• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 /* #define DEBUG */
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/export.h>
17 #include <linux/hid.h>
18 #include <linux/miscdevice.h>
19 #include <linux/usb/functionfs.h>
20 #include <linux/kfifo.h>
21 #include <linux/module.h>
22 #include <linux/poll.h>
23 #include <linux/eventfd.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/usb/cdc.h>
26 #include <linux/interrupt.h>
27 #include "u_generic.h"
28 #include "u_f.h"
29 #include "u_os_desc.h"
30 #include "configfs.h"
31 
32 #define FUNCTIONFS_MAGIC    0xa647361 /* Chosen by a honest dice roll ;) */
33 
34 /* Reference counter handling */
35 static void ffs_data_get(struct ffs_data *ffs);
36 static void ffs_data_put(struct ffs_data *ffs);
37 /* Creates new ffs_data object. */
38 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
39     __attribute__((malloc));
40 
41 /* Called with ffs->mutex held; take over ownership of data. */
42 static int __must_check
43 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
44 static int __must_check
45 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
46 
47 /* The function structure ***************************************************/
48 
49 struct ffs_ep;
50 
51 struct ffs_function {
52     struct usb_configuration    *conf;
53     struct usb_gadget        *gadget;
54     struct ffs_data            *ffs;
55 
56     struct ffs_ep            *eps;
57     u8                eps_revmap[16];
58     short                *interfaces_nums;
59 
60     struct usb_function        function;
61 };
ffs_func_from_usb(struct usb_function * f)62 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
63 {
64     return container_of(f, struct ffs_function, function);
65 }
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)66 static inline enum ffs_setup_state ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
67 {
68     return (enum ffs_setup_state)
69         cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
70 }
71 static void ffs_func_eps_disable(struct ffs_function *func);
72 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
73 
74 static int ffs_func_bind(struct usb_configuration *,
75              struct usb_function *);
76 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
77 static void ffs_func_disable(struct usb_function *);
78 static int ffs_func_setup(struct usb_function *,
79               const struct usb_ctrlrequest *);
80 static bool ffs_func_req_match(struct usb_function *,
81                    const struct usb_ctrlrequest *,
82                    bool config0);
83 static void ffs_func_suspend(struct usb_function *);
84 static void ffs_func_resume(struct usb_function *);
85 
86 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
87 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
88 
89 /* The endpoints structures *************************************************/
90 struct ffs_ep {
91     struct usb_ep            *ep;    /* P: ffs->eps_lock */
92     struct usb_request        *req;    /* P: epfile->mutex */
93 
94     /* [0]: full speed, [1]: high speed, [2]: super speed */
95     struct usb_endpoint_descriptor    *descs[3];
96 
97     u8                num;
98 
99     int                status;    /* P: epfile->mutex */
100 };
101 
102 struct ffs_epfile {
103     /* Protects ep->ep and ep->req. */
104     struct mutex            mutex;
105     struct list_head         memory_list;
106     struct ffs_data            *ffs;
107     struct ffs_ep            *ep;    /* P: ffs->eps_lock */
108     /*
109      * Buffer for holding data from partial reads which may happen since
110      * we’re rounding user read requests to a multiple of a max packet size.
111      *
112      * The pointer is initialised with NULL value and may be set by
113      * __ffs_epfile_read_data function to point to a temporary buffer.
114      *
115      * In normal operation, calls to __ffs_epfile_read_buffered will consume
116      * data from said buffer and eventually free it.  Importantly, while the
117      * function is using the buffer, it sets the pointer to NULL.  This is
118      * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
119      * can never run concurrently (they are synchronised by epfile->mutex)
120      * so the latter will not assign a new value to the pointer.
121      *
122      * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
123      * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
124      * value is crux of the synchronisation between ffs_func_eps_disable and
125      * __ffs_epfile_read_data.
126      *
127      * Once __ffs_epfile_read_data is about to finish it will try to set the
128      * pointer back to its old value (as described above), but seeing as the
129      * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
130      * the buffer.
131      *
132      * == State transitions ==
133      *
134      * • ptr == NULL:  (initial state)
135      *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
136      *   ◦ __ffs_epfile_read_buffered:    nop
137      *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
138      *   ◦ reading finishes:              n/a, not in ‘and reading’ state
139      * • ptr == DROP:
140      *   ◦ __ffs_epfile_read_buffer_free: nop
141      *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
142      *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
143      *   ◦ reading finishes:              n/a, not in ‘and reading’ state
144      * • ptr == buf:
145      *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
146      *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
147      *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
148      *                                    is always called first
149      *   ◦ reading finishes:              n/a, not in ‘and reading’ state
150      * • ptr == NULL and reading:
151      *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
152      *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
153      *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
154      *   ◦ reading finishes and …
155      *     … all data read:               free buf, go to ptr == NULL
156      *     … otherwise:                   go to ptr == buf and reading
157      * • ptr == DROP and reading:
158      *   ◦ __ffs_epfile_read_buffer_free: nop
159      *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
160      *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
161      *   ◦ reading finishes:              free buf, go to ptr == DROP
162      */
163     struct ffs_buffer        *read_buffer;
164 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
165 
166     char                name[MAX_NAMELEN];
167     dev_t                devno;
168     struct cdev         cdev;
169     struct device         *device;
170 
171     unsigned char            in;    /* P: ffs->eps_lock */
172     unsigned char            isoc;    /* P: ffs->eps_lock */
173 
174     struct kfifo        reqEventFifo;
175     wait_queue_head_t   wait_que;
176 
177     unsigned char            _pad;
178 };
179 
180 struct ffs_buffer {
181     size_t length;
182     char *data;
183     char storage[];
184 };
185 
186 /*  ffs_io_data structure ***************************************************/
187 
188 struct ffs_io_data {
189     uint32_t aio;
190     uint32_t read;
191     uint32_t len;
192     uint32_t timeout;
193     uint64_t buf;
194     uint32_t actual;
195     int      status;
196     struct tasklet_struct task;
197     struct usb_ep *ep;
198     struct usb_request *req;
199     struct ffs_epfile *epfile;
200     struct ffs_data *ffs;
201 };
202 
203 struct ffs_desc_helper {
204     struct ffs_data *ffs;
205     unsigned interfaces_count;
206     unsigned eps_count;
207 };
208 
209 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
210 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
211 
212 /* Devices management *******************************************************/
213 
214 DEFINE_MUTEX(ffs_lock_adapter);
215 EXPORT_SYMBOL_GPL(ffs_lock_adapter);
216 
217 static struct ffs_dev *_ffs_find_dev(const char *name);
218 static struct ffs_dev *_ffs_alloc_dev(void);
219 static void _ffs_free_dev(struct ffs_dev *dev);
220 static void *ffs_acquire_dev(const char *dev_name);
221 static void ffs_release_dev(struct ffs_data *ffs_data);
222 static int ffs_ready(struct ffs_data *ffs);
223 static void ffs_closed(struct ffs_data *ffs);
224 
225 /* Misc helper functions ****************************************************/
226 
227 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
228     __attribute__((warn_unused_result, nonnull));
229 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
230     __attribute__((warn_unused_result, nonnull));
231 
232 struct class *ffs_class;
233 
ffs_devnode(const struct device * dev,umode_t * mode)234 static char *ffs_devnode(const struct device *dev, umode_t *mode)
235 {
236     if (mode)
237         *mode = 0666;
238     return kasprintf(GFP_KERNEL, "functionfs/%s", dev_name(dev));
239 }
240 
241 /* Control file aka ep0 *****************************************************/
generic_find_ep0_memory_area(struct ffs_data * ffs,uint64_t buf,uint32_t len)242 static struct ffs_memory *generic_find_ep0_memory_area(struct ffs_data *ffs, uint64_t buf, uint32_t len)
243 {
244     struct ffs_memory *ffsm = NULL;
245     struct ffs_memory *iter = NULL;
246     uint64_t buf_start = buf;
247     unsigned long flags;
248 
249     spin_lock_irqsave(&ffs->mem_lock, flags);
250     list_for_each_entry(iter, &ffs->memory_list, memlist) {
251         if (buf_start >= iter->vm_start &&
252             buf_start < iter->vm_start + iter->size) {
253             if (len <= iter->vm_start + iter->size - buf_start) {
254                 ffsm = iter;
255                 break;
256             }
257         }
258     }
259     spin_unlock_irqrestore(&ffs->mem_lock, flags);
260     return ffsm;
261 }
262 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)263 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
264 {
265     struct ffs_data *ffs = req->context;
266 
267     complete(&ffs->ep0req_completion);
268 
269     ffs->setup_state = FFS_NO_SETUP;
270 }
271 
ffs_ep0_async_io_complete(struct usb_ep * _ep,struct usb_request * req)272 static void ffs_ep0_async_io_complete(struct usb_ep *_ep, struct usb_request *req)
273 {
274     struct ffs_io_data *io_data = req->context;
275     struct ffs_data *ffs = io_data->ffs;
276     ENTER();
277 
278     io_data->status = io_data->req->status;
279     io_data->actual = io_data->req->actual;
280     kfifo_in(&ffs->reqEventFifo, &io_data->buf, sizeof(struct UsbFnReqEvent));
281     wake_up_all(&ffs->wait_que);
282 
283     list_del(&req->list);
284     usb_ep_free_request(io_data->ep, io_data->req);
285     kfree(io_data);
286 
287 }
288 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)289 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
290     __releases(&ffs->ev.waitq.lock)
291 {
292     struct usb_request *req = ffs->ep0req;
293     int ret;
294 
295     req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
296 
297     spin_unlock_irq(&ffs->ev.waitq.lock);
298 
299     req->buf      = data;
300     req->length   = len;
301 
302     /*
303      * UDC layer requires to provide a buffer even for ZLP, but should
304      * not use it at all. Let's provide some poisoned pointer to catch
305      * possible bug in the driver.
306      */
307     if (req->buf == NULL)
308         req->buf = (void *)0xDEADBABE;
309 
310     reinit_completion(&ffs->ep0req_completion);
311 
312     ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
313     if (unlikely(ret < 0))
314         return ret;
315 
316     ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
317     if (unlikely(ret)) {
318         usb_ep_dequeue(ffs->gadget->ep0, req);
319         return -EINTR;
320     }
321 
322     ffs->setup_state = FFS_NO_SETUP;
323     return req->status ? req->status : req->actual;
324 }
325 
__ffs_ep0_stall(struct ffs_data * ffs)326 static int __ffs_ep0_stall(struct ffs_data *ffs)
327 {
328     if (ffs->ev.can_stall) {
329         pr_vdebug("ep0 stall\n");
330         usb_ep_set_halt(ffs->gadget->ep0);
331         ffs->setup_state = FFS_NO_SETUP;
332         return -EL2HLT;
333     } else {
334         pr_debug("bogus ep0 stall!\n");
335         return -ESRCH;
336     }
337 }
338 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)339 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, size_t len, loff_t *ptr)
340 {
341     struct ffs_data *ffs = file->private_data;
342     ssize_t ret;
343     char *data = NULL;
344 
345     ENTER();
346 
347     /* Fast check if setup was canceled */
348     if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
349         return -EIDRM;
350 
351     /* Acquire mutex */
352     ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
353     if (unlikely(ret < 0))
354         return ret;
355 
356     /* Check state */
357     switch (ffs->state) {
358     case FFS_READ_DESCRIPTORS:
359     case FFS_READ_STRINGS:
360         /* Copy data */
361         if (unlikely(len < 16)) {
362             ret = -EINVAL;
363             break;
364         }
365 
366         data = ffs_prepare_buffer(buf, len);
367         if (IS_ERR(data)) {
368             ret = PTR_ERR(data);
369             break;
370         }
371 
372         /* Handle data */
373         if (ffs->state == FFS_READ_DESCRIPTORS) {
374             pr_info("read descriptors\n");
375             ret = __ffs_data_got_descs(ffs, data, len);
376             if (unlikely(ret < 0))
377                 break;
378 
379             ffs->state = FFS_READ_STRINGS;
380             ret = len;
381         } else {
382             pr_info("read strings\n");
383             ret = __ffs_data_got_strings(ffs, data, len);
384             if (unlikely(ret < 0))
385                 break;
386 
387             ret = ffs_epfiles_create(ffs);
388             if (unlikely(ret)) {
389                 ffs->state = FFS_CLOSING;
390                 break;
391             }
392 
393             ffs->state = FFS_ACTIVE;
394             mutex_unlock(&ffs->mutex);
395 
396             ret = ffs_ready(ffs);
397             if (unlikely(ret < 0)) {
398                 ffs->state = FFS_CLOSING;
399                 return ret;
400             }
401 
402             return len;
403         }
404         break;
405 
406     case FFS_ACTIVE:
407         data = NULL;
408         /*
409          * We're called from user space, we can use _irq
410          * rather then _irqsave
411          */
412         spin_lock_irq(&ffs->ev.waitq.lock);
413         switch (ffs_setup_state_clear_cancelled(ffs)) {
414         case FFS_SETUP_CANCELLED:
415             ret = -EIDRM;
416             goto done_spin;
417 
418         case FFS_NO_SETUP:
419             ret = -ESRCH;
420             goto done_spin;
421 
422         case FFS_SETUP_PENDING:
423             break;
424         }
425 
426         /* FFS_SETUP_PENDING */
427         if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
428             spin_unlock_irq(&ffs->ev.waitq.lock);
429             ret = __ffs_ep0_stall(ffs);
430             break;
431         }
432 
433         /* FFS_SETUP_PENDING and not stall */
434         len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
435 
436         spin_unlock_irq(&ffs->ev.waitq.lock);
437 
438         data = ffs_prepare_buffer(buf, len);
439         if (IS_ERR(data)) {
440             ret = PTR_ERR(data);
441             break;
442         }
443 
444         spin_lock_irq(&ffs->ev.waitq.lock);
445 
446         /*
447          * We are guaranteed to be still in FFS_ACTIVE state
448          * but the state of setup could have changed from
449          * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
450          * to check for that.  If that happened we copied data
451          * from user space in vain but it's unlikely.
452          *
453          * For sure we are not in FFS_NO_SETUP since this is
454          * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
455          * transition can be performed and it's protected by
456          * mutex.
457          */
458         if (ffs_setup_state_clear_cancelled(ffs) ==
459                 FFS_SETUP_CANCELLED) {
460                 ret = -EIDRM;
461 done_spin:
462             spin_unlock_irq(&ffs->ev.waitq.lock);
463         } else {
464             /* unlocks spinlock */
465             ret = __ffs_ep0_queue_wait(ffs, data, len);
466         }
467         kfree(data);
468         break;
469 
470     default:
471         ret = -EBADFD;
472         break;
473     }
474 
475     mutex_unlock(&ffs->mutex);
476     return ret;
477 }
478 
479 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)480 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, size_t n)
481     __releases(&ffs->ev.waitq.lock)
482 {
483     /*
484      * n cannot be bigger than ffs->ev.count, which cannot be bigger than
485      * size of ffs->ev.types array (which is four) so that's how much space
486      * we reserve.
