1063 		case NL80211_IFTYPE_MESH_POINT:
1064 			/* mesh should be handled? */
1065 			break;
1066 		case NL80211_IFTYPE_OCB:
1067 			cfg80211_leave_ocb(rdev, dev);
1068 			break;
1069 		default:
1070 			break;
1071 		}
1072 
1073 		cfg80211_process_rdev_events(rdev);
1074 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1075 	}
1076 
1077 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1078 
1079 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1080 
1081 	if (!err && params && params->use_4addr != -1)
1082 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1083 
1084 	if (!err) {
1085 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1086 		switch (ntype) {
1087 		case NL80211_IFTYPE_STATION:
1088 			if (dev->ieee80211_ptr->use_4addr)
1089 				break;
1090 			fallthrough;
1091 		case NL80211_IFTYPE_OCB:
1092 		case NL80211_IFTYPE_P2P_CLIENT:
1093 		case NL80211_IFTYPE_ADHOC:
1094 			dev->priv_flags |= IFF_DONT_BRIDGE;
1095 			break;
1096 		case NL80211_IFTYPE_P2P_GO:
1097 		case NL80211_IFTYPE_AP:
1098 		case NL80211_IFTYPE_AP_VLAN:
1099 		case NL80211_IFTYPE_WDS:
1100 		case NL80211_IFTYPE_MESH_POINT:
1101 			/* bridging OK */
1102 			break;
1103 		case NL80211_IFTYPE_MONITOR:
1104 			/* monitor can't bridge anyway */
1105 			break;
1106 		case NL80211_IFTYPE_UNSPECIFIED:
1107 		case NUM_NL80211_IFTYPES:
1108 			/* not happening */
1109 			break;
1110 		case NL80211_IFTYPE_P2P_DEVICE:
1111 		case NL80211_IFTYPE_NAN:
1112 			WARN_ON(1);
1113 			break;
1114 		}
1115 	}
1116 
1117 	if (!err && ntype != otype && netif_running(dev)) {
1118 		cfg80211_update_iface_num(rdev, ntype, 1);
1119 		cfg80211_update_iface_num(rdev, otype, -1);
1120 	}
1121 
1122 	return err;
1123 }
1124 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1125 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1126 {
1127 	int modulation, streams, bitrate;
1128 
1129 	/* the formula below does only work for MCS values smaller than 32 */
1130 	if (WARN_ON_ONCE(rate->mcs >= 32))
1131 		return 0;
1132 
1133 	modulation = rate->mcs & 7;
1134 	streams = (rate->mcs >> 3) + 1;
1135 
1136 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1137 
1138 	if (modulation < 4)
1139 		bitrate *= (modulation + 1);
1140 	else if (modulation == 4)
1141 		bitrate *= (modulation + 2);
1142 	else
1143 		bitrate *= (modulation + 3);
1144 
1145 	bitrate *= streams;
1146 
1147 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1148 		bitrate = (bitrate / 9) * 10;
1149 
1150 	/* do NOT round down here */
1151 	return (bitrate + 50000) / 100000;
1152 }
1153 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1154 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1155 {
1156 	static const u32 __mcs2bitrate[] = {
1157 		/* control PHY */
1158 		[0] =   275,
1159 		/* SC PHY */
1160 		[1] =  3850,
1161 		[2] =  7700,
1162 		[3] =  9625,
1163 		[4] = 11550,
1164 		[5] = 12512, /* 1251.25 mbps */
1165 		[6] = 15400,
1166 		[7] = 19250,
1167 		[8] = 23100,
1168 		[9] = 25025,
1169 		[10] = 30800,
1170 		[11] = 38500,
1171 		[12] = 46200,
1172 		/* OFDM PHY */
1173 		[13] =  6930,
1174 		[14] =  8662, /* 866.25 mbps */
1175 		[15] = 13860,
1176 		[16] = 17325,
1177 		[17] = 20790,
1178 		[18] = 27720,
1179 		[19] = 34650,
1180 		[20] = 41580,
1181 		[21] = 45045,
1182 		[22] = 51975,
1183 		[23] = 62370,
1184 		[24] = 67568, /* 6756.75 mbps */
1185 		/* LP-SC PHY */
1186 		[25] =  6260,
1187 		[26] =  8340,
1188 		[27] = 11120,
1189 		[28] = 12510,
1190 		[29] = 16680,
1191 		[30] = 22240,
1192 		[31] = 25030,
1193 	};
1194 
1195 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1196 		return 0;
1197 
1198 	return __mcs2bitrate[rate->mcs];
1199 }
1200 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1201 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1202 {
1203 	static const u32 __mcs2bitrate[] = {
1204 		/* control PHY */
1205 		[0] =   275,
1206 		/* SC PHY */
1207 		[1] =  3850,
1208 		[2] =  7700,
1209 		[3] =  9625,
1210 		[4] = 11550,
1211 		[5] = 12512, /* 1251.25 mbps */
1212 		[6] = 13475,
1213 		[7] = 15400,
1214 		[8] = 19250,
1215 		[9] = 23100,
