1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78 #include <linux/hck/lite_hck_ced.h>
79
80 static int bprm_creds_from_file(struct linux_binprm *bprm);
81
82 int suid_dumpable = 0;
83
84 static LIST_HEAD(formats);
85 static DEFINE_RWLOCK(binfmt_lock);
86
__register_binfmt(struct linux_binfmt * fmt,int insert)87 void __register_binfmt(struct linux_binfmt * fmt, int insert)
88 {
89 write_lock(&binfmt_lock);
90 insert ? list_add(&fmt->lh, &formats) :
91 list_add_tail(&fmt->lh, &formats);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(__register_binfmt);
96
unregister_binfmt(struct linux_binfmt * fmt)97 void unregister_binfmt(struct linux_binfmt * fmt)
98 {
99 write_lock(&binfmt_lock);
100 list_del(&fmt->lh);
101 write_unlock(&binfmt_lock);
102 }
103
104 EXPORT_SYMBOL(unregister_binfmt);
105
put_binfmt(struct linux_binfmt * fmt)106 static inline void put_binfmt(struct linux_binfmt * fmt)
107 {
108 module_put(fmt->module);
109 }
110
path_noexec(const struct path * path)111 bool path_noexec(const struct path *path)
112 {
113 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
114 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
115 }
116
117 #ifdef CONFIG_USELIB
118 /*
119 * Note that a shared library must be both readable and executable due to
120 * security reasons.
121 *
122 * Also note that we take the address to load from the file itself.
123 */
SYSCALL_DEFINE1(uselib,const char __user *,library)124 SYSCALL_DEFINE1(uselib, const char __user *, library)
125 {
126 struct linux_binfmt *fmt;
127 struct file *file;
128 struct filename *tmp = getname(library);
129 int error = PTR_ERR(tmp);
130 static const struct open_flags uselib_flags = {
131 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
132 .acc_mode = MAY_READ | MAY_EXEC,
133 .intent = LOOKUP_OPEN,
134 .lookup_flags = LOOKUP_FOLLOW,
135 };
136
137 if (IS_ERR(tmp))
138 goto out;
139
140 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
141 putname(tmp);
142 error = PTR_ERR(file);
143 if (IS_ERR(file))
144 goto out;
145
146 /*
147 * Check do_open_execat() for an explanation.
148 */
149 error = -EACCES;
150 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
151 path_noexec(&file->f_path))
152 goto exit;
153
154 error = -ENOEXEC;
155
156 read_lock(&binfmt_lock);
157 list_for_each_entry(fmt, &formats, lh) {
158 if (!fmt->load_shlib)
159 continue;
160 if (!try_module_get(fmt->module))
161 continue;
162 read_unlock(&binfmt_lock);
163 error = fmt->load_shlib(file);
164 read_lock(&binfmt_lock);
165 put_binfmt(fmt);
166 if (error != -ENOEXEC)
167 break;
168 }
169 read_unlock(&binfmt_lock);
170 exit:
171 fput(file);
172 out:
173 return error;
174 }
175 #endif /* #ifdef CONFIG_USELIB */
176
177 #ifdef CONFIG_MMU
178 /*
179 * The nascent bprm->mm is not visible until exec_mmap() but it can
180 * use a lot of memory, account these pages in current->mm temporary
181 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
182 * change the counter back via acct_arg_size(0).
183 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)184 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
185 {
186 struct mm_struct *mm = current->mm;
187 long diff = (long)(pages - bprm->vma_pages);
188
189 if (!mm || !diff)
190 return;
191
192 bprm->vma_pages = pages;
193 add_mm_counter(mm, MM_ANONPAGES, diff);
194 }
195
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)196 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
197 int write)
198 {
199 struct page *page;
200 struct vm_area_struct *vma = bprm->vma;
201 struct mm_struct *mm = bprm->mm;
202 int ret;
203
204 /*
205 * Avoid relying on expanding the stack down in GUP (which
206 * does not work for STACK_GROWSUP anyway), and just do it
207 * by hand ahead of time.