487      */
488     struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
489     const size_t size = n * sizeof *events;
490     unsigned i = 0;
491 
492     memset(events, 0, size);
493 
494     do {
495         events[i].type = ffs->ev.types[i];
496         if (events[i].type == FUNCTIONFS_SETUP) {
497             events[i].u.setup = ffs->ev.setup;
498             ffs->setup_state = FFS_SETUP_PENDING;
499         }
500     } while (++i < n);
501 
502     ffs->ev.count -= n;
503     if (ffs->ev.count)
504         memmove(ffs->ev.types, ffs->ev.types + n, ffs->ev.count * sizeof *ffs->ev.types);
505 
506     spin_unlock_irq(&ffs->ev.waitq.lock);
507     mutex_unlock(&ffs->mutex);
508 
509     return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
510 }
511 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)512 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, size_t len, loff_t *ptr)
513 {
514     struct ffs_data *ffs = file->private_data;
515     char *data = NULL;
516     size_t n;
517     int ret;
518 
519     ENTER();
520 
521     /* Fast check if setup was canceled */
522     if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
523         return -EIDRM;
524 
525     /* Acquire mutex */
526     ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
527     if (unlikely(ret < 0))
528         return ret;
529 
530     /* Check state */
531     if (ffs->state != FFS_ACTIVE) {
532         ret = -EBADFD;
533         goto done_mutex;
534     }
535 
536     /*
537      * We're called from user space, we can use _irq rather then
538      * _irqsave
539      */
540     spin_lock_irq(&ffs->ev.waitq.lock);
541 
542     switch (ffs_setup_state_clear_cancelled(ffs)) {
543     case FFS_SETUP_CANCELLED:
544         ret = -EIDRM;
545         break;
546 
547     case FFS_NO_SETUP:
548         n = len / sizeof(struct usb_functionfs_event);
549         if (unlikely(!n)) {
550             ret = -EINVAL;
551             break;
552         }
553 
554         if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
555             ret = -EAGAIN;
556             break;
557         }
558 
559         if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
560                             ffs->ev.count)) {
561             ret = -EINTR;
562             break;
563         }
564 
565         /* unlocks spinlock */
566         return __ffs_ep0_read_events(ffs, buf,
567                          min(n, (size_t)ffs->ev.count));
568 
569     case FFS_SETUP_PENDING:
570         if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
571             spin_unlock_irq(&ffs->ev.waitq.lock);
572             ret = __ffs_ep0_stall(ffs);
573             goto done_mutex;
574         }
575 
576         len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
577 
578         spin_unlock_irq(&ffs->ev.waitq.lock);
579 
580         if (likely(len)) {
581             data = kmalloc(len, GFP_KERNEL);
582             if (unlikely(!data)) {
583                 ret = -ENOMEM;
584                 goto done_mutex;
585             }
586         }
587 
588         spin_lock_irq(&ffs->ev.waitq.lock);
589 
590         /* See ffs_ep0_write() */
591         if (ffs_setup_state_clear_cancelled(ffs) ==
592             FFS_SETUP_CANCELLED) {
593             ret = -EIDRM;
594             break;
595         }
596 
597         /* unlocks spinlock */
598         ret = __ffs_ep0_queue_wait(ffs, data, len);
599         if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
600             ret = -EFAULT;
601         goto done_mutex;
602 
603     default:
604         ret = -EBADFD;
605         break;
606     }
607 
608     spin_unlock_irq(&ffs->ev.waitq.lock);
609 done_mutex:
610     mutex_unlock(&ffs->mutex);
611     kfree(data);
612     return ret;
613 }
614 
ffs_ep0_open(struct inode * inode,struct file * file)615 static int ffs_ep0_open(struct inode *inode, struct file *file)
616 {
617     struct ffs_data *ffs  = container_of(inode->i_cdev, struct ffs_data, cdev);
618     ENTER();
619 
620     if (unlikely(ffs->state == FFS_CLOSING))
621         return -EBUSY;
622 
623     file->private_data = ffs;
624     return 0;
625 }
626 
ffs_ep0_release(struct inode * inode,struct file * file)627 static int ffs_ep0_release(struct inode *inode, struct file *file)
628 {
629     ENTER();
630     return 0;
631 }
632 
ffs_ep0_iorw(struct file * file,struct ffs_io_data * io_data)633 static ssize_t ffs_ep0_iorw(struct file *file, struct ffs_io_data *io_data)
634 {
635     struct ffs_data *ffs = file->private_data;
636     struct usb_request *req = NULL;
637     ssize_t ret, data_len = io_data->len;
638     bool interrupted = false;
639     struct ffs_memory *ffsm = NULL;
640 
641     /* Are we still active? */
642     if (WARN_ON(ffs->state != FFS_ACTIVE))
643         return -ENODEV;
644     ffsm = generic_find_ep0_memory_area(ffs, io_data->buf, data_len);
645     if (ffsm == NULL)
646     {
647         return -ENODEV;
648     }
649     if (!io_data->aio) {
650         reinit_completion(&ffs->ep0req_completion);
651 
652         req = ffs->ep0req;
653         req->buf      = (void *)(ffsm->mem + io_data->buf - ffsm->vm_start);
654         req->length   = data_len;
655         req->complete = ffs_ep0_complete;
656 
657         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
658         if (unlikely(ret < 0))
659             goto error;
660 
661         if (io_data->timeout > 0) {
662             ret = wait_for_completion_interruptible_timeout(&ffs->ep0req_completion, io_data->timeout);
663             if (ret < 0) {
664                 /*
665                  * To avoid race condition with ffs_epfile_io_complete,
666                  * dequeue the request first then check
667                  * status. usb_ep_dequeue API should guarantee no race
668                  * condition with req->complete callback.
669                  */
670                 usb_ep_dequeue(ffs->gadget->ep0, req);
671                 wait_for_completion(&ffs->ep0req_completion);
672                 interrupted = req->status < 0;
673             } else if (ret == 0) {
674                 ret = -EBUSY;
675                 usb_ep_dequeue(ffs->gadget->ep0, req);
676                 wait_for_completion(&ffs->ep0req_completion);
677                 goto error;
678             }
679         } else {
680             ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
681             if (ret < 0) {
682                 usb_ep_dequeue(ffs->gadget->ep0, req);
683                 wait_for_completion(&ffs->ep0req_completion);
684                 interrupted = req->status < 0;
685             }
686         }
687 
688         if (interrupted) {
689             ret = -EINTR;
690         } else {
691             ret = req->actual;
692         }
693         goto error;
694     }
695     else if (!(req = usb_ep_alloc_request(ffs->gadget->ep0, GFP_ATOMIC))) {
696         ret = -ENOMEM;
697     }
698     else {
699         req->buf     = (void *)(ffsm->mem + io_data->buf - ffsm->vm_start);
700         req->length   = data_len;
701 
702         io_data->ep = ffs->gadget->ep0;
703         io_data->req = req;
704         io_data->ffs = ffs;
705 
706         req->context  = io_data;
707         req->complete = ffs_ep0_async_io_complete;
708         list_add(&req->list, &ffs->ep0req->list);
709         ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
710         if (unlikely(ret)) {
711             usb_ep_free_request(ffs->gadget->ep0, req);
712             goto error;
713         }
714 
715         ret = -EIOCBQUEUED;
716     }
717 
718 error:
719     return ret;
720 }
721 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)722 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
723 {
724     struct ffs_data *ffs = file->private_data;
725     long ret = 0;
726     unsigned int copied = 0;
727     struct ffs_memory *ffsm = NULL;
728     struct generic_memory mem;
729 
730     ENTER();
731 
732     switch (code) {
733     case FUNCTIONFS_ENDPOINT_QUEUE_INIT:
734         ret = kfifo_alloc(&ffs->reqEventFifo, MAX_REQUEST * sizeof(struct UsbFnReqEvent), GFP_KERNEL);
735         break;
736     case FUNCTIONFS_ENDPOINT_QUEUE_DEL:
737         kfifo_free(&ffs->reqEventFifo);
738         break;
739     case FUNCTIONFS_ENDPOINT_RELEASE_BUF:
740         if (copy_from_user(&mem, (void __user *)value, sizeof(mem)))
741         {
742             pr_info("copy from user failed\n");
743             return -EFAULT;
744         }
745         ffsm = generic_find_ep0_memory_area(ffs, mem.buf, mem.size);
746         if (ffsm == NULL)
747         {
748             return -EFAULT;
749         }
750         list_del(&ffsm->memlist);
751         kfree((void *)ffsm->mem);
752         kfree(ffsm);
753         break;
754     case FUNCTIONFS_ENDPOINT_READ:
755     case FUNCTIONFS_ENDPOINT_WRITE:
756     {
757         struct IoData myIoData;
758         struct ffs_io_data io_data, *p = &io_data;
759         ret = copy_from_user(&myIoData, (void __user *)value, sizeof(struct IoData));
760         if (unlikely(ret)) {
761             return -EFAULT;
762         }
763         if (myIoData.aio) {
764             p = kmalloc(sizeof(io_data), GFP_KERNEL);
765             if (unlikely(!p))
766                 return -ENOMEM;
767         } else {
768             memset(p, 0, sizeof(*p));
769         }
770         memcpy(p, &myIoData, sizeof(struct IoData));
771 
772         ret = ffs_ep0_iorw(file, p);
773         if (ret == -EIOCBQUEUED) {
774             return 0;
775         }
776         if (p->aio)
777             kfree(p);
778         return ret;
779     }
780     case FUNCTIONFS_ENDPOINT_RW_CANCEL:
781     {
782         struct usb_request *req;
783         struct IoData myIoData;
784         ret = copy_from_user(&myIoData, (void __user *)value, sizeof(struct IoData));
785         if (unlikely(ret)) {
786             return -EFAULT;
787         }
788         ffsm = generic_find_ep0_memory_area(ffs, myIoData.buf, myIoData.len);
789         if (ffsm == NULL)
790         {
791             return -EFAULT;
792         }
793         list_for_each_entry(req, &ffs->ep0req->list, list) {
794             if (req->buf == (void *)(ffsm->mem + myIoData.buf - ffsm->vm_start)) {
795                 usb_ep_dequeue(ffs->gadget->ep0, req);
796                 return 0;
797             }
798         }
799         return -EFAULT;
800     }
801     case FUNCTIONFS_ENDPOINT_GET_REQ_STATUS:
802     {
803         struct usb_request *req;
804         struct IoData myIoData;
805         ret = copy_from_user(&myIoData, (void __user *)value, sizeof(struct IoData));
806         if (unlikely(ret)) {
807             return -EFAULT;
808         }
809         ffsm = generic_find_ep0_memory_area(ffs, myIoData.buf, myIoData.len);
810         if (ffsm == NULL)
811         {
812             return -EFAULT;
813         }
814         list_for_each_entry(req, &ffs->ep0req->list, list) {
815             if (req->buf == (void *)(ffsm->mem + myIoData.buf - ffsm->vm_start)) {
816                 return req->status;
817             }
818         }
819         return -EFAULT;
820     }
821     case FUNCTIONFS_ENDPOINT_GET_EP0_EVENT:
822         if (!kfifo_is_empty(&ffs->reqEventFifo)) {
823             ret = kfifo_to_user(&ffs->reqEventFifo, (void __user *)value,
824             sizeof(struct UsbFnReqEvent), &copied) == 0 ? copied : -1;
825             if (ret > 0) {
826                 ffs->setup_state = FFS_NO_SETUP;
827                 return ret;
828             }
829         }
830 
831         return -EFAULT;
832     }
833 
834     return ret;
835 }
836 
837 #ifdef CONFIG_COMPAT
ffs_ep0_compat_ioctl(struct file * file,unsigned code,unsigned long value)838 static long ffs_ep0_compat_ioctl(struct file *file, unsigned code,
839         unsigned long value)
840 {
841     return ffs_ep0_ioctl(file, code, value);
842 }
843 #endif
844 
ffs_ep0_poll(struct file * file,poll_table * wait)845 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
846 {
847     struct ffs_data *ffs = file->private_data;
848     __poll_t mask = EPOLLWRNORM;
849     int ret;
850 
851     ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
852     if (unlikely(ret < 0))
853         return mask;
854 
855     switch (ffs->state) {
856     case FFS_READ_DESCRIPTORS:
857     case FFS_READ_STRINGS:
858         mask |= EPOLLOUT;
859         break;
860 
861     case FFS_ACTIVE:
862         switch (ffs->setup_state) {
863         case FFS_NO_SETUP:
864             poll_wait(file, &ffs->ev.waitq, wait);
865             if (ffs->ev.count)
866                 mask |= EPOLLIN;
867             break;
868 
869         case FFS_SETUP_PENDING:
870         case FFS_SETUP_CANCELLED:
871             poll_wait(file, &ffs->wait_que, wait);
872             if (!kfifo_is_empty(&ffs->reqEventFifo))
873             {
874                 mask |= EPOLLOUT;
875             }
876             break;
877         }
878     case FFS_CLOSING:
879         break;
880     case FFS_DEACTIVATED:
881         break;
882     }
883 
884     mutex_unlock(&ffs->mutex);
885 
886     return mask;
887 }
888 
ffs_ep0_mmap(struct file * file,struct vm_area_struct * vma)889 static int ffs_ep0_mmap(struct file *file, struct vm_area_struct *vma)
890 {
891     struct ffs_data *ffs = file->private_data;
892     size_t size = vma->vm_end - vma->vm_start;
893     unsigned long flags;
894     struct ffs_memory *ffsm = NULL;
895     void *virt_mem = NULL;
896 
897     if (ffs == NULL) {
898         pr_info("Invalid private parameter!\n");
899         return -EINVAL;
900     }
901     virt_mem = kmalloc(size, GFP_KERNEL);
902     if (virt_mem == NULL)
903     {
904         pr_info("%s alloc memory failed!\n", __FUNCTION__);
905         return -ENOMEM;
906     }
907     ffsm = kmalloc(sizeof(struct ffs_memory), GFP_KERNEL);
908     if (ffsm == NULL)
909     {
910         pr_info("%s alloc memory failed!\n", __FUNCTION__);
911         goto error_free_mem;
912     }
913     if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(virt_mem)>>PAGE_SHIFT,
914         vma->vm_end - vma->vm_start, vma->vm_page_prot)) {
915         goto error_free_ffsm;
916     }
917     ffsm->mem      = (uint64_t)virt_mem;
918     ffsm->size     = size;
919     ffsm->vm_start = vma->vm_start;
920     INIT_LIST_HEAD(&ffsm->memlist);
921     spin_lock_irqsave(&ffs->mem_lock, flags);
922     list_add_tail(&ffsm->memlist, &ffs->memory_list);
923     spin_unlock_irqrestore(&ffs->mem_lock, flags);
924     return 0;
925 error_free_ffsm:
926     kfree(ffsm);
927 error_free_mem:
928     kfree(virt_mem);
929     return -1;
930 }
931 
932 static const struct file_operations ffs_ep0_operations = {
933     .owner   = THIS_MODULE,
934     .llseek =    no_llseek,
935     .open =        ffs_ep0_open,
936     .write =    ffs_ep0_write,
937     .read =        ffs_ep0_read,
938     .release =    ffs_ep0_release,
939     .unlocked_ioctl =    ffs_ep0_ioctl,
940 #ifdef CONFIG_COMPAT
941     .compat_ioctl = ffs_ep0_compat_ioctl,
942 #endif
943     .poll =        ffs_ep0_poll,
944     .mmap =     ffs_ep0_mmap,
945 };
946 
947 /* "Normal" endpoints operations ********************************************/
generic_find_memory_area(struct ffs_epfile * epfile,uint64_t buf,uint32_t len)948 static struct ffs_memory *generic_find_memory_area(struct ffs_epfile *epfile, uint64_t buf, uint32_t len)
949 {
950     struct ffs_memory *ffsm = NULL, *iter = NULL;
951     uint64_t buf_start = buf;
952 
953     list_for_each_entry(iter, &epfile->memory_list, memlist) {
954         if (buf_start >= iter->vm_start &&
955             buf_start < iter->vm_start + iter->size) {
956             if (len <= iter->vm_start + iter->size - buf_start) {
957                 ffsm = iter;
958                 break;
959             }
960         }
961     }
962     return ffsm;
963 }
964 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)965 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
966 {
967     ENTER();
968     if (likely(req->context)) {
969         struct ffs_ep *ep = _ep->driver_data;
970         ep->status = req->status ? req->status : req->actual;
971         complete(req->context);
972     }
973 }
974 
epfile_task_proc(unsigned long context)975 static void epfile_task_proc(unsigned long context)
976 {
977     struct ffs_io_data *io_data = (struct ffs_io_data *)context;
978     struct ffs_epfile *epfile = io_data->epfile;
979     unsigned long flags;
980 
981     spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
982     io_data->status = io_data->req->status;
983     io_data->actual = io_data->req->actual;
984     kfifo_in(&epfile->reqEventFifo, &io_data->buf, sizeof(struct UsbFnReqEvent));
985     list_del(&io_data->req->list);
986     usb_ep_free_request(io_data->ep, io_data->req);
987     kfree(io_data);
988     spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
989     wake_up_all(&epfile->wait_que);
990 }
991 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)992 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, struct usb_request *req)
993 {
994     struct ffs_io_data *io_data = req->context;
995 
996     tasklet_init(&io_data->task, epfile_task_proc, (uintptr_t)io_data);
997     tasklet_schedule(&io_data->task);
998 
999 }
1000 
ffs_epfile_open(struct inode * inode,struct file * file)1001 static int ffs_epfile_open(struct inode *inode, struct file *file)
1002 {
1003     struct ffs_epfile *epfile  = container_of(inode->i_cdev, struct ffs_epfile, cdev);
1004     ENTER();
1005     if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1006         return -ENODEV;
1007 
1008     file->private_data = epfile;
1009     return 0;
1010 }
1011 
ffs_epfile_release(struct inode * inode,struct file * file)1012 static int ffs_epfile_release(struct inode *inode, struct file *file)
1013 {
1014     ENTER();
1015     return 0;
1016 }
1017 
ffs_epfile_mmap(struct file * file,struct vm_area_struct * vma)1018 static int ffs_epfile_mmap(struct file *file, struct vm_area_struct *vma)
1019 {
1020     struct ffs_epfile *epfile = file->private_data;
1021     size_t size = vma->vm_end - vma->vm_start;
1022     struct ffs_memory *ffsm = NULL;
1023     unsigned long flags;
1024     void *virt_mem = NULL;
1025 
1026     if (epfile == NULL)
1027     {
1028         pr_info("Invalid private parameter!\n");
1029         return -EINVAL;
1030     }
1031     virt_mem = kmalloc(size, GFP_KERNEL);
1032     if (virt_mem == NULL)
1033     {
1034         pr_info("%s alloc memory failed!\n", __FUNCTION__);
1035         return -ENOMEM;
1036     }
1037     ffsm = kmalloc(sizeof(struct ffs_memory), GFP_KERNEL);
1038     if (ffsm == NULL)
1039     {
1040         pr_info("%s alloc memory failed!\n", __FUNCTION__);
1041         goto error_free_mem;
1042     }
1043     if (remap_pfn_range(vma, vma->vm_start, virt_to_phys(virt_mem)>>PAGE_SHIFT,
1044                 vma->vm_end - vma->vm_start, vma->vm_page_prot))
1045     {
1046         goto error_free_ffsm;
1047     }
1048     ffsm->mem = (uint64_t)virt_mem;
1049     ffsm->size = size;
1050     ffsm->vm_start = vma->vm_start;
1051     INIT_LIST_HEAD(&ffsm->memlist);
1052     spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1053     list_add_tail(&ffsm->memlist, &epfile->memory_list);
1054     spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1055 
1056     return 0;
1057 error_free_ffsm:
1058     kfree(ffsm);
1059 error_free_mem:
1060     kfree(virt_mem);
1061 
1062     return -1;
1063 }
1064 
ffs_epfile_iorw(struct file * file,struct ffs_io_data * io_data)1065 static ssize_t ffs_epfile_iorw(struct file *file, struct ffs_io_data *io_data)
1066 {
1067     struct ffs_epfile *epfile = file->private_data;
1068     struct usb_request *req = NULL;
1069     struct ffs_ep *ep = NULL;
1070     struct ffs_memory *ffsm = NULL;
1071     ssize_t ret, data_len = -EINVAL;
1072     int halt;
1073 
1074     /* Are we still active? */
1075     if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1076         return -ENODEV;
1077 
1078     /* Wait for endpoint to be enabled */
1079     ep = epfile->ep;
1080     if (!ep) {
1081         if (file->f_flags & O_NONBLOCK)
1082             return -EAGAIN;
1083 
1084         ret = wait_event_interruptible(
1085                 epfile->ffs->wait, (ep = epfile->ep));
1086         if (ret)
1087             return -EINTR;
1088     }
1089 
1090     /* Do we halt? */
1091     halt = (!io_data->read == !epfile->in);
1092     if (halt && epfile->isoc)
1093         return -EINVAL;
1094 
1095     /* We will be using request and read_buffer */
1096     ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
1097     if (unlikely(ret))
1098         goto error;
1099 
1100     /* Allocate & copy */
1101     if (!halt) {
1102         struct usb_gadget *gadget;
1103         /*
1104          * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1105          * before the waiting completes, so do not assign to 'gadget'
1106          * earlier
1107          */
1108         gadget = epfile->ffs->gadget;
1109 
1110         spin_lock_irq(&epfile->ffs->eps_lock);
1111         /* In the meantime, endpoint got disabled or changed. */
1112         if (epfile->ep != ep) {
1113             ret = -ESHUTDOWN;
1114             goto error_lock;
1115         }
1116         data_len = io_data->len;
1117         /*
1118          * Controller may require buffer size to be aligned to
1119          * maxpacketsize of an out endpoint.