1216 		[10] = 25025,
1217 		[11] = 26950,
1218 		[12] = 30800,
1219 		[13] = 38500,
1220 		[14] = 46200,
1221 		[15] = 50050,
1222 		[16] = 53900,
1223 		[17] = 57750,
1224 		[18] = 69300,
1225 		[19] = 75075,
1226 		[20] = 80850,
1227 	};
1228 
1229 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1230 		return 0;
1231 
1232 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1233 }
1234 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1235 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1236 {
1237 	static const u32 base[4][10] = {
1238 		{   6500000,
1239 		   13000000,
1240 		   19500000,
1241 		   26000000,
1242 		   39000000,
1243 		   52000000,
1244 		   58500000,
1245 		   65000000,
1246 		   78000000,
1247 		/* not in the spec, but some devices use this: */
1248 		   86500000,
1249 		},
1250 		{  13500000,
1251 		   27000000,
1252 		   40500000,
1253 		   54000000,
1254 		   81000000,
1255 		  108000000,
1256 		  121500000,
1257 		  135000000,
1258 		  162000000,
1259 		  180000000,
1260 		},
1261 		{  29300000,
1262 		   58500000,
1263 		   87800000,
1264 		  117000000,
1265 		  175500000,
1266 		  234000000,
1267 		  263300000,
1268 		  292500000,
1269 		  351000000,
1270 		  390000000,
1271 		},
1272 		{  58500000,
1273 		  117000000,
1274 		  175500000,
1275 		  234000000,
1276 		  351000000,
1277 		  468000000,
1278 		  526500000,
1279 		  585000000,
1280 		  702000000,
1281 		  780000000,
1282 		},
1283 	};
1284 	u32 bitrate;
1285 	int idx;
1286 
1287 	if (rate->mcs > 9)
1288 		goto warn;
1289 
1290 	switch (rate->bw) {
1291 	case RATE_INFO_BW_160:
1292 		idx = 3;
1293 		break;
1294 	case RATE_INFO_BW_80:
1295 		idx = 2;
1296 		break;
1297 	case RATE_INFO_BW_40:
1298 		idx = 1;
1299 		break;
1300 	case RATE_INFO_BW_5:
1301 	case RATE_INFO_BW_10:
1302 	default:
1303 		goto warn;
1304 	case RATE_INFO_BW_20:
1305 		idx = 0;
1306 	}
1307 
1308 	bitrate = base[idx][rate->mcs];
1309 	bitrate *= rate->nss;
1310 
1311 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1312 		bitrate = (bitrate / 9) * 10;
1313 
1314 	/* do NOT round down here */
1315 	return (bitrate + 50000) / 100000;
1316  warn:
1317 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1318 		  rate->bw, rate->mcs, rate->nss);
1319 	return 0;
1320 }
1321 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1322 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1323 {
1324 #define SCALE 2048
1325 	u16 mcs_divisors[12] = {
1326 		34133, /* 16.666666... */
1327 		17067, /*  8.333333... */
1328 		11378, /*  5.555555... */
1329 		 8533, /*  4.166666... */
1330 		 5689, /*  2.777777... */
1331 		 4267, /*  2.083333... */
1332 		 3923, /*  1.851851... */
1333 		 3413, /*  1.666666... */
1334 		 2844, /*  1.388888... */
1335 		 2560, /*  1.250000... */
1336 		 2276, /*  1.111111... */
1337 		 2048, /*  1.000000... */
1338 	};
1339 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1340 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1341 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1342 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1343 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1344 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1345 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1346 	u64 tmp;
1347 	u32 result;
1348 
1349 	if (WARN_ON_ONCE(rate->mcs > 11))
1350 		return 0;
1351 
1352 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1353 		return 0;
1354 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1355 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1356 		return 0;
1357 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1358 		return 0;
1359 
1360 	if (rate->bw == RATE_INFO_BW_160 ||
1361 	    (rate->bw == RATE_INFO_BW_HE_RU &&
1362 	     rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1363 		result = rates_160M[rate->he_gi];
1364 	else if (rate->bw == RATE_INFO_BW_80 ||
1365 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1366 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1367 		result = rates_969[rate->he_gi];
1368 	else if (rate->bw == RATE_INFO_BW_40 ||