208 */
209 if (write && pos < vma->vm_start) {
210 mmap_write_lock(mm);
211 ret = expand_downwards(vma, pos);
212 if (unlikely(ret < 0)) {
213 mmap_write_unlock(mm);
214 return NULL;
215 }
216 mmap_write_downgrade(mm);
217 } else
218 mmap_read_lock(mm);
219
220 /*
221 * We are doing an exec(). 'current' is the process
222 * doing the exec and 'mm' is the new process's mm.
223 */
224 ret = get_user_pages_remote(mm, pos, 1,
225 write ? FOLL_WRITE : 0,
226 &page, NULL);
227 mmap_read_unlock(mm);
228 if (ret <= 0)
229 return NULL;
230
231 if (write)
232 acct_arg_size(bprm, vma_pages(vma));
233
234 return page;
235 }
236
put_arg_page(struct page * page)237 static void put_arg_page(struct page *page)
238 {
239 put_page(page);
240 }
241
free_arg_pages(struct linux_binprm * bprm)242 static void free_arg_pages(struct linux_binprm *bprm)
243 {
244 }
245
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)246 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
247 struct page *page)
248 {
249 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
250 }
251
__bprm_mm_init(struct linux_binprm * bprm)252 static int __bprm_mm_init(struct linux_binprm *bprm)
253 {
254 int err;
255 struct vm_area_struct *vma = NULL;
256 struct mm_struct *mm = bprm->mm;
257
258 bprm->vma = vma = vm_area_alloc(mm);
259 if (!vma)
260 return -ENOMEM;
261 vma_set_anonymous(vma);
262
263 if (mmap_write_lock_killable(mm)) {
264 err = -EINTR;
265 goto err_free;
266 }
267
268 /*
269 * Place the stack at the largest stack address the architecture
270 * supports. Later, we'll move this to an appropriate place. We don't
271 * use STACK_TOP because that can depend on attributes which aren't
272 * configured yet.
273 */
274 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
275 vma->vm_end = STACK_TOP_MAX;
276 vma->vm_start = vma->vm_end - PAGE_SIZE;
277 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
278 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
279
280 err = insert_vm_struct(mm, vma);
281 if (err)
282 goto err;
283
284 mm->stack_vm = mm->total_vm = 1;
285 mmap_write_unlock(mm);
286 bprm->p = vma->vm_end - sizeof(void *);
287 return 0;
288 err:
289 mmap_write_unlock(mm);
290 err_free:
291 bprm->vma = NULL;
292 vm_area_free(vma);
293 return err;
294 }
295
valid_arg_len(struct linux_binprm * bprm,long len)296 static bool valid_arg_len(struct linux_binprm *bprm, long len)
297 {
298 return len <= MAX_ARG_STRLEN;
299 }
300
301 #else
302
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)303 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
304 {
305 }
306
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)307 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
308 int write)
309 {
310 struct page *page;
311
312 page = bprm->page[pos / PAGE_SIZE];
313 if (!page && write) {
314 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
315 if (!page)
316 return NULL;
317 bprm->page[pos / PAGE_SIZE] = page;
318 }
319
320 return page;
321 }
322
put_arg_page(struct page * page)323 static void put_arg_page(struct page *page)
324 {
325 }
326
free_arg_page(struct linux_binprm * bprm,int i)327 static void free_arg_page(struct linux_binprm *bprm, int i)
328 {
329 if (bprm->page[i]) {
330 __free_page(bprm->page[i]);
331 bprm->page[i] = NULL;
332 }
333 }
334
free_arg_pages(struct linux_binprm * bprm)335 static void free_arg_pages(struct linux_binprm *bprm)
336 {
337 int i;
338
339 for (i = 0; i < MAX_ARG_PAGES; i++)
340 free_arg_page(bprm, i);
341 }
342
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)343 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
344 struct page *page)
345 {
346 }
347
__bprm_mm_init(struct linux_binprm * bprm)348 static int __bprm_mm_init(struct linux_binprm *bprm)
349 {
350 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
351 return 0;
352 }
353
valid_arg_len(struct linux_binprm * bprm,long len)354 static bool valid_arg_len(struct linux_binprm *bprm, long len)
355 {
356 return len <= bprm->p;
357 }
358
359 #endif /* CONFIG_MMU */
360
361 /*
362 * Create a new mm_struct and populate it with a temporary stack
363 * vm_area_struct. We don't have enough context at this point to set the stack
364 * flags, permissions, and offset, so we use temporary values. We'll update
365 * them later in setup_arg_pages().
