1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Hardware monitoring driver for PMBus devices
4 *
5 * Copyright (c) 2010, 2011 Ericsson AB.
6 * Copyright (c) 2012 Guenter Roeck
7 */
8
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/math64.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/hwmon.h>
18 #include <linux/hwmon-sysfs.h>
19 #include <linux/pmbus.h>
20 #include <linux/regulator/driver.h>
21 #include <linux/regulator/machine.h>
22 #include <linux/of.h>
23 #include <linux/thermal.h>
24 #include "pmbus.h"
25
26 /*
27 * Number of additional attribute pointers to allocate
28 * with each call to krealloc
29 */
30 #define PMBUS_ATTR_ALLOC_SIZE 32
31 #define PMBUS_NAME_SIZE 24
32
33 struct pmbus_sensor {
34 struct pmbus_sensor *next;
35 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
36 struct device_attribute attribute;
37 u8 page; /* page number */
38 u8 phase; /* phase number, 0xff for all phases */
39 u16 reg; /* register */
40 enum pmbus_sensor_classes class; /* sensor class */
41 bool update; /* runtime sensor update needed */
42 bool convert; /* Whether or not to apply linear/vid/direct */
43 int data; /* Sensor data.
44 Negative if there was a read error */
45 };
46 #define to_pmbus_sensor(_attr) \
47 container_of(_attr, struct pmbus_sensor, attribute)
48
49 struct pmbus_boolean {
50 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
51 struct sensor_device_attribute attribute;
52 struct pmbus_sensor *s1;
53 struct pmbus_sensor *s2;
54 };
55 #define to_pmbus_boolean(_attr) \
56 container_of(_attr, struct pmbus_boolean, attribute)
57
58 struct pmbus_label {
59 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
60 struct device_attribute attribute;
61 char label[PMBUS_NAME_SIZE]; /* label */
62 };
63 #define to_pmbus_label(_attr) \
64 container_of(_attr, struct pmbus_label, attribute)
65
66 /* Macros for converting between sensor index and register/page/status mask */
67
68 #define PB_STATUS_MASK 0xffff
69 #define PB_REG_SHIFT 16
70 #define PB_REG_MASK 0x3ff
71 #define PB_PAGE_SHIFT 26
72 #define PB_PAGE_MASK 0x3f
73
74 #define pb_reg_to_index(page, reg, mask) (((page) << PB_PAGE_SHIFT) | \
75 ((reg) << PB_REG_SHIFT) | (mask))
76
77 #define pb_index_to_page(index) (((index) >> PB_PAGE_SHIFT) & PB_PAGE_MASK)
78 #define pb_index_to_reg(index) (((index) >> PB_REG_SHIFT) & PB_REG_MASK)
79 #define pb_index_to_mask(index) ((index) & PB_STATUS_MASK)
80
81 struct pmbus_data {
82 struct device *dev;
83 struct device *hwmon_dev;
84 struct regulator_dev **rdevs;
85
86 u32 flags; /* from platform data */
87
88 u8 revision; /* The PMBus revision the device is compliant with */
89
90 int exponent[PMBUS_PAGES];
91 /* linear mode: exponent for output voltages */
92
93 const struct pmbus_driver_info *info;
94
95 int max_attributes;
96 int num_attributes;
97 struct attribute_group group;
98 const struct attribute_group **groups;
99 struct dentry *debugfs; /* debugfs device directory */
100
101 struct pmbus_sensor *sensors;
102
103 struct mutex update_lock;
104
105 bool has_status_word; /* device uses STATUS_WORD register */
106 int (*read_status)(struct i2c_client *client, int page);
107
108 s16 currpage; /* current page, -1 for unknown/unset */
109 s16 currphase; /* current phase, 0xff for all, -1 for unknown/unset */
110
111 int vout_low[PMBUS_PAGES]; /* voltage low margin */
112 int vout_high[PMBUS_PAGES]; /* voltage high margin */
113 };
114
115 struct pmbus_debugfs_entry {
116 struct i2c_client *client;
117 u8 page;
118 u8 reg;
119 };
120
121 static const int pmbus_fan_rpm_mask[] = {
122 PB_FAN_1_RPM,
123 PB_FAN_2_RPM,
124 PB_FAN_1_RPM,
125 PB_FAN_2_RPM,
126 };
127
128 static const int pmbus_fan_config_registers[] = {
129 PMBUS_FAN_CONFIG_12,
130 PMBUS_FAN_CONFIG_12,
131 PMBUS_FAN_CONFIG_34,
132 PMBUS_FAN_CONFIG_34
133 };
134
135 static const int pmbus_fan_command_registers[] = {
136 PMBUS_FAN_COMMAND_1,
137 PMBUS_FAN_COMMAND_2,
138 PMBUS_FAN_COMMAND_3,
139 PMBUS_FAN_COMMAND_4,
140 };
141
pmbus_clear_cache(struct i2c_client * client)142 void pmbus_clear_cache(struct i2c_client *client)
143 {
144 struct pmbus_data *data = i2c_get_clientdata(client);
145 struct pmbus_sensor *sensor;
146
147 for (sensor = data->sensors; sensor; sensor = sensor->next)
148 sensor->data = -ENODATA;
149 }
150 EXPORT_SYMBOL_NS_GPL(pmbus_clear_cache, PMBUS);
151
pmbus_set_update(struct i2c_client * client,u8 reg,bool update)152 void pmbus_set_update(struct i2c_client *client, u8 reg, bool update)
153 {
154 struct pmbus_data *data = i2c_get_clientdata(client);
155 struct pmbus_sensor *sensor;
156
157 for (sensor = data->sensors; sensor; sensor = sensor->next)
158 if (sensor->reg == reg)
159 sensor->update = update;
160 }
161 EXPORT_SYMBOL_NS_GPL(pmbus_set_update, PMBUS);
162
pmbus_set_page(struct i2c_client * client,int page,int phase)163 int pmbus_set_page(struct i2c_client *client, int page, int phase)
164 {
165 struct pmbus_data *data = i2c_get_clientdata(client);
166 int rv;
167
168 if (page < 0)
169 return 0;
170
171 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL) &&
172 data->info->pages > 1 && page != data->currpage) {
173 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
174 if (rv < 0)
175 return rv;
176
177 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
178 if (rv < 0)
179 return rv;
180
181 if (rv != page)
182 return -EIO;
183 }
184 data->currpage = page;
185
186 if (data->info->phases[page] && data->currphase != phase &&
187 !(data->info->func[page] & PMBUS_PHASE_VIRTUAL)) {
188 rv = i2c_smbus_write_byte_data(client, PMBUS_PHASE,
189 phase);
190 if (rv)
191 return rv;
192 }
193 data->currphase = phase;
194
195 return 0;
196 }
197 EXPORT_SYMBOL_NS_GPL(pmbus_set_page, PMBUS);
198
pmbus_write_byte(struct i2c_client * client,int page,u8 value)199 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
200 {
201 int rv;
202
203 rv = pmbus_set_page(client, page, 0xff);
204 if (rv < 0)
205 return rv;
206
207 return i2c_smbus_write_byte(client, value);
208 }
209 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte, PMBUS);
210
211 /*
212 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
213 * a device specific mapping function exists and calls it if necessary.
214 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)215 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
216 {
217 struct pmbus_data *data = i2c_get_clientdata(client);
218 const struct pmbus_driver_info *info = data->info;
219 int status;
220
221 if (info->write_byte) {
222 status = info->write_byte(client, page, value);
223 if (status != -ENODATA)
224 return status;
225 }
226 return pmbus_write_byte(client, page, value);
227 }
228
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)229 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
230 u16 word)
231 {
232 int rv;
233
234 rv = pmbus_set_page(client, page, 0xff);
235 if (rv < 0)
236 return rv;
237
238 return i2c_smbus_write_word_data(client, reg, word);
239 }
240 EXPORT_SYMBOL_NS_GPL(pmbus_write_word_data, PMBUS);
241
242
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)243 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
244 u16 word)
245 {
246 int bit;
247 int id;
248 int rv;
249
250 switch (reg) {
251 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
252 id = reg - PMBUS_VIRT_FAN_TARGET_1;
253 bit = pmbus_fan_rpm_mask[id];
254 rv = pmbus_update_fan(client, page, id, bit, bit, word);
255 break;
256 default:
257 rv = -ENXIO;
258 break;
259 }
260
261 return rv;
262 }
263
264 /*
265 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
266 * a device specific mapping function exists and calls it if necessary.
267 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)268 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
269 u16 word)
270 {
271 struct pmbus_data *data = i2c_get_clientdata(client);
272 const struct pmbus_driver_info *info = data->info;
273 int status;
274
275 if (info->write_word_data) {
276 status = info->write_word_data(client, page, reg, word);
277 if (status != -ENODATA)
278 return status;
279 }
280
281 if (reg >= PMBUS_VIRT_BASE)
282 return pmbus_write_virt_reg(client, page, reg, word);
283
284 return pmbus_write_word_data(client, page, reg, word);
285 }
286
287 /*
288 * _pmbus_write_byte_data() is similar to pmbus_write_byte_data(), but checks if
289 * a device specific mapping function exists and calls it if necessary.
290 */
_pmbus_write_byte_data(struct i2c_client * client,int page,int reg,u8 value)291 static int _pmbus_write_byte_data(struct i2c_client *client, int page, int reg, u8 value)
292 {
293 struct pmbus_data *data = i2c_get_clientdata(client);
294 const struct pmbus_driver_info *info = data->info;
295 int status;
296
297 if (info->write_byte_data) {
298 status = info->write_byte_data(client, page, reg, value);
299 if (status != -ENODATA)
300 return status;
301 }
302 return pmbus_write_byte_data(client, page, reg, value);
303 }
304
305 /*
306 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
307 * a device specific mapping function exists and calls it if necessary.
308 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)309 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
310 {
311 struct pmbus_data *data = i2c_get_clientdata(client);
312 const struct pmbus_driver_info *info = data->info;
313 int status;
314
315 if (info->read_byte_data) {
316 status = info->read_byte_data(client, page, reg);
317 if (status != -ENODATA)
318 return status;
319 }
320 return pmbus_read_byte_data(client, page, reg);
321 }
322
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)323 int pmbus_update_fan(struct i2c_client *client, int page, int id,
324 u8 config, u8 mask, u16 command)
325 {
326 int from;
327 int rv;
328 u8 to;
329
330 from = _pmbus_read_byte_data(client, page,
331 pmbus_fan_config_registers[id]);
332 if (from < 0)
333 return from;
334
335 to = (from & ~mask) | (config & mask);
336 if (to != from) {
337 rv = _pmbus_write_byte_data(client, page,
338 pmbus_fan_config_registers[id], to);
339 if (rv < 0)
340 return rv;
341 }
342
343 return _pmbus_write_word_data(client, page,
344 pmbus_fan_command_registers[id], command);
345 }
346 EXPORT_SYMBOL_NS_GPL(pmbus_update_fan, PMBUS);
347
pmbus_read_word_data(struct i2c_client * client,int page,int phase,u8 reg)348 int pmbus_read_word_data(struct i2c_client *client, int page, int phase, u8 reg)
349 {
350 int rv;
351
352 rv = pmbus_set_page(client, page, phase);
353 if (rv < 0)
354 return rv;
355
356 return i2c_smbus_read_word_data(client, reg);
357 }
358 EXPORT_SYMBOL_NS_GPL(pmbus_read_word_data, PMBUS);
359
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)360 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
361 {
362 int rv;
363 int id;
364
365 switch (reg) {
366 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
367 id = reg - PMBUS_VIRT_FAN_TARGET_1;
368 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
369 break;
370 default:
371 rv = -ENXIO;
372 break;
373 }
374
375 return rv;
376 }
377
378 /*
379 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
380 * a device specific mapping function exists and calls it if necessary.