1369 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1370 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1371 		result = rates_484[rate->he_gi];
1372 	else if (rate->bw == RATE_INFO_BW_20 ||
1373 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1374 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1375 		result = rates_242[rate->he_gi];
1376 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1377 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1378 		result = rates_106[rate->he_gi];
1379 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1380 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1381 		result = rates_52[rate->he_gi];
1382 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1383 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1384 		result = rates_26[rate->he_gi];
1385 	else {
1386 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1387 		     rate->bw, rate->he_ru_alloc);
1388 		return 0;
1389 	}
1390 
1391 	/* now scale to the appropriate MCS */
1392 	tmp = result;
1393 	tmp *= SCALE;
1394 	do_div(tmp, mcs_divisors[rate->mcs]);
1395 	result = tmp;
1396 
1397 	/* and take NSS, DCM into account */
1398 	result = (result * rate->nss) / 8;
1399 	if (rate->he_dcm)
1400 		result /= 2;
1401 
1402 	return result / 10000;
1403 }
1404 
cfg80211_calculate_bitrate(struct rate_info * rate)1405 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1406 {
1407 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1408 		return cfg80211_calculate_bitrate_ht(rate);
1409 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1410 		return cfg80211_calculate_bitrate_dmg(rate);
1411 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1412 		return cfg80211_calculate_bitrate_edmg(rate);
1413 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1414 		return cfg80211_calculate_bitrate_vht(rate);
1415 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1416 		return cfg80211_calculate_bitrate_he(rate);
1417 
1418 	return rate->legacy;
1419 }
1420 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1421 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1422 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1423 			  enum ieee80211_p2p_attr_id attr,
1424 			  u8 *buf, unsigned int bufsize)
1425 {
1426 	u8 *out = buf;
1427 	u16 attr_remaining = 0;
1428 	bool desired_attr = false;
1429 	u16 desired_len = 0;
1430 
1431 	while (len > 0) {
1432 		unsigned int iedatalen;
1433 		unsigned int copy;
1434 		const u8 *iedata;
1435 
1436 		if (len < 2)
1437 			return -EILSEQ;
1438 		iedatalen = ies[1];
1439 		if (iedatalen + 2 > len)
1440 			return -EILSEQ;
1441 
1442 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1443 			goto cont;
1444 
1445 		if (iedatalen < 4)
1446 			goto cont;
1447 
1448 		iedata = ies + 2;
1449 
1450 		/* check WFA OUI, P2P subtype */
1451 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1452 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1453 			goto cont;
1454 
1455 		iedatalen -= 4;
1456 		iedata += 4;
1457 
1458 		/* check attribute continuation into this IE */
1459 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1460 		if (copy && desired_attr) {
1461 			desired_len += copy;
1462 			if (out) {
1463 				memcpy(out, iedata, min(bufsize, copy));
1464 				out += min(bufsize, copy);
1465 				bufsize -= min(bufsize, copy);
1466 			}
1467 
1468 
1469 			if (copy == attr_remaining)
1470 				return desired_len;
1471 		}
1472 
1473 		attr_remaining -= copy;
1474 		if (attr_remaining)
1475 			goto cont;
1476 
1477 		iedatalen -= copy;
1478 		iedata += copy;
1479 
1480 		while (iedatalen > 0) {
1481 			u16 attr_len;
1482 
1483 			/* P2P attribute ID & size must fit */
1484 			if (iedatalen < 3)
1485 				return -EILSEQ;
1486 			desired_attr = iedata[0] == attr;
1487 			attr_len = get_unaligned_le16(iedata + 1);
1488 			iedatalen -= 3;
1489 			iedata += 3;
1490 
1491 			copy = min_t(unsigned int, attr_len, iedatalen);
1492 
1493 			if (desired_attr) {
1494 				desired_len += copy;
1495 				if (out) {
1496 					memcpy(out, iedata, min(bufsize, copy));
1497 					out += min(bufsize, copy);
1498 					bufsize -= min(bufsize, copy);