366 */
bprm_mm_init(struct linux_binprm * bprm)367 static int bprm_mm_init(struct linux_binprm *bprm)
368 {
369 int err;
370 struct mm_struct *mm = NULL;
371
372 bprm->mm = mm = mm_alloc();
373 err = -ENOMEM;
374 if (!mm)
375 goto err;
376
377 /* Save current stack limit for all calculations made during exec. */
378 task_lock(current->group_leader);
379 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
380 task_unlock(current->group_leader);
381
382 err = __bprm_mm_init(bprm);
383 if (err)
384 goto err;
385
386 return 0;
387
388 err:
389 if (mm) {
390 bprm->mm = NULL;
391 mmdrop(mm);
392 }
393
394 return err;
395 }
396
397 struct user_arg_ptr {
398 #ifdef CONFIG_COMPAT
399 bool is_compat;
400 #endif
401 union {
402 const char __user *const __user *native;
403 #ifdef CONFIG_COMPAT
404 const compat_uptr_t __user *compat;
405 #endif
406 } ptr;
407 };
408
get_user_arg_ptr(struct user_arg_ptr argv,int nr)409 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
410 {
411 const char __user *native;
412
413 #ifdef CONFIG_COMPAT
414 if (unlikely(argv.is_compat)) {
415 compat_uptr_t compat;
416
417 if (get_user(compat, argv.ptr.compat + nr))
418 return ERR_PTR(-EFAULT);
419
420 return compat_ptr(compat);
421 }
422 #endif
423
424 if (get_user(native, argv.ptr.native + nr))
425 return ERR_PTR(-EFAULT);
426
427 return native;
428 }
429
430 /*
431 * count() counts the number of strings in array ARGV.
432 */
count(struct user_arg_ptr argv,int max)433 static int count(struct user_arg_ptr argv, int max)
434 {
435 int i = 0;
436
437 if (argv.ptr.native != NULL) {
438 for (;;) {
439 const char __user *p = get_user_arg_ptr(argv, i);
440
441 if (!p)
442 break;
443
444 if (IS_ERR(p))
445 return -EFAULT;
446
447 if (i >= max)
448 return -E2BIG;
449 ++i;
450
451 if (fatal_signal_pending(current))
452 return -ERESTARTNOHAND;
453 cond_resched();
454 }
455 }
456 return i;
457 }
458
count_strings_kernel(const char * const * argv)459 static int count_strings_kernel(const char *const *argv)
460 {
461 int i;
462
463 if (!argv)
464 return 0;
465
466 for (i = 0; argv[i]; ++i) {
467 if (i >= MAX_ARG_STRINGS)
468 return -E2BIG;
469 if (fatal_signal_pending(current))
470 return -ERESTARTNOHAND;
471 cond_resched();
472 }
473 return i;
474 }
475
bprm_stack_limits(struct linux_binprm * bprm)476 static int bprm_stack_limits(struct linux_binprm *bprm)
477 {
478 unsigned long limit, ptr_size;
479
480 /*
481 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
482 * (whichever is smaller) for the argv+env strings.
483 * This ensures that:
484 * - the remaining binfmt code will not run out of stack space,
485 * - the program will have a reasonable amount of stack left
486 * to work from.