381 */
_pmbus_read_word_data(struct i2c_client * client,int page,int phase,int reg)382 static int _pmbus_read_word_data(struct i2c_client *client, int page,
383 int phase, int reg)
384 {
385 struct pmbus_data *data = i2c_get_clientdata(client);
386 const struct pmbus_driver_info *info = data->info;
387 int status;
388
389 if (info->read_word_data) {
390 status = info->read_word_data(client, page, phase, reg);
391 if (status != -ENODATA)
392 return status;
393 }
394
395 if (reg >= PMBUS_VIRT_BASE)
396 return pmbus_read_virt_reg(client, page, reg);
397
398 return pmbus_read_word_data(client, page, phase, reg);
399 }
400
401 /* Same as above, but without phase parameter, for use in check functions */
__pmbus_read_word_data(struct i2c_client * client,int page,int reg)402 static int __pmbus_read_word_data(struct i2c_client *client, int page, int reg)
403 {
404 return _pmbus_read_word_data(client, page, 0xff, reg);
405 }
406
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)407 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
408 {
409 int rv;
410
411 rv = pmbus_set_page(client, page, 0xff);
412 if (rv < 0)
413 return rv;
414
415 return i2c_smbus_read_byte_data(client, reg);
416 }
417 EXPORT_SYMBOL_NS_GPL(pmbus_read_byte_data, PMBUS);
418
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)419 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
420 {
421 int rv;
422
423 rv = pmbus_set_page(client, page, 0xff);
424 if (rv < 0)
425 return rv;
426
427 return i2c_smbus_write_byte_data(client, reg, value);
428 }
429 EXPORT_SYMBOL_NS_GPL(pmbus_write_byte_data, PMBUS);
430
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)431 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
432 u8 mask, u8 value)
433 {
434 unsigned int tmp;
435 int rv;
436
437 rv = _pmbus_read_byte_data(client, page, reg);
438 if (rv < 0)
439 return rv;
440
441 tmp = (rv & ~mask) | (value & mask);
442
443 if (tmp != rv)
444 rv = _pmbus_write_byte_data(client, page, reg, tmp);
445
446 return rv;
447 }
448 EXPORT_SYMBOL_NS_GPL(pmbus_update_byte_data, PMBUS);
449
pmbus_read_block_data(struct i2c_client * client,int page,u8 reg,char * data_buf)450 static int pmbus_read_block_data(struct i2c_client *client, int page, u8 reg,
451 char *data_buf)
452 {
453 int rv;
454
455 rv = pmbus_set_page(client, page, 0xff);
456 if (rv < 0)
457 return rv;
458
459 return i2c_smbus_read_block_data(client, reg, data_buf);
460 }
461
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)462 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
463 int reg)
464 {
465 struct pmbus_sensor *sensor;
466
467 for (sensor = data->sensors; sensor; sensor = sensor->next) {
468 if (sensor->page == page && sensor->reg == reg)
469 return sensor;
470 }
471
472 return ERR_PTR(-EINVAL);
473 }
474
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)475 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
476 enum pmbus_fan_mode mode,
477 bool from_cache)
478 {
479 struct pmbus_data *data = i2c_get_clientdata(client);
480 bool want_rpm, have_rpm;
481 struct pmbus_sensor *s;
482 int config;
483 int reg;
484
485 want_rpm = (mode == rpm);
486
487 if (from_cache) {
488 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
489 s = pmbus_find_sensor(data, page, reg + id);
490 if (IS_ERR(s))
491 return PTR_ERR(s);
492
493 return s->data;
494 }
495
496 config = _pmbus_read_byte_data(client, page,
497 pmbus_fan_config_registers[id]);
498 if (config < 0)
499 return config;
500
501 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
502 if (want_rpm == have_rpm)
503 return pmbus_read_word_data(client, page, 0xff,
504 pmbus_fan_command_registers[id]);
505
506 /* Can't sensibly map between RPM and PWM, just return zero */
507 return 0;
508 }
509
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)510 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
511 enum pmbus_fan_mode mode)
512 {
513 return pmbus_get_fan_rate(client, page, id, mode, false);
514 }
515 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_device, PMBUS);
516
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)517 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
518 enum pmbus_fan_mode mode)
519 {
520 return pmbus_get_fan_rate(client, page, id, mode, true);
521 }
522 EXPORT_SYMBOL_NS_GPL(pmbus_get_fan_rate_cached, PMBUS);
523
pmbus_clear_fault_page(struct i2c_client * client,int page)524 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
525 {
526 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
527 }
528
pmbus_clear_faults(struct i2c_client * client)529 void pmbus_clear_faults(struct i2c_client *client)
530 {
531 struct pmbus_data *data = i2c_get_clientdata(client);
532 int i;
533
534 for (i = 0; i < data->info->pages; i++)
535 pmbus_clear_fault_page(client, i);
536 }
537 EXPORT_SYMBOL_NS_GPL(pmbus_clear_faults, PMBUS);
538
pmbus_check_status_cml(struct i2c_client * client)539 static int pmbus_check_status_cml(struct i2c_client *client)
540 {
541 struct pmbus_data *data = i2c_get_clientdata(client);
542 int status, status2;
543
544 status = data->read_status(client, -1);
545 if (status < 0 || (status & PB_STATUS_CML)) {
546 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
547 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
548 return -EIO;
549 }
550 return 0;
551 }
552
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)553 static bool pmbus_check_register(struct i2c_client *client,
554 int (*func)(struct i2c_client *client,
555 int page, int reg),
556 int page, int reg)
557 {
558 int rv;
559 struct pmbus_data *data = i2c_get_clientdata(client);
560
561 rv = func(client, page, reg);
562 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
563 rv = pmbus_check_status_cml(client);
564 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
565 data->read_status(client, -1);
566 if (reg < PMBUS_VIRT_BASE)
567 pmbus_clear_fault_page(client, -1);
568 return rv >= 0;
569 }
570
pmbus_check_status_register(struct i2c_client * client,int page)571 static bool pmbus_check_status_register(struct i2c_client *client, int page)
572 {
573 int status;
574 struct pmbus_data *data = i2c_get_clientdata(client);
575
576 status = data->read_status(client, page);
577 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
578 (status & PB_STATUS_CML)) {
579 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
580 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
581 status = -EIO;
582 }
583
584 pmbus_clear_fault_page(client, -1);
585 return status >= 0;
586 }
587
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)588 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
589 {
590 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
591 }
592 EXPORT_SYMBOL_NS_GPL(pmbus_check_byte_register, PMBUS);
593
pmbus_check_word_register(struct i2c_client * client,int page,int reg)594 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
595 {
596 return pmbus_check_register(client, __pmbus_read_word_data, page, reg);
597 }
598 EXPORT_SYMBOL_NS_GPL(pmbus_check_word_register, PMBUS);
599
pmbus_check_block_register(struct i2c_client * client,int page,int reg)600 static bool __maybe_unused pmbus_check_block_register(struct i2c_client *client,
601 int page, int reg)
602 {
603 int rv;
604 struct pmbus_data *data = i2c_get_clientdata(client);
605 char data_buf[I2C_SMBUS_BLOCK_MAX + 2];
606
607 rv = pmbus_read_block_data(client, page, reg, data_buf);
608 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
609 rv = pmbus_check_status_cml(client);
610 if (rv < 0 && (data->flags & PMBUS_READ_STATUS_AFTER_FAILED_CHECK))
611 data->read_status(client, -1);
612 pmbus_clear_fault_page(client, -1);
613 return rv >= 0;
614 }
615
pmbus_get_driver_info(struct i2c_client * client)616 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
617 {
618 struct pmbus_data *data = i2c_get_clientdata(client);
619
620 return data->info;
621 }
622 EXPORT_SYMBOL_NS_GPL(pmbus_get_driver_info, PMBUS);
623
pmbus_get_status(struct i2c_client * client,int page,int reg)624 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
625 {
626 struct pmbus_data *data = i2c_get_clientdata(client);
627 int status;
628
629 switch (reg) {
630 case PMBUS_STATUS_WORD:
631 status = data->read_status(client, page);
632 break;
633 default:
634 status = _pmbus_read_byte_data(client, page, reg);
635 break;
636 }
637 if (status < 0)
638 pmbus_clear_faults(client);
639 return status;
640 }
641
pmbus_update_sensor_data(struct i2c_client * client,struct pmbus_sensor * sensor)642 static void pmbus_update_sensor_data(struct i2c_client *client, struct pmbus_sensor *sensor)
643 {
644 if (sensor->data < 0 || sensor->update)
645 sensor->data = _pmbus_read_word_data(client, sensor->page,
646 sensor->phase, sensor->reg);
647 }
648
649 /*
650 * Convert ieee754 sensor values to milli- or micro-units
651 * depending on sensor type.
652 *
653 * ieee754 data format:
654 * bit 15: sign
655 * bit 10..14: exponent
656 * bit 0..9: mantissa
657 * exponent=0:
658 * v=(−1)^signbit * 2^(−14) * 0.significantbits
659 * exponent=1..30:
660 * v=(−1)^signbit * 2^(exponent - 15) * 1.significantbits
661 * exponent=31:
662 * v=NaN
663 *
664 * Add the number mantissa bits into the calculations for simplicity.
665 * To do that, add '10' to the exponent. By doing that, we can just add
666 * 0x400 to normal values and get the expected result.
667 */
pmbus_reg2data_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor)668 static long pmbus_reg2data_ieee754(struct pmbus_data *data,
669 struct pmbus_sensor *sensor)
670 {
671 int exponent;
672 bool sign;
673 long val;
674
675 /* only support half precision for now */
676 sign = sensor->data & 0x8000;
677 exponent = (sensor->data >> 10) & 0x1f;
678 val = sensor->data & 0x3ff;
679
680 if (exponent == 0) { /* subnormal */
681 exponent = -(14 + 10);
682 } else if (exponent == 0x1f) { /* NaN, convert to min/max */
683 exponent = 0;
684 val = 65504;
685 } else {
686 exponent -= (15 + 10); /* normal */
687 val |= 0x400;
688 }
689
690 /* scale result to milli-units for all sensors except fans */
691 if (sensor->class != PSC_FAN)
692 val = val * 1000L;
693
694 /* scale result to micro-units for power sensors */
695 if (sensor->class == PSC_POWER)
696 val = val * 1000L;
697
698 if (exponent >= 0)
699 val <<= exponent;
700 else
701 val >>= -exponent;
702
703 if (sign)
704 val = -val;
705
706 return val;
707 }
708
709 /*
710 * Convert linear sensor values to milli- or micro-units
711 * depending on sensor type.
712 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)713 static s64 pmbus_reg2data_linear(struct pmbus_data *data,
714 struct pmbus_sensor *sensor)
715 {
716 s16 exponent;
717 s32 mantissa;
718 s64 val;
719
720 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
721 exponent = data->exponent[sensor->page];
722 mantissa = (u16) sensor->data;
723 } else { /* LINEAR11 */
724 exponent = ((s16)sensor->data) >> 11;
725 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
726 }
727
728 val = mantissa;
729
730 /* scale result to milli-units for all sensors except fans */
731 if (sensor->class != PSC_FAN)
732 val = val * 1000LL;
733
734 /* scale result to micro-units for power sensors */
735 if (sensor->class == PSC_POWER)
736 val = val * 1000LL;
737
738 if (exponent >= 0)
739 val <<= exponent;
740 else
741 val >>= -exponent;
742
743 return val;
744 }
745
746 /*
747 * Convert direct sensor values to milli- or micro-units
748 * depending on sensor type.
749 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)750 static s64 pmbus_reg2data_direct(struct pmbus_data *data,
751 struct pmbus_sensor *sensor)
752 {
753 s64 b, val = (s16)sensor->data;
754 s32 m, R;
755
756 m = data->info->m[sensor->class];
757 b = data->info->b[sensor->class];
758 R = data->info->R[sensor->class];
759
760 if (m == 0)
761 return 0;
762
763 /* X = 1/m * (Y * 10^-R - b) */
764 R = -R;
765 /* scale result to milli-units for everything but fans */
766 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
767 R += 3;
768 b *= 1000;
769 }
770
771 /* scale result to micro-units for power sensors */
772 if (sensor->class == PSC_POWER) {
773 R += 3;
774 b *= 1000;
775 }
776
777 while (R > 0) {
778 val *= 10;
779 R--;
780 }
781 while (R < 0) {
782 val = div_s64(val + 5LL, 10L); /* round closest */
783 R++;
784 }
785
786 val = div_s64(val - b, m);
787 return val;
788 }
789
790 /*
791 * Convert VID sensor values to milli- or micro-units
792 * depending on sensor type.
793 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)794 static s64 pmbus_reg2data_vid(struct pmbus_data *data,
795 struct pmbus_sensor *sensor)
796 {
797 long val = sensor->data;
798 long rv = 0;
799
800 switch (data->info->vrm_version[sensor->page]) {
801 case vr11:
802 if (val >= 0x02 && val <= 0xb2)
803 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
804 break;
805 case vr12:
806 if (val >= 0x01)
807 rv = 250 + (val - 1) * 5;
808 break;
809 case vr13:
810 if (val >= 0x01)
811 rv = 500 + (val - 1) * 10;
812 break;
813 case imvp9:
814 if (val >= 0x01)
815 rv = 200 + (val - 1) * 10;
816 break;
817 case amd625mv:
818 if (val >= 0x0 && val <= 0xd8)
819 rv = DIV_ROUND_CLOSEST(155000 - val * 625, 100);
820 break;
821 }
822 return rv;
823 }
824
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)825 static s64 pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
826 {
827 s64 val;
828
829 if (!sensor->convert)
830 return sensor->data;
831
832 switch (data->info->format[sensor->class]) {
833 case direct:
834 val = pmbus_reg2data_direct(data, sensor);
835 break;
836 case vid:
837 val = pmbus_reg2data_vid(data, sensor);
838 break;
839 case ieee754:
840 val = pmbus_reg2data_ieee754(data, sensor);
841 break;
842 case linear:
843 default:
844 val = pmbus_reg2data_linear(data, sensor);
845 break;
846 }
847 return val;
848 }
849
850 #define MAX_IEEE_MANTISSA (0x7ff * 1000)
851 #define MIN_IEEE_MANTISSA (0x400 * 1000)
852
pmbus_data2reg_ieee754(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)853 static u16 pmbus_data2reg_ieee754(struct pmbus_data *data,
854 struct pmbus_sensor *sensor, long val)
855 {
856 u16 exponent = (15 + 10);
857 long mantissa;
858 u16 sign = 0;
859
860 /* simple case */
861 if (val == 0)
862 return 0;
863
864 if (val < 0) {
865 sign = 0x8000;
866 val = -val;
867 }
868
869 /* Power is in uW. Convert to mW before converting. */
870 if (sensor->class == PSC_POWER)
871 val = DIV_ROUND_CLOSEST(val, 1000L);
872
873 /*
874 * For simplicity, convert fan data to milli-units
875 * before calculating the exponent.
876 */
877 if (sensor->class == PSC_FAN)
878 val = val * 1000;
879
880 /* Reduce large mantissa until it fits into 10 bit */
881 while (val > MAX_IEEE_MANTISSA && exponent < 30) {
882 exponent++;
883 val >>= 1;
884 }
885 /*
886 * Increase small mantissa to generate valid 'normal'
887 * number
888 */
889 while (val < MIN_IEEE_MANTISSA && exponent > 1) {
890 exponent--;
891 val <<= 1;
892 }
893
894 /* Convert mantissa from milli-units to units */
895 mantissa = DIV_ROUND_CLOSEST(val, 1000);
896
897 /*
898 * Ensure that the resulting number is within range.
899 * Valid range is 0x400..0x7ff, where bit 10 reflects
900 * the implied high bit in normalized ieee754 numbers.
901 * Set the range to 0x400..0x7ff to reflect this.
902 * The upper bit is then removed by the mask against
903 * 0x3ff in the final assignment.
904 */
905 if (mantissa > 0x7ff)
906 mantissa = 0x7ff;
907 else if (mantissa < 0x400)
908 mantissa = 0x400;
909
910 /* Convert to sign, 5 bit exponent, 10 bit mantissa */
911 return sign | (mantissa & 0x3ff) | ((exponent << 10) & 0x7c00);
912 }
913
914 #define MAX_LIN_MANTISSA (1023 * 1000)
915 #define MIN_LIN_MANTISSA (511 * 1000)
916
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)917 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
918 struct pmbus_sensor *sensor, s64 val)
919 {
920 s16 exponent = 0, mantissa;
921 bool negative = false;
922
923 /* simple case */
924 if (val == 0)
925 return 0;
926
927 if (sensor->class == PSC_VOLTAGE_OUT) {
928 /* LINEAR16 does not support negative voltages */
929 if (val < 0)
930 return 0;
931
932 /*
933 * For a static exponents, we don't have a choice
934 * but to adjust the value to it.
935 */
936 if (data->exponent[sensor->page] < 0)
937 val <<= -data->exponent[sensor->page];
938 else
939 val >>= data->exponent[sensor->page];
940 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
941 return clamp_val(val, 0, 0xffff);
942 }
943
944 if (val < 0) {
945 negative = true;
946 val = -val;
947 }
948
949 /* Power is in uW. Convert to mW before converting. */
950 if (sensor->class == PSC_POWER)
951 val = DIV_ROUND_CLOSEST_ULL(val, 1000);
952
953 /*
954 * For simplicity, convert fan data to milli-units
955 * before calculating the exponent.
956 */
957 if (sensor->class == PSC_FAN)
958 val = val * 1000LL;
959
960 /* Reduce large mantissa until it fits into 10 bit */
961 while (val >= MAX_LIN_MANTISSA && exponent < 15) {
962 exponent++;
963 val >>= 1;
964 }
965 /* Increase small mantissa to improve precision */
966 while (val < MIN_LIN_MANTISSA && exponent > -15) {
967 exponent--;
968 val <<= 1;
969 }
970
971 /* Convert mantissa from milli-units to units */
972 mantissa = clamp_val(DIV_ROUND_CLOSEST_ULL(val, 1000), 0, 0x3ff);
973
974 /* restore sign */
975 if (negative)
976 mantissa = -mantissa;
977
978 /* Convert to 5 bit exponent, 11 bit mantissa */
979 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
980 }
981
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)982 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
983 struct pmbus_sensor *sensor, s64 val)
984 {
985 s64 b;
986 s32 m, R;
987
988 m = data->info->m[sensor->class];
989 b = data->info->b[sensor->class];
990 R = data->info->R[sensor->class];
991
992 /* Power is in uW. Adjust R and b. */
993 if (sensor->class == PSC_POWER) {
994 R -= 3;
995 b *= 1000;
996 }
997
998 /* Calculate Y = (m * X + b) * 10^R */
999 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
1000 R -= 3; /* Adjust R and b for data in milli-units */
1001 b *= 1000;
1002 }
1003 val = val * m + b;
1004
1005 while (R > 0) {
1006 val *= 10;
1007 R--;
1008 }
1009 while (R < 0) {
1010 val = div_s64(val + 5LL, 10L); /* round closest */
1011 R++;
1012 }
1013
1014 return (u16)clamp_val(val, S16_MIN, S16_MAX);
1015 }
1016
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1017 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
1018 struct pmbus_sensor *sensor, s64 val)
1019 {
1020 val = clamp_val(val, 500, 1600);
1021
1022 return 2 + DIV_ROUND_CLOSEST_ULL((1600LL - val) * 100LL, 625);
1023 }
1024
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,s64 val)1025 static u16 pmbus_data2reg(struct pmbus_data *data,
1026 struct pmbus_sensor *sensor, s64 val)
1027 {
1028 u16 regval;
1029
1030 if (!sensor->convert)
1031 return val;
1032
1033 switch (data->info->format[sensor->class]) {
1034 case direct:
1035 regval = pmbus_data2reg_direct(data, sensor, val);
1036 break;
1037 case vid:
1038 regval = pmbus_data2reg_vid(data, sensor, val);
1039 break;
1040 case ieee754:
1041 regval = pmbus_data2reg_ieee754(data, sensor, val);
1042 break;
1043 case linear:
1044 default:
1045 regval = pmbus_data2reg_linear(data, sensor, val);
1046 break;
1047 }
1048 return regval;
1049 }
1050
1051 /*
1052 * Return boolean calculated from converted data.