1499 				}
1500 
1501 				if (copy == attr_len)
1502 					return desired_len;
1503 			}
1504 
1505 			iedata += copy;
1506 			iedatalen -= copy;
1507 			attr_remaining = attr_len - copy;
1508 		}
1509 
1510  cont:
1511 		len -= ies[1] + 2;
1512 		ies += ies[1] + 2;
1513 	}
1514 
1515 	if (attr_remaining && desired_attr)
1516 		return -EILSEQ;
1517 
1518 	return -ENOENT;
1519 }
1520 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1521 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1522 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1523 {
1524 	int i;
1525 
1526 	/* Make sure array values are legal */
1527 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1528 		return false;
1529 
1530 	i = 0;
1531 	while (i < n_ids) {
1532 		if (ids[i] == WLAN_EID_EXTENSION) {
1533 			if (id_ext && (ids[i + 1] == id))
1534 				return true;
1535 
1536 			i += 2;
1537 			continue;
1538 		}
1539 
1540 		if (ids[i] == id && !id_ext)
1541 			return true;
1542 
1543 		i++;
1544 	}
1545 	return false;
1546 }
1547 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1548 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1549 {
1550 	/* we assume a validly formed IEs buffer */
1551 	u8 len = ies[pos + 1];
1552 
1553 	pos += 2 + len;
1554 
1555 	/* the IE itself must have 255 bytes for fragments to follow */
1556 	if (len < 255)
1557 		return pos;
1558 
1559 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1560 		len = ies[pos + 1];
1561 		pos += 2 + len;
1562 	}
1563 
1564 	return pos;
1565 }
1566 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1567 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1568 			      const u8 *ids, int n_ids,
1569 			      const u8 *after_ric, int n_after_ric,
1570 			      size_t offset)
1571 {
1572 	size_t pos = offset;
1573 
1574 	while (pos < ielen) {
1575 		u8 ext = 0;
1576 
1577 		if (ies[pos] == WLAN_EID_EXTENSION)
1578 			ext = 2;
1579 		if ((pos + ext) >= ielen)
1580 			break;
1581 
1582 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1583 					  ies[pos] == WLAN_EID_EXTENSION))
1584 			break;
1585 
1586 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1587 			pos = skip_ie(ies, ielen, pos);
1588 
1589 			while (pos < ielen) {
1590 				if (ies[pos] == WLAN_EID_EXTENSION)
1591 					ext = 2;
1592 				else
1593 					ext = 0;
1594 
1595 				if ((pos + ext) >= ielen)
1596 					break;
1597 
1598 				if (!ieee80211_id_in_list(after_ric,
1599 							  n_after_ric,
1600 							  ies[pos + ext],
1601 							  ext == 2))
1602 					pos = skip_ie(ies, ielen, pos);
1603 				else
1604 					break;
1605 			}
1606 		} else {
1607 			pos = skip_ie(ies, ielen, pos);
1608 		}
1609 	}
1610 
1611 	return pos;
1612 }
1613 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1614 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1615 bool ieee80211_operating_class_to_band(u8 operating_class,
1616 				       enum nl80211_band *band)
1617 {
1618 	switch (operating_class) {
1619 	case 112:
1620 	case 115 ... 127:
1621 	case 128 ... 130:
1622 		*band = NL80211_BAND_5GHZ;
1623 		return true;
1624 	case 131 ... 135:
1625 		*band = NL80211_BAND_6GHZ;
1626 		return true;
1627 	case 81:
1628 	case 82:
1629 	case 83:
1630 	case 84:
1631 		*band = NL80211_BAND_2GHZ;
1632 		return true;
1633 	case 180:
1634 		*band = NL80211_BAND_60GHZ;
1635 		return true;
1636 	}
1637 
1638 	return false;
1639 }
1640 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1641 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1642 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1643 					  u8 *op_class)
1644 {
1645 	u8 vht_opclass;
1646 	u32 freq = chandef->center_freq1;
1647 
1648 	if (freq >= 2412 && freq <= 2472) {
1649 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1650 			return false;
1651 
1652 		/* 2.407 GHz, channels 1..13 */
1653 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1654 			if (freq > chandef->chan->center_freq)
1655 				*op_class = 83; /* HT40+ */
1656 			else
1657 				*op_class = 84; /* HT40- */
1658 		} else {
1659 			*op_class = 81;
1660 		}
1661 
1662 		return true;
1663 	}
1664 