1120          */
1121         if (io_data->read)
1122             data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1123         spin_unlock_irq(&epfile->ffs->eps_lock);
1124     }
1125 
1126     spin_lock_irq(&epfile->ffs->eps_lock);
1127     ffsm = generic_find_memory_area(epfile, io_data->buf, io_data->len);
1128     if (ffsm == NULL)
1129     {
1130         return -EFAULT;
1131     }
1132     if (epfile->ep != ep) {
1133         /* In the meantime, endpoint got disabled or changed. */
1134         ret = -ESHUTDOWN;
1135     }
1136     else if (halt) {
1137         ret = usb_ep_set_halt(ep->ep);
1138         if (!ret)
1139             ret = -EBADMSG;
1140     }
1141     else if (!io_data->aio) {
1142         DECLARE_COMPLETION_ONSTACK(done);
1143         bool interrupted = false;
1144 
1145         req = ep->req;
1146         req->buf      = (void *)(ffsm->mem + io_data->buf - ffsm->vm_start);
1147         req->length   = data_len;
1148 
1149         req->context  = &done;
1150         req->complete = ffs_epfile_io_complete;
1151 
1152         ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1153         if (unlikely(ret < 0))
1154             goto error_lock;
1155 
1156         spin_unlock_irq(&epfile->ffs->eps_lock);
1157         if (io_data->timeout > 0) {
1158             ret = wait_for_completion_interruptible_timeout(&done, io_data->timeout);
1159             if (ret < 0) {
1160                 /*
1161                  * To avoid race condition with ffs_epfile_io_complete,
1162                  * dequeue the request first then check
1163                  * status. usb_ep_dequeue API should guarantee no race
1164                  * condition with req->complete callback.
1165                  */
1166                 usb_ep_dequeue(ep->ep, req);
1167                 wait_for_completion(&done);
1168                 interrupted = ep->status < 0;
1169             } else if (ret == 0) {
1170                 ret = -EBUSY;
1171                 usb_ep_dequeue(ep->ep, req);
1172                 wait_for_completion(&done);
1173                 goto error_mutex;
1174             }
1175         } else {
1176             ret = wait_for_completion_interruptible(&done);
1177             if (ret < 0) {
1178                 usb_ep_dequeue(ep->ep, req);
1179                 wait_for_completion(&done);
1180                 interrupted = ep->status < 0;
1181             }
1182         }
1183 
1184         if (interrupted) {
1185             ret = -EINTR;
1186         } else {
1187             ret = req->actual;
1188         }
1189         goto error_mutex;
1190     }
1191     else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1192         ret = -ENOMEM;
1193     }
1194     else {
1195         req->buf     = (void *)(ffsm->mem + io_data->buf - ffsm->vm_start);
1196         req->length  = data_len;
1197 
1198         io_data->ep     = ep->ep;
1199         io_data->req    = req;
1200         io_data->epfile = epfile;
1201 
1202         req->context  = io_data;
1203         req->complete = ffs_epfile_async_io_complete;
1204         list_add(&req->list, &ep->req->list);
1205         ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1206         if (unlikely(ret)) {
1207             usb_ep_free_request(ep->ep, req);
1208             goto error_lock;
1209         }
1210 
1211         ret = -EIOCBQUEUED;
1212     }
1213 
1214 error_lock:
1215     spin_unlock_irq(&epfile->ffs->eps_lock);
1216 error_mutex:
1217     mutex_unlock(&epfile->mutex);
1218 error:
1219     return ret;
1220 }
1221 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1222 static long ffs_epfile_ioctl(struct file *file, unsigned code, unsigned long value)
1223 {
1224     struct ffs_epfile *epfile = file->private_data;
1225     struct ffs_ep *ep = epfile->ep;
1226     int ret = 0;
1227     struct generic_memory mem;
1228     struct ffs_memory *ffsm = NULL;
1229 
1230     ENTER();
1231 
1232     if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1233         return -ENODEV;
1234 
1235     spin_lock_irq(&epfile->ffs->eps_lock);
1236 
1237     switch (code) {
1238     case FUNCTIONFS_ENDPOINT_QUEUE_INIT:
1239         ret = kfifo_alloc(&epfile->reqEventFifo, MAX_REQUEST * sizeof(struct UsbFnReqEvent), GFP_KERNEL);
1240         break;
1241     case FUNCTIONFS_ENDPOINT_QUEUE_DEL:
1242         kfifo_free(&epfile->reqEventFifo);
1243         break;
1244     case FUNCTIONFS_ENDPOINT_RELEASE_BUF:
1245         if (copy_from_user(&mem, (void __user *)value, sizeof(mem)))
1246         {
1247             pr_info("copy from user failed\n");
1248             return -EFAULT;
1249         }
1250         ffsm = generic_find_memory_area(epfile, mem.buf, mem.size);
1251         if (ffsm == NULL)
1252         {
1253             return -EFAULT;
1254         }
1255         list_del(&ffsm->memlist);
1256         kfree((void *)ffsm->mem);
1257         kfree(ffsm);
1258         break;
1259     case FUNCTIONFS_ENDPOINT_READ:
1260     case FUNCTIONFS_ENDPOINT_WRITE:
1261     {
1262         struct IoData myIoData;
1263         struct ffs_io_data io_data, *p = &io_data;
1264         ret = copy_from_user(&myIoData, (void __user *)value, sizeof(struct IoData));
1265         if (unlikely(ret)) {
1266             spin_unlock_irq(&epfile->ffs->eps_lock);
1267             return -EFAULT;
1268         }
1269         if (myIoData.aio) {
1270             p = kmalloc(sizeof(io_data), GFP_KERNEL);
1271             if (unlikely(!p)) {
1272                 spin_unlock_irq(&epfile->ffs->eps_lock);
1273                 return -ENOMEM;
1274             }
1275         } else {
1276             memset(p,  0, sizeof(*p));
1277         }
1278         memcpy(p, &myIoData, sizeof(struct IoData));
1279 
1280         spin_unlock_irq(&epfile->ffs->eps_lock);
1281         ret = ffs_epfile_iorw(file, p);
1282         if (ret == -EIOCBQUEUED) {
1283             return 0;
1284         }
1285         if (p->aio)
1286             kfree(p);
1287         return ret;
1288     }
1289     case FUNCTIONFS_ENDPOINT_RW_CANCEL:
1290     {
1291         struct usb_request *req;
1292         struct IoData myIoData;
1293         if (!ep) {
1294             spin_unlock_irq(&epfile->ffs->eps_lock);
1295             return -EFAULT;
1296         }
1297         ret = copy_from_user(&myIoData, (void __user *)value, sizeof(struct IoData));
1298         if (unlikely(ret)) {
1299             spin_unlock_irq(&epfile->ffs->eps_lock);
1300             return -EFAULT;
1301         }
1302         ffsm = generic_find_memory_area(epfile, myIoData.buf, myIoData.len);
1303         if (ffsm == NULL)
1304         {
1305             return -EFAULT;
1306         }
1307         list_for_each_entry(req, &epfile->ep->req->list, list) {
1308             if (req->buf == (void *)(ffsm->mem + myIoData.buf - ffsm->vm_start)) {
1309                 usb_ep_dequeue(epfile->ep->ep, req);
1310                 spin_unlock_irq(&epfile->ffs->eps_lock);
1311                 return 0;
1312             }
1313         }
1314         if (epfile->ep->req->buf == (void *)(ffsm->mem + myIoData.buf - ffsm->vm_start)) {
1315             usb_ep_dequeue(epfile->ep->ep, epfile->ep->req);
1316             spin_unlock_irq(&epfile->ffs->eps_lock);
1317             return 0;
1318         }
1319         spin_unlock_irq(&epfile->ffs->eps_lock);
1320         return -EFAULT;
1321     }
1322     case FUNCTIONFS_ENDPOINT_GET_REQ_STATUS:
1323     {
1324         struct usb_request *req;
1325         struct IoData myIoData;
1326         if (!ep) {
1327             spin_unlock_irq(&epfile->ffs->eps_lock);
1328             return -EFAULT;
1329         }
1330         ret = copy_from_user(&myIoData,(void __user *)value, sizeof(struct IoData));
1331         if (unlikely(ret)) {
1332             spin_unlock_irq(&epfile->ffs->eps_lock);
1333             return -EFAULT;
1334         }
1335         ffsm = generic_find_memory_area(epfile, myIoData.buf, myIoData.len);
1336         if (ffsm == NULL)
1337         {
1338             return -EFAULT;
1339         }
1340         list_for_each_entry(req, &epfile->ep->req->list, list) {
1341             if (req->buf == (void *)(ffsm->mem + myIoData.buf - ffsm->vm_start)) {
1342                 spin_unlock_irq(&epfile->ffs->eps_lock);
1343                 return req->status;
1344             }
1345         }
1346         spin_unlock_irq(&epfile->ffs->eps_lock);
1347         return -EFAULT;
1348     }
1349     case FUNCTIONFS_FIFO_STATUS:
1350         ret = usb_ep_fifo_status(epfile->ep->ep);
1351         break;
1352     case FUNCTIONFS_FIFO_FLUSH:
1353         usb_ep_fifo_flush(epfile->ep->ep);
1354         ret = 0;
1355         break;
1356     case FUNCTIONFS_CLEAR_HALT:
1357         ret = usb_ep_clear_halt(epfile->ep->ep);
1358         break;
1359     case FUNCTIONFS_ENDPOINT_REVMAP:
1360         ret = epfile->ep->num;
1361         break;
1362     case FUNCTIONFS_ENDPOINT_DESC:
1363     {
1364         int desc_idx;
1365         int i;
1366         struct usb_endpoint_descriptor *desc;
1367 
1368         switch (epfile->ffs->speed) {
1369         case USB_SPEED_SUPER:
1370             desc_idx = 2;
1371             break;
1372         case USB_SPEED_HIGH:
1373             desc_idx = 1;
1374             break;
1375         default:
1376             desc_idx = 1;
1377         }
1378         for (i = 0; i < epfile->ffs->eps_count; i++) {
1379             if (epfile->ffs->epfiles + i == epfile)
1380                 break;
1381         }
1382         ep = epfile->ffs->eps + i;
1383         desc = ep->descs[desc_idx];
1384         spin_unlock_irq(&epfile->ffs->eps_lock);
1385         ret = copy_to_user((void __user *)value, desc, desc->bLength);
1386         if (ret)
1387             ret = -EFAULT;
1388         return ret;
1389     }
1390     default:
1391         ret = -ENOTTY;
1392     }
1393     spin_unlock_irq(&epfile->ffs->eps_lock);
1394 
1395     return ret;
1396 }
1397 
ffs_epfile_read(struct file * file,char __user * buf,size_t count,loff_t * f_pos)1398 static ssize_t ffs_epfile_read(struct file *file, char __user *buf, size_t count, loff_t *f_pos)
1399 {
1400     int status = 0;
1401     unsigned int copied = 0;
1402     unsigned long flags;
1403     struct ffs_epfile *epfile = file->private_data;
1404     ENTER();
1405     if (kfifo_is_empty(&epfile->reqEventFifo)) {
1406         return 0;
1407     }
1408     spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1409     status = kfifo_to_user(&epfile->reqEventFifo, buf, count, &copied) == 0 ? copied : -1;
1410     spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1411 
1412     return status;
1413 }
1414 
ffs_epfile_write(struct file * file,const char __user * buf,size_t count,loff_t * f_pos)1415 static ssize_t ffs_epfile_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos)
1416 {
1417     return count;
1418 }
1419 
ffs_epfile_poll(struct file * file,struct poll_table_struct * wait)1420 static unsigned int ffs_epfile_poll(struct file *file, struct poll_table_struct * wait)
1421 {
1422     unsigned int mask = 0;
1423     struct ffs_epfile *epfile = file->private_data;
1424     ENTER();
1425     poll_wait(file, &epfile->wait_que, wait);
1426     if (!kfifo_is_empty(&epfile->reqEventFifo)) {
1427         mask |= POLLIN;
1428     }
1429     return mask;
1430 }
1431 
1432 #ifdef CONFIG_COMPAT
ffs_epfile_compat_ioctl(struct file * file,unsigned code,unsigned long value)1433 static long ffs_epfile_compat_ioctl(struct file *file, unsigned code,
1434         unsigned long value)
1435 {
1436     return ffs_epfile_ioctl(file, code, value);
1437 }
1438 #endif
1439 
1440 static const struct file_operations ffs_epfile_operations = {
1441     .owner   = THIS_MODULE,
1442     .llseek =    no_llseek,
1443     .mmap = ffs_epfile_mmap,
1444     .read    = ffs_epfile_read,
1445     .write   = ffs_epfile_write,
1446     .poll = ffs_epfile_poll,
1447     .open =        ffs_epfile_open,
1448     .release =    ffs_epfile_release,
1449     .unlocked_ioctl =    ffs_epfile_ioctl,
1450 #ifdef CONFIG_COMPAT
1451     .compat_ioctl = ffs_epfile_compat_ioctl,
1452 #endif
1453 };
1454 
1455 /* ffs_data and ffs_function construction and destruction code **************/
1456 static void ffs_data_clear(struct ffs_data *ffs);
1457 static void ffs_data_reset(struct ffs_data *ffs);
1458 static dev_t g_dev;
1459 #define MAX_EP_DEV 10
usbfn_ioctl(struct file * file,unsigned int cmd,unsigned long value)1460 static long usbfn_ioctl(struct file *file, unsigned int cmd, unsigned long value)
1461 {
1462     long ret;
1463     ENTER();
1464     switch(cmd)
1465     {
1466         case FUNCTIONFS_NEWFN:
1467         {
1468             struct ffs_dev *ffs_dev;
1469             struct ffs_data    *ffs;
1470             struct FuncNew newfn;
1471             char nameEp0[MAX_NAMELEN];
1472             ret = copy_from_user(&newfn, (void __user *)value, sizeof(struct FuncNew ));
1473             if (unlikely(ret)) {
1474                 return -EFAULT;
1475             }
1476             ffs = ffs_data_new(newfn.name);
1477             if (unlikely(!ffs)) {
1478                 return (-ENOMEM);
1479             }
1480 
1481             if (newfn.nameLen > MAX_NAMELEN) {
1482                 return -EPERM;
1483             }
1484             memcpy(ffs->dev_name, newfn.name, newfn.nameLen);
1485 
1486             if (unlikely(!ffs->dev_name)) {