1053 * <index> defines a status register index and mask.
1054 * The mask is in the lower 8 bits, the register index is in bits 8..23.
1055 *
1056 * The associated pmbus_boolean structure contains optional pointers to two
1057 * sensor attributes. If specified, those attributes are compared against each
1058 * other to determine if a limit has been exceeded.
1059 *
1060 * If the sensor attribute pointers are NULL, the function returns true if
1061 * (status[reg] & mask) is true.
1062 *
1063 * If sensor attribute pointers are provided, a comparison against a specified
1064 * limit has to be performed to determine the boolean result.
1065 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
1066 * sensor values referenced by sensor attribute pointers s1 and s2).
1067 *
1068 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
1069 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
1070 *
1071 * If a negative value is stored in any of the referenced registers, this value
1072 * reflects an error code which will be returned.
1073 */
pmbus_get_boolean(struct i2c_client * client,struct pmbus_boolean * b,int index)1074 static int pmbus_get_boolean(struct i2c_client *client, struct pmbus_boolean *b,
1075 int index)
1076 {
1077 struct pmbus_data *data = i2c_get_clientdata(client);
1078 struct pmbus_sensor *s1 = b->s1;
1079 struct pmbus_sensor *s2 = b->s2;
1080 u16 mask = pb_index_to_mask(index);
1081 u8 page = pb_index_to_page(index);
1082 u16 reg = pb_index_to_reg(index);
1083 int ret, status;
1084 u16 regval;
1085
1086 mutex_lock(&data->update_lock);
1087 status = pmbus_get_status(client, page, reg);
1088 if (status < 0) {
1089 ret = status;
1090 goto unlock;
1091 }
1092
1093 if (s1)
1094 pmbus_update_sensor_data(client, s1);
1095 if (s2)
1096 pmbus_update_sensor_data(client, s2);
1097
1098 regval = status & mask;
1099 if (regval) {
1100 if (data->revision >= PMBUS_REV_12) {
1101 ret = _pmbus_write_byte_data(client, page, reg, regval);
1102 if (ret)
1103 goto unlock;
1104 } else {
1105 pmbus_clear_fault_page(client, page);
1106 }
1107
1108 }
1109 if (s1 && s2) {
1110 s64 v1, v2;
1111
1112 if (s1->data < 0) {
1113 ret = s1->data;
1114 goto unlock;
1115 }
1116 if (s2->data < 0) {
1117 ret = s2->data;
1118 goto unlock;
1119 }
1120
1121 v1 = pmbus_reg2data(data, s1);
1122 v2 = pmbus_reg2data(data, s2);
1123 ret = !!(regval && v1 >= v2);
1124 } else {
1125 ret = !!regval;
1126 }
1127 unlock:
1128 mutex_unlock(&data->update_lock);
1129 return ret;
1130 }
1131
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)1132 static ssize_t pmbus_show_boolean(struct device *dev,
1133 struct device_attribute *da, char *buf)
1134 {
1135 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
1136 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
1137 struct i2c_client *client = to_i2c_client(dev->parent);
1138 int val;
1139
1140 val = pmbus_get_boolean(client, boolean, attr->index);
1141 if (val < 0)
1142 return val;
1143 return sysfs_emit(buf, "%d\n", val);
1144 }
1145
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)1146 static ssize_t pmbus_show_sensor(struct device *dev,
1147 struct device_attribute *devattr, char *buf)
1148 {
1149 struct i2c_client *client = to_i2c_client(dev->parent);
1150 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1151 struct pmbus_data *data = i2c_get_clientdata(client);
1152 ssize_t ret;
1153
1154 mutex_lock(&data->update_lock);
1155 pmbus_update_sensor_data(client, sensor);
1156 if (sensor->data < 0)
1157 ret = sensor->data;
1158 else
1159 ret = sysfs_emit(buf, "%lld\n", pmbus_reg2data(data, sensor));
1160 mutex_unlock(&data->update_lock);
1161 return ret;
1162 }
1163
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)1164 static ssize_t pmbus_set_sensor(struct device *dev,
1165 struct device_attribute *devattr,
1166 const char *buf, size_t count)
1167 {
1168 struct i2c_client *client = to_i2c_client(dev->parent);
1169 struct pmbus_data *data = i2c_get_clientdata(client);
1170 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
1171 ssize_t rv = count;
1172 s64 val;
1173 int ret;
1174 u16 regval;
1175
1176 if (kstrtos64(buf, 10, &val) < 0)
1177 return -EINVAL;
1178
1179 mutex_lock(&data->update_lock);
1180 regval = pmbus_data2reg(data, sensor, val);
1181 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
1182 if (ret < 0)
1183 rv = ret;
1184 else
1185 sensor->data = -ENODATA;
1186 mutex_unlock(&data->update_lock);
1187 return rv;
1188 }
1189
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)1190 static ssize_t pmbus_show_label(struct device *dev,
1191 struct device_attribute *da, char *buf)
1192 {
1193 struct pmbus_label *label = to_pmbus_label(da);
1194
1195 return sysfs_emit(buf, "%s\n", label->label);
1196 }
1197
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1198 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1199 {
1200 if (data->num_attributes >= data->max_attributes - 1) {
1201 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1202 void *new_attrs = devm_krealloc_array(data->dev, data->group.attrs,
1203 new_max_attrs, sizeof(void *),
1204 GFP_KERNEL);
1205 if (!new_attrs)
1206 return -ENOMEM;
1207 data->group.attrs = new_attrs;
1208 data->max_attributes = new_max_attrs;
1209 }
1210
1211 data->group.attrs[data->num_attributes++] = attr;
1212 data->group.attrs[data->num_attributes] = NULL;
1213 return 0;
1214 }
1215
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1216 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1217 const char *name,
1218 umode_t mode,
1219 ssize_t (*show)(struct device *dev,
1220 struct device_attribute *attr,
1221 char *buf),
1222 ssize_t (*store)(struct device *dev,
1223 struct device_attribute *attr,
1224 const char *buf, size_t count))
1225 {
1226 sysfs_attr_init(&dev_attr->attr);
1227 dev_attr->attr.name = name;
1228 dev_attr->attr.mode = mode;
1229 dev_attr->show = show;
1230 dev_attr->store = store;
1231 }
1232
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1233 static void pmbus_attr_init(struct sensor_device_attribute *a,
1234 const char *name,
1235 umode_t mode,
1236 ssize_t (*show)(struct device *dev,
1237 struct device_attribute *attr,
1238 char *buf),
1239 ssize_t (*store)(struct device *dev,
1240 struct device_attribute *attr,
1241 const char *buf, size_t count),
1242 int idx)
1243 {
1244 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1245 a->index = idx;
1246 }
1247
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u8 page,u16 reg,u16 mask)1248 static int pmbus_add_boolean(struct pmbus_data *data,
1249 const char *name, const char *type, int seq,
1250 struct pmbus_sensor *s1,
1251 struct pmbus_sensor *s2,
1252 u8 page, u16 reg, u16 mask)
1253 {
1254 struct pmbus_boolean *boolean;
1255 struct sensor_device_attribute *a;
1256
1257 if (WARN((s1 && !s2) || (!s1 && s2), "Bad s1/s2 parameters\n"))
1258 return -EINVAL;
1259
1260 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1261 if (!boolean)
1262 return -ENOMEM;
1263
1264 a = &boolean->attribute;
1265
1266 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1267 name, seq, type);
1268 boolean->s1 = s1;
1269 boolean->s2 = s2;
1270 pmbus_attr_init(a, boolean->name, 0444, pmbus_show_boolean, NULL,
1271 pb_reg_to_index(page, reg, mask));
1272
1273 return pmbus_add_attribute(data, &a->dev_attr.attr);
1274 }
1275
1276 /* of thermal for pmbus temperature sensors */
1277 struct pmbus_thermal_data {
1278 struct pmbus_data *pmbus_data;
1279 struct pmbus_sensor *sensor;
1280 };
1281
pmbus_thermal_get_temp(struct thermal_zone_device * tz,int * temp)1282 static int pmbus_thermal_get_temp(struct thermal_zone_device *tz, int *temp)
1283 {
1284 struct pmbus_thermal_data *tdata = thermal_zone_device_priv(tz);
1285 struct pmbus_sensor *sensor = tdata->sensor;
1286 struct pmbus_data *pmbus_data = tdata->pmbus_data;
1287 struct i2c_client *client = to_i2c_client(pmbus_data->dev);
1288 struct device *dev = pmbus_data->hwmon_dev;
1289 int ret = 0;
1290
1291 if (!dev) {
1292 /* May not even get to hwmon yet */
1293 *temp = 0;
1294 return 0;
1295 }
1296
1297 mutex_lock(&pmbus_data->update_lock);
1298 pmbus_update_sensor_data(client, sensor);
1299 if (sensor->data < 0)
1300 ret = sensor->data;
1301 else
1302 *temp = (int)pmbus_reg2data(pmbus_data, sensor);
1303 mutex_unlock(&pmbus_data->update_lock);
1304
1305 return ret;
1306 }
1307
1308 static const struct thermal_zone_device_ops pmbus_thermal_ops = {
1309 .get_temp = pmbus_thermal_get_temp,
1310 };
1311
pmbus_thermal_add_sensor(struct pmbus_data * pmbus_data,struct pmbus_sensor * sensor,int index)1312 static int pmbus_thermal_add_sensor(struct pmbus_data *pmbus_data,
1313 struct pmbus_sensor *sensor, int index)
1314 {
1315 struct device *dev = pmbus_data->dev;
1316 struct pmbus_thermal_data *tdata;
1317 struct thermal_zone_device *tzd;
1318
1319 tdata = devm_kzalloc(dev, sizeof(*tdata), GFP_KERNEL);
1320 if (!tdata)
1321 return -ENOMEM;
1322
1323 tdata->sensor = sensor;
1324 tdata->pmbus_data = pmbus_data;
1325
1326 tzd = devm_thermal_of_zone_register(dev, index, tdata,
1327 &pmbus_thermal_ops);
1328 /*
1329 * If CONFIG_THERMAL_OF is disabled, this returns -ENODEV,
1330 * so ignore that error but forward any other error.
1331 */
1332 if (IS_ERR(tzd) && (PTR_ERR(tzd) != -ENODEV))
1333 return PTR_ERR(tzd);
1334
1335 return 0;
1336 }
1337
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int phase,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1338 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1339 const char *name, const char *type,
1340 int seq, int page, int phase,
1341 int reg,
1342 enum pmbus_sensor_classes class,
1343 bool update, bool readonly,
1344 bool convert)
1345 {
1346 struct pmbus_sensor *sensor;
1347 struct device_attribute *a;
1348
1349 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1350 if (!sensor)
1351 return NULL;
1352 a = &sensor->attribute;
1353
1354 if (type)
1355 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1356 name, seq, type);
1357 else
1358 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1359 name, seq);
1360
1361 if (data->flags & PMBUS_WRITE_PROTECTED)
1362 readonly = true;
1363
1364 sensor->page = page;
1365 sensor->phase = phase;
1366 sensor->reg = reg;
1367 sensor->class = class;
1368 sensor->update = update;
1369 sensor->convert = convert;
1370 sensor->data = -ENODATA;
1371 pmbus_dev_attr_init(a, sensor->name,
1372 readonly ? 0444 : 0644,
1373 pmbus_show_sensor, pmbus_set_sensor);
1374
1375 if (pmbus_add_attribute(data, &a->attr))
1376 return NULL;
1377
1378 sensor->next = data->sensors;
1379 data->sensors = sensor;
1380
1381 /* temperature sensors with _input values are registered with thermal */
1382 if (class == PSC_TEMPERATURE && strcmp(type, "input") == 0)
1383 pmbus_thermal_add_sensor(data, sensor, seq);
1384
1385 return sensor;
1386 }
1387
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index,int phase)1388 static int pmbus_add_label(struct pmbus_data *data,
1389 const char *name, int seq,
1390 const char *lstring, int index, int phase)
1391 {
1392 struct pmbus_label *label;
1393 struct device_attribute *a;
1394
1395 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1396 if (!label)
1397 return -ENOMEM;
1398
1399 a = &label->attribute;
1400
1401 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1402 if (!index) {
1403 if (phase == 0xff)
1404 strncpy(label->label, lstring,
1405 sizeof(label->label) - 1);
1406 else
1407 snprintf(label->label, sizeof(label->label), "%s.%d",
1408 lstring, phase);
1409 } else {
1410 if (phase == 0xff)
1411 snprintf(label->label, sizeof(label->label), "%s%d",
1412 lstring, index);
1413 else
1414 snprintf(label->label, sizeof(label->label), "%s%d.%d",
1415 lstring, index, phase);
1416 }
1417
1418 pmbus_dev_attr_init(a, label->name, 0444, pmbus_show_label, NULL);
1419 return pmbus_add_attribute(data, &a->attr);
1420 }
1421
1422 /*
1423 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1424 */
1425
1426 /*
1427 * The pmbus_limit_attr structure describes a single limit attribute
1428 * and its associated alarm attribute.
1429 */
1430 struct pmbus_limit_attr {
1431 u16 reg; /* Limit register */
1432 u16 sbit; /* Alarm attribute status bit */
1433 bool update; /* True if register needs updates */
1434 bool low; /* True if low limit; for limits with compare
1435 functions only */
1436 const char *attr; /* Attribute name */
1437 const char *alarm; /* Alarm attribute name */
1438 };
1439
1440 /*
1441 * The pmbus_sensor_attr structure describes one sensor attribute. This
1442 * description includes a reference to the associated limit attributes.
1443 */
1444 struct pmbus_sensor_attr {
1445 u16 reg; /* sensor register */
1446 u16 gbit; /* generic status bit */
1447 u8 nlimit; /* # of limit registers */
1448 enum pmbus_sensor_classes class;/* sensor class */
1449 const char *label; /* sensor label */
1450 bool paged; /* true if paged sensor */
1451 bool update; /* true if update needed */
1452 bool compare; /* true if compare function needed */
1453 u32 func; /* sensor mask */
1454 u32 sfunc; /* sensor status mask */
1455 int sreg; /* status register */
1456 const struct pmbus_limit_attr *limit;/* limit registers */
1457 };
1458
1459 /*
1460 * Add a set of limit attributes and, if supported, the associated
1461 * alarm attributes.
1462 * returns 0 if no alarm register found, 1 if an alarm register was found,
1463 * < 0 on errors.