1665 	if (freq == 2484) {
1666 		/* channel 14 is only for IEEE 802.11b */
1667 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1668 			return false;
1669 
1670 		*op_class = 82; /* channel 14 */
1671 		return true;
1672 	}
1673 
1674 	switch (chandef->width) {
1675 	case NL80211_CHAN_WIDTH_80:
1676 		vht_opclass = 128;
1677 		break;
1678 	case NL80211_CHAN_WIDTH_160:
1679 		vht_opclass = 129;
1680 		break;
1681 	case NL80211_CHAN_WIDTH_80P80:
1682 		vht_opclass = 130;
1683 		break;
1684 	case NL80211_CHAN_WIDTH_10:
1685 	case NL80211_CHAN_WIDTH_5:
1686 		return false; /* unsupported for now */
1687 	default:
1688 		vht_opclass = 0;
1689 		break;
1690 	}
1691 
1692 	/* 5 GHz, channels 36..48 */
1693 	if (freq >= 5180 && freq <= 5240) {
1694 		if (vht_opclass) {
1695 			*op_class = vht_opclass;
1696 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1697 			if (freq > chandef->chan->center_freq)
1698 				*op_class = 116;
1699 			else
1700 				*op_class = 117;
1701 		} else {
1702 			*op_class = 115;
1703 		}
1704 
1705 		return true;
1706 	}
1707 
1708 	/* 5 GHz, channels 52..64 */
1709 	if (freq >= 5260 && freq <= 5320) {
1710 		if (vht_opclass) {
1711 			*op_class = vht_opclass;
1712 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1713 			if (freq > chandef->chan->center_freq)
1714 				*op_class = 119;
1715 			else
1716 				*op_class = 120;
1717 		} else {
1718 			*op_class = 118;
1719 		}
1720 
1721 		return true;
1722 	}
1723 
1724 	/* 5 GHz, channels 100..144 */
1725 	if (freq >= 5500 && freq <= 5720) {
1726 		if (vht_opclass) {
1727 			*op_class = vht_opclass;
1728 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1729 			if (freq > chandef->chan->center_freq)
1730 				*op_class = 122;
1731 			else
1732 				*op_class = 123;
1733 		} else {
1734 			*op_class = 121;
1735 		}
1736 
1737 		return true;
1738 	}
1739 
1740 	/* 5 GHz, channels 149..169 */
1741 	if (freq >= 5745 && freq <= 5845) {
1742 		if (vht_opclass) {
1743 			*op_class = vht_opclass;
1744 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1745 			if (freq > chandef->chan->center_freq)
1746 				*op_class = 126;
1747 			else
1748 				*op_class = 127;
1749 		} else if (freq <= 5805) {
1750 			*op_class = 124;
1751 		} else {
1752 			*op_class = 125;
1753 		}
1754 
1755 		return true;
1756 	}
1757 
1758 	/* 56.16 GHz, channel 1..4 */
1759 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1760 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1761 			return false;
1762 
1763 		*op_class = 180;
1764 		return true;
1765 	}
1766 
1767 	/* not supported yet */
1768 	return false;
1769 }
1770 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1771 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1772 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1773 				       u32 *beacon_int_gcd,
1774 				       bool *beacon_int_different)
1775 {
1776 	struct wireless_dev *wdev;
1777 
1778 	*beacon_int_gcd = 0;
1779 	*beacon_int_different = false;
1780 
1781 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1782 		if (!wdev->beacon_interval)
1783 			continue;
1784 
1785 		if (!*beacon_int_gcd) {
1786 			*beacon_int_gcd = wdev->beacon_interval;
1787 			continue;
1788 		}
1789 
1790 		if (wdev->beacon_interval == *beacon_int_gcd)
1791 			continue;
1792 
1793 		*beacon_int_different = true;
1794 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1795 	}
1796 
1797 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1798 		if (*beacon_int_gcd)
1799 			*beacon_int_different = true;
1800 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1801 	}
1802 }
1803 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1804 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1805 				 enum nl80211_iftype iftype, u32 beacon_int)
1806 {
1807 	/*
1808 	 * This is just a basic pre-condition check; if interface combinations
1809 	 * are possible the driver must already be checking those with a call
1810 	 * to cfg80211_check_combinations(), in which case we'll validate more
1811 	 * through the cfg80211_calculate_bi_data() call and code in
1812 	 * cfg80211_iter_combinations().