1487                 ffs_data_put(ffs);
1488                 return (-ENOMEM);
1489             }
1490 
1491             if (sprintf(nameEp0, "%s.ep%u", ffs->dev_name, 0) < 0) {
1492                 ffs_data_put(ffs);
1493                 return -EFAULT;
1494             }
1495             ffs_dev = ffs_acquire_dev(newfn.name);
1496             if (IS_ERR(ffs_dev)) {
1497                 ffs_data_put(ffs);
1498                 return (-ENODEV);
1499             }
1500             ffs->private_data = ffs_dev;
1501 
1502             ret = alloc_chrdev_region(&g_dev, 0, MAX_EP_DEV, nameEp0);
1503             if (ret < 0) {
1504                 ffs_release_dev(ffs);
1505                 ffs_data_put(ffs);
1506                 return -EBUSY;
1507             }
1508             cdev_init(&ffs->cdev, &ffs_ep0_operations);
1509             ffs->devno = MKDEV(MAJOR(g_dev), 0);
1510             ret = cdev_add(&ffs->cdev, ffs->devno, 1);
1511             if (ret) {
1512                 ffs_release_dev(ffs);
1513                 ffs_data_put(ffs);
1514                 return -EBUSY;
1515             }
1516 
1517             ffs->fn_device = device_create(ffs_class, NULL, ffs->devno, NULL, nameEp0);
1518             if (IS_ERR(ffs->fn_device)) {
1519                 cdev_del(&ffs->cdev);
1520                 ffs_release_dev(ffs);
1521                 ffs_data_put(ffs);
1522                 return -EBUSY;
1523             }
1524             return 0;
1525         }
1526         case FUNCTIONFS_DELFN:
1527         {
1528             struct FuncNew newfn;
1529             struct ffs_data    *ffs;
1530             struct ffs_dev *ffs_dev;
1531             ret = copy_from_user(&newfn, (void __user *)value, sizeof(struct FuncNew ));
1532             if (unlikely(ret)) {
1533                 return -EFAULT;
1534             }
1535 
1536             ffs_dev = _ffs_find_dev(newfn.name);
1537             if (IS_ERR(ffs_dev)) {
1538                 return -EFAULT;
1539             }
1540             ffs = ffs_dev->ffs_data;
1541             device_destroy(ffs_class, ffs->devno);
1542             cdev_del(&ffs->cdev);
1543             unregister_chrdev_region(g_dev, MAX_EP_DEV);
1544             ffs_release_dev(ffs);
1545             ffs_data_clear(ffs);
1546             destroy_workqueue(ffs->io_completion_wq);
1547             kfree(ffs);
1548             return 0;
1549         }
1550         default:
1551             ret = -ENOTTY;
1552         }
1553 
1554     return ret;
1555 }
1556 
usbfn_open(struct inode * inode,struct file * file)1557 static int usbfn_open(struct inode *inode, struct file *file)
1558 {
1559     return 0;
1560 }
1561 
usbfn_release(struct inode * inode,struct file * file)1562 static int usbfn_release(struct inode *inode, struct file *file)
1563 {
1564     return 0;
1565 }
1566 
1567 static struct file_operations usbfn_fops = {
1568     .owner   = THIS_MODULE,
1569     .unlocked_ioctl   = usbfn_ioctl,
1570     .open    = usbfn_open,
1571     .release = usbfn_release,
1572 #ifdef CONFIG_COMPAT
1573     .compat_ioctl = usbfn_ioctl,
1574 #endif
1575 };
1576 
1577 static struct miscdevice usbfn_misc = {
1578     .minor = MISC_DYNAMIC_MINOR,
1579     .name = "usbfn",
1580     .fops = &usbfn_fops,
1581 };
1582 
1583 /* Driver's main init/cleanup functions *************************************/
functionfs_init(void)1584 static int functionfs_init(void)
1585 {
1586     int ret;
1587 
1588     ENTER();
1589     ret = misc_register(&usbfn_misc);
1590     if (likely(!ret))
1591         pr_info("file system registered\n");
1592     else
1593         pr_err("failed registering file system (%d)\n", ret);
1594 
1595     //ffs_class = class_create(THIS_MODULE, "functionfs");
1596     ffs_class = class_create("functionfs");
1597     if (IS_ERR(ffs_class))
1598         return PTR_ERR(ffs_class);
1599 
1600     ffs_class->devnode = ffs_devnode;
1601 
1602     return ret;
1603 }
1604 
functionfs_cleanup(void)1605 static void functionfs_cleanup(void)
1606 {
1607     ENTER();
1608     class_destroy(ffs_class);
1609     misc_deregister(&usbfn_misc);
1610 }
1611 
ffs_data_get(struct ffs_data * ffs)1612 static void ffs_data_get(struct ffs_data *ffs)
1613 {
1614     ENTER();
1615     refcount_inc(&ffs->ref);
1616 }
1617 
ffs_data_put(struct ffs_data * ffs)1618 static void ffs_data_put(struct ffs_data *ffs)
1619 {
1620     ENTER();
1621     if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1622         pr_info("%s(): freeing\n", __func__);
1623         ffs_data_clear(ffs);
1624         BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1625 #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,0,0)
1626             swait_active(&ffs->ep0req_completion.wait) ||
1627 #else
1628             waitqueue_active(&ffs->ep0req_completion.wait) ||
1629 #endif
1630                waitqueue_active(&ffs->wait) ||
1631                waitqueue_active(&ffs->wait_que));
1632         destroy_workqueue(ffs->io_completion_wq);
1633         kfree(ffs);
1634     }
1635 }
1636 
ffs_data_new(const char * dev_name)1637 static struct ffs_data *ffs_data_new(const char *dev_name)
1638 {
1639     struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1640     if (unlikely(!ffs))
1641         return NULL;
1642 
1643     ENTER();
1644 
1645     ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1646     if (!ffs->io_completion_wq) {
1647         kfree(ffs);
1648         return NULL;
1649     }
1650 
1651     refcount_set(&ffs->ref, 1);
1652     atomic_set(&ffs->opened, 0);
1653     ffs->state = FFS_READ_DESCRIPTORS;
1654     mutex_init(&ffs->mutex);
1655     spin_lock_init(&ffs->eps_lock);
1656     spin_lock_init(&ffs->mem_lock);
1657     init_waitqueue_head(&ffs->ev.waitq);
1658     init_waitqueue_head(&ffs->wait);
1659     init_waitqueue_head(&ffs->wait_que);
1660     init_completion(&ffs->ep0req_completion);
1661     INIT_LIST_HEAD(&ffs->memory_list);
1662     ffs->ev.can_stall = 1;
1663 
1664     return ffs;
1665 }
1666 
ffs_data_clear(struct ffs_data * ffs)1667 static void ffs_data_clear(struct ffs_data *ffs)
1668 {
1669     ENTER();
1670 
1671     ffs_closed(ffs);
1672 
1673     BUG_ON(ffs->gadget);
1674 
1675     if (ffs->epfiles)
1676         ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1677 
1678     if (ffs->ffs_eventfd)
1679         eventfd_ctx_put(ffs->ffs_eventfd);
1680 
1681     kfree(ffs->raw_descs_data);
1682     kfree(ffs->raw_strings);
1683     kfree(ffs->stringtabs);
1684 }
1685 
ffs_data_reset(struct ffs_data * ffs)1686 static void ffs_data_reset(struct ffs_data *ffs)
1687 {
1688     ENTER();
1689 
1690     ffs_data_clear(ffs);
1691 
1692     ffs->epfiles = NULL;
1693     ffs->raw_descs_data = NULL;
1694     ffs->raw_descs = NULL;
1695     ffs->raw_strings = NULL;
1696     ffs->stringtabs = NULL;
1697 
1698     ffs->raw_descs_length = 0;
1699     ffs->fs_descs_count = 0;
1700     ffs->hs_descs_count = 0;
1701     ffs->ss_descs_count = 0;
1702 
1703     ffs->strings_count = 0;
1704     ffs->interfaces_count = 0;
1705     ffs->eps_count = 0;
1706 
1707     ffs->ev.count = 0;
1708 
1709     ffs->state = FFS_READ_DESCRIPTORS;
1710     ffs->setup_state = FFS_NO_SETUP;
1711     ffs->flags = 0;
1712 }
1713 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1714 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1715 {
1716     struct usb_gadget_strings **lang;
1717     int first_id;
1718 
1719     ENTER();
1720 
1721     if (WARN_ON(ffs->state != FFS_ACTIVE
1722          || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1723         return -EBADFD;
1724 
1725     first_id = usb_string_ids_n(cdev, ffs->strings_count);
1726     if (unlikely(first_id < 0))
1727         return first_id;
1728 
1729     ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1730     if (unlikely(!ffs->ep0req))
1731         return -ENOMEM;
1732     ffs->ep0req->complete = ffs_ep0_complete;
1733     ffs->ep0req->context = ffs;
1734     INIT_LIST_HEAD(&ffs->ep0req->list);
1735 
1736     lang = ffs->stringtabs;
1737     if (lang) {
1738         for (; *lang; ++lang) {
1739             struct usb_string *str = (*lang)->strings;
1740             int id = first_id;
1741             for (; str->s; ++id, ++str)
1742                 str->id = id;
1743         }
1744     }
1745 
1746     ffs->gadget = cdev->gadget;
1747     ffs->speed = cdev->gadget->speed;
1748     ffs_data_get(ffs);
1749     return 0;
1750 }
1751 
functionfs_unbind(struct ffs_data * ffs)1752 static void functionfs_unbind(struct ffs_data *ffs)
1753 {
1754     ENTER();
1755 
1756     if (!WARN_ON(!ffs->gadget)) {
1757         usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1758         ffs->ep0req = NULL;
1759         ffs->gadget = NULL;
1760         clear_bit(FFS_FL_BOUND, &ffs->flags);
1761         ffs_data_put(ffs);
1762     }
1763 }
1764 
ffs_epfiles_create(struct ffs_data * ffs)1765 static int ffs_epfiles_create(struct ffs_data *ffs)
1766 {
1767     struct ffs_epfile *epfile = NULL, *epfiles = NULL;
1768     unsigned int i, count ,ret;
1769 
1770     ENTER();
1771 
1772     count = ffs->eps_count;
1773     epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1774     if (!epfiles)
1775         return -ENOMEM;
1776 
1777     epfile = epfiles;
1778     for (i = 1; i <= count; ++i, ++epfile) {
1779         epfile->ffs = ffs;
1780         mutex_init(&epfile->mutex);
1781         INIT_LIST_HEAD(&epfile->memory_list);
1782         init_waitqueue_head(&epfile->wait_que);
1783         if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR) {
1784             if (sprintf(epfile->name, "%s.ep%02x", ffs->dev_name, ffs->eps_addrmap[i]) < 0) {
1785                 return -EFAULT;
1786             }
1787         } else {
1788             if (sprintf(epfile->name, "%s.ep%u", ffs->dev_name, i) < 0) {
1789                 return -EFAULT;
1790             }
1791         }
1792 
1793         cdev_init(&epfile->cdev, &ffs_epfile_operations);
1794         epfile->devno=MKDEV(MAJOR(ffs->devno), i);
1795         ret = cdev_add(&epfile->cdev, epfile->devno, 1);
1796         if (ret)
1797         {
1798             ffs_epfiles_destroy(epfiles, i - 1);
1799             return -EBUSY;
1800         }
1801 
1802         epfile->device = device_create(ffs_class, NULL, epfile->devno, NULL, epfile->name);
1803         if (IS_ERR(epfile->device))
1804         {
1805             cdev_del(&epfile->cdev);
1806             ffs_epfiles_destroy(epfiles, i - 1);
1807             return -EBUSY;
1808         }
1809     }
1810 
1811     ffs->epfiles = epfiles;
1812     return 0;
1813 }
1814 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1815 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1816 {
1817     struct ffs_epfile *epfile = epfiles;
1818 
1819     ENTER();
1820 
1821     for (; count; --count, ++epfile) {
1822         BUG_ON(mutex_is_locked(&epfile->mutex));
1823         device_destroy(ffs_class, epfile->devno);
1824         cdev_del(&epfile->cdev);
1825     }
1826 
1827     kfree(epfiles);
1828 }
1829 
ffs_func_eps_disable(struct ffs_function * func)1830 static void ffs_func_eps_disable(struct ffs_function *func)
1831 {
1832     struct ffs_ep *ep         = func->eps;
1833     struct ffs_epfile *epfile = func->ffs->epfiles;
1834     unsigned count            = func->ffs->eps_count;
1835     unsigned long flags;
1836 
1837     spin_lock_irqsave(&func->ffs->eps_lock, flags);
1838     while (count--) {
1839         /* pending requests get nuked */
1840         if (likely(ep->ep))
1841             usb_ep_disable(ep->ep);
1842         ++ep;
1843 
1844         if (epfile) {
1845             epfile->ep = NULL;
1846             ++epfile;
1847         }
1848     }
1849     spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1850 }
1851 
ffs_func_eps_enable(struct ffs_function * func)1852 static int ffs_func_eps_enable(struct ffs_function *func)
1853 {
1854     struct ffs_data *ffs      = func->ffs;
1855     struct ffs_ep *ep         = func->eps;
1856     struct ffs_epfile *epfile = ffs->epfiles;
1857     unsigned count            = ffs->eps_count;
1858     unsigned long flags;
1859     int ret = 0;
1860 
1861     spin_lock_irqsave(&func->ffs->eps_lock, flags);
1862     while(count--) {
1863         ep->ep->driver_data = ep;
1864 
1865         ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1866         if (ret) {
1867             pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1868                     __func__, ep->ep->name, ret);
1869             break;
1870         }
1871 
1872         ret = usb_ep_enable(ep->ep);
1873         if (likely(!ret)) {
1874             epfile->ep = ep;
1875             epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1876             epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1877         } else {
1878             break;
1879         }
1880 
1881         ++ep;
1882         ++epfile;
1883     }
1884 
1885     wake_up_interruptible(&ffs->wait);
1886     spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1887 
1888     return ret;
1889 }
1890 
1891 /* Parsing and building descriptors and strings *****************************/
1892 
1893 /*
1894  * This validates if data pointed by data is a valid USB descriptor as
1895  * well as record how many interfaces, endpoints and strings are
1896  * required by given configuration.  Returns address after the
1897  * descriptor or NULL if data is invalid.