1464 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1465 static int pmbus_add_limit_attrs(struct i2c_client *client,
1466 struct pmbus_data *data,
1467 const struct pmbus_driver_info *info,
1468 const char *name, int index, int page,
1469 struct pmbus_sensor *base,
1470 const struct pmbus_sensor_attr *attr)
1471 {
1472 const struct pmbus_limit_attr *l = attr->limit;
1473 int nlimit = attr->nlimit;
1474 int have_alarm = 0;
1475 int i, ret;
1476 struct pmbus_sensor *curr;
1477
1478 for (i = 0; i < nlimit; i++) {
1479 if (pmbus_check_word_register(client, page, l->reg)) {
1480 curr = pmbus_add_sensor(data, name, l->attr, index,
1481 page, 0xff, l->reg, attr->class,
1482 attr->update || l->update,
1483 false, true);
1484 if (!curr)
1485 return -ENOMEM;
1486 if (l->sbit && (info->func[page] & attr->sfunc)) {
1487 ret = pmbus_add_boolean(data, name,
1488 l->alarm, index,
1489 attr->compare ? l->low ? curr : base
1490 : NULL,
1491 attr->compare ? l->low ? base : curr
1492 : NULL,
1493 page, attr->sreg, l->sbit);
1494 if (ret)
1495 return ret;
1496 have_alarm = 1;
1497 }
1498 }
1499 l++;
1500 }
1501 return have_alarm;
1502 }
1503
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,int phase,const struct pmbus_sensor_attr * attr,bool paged)1504 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1505 struct pmbus_data *data,
1506 const struct pmbus_driver_info *info,
1507 const char *name,
1508 int index, int page, int phase,
1509 const struct pmbus_sensor_attr *attr,
1510 bool paged)
1511 {
1512 struct pmbus_sensor *base;
1513 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1514 int ret;
1515
1516 if (attr->label) {
1517 ret = pmbus_add_label(data, name, index, attr->label,
1518 paged ? page + 1 : 0, phase);
1519 if (ret)
1520 return ret;
1521 }
1522 base = pmbus_add_sensor(data, name, "input", index, page, phase,
1523 attr->reg, attr->class, true, true, true);
1524 if (!base)
1525 return -ENOMEM;
1526 /* No limit and alarm attributes for phase specific sensors */
1527 if (attr->sfunc && phase == 0xff) {
1528 ret = pmbus_add_limit_attrs(client, data, info, name,
1529 index, page, base, attr);
1530 if (ret < 0)
1531 return ret;
1532 /*
1533 * Add generic alarm attribute only if there are no individual
1534 * alarm attributes, if there is a global alarm bit, and if
1535 * the generic status register (word or byte, depending on
1536 * which global bit is set) for this page is accessible.
1537 */
1538 if (!ret && attr->gbit &&
1539 (!upper || data->has_status_word) &&
1540 pmbus_check_status_register(client, page)) {
1541 ret = pmbus_add_boolean(data, name, "alarm", index,
1542 NULL, NULL,
1543 page, PMBUS_STATUS_WORD,
1544 attr->gbit);
1545 if (ret)
1546 return ret;
1547 }
1548 }
1549 return 0;
1550 }
1551
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1552 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1553 const struct pmbus_sensor_attr *attr)
1554 {
1555 int p;
1556
1557 if (attr->paged)
1558 return true;
1559
1560 /*
1561 * Some attributes may be present on more than one page despite
1562 * not being marked with the paged attribute. If that is the case,
1563 * then treat the sensor as being paged and add the page suffix to the
1564 * attribute name.
1565 * We don't just add the paged attribute to all such attributes, in
1566 * order to maintain the un-suffixed labels in the case where the
1567 * attribute is only on page 0.
1568 */
1569 for (p = 1; p < info->pages; p++) {
1570 if (info->func[p] & attr->func)
1571 return true;
1572 }
1573 return false;
1574 }
1575
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1576 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1577 struct pmbus_data *data,
1578 const char *name,
1579 const struct pmbus_sensor_attr *attrs,
1580 int nattrs)
1581 {
1582 const struct pmbus_driver_info *info = data->info;
1583 int index, i;
1584 int ret;
1585
1586 index = 1;
1587 for (i = 0; i < nattrs; i++) {
1588 int page, pages;
1589 bool paged = pmbus_sensor_is_paged(info, attrs);
1590
1591 pages = paged ? info->pages : 1;
1592 for (page = 0; page < pages; page++) {
1593 if (info->func[page] & attrs->func) {
1594 ret = pmbus_add_sensor_attrs_one(client, data, info,
1595 name, index, page,
1596 0xff, attrs, paged);
1597 if (ret)
1598 return ret;
1599 index++;
1600 }
1601 if (info->phases[page]) {
1602 int phase;
1603
1604 for (phase = 0; phase < info->phases[page];
1605 phase++) {
1606 if (!(info->pfunc[phase] & attrs->func))
1607 continue;
1608 ret = pmbus_add_sensor_attrs_one(client,
1609 data, info, name, index, page,
1610 phase, attrs, paged);
1611 if (ret)
1612 return ret;
1613 index++;
1614 }
1615 }
1616 }
1617 attrs++;
1618 }
1619 return 0;
1620 }
1621
1622 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1623 {
1624 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1625 .attr = "min",
1626 .alarm = "min_alarm",
1627 .sbit = PB_VOLTAGE_UV_WARNING,
1628 }, {
1629 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1630 .attr = "lcrit",
1631 .alarm = "lcrit_alarm",
1632 .sbit = PB_VOLTAGE_UV_FAULT | PB_VOLTAGE_VIN_OFF,
1633 }, {
1634 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1635 .attr = "max",
1636 .alarm = "max_alarm",
1637 .sbit = PB_VOLTAGE_OV_WARNING,
1638 }, {
1639 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1640 .attr = "crit",
1641 .alarm = "crit_alarm",
1642 .sbit = PB_VOLTAGE_OV_FAULT,
1643 }, {
1644 .reg = PMBUS_VIRT_READ_VIN_AVG,
1645 .update = true,
1646 .attr = "average",
1647 }, {
1648 .reg = PMBUS_VIRT_READ_VIN_MIN,
1649 .update = true,
1650 .attr = "lowest",
1651 }, {
1652 .reg = PMBUS_VIRT_READ_VIN_MAX,
1653 .update = true,
1654 .attr = "highest",
1655 }, {
1656 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1657 .attr = "reset_history",
1658 }, {
1659 .reg = PMBUS_MFR_VIN_MIN,
1660 .attr = "rated_min",
1661 }, {
1662 .reg = PMBUS_MFR_VIN_MAX,
1663 .attr = "rated_max",
1664 },
1665 };
1666
1667 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1668 {
1669 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1670 .attr = "min",
1671 .alarm = "min_alarm",
1672 .sbit = PB_VOLTAGE_UV_WARNING,
1673 }, {
1674 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1675 .attr = "lcrit",
1676 .alarm = "lcrit_alarm",
1677 .sbit = PB_VOLTAGE_UV_FAULT,
1678 }, {
1679 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1680 .attr = "max",
1681 .alarm = "max_alarm",
1682 .sbit = PB_VOLTAGE_OV_WARNING,
1683 }, {
1684 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1685 .attr = "crit",
1686 .alarm = "crit_alarm",
1687 .sbit = PB_VOLTAGE_OV_FAULT,
1688 }
1689 };
1690
1691 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1692 {
1693 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1694 .attr = "min",
1695 .alarm = "min_alarm",
1696 .sbit = PB_VOLTAGE_UV_WARNING,
1697 }, {
1698 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1699 .attr = "lcrit",
1700 .alarm = "lcrit_alarm",
1701 .sbit = PB_VOLTAGE_UV_FAULT,
1702 }, {
1703 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1704 .attr = "max",
1705 .alarm = "max_alarm",
1706 .sbit = PB_VOLTAGE_OV_WARNING,
1707 }, {
1708 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1709 .attr = "crit",
1710 .alarm = "crit_alarm",
1711 .sbit = PB_VOLTAGE_OV_FAULT,
1712 }, {
1713 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1714 .update = true,
1715 .attr = "average",
1716 }, {
1717 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1718 .update = true,
1719 .attr = "lowest",
1720 }, {
1721 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1722 .update = true,
1723 .attr = "highest",
1724 }, {
1725 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1726 .attr = "reset_history",
1727 }, {
1728 .reg = PMBUS_MFR_VOUT_MIN,
1729 .attr = "rated_min",
1730 }, {
1731 .reg = PMBUS_MFR_VOUT_MAX,
1732 .attr = "rated_max",
1733 },
1734 };
1735
1736 static const struct pmbus_sensor_attr voltage_attributes[] = {
1737 {
1738 .reg = PMBUS_READ_VIN,
1739 .class = PSC_VOLTAGE_IN,
1740 .label = "vin",
1741 .func = PMBUS_HAVE_VIN,
1742 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1743 .sreg = PMBUS_STATUS_INPUT,
1744 .gbit = PB_STATUS_VIN_UV,
1745 .limit = vin_limit_attrs,
1746 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1747 }, {
1748 .reg = PMBUS_VIRT_READ_VMON,
1749 .class = PSC_VOLTAGE_IN,
1750 .label = "vmon",
1751 .func = PMBUS_HAVE_VMON,
1752 .sfunc = PMBUS_HAVE_STATUS_VMON,
1753 .sreg = PMBUS_VIRT_STATUS_VMON,
1754 .limit = vmon_limit_attrs,
1755 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1756 }, {
1757 .reg = PMBUS_READ_VCAP,
1758 .class = PSC_VOLTAGE_IN,
1759 .label = "vcap",
1760 .func = PMBUS_HAVE_VCAP,
1761 }, {
1762 .reg = PMBUS_READ_VOUT,
1763 .class = PSC_VOLTAGE_OUT,
1764 .label = "vout",
1765 .paged = true,
1766 .func = PMBUS_HAVE_VOUT,
1767 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1768 .sreg = PMBUS_STATUS_VOUT,
1769 .gbit = PB_STATUS_VOUT_OV,
1770 .limit = vout_limit_attrs,
1771 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1772 }
1773 };
1774
1775 /* Current attributes */
1776
1777 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1778 {
1779 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1780 .attr = "max",
1781 .alarm = "max_alarm",
1782 .sbit = PB_IIN_OC_WARNING,
1783 }, {
1784 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1785 .attr = "crit",
1786 .alarm = "crit_alarm",
1787 .sbit = PB_IIN_OC_FAULT,
1788 }, {
1789 .reg = PMBUS_VIRT_READ_IIN_AVG,
1790 .update = true,
1791 .attr = "average",
1792 }, {
1793 .reg = PMBUS_VIRT_READ_IIN_MIN,
1794 .update = true,
1795 .attr = "lowest",
1796 }, {
1797 .reg = PMBUS_VIRT_READ_IIN_MAX,
1798 .update = true,
1799 .attr = "highest",
1800 }, {
1801 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1802 .attr = "reset_history",
1803 }, {
1804 .reg = PMBUS_MFR_IIN_MAX,
1805 .attr = "rated_max",
1806 },
1807 };
1808
1809 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1810 {
1811 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1812 .attr = "max",
1813 .alarm = "max_alarm",
1814 .sbit = PB_IOUT_OC_WARNING,
1815 }, {
1816 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1817 .attr = "lcrit",
1818 .alarm = "lcrit_alarm",
1819 .sbit = PB_IOUT_UC_FAULT,
1820 }, {
1821 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1822 .attr = "crit",
1823 .alarm = "crit_alarm",
1824 .sbit = PB_IOUT_OC_FAULT,
1825 }, {
1826 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1827 .update = true,
1828 .attr = "average",
1829 }, {
1830 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1831 .update = true,
1832 .attr = "lowest",
1833 }, {
1834 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1835 .update = true,
1836 .attr = "highest",
1837 }, {
1838 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1839 .attr = "reset_history",
1840 }, {
1841 .reg = PMBUS_MFR_IOUT_MAX,
1842 .attr = "rated_max",
1843 },
1844 };
1845
1846 static const struct pmbus_sensor_attr current_attributes[] = {
1847 {
1848 .reg = PMBUS_READ_IIN,
1849 .class = PSC_CURRENT_IN,
1850 .label = "iin",
1851 .func = PMBUS_HAVE_IIN,
1852 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1853 .sreg = PMBUS_STATUS_INPUT,
1854 .gbit = PB_STATUS_INPUT,
1855 .limit = iin_limit_attrs,
1856 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1857 }, {
1858 .reg = PMBUS_READ_IOUT,
1859 .class = PSC_CURRENT_OUT,
1860 .label = "iout",
1861 .paged = true,
1862 .func = PMBUS_HAVE_IOUT,
1863 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1864 .sreg = PMBUS_STATUS_IOUT,
1865 .gbit = PB_STATUS_IOUT_OC,
1866 .limit = iout_limit_attrs,
1867 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1868 }
1869 };
1870
1871 /* Power attributes */
1872
1873 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1874 {
1875 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1876 .attr = "max",
1877 .alarm = "alarm",
1878 .sbit = PB_PIN_OP_WARNING,
1879 }, {
1880 .reg = PMBUS_VIRT_READ_PIN_AVG,
1881 .update = true,
1882 .attr = "average",
1883 }, {
1884 .reg = PMBUS_VIRT_READ_PIN_MIN,
1885 .update = true,
1886 .attr = "input_lowest",
1887 }, {
1888 .reg = PMBUS_VIRT_READ_PIN_MAX,
1889 .update = true,
1890 .attr = "input_highest",
1891 }, {
1892 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1893 .attr = "reset_history",
1894 }, {
1895 .reg = PMBUS_MFR_PIN_MAX,
1896 .attr = "rated_max",
1897 },
1898 };
1899
1900 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1901 {
1902 .reg = PMBUS_POUT_MAX,
1903 .attr = "cap",
1904 .alarm = "cap_alarm",
1905 .sbit = PB_POWER_LIMITING,
1906 }, {
1907 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1908 .attr = "max",
1909 .alarm = "max_alarm",
1910 .sbit = PB_POUT_OP_WARNING,
1911 }, {
1912 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1913 .attr = "crit",
1914 .alarm = "crit_alarm",
1915 .sbit = PB_POUT_OP_FAULT,
1916 }, {
1917 .reg = PMBUS_VIRT_READ_POUT_AVG,
1918 .update = true,
1919 .attr = "average",
1920 }, {
1921 .reg = PMBUS_VIRT_READ_POUT_MIN,
1922 .update = true,
1923 .attr = "input_lowest",
1924 }, {
1925 .reg = PMBUS_VIRT_READ_POUT_MAX,
1926 .update = true,
1927 .attr = "input_highest",
1928 }, {
1929 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1930 .attr = "reset_history",
1931 }, {
1932 .reg = PMBUS_MFR_POUT_MAX,
1933 .attr = "rated_max",
1934 },
1935 };
1936
1937 static const struct pmbus_sensor_attr power_attributes[] = {
1938 {
1939 .reg = PMBUS_READ_PIN,
1940 .class = PSC_POWER,
1941 .label = "pin",
1942 .func = PMBUS_HAVE_PIN,
1943 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1944 .sreg = PMBUS_STATUS_INPUT,
1945 .gbit = PB_STATUS_INPUT,
1946 .limit = pin_limit_attrs,