1813 	 */
1814 
1815 	if (beacon_int < 10 || beacon_int > 10000)
1816 		return -EINVAL;
1817 
1818 	return 0;
1819 }
1820 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1821 int cfg80211_iter_combinations(struct wiphy *wiphy,
1822 			       struct iface_combination_params *params,
1823 			       void (*iter)(const struct ieee80211_iface_combination *c,
1824 					    void *data),
1825 			       void *data)
1826 {
1827 	const struct ieee80211_regdomain *regdom;
1828 	enum nl80211_dfs_regions region = 0;
1829 	int i, j, iftype;
1830 	int num_interfaces = 0;
1831 	u32 used_iftypes = 0;
1832 	u32 beacon_int_gcd;
1833 	bool beacon_int_different;
1834 
1835 	/*
1836 	 * This is a bit strange, since the iteration used to rely only on
1837 	 * the data given by the driver, but here it now relies on context,
1838 	 * in form of the currently operating interfaces.
1839 	 * This is OK for all current users, and saves us from having to
1840 	 * push the GCD calculations into all the drivers.
1841 	 * In the future, this should probably rely more on data that's in
1842 	 * cfg80211 already - the only thing not would appear to be any new
1843 	 * interfaces (while being brought up) and channel/radar data.
1844 	 */
1845 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1846 				   &beacon_int_gcd, &beacon_int_different);
1847 
1848 	if (params->radar_detect) {
1849 		rcu_read_lock();
1850 		regdom = rcu_dereference(cfg80211_regdomain);
1851 		if (regdom)
1852 			region = regdom->dfs_region;
1853 		rcu_read_unlock();
1854 	}
1855 
1856 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1857 		num_interfaces += params->iftype_num[iftype];
1858 		if (params->iftype_num[iftype] > 0 &&
1859 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1860 			used_iftypes |= BIT(iftype);
1861 	}
1862 
1863 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1864 		const struct ieee80211_iface_combination *c;
1865 		struct ieee80211_iface_limit *limits;
1866 		u32 all_iftypes = 0;
1867 
1868 		c = &wiphy->iface_combinations[i];
1869 
1870 		if (num_interfaces > c->max_interfaces)
1871 			continue;
1872 		if (params->num_different_channels > c->num_different_channels)
1873 			continue;
1874 
1875 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1876 				 GFP_KERNEL);
1877 		if (!limits)
1878 			return -ENOMEM;
1879 
1880 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1881 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1882 				continue;
1883 			for (j = 0; j < c->n_limits; j++) {
1884 				all_iftypes |= limits[j].types;
1885 				if (!(limits[j].types & BIT(iftype)))
1886 					continue;
1887 				if (limits[j].max < params->iftype_num[iftype])
1888 					goto cont;
1889 				limits[j].max -= params->iftype_num[iftype];
1890 			}
1891 		}
1892 
1893 		if (params->radar_detect !=
1894 			(c->radar_detect_widths & params->radar_detect))
1895 			goto cont;
1896 
1897 		if (params->radar_detect && c->radar_detect_regions &&
1898 		    !(c->radar_detect_regions & BIT(region)))
1899 			goto cont;
1900 
1901 		/* Finally check that all iftypes that we're currently
1902 		 * using are actually part of this combination. If they
1903 		 * aren't then we can't use this combination and have
1904 		 * to continue to the next.
1905 		 */
1906 		if ((all_iftypes & used_iftypes) != used_iftypes)
1907 			goto cont;
1908 
1909 		if (beacon_int_gcd) {
1910 			if (c->beacon_int_min_gcd &&
1911 			    beacon_int_gcd < c->beacon_int_min_gcd)
1912 				goto cont;
1913 			if (!c->beacon_int_min_gcd && beacon_int_different)
1914 				goto cont;
1915 		}
1916 
1917 		/* This combination covered all interface types and
1918 		 * supported the requested numbers, so we're good.