487 */
488 limit = _STK_LIM / 4 * 3;
489 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
490 /*
491 * We've historically supported up to 32 pages (ARG_MAX)
492 * of argument strings even with small stacks
493 */
494 limit = max_t(unsigned long, limit, ARG_MAX);
495 /*
496 * We must account for the size of all the argv and envp pointers to
497 * the argv and envp strings, since they will also take up space in
498 * the stack. They aren't stored until much later when we can't
499 * signal to the parent that the child has run out of stack space.
500 * Instead, calculate it here so it's possible to fail gracefully.
501 *
502 * In the case of argc = 0, make sure there is space for adding a
503 * empty string (which will bump argc to 1), to ensure confused
504 * userspace programs don't start processing from argv[1], thinking
505 * argc can never be 0, to keep them from walking envp by accident.
506 * See do_execveat_common().
507 */
508 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
509 if (limit <= ptr_size)
510 return -E2BIG;
511 limit -= ptr_size;
512
513 bprm->argmin = bprm->p - limit;
514 return 0;
515 }
516
517 /*
518 * 'copy_strings()' copies argument/environment strings from the old
519 * processes's memory to the new process's stack. The call to get_user_pages()
520 * ensures the destination page is created and not swapped out.
521 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)522 static int copy_strings(int argc, struct user_arg_ptr argv,
523 struct linux_binprm *bprm)
524 {
525 struct page *kmapped_page = NULL;
526 char *kaddr = NULL;
527 unsigned long kpos = 0;
528 int ret;
529
530 while (argc-- > 0) {
531 const char __user *str;
532 int len;
533 unsigned long pos;
534
535 ret = -EFAULT;
536 str = get_user_arg_ptr(argv, argc);
537 if (IS_ERR(str))
538 goto out;
539
540 len = strnlen_user(str, MAX_ARG_STRLEN);
541 if (!len)
542 goto out;
543
544 ret = -E2BIG;
545 if (!valid_arg_len(bprm, len))
546 goto out;
547
548 /* We're going to work our way backwards. */
549 pos = bprm->p;
550 str += len;
551 bprm->p -= len;
552 #ifdef CONFIG_MMU
553 if (bprm->p < bprm->argmin)
554 goto out;
555 #endif
556
557 while (len > 0) {
558 int offset, bytes_to_copy;
559
560 if (fatal_signal_pending(current)) {
561 ret = -ERESTARTNOHAND;
562 goto out;
563 }
564 cond_resched();
565
566 offset = pos % PAGE_SIZE;
567 if (offset == 0)
568 offset = PAGE_SIZE;
569
570 bytes_to_copy = offset;
571 if (bytes_to_copy > len)
572 bytes_to_copy = len;
573
574 offset -= bytes_to_copy;
575 pos -= bytes_to_copy;
576 str -= bytes_to_copy;
577 len -= bytes_to_copy;
578
579 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
580 struct page *page;
581
582 page = get_arg_page(bprm, pos, 1);
583 if (!page) {
584 ret = -E2BIG;
585 goto out;
586 }
587
588 if (kmapped_page) {
589 flush_dcache_page(kmapped_page);
590 kunmap_local(kaddr);
591 put_arg_page(kmapped_page);
592 }
593 kmapped_page = page;
594 kaddr = kmap_local_page(kmapped_page);
595 kpos = pos & PAGE_MASK;
596 flush_arg_page(bprm, kpos, kmapped_page);
597 }
598 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
599 ret = -EFAULT;
600 goto out;
601 }
602 }
603 }
604 ret = 0;
605 out:
606 if (kmapped_page) {
607 flush_dcache_page(kmapped_page);
608 kunmap_local(kaddr);
609 put_arg_page(kmapped_page);
610 }
611 return ret;
612 }
613
614 /*
615 * Copy and argument/environment string from the kernel to the processes stack.