1947 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1948 }, {
1949 .reg = PMBUS_READ_POUT,
1950 .class = PSC_POWER,
1951 .label = "pout",
1952 .paged = true,
1953 .func = PMBUS_HAVE_POUT,
1954 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1955 .sreg = PMBUS_STATUS_IOUT,
1956 .limit = pout_limit_attrs,
1957 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1958 }
1959 };
1960
1961 /* Temperature atributes */
1962
1963 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1964 {
1965 .reg = PMBUS_UT_WARN_LIMIT,
1966 .low = true,
1967 .attr = "min",
1968 .alarm = "min_alarm",
1969 .sbit = PB_TEMP_UT_WARNING,
1970 }, {
1971 .reg = PMBUS_UT_FAULT_LIMIT,
1972 .low = true,
1973 .attr = "lcrit",
1974 .alarm = "lcrit_alarm",
1975 .sbit = PB_TEMP_UT_FAULT,
1976 }, {
1977 .reg = PMBUS_OT_WARN_LIMIT,
1978 .attr = "max",
1979 .alarm = "max_alarm",
1980 .sbit = PB_TEMP_OT_WARNING,
1981 }, {
1982 .reg = PMBUS_OT_FAULT_LIMIT,
1983 .attr = "crit",
1984 .alarm = "crit_alarm",
1985 .sbit = PB_TEMP_OT_FAULT,
1986 }, {
1987 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1988 .attr = "lowest",
1989 }, {
1990 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1991 .attr = "average",
1992 }, {
1993 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1994 .attr = "highest",
1995 }, {
1996 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1997 .attr = "reset_history",
1998 }, {
1999 .reg = PMBUS_MFR_MAX_TEMP_1,
2000 .attr = "rated_max",
2001 },
2002 };
2003
2004 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
2005 {
2006 .reg = PMBUS_UT_WARN_LIMIT,
2007 .low = true,
2008 .attr = "min",
2009 .alarm = "min_alarm",
2010 .sbit = PB_TEMP_UT_WARNING,
2011 }, {
2012 .reg = PMBUS_UT_FAULT_LIMIT,
2013 .low = true,
2014 .attr = "lcrit",
2015 .alarm = "lcrit_alarm",
2016 .sbit = PB_TEMP_UT_FAULT,
2017 }, {
2018 .reg = PMBUS_OT_WARN_LIMIT,
2019 .attr = "max",
2020 .alarm = "max_alarm",
2021 .sbit = PB_TEMP_OT_WARNING,
2022 }, {
2023 .reg = PMBUS_OT_FAULT_LIMIT,
2024 .attr = "crit",
2025 .alarm = "crit_alarm",
2026 .sbit = PB_TEMP_OT_FAULT,
2027 }, {
2028 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
2029 .attr = "lowest",
2030 }, {
2031 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
2032 .attr = "average",
2033 }, {
2034 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
2035 .attr = "highest",
2036 }, {
2037 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
2038 .attr = "reset_history",
2039 }, {
2040 .reg = PMBUS_MFR_MAX_TEMP_2,
2041 .attr = "rated_max",
2042 },
2043 };
2044
2045 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
2046 {
2047 .reg = PMBUS_UT_WARN_LIMIT,
2048 .low = true,
2049 .attr = "min",
2050 .alarm = "min_alarm",
2051 .sbit = PB_TEMP_UT_WARNING,
2052 }, {
2053 .reg = PMBUS_UT_FAULT_LIMIT,
2054 .low = true,
2055 .attr = "lcrit",
2056 .alarm = "lcrit_alarm",
2057 .sbit = PB_TEMP_UT_FAULT,
2058 }, {
2059 .reg = PMBUS_OT_WARN_LIMIT,
2060 .attr = "max",
2061 .alarm = "max_alarm",
2062 .sbit = PB_TEMP_OT_WARNING,
2063 }, {
2064 .reg = PMBUS_OT_FAULT_LIMIT,
2065 .attr = "crit",
2066 .alarm = "crit_alarm",
2067 .sbit = PB_TEMP_OT_FAULT,
2068 }, {
2069 .reg = PMBUS_MFR_MAX_TEMP_3,
2070 .attr = "rated_max",
2071 },
2072 };
2073
2074 static const struct pmbus_sensor_attr temp_attributes[] = {
2075 {
2076 .reg = PMBUS_READ_TEMPERATURE_1,
2077 .class = PSC_TEMPERATURE,
2078 .paged = true,
2079 .update = true,
2080 .compare = true,
2081 .func = PMBUS_HAVE_TEMP,
2082 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2083 .sreg = PMBUS_STATUS_TEMPERATURE,
2084 .gbit = PB_STATUS_TEMPERATURE,
2085 .limit = temp_limit_attrs,
2086 .nlimit = ARRAY_SIZE(temp_limit_attrs),
2087 }, {
2088 .reg = PMBUS_READ_TEMPERATURE_2,
2089 .class = PSC_TEMPERATURE,
2090 .paged = true,
2091 .update = true,
2092 .compare = true,
2093 .func = PMBUS_HAVE_TEMP2,
2094 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2095 .sreg = PMBUS_STATUS_TEMPERATURE,
2096 .gbit = PB_STATUS_TEMPERATURE,
2097 .limit = temp_limit_attrs2,
2098 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
2099 }, {
2100 .reg = PMBUS_READ_TEMPERATURE_3,
2101 .class = PSC_TEMPERATURE,
2102 .paged = true,
2103 .update = true,
2104 .compare = true,
2105 .func = PMBUS_HAVE_TEMP3,
2106 .sfunc = PMBUS_HAVE_STATUS_TEMP,
2107 .sreg = PMBUS_STATUS_TEMPERATURE,
2108 .gbit = PB_STATUS_TEMPERATURE,
2109 .limit = temp_limit_attrs3,
2110 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
2111 }
2112 };
2113
2114 static const int pmbus_fan_registers[] = {
2115 PMBUS_READ_FAN_SPEED_1,
2116 PMBUS_READ_FAN_SPEED_2,
2117 PMBUS_READ_FAN_SPEED_3,
2118 PMBUS_READ_FAN_SPEED_4
2119 };
2120
2121 static const int pmbus_fan_status_registers[] = {
2122 PMBUS_STATUS_FAN_12,
2123 PMBUS_STATUS_FAN_12,
2124 PMBUS_STATUS_FAN_34,
2125 PMBUS_STATUS_FAN_34
2126 };
2127
2128 static const u32 pmbus_fan_flags[] = {
2129 PMBUS_HAVE_FAN12,
2130 PMBUS_HAVE_FAN12,
2131 PMBUS_HAVE_FAN34,
2132 PMBUS_HAVE_FAN34
2133 };
2134
2135 static const u32 pmbus_fan_status_flags[] = {
2136 PMBUS_HAVE_STATUS_FAN12,
2137 PMBUS_HAVE_STATUS_FAN12,
2138 PMBUS_HAVE_STATUS_FAN34,
2139 PMBUS_HAVE_STATUS_FAN34
2140 };
2141
2142 /* Fans */
2143
2144 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)2145 static int pmbus_add_fan_ctrl(struct i2c_client *client,
2146 struct pmbus_data *data, int index, int page, int id,
2147 u8 config)
2148 {
2149 struct pmbus_sensor *sensor;
2150
2151 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
2152 0xff, PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
2153 false, false, true);
2154
2155 if (!sensor)
2156 return -ENOMEM;
2157
2158 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
2159 (data->info->func[page] & PMBUS_HAVE_PWM34)))
2160 return 0;
2161
2162 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
2163 0xff, PMBUS_VIRT_PWM_1 + id, PSC_PWM,
2164 false, false, true);
2165
2166 if (!sensor)
2167 return -ENOMEM;
2168
2169 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
2170 0xff, PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
2171 true, false, false);
2172
2173 if (!sensor)
2174 return -ENOMEM;
2175
2176 return 0;
2177 }
2178
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)2179 static int pmbus_add_fan_attributes(struct i2c_client *client,
2180 struct pmbus_data *data)
2181 {
2182 const struct pmbus_driver_info *info = data->info;
2183 int index = 1;
2184 int page;
2185 int ret;
2186
2187 for (page = 0; page < info->pages; page++) {
2188 int f;
2189
2190 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
2191 int regval;
2192
2193 if (!(info->func[page] & pmbus_fan_flags[f]))
2194 break;
2195
2196 if (!pmbus_check_word_register(client, page,
2197 pmbus_fan_registers[f]))
2198 break;
2199
2200 /*
2201 * Skip fan if not installed.
2202 * Each fan configuration register covers multiple fans,
2203 * so we have to do some magic.
2204 */
2205 regval = _pmbus_read_byte_data(client, page,
2206 pmbus_fan_config_registers[f]);
2207 if (regval < 0 ||
2208 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
2209 continue;
2210
2211 if (pmbus_add_sensor(data, "fan", "input", index,
2212 page, 0xff, pmbus_fan_registers[f],
2213 PSC_FAN, true, true, true) == NULL)
2214 return -ENOMEM;
2215
2216 /* Fan control */
2217 if (pmbus_check_word_register(client, page,
2218 pmbus_fan_command_registers[f])) {
2219 ret = pmbus_add_fan_ctrl(client, data, index,
2220 page, f, regval);
2221 if (ret < 0)
2222 return ret;
2223 }
2224
2225 /*
2226 * Each fan status register covers multiple fans,
2227 * so we have to do some magic.
2228 */
2229 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
2230 pmbus_check_byte_register(client,
2231 page, pmbus_fan_status_registers[f])) {
2232 int reg;
2233
2234 if (f > 1) /* fan 3, 4 */
2235 reg = PMBUS_STATUS_FAN_34;
2236 else
2237 reg = PMBUS_STATUS_FAN_12;
2238 ret = pmbus_add_boolean(data, "fan",
2239 "alarm", index, NULL, NULL, page, reg,
2240 PB_FAN_FAN1_WARNING >> (f & 1));
2241 if (ret)
2242 return ret;
2243 ret = pmbus_add_boolean(data, "fan",
2244 "fault", index, NULL, NULL, page, reg,
2245 PB_FAN_FAN1_FAULT >> (f & 1));
2246 if (ret)
2247 return ret;
2248 }
2249 index++;
2250 }
2251 }
2252 return 0;
2253 }
2254
2255 struct pmbus_samples_attr {
2256 int reg;
2257 char *name;
2258 };
2259
2260 struct pmbus_samples_reg {
2261 int page;
2262 struct pmbus_samples_attr *attr;
2263 struct device_attribute dev_attr;
2264 };
2265
2266 static struct pmbus_samples_attr pmbus_samples_registers[] = {
2267 {
2268 .reg = PMBUS_VIRT_SAMPLES,
2269 .name = "samples",
2270 }, {
2271 .reg = PMBUS_VIRT_IN_SAMPLES,
2272 .name = "in_samples",
2273 }, {
2274 .reg = PMBUS_VIRT_CURR_SAMPLES,
2275 .name = "curr_samples",
2276 }, {
2277 .reg = PMBUS_VIRT_POWER_SAMPLES,
2278 .name = "power_samples",
2279 }, {
2280 .reg = PMBUS_VIRT_TEMP_SAMPLES,
2281 .name = "temp_samples",
2282 }
2283 };
2284
2285 #define to_samples_reg(x) container_of(x, struct pmbus_samples_reg, dev_attr)
2286
pmbus_show_samples(struct device * dev,struct device_attribute * devattr,char * buf)2287 static ssize_t pmbus_show_samples(struct device *dev,
2288 struct device_attribute *devattr, char *buf)
2289 {
2290 int val;
2291 struct i2c_client *client = to_i2c_client(dev->parent);
2292 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2293 struct pmbus_data *data = i2c_get_clientdata(client);
2294
2295 mutex_lock(&data->update_lock);
2296 val = _pmbus_read_word_data(client, reg->page, 0xff, reg->attr->reg);
2297 mutex_unlock(&data->update_lock);
2298 if (val < 0)
2299 return val;
2300
2301 return sysfs_emit(buf, "%d\n", val);
2302 }
2303
pmbus_set_samples(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)2304 static ssize_t pmbus_set_samples(struct device *dev,
2305 struct device_attribute *devattr,
2306 const char *buf, size_t count)
2307 {
2308 int ret;
2309 long val;
2310 struct i2c_client *client = to_i2c_client(dev->parent);
2311 struct pmbus_samples_reg *reg = to_samples_reg(devattr);
2312 struct pmbus_data *data = i2c_get_clientdata(client);
2313
2314 if (kstrtol(buf, 0, &val) < 0)
2315 return -EINVAL;
2316
2317 mutex_lock(&data->update_lock);
2318 ret = _pmbus_write_word_data(client, reg->page, reg->attr->reg, val);
2319 mutex_unlock(&data->update_lock);
2320
2321 return ret ? : count;
2322 }
2323
pmbus_add_samples_attr(struct pmbus_data * data,int page,struct pmbus_samples_attr * attr)2324 static int pmbus_add_samples_attr(struct pmbus_data *data, int page,
2325 struct pmbus_samples_attr *attr)
2326 {
2327 struct pmbus_samples_reg *reg;
2328
2329 reg = devm_kzalloc(data->dev, sizeof(*reg), GFP_KERNEL);
2330 if (!reg)
2331 return -ENOMEM;
2332
2333 reg->attr = attr;
2334 reg->page = page;
2335
2336 pmbus_dev_attr_init(®->dev_attr, attr->name, 0644,
2337 pmbus_show_samples, pmbus_set_samples);
2338
2339 return pmbus_add_attribute(data, ®->dev_attr.attr);
2340 }
2341
pmbus_add_samples_attributes(struct i2c_client * client,struct pmbus_data * data)2342 static int pmbus_add_samples_attributes(struct i2c_client *client,
2343 struct pmbus_data *data)
2344 {
2345 const struct pmbus_driver_info *info = data->info;
2346 int s;
2347
2348 if (!(info->func[0] & PMBUS_HAVE_SAMPLES))
2349 return 0;
2350
2351 for (s = 0; s < ARRAY_SIZE(pmbus_samples_registers); s++) {
2352 struct pmbus_samples_attr *attr;
2353 int ret;
2354
2355 attr = &pmbus_samples_registers[s];
2356 if (!pmbus_check_word_register(client, 0, attr->reg))
2357 continue;
2358
2359 ret = pmbus_add_samples_attr(data, 0, attr);
2360 if (ret)
2361 return ret;
2362 }
2363
2364 return 0;
2365 }
2366
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)2367 static int pmbus_find_attributes(struct i2c_client *client,
2368 struct pmbus_data *data)
2369 {
2370 int ret;
2371
2372 /* Voltage sensors */
2373 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
2374 ARRAY_SIZE(voltage_attributes));
2375 if (ret)
2376 return ret;
2377
2378 /* Current sensors */
2379 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
2380 ARRAY_SIZE(current_attributes));
2381 if (ret)
2382 return ret;
2383
2384 /* Power sensors */
2385 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
2386 ARRAY_SIZE(power_attributes));
2387 if (ret)
2388 return ret;
2389
2390 /* Temperature sensors */
2391 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
2392 ARRAY_SIZE(temp_attributes));
2393 if (ret)
2394 return ret;
2395
2396 /* Fans */
2397 ret = pmbus_add_fan_attributes(client, data);
2398 if (ret)
2399 return ret;
2400
2401 ret = pmbus_add_samples_attributes(client, data);
2402 return ret;
2403 }
2404
2405 /*
2406 * The pmbus_class_attr_map structure maps one sensor class to
2407 * it's corresponding sensor attributes array.
2408 */
2409 struct pmbus_class_attr_map {
2410 enum pmbus_sensor_classes class;
2411 int nattr;
2412 const struct pmbus_sensor_attr *attr;
2413 };
2414
2415 static const struct pmbus_class_attr_map class_attr_map[] = {
2416 {
2417 .class = PSC_VOLTAGE_IN,
2418 .attr = voltage_attributes,
2419 .nattr = ARRAY_SIZE(voltage_attributes),
2420 }, {
2421 .class = PSC_VOLTAGE_OUT,
2422 .attr = voltage_attributes,
2423 .nattr = ARRAY_SIZE(voltage_attributes),
2424 }, {
2425 .class = PSC_CURRENT_IN,
2426 .attr = current_attributes,
2427 .nattr = ARRAY_SIZE(current_attributes),
2428 }, {
2429 .class = PSC_CURRENT_OUT,
2430 .attr = current_attributes,
2431 .nattr = ARRAY_SIZE(current_attributes),
2432 }, {
2433 .class = PSC_POWER,
2434 .attr = power_attributes,
2435 .nattr = ARRAY_SIZE(power_attributes),
2436 }, {
2437 .class = PSC_TEMPERATURE,
2438 .attr = temp_attributes,
2439 .nattr = ARRAY_SIZE(temp_attributes),
2440 }
2441 };
2442
2443 /*
2444 * Read the coefficients for direct mode.