1919 		 */
1920 
1921 		(*iter)(c, data);
1922  cont:
1923 		kfree(limits);
1924 	}
1925 
1926 	return 0;
1927 }
1928 EXPORT_SYMBOL(cfg80211_iter_combinations);
1929 
1930 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1931 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1932 			  void *data)
1933 {
1934 	int *num = data;
1935 	(*num)++;
1936 }
1937 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)1938 int cfg80211_check_combinations(struct wiphy *wiphy,
1939 				struct iface_combination_params *params)
1940 {
1941 	int err, num = 0;
1942 
1943 	err = cfg80211_iter_combinations(wiphy, params,
1944 					 cfg80211_iter_sum_ifcombs, &num);
1945 	if (err)
1946 		return err;
1947 	if (num == 0)
1948 		return -EBUSY;
1949 
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(cfg80211_check_combinations);
1953 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1954 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1955 			   const u8 *rates, unsigned int n_rates,
1956 			   u32 *mask)
1957 {
1958 	int i, j;
1959 
1960 	if (!sband)
1961 		return -EINVAL;
1962 
1963 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1964 		return -EINVAL;
1965 
1966 	*mask = 0;
1967 
1968 	for (i = 0; i < n_rates; i++) {
1969 		int rate = (rates[i] & 0x7f) * 5;
1970 		bool found = false;
1971 
1972 		for (j = 0; j < sband->n_bitrates; j++) {
1973 			if (sband->bitrates[j].bitrate == rate) {
1974 				found = true;
1975 				*mask |= BIT(j);
1976 				break;
1977 			}
1978 		}
1979 		if (!found)
1980 			return -EINVAL;
1981 	}
1982 
1983 	/*
1984 	 * mask must have at least one bit set here since we
1985 	 * didn't accept a 0-length rates array nor allowed
1986 	 * entries in the array that didn't exist
1987 	 */
1988 
1989 	return 0;
1990 }
1991 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1992 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1993 {
1994 	enum nl80211_band band;
1995 	unsigned int n_channels = 0;
1996 
1997 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1998 		if (wiphy->bands[band])
1999 			n_channels += wiphy->bands[band]->n_channels;
2000 
2001 	return n_channels;
2002 }
2003 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2004 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2005 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2006 			 struct station_info *sinfo)
2007 {
2008 	struct cfg80211_registered_device *rdev;
2009 	struct wireless_dev *wdev;
2010 
2011 	wdev = dev->ieee80211_ptr;
2012 	if (!wdev)
2013 		return -EOPNOTSUPP;
2014 
2015 	rdev = wiphy_to_rdev(wdev->wiphy);
2016 	if (!rdev->ops->get_station)
2017 		return -EOPNOTSUPP;
2018 
2019 	memset(sinfo, 0, sizeof(*sinfo));
2020 
2021 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2022 }
2023 EXPORT_SYMBOL(cfg80211_get_station);
2024 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2025 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2026 {
2027 	int i;
2028 
2029 	if (!f)
2030 		return;
2031 
2032 	kfree(f->serv_spec_info);
2033 	kfree(f->srf_bf);
2034 	kfree(f->srf_macs);
2035 	for (i = 0; i < f->num_rx_filters; i++)
2036 		kfree(f->rx_filters[i].filter);
2037 
2038 	for (i = 0; i < f->num_tx_filters; i++)
2039 		kfree(f->tx_filters[i].filter);
2040 
2041 	kfree(f->rx_filters);
2042 	kfree(f->tx_filters);
2043 	kfree(f);
2044 }
2045 EXPORT_SYMBOL(cfg80211_free_nan_func);
2046 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2047 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2048 				u32 center_freq_khz, u32 bw_khz)
2049 {
2050 	u32 start_freq_khz, end_freq_khz;
2051 
2052 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2053 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2054 
2055 	if (start_freq_khz >= freq_range->start_freq_khz &&
2056 	    end_freq_khz <= freq_range->end_freq_khz)
2057 		return true;
2058 
2059 	return false;
2060 }
2061 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2062 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2063 {
2064 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2065 				sizeof(*(sinfo->pertid)),
2066 				gfp);
2067 	if (!sinfo->pertid)
2068 		return -ENOMEM;
2069 
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2073 
2074 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2075 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2076 const unsigned char rfc1042_header[] __aligned(2) =
2077 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2078 EXPORT_SYMBOL(rfc1042_header);
2079 
2080 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2081 const unsigned char bridge_tunnel_header[] __aligned(2) =
2082 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2083 EXPORT_SYMBOL(bridge_tunnel_header);
2084 
2085 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2086 struct iapp_layer2_update {
2087 	u8 da[ETH_ALEN];	/* broadcast */
2088 	u8 sa[ETH_ALEN];	/* STA addr */
2089 	__be16 len;		/* 6 */
2090 	u8 dsap;		/* 0 */
2091 	u8 ssap;		/* 0 */
2092 	u8 control;
2093 	u8 xid_info[3];
2094 } __packed;
2095 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2096 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2097 {