616 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)617 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
618 {
619 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
620 unsigned long pos = bprm->p;
621
622 if (len == 0)
623 return -EFAULT;
624 if (!valid_arg_len(bprm, len))
625 return -E2BIG;
626
627 /* We're going to work our way backwards. */
628 arg += len;
629 bprm->p -= len;
630 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
631 return -E2BIG;
632
633 while (len > 0) {
634 unsigned int bytes_to_copy = min_t(unsigned int, len,
635 min_not_zero(offset_in_page(pos), PAGE_SIZE));
636 struct page *page;
637
638 pos -= bytes_to_copy;
639 arg -= bytes_to_copy;
640 len -= bytes_to_copy;
641
642 page = get_arg_page(bprm, pos, 1);
643 if (!page)
644 return -E2BIG;
645 flush_arg_page(bprm, pos & PAGE_MASK, page);
646 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
647 put_arg_page(page);
648 }
649
650 return 0;
651 }
652 EXPORT_SYMBOL(copy_string_kernel);
653
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)654 static int copy_strings_kernel(int argc, const char *const *argv,
655 struct linux_binprm *bprm)
656 {
657 while (argc-- > 0) {
658 int ret = copy_string_kernel(argv[argc], bprm);
659 if (ret < 0)
660 return ret;
661 if (fatal_signal_pending(current))
662 return -ERESTARTNOHAND;
663 cond_resched();
664 }
665 return 0;
666 }
667
668 #ifdef CONFIG_MMU
669
670 /*
671 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
672 * the binfmt code determines where the new stack should reside, we shift it to
673 * its final location. The process proceeds as follows:
674 *
675 * 1) Use shift to calculate the new vma endpoints.
676 * 2) Extend vma to cover both the old and new ranges. This ensures the
677 * arguments passed to subsequent functions are consistent.
678 * 3) Move vma's page tables to the new range.
679 * 4) Free up any cleared pgd range.
680 * 5) Shrink the vma to cover only the new range.
681 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)682 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
683 {
684 struct mm_struct *mm = vma->vm_mm;
685 unsigned long old_start = vma->vm_start;
686 unsigned long old_end = vma->vm_end;
687 unsigned long length = old_end - old_start;
688 unsigned long new_start = old_start - shift;
689 unsigned long new_end = old_end - shift;
690 VMA_ITERATOR(vmi, mm, new_start);
691 struct vm_area_struct *next;
692 struct mmu_gather tlb;
693
694 BUG_ON(new_start > new_end);
695
696 /*
697 * ensure there are no vmas between where we want to go
698 * and where we are
699 */
700 if (vma != vma_next(&vmi))
701 return -EFAULT;
702
703 vma_iter_prev_range(&vmi);
704 /*
705 * cover the whole range: [new_start, old_end)
706 */
707 if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
708 return -ENOMEM;
709
710 /*
711 * move the page tables downwards, on failure we rely on
712 * process cleanup to remove whatever mess we made.
713 */
714 if (length != move_page_tables(vma, old_start,
715 vma, new_start, length, false))
716 return -ENOMEM;
717
718 lru_add_drain();
719 tlb_gather_mmu(&tlb, mm);
720 next = vma_next(&vmi);
721 if (new_end > old_start) {
722 /*
723 * when the old and new regions overlap clear from new_end.
724 */
725 free_pgd_range(&tlb, new_end, old_end, new_end,
726 next ? next->vm_start : USER_PGTABLES_CEILING);
727 } else {
728 /*
729 * otherwise, clean from old_start; this is done to not touch
730 * the address space in [new_end, old_start) some architectures
731 * have constraints on va-space that make this illegal (IA64) -
732 * for the others its just a little faster.
733 */
734 free_pgd_range(&tlb, old_start, old_end, new_end,
735 next ? next->vm_start : USER_PGTABLES_CEILING);
736 }
737 tlb_finish_mmu(&tlb);
738
739 vma_prev(&vmi);
740 /* Shrink the vma to just the new range */
741 return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
742 }
743
744 /*
745 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746 * the stack is optionally relocated, and some extra space is added.