2445 */
pmbus_read_coefficients(struct i2c_client * client,struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)2446 static int pmbus_read_coefficients(struct i2c_client *client,
2447 struct pmbus_driver_info *info,
2448 const struct pmbus_sensor_attr *attr)
2449 {
2450 int rv;
2451 union i2c_smbus_data data;
2452 enum pmbus_sensor_classes class = attr->class;
2453 s8 R;
2454 s16 m, b;
2455
2456 data.block[0] = 2;
2457 data.block[1] = attr->reg;
2458 data.block[2] = 0x01;
2459
2460 rv = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2461 I2C_SMBUS_WRITE, PMBUS_COEFFICIENTS,
2462 I2C_SMBUS_BLOCK_PROC_CALL, &data);
2463
2464 if (rv < 0)
2465 return rv;
2466
2467 if (data.block[0] != 5)
2468 return -EIO;
2469
2470 m = data.block[1] | (data.block[2] << 8);
2471 b = data.block[3] | (data.block[4] << 8);
2472 R = data.block[5];
2473 info->m[class] = m;
2474 info->b[class] = b;
2475 info->R[class] = R;
2476
2477 return rv;
2478 }
2479
pmbus_init_coefficients(struct i2c_client * client,struct pmbus_driver_info * info)2480 static int pmbus_init_coefficients(struct i2c_client *client,
2481 struct pmbus_driver_info *info)
2482 {
2483 int i, n, ret = -EINVAL;
2484 const struct pmbus_class_attr_map *map;
2485 const struct pmbus_sensor_attr *attr;
2486
2487 for (i = 0; i < ARRAY_SIZE(class_attr_map); i++) {
2488 map = &class_attr_map[i];
2489 if (info->format[map->class] != direct)
2490 continue;
2491 for (n = 0; n < map->nattr; n++) {
2492 attr = &map->attr[n];
2493 if (map->class != attr->class)
2494 continue;
2495 ret = pmbus_read_coefficients(client, info, attr);
2496 if (ret >= 0)
2497 break;
2498 }
2499 if (ret < 0) {
2500 dev_err(&client->dev,
2501 "No coefficients found for sensor class %d\n",
2502 map->class);
2503 return -EINVAL;
2504 }
2505 }
2506
2507 return 0;
2508 }
2509
2510 /*
2511 * Identify chip parameters.
2512 * This function is called for all chips.
2513 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)2514 static int pmbus_identify_common(struct i2c_client *client,
2515 struct pmbus_data *data, int page)
2516 {
2517 int vout_mode = -1;
2518
2519 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
2520 vout_mode = _pmbus_read_byte_data(client, page,
2521 PMBUS_VOUT_MODE);
2522 if (vout_mode >= 0 && vout_mode != 0xff) {
2523 /*
2524 * Not all chips support the VOUT_MODE command,
2525 * so a failure to read it is not an error.
2526 */
2527 switch (vout_mode >> 5) {
2528 case 0: /* linear mode */
2529 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
2530 return -ENODEV;
2531
2532 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
2533 break;
2534 case 1: /* VID mode */
2535 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
2536 return -ENODEV;
2537 break;
2538 case 2: /* direct mode */
2539 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
2540 return -ENODEV;
2541 break;
2542 case 3: /* ieee 754 half precision */
2543 if (data->info->format[PSC_VOLTAGE_OUT] != ieee754)
2544 return -ENODEV;
2545 break;
2546 default:
2547 return -ENODEV;
2548 }
2549 }
2550
2551 return 0;
2552 }
2553
pmbus_read_status_byte(struct i2c_client * client,int page)2554 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2555 {
2556 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2557 }
2558
pmbus_read_status_word(struct i2c_client * client,int page)2559 static int pmbus_read_status_word(struct i2c_client *client, int page)
2560 {
2561 return _pmbus_read_word_data(client, page, 0xff, PMBUS_STATUS_WORD);
2562 }
2563
2564 /* PEC attribute support */
2565
pec_show(struct device * dev,struct device_attribute * dummy,char * buf)2566 static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
2567 char *buf)
2568 {
2569 struct i2c_client *client = to_i2c_client(dev);
2570
2571 return sysfs_emit(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
2572 }
2573
pec_store(struct device * dev,struct device_attribute * dummy,const char * buf,size_t count)2574 static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
2575 const char *buf, size_t count)
2576 {
2577 struct i2c_client *client = to_i2c_client(dev);
2578 bool enable;
2579 int err;
2580
2581 err = kstrtobool(buf, &enable);
2582 if (err < 0)
2583 return err;
2584
2585 if (enable)
2586 client->flags |= I2C_CLIENT_PEC;
2587 else
2588 client->flags &= ~I2C_CLIENT_PEC;
2589
2590 return count;
2591 }
2592
2593 static DEVICE_ATTR_RW(pec);
2594
pmbus_remove_pec(void * dev)2595 static void pmbus_remove_pec(void *dev)
2596 {
2597 device_remove_file(dev, &dev_attr_pec);
2598 }
2599
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2600 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2601 struct pmbus_driver_info *info)
2602 {
2603 struct device *dev = &client->dev;
2604 int page, ret;
2605
2606 /*
2607 * Figure out if PEC is enabled before accessing any other register.
2608 * Make sure PEC is disabled, will be enabled later if needed.
2609 */
2610 client->flags &= ~I2C_CLIENT_PEC;
2611
2612 /* Enable PEC if the controller and bus supports it */
2613 if (!(data->flags & PMBUS_NO_CAPABILITY)) {
2614 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2615 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK)) {
2616 if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_PEC))
2617 client->flags |= I2C_CLIENT_PEC;
2618 }
2619 }
2620
2621 /*
2622 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2623 * to use PMBUS_STATUS_BYTE instead if that is the case.
2624 * Bail out if both registers are not supported.
2625 */
2626 data->read_status = pmbus_read_status_word;
2627 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2628 if (ret < 0 || ret == 0xffff) {
2629 data->read_status = pmbus_read_status_byte;
2630 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2631 if (ret < 0 || ret == 0xff) {
2632 dev_err(dev, "PMBus status register not found\n");
2633 return -ENODEV;
2634 }
2635 } else {
2636 data->has_status_word = true;
2637 }
2638
2639 /*
2640 * Check if the chip is write protected. If it is, we can not clear
2641 * faults, and we should not try it. Also, in that case, writes into
2642 * limit registers need to be disabled.
2643 */
2644 if (!(data->flags & PMBUS_NO_WRITE_PROTECT)) {
2645 ret = i2c_smbus_read_byte_data(client, PMBUS_WRITE_PROTECT);
2646 if (ret > 0 && (ret & PB_WP_ANY))
2647 data->flags |= PMBUS_WRITE_PROTECTED | PMBUS_SKIP_STATUS_CHECK;
2648 }
2649
2650 ret = i2c_smbus_read_byte_data(client, PMBUS_REVISION);
2651 if (ret >= 0)
2652 data->revision = ret;
2653
2654 if (data->info->pages)
2655 pmbus_clear_faults(client);
2656 else
2657 pmbus_clear_fault_page(client, -1);
2658
2659 if (info->identify) {
2660 ret = (*info->identify)(client, info);
2661 if (ret < 0) {
2662 dev_err(dev, "Chip identification failed\n");
2663 return ret;
2664 }
2665 }
2666
2667 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2668 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2669 return -ENODEV;
2670 }
2671
2672 for (page = 0; page < info->pages; page++) {
2673 ret = pmbus_identify_common(client, data, page);
2674 if (ret < 0) {
2675 dev_err(dev, "Failed to identify chip capabilities\n");
2676 return ret;
2677 }
2678 }
2679
2680 if (data->flags & PMBUS_USE_COEFFICIENTS_CMD) {
2681 if (!i2c_check_functionality(client->adapter,
2682 I2C_FUNC_SMBUS_BLOCK_PROC_CALL))
2683 return -ENODEV;
2684
2685 ret = pmbus_init_coefficients(client, info);
2686 if (ret < 0)
2687 return ret;
2688 }
2689
2690 if (client->flags & I2C_CLIENT_PEC) {
2691 /*
2692 * If I2C_CLIENT_PEC is set here, both the I2C adapter and the
2693 * chip support PEC. Add 'pec' attribute to client device to let
2694 * the user control it.
2695 */
2696 ret = device_create_file(dev, &dev_attr_pec);
2697 if (ret)
2698 return ret;
2699 ret = devm_add_action_or_reset(dev, pmbus_remove_pec, dev);
2700 if (ret)
2701 return ret;
2702 }
2703
2704 return 0;
2705 }
2706
2707 /* A PMBus status flag and the corresponding REGULATOR_ERROR_* and REGULATOR_EVENTS_* flag */
2708 struct pmbus_status_assoc {
2709 int pflag, rflag, eflag;
2710 };
2711
2712 /* PMBus->regulator bit mappings for a PMBus status register */
2713 struct pmbus_status_category {
2714 int func;
2715 int reg;
2716 const struct pmbus_status_assoc *bits; /* zero-terminated */
2717 };
2718
2719 static const struct pmbus_status_category __maybe_unused pmbus_status_flag_map[] = {
2720 {
2721 .func = PMBUS_HAVE_STATUS_VOUT,
2722 .reg = PMBUS_STATUS_VOUT,
2723 .bits = (const struct pmbus_status_assoc[]) {
2724 { PB_VOLTAGE_UV_WARNING, REGULATOR_ERROR_UNDER_VOLTAGE_WARN,
2725 REGULATOR_EVENT_UNDER_VOLTAGE_WARN },
2726 { PB_VOLTAGE_UV_FAULT, REGULATOR_ERROR_UNDER_VOLTAGE,
2727 REGULATOR_EVENT_UNDER_VOLTAGE },
2728 { PB_VOLTAGE_OV_WARNING, REGULATOR_ERROR_OVER_VOLTAGE_WARN,
2729 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2730 { PB_VOLTAGE_OV_FAULT, REGULATOR_ERROR_REGULATION_OUT,
2731 REGULATOR_EVENT_OVER_VOLTAGE_WARN },
2732 { },
2733 },
2734 }, {
2735 .func = PMBUS_HAVE_STATUS_IOUT,
2736 .reg = PMBUS_STATUS_IOUT,
2737 .bits = (const struct pmbus_status_assoc[]) {
2738 { PB_IOUT_OC_WARNING, REGULATOR_ERROR_OVER_CURRENT_WARN,
2739 REGULATOR_EVENT_OVER_CURRENT_WARN },
2740 { PB_IOUT_OC_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2741 REGULATOR_EVENT_OVER_CURRENT },
2742 { PB_IOUT_OC_LV_FAULT, REGULATOR_ERROR_OVER_CURRENT,
2743 REGULATOR_EVENT_OVER_CURRENT },
2744 { },
2745 },
2746 }, {
2747 .func = PMBUS_HAVE_STATUS_TEMP,
2748 .reg = PMBUS_STATUS_TEMPERATURE,
2749 .bits = (const struct pmbus_status_assoc[]) {
2750 { PB_TEMP_OT_WARNING, REGULATOR_ERROR_OVER_TEMP_WARN,
2751 REGULATOR_EVENT_OVER_TEMP_WARN },
2752 { PB_TEMP_OT_FAULT, REGULATOR_ERROR_OVER_TEMP,
2753 REGULATOR_EVENT_OVER_TEMP },
2754 { },
2755 },
2756 },
2757 };
2758
_pmbus_is_enabled(struct i2c_client * client,u8 page)2759 static int _pmbus_is_enabled(struct i2c_client *client, u8 page)
2760 {
2761 int ret;
2762
2763 ret = _pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2764
2765 if (ret < 0)
2766 return ret;
2767
2768 return !!(ret & PB_OPERATION_CONTROL_ON);
2769 }
2770
pmbus_is_enabled(struct i2c_client * client,u8 page)2771 static int __maybe_unused pmbus_is_enabled(struct i2c_client *client, u8 page)
2772 {
2773 struct pmbus_data *data = i2c_get_clientdata(client);
2774 int ret;
2775
2776 mutex_lock(&data->update_lock);
2777 ret = _pmbus_is_enabled(client, page);
2778 mutex_unlock(&data->update_lock);
2779
2780 return ret;
2781 }
2782
2783 #define to_dev_attr(_dev_attr) \
2784 container_of(_dev_attr, struct device_attribute, attr)
2785
pmbus_notify(struct pmbus_data * data,int page,int reg,int flags)2786 static void pmbus_notify(struct pmbus_data *data, int page, int reg, int flags)
2787 {
2788 int i;
2789
2790 for (i = 0; i < data->num_attributes; i++) {
2791 struct device_attribute *da = to_dev_attr(data->group.attrs[i]);
2792 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
2793 int index = attr->index;
2794 u16 smask = pb_index_to_mask(index);
2795 u8 spage = pb_index_to_page(index);
2796 u16 sreg = pb_index_to_reg(index);
2797
2798 if (reg == sreg && page == spage && (smask & flags)) {
2799 dev_dbg(data->dev, "sysfs notify: %s", da->attr.name);
2800 sysfs_notify(&data->dev->kobj, NULL, da->attr.name);
2801 kobject_uevent(&data->dev->kobj, KOBJ_CHANGE);
2802 flags &= ~smask;
2803 }
2804
2805 if (!flags)
2806 break;
2807 }
2808 }
2809
_pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2810 static int _pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2811 unsigned int *event, bool notify)
2812 {
2813 int i, status;
2814 const struct pmbus_status_category *cat;
2815 const struct pmbus_status_assoc *bit;
2816 struct device *dev = data->dev;
2817 struct i2c_client *client = to_i2c_client(dev);
2818 int func = data->info->func[page];
2819
2820 *flags = 0;
2821 *event = 0;
2822
2823 for (i = 0; i < ARRAY_SIZE(pmbus_status_flag_map); i++) {
2824 cat = &pmbus_status_flag_map[i];
2825 if (!(func & cat->func))
2826 continue;
2827
2828 status = _pmbus_read_byte_data(client, page, cat->reg);
2829 if (status < 0)
2830 return status;
2831
2832 for (bit = cat->bits; bit->pflag; bit++)
2833 if (status & bit->pflag) {
2834 *flags |= bit->rflag;
2835 *event |= bit->eflag;
2836 }
2837
2838 if (notify && status)
2839 pmbus_notify(data, page, cat->reg, status);
2840
2841 }
2842
2843 /*
2844 * Map what bits of STATUS_{WORD,BYTE} we can to REGULATOR_ERROR_*
2845 * bits. Some of the other bits are tempting (especially for cases
2846 * where we don't have the relevant PMBUS_HAVE_STATUS_*
2847 * functionality), but there's an unfortunate ambiguity in that
2848 * they're defined as indicating a fault *or* a warning, so we can't
2849 * easily determine whether to report REGULATOR_ERROR_<foo> or
2850 * REGULATOR_ERROR_<foo>_WARN.
2851 */
2852 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2853 if (status < 0)
2854 return status;
2855
2856 if (_pmbus_is_enabled(client, page)) {
2857 if (status & PB_STATUS_OFF) {
2858 *flags |= REGULATOR_ERROR_FAIL;
2859 *event |= REGULATOR_EVENT_FAIL;
2860 }
2861
2862 if (status & PB_STATUS_POWER_GOOD_N) {
2863 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2864 *event |= REGULATOR_EVENT_REGULATION_OUT;
2865 }
2866 }
2867 /*
2868 * Unlike most other status bits, PB_STATUS_{IOUT_OC,VOUT_OV} are
2869 * defined strictly as fault indicators (not warnings).