2098 	struct iapp_layer2_update *msg;
2099 	struct sk_buff *skb;
2100 
2101 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2102 	 * bridge devices */
2103 
2104 	skb = dev_alloc_skb(sizeof(*msg));
2105 	if (!skb)
2106 		return;
2107 	msg = skb_put(skb, sizeof(*msg));
2108 
2109 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2110 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2111 
2112 	eth_broadcast_addr(msg->da);
2113 	ether_addr_copy(msg->sa, addr);
2114 	msg->len = htons(6);
2115 	msg->dsap = 0;
2116 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2117 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2118 				 * F=0 (no poll command; unsolicited frame) */
2119 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2120 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2121 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2122 
2123 	skb->dev = dev;
2124 	skb->protocol = eth_type_trans(skb, dev);
2125 	memset(skb->cb, 0, sizeof(skb->cb));
2126 	netif_rx_ni(skb);
2127 }
2128 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2129 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2130 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2131 			      enum ieee80211_vht_chanwidth bw,
2132 			      int mcs, bool ext_nss_bw_capable,
2133 			      unsigned int max_vht_nss)
2134 {
2135 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2136 	int ext_nss_bw;
2137 	int supp_width;
2138 	int i, mcs_encoding;
2139 
2140 	if (map == 0xffff)
2141 		return 0;
2142 
2143 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2144 		return 0;
2145 	if (mcs <= 7)
2146 		mcs_encoding = 0;
2147 	else if (mcs == 8)
2148 		mcs_encoding = 1;
2149 	else
2150 		mcs_encoding = 2;
2151 
2152 	if (!max_vht_nss) {
2153 		/* find max_vht_nss for the given MCS */
2154 		for (i = 7; i >= 0; i--) {
2155 			int supp = (map >> (2 * i)) & 3;
2156 
2157 			if (supp == 3)
2158 				continue;
2159 
2160 			if (supp >= mcs_encoding) {
2161 				max_vht_nss = i + 1;
2162 				break;
2163 			}
2164 		}
2165 	}
2166 
2167 	if (!(cap->supp_mcs.tx_mcs_map &
2168 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2169 		return max_vht_nss;
2170 
2171 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2172 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2173 	supp_width = le32_get_bits(cap->vht_cap_info,
2174 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2175 
2176 	/* if not capable, treat ext_nss_bw as 0 */
2177 	if (!ext_nss_bw_capable)
2178 		ext_nss_bw = 0;
2179 
2180 	/* This is invalid */
2181 	if (supp_width == 3)
2182 		return 0;
2183 
2184 	/* This is an invalid combination so pretend nothing is supported */
2185 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2186 		return 0;
2187 
2188 	/*
2189 	 * Cover all the special cases according to IEEE 802.11-2016
2190 	 * Table 9-250. All other cases are either factor of 1 or not
2191 	 * valid/supported.
2192 	 */
2193 	switch (bw) {
2194 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2195 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2196 		if ((supp_width == 1 || supp_width == 2) &&
2197 		    ext_nss_bw == 3)
2198 			return 2 * max_vht_nss;
2199 		break;
2200 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2201 		if (supp_width == 0 &&
2202 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2203 			return max_vht_nss / 2;
2204 		if (supp_width == 0 &&
2205 		    ext_nss_bw == 3)
2206 			return (3 * max_vht_nss) / 4;
2207 		if (supp_width == 1 &&
2208 		    ext_nss_bw == 3)
2209 			return 2 * max_vht_nss;
2210 		break;
2211 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2212 		if (supp_width == 0 && ext_nss_bw == 1)
2213 			return 0; /* not possible */
2214 		if (supp_width == 0 &&
2215 		    ext_nss_bw == 2)
2216 			return max_vht_nss / 2;
2217 		if (supp_width == 0 &&
2218 		    ext_nss_bw == 3)
2219 			return (3 * max_vht_nss) / 4;
2220 		if (supp_width == 1 &&
2221 		    ext_nss_bw == 0)
2222 			return 0; /* not possible */
2223 		if (supp_width == 1 &&
2224 		    ext_nss_bw == 1)
2225 			return max_vht_nss / 2;
2226 		if (supp_width == 1 &&
2227 		    ext_nss_bw == 2)
2228 			return (3 * max_vht_nss) / 4;
2229 		break;
2230 	}
2231 
2232 	/* not covered or invalid combination received */
2233 	return max_vht_nss;
2234 }
2235 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2236 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2237 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2238 			     bool is_4addr, u8 check_swif)
2239 
2240 {
2241 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2242 
2243 	switch (check_swif) {
2244 	case 0:
2245 		if (is_vlan && is_4addr)
2246 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2247 		return wiphy->interface_modes & BIT(iftype);
2248 	case 1:
2249 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2250 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2251 		return wiphy->software_iftypes & BIT(iftype);
2252 	default:
2253 		break;
2254 	}
2255 
2256 	return false;
2257 }
2258 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2259