747 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)748 int setup_arg_pages(struct linux_binprm *bprm,
749 unsigned long stack_top,
750 int executable_stack)
751 {
752 unsigned long ret;
753 unsigned long stack_shift;
754 struct mm_struct *mm = current->mm;
755 struct vm_area_struct *vma = bprm->vma;
756 struct vm_area_struct *prev = NULL;
757 unsigned long vm_flags;
758 unsigned long stack_base;
759 unsigned long stack_size;
760 unsigned long stack_expand;
761 unsigned long rlim_stack;
762 struct mmu_gather tlb;
763 struct vma_iterator vmi;
764
765 #ifdef CONFIG_STACK_GROWSUP
766 /* Limit stack size */
767 stack_base = bprm->rlim_stack.rlim_max;
768
769 stack_base = calc_max_stack_size(stack_base);
770
771 /* Add space for stack randomization. */
772 if (current->flags & PF_RANDOMIZE)
773 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
774
775 /* Make sure we didn't let the argument array grow too large. */
776 if (vma->vm_end - vma->vm_start > stack_base)
777 return -ENOMEM;
778
779 stack_base = PAGE_ALIGN(stack_top - stack_base);
780
781 stack_shift = vma->vm_start - stack_base;
782 mm->arg_start = bprm->p - stack_shift;
783 bprm->p = vma->vm_end - stack_shift;
784 #else
785 stack_top = arch_align_stack(stack_top);
786 stack_top = PAGE_ALIGN(stack_top);
787
788 if (unlikely(stack_top < mmap_min_addr) ||
789 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
790 return -ENOMEM;
791
792 stack_shift = vma->vm_end - stack_top;
793
794 bprm->p -= stack_shift;
795 mm->arg_start = bprm->p;
796 #endif
797
798 if (bprm->loader)
799 bprm->loader -= stack_shift;
800 bprm->exec -= stack_shift;
801
802 if (mmap_write_lock_killable(mm))
803 return -EINTR;
804
805 vm_flags = VM_STACK_FLAGS;
806
807 /*
808 * Adjust stack execute permissions; explicitly enable for
809 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
810 * (arch default) otherwise.
811 */
812 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
813 vm_flags |= VM_EXEC;
814 else if (executable_stack == EXSTACK_DISABLE_X)
815 vm_flags &= ~VM_EXEC;
816 vm_flags |= mm->def_flags;
817 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
818
819 vma_iter_init(&vmi, mm, vma->vm_start);
820
821 tlb_gather_mmu(&tlb, mm);
822 ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
823 vm_flags);
824 tlb_finish_mmu(&tlb);
825
826 if (ret)
827 goto out_unlock;
828 BUG_ON(prev != vma);
829
830 if (unlikely(vm_flags & VM_EXEC)) {
831 pr_warn_once("process '%pD4' started with executable stack\n",
832 bprm->file);
833 }
834
835 /* Move stack pages down in memory. */
836 if (stack_shift) {
837 ret = shift_arg_pages(vma, stack_shift);
838 if (ret)
839 goto out_unlock;
840 }
841
842 /* mprotect_fixup is overkill to remove the temporary stack flags */
843 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
844
845 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
846 stack_size = vma->vm_end - vma->vm_start;
847 /*
848 * Align this down to a page boundary as expand_stack
849 * will align it up.
850 */
851 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
852
853 stack_expand = min(rlim_stack, stack_size + stack_expand);
854
855 #ifdef CONFIG_STACK_GROWSUP
856 stack_base = vma->vm_start + stack_expand;
857 #else
858 stack_base = vma->vm_end - stack_expand;
859 #endif
860 current->mm->start_stack = bprm->p;
861 ret = expand_stack_locked(vma, stack_base);
862 if (ret)
863 ret = -EFAULT;
864
865 out_unlock:
866 mmap_write_unlock(mm);
867 return ret;
868 }
869 EXPORT_SYMBOL(setup_arg_pages);
870
871 #else
872
873 /*
874 * Transfer the program arguments and environment from the holding pages
875 * onto the stack. The provided stack pointer is adjusted accordingly.