2870 */
2871 if (status & PB_STATUS_IOUT_OC) {
2872 *flags |= REGULATOR_ERROR_OVER_CURRENT;
2873 *event |= REGULATOR_EVENT_OVER_CURRENT;
2874 }
2875 if (status & PB_STATUS_VOUT_OV) {
2876 *flags |= REGULATOR_ERROR_REGULATION_OUT;
2877 *event |= REGULATOR_EVENT_FAIL;
2878 }
2879
2880 /*
2881 * If we haven't discovered any thermal faults or warnings via
2882 * PMBUS_STATUS_TEMPERATURE, map PB_STATUS_TEMPERATURE to a warning as
2883 * a (conservative) best-effort interpretation.
2884 */
2885 if (!(*flags & (REGULATOR_ERROR_OVER_TEMP | REGULATOR_ERROR_OVER_TEMP_WARN)) &&
2886 (status & PB_STATUS_TEMPERATURE)) {
2887 *flags |= REGULATOR_ERROR_OVER_TEMP_WARN;
2888 *event |= REGULATOR_EVENT_OVER_TEMP_WARN;
2889 }
2890
2891
2892 return 0;
2893 }
2894
pmbus_get_flags(struct pmbus_data * data,u8 page,unsigned int * flags,unsigned int * event,bool notify)2895 static int __maybe_unused pmbus_get_flags(struct pmbus_data *data, u8 page, unsigned int *flags,
2896 unsigned int *event, bool notify)
2897 {
2898 int ret;
2899
2900 mutex_lock(&data->update_lock);
2901 ret = _pmbus_get_flags(data, page, flags, event, notify);
2902 mutex_unlock(&data->update_lock);
2903
2904 return ret;
2905 }
2906
2907 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2908 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2909 {
2910 struct device *dev = rdev_get_dev(rdev);
2911 struct i2c_client *client = to_i2c_client(dev->parent);
2912
2913 return pmbus_is_enabled(client, rdev_get_id(rdev));
2914 }
2915
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2916 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2917 {
2918 struct device *dev = rdev_get_dev(rdev);
2919 struct i2c_client *client = to_i2c_client(dev->parent);
2920 struct pmbus_data *data = i2c_get_clientdata(client);
2921 u8 page = rdev_get_id(rdev);
2922 int ret;
2923
2924 mutex_lock(&data->update_lock);
2925 ret = pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2926 PB_OPERATION_CONTROL_ON,
2927 enable ? PB_OPERATION_CONTROL_ON : 0);
2928 mutex_unlock(&data->update_lock);
2929
2930 return ret;
2931 }
2932
pmbus_regulator_enable(struct regulator_dev * rdev)2933 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2934 {
2935 return _pmbus_regulator_on_off(rdev, 1);
2936 }
2937
pmbus_regulator_disable(struct regulator_dev * rdev)2938 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2939 {
2940 return _pmbus_regulator_on_off(rdev, 0);
2941 }
2942
pmbus_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)2943 static int pmbus_regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags)
2944 {
2945 struct device *dev = rdev_get_dev(rdev);
2946 struct i2c_client *client = to_i2c_client(dev->parent);
2947 struct pmbus_data *data = i2c_get_clientdata(client);
2948 int event;
2949
2950 return pmbus_get_flags(data, rdev_get_id(rdev), flags, &event, false);
2951 }
2952
pmbus_regulator_get_status(struct regulator_dev * rdev)2953 static int pmbus_regulator_get_status(struct regulator_dev *rdev)
2954 {
2955 struct device *dev = rdev_get_dev(rdev);
2956 struct i2c_client *client = to_i2c_client(dev->parent);
2957 struct pmbus_data *data = i2c_get_clientdata(client);
2958 u8 page = rdev_get_id(rdev);
2959 int status, ret;
2960 int event;
2961
2962 mutex_lock(&data->update_lock);
2963 status = pmbus_get_status(client, page, PMBUS_STATUS_WORD);
2964 if (status < 0) {
2965 ret = status;
2966 goto unlock;
2967 }
2968
2969 if (status & PB_STATUS_OFF) {
2970 ret = REGULATOR_STATUS_OFF;
2971 goto unlock;
2972 }
2973
2974 /* If regulator is ON & reports power good then return ON */
2975 if (!(status & PB_STATUS_POWER_GOOD_N)) {
2976 ret = REGULATOR_STATUS_ON;
2977 goto unlock;
2978 }
2979
2980 ret = _pmbus_get_flags(data, rdev_get_id(rdev), &status, &event, false);
2981 if (ret)
2982 goto unlock;
2983
2984 if (status & (REGULATOR_ERROR_UNDER_VOLTAGE | REGULATOR_ERROR_OVER_CURRENT |
2985 REGULATOR_ERROR_REGULATION_OUT | REGULATOR_ERROR_FAIL | REGULATOR_ERROR_OVER_TEMP)) {
2986 ret = REGULATOR_STATUS_ERROR;
2987 goto unlock;
2988 }
2989
2990 ret = REGULATOR_STATUS_UNDEFINED;
2991
2992 unlock:
2993 mutex_unlock(&data->update_lock);
2994 return ret;
2995 }
2996
pmbus_regulator_get_low_margin(struct i2c_client * client,int page)2997 static int pmbus_regulator_get_low_margin(struct i2c_client *client, int page)
2998 {
2999 struct pmbus_data *data = i2c_get_clientdata(client);
3000 struct pmbus_sensor s = {
3001 .page = page,
3002 .class = PSC_VOLTAGE_OUT,
3003 .convert = true,
3004 .data = -1,
3005 };
3006
3007 if (data->vout_low[page] < 0) {
3008 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MIN))
3009 s.data = _pmbus_read_word_data(client, page, 0xff,
3010 PMBUS_MFR_VOUT_MIN);
3011 if (s.data < 0) {
3012 s.data = _pmbus_read_word_data(client, page, 0xff,
3013 PMBUS_VOUT_MARGIN_LOW);
3014 if (s.data < 0)
3015 return s.data;
3016 }
3017 data->vout_low[page] = pmbus_reg2data(data, &s);
3018 }
3019
3020 return data->vout_low[page];
3021 }
3022
pmbus_regulator_get_high_margin(struct i2c_client * client,int page)3023 static int pmbus_regulator_get_high_margin(struct i2c_client *client, int page)
3024 {
3025 struct pmbus_data *data = i2c_get_clientdata(client);
3026 struct pmbus_sensor s = {
3027 .page = page,
3028 .class = PSC_VOLTAGE_OUT,
3029 .convert = true,
3030 .data = -1,
3031 };
3032
3033 if (data->vout_high[page] < 0) {
3034 if (pmbus_check_word_register(client, page, PMBUS_MFR_VOUT_MAX))
3035 s.data = _pmbus_read_word_data(client, page, 0xff,
3036 PMBUS_MFR_VOUT_MAX);
3037 if (s.data < 0) {
3038 s.data = _pmbus_read_word_data(client, page, 0xff,
3039 PMBUS_VOUT_MARGIN_HIGH);
3040 if (s.data < 0)
3041 return s.data;
3042 }
3043 data->vout_high[page] = pmbus_reg2data(data, &s);
3044 }
3045
3046 return data->vout_high[page];
3047 }
3048
pmbus_regulator_get_voltage(struct regulator_dev * rdev)3049 static int pmbus_regulator_get_voltage(struct regulator_dev *rdev)
3050 {
3051 struct device *dev = rdev_get_dev(rdev);
3052 struct i2c_client *client = to_i2c_client(dev->parent);
3053 struct pmbus_data *data = i2c_get_clientdata(client);
3054 struct pmbus_sensor s = {
3055 .page = rdev_get_id(rdev),
3056 .class = PSC_VOLTAGE_OUT,
3057 .convert = true,
3058 };
3059
3060 s.data = _pmbus_read_word_data(client, s.page, 0xff, PMBUS_READ_VOUT);
3061 if (s.data < 0)
3062 return s.data;
3063
3064 return (int)pmbus_reg2data(data, &s) * 1000; /* unit is uV */
3065 }
3066
pmbus_regulator_set_voltage(struct regulator_dev * rdev,int min_uv,int max_uv,unsigned int * selector)3067 static int pmbus_regulator_set_voltage(struct regulator_dev *rdev, int min_uv,
3068 int max_uv, unsigned int *selector)
3069 {
3070 struct device *dev = rdev_get_dev(rdev);
3071 struct i2c_client *client = to_i2c_client(dev->parent);
3072 struct pmbus_data *data = i2c_get_clientdata(client);
3073 struct pmbus_sensor s = {
3074 .page = rdev_get_id(rdev),
3075 .class = PSC_VOLTAGE_OUT,
3076 .convert = true,
3077 .data = -1,
3078 };
3079 int val = DIV_ROUND_CLOSEST(min_uv, 1000); /* convert to mV */
3080 int low, high;
3081
3082 *selector = 0;
3083
3084 low = pmbus_regulator_get_low_margin(client, s.page);
3085 if (low < 0)
3086 return low;
3087
3088 high = pmbus_regulator_get_high_margin(client, s.page);
3089 if (high < 0)
3090 return high;
3091
3092 /* Make sure we are within margins */
3093 if (low > val)
3094 val = low;
3095 if (high < val)
3096 val = high;
3097
3098 val = pmbus_data2reg(data, &s, val);
3099
3100 return _pmbus_write_word_data(client, s.page, PMBUS_VOUT_COMMAND, (u16)val);
3101 }
3102
pmbus_regulator_list_voltage(struct regulator_dev * rdev,unsigned int selector)3103 static int pmbus_regulator_list_voltage(struct regulator_dev *rdev,
3104 unsigned int selector)
3105 {
3106 struct device *dev = rdev_get_dev(rdev);
3107 struct i2c_client *client = to_i2c_client(dev->parent);
3108 int val, low, high;
3109
3110 if (selector >= rdev->desc->n_voltages ||
3111 selector < rdev->desc->linear_min_sel)
3112 return -EINVAL;
3113
3114 selector -= rdev->desc->linear_min_sel;
3115 val = DIV_ROUND_CLOSEST(rdev->desc->min_uV +
3116 (rdev->desc->uV_step * selector), 1000); /* convert to mV */
3117
3118 low = pmbus_regulator_get_low_margin(client, rdev_get_id(rdev));
3119 if (low < 0)
3120 return low;
3121
3122 high = pmbus_regulator_get_high_margin(client, rdev_get_id(rdev));
3123 if (high < 0)
3124 return high;
3125
3126 if (val >= low && val <= high)
3127 return val * 1000; /* unit is uV */
3128
3129 return 0;
3130 }
3131
3132 const struct regulator_ops pmbus_regulator_ops = {
3133 .enable = pmbus_regulator_enable,
3134 .disable = pmbus_regulator_disable,
3135 .is_enabled = pmbus_regulator_is_enabled,
3136 .get_error_flags = pmbus_regulator_get_error_flags,
3137 .get_status = pmbus_regulator_get_status,
3138 .get_voltage = pmbus_regulator_get_voltage,
3139 .set_voltage = pmbus_regulator_set_voltage,
3140 .list_voltage = pmbus_regulator_list_voltage,
3141 };
3142 EXPORT_SYMBOL_NS_GPL(pmbus_regulator_ops, PMBUS);
3143
pmbus_regulator_register(struct pmbus_data * data)3144 static int pmbus_regulator_register(struct pmbus_data *data)
3145 {
3146 struct device *dev = data->dev;
3147 const struct pmbus_driver_info *info = data->info;
3148 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3149 int i;
3150
3151 data->rdevs = devm_kzalloc(dev, sizeof(struct regulator_dev *) * info->num_regulators,
3152 GFP_KERNEL);
3153 if (!data->rdevs)
3154 return -ENOMEM;
3155
3156 for (i = 0; i < info->num_regulators; i++) {
3157 struct regulator_config config = { };
3158
3159 config.dev = dev;
3160 config.driver_data = data;
3161
3162 if (pdata && pdata->reg_init_data)
3163 config.init_data = &pdata->reg_init_data[i];
3164
3165 data->rdevs[i] = devm_regulator_register(dev, &info->reg_desc[i],
3166 &config);
3167 if (IS_ERR(data->rdevs[i]))
3168 return dev_err_probe(dev, PTR_ERR(data->rdevs[i]),
3169 "Failed to register %s regulator\n",
3170 info->reg_desc[i].name);
3171 }
3172
3173 return 0;
3174 }
3175
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3176 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3177 {
3178 int j;
3179
3180 for (j = 0; j < data->info->num_regulators; j++) {
3181 if (page == rdev_get_id(data->rdevs[j])) {
3182 regulator_notifier_call_chain(data->rdevs[j], event, NULL);
3183 break;
3184 }
3185 }
3186 return 0;
3187 }
3188 #else
pmbus_regulator_register(struct pmbus_data * data)3189 static int pmbus_regulator_register(struct pmbus_data *data)
3190 {
3191 return 0;
3192 }
3193
pmbus_regulator_notify(struct pmbus_data * data,int page,int event)3194 static int pmbus_regulator_notify(struct pmbus_data *data, int page, int event)
3195 {
3196 return 0;
3197 }
3198 #endif
3199
pmbus_write_smbalert_mask(struct i2c_client * client,u8 page,u8 reg,u8 val)3200 static int pmbus_write_smbalert_mask(struct i2c_client *client, u8 page, u8 reg, u8 val)
3201 {
3202 int ret;
3203
3204 ret = _pmbus_write_word_data(client, page, PMBUS_SMBALERT_MASK, reg | (val << 8));
3205
3206 /*
3207 * Clear fault systematically in case writing PMBUS_SMBALERT_MASK
3208 * is not supported by the chip.