1898  */
1899 enum ffs_entity_type {
1900     FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1901 };
1902 
1903 enum ffs_os_desc_type {
1904     FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1905 };
1906 
1907 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, u8 *valuep,
1908                 struct usb_descriptor_header *desc,
1909                 void *priv);
1910 
1911 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1912                 struct usb_os_desc_header *h, void *data,
1913                 unsigned len, void *priv);
1914 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv)1915 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1916                 ffs_entity_callback entity,
1917                 void *priv)
1918 {
1919     struct usb_descriptor_header *_ds = (void *)data;
1920     u8 length;
1921     int ret;
1922 
1923     ENTER();
1924 
1925     /* At least two bytes are required: length and type */
1926     if (len < 2) {
1927         pr_vdebug("descriptor too short\n");
1928         return -EINVAL;
1929     }
1930 
1931     /* If we have at least as many bytes as the descriptor takes? */
1932     length = _ds->bLength;
1933     if (len < length) {
1934         pr_vdebug("descriptor longer then available data\n");
1935         return -EINVAL;
1936     }
1937 
1938 #define __entity_check_INTERFACE(val)  1
1939 #define __entity_check_STRING(val)     (val)
1940 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1941 #define __entity(type, val) do {                    \
1942         pr_vdebug("entity " #type "(%02x)\n", (val));        \
1943         if (unlikely(!__entity_check_ ##type(val))) {        \
1944             pr_vdebug("invalid entity's value\n");        \
1945             return -EINVAL;                    \
1946         }                            \
1947         ret = entity(FFS_ ##type, &val, _ds, priv);        \
1948         if (unlikely(ret < 0)) {                \
1949             pr_debug("entity " #type "(%02x); ret = %d\n",    \
1950                  (val), ret);                \
1951             return ret;                    \
1952         }                            \
1953     } while (0)
1954 
1955     /* Parse descriptor depending on type. */
1956     switch (_ds->bDescriptorType) {
1957     case USB_DT_DEVICE:
1958     case USB_DT_CONFIG:
1959     case USB_DT_STRING:
1960     case USB_DT_DEVICE_QUALIFIER:
1961         /* function can't have any of those */
1962         pr_vdebug("descriptor reserved for gadget: %d\n",
1963               _ds->bDescriptorType);
1964         return -EINVAL;
1965 
1966     case USB_DT_INTERFACE: {
1967         struct usb_interface_descriptor *ds = (void *)_ds;
1968         pr_vdebug("interface descriptor\n");
1969         if (length != sizeof *ds)
1970             goto inv_length;
1971 
1972         __entity(INTERFACE, ds->bInterfaceNumber);
1973         if (ds->iInterface)
1974             __entity(STRING, ds->iInterface);
1975     }
1976         break;
1977 
1978     case USB_DT_ENDPOINT: {
1979         struct usb_endpoint_descriptor *ds = (void *)_ds;
1980         pr_vdebug("endpoint descriptor\n");
1981         if (length != USB_DT_ENDPOINT_SIZE &&
1982             length != USB_DT_ENDPOINT_AUDIO_SIZE)
1983             goto inv_length;
1984         __entity(ENDPOINT, ds->bEndpointAddress);
1985     }
1986         break;
1987 
1988     case HID_DT_HID:
1989         pr_vdebug("hid descriptor\n");
1990         if (length != sizeof(struct hid_descriptor))
1991             goto inv_length;
1992         break;
1993 
1994     case USB_DT_OTG:
1995         if (length != sizeof(struct usb_otg_descriptor))
1996             goto inv_length;
1997         break;
1998 
1999     case USB_DT_INTERFACE_ASSOCIATION: {
2000         struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2001         pr_vdebug("interface association descriptor\n");
2002         if (length != sizeof *ds)
2003             goto inv_length;
2004         if (ds->iFunction)
2005             __entity(STRING, ds->iFunction);
2006     }
2007         break;
2008 
2009     case USB_DT_SS_ENDPOINT_COMP:
2010         pr_vdebug("EP SS companion descriptor\n");
2011         if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2012             goto inv_length;
2013         break;
2014 
2015     case USB_DT_OTHER_SPEED_CONFIG:
2016     case USB_DT_INTERFACE_POWER:
2017     case USB_DT_DEBUG:
2018     case USB_DT_SECURITY:
2019     case USB_DT_CS_RADIO_CONTROL:
2020         pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2021         break;
2022     default:
2023         /* We should never be here */
2024         pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2025         break;
2026 inv_length:
2027         pr_vdebug("invalid length: %d (descriptor %d)\n",
2028               _ds->bLength, _ds->bDescriptorType);
2029         return -EINVAL;
2030     }
2031 
2032 #undef __entity
2033 #undef __entity_check_DESCRIPTOR
2034 #undef __entity_check_INTERFACE
2035 #undef __entity_check_STRING
2036 #undef __entity_check_ENDPOINT
2037 
2038     return length;
2039 }
2040 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2041 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2042                 ffs_entity_callback entity, void *priv)
2043 {
2044     const unsigned _len = len;
2045     uintptr_t num = 0;
2046 
2047     ENTER();
2048 
2049     for (;;) {
2050         int ret;
2051 
2052         if (num == count)
2053             data = NULL;
2054 
2055         /* Record "descriptor" entity */
2056         ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2057         if (unlikely(ret < 0)) {
2058             pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2059                  num, ret);
2060             return ret;
2061         }
2062 
2063         if (!data)
2064             return _len - len;
2065 
2066         ret = ffs_do_single_desc(data, len, entity, priv);
2067         if (unlikely(ret < 0)) {
2068             pr_debug("%s returns %d\n", __func__, ret);
2069             return ret;
2070         }
2071 
2072         len -= ret;
2073         data += ret;
2074         ++num;
2075     }
2076 }
2077 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2078 static int __ffs_data_do_entity(enum ffs_entity_type type,
2079                 u8 *valuep, struct usb_descriptor_header *desc,
2080                 void *priv)
2081 {
2082     struct ffs_desc_helper *helper = priv;
2083     struct usb_endpoint_descriptor *d = NULL;
2084 
2085     ENTER();
2086 
2087     switch (type) {
2088     case FFS_DESCRIPTOR:
2089         break;
2090 
2091     case FFS_INTERFACE:
2092         /*
2093          * Interfaces are indexed from zero so if we
2094          * encountered interface "n" then there are at least
2095          * "n+1" interfaces.
2096          */
2097         if (*valuep >= helper->interfaces_count)
2098             helper->interfaces_count = *valuep + 1;
2099         break;
2100 
2101     case FFS_STRING:
2102         /*
2103          * Strings are indexed from 1 (0 is reserved
2104          * for languages list)
2105          */
2106         if (*valuep > helper->ffs->strings_count)
2107             helper->ffs->strings_count = *valuep;
2108         break;
2109 
2110     case FFS_ENDPOINT:
2111         d = (void *)desc;
2112         helper->eps_count++;
2113         if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2114             return -EINVAL;
2115         /* Check if descriptors for any speed were already parsed */
2116         if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2117             helper->ffs->eps_addrmap[helper->eps_count] =
2118                 d->bEndpointAddress;
2119         else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2120                 d->bEndpointAddress)
2121             return -EINVAL;
2122         break;
2123     }
2124 
2125     return 0;
2126 }
2127 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2128 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2129                 struct usb_os_desc_header *desc)
2130 {
2131     u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2132     u16 w_index = le16_to_cpu(desc->wIndex);
2133 
2134     if (bcd_version != 1) {
2135         pr_vdebug("unsupported os descriptors version: %d",
2136               bcd_version);
2137         return -EINVAL;
2138     }
2139     switch (w_index) {
2140     case 0x4:
2141         *next_type = FFS_OS_DESC_EXT_COMPAT;
2142         break;
2143     case 0x5:
2144         *next_type = FFS_OS_DESC_EXT_PROP;
2145         break;
2146     default:
2147         pr_vdebug("unsupported os descriptor type: %d", w_index);
2148         return -EINVAL;
2149     }
2150 
2151     return sizeof(*desc);
2152 }
2153 
2154 /*
2155  * Process all extended compatibility/extended property descriptors
2156  * of a feature descriptor
2157  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2158 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2159                 enum ffs_os_desc_type type,
2160                 u16 feature_count,
2161                 ffs_os_desc_callback entity,
2162                 void *priv,
2163                 struct usb_os_desc_header *h)
2164 {
2165     int ret;
2166     const unsigned _len = len;
2167 
2168     ENTER();
2169 
2170     /* loop over all ext compat/ext prop descriptors */
2171     while (feature_count--) {
2172         ret = entity(type, h, data, len, priv);
2173         if (unlikely(ret < 0)) {
2174             pr_debug("bad OS descriptor, type: %d\n", type);
2175             return ret;
2176         }
2177         data += ret;
2178         len -= ret;
2179     }
2180     return _len - len;
2181 }
2182 
2183 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2184 static int __must_check ffs_do_os_descs(unsigned count,
2185                 char *data, unsigned len,
2186                 ffs_os_desc_callback entity, void *priv)
2187 {
2188     const unsigned _len = len;
2189     unsigned long num = 0;
2190 
2191     ENTER();
2192 
2193     for (num = 0; num < count; ++num) {
2194         int ret;
2195         enum ffs_os_desc_type type;
2196         u16 feature_count;
2197         struct usb_os_desc_header *desc = (void *)data;
2198 
2199         if (len < sizeof(*desc))
2200             return -EINVAL;
2201 
2202         /*
2203          * Record "descriptor" entity.
2204          * Process dwLength, bcdVersion, wIndex, get b/wCount.
2205          * Move the data pointer to the beginning of extended
2206          * compatibilities proper or extended properties proper
2207          * portions of the data
2208          */
2209         if (le32_to_cpu(desc->dwLength) > len)
2210             return -EINVAL;
2211 
2212         ret = __ffs_do_os_desc_header(&type, desc);
2213         if (unlikely(ret < 0)) {
2214             pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2215                  num, ret);
2216             return ret;
2217         }
2218         /*
2219          * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2220          */
2221         feature_count = le16_to_cpu(desc->wCount);
2222         if (type == FFS_OS_DESC_EXT_COMPAT &&
2223             (feature_count > 255 || desc->Reserved))
2224                 return -EINVAL;
2225         len -= ret;
2226         data += ret;
2227 
2228         /*
2229          * Process all function/property descriptors
2230          * of this Feature Descriptor
2231          */
2232         ret = ffs_do_single_os_desc(data, len, type,
2233                         feature_count, entity, priv, desc);
2234         if (unlikely(ret < 0)) {
2235             pr_debug("%s returns %d\n", __func__, ret);
2236             return ret;
2237         }
2238 
2239         len -= ret;
2240         data += ret;
2241     }
2242     return _len - len;
2243 }
2244 
2245 /**
2246  * Validate contents of the buffer from userspace related to OS descriptors.
2247  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2248 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2249                  struct usb_os_desc_header *h, void *data,
2250                  unsigned len, void *priv)
2251 {
2252     struct ffs_data *ffs = priv;
2253     u8 length;
2254 
2255     ENTER();
2256 
2257     switch (type) {
2258     case FFS_OS_DESC_EXT_COMPAT: {
2259         struct usb_ext_compat_desc *d = data;
2260         int i;
2261 
2262         if (len < sizeof(*d) ||
2263             d->bFirstInterfaceNumber >= ffs->interfaces_count)
2264             return -EINVAL;
2265         if (d->Reserved1 != 1) {
2266             /*
2267              * According to the spec, Reserved1 must be set to 1
2268              * but older kernels incorrectly rejected non-zero
2269              * values.  We fix it here to avoid returning EINVAL
2270              * in response to values we used to accept.
2271              */
2272             pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2273             d->Reserved1 = 1;
2274         }
2275         for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2276             if (d->Reserved2[i])
2277                 return -EINVAL;
2278 
2279         length = sizeof(struct usb_ext_compat_desc);
2280     }
2281         break;
2282     case FFS_OS_DESC_EXT_PROP: {
2283         struct usb_ext_prop_desc *d = data;
2284         u32 type, pdl;
2285         u16 pnl;
2286 
2287         if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2288             return -EINVAL;
2289         length = le32_to_cpu(d->dwSize);
2290         if (len < length)
2291             return -EINVAL;
2292         type = le32_to_cpu(d->dwPropertyDataType);
2293         if (type < USB_EXT_PROP_UNICODE ||
2294             type > USB_EXT_PROP_UNICODE_MULTI) {
2295             pr_vdebug("unsupported os descriptor property type: %d",
2296                   type);
2297             return -EINVAL;
2298         }
2299         pnl = le16_to_cpu(d->wPropertyNameLength);
2300         if (length < 14 + pnl) {
2301             pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2302                   length, pnl, type);
2303             return -EINVAL;
2304         }
2305         pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2306         if (length != 14 + pnl + pdl) {
2307             pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2308                   length, pnl, pdl, type);
2309             return -EINVAL;
2310         }
2311         ++ffs->ms_os_descs_ext_prop_count;
2312         /* property name reported to the host as "WCHAR"s */
2313         ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2314         ffs->ms_os_descs_ext_prop_data_len += pdl;
2315     }
2316         break;
2317     default:
2318         pr_vdebug("unknown descriptor: %d\n", type);
2319         return -EINVAL;
2320     }
2321     return length;
2322 }
2323 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2324 static int __ffs_data_got_descs(struct ffs_data *ffs,
2325                 char *const _data, size_t len)
2326 {
2327     char *data = _data, *raw_descs = NULL;
2328     unsigned os_descs_count = 0, counts[3], flags;
2329     int ret = -EINVAL, i;
2330     struct ffs_desc_helper helper;
2331 
2332     ENTER();
2333 
2334     if (get_unaligned_le32(data + 4) != len)
2335         goto error;
2336 
2337     switch (get_unaligned_le32(data)) {
2338     case FUNCTIONFS_DESCRIPTORS_MAGIC:
2339         flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2340         data += 8;
2341         len  -= 8;
2342         break;
2343     case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2344         flags = get_unaligned_le32(data + 8);
2345         ffs->user_flags = flags;
2346         if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2347                   FUNCTIONFS_HAS_HS_DESC |
2348                   FUNCTIONFS_HAS_SS_DESC |
2349                   FUNCTIONFS_HAS_MS_OS_DESC |
2350                   FUNCTIONFS_VIRTUAL_ADDR |
2351                   FUNCTIONFS_EVENTFD |
2352                   FUNCTIONFS_ALL_CTRL_RECIP |
2353                   FUNCTIONFS_CONFIG0_SETUP)) {
2354             ret = -ENOSYS;
2355             goto error;
2356         }
2357         data += 12;
2358         len  -= 12;
2359         break;
2360     default:
2361         goto error;
2362     }
2363 
2364     if (flags & FUNCTIONFS_EVENTFD) {
2365         if (len < 4)
2366             goto error;
2367         ffs->ffs_eventfd =
2368             eventfd_ctx_fdget((int)get_unaligned_le32(data));
2369         if (IS_ERR(ffs->ffs_eventfd)) {
2370             ret = PTR_ERR(ffs->ffs_eventfd);
2371             ffs->ffs_eventfd = NULL;
2372             goto error;
2373         }
2374         data += 4;
2375         len  -= 4;
2376     }
2377 
2378     /* Read fs_count, hs_count and ss_count (if present) */
2379     for (i = 0; i < 3; ++i) {
2380         if (!(flags & (1 << i))) {
2381             counts[i] = 0;
2382         } else if (len < 4) {
2383             goto error;
2384         } else {
2385             counts[i] = get_unaligned_le32(data);
2386             data += 4;
2387             len  -= 4;
2388         }
2389     }
2390     if (flags & (1 << i)) {
2391         if (len < 4) {
2392             goto error;
2393         }
2394         os_descs_count = get_unaligned_le32(data);
2395         data += 4;
2396         len -= 4;
2397     }
2398 
2399     /* Read descriptors */
2400     raw_descs = data;
2401     helper.ffs = ffs;
2402     for (i = 0; i < 3; ++i) {
2403         if (!counts[i])
2404             continue;
2405         helper.interfaces_count = 0;
2406         helper.eps_count = 0;
2407         ret = ffs_do_descs(counts[i], data, len,
2408                    __ffs_data_do_entity, &helper);
2409         if (ret < 0)
2410             goto error;
2411         if (!ffs->eps_count && !ffs->interfaces_count) {
2412             ffs->eps_count = helper.eps_count;
2413             ffs->interfaces_count = helper.interfaces_count;
2414         } else {
2415             if (ffs->eps_count != helper.eps_count) {
2416                 ret = -EINVAL;
2417                 goto error;
2418             }
2419             if (ffs->interfaces_count != helper.interfaces_count) {
2420                 ret = -EINVAL;
2421                 goto error;
2422             }
2423         }
2424         data += ret;
2425         len  -= ret;
2426     }
2427     if (os_descs_count) {
2428         ret = ffs_do_os_descs(os_descs_count, data, len,
2429                       __ffs_data_do_os_desc, ffs);
2430         if (ret < 0)
2431             goto error;
2432         data += ret;
2433         len -= ret;
2434     }
2435 
2436     if (raw_descs == data || len) {
2437         ret = -EINVAL;
2438         goto error;
2439     }
2440 
2441     ffs->raw_descs_data    = _data;
2442     ffs->raw_descs        = raw_descs;
2443     ffs->raw_descs_length    = data - raw_descs;
2444     ffs->fs_descs_count    = counts[0];
2445     ffs->hs_descs_count    = counts[1];
2446     ffs->ss_descs_count    = counts[2];
2447     ffs->ms_os_descs_count    = os_descs_count;
2448 
2449     return 0;
2450 
2451 error:
2452     kfree(_data);
2453     return ret;
2454 }
2455 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2456 static int __ffs_data_got_strings(struct ffs_data *ffs,
2457                 char *const _data, size_t len)
2458 {
2459     u32 str_count, needed_count, lang_count;
2460     struct usb_gadget_strings **stringtabs = NULL, *t = NULL;
2461     const char *data = _data;
2462     struct usb_string *s = NULL;
2463 
2464     ENTER();
2465 
2466     if (unlikely(len < 16 ||
2467              get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2468              get_unaligned_le32(data + 4) != len))
2469         goto error;
2470     str_count  = get_unaligned_le32(data + 8);
2471     lang_count = get_unaligned_le32(data + 12);
2472 
2473     /* if one is zero the other must be zero */
2474     if (unlikely(!str_count != !lang_count))
2475         goto error;
2476 
2477     /* Do we have at least as many strings as descriptors need? */
2478     needed_count = ffs->strings_count;
2479     if (unlikely(str_count < needed_count))
2480         goto error;
2481 
2482     /*
2483      * If we don't need any strings just return and free all
2484      * memory.