876 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)877 int transfer_args_to_stack(struct linux_binprm *bprm,
878 unsigned long *sp_location)
879 {
880 unsigned long index, stop, sp;
881 int ret = 0;
882
883 stop = bprm->p >> PAGE_SHIFT;
884 sp = *sp_location;
885
886 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
887 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
888 char *src = kmap_local_page(bprm->page[index]) + offset;
889 sp -= PAGE_SIZE - offset;
890 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
891 ret = -EFAULT;
892 kunmap_local(src);
893 if (ret)
894 goto out;
895 }
896
897 bprm->exec += *sp_location - MAX_ARG_PAGES * PAGE_SIZE;
898 *sp_location = sp;
899
900 out:
901 return ret;
902 }
903 EXPORT_SYMBOL(transfer_args_to_stack);
904
905 #endif /* CONFIG_MMU */
906
do_open_execat(int fd,struct filename * name,int flags)907 static struct file *do_open_execat(int fd, struct filename *name, int flags)
908 {
909 struct file *file;
910 int err;
911 struct open_flags open_exec_flags = {
912 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
913 .acc_mode = MAY_EXEC,
914 .intent = LOOKUP_OPEN,
915 .lookup_flags = LOOKUP_FOLLOW,
916 };
917
918 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
919 return ERR_PTR(-EINVAL);
920 if (flags & AT_SYMLINK_NOFOLLOW)
921 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
922 if (flags & AT_EMPTY_PATH)
923 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
924
925 file = do_filp_open(fd, name, &open_exec_flags);
926 if (IS_ERR(file))
927 return file;
928
929 /*
930 * In the past the regular type check was here. It moved to may_open() in
931 * 633fb6ac3980 ("exec: move S_ISREG() check earlier"). Since then it is
932 * an invariant that all non-regular files error out before we get here.
933 */
934 err = -EACCES;
935 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode)) ||
936 path_noexec(&file->f_path))
937 goto exit;
938
939 err = deny_write_access(file);
940 if (err)
941 goto exit;
942
943 return file;
944
945 exit:
946 fput(file);
947 return ERR_PTR(err);
948 }
949
open_exec(const char * name)950 struct file *open_exec(const char *name)
951 {
952 struct filename *filename = getname_kernel(name);
953 struct file *f = ERR_CAST(filename);
954
955 if (!IS_ERR(filename)) {
956 f = do_open_execat(AT_FDCWD, filename, 0);
957 putname(filename);
958 }
959 return f;
960 }
961 EXPORT_SYMBOL(open_exec);
962
963 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)964 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965 {
966 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 if (res > 0)
968 flush_icache_user_range(addr, addr + len);
969 return res;
970 }
971 EXPORT_SYMBOL(read_code);
972 #endif
973
974 /*
975 * Maps the mm_struct mm into the current task struct.
976 * On success, this function returns with exec_update_lock
977 * held for writing.
978 */
exec_mmap(struct mm_struct * mm)979 static int exec_mmap(struct mm_struct *mm)
980 {
981 struct task_struct *tsk;
982 struct mm_struct *old_mm, *active_mm;
983 int ret;
984
985 /* Notify parent that we're no longer interested in the old VM */
986 tsk = current;
987 old_mm = current->mm;
988 exec_mm_release(tsk, old_mm);
989 if (old_mm)
990 sync_mm_rss(old_mm);
991
992 ret = down_write_killable(&tsk->signal->exec_update_lock);
993 if (ret)
994 return ret;
995
996 if (old_mm) {
997 /*
998 * If there is a pending fatal signal perhaps a signal
999 * whose default action is to create a coredump get
1000 * out and die instead of going through with the exec.