3209 */
3210 pmbus_clear_fault_page(client, page);
3211
3212 return ret;
3213 }
3214
pmbus_fault_handler(int irq,void * pdata)3215 static irqreturn_t pmbus_fault_handler(int irq, void *pdata)
3216 {
3217 struct pmbus_data *data = pdata;
3218 struct i2c_client *client = to_i2c_client(data->dev);
3219
3220 int i, status, event;
3221 mutex_lock(&data->update_lock);
3222 for (i = 0; i < data->info->pages; i++) {
3223 _pmbus_get_flags(data, i, &status, &event, true);
3224
3225 if (event)
3226 pmbus_regulator_notify(data, i, event);
3227 }
3228
3229 pmbus_clear_faults(client);
3230 mutex_unlock(&data->update_lock);
3231
3232 return IRQ_HANDLED;
3233 }
3234
pmbus_irq_setup(struct i2c_client * client,struct pmbus_data * data)3235 static int pmbus_irq_setup(struct i2c_client *client, struct pmbus_data *data)
3236 {
3237 struct device *dev = &client->dev;
3238 const struct pmbus_status_category *cat;
3239 const struct pmbus_status_assoc *bit;
3240 int i, j, err, func;
3241 u8 mask;
3242
3243 static const u8 misc_status[] = {PMBUS_STATUS_CML, PMBUS_STATUS_OTHER,
3244 PMBUS_STATUS_MFR_SPECIFIC, PMBUS_STATUS_FAN_12,
3245 PMBUS_STATUS_FAN_34};
3246
3247 if (!client->irq)
3248 return 0;
3249
3250 for (i = 0; i < data->info->pages; i++) {
3251 func = data->info->func[i];
3252
3253 for (j = 0; j < ARRAY_SIZE(pmbus_status_flag_map); j++) {
3254 cat = &pmbus_status_flag_map[j];
3255 if (!(func & cat->func))
3256 continue;
3257 mask = 0;
3258 for (bit = cat->bits; bit->pflag; bit++)
3259 mask |= bit->pflag;
3260
3261 err = pmbus_write_smbalert_mask(client, i, cat->reg, ~mask);
3262 if (err)
3263 dev_dbg_once(dev, "Failed to set smbalert for reg 0x%02x\n",
3264 cat->reg);
3265 }
3266
3267 for (j = 0; j < ARRAY_SIZE(misc_status); j++)
3268 pmbus_write_smbalert_mask(client, i, misc_status[j], 0xff);
3269 }
3270
3271 /* Register notifiers */
3272 err = devm_request_threaded_irq(dev, client->irq, NULL, pmbus_fault_handler,
3273 IRQF_ONESHOT, "pmbus-irq", data);
3274 if (err) {
3275 dev_err(dev, "failed to request an irq %d\n", err);
3276 return err;
3277 }
3278
3279 return 0;
3280 }
3281
3282 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
3283
3284 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)3285 static int pmbus_debugfs_get(void *data, u64 *val)
3286 {
3287 int rc;
3288 struct pmbus_debugfs_entry *entry = data;
3289 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3290
3291 rc = mutex_lock_interruptible(&pdata->update_lock);
3292 if (rc)
3293 return rc;
3294 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
3295 mutex_unlock(&pdata->update_lock);
3296 if (rc < 0)
3297 return rc;
3298
3299 *val = rc;
3300
3301 return 0;
3302 }
3303 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
3304 "0x%02llx\n");
3305
pmbus_debugfs_get_status(void * data,u64 * val)3306 static int pmbus_debugfs_get_status(void *data, u64 *val)
3307 {
3308 int rc;
3309 struct pmbus_debugfs_entry *entry = data;
3310 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3311
3312 rc = mutex_lock_interruptible(&pdata->update_lock);
3313 if (rc)
3314 return rc;
3315 rc = pdata->read_status(entry->client, entry->page);
3316 mutex_unlock(&pdata->update_lock);
3317 if (rc < 0)
3318 return rc;
3319
3320 *val = rc;
3321
3322 return 0;
3323 }
3324 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
3325 NULL, "0x%04llx\n");
3326
pmbus_debugfs_mfr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3327 static ssize_t pmbus_debugfs_mfr_read(struct file *file, char __user *buf,
3328 size_t count, loff_t *ppos)
3329 {
3330 int rc;
3331 struct pmbus_debugfs_entry *entry = file->private_data;
3332 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
3333 char data[I2C_SMBUS_BLOCK_MAX + 2] = { 0 };
3334
3335 rc = mutex_lock_interruptible(&pdata->update_lock);
3336 if (rc)
3337 return rc;
3338 rc = pmbus_read_block_data(entry->client, entry->page, entry->reg,
3339 data);
3340 mutex_unlock(&pdata->update_lock);
3341 if (rc < 0)
3342 return rc;
3343
3344 /* Add newline at the end of a read data */
3345 data[rc] = '\n';
3346
3347 /* Include newline into the length */
3348 rc += 1;
3349
3350 return simple_read_from_buffer(buf, count, ppos, data, rc);
3351 }
3352
3353 static const struct file_operations pmbus_debugfs_ops_mfr = {
3354 .llseek = noop_llseek,
3355 .read = pmbus_debugfs_mfr_read,
3356 .write = NULL,
3357 .open = simple_open,
3358 };
3359
pmbus_remove_debugfs(void * data)3360 static void pmbus_remove_debugfs(void *data)
3361 {
3362 struct dentry *entry = data;
3363
3364 debugfs_remove_recursive(entry);
3365 }
3366
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3367 static int pmbus_init_debugfs(struct i2c_client *client,
3368 struct pmbus_data *data)
3369 {
3370 int i, idx = 0;
3371 char name[PMBUS_NAME_SIZE];
3372 struct pmbus_debugfs_entry *entries;
3373
3374 if (!pmbus_debugfs_dir)
3375 return -ENODEV;
3376
3377 /*
3378 * Create the debugfs directory for this device. Use the hwmon device
3379 * name to avoid conflicts (hwmon numbers are globally unique).
3380 */
3381 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
3382 pmbus_debugfs_dir);
3383 if (IS_ERR_OR_NULL(data->debugfs)) {
3384 data->debugfs = NULL;
3385 return -ENODEV;
3386 }
3387
3388 /*
3389 * Allocate the max possible entries we need.
3390 * 6 entries device-specific
3391 * 10 entries page-specific
3392 */
3393 entries = devm_kcalloc(data->dev,
3394 6 + data->info->pages * 10, sizeof(*entries),
3395 GFP_KERNEL);
3396 if (!entries)
3397 return -ENOMEM;
3398
3399 /*
3400 * Add device-specific entries.
3401 * Please note that the PMBUS standard allows all registers to be
3402 * page-specific.
3403 * To reduce the number of debugfs entries for devices with many pages
3404 * assume that values of the following registers are the same for all
3405 * pages and report values only for page 0.
3406 */
3407 if (pmbus_check_block_register(client, 0, PMBUS_MFR_ID)) {
3408 entries[idx].client = client;
3409 entries[idx].page = 0;
3410 entries[idx].reg = PMBUS_MFR_ID;
3411 debugfs_create_file("mfr_id", 0444, data->debugfs,
3412 &entries[idx++],
3413 &pmbus_debugfs_ops_mfr);
3414 }
3415
3416 if (pmbus_check_block_register(client, 0, PMBUS_MFR_MODEL)) {
3417 entries[idx].client = client;
3418 entries[idx].page = 0;
3419 entries[idx].reg = PMBUS_MFR_MODEL;
3420 debugfs_create_file("mfr_model", 0444, data->debugfs,
3421 &entries[idx++],
3422 &pmbus_debugfs_ops_mfr);
3423 }
3424
3425 if (pmbus_check_block_register(client, 0, PMBUS_MFR_REVISION)) {
3426 entries[idx].client = client;
3427 entries[idx].page = 0;
3428 entries[idx].reg = PMBUS_MFR_REVISION;
3429 debugfs_create_file("mfr_revision", 0444, data->debugfs,
3430 &entries[idx++],
3431 &pmbus_debugfs_ops_mfr);
3432 }
3433
3434 if (pmbus_check_block_register(client, 0, PMBUS_MFR_LOCATION)) {
3435 entries[idx].client = client;
3436 entries[idx].page = 0;
3437 entries[idx].reg = PMBUS_MFR_LOCATION;
3438 debugfs_create_file("mfr_location", 0444, data->debugfs,
3439 &entries[idx++],
3440 &pmbus_debugfs_ops_mfr);
3441 }
3442
3443 if (pmbus_check_block_register(client, 0, PMBUS_MFR_DATE)) {
3444 entries[idx].client = client;
3445 entries[idx].page = 0;
3446 entries[idx].reg = PMBUS_MFR_DATE;
3447 debugfs_create_file("mfr_date", 0444, data->debugfs,
3448 &entries[idx++],
3449 &pmbus_debugfs_ops_mfr);
3450 }
3451
3452 if (pmbus_check_block_register(client, 0, PMBUS_MFR_SERIAL)) {
3453 entries[idx].client = client;
3454 entries[idx].page = 0;
3455 entries[idx].reg = PMBUS_MFR_SERIAL;
3456 debugfs_create_file("mfr_serial", 0444, data->debugfs,
3457 &entries[idx++],
3458 &pmbus_debugfs_ops_mfr);
3459 }
3460
3461 /* Add page specific entries */
3462 for (i = 0; i < data->info->pages; ++i) {
3463 /* Check accessibility of status register if it's not page 0 */
3464 if (!i || pmbus_check_status_register(client, i)) {
3465 /* No need to set reg as we have special read op. */
3466 entries[idx].client = client;
3467 entries[idx].page = i;
3468 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
3469 debugfs_create_file(name, 0444, data->debugfs,
3470 &entries[idx++],
3471 &pmbus_debugfs_ops_status);
3472 }
3473
3474 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
3475 entries[idx].client = client;
3476 entries[idx].page = i;
3477 entries[idx].reg = PMBUS_STATUS_VOUT;
3478 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
3479 debugfs_create_file(name, 0444, data->debugfs,
3480 &entries[idx++],
3481 &pmbus_debugfs_ops);
3482 }
3483
3484 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
3485 entries[idx].client = client;
3486 entries[idx].page = i;
3487 entries[idx].reg = PMBUS_STATUS_IOUT;
3488 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
3489 debugfs_create_file(name, 0444, data->debugfs,
3490 &entries[idx++],
3491 &pmbus_debugfs_ops);
3492 }
3493
3494 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
3495 entries[idx].client = client;
3496 entries[idx].page = i;
3497 entries[idx].reg = PMBUS_STATUS_INPUT;
3498 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
3499 debugfs_create_file(name, 0444, data->debugfs,
3500 &entries[idx++],
3501 &pmbus_debugfs_ops);
3502 }
3503
3504 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
3505 entries[idx].client = client;
3506 entries[idx].page = i;
3507 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
3508 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
3509 debugfs_create_file(name, 0444, data->debugfs,
3510 &entries[idx++],
3511 &pmbus_debugfs_ops);
3512 }
3513
3514 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
3515 entries[idx].client = client;
3516 entries[idx].page = i;
3517 entries[idx].reg = PMBUS_STATUS_CML;
3518 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
3519 debugfs_create_file(name, 0444, data->debugfs,
3520 &entries[idx++],
3521 &pmbus_debugfs_ops);
3522 }
3523
3524 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
3525 entries[idx].client = client;
3526 entries[idx].page = i;
3527 entries[idx].reg = PMBUS_STATUS_OTHER;
3528 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
3529 debugfs_create_file(name, 0444, data->debugfs,
3530 &entries[idx++],
3531 &pmbus_debugfs_ops);
3532 }
3533
3534 if (pmbus_check_byte_register(client, i,
3535 PMBUS_STATUS_MFR_SPECIFIC)) {
3536 entries[idx].client = client;
3537 entries[idx].page = i;
3538 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
3539 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
3540 debugfs_create_file(name, 0444, data->debugfs,
3541 &entries[idx++],
3542 &pmbus_debugfs_ops);
3543 }
3544
3545 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
3546 entries[idx].client = client;
3547 entries[idx].page = i;
3548 entries[idx].reg = PMBUS_STATUS_FAN_12;
3549 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
3550 debugfs_create_file(name, 0444, data->debugfs,
3551 &entries[idx++],
3552 &pmbus_debugfs_ops);
3553 }
3554
3555 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
3556 entries[idx].client = client;
3557 entries[idx].page = i;
3558 entries[idx].reg = PMBUS_STATUS_FAN_34;
3559 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
3560 debugfs_create_file(name, 0444, data->debugfs,
3561 &entries[idx++],
3562 &pmbus_debugfs_ops);
3563 }
3564 }
3565
3566 return devm_add_action_or_reset(data->dev,
3567 pmbus_remove_debugfs, data->debugfs);
3568 }
3569 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)3570 static int pmbus_init_debugfs(struct i2c_client *client,
3571 struct pmbus_data *data)
3572 {
3573 return 0;
3574 }
3575 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
3576
pmbus_do_probe(struct i2c_client * client,struct pmbus_driver_info * info)3577 int pmbus_do_probe(struct i2c_client *client, struct pmbus_driver_info *info)
3578 {
3579 struct device *dev = &client->dev;
3580 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
3581 struct pmbus_data *data;
3582 size_t groups_num = 0;
3583 int ret;
3584 int i;
3585 char *name;
3586
3587 if (!info)
3588 return -ENODEV;
3589
3590 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
3591 | I2C_FUNC_SMBUS_BYTE_DATA
3592 | I2C_FUNC_SMBUS_WORD_DATA))
3593 return -ENODEV;
3594
3595 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
3596 if (!data)
3597 return -ENOMEM;
3598
3599 if (info->groups)
3600 while (info->groups[groups_num])
3601 groups_num++;
3602
3603 data->groups = devm_kcalloc(dev, groups_num + 2, sizeof(void *),
3604 GFP_KERNEL);
3605 if (!data->groups)
3606 return -ENOMEM;
3607
3608 i2c_set_clientdata(client, data);
3609 mutex_init(&data->update_lock);
3610 data->dev = dev;
3611
3612 if (pdata)
3613 data->flags = pdata->flags;
3614 data->info = info;
3615 data->currpage = -1;
3616 data->currphase = -1;
3617
3618 for (i = 0; i < ARRAY_SIZE(data->vout_low); i++) {
3619 data->vout_low[i] = -1;
3620 data->vout_high[i] = -1;
3621 }
3622
3623 ret = pmbus_init_common(client, data, info);
3624 if (ret < 0)
3625 return ret;
3626
3627 ret = pmbus_find_attributes(client, data);
3628 if (ret)
3629 return ret;
3630
3631 /*
3632 * If there are no attributes, something is wrong.
3633 * Bail out instead of trying to register nothing.
3634 */
3635 if (!data->num_attributes) {
3636 dev_err(dev, "No attributes found\n");
3637 return -ENODEV;
3638 }
3639
3640 name = devm_kstrdup(dev, client->name, GFP_KERNEL);
3641 if (!name)
3642 return -ENOMEM;
3643 strreplace(name, '-', '_');
3644
3645 data->groups[0] = &data->group;
3646 memcpy(data->groups + 1, info->groups, sizeof(void *) * groups_num);
3647 data->hwmon_dev = devm_hwmon_device_register_with_groups(dev,
3648 name, data, data->groups);
3649 if (IS_ERR(data->hwmon_dev)) {
3650 dev_err(dev, "Failed to register hwmon device\n");
3651 return PTR_ERR(data->hwmon_dev);
3652 }
3653
3654 ret = pmbus_regulator_register(data);
3655 if (ret)
3656 return ret;
3657
3658 ret = pmbus_irq_setup(client, data);
3659 if (ret)
3660 return ret;
3661
3662 ret = pmbus_init_debugfs(client, data);
3663 if (ret)
3664 dev_warn(dev, "Failed to register debugfs\n");
3665
3666 return 0;
3667 }
3668 EXPORT_SYMBOL_NS_GPL(pmbus_do_probe, PMBUS);
3669
pmbus_get_debugfs_dir(struct i2c_client * client)3670 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
3671 {
3672 struct pmbus_data *data = i2c_get_clientdata(client);
3673
3674 return data->debugfs;
3675 }
3676 EXPORT_SYMBOL_NS_GPL(pmbus_get_debugfs_dir, PMBUS);
3677
pmbus_lock_interruptible(struct i2c_client * client)3678 int pmbus_lock_interruptible(struct i2c_client *client)
3679 {
3680 struct pmbus_data *data = i2c_get_clientdata(client);
3681
3682 return mutex_lock_interruptible(&data->update_lock);
3683 }
3684 EXPORT_SYMBOL_NS_GPL(pmbus_lock_interruptible, PMBUS);
3685
pmbus_unlock(struct i2c_client * client)3686 void pmbus_unlock(struct i2c_client *client)
3687 {
3688 struct pmbus_data *data = i2c_get_clientdata(client);
3689
3690 mutex_unlock(&data->update_lock);
3691 }
3692 EXPORT_SYMBOL_NS_GPL(pmbus_unlock, PMBUS);
3693
pmbus_core_init(void)3694 static int __init pmbus_core_init(void)
3695 {
3696 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
3697 if (IS_ERR(pmbus_debugfs_dir))
3698 pmbus_debugfs_dir = NULL;
3699
3700 return 0;
3701 }
3702
pmbus_core_exit(void)3703 static void __exit pmbus_core_exit(void)
3704 {
3705 debugfs_remove_recursive(pmbus_debugfs_dir);
3706 }
3707
3708 module_init(pmbus_core_init);
3709 module_exit(pmbus_core_exit);
3710
3711 MODULE_AUTHOR("Guenter Roeck");
3712 MODULE_DESCRIPTION("PMBus core driver");
3713 MODULE_LICENSE("GPL");
3714