2485      */
2486     if (!needed_count) {
2487         kfree(_data);
2488         return 0;
2489     }
2490 
2491     /* Allocate everything in one chunk so there's less maintenance. */
2492     {
2493         unsigned i = 0;
2494         vla_group(d);
2495         vla_item(d, struct usb_gadget_strings *, stringtabs,
2496             lang_count + 1);
2497         vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2498         vla_item(d, struct usb_string, strings,
2499             lang_count*(needed_count+1));
2500 
2501         char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2502 
2503         if (unlikely(!vlabuf)) {
2504             kfree(_data);
2505             return -ENOMEM;
2506         }
2507 
2508         /* Initialize the VLA pointers */
2509         stringtabs = vla_ptr(vlabuf, d, stringtabs);
2510         t = vla_ptr(vlabuf, d, stringtab);
2511         i = lang_count;
2512         do {
2513             *stringtabs++ = t++;
2514         } while (--i);
2515         *stringtabs = NULL;
2516 
2517         /* stringtabs = vlabuf = d_stringtabs for later kfree */
2518         stringtabs = vla_ptr(vlabuf, d, stringtabs);
2519         t = vla_ptr(vlabuf, d, stringtab);
2520         s = vla_ptr(vlabuf, d, strings);
2521     }
2522 
2523     /* For each language */
2524     data += 16;
2525     len -= 16;
2526 
2527     do { /* lang_count > 0 so we can use do-while */
2528         unsigned needed = needed_count;
2529 
2530         if (unlikely(len < 3))
2531             goto error_free;
2532         t->language = get_unaligned_le16(data);
2533         t->strings  = s;
2534         ++t;
2535 
2536         data += 2;
2537         len -= 2;
2538 
2539         /* For each string */
2540         do { /* str_count > 0 so we can use do-while */
2541             size_t length = strnlen(data, len);
2542 
2543             if (unlikely(length == len))
2544                 goto error_free;
2545 
2546             /*
2547              * User may provide more strings then we need,
2548              * if that's the case we simply ignore the
2549              * rest
2550              */
2551             if (likely(needed)) {
2552                 /*
2553                  * s->id will be set while adding
2554                  * function to configuration so for
2555                  * now just leave garbage here.
2556                  */
2557                 s->s = data;
2558                 --needed;
2559                 ++s;
2560             }
2561 
2562             data += length + 1;
2563             len -= length + 1;
2564         } while (--str_count);
2565 
2566         s->id = 0;   /* terminator */
2567         s->s = NULL;
2568         ++s;
2569 
2570     } while (--lang_count);
2571 
2572     /* Some garbage left? */
2573     if (unlikely(len))
2574         goto error_free;
2575 
2576     /* Done! */
2577     ffs->stringtabs = stringtabs;
2578     ffs->raw_strings = _data;
2579 
2580     return 0;
2581 
2582 error_free:
2583     kfree(stringtabs);
2584 error:
2585     kfree(_data);
2586     return -EINVAL;
2587 }
2588 
2589 /* Events handling and management *******************************************/
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2590 static void __ffs_event_add(struct ffs_data *ffs,
2591                 enum usb_functionfs_event_type type)
2592 {
2593     enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2594     int neg = 0;
2595 
2596     /*
2597      * Abort any unhandled setup
2598      *
2599      * We do not need to worry about some cmpxchg() changing value
2600      * of ffs->setup_state without holding the lock because when
2601      * state is FFS_SETUP_PENDING cmpxchg() in several places in
2602      * the source does nothing.
2603      */
2604     if (ffs->setup_state == FFS_SETUP_PENDING)
2605         ffs->setup_state = FFS_SETUP_CANCELLED;
2606 
2607     /*
2608      * Logic of this function guarantees that there are at most four pending
2609      * evens on ffs->ev.types queue.  This is important because the queue
2610      * has space for four elements only and __ffs_ep0_read_events function
2611      * depends on that limit as well.  If more event types are added, those
2612      * limits have to be revisited or guaranteed to still hold.
2613      */
2614     switch (type) {
2615     case FUNCTIONFS_RESUME:
2616         rem_type2 = FUNCTIONFS_SUSPEND;
2617         /* FALL THROUGH */
2618     case FUNCTIONFS_SUSPEND:
2619     case FUNCTIONFS_SETUP:
2620         rem_type1 = type;
2621         /* Discard all similar events */
2622         break;
2623 
2624     case FUNCTIONFS_BIND:
2625     case FUNCTIONFS_UNBIND:
2626     case FUNCTIONFS_DISABLE:
2627     case FUNCTIONFS_ENABLE:
2628         /* Discard everything other then power management. */
2629         rem_type1 = FUNCTIONFS_SUSPEND;
2630         rem_type2 = FUNCTIONFS_RESUME;
2631         neg = 1;
2632         break;
2633 
2634     default:
2635         WARN(1, "%d: unknown event, this should not happen\n", type);
2636         return;
2637     }
2638 
2639     {
2640         u8 *ev  = ffs->ev.types, *out = ev;
2641         unsigned n = ffs->ev.count;
2642         for (; n; --n, ++ev)
2643             if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2644                 *out++ = *ev;
2645             else
2646                 pr_vdebug("purging event %d\n", *ev);
2647         ffs->ev.count = out - ffs->ev.types;
2648     }
2649 
2650     pr_vdebug("adding event %d\n", type);
2651     ffs->ev.types[ffs->ev.count++] = type;
2652     wake_up_locked(&ffs->ev.waitq);
2653     if (ffs->ffs_eventfd)
2654         eventfd_signal(ffs->ffs_eventfd, 1);
2655 }
2656 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2657 static void ffs_event_add(struct ffs_data *ffs,
2658               enum usb_functionfs_event_type type)
2659 {
2660     unsigned long flags;
2661     spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2662     __ffs_event_add(ffs, type);
2663     spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2664 }
2665 
2666 /* Bind/unbind USB function hooks *******************************************/
2667 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2668 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2669 {
2670     int i;
2671 
2672     for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2673         if (ffs->eps_addrmap[i] == endpoint_address)
2674             return i;
2675     return -ENOENT;
2676 }
2677 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2678 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2679                 struct usb_descriptor_header *desc,
2680                 void *priv)
2681 {
2682     struct usb_endpoint_descriptor *ds = (void *)desc;
2683     struct ffs_function *func = priv;
2684     struct ffs_ep *ffs_ep = NULL;
2685     unsigned ep_desc_id;
2686     int idx;
2687     static const char *speed_names[] = { "full", "high", "super" };
2688 
2689     if (type != FFS_DESCRIPTOR)
2690         return 0;
2691 
2692     /*
2693      * If ss_descriptors is not NULL, we are reading super speed
2694      * descriptors; if hs_descriptors is not NULL, we are reading high
2695      * speed descriptors; otherwise, we are reading full speed
2696      * descriptors.
2697      */
2698     if (func->function.ss_descriptors) {
2699         ep_desc_id = 2;
2700         func->function.ss_descriptors[(uintptr_t)valuep] = desc;
2701     } else if (func->function.hs_descriptors) {
2702         ep_desc_id = 1;
2703         func->function.hs_descriptors[(uintptr_t)valuep] = desc;
2704     } else {
2705         ep_desc_id = 0;
2706         func->function.fs_descriptors[(uintptr_t)valuep]    = desc;
2707     }
2708 
2709     if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2710         return 0;
2711 
2712     idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2713     if (idx < 0)
2714         return idx;
2715 
2716     ffs_ep = func->eps + idx;
2717 
2718     if (unlikely(ffs_ep->descs[ep_desc_id])) {
2719         pr_err("two %sspeed descriptors for EP %d\n",
2720               speed_names[ep_desc_id],
2721               ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2722         return -EINVAL;
2723     }
2724     ffs_ep->descs[ep_desc_id] = ds;
2725 
2726     ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2727     if (ffs_ep->ep) {
2728         ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2729         if (!ds->wMaxPacketSize)
2730             ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2731     } else {
2732         struct usb_request *req = NULL;
2733         struct usb_ep *ep = NULL;
2734         u8 bEndpointAddress;
2735 
2736         /*
2737          * We back up bEndpointAddress because autoconfig overwrites
2738          * it with physical endpoint address.
2739          */
2740         bEndpointAddress = ds->bEndpointAddress;
2741         pr_vdebug("autoconfig\n");
2742         ep = usb_ep_autoconfig(func->gadget, ds);
2743         if (unlikely(!ep))
2744             return -ENOTSUPP;
2745         ep->driver_data = func->eps + idx;
2746 
2747         req = usb_ep_alloc_request(ep, GFP_KERNEL);
2748         if (unlikely(!req))
2749             return -ENOMEM;
2750 
2751         ffs_ep->ep  = ep;
2752         ffs_ep->req = req;
2753             INIT_LIST_HEAD(&ffs_ep->req->list);
2754         func->eps_revmap[ds->bEndpointAddress &
2755                  USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2756         /*
2757          * If we use virtual address mapping, we restore
2758          * original bEndpointAddress value.
2759          */
2760         if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2761             ds->bEndpointAddress = bEndpointAddress;
2762     }
2763     ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2764 
2765     return 0;
2766 }
2767 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2768 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2769                 struct usb_descriptor_header *desc,
2770                 void *priv)
2771 {
2772     struct ffs_function *func = priv;
2773     unsigned idx;
2774     u8 newValue;
2775 
2776     switch (type) {
2777     default:
2778     case FFS_DESCRIPTOR:
2779         /* Handled in previous pass by __ffs_func_bind_do_descs() */
2780         return 0;
2781 
2782     case FFS_INTERFACE:
2783         idx = *valuep;
2784         if (func->interfaces_nums[idx] < 0) {
2785             int id = usb_interface_id(func->conf, &func->function);
2786             if (unlikely(id < 0))
2787                 return id;
2788             func->interfaces_nums[idx] = id;
2789         }
2790         newValue = func->interfaces_nums[idx];
2791         break;
2792 
2793     case FFS_STRING:
2794         /* String' IDs are allocated when fsf_data is bound to cdev */
2795         newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2796         break;
2797 
2798     case FFS_ENDPOINT:
2799         /*
2800          * USB_DT_ENDPOINT are handled in
2801          * __ffs_func_bind_do_descs().
2802          */
2803         if (desc->bDescriptorType == USB_DT_ENDPOINT)
2804             return 0;
2805 
2806         idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2807         if (unlikely(!func->eps[idx].ep))
2808             return -EINVAL;
2809 
2810         {
2811             struct usb_endpoint_descriptor **descs;
2812             descs = func->eps[idx].descs;
2813             newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2814         }
2815         break;
2816     }
2817 
2818     pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2819     *valuep = newValue;
2820     return 0;
2821 }
2822 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2823 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2824                 struct usb_os_desc_header *h, void *data,
2825                 unsigned len, void *priv)
2826 {
2827     struct ffs_function *func = priv;
2828     u8 length = 0;
2829 
2830     switch (type) {
2831     case FFS_OS_DESC_EXT_COMPAT: {
2832         struct usb_ext_compat_desc *desc = data;
2833         struct usb_os_desc_table *t;
2834 
2835         t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2836         t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2837         memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2838             ARRAY_SIZE(desc->CompatibleID) + ARRAY_SIZE(desc->SubCompatibleID));
2839         length = sizeof(*desc);
2840     }
2841         break;
2842     case FFS_OS_DESC_EXT_PROP: {
2843         struct usb_ext_prop_desc *desc = data;
2844         struct usb_os_desc_table *t;
2845         struct usb_os_desc_ext_prop *ext_prop;
2846         char *ext_prop_name;
2847         char *ext_prop_data;
2848 
2849         t = &func->function.os_desc_table[h->interface];
2850         t->if_id = func->interfaces_nums[h->interface];
2851 
2852         ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2853         func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2854 
2855         ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2856         ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2857         ext_prop->data_len = le32_to_cpu(*(__le32 *)
2858             usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2859         length = ext_prop->name_len + ext_prop->data_len + 14;
2860 
2861         ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2862         func->ffs->ms_os_descs_ext_prop_name_avail +=
2863             ext_prop->name_len;
2864 
2865         ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2866         func->ffs->ms_os_descs_ext_prop_data_avail +=
2867             ext_prop->data_len;
2868         memcpy(ext_prop_data, usb_ext_prop_data_ptr(data, ext_prop->name_len),
2869             ext_prop->data_len);
2870         /* unicode data reported to the host as "WCHAR"s */
2871         switch (ext_prop->type) {
2872         case USB_EXT_PROP_UNICODE:
2873         case USB_EXT_PROP_UNICODE_ENV:
2874         case USB_EXT_PROP_UNICODE_LINK:
2875         case USB_EXT_PROP_UNICODE_MULTI:
2876             ext_prop->data_len *= 2;
2877             break;
2878         }
2879         ext_prop->data = ext_prop_data;
2880 
2881         memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2882             ext_prop->name_len);
2883 		/* property name reported to the host as "WCHAR"s */
2884         ext_prop->name_len *= 2;
2885         ext_prop->name = ext_prop_name;
2886 
2887         t->os_desc->ext_prop_len +=
2888             ext_prop->name_len + ext_prop->data_len + 14;
2889         ++t->os_desc->ext_prop_count;
2890         list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2891     }
2892         break;
2893     default:
2894         pr_vdebug("unknown descriptor: %d\n", type);
2895     }
2896 
2897     return length;
2898 }
2899 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)2900 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2901                 struct usb_configuration *c)
2902 {
2903     struct ffs_function *func = ffs_func_from_usb(f);
2904     struct f_fs_opts *ffs_opts =
2905         container_of(f->fi, struct f_fs_opts, func_inst);
2906     int ret;
2907 
2908     ENTER();
2909 
2910     /*
2911      * Legacy gadget triggers binding in functionfs_ready_callback,
2912      * which already uses locking; taking the same lock here would
2913      * cause a deadlock.
2914      *
2915      * Configfs-enabled gadgets however do need ffs_dev_lock.
2916      */
2917     if (!ffs_opts->no_configfs)
2918         ffs_dev_lock();
2919     ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2920     func->ffs = ffs_opts->dev->ffs_data;
2921     if (!ffs_opts->no_configfs)
2922         ffs_dev_unlock();
2923     if (ret)
2924         return ERR_PTR(ret);
2925 
2926     func->conf = c;
2927     func->gadget = c->cdev->gadget;
2928 
2929     /*
2930      * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2931      * configurations are bound in sequence with list_for_each_entry,
2932      * in each configuration its functions are bound in sequence
2933      * with list_for_each_entry, so we assume no race condition
2934      * with regard to ffs_opts->bound access
2935      */
2936     if (!ffs_opts->refcnt) {
2937         ret = functionfs_bind(func->ffs, c->cdev);
2938         if (ret)
2939             return ERR_PTR(ret);
2940     }
2941     ffs_opts->refcnt++;
2942     func->function.strings = func->ffs->stringtabs;
2943 
2944     return ffs_opts;
2945 }
2946 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)2947 static int _ffs_func_bind(struct usb_configuration *c, struct usb_function *f)
2948 {
2949     struct ffs_function *func = ffs_func_from_usb(f);
2950     struct ffs_data *ffs = func->ffs;
2951 
2952     const int full = !!func->ffs->fs_descs_count;
2953     const int high = !!func->ffs->hs_descs_count;
2954     const int super = !!func->ffs->ss_descs_count;
2955 
2956     int fs_len, hs_len, ss_len, ret, i;
2957     struct ffs_ep *eps_ptr = NULL;
2958     struct usb_descriptor_header *des_head = NULL;
2959     struct usb_interface_descriptor *intf_ctl = NULL;
2960     struct usb_interface_descriptor *intf_data = NULL;
2961     /* Make it a single chunk, less management later on */
2962     vla_group(d);
2963     vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2964     vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2965         full ? ffs->fs_descs_count + 1 : 0);
2966     vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2967         high ? ffs->hs_descs_count + 1 : 0);
2968     vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2969         super ? ffs->ss_descs_count + 1 : 0);
2970     vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2971     vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2972              c->cdev->use_os_string ? ffs->interfaces_count : 0);
2973     vla_item_with_sz(d, char[16], ext_compat,
2974              c->cdev->use_os_string ? ffs->interfaces_count : 0);
2975     vla_item_with_sz(d, struct usb_os_desc, os_desc,
2976              c->cdev->use_os_string ? ffs->interfaces_count : 0);
2977     vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2978              ffs->ms_os_descs_ext_prop_count);
2979     vla_item_with_sz(d, char, ext_prop_name,
2980              ffs->ms_os_descs_ext_prop_name_len);
2981     vla_item_with_sz(d, char, ext_prop_data,
2982              ffs->ms_os_descs_ext_prop_data_len);
2983     vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2984     char *vlabuf = NULL;
2985 
2986     ENTER();
2987 
2988     /* Has descriptors only for speeds gadget does not support */
2989     if (unlikely(!(full | high | super)))
2990         return -ENOTSUPP;
2991 
2992     /* Allocate a single chunk, less management later on */
2993     vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2994     if (unlikely(!vlabuf))
2995         return -ENOMEM;
2996 
2997     ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2998     ffs->ms_os_descs_ext_prop_name_avail =
2999         vla_ptr(vlabuf, d, ext_prop_name);
3000     ffs->ms_os_descs_ext_prop_data_avail =
3001         vla_ptr(vlabuf, d, ext_prop_data);
3002 
3003     /* Copy descriptors  */
3004     memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, ffs->raw_descs_length);
3005 
3006     memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3007 
3008     eps_ptr = vla_ptr(vlabuf, d, eps);
3009     for (i = 0; i < ffs->eps_count; i++)
3010         eps_ptr[i].num = -1;
3011 
3012     /* Save pointers
3013      * d_eps == vlabuf, func->eps used to kfree vlabuf later
3014     */
3015     func->eps             = vla_ptr(vlabuf, d, eps);
3016     func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3017 
3018     /*
3019      * Go through all the endpoint descriptors and allocate
3020      * endpoints first, so that later we can rewrite the endpoint
3021      * numbers without worrying that it may be described later on.
3022      */
3023     if (likely(full)) {
3024         func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3025         fs_len = ffs_do_descs(ffs->fs_descs_count,
3026                       vla_ptr(vlabuf, d, raw_descs),
3027                       d_raw_descs__sz,
3028                       __ffs_func_bind_do_descs, func);
3029         if (unlikely(fs_len < 0)) {
3030             ret = fs_len;
3031             goto error;
3032         }
3033     } else {
3034         fs_len = 0;
3035     }
3036     if (likely(high)) {
3037         func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3038         hs_len = ffs_do_descs(ffs->hs_descs_count,
3039                       vla_ptr(vlabuf, d, raw_descs) + fs_len,
3040                       d_raw_descs__sz - fs_len,
3041                       __ffs_func_bind_do_descs, func);
3042         if (unlikely(hs_len < 0)) {
3043             ret = hs_len;
3044             goto error;
3045         }
3046     } else {
3047         hs_len = 0;
3048     }
3049     if (likely(super)) {
3050         func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
3051         ss_len = ffs_do_descs(ffs->ss_descs_count,
3052                 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3053                 d_raw_descs__sz - fs_len - hs_len,
3054                 __ffs_func_bind_do_descs, func);
3055         if (unlikely(ss_len < 0)) {
3056             ret = ss_len;
3057             goto error;
3058         }
3059     } else {
3060         ss_len = 0;
3061     }
3062     /*
3063      * Now handle interface numbers allocation and interface and
3064      * endpoint numbers rewriting.  We can do that in one go
3065      * now.
3066      */
3067     ret = ffs_do_descs(ffs->fs_descs_count +
3068                (high ? ffs->hs_descs_count : 0) +
3069                (super ? ffs->ss_descs_count : 0),
3070                vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3071                __ffs_func_bind_do_nums, func);
3072     if (unlikely(ret < 0))
3073         goto error;
3074 
3075     func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3076     if (c->cdev->use_os_string) {
3077         for (i = 0; i < ffs->interfaces_count; ++i) {
3078             struct usb_os_desc *desc;
3079 
3080             desc = func->function.os_desc_table[i].os_desc =
3081                 vla_ptr(vlabuf, d, os_desc) +
3082                 i * sizeof(struct usb_os_desc);
3083             desc->ext_compat_id =
3084                 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3085             INIT_LIST_HEAD(&desc->ext_prop);
3086         }
3087         ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3088                       vla_ptr(vlabuf, d, raw_descs) +
3089                       fs_len + hs_len + ss_len,
3090                       d_raw_descs__sz - fs_len - hs_len -
3091                       ss_len,
3092                       __ffs_func_bind_do_os_desc, func);
3093         if (unlikely(ret < 0))
3094             goto error;
3095     }
3096     func->function.os_desc_n =
3097         c->cdev->use_os_string ? ffs->interfaces_count : 0;
3098 
3099     for (i = 0; i< func->ffs->fs_descs_count; i++) {
3100         des_head = func->function.fs_descriptors[i];
3101         if (des_head->bDescriptorType == USB_DT_INTERFACE) {
3102             struct usb_interface_descriptor *intf = (struct usb_interface_descriptor *)des_head;
3103             if (intf->bNumEndpoints > 0) {
3104                 if (intf_ctl == NULL) {
3105                     intf_ctl = intf;
3106                 } else {
3107                     intf_data = intf;
3108                     break;
3109                 }
3110             }
3111         }
3112     }
3113     for (i = 0; i< func->ffs->fs_descs_count; i++) {
3114         des_head = func->function.fs_descriptors[i];
3115         if (des_head->bDescriptorType == USB_DT_INTERFACE_ASSOCIATION) {
3116             struct usb_interface_assoc_descriptor *a_dec = (struct usb_interface_assoc_descriptor *)des_head;
3117             a_dec->bFirstInterface = intf_ctl->bInterfaceNumber;
3118         } else if (des_head->bDescriptorType == USB_DT_CS_INTERFACE) {
3119             struct usb_cdc_header_desc *cs_des = (struct usb_cdc_header_desc *)des_head;
3120             if (cs_des->bDescriptorSubType == USB_CDC_CALL_MANAGEMENT_TYPE) {
3121                 struct usb_cdc_call_mgmt_descriptor *mgmt_des = (struct usb_cdc_call_mgmt_descriptor *)des_head;
3122                 mgmt_des->bDataInterface = intf_data->bInterfaceNumber;
3123             } else if (cs_des->bDescriptorSubType == USB_CDC_UNION_TYPE) {
3124                 struct usb_cdc_union_desc *union_des = (struct usb_cdc_union_desc *)des_head;
3125                 union_des->bMasterInterface0 = intf_ctl->bInterfaceNumber;
3126                 union_des->bSlaveInterface0 = intf_data->bInterfaceNumber;
3127             } else if (cs_des->bDescriptorSubType == USB_CDC_ETHERNET_TYPE) {
3128                 struct usb_cdc_ether_desc *ether_des = (struct usb_cdc_ether_desc *)des_head;
3129                 ether_des->iMACAddress = intf_ctl->iInterface + 1;
3130             }
3131         }
3132     }
3133     for (i = 0; i< func->ffs->hs_descs_count; i++) {
3134         des_head = func->function.hs_descriptors[i];
3135         if (des_head->bDescriptorType == USB_DT_INTERFACE_ASSOCIATION) {
3136             struct usb_interface_assoc_descriptor *a_dec = (struct usb_interface_assoc_descriptor *)des_head;
3137             a_dec->bFirstInterface = intf_ctl->bInterfaceNumber;
3138         } else if (des_head->bDescriptorType == USB_DT_CS_INTERFACE) {
3139             struct usb_cdc_header_desc *cs_des = (struct usb_cdc_header_desc *)des_head;
3140             if (cs_des->bDescriptorSubType == USB_CDC_CALL_MANAGEMENT_TYPE) {
3141                 struct usb_cdc_call_mgmt_descriptor *mgmt_des = (struct usb_cdc_call_mgmt_descriptor *)des_head;
3142                 mgmt_des->bDataInterface = intf_data->bInterfaceNumber;
3143             } else if (cs_des->bDescriptorSubType == USB_CDC_UNION_TYPE) {
3144                 struct usb_cdc_union_desc *union_des = (struct usb_cdc_union_desc *)des_head;
3145                 union_des->bMasterInterface0 = intf_ctl->bInterfaceNumber;
3146                 union_des->bSlaveInterface0 = intf_data->bInterfaceNumber;
3147             } else if (cs_des->bDescriptorSubType == USB_CDC_ETHERNET_TYPE) {
3148                 struct usb_cdc_ether_desc *ether_des = (struct usb_cdc_ether_desc *)des_head;
3149                 ether_des->iMACAddress = intf_ctl->iInterface + 1;
3150             }
3151         }
3152     }
3153     for (i = 0; i< func->ffs->ss_descs_count; i++) {
3154         des_head = func->function.ss_descriptors[i];
3155         if (des_head->bDescriptorType == USB_DT_INTERFACE_ASSOCIATION) {
3156             struct usb_interface_assoc_descriptor *a_dec = (struct usb_interface_assoc_descriptor *)des_head;
3157             a_dec->bFirstInterface = intf_ctl->bInterfaceNumber;
3158         } else if (des_head->bDescriptorType == USB_DT_CS_INTERFACE) {
3159             struct usb_cdc_header_desc *cs_des = (struct usb_cdc_header_desc *)des_head;
3160             if (cs_des->bDescriptorSubType == USB_CDC_CALL_MANAGEMENT_TYPE) {
3161                 struct usb_cdc_call_mgmt_descriptor *mgmt_des = (struct usb_cdc_call_mgmt_descriptor *)des_head;
3162                 mgmt_des->bDataInterface = intf_data->bInterfaceNumber;
3163             } else if (cs_des->bDescriptorSubType == USB_CDC_UNION_TYPE) {
3164                 struct usb_cdc_union_desc *union_des = (struct usb_cdc_union_desc *)des_head;
3165                 union_des->bMasterInterface0 = intf_ctl->bInterfaceNumber;
3166                 union_des->bSlaveInterface0 = intf_data->bInterfaceNumber;
3167             } else if (cs_des->bDescriptorSubType == USB_CDC_ETHERNET_TYPE) {
3168                 struct usb_cdc_ether_desc *ether_des = (struct usb_cdc_ether_desc *)des_head;
3169                 ether_des->iMACAddress = intf_ctl->iInterface + 1;
3170             }
3171         }
3172     }
3173     /* And we're done */
3174     ffs->eps = func->eps;
3175     ffs_event_add(ffs, FUNCTIONFS_BIND);
3176     return 0;
3177 
3178 error:
3179     /* XXX Do we need to release all claimed endpoints here? */
3180     return ret;
3181 }
3182 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3183 static int ffs_func_bind(struct usb_configuration *c, struct usb_function *f)
3184 {
3185     struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3186     struct ffs_function *func = ffs_func_from_usb(f);
3187     int ret;
3188 
3189     if (IS_ERR(ffs_opts))
3190         return PTR_ERR(ffs_opts);
3191 
3192     ret = _ffs_func_bind(c, f);
3193     if (ret && !--ffs_opts->refcnt)
3194         functionfs_unbind(func->ffs);
3195 
3196     return ret;
3197 }
3198 
3199 /* Other USB function hooks *************************************************/
ffs_reset_work(struct work_struct * work)3200 static void ffs_reset_work(struct work_struct *work)
3201 {
3202     struct ffs_data *ffs = container_of(work,
3203         struct ffs_data, reset_work);
3204     ffs_data_reset(ffs);
3205 }
3206 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3207 static int ffs_func_set_alt(struct usb_function *f,
3208                 unsigned interface, unsigned alt)
3209 {
3210     struct ffs_function *func = ffs_func_from_usb(f);
3211     struct ffs_data *ffs = func->ffs;
3212     int ret = 0, intf;
3213 
3214     if (alt != (unsigned)-1) {
3215         intf = ffs_func_revmap_intf(func, interface);
3216         if (unlikely(intf < 0))
3217             return intf;
3218     }
3219 
3220     if (ffs->func)
3221         ffs_func_eps_disable(ffs->func);
3222 
3223     if (ffs->state == FFS_DEACTIVATED) {
3224         ffs->state = FFS_CLOSING;
3225         INIT_WORK(&ffs->reset_work, ffs_reset_work);
3226         schedule_work(&ffs->reset_work);
3227         return -ENODEV;
3228     }
3229 
3230     if (ffs->state != FFS_ACTIVE)
3231         return -ENODEV;
3232 
3233     if (alt == (unsigned)-1) {
3234         ffs->func = NULL;
3235         ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3236         return 0;
3237     }
3238 
3239     ffs->func = func;
3240     ret = ffs_func_eps_enable(func);
3241     if (likely(ret >= 0))
3242         ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3243     return ret;
3244 }
3245 
ffs_func_disable(struct usb_function * f)3246 static void ffs_func_disable(struct usb_function *f)
3247 {
3248     ffs_func_set_alt(f, 0, (unsigned)-1);
3249 }
3250 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3251 static int ffs_func_setup(struct usb_function *f, const struct usb_ctrlrequest *creq)
3252 {
3253     struct ffs_function *func = ffs_func_from_usb(f);
3254     struct ffs_data *ffs = func->ffs;
3255     unsigned long flags;
3256     int ret;
3257 
3258     ENTER();
3259 
3260     pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3261     pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3262     pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3263     pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3264     pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3265 
3266     /*
3267      * Most requests directed to interface go through here
3268      * (notable exceptions are set/get interface) so we need to
3269      * handle them.  All other either handled by composite or
3270      * passed to usb_configuration->setup() (if one is set).  No
3271      * matter, we will handle requests directed to endpoint here
3272      * as well (as it's straightforward).  Other request recipient
3273      * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3274      * is being used.
3275      */
3276     if (ffs->state != FFS_ACTIVE)
3277         return -ENODEV;
3278 
3279     switch (creq->bRequestType & USB_RECIP_MASK) {
3280     case USB_RECIP_INTERFACE:
3281         ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3282         if (unlikely(ret < 0))
3283             return ret;
3284         break;
3285 
3286     case USB_RECIP_ENDPOINT:
3287         ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3288         if (unlikely(ret < 0))
3289             return ret;
3290         if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3291             ret = func->ffs->eps_addrmap[ret];
3292         break;
3293 
3294     default:
3295         if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3296             ret = le16_to_cpu(creq->wIndex);
3297         else
3298             return -EOPNOTSUPP;
3299     }
3300 
3301     spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3302     ffs->ev.setup = *creq;
3303     ffs->ev.setup.wIndex = cpu_to_le16(ret);
3304     __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3305     spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3306 
3307     return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3308 }
3309 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3310 static bool ffs_func_req_match(struct usb_function *f,
3311                 const struct usb_ctrlrequest *creq,
3312                 bool config0)
3313 {
3314     struct ffs_function *func = ffs_func_from_usb(f);
3315 
3316     if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3317         return false;
3318 
3319     switch (creq->bRequestType & USB_RECIP_MASK) {
3320     case USB_RECIP_INTERFACE:
3321         return (ffs_func_revmap_intf(func,
3322                          le16_to_cpu(creq->wIndex)) >= 0);
3323     case USB_RECIP_ENDPOINT:
3324         return (ffs_func_revmap_ep(func,
3325                        le16_to_cpu(creq->wIndex)) >= 0);
3326     default:
3327         return (bool) (func->ffs->user_flags &
3328                    FUNCTIONFS_ALL_CTRL_RECIP);
3329     }
3330 }
3331 
ffs_func_suspend(struct usb_function * f)3332 static void ffs_func_suspend(struct usb_function *f)
3333 {
3334     ENTER();
3335     ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3336 }
3337 
ffs_func_resume(struct usb_function * f)3338 static void ffs_func_resume(struct usb_function *f)
3339 {
3340     ENTER();
3341     ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3342 }
3343 
3344 /* Endpoint and interface numbers reverse mapping ***************************/
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3345 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3346 {
3347     num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3348     return num ? num : -EDOM;
3349 }
3350 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3351 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3352 {
3353     short *nums = func->interfaces_nums;
3354     unsigned count = func->ffs->interfaces_count;
3355 
3356     for (; count; --count, ++nums) {
3357         if (*nums >= 0 && *nums == intf)
3358             return nums - func->interfaces_nums;
3359     }
3360 
3361     return -EDOM;
3362 }
3363 
3364 /* Devices management *******************************************************/
3365 static LIST_HEAD(ffs_devices);
3366 
_ffs_do_find_dev(const char * name)3367 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3368 {
3369     struct ffs_dev *dev = NULL;
3370 
3371     if (!name)
3372         return NULL;
3373 
3374     list_for_each_entry(dev, &ffs_devices, entry) {
3375         if (!dev->name)
3376             return NULL;
3377         if (strcmp(dev->name, name) == 0)
3378             return dev;
3379     }
3380 
3381     return NULL;
3382 }
3383 
3384 /*
3385  * ffs_lock must be taken by the caller of this function
3386  */
_ffs_get_single_dev(void)3387 static struct ffs_dev *_ffs_get_single_dev(void)
3388 {
3389     struct ffs_dev *dev = NULL;
3390 
3391     if (list_is_singular(&ffs_devices)) {
3392         dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3393         if (dev->single)
3394             return dev;
3395     }
3396 
3397     return NULL;
3398 }
3399 
3400 /*
3401  * ffs_lock must be taken by the caller of this function
3402  */
_ffs_find_dev(const char * name)3403 static struct ffs_dev *_ffs_find_dev(const char *name)
3404 {
3405     struct ffs_dev *dev;
3406 
3407     dev = _ffs_get_single_dev();
3408     if (dev)
3409         return dev;
3410 
3411     return _ffs_do_find_dev(name);
3412 }
3413 
3414 /* Configfs support *********************************************************/
to_ffs_opts(struct config_item * item)3415 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3416 {
3417     return container_of(to_config_group(item), struct f_fs_opts,
3418                 func_inst.group);
3419 }
3420 
ffs_attr_release(struct config_item * item)3421 static void ffs_attr_release(struct config_item *item)
3422 {
3423     struct f_fs_opts *opts = to_ffs_opts(item);
3424 
3425     usb_put_function_instance(&opts->func_inst);
3426 }
3427 
3428 static struct configfs_item_operations ffs_item_ops = {
3429     .release    = ffs_attr_release,
3430 };
3431 
3432 static const struct config_item_type ffs_func_type = {
3433     .ct_item_ops    = &ffs_item_ops,
3434     .ct_owner    = THIS_MODULE,
3435 };
3436 
3437 /* Function registration interface ******************************************/
ffs_free_inst(struct usb_function_instance * f)3438 static void ffs_free_inst(struct usb_function_instance *f)
3439 {
3440     struct f_fs_opts *opts;
3441 
3442     opts = to_f_fs_opts(f);
3443     ffs_dev_lock();
3444     _ffs_free_dev(opts->dev);
3445     ffs_dev_unlock();
3446     kfree(opts);
3447 }
3448 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3449 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3450 {
3451     char name_dev[MAX_NAMELEN] = {0};
3452     if (snprintf(name_dev, MAX_NAMELEN - 1, "%s.%s", FUNCTION_GENERIC, name) < 0) {
3453         return -EFAULT;
3454     }
3455     if (strlen(name_dev) >= sizeof_field(struct ffs_dev, name))
3456         return -ENAMETOOLONG;
3457     return ffs_name_dev_adapter(to_f_fs_opts(fi)->dev, name_dev);
3458 }
3459 
ffs_alloc_inst(void)3460 static struct usb_function_instance *ffs_alloc_inst(void)
3461 {
3462     struct f_fs_opts *opts = NULL;
3463     struct ffs_dev *dev = NULL;
3464 
3465     opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3466     if (!opts)
3467         return ERR_PTR(-ENOMEM);
3468 
3469     opts->func_inst.set_inst_name = ffs_set_inst_name;
3470     opts->func_inst.free_func_inst = ffs_free_inst;
3471     ffs_dev_lock();
3472     dev = _ffs_alloc_dev();
3473     ffs_dev_unlock();
3474     if (IS_ERR(dev)) {
3475         kfree(opts);
3476         return ERR_CAST(dev);
3477     }
3478     opts->dev = dev;
3479     dev->opts = opts;
3480 
3481     config_group_init_type_name(&opts->func_inst.group, "",
3482                     &ffs_func_type);
3483     return &opts->func_inst;
3484 }
3485 
ffs_free(struct usb_function * f)3486 static void ffs_free(struct usb_function *f)
3487 {
3488     kfree(ffs_func_from_usb(f));
3489 }
3490 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3491 static void ffs_func_unbind(struct usb_configuration *c,
3492                 struct usb_function *f)
3493 {
3494     struct ffs_function *func = ffs_func_from_usb(f);
3495     struct ffs_data *ffs = func->ffs;
3496     struct f_fs_opts *opts =
3497         container_of(f->fi, struct f_fs_opts, func_inst);
3498     struct ffs_ep *ep = func->eps;
3499     unsigned count = ffs->eps_count;
3500     unsigned long flags;
3501 
3502     ENTER();
3503     if (ffs->func == func) {
3504         ffs_func_eps_disable(func);
3505         ffs->func = NULL;
3506     }
3507 
3508     if (!--opts->refcnt)
3509         functionfs_unbind(ffs);
3510 
3511     /* cleanup after autoconfig */
3512     spin_lock_irqsave(&func->ffs->eps_lock, flags);
3513     while (count--) {
3514         if (ep->ep && ep->req)
3515             usb_ep_free_request(ep->ep, ep->req);
3516         ep->req = NULL;
3517         ++ep;
3518     }
3519     spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3520     kfree(func->eps);
3521     func->eps = NULL;
3522     /*
3523      * eps, descriptors and interfaces_nums are allocated in the
3524      * same chunk so only one free is required.
3525      */
3526     func->function.fs_descriptors = NULL;
3527     func->function.hs_descriptors = NULL;
3528     func->function.ss_descriptors = NULL;
3529     func->interfaces_nums = NULL;
3530 
3531     ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3532 }
3533 
ffs_func_get_alt(struct usb_function * f,unsigned intf)3534 static int ffs_func_get_alt(struct usb_function *f, unsigned intf)
3535 {
3536     if (intf == 0)
3537         return 0;
3538     return 1;
3539 }
3540 
ffs_alloc(struct usb_function_instance * fi)3541 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3542 {
3543     struct ffs_function *func = NULL;
3544 
3545     ENTER();
3546 
3547     func = kzalloc(sizeof(*func), GFP_KERNEL);
3548     if (unlikely(!func))
3549         return ERR_PTR(-ENOMEM);
3550 
3551     func->function.name    = "FunctionFS Adapter";
3552 
3553     func->function.bind    = ffs_func_bind;
3554     func->function.unbind  = ffs_func_unbind;
3555     func->function.set_alt = ffs_func_set_alt;
3556     func->function.get_alt = ffs_func_get_alt;
3557     func->function.disable = ffs_func_disable;
3558     func->function.setup   = ffs_func_setup;
3559     func->function.req_match = ffs_func_req_match;
3560     func->function.suspend = ffs_func_suspend;
3561     func->function.resume  = ffs_func_resume;
3562     func->function.free_func = ffs_free;
3563 
3564     return &func->function;
3565 }
3566 
3567 /*
3568  * ffs_lock must be taken by the caller of this function
3569  */
_ffs_alloc_dev(void)3570 static struct ffs_dev *_ffs_alloc_dev(void)
3571 {
3572     struct ffs_dev *dev = NULL;
3573     int ret;
3574 
3575     if (_ffs_get_single_dev())
3576             return ERR_PTR(-EBUSY);
3577 
3578     dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3579     if (!dev)
3580         return ERR_PTR(-ENOMEM);
3581 
3582     if (list_empty(&ffs_devices)) {
3583         ret = functionfs_init();
3584         if (ret) {
3585             kfree(dev);
3586             return ERR_PTR(ret);
3587         }
3588     }
3589 
3590     list_add(&dev->entry, &ffs_devices);
3591 
3592     return dev;
3593 }
3594 
ffs_name_dev_adapter(struct ffs_dev * dev,const char * name)3595 int ffs_name_dev_adapter(struct ffs_dev *dev, const char *name)
3596 {
3597     struct ffs_dev *existing = NULL;
3598     int ret = 0;
3599 
3600     ffs_dev_lock();
3601 
3602     existing = _ffs_do_find_dev(name);
3603     if (!existing)
3604         strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3605     else if (existing != dev)
3606         ret = -EBUSY;
3607 
3608     ffs_dev_unlock();
3609 
3610     return ret;
3611 }
3612 EXPORT_SYMBOL_GPL(ffs_name_dev_adapter);
3613 
ffs_single_dev_adapter(struct ffs_dev * dev)3614 int ffs_single_dev_adapter(struct ffs_dev *dev)
3615 {
3616     int ret;
3617 
3618     ret = 0;
3619     ffs_dev_lock();
3620 
3621     if (!list_is_singular(&ffs_devices))
3622         ret = -EBUSY;
3623     else
3624         dev->single = true;
3625 
3626     ffs_dev_unlock();
3627     return ret;
3628 }
3629 EXPORT_SYMBOL_GPL(ffs_single_dev_adapter);
3630 /*
3631  * ffs_lock must be taken by the caller of this function
3632  */
_ffs_free_dev(struct ffs_dev * dev)3633 static void _ffs_free_dev(struct ffs_dev *dev)
3634 {
3635     list_del(&dev->entry);
3636 
3637     /* Clear the private_data pointer to stop incorrect dev access */
3638     if (dev->ffs_data)
3639         dev->ffs_data->private_data = NULL;
3640 
3641     kfree(dev);
3642     if (list_empty(&ffs_devices))
3643         functionfs_cleanup();
3644 }
3645 
ffs_acquire_dev(const char * dev_name)3646 static void *ffs_acquire_dev(const char *dev_name)
3647 {
3648     struct ffs_dev *ffs_dev = NULL;
3649 
3650     ENTER();
3651     ffs_dev_lock();
3652 
3653     ffs_dev = _ffs_find_dev(dev_name);
3654     if (!ffs_dev)
3655         ffs_dev = ERR_PTR(-ENOENT);
3656     else if (ffs_dev->mounted)
3657         ffs_dev = ERR_PTR(-EBUSY);
3658     else if (ffs_dev->ffs_acquire_dev_callback &&
3659         ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3660         ffs_dev = ERR_PTR(-ENOENT);
3661     else
3662         ffs_dev->mounted = true;
3663 
3664     ffs_dev_unlock();
3665     return ffs_dev;
3666 }
3667 
ffs_release_dev(struct ffs_data * ffs_data)3668 static void ffs_release_dev(struct ffs_data *ffs_data)
3669 {
3670     struct ffs_dev *ffs_dev = NULL;
3671 
3672     ENTER();
3673     ffs_dev_lock();
3674 
3675     ffs_dev = ffs_data->private_data;
3676     if (ffs_dev) {
3677         ffs_dev->mounted = false;
3678 
3679         if (ffs_dev->ffs_release_dev_callback)
3680             ffs_dev->ffs_release_dev_callback(ffs_dev);
3681     }
3682 
3683     ffs_dev_unlock();
3684 }
3685 
ffs_ready(struct ffs_data * ffs)3686 static int ffs_ready(struct ffs_data *ffs)
3687 {
3688     struct ffs_dev *ffs_obj = NULL;
3689     int ret = 0;
3690 
3691     ENTER();
3692     ffs_dev_lock();
3693 
3694     ffs_obj = ffs->private_data;
3695     if (!ffs_obj) {
3696         ret = -EINVAL;
3697         goto done;
3698     }
3699     if (WARN_ON(ffs_obj->desc_ready)) {
3700         ret = -EBUSY;
3701         goto done;
3702     }
3703 
3704     ffs_obj->desc_ready = true;
3705     ffs_obj->ffs_data = ffs;
3706 
3707     if (ffs_obj->ffs_ready_callback) {
3708         ret = ffs_obj->ffs_ready_callback(ffs);
3709         if (ret)
3710             goto done;
3711     }
3712 
3713     set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3714 done:
3715     ffs_dev_unlock();
3716     return ret;
3717 }
3718 
ffs_closed(struct ffs_data * ffs)3719 static void ffs_closed(struct ffs_data *ffs)
3720 {
3721     struct ffs_dev *ffs_obj = NULL;
3722     struct f_fs_opts *opts = NULL;
3723     struct config_item *ci = NULL;
3724 
3725     ENTER();
3726     ffs_dev_lock();
3727 
3728     ffs_obj = ffs->private_data;
3729     if (!ffs_obj)
3730         goto done;
3731 
3732     ffs_obj->desc_ready = false;
3733     ffs_obj->ffs_data = NULL;
3734 
3735     if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3736         ffs_obj->ffs_closed_callback)
3737         ffs_obj->ffs_closed_callback(ffs);
3738 
3739     if (ffs_obj->opts)
3740         opts = ffs_obj->opts;
3741     else
3742         goto done;
3743 
3744     if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3745         || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3746         goto done;
3747 
3748     ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3749     ffs_dev_unlock();
3750 
3751     if (test_bit(FFS_FL_BOUND, &ffs->flags))
3752         unregister_gadget_item(ci);
3753     return;
3754 done:
3755     ffs_dev_unlock();
3756 }
3757 
3758 /* Misc helper functions ****************************************************/
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3759 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3760 {
3761     return nonblock
3762         ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3763         : mutex_lock_interruptible(mutex);
3764 }
3765 
ffs_prepare_buffer(const char __user * buf,size_t len)3766 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3767 {
3768     char *data = NULL;
3769 
3770     if (unlikely(!len))
3771         return NULL;
3772 
3773     data = kmalloc(len, GFP_KERNEL);
3774     if (unlikely(!data))
3775         return ERR_PTR(-ENOMEM);
3776 
3777     if (unlikely(copy_from_user(data, buf, len))) {
3778         kfree(data);
3779         return ERR_PTR(-EFAULT);
3780     }
3781 
3782     pr_vdebug("Buffer from user space:\n");
3783     ffs_dump_mem("", data, len);
3784 
3785     return data;
3786 }
3787 
3788 DECLARE_USB_FUNCTION_INIT(f_generic, ffs_alloc_inst, ffs_alloc);
3789 MODULE_LICENSE("GPL");
3790