1001 */
1002 ret = mmap_read_lock_killable(old_mm);
1003 if (ret) {
1004 up_write(&tsk->signal->exec_update_lock);
1005 return ret;
1006 }
1007 }
1008
1009 task_lock(tsk);
1010 membarrier_exec_mmap(mm);
1011
1012 local_irq_disable();
1013 active_mm = tsk->active_mm;
1014 tsk->active_mm = mm;
1015 tsk->mm = mm;
1016 mm_init_cid(mm);
1017 /*
1018 * This prevents preemption while active_mm is being loaded and
1019 * it and mm are being updated, which could cause problems for
1020 * lazy tlb mm refcounting when these are updated by context
1021 * switches. Not all architectures can handle irqs off over
1022 * activate_mm yet.
1023 */
1024 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 local_irq_enable();
1026 activate_mm(active_mm, mm);
1027 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 local_irq_enable();
1029 lru_gen_add_mm(mm);
1030 task_unlock(tsk);
1031 lru_gen_use_mm(mm);
1032 if (old_mm) {
1033 mmap_read_unlock(old_mm);
1034 BUG_ON(active_mm != old_mm);
1035 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036 mm_update_next_owner(old_mm);
1037 mmput(old_mm);
1038 return 0;
1039 }
1040 mmdrop_lazy_tlb(active_mm);
1041 return 0;
1042 }
1043
de_thread(struct task_struct * tsk)1044 static int de_thread(struct task_struct *tsk)
1045 {
1046 struct signal_struct *sig = tsk->signal;
1047 struct sighand_struct *oldsighand = tsk->sighand;
1048 spinlock_t *lock = &oldsighand->siglock;
1049
1050 if (thread_group_empty(tsk))
1051 goto no_thread_group;
1052
1053 /*
1054 * Kill all other threads in the thread group.
1055 */
1056 spin_lock_irq(lock);
1057 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1058 /*
1059 * Another group action in progress, just
1060 * return so that the signal is processed.
1061 */
1062 spin_unlock_irq(lock);
1063 return -EAGAIN;
1064 }
1065
1066 sig->group_exec_task = tsk;
1067 sig->notify_count = zap_other_threads(tsk);
1068 if (!thread_group_leader(tsk))
1069 sig->notify_count--;
1070
1071 while (sig->notify_count) {
1072 __set_current_state(TASK_KILLABLE);
1073 spin_unlock_irq(lock);
1074 schedule();
1075 if (__fatal_signal_pending(tsk))
1076 goto killed;
1077 spin_lock_irq(lock);
1078 }
1079 spin_unlock_irq(lock);
1080
1081 /*
1082 * At this point all other threads have exited, all we have to
1083 * do is to wait for the thread group leader to become inactive,
1084 * and to assume its PID:
1085 */
1086 if (!thread_group_leader(tsk)) {
1087 struct task_struct *leader = tsk->group_leader;
1088
1089 for (;;) {
1090 cgroup_threadgroup_change_begin(tsk);
1091 write_lock_irq(&tasklist_lock);
1092 /*
1093 * Do this under tasklist_lock to ensure that
1094 * exit_notify() can't miss ->group_exec_task
1095 */
1096 sig->notify_count = -1;
1097 if (likely(leader->exit_state))
1098 break;
1099 __set_current_state(TASK_KILLABLE);
1100 write_unlock_irq(&tasklist_lock);
1101 cgroup_threadgroup_change_end(tsk);
1102 schedule();
1103 if (__fatal_signal_pending(tsk))
1104 goto killed;
1105 }
1106
1107 /*
1108 * The only record we have of the real-time age of a
1109 * process, regardless of execs it's done, is start_time.
1110 * All the past CPU time is accumulated in signal_struct
1111 * from sister threads now dead. But in this non-leader
1112 * exec, nothing survives from the original leader thread,
1113 * whose birth marks the true age of this process now.
1114 * When we take on its identity by switching to its PID, we
1115 * also take its birthdate (always earlier than our own).
1116 */
1117 tsk->start_time = leader->start_time;
1118 tsk->start_boottime = leader->start_boottime;
1119
1120 BUG_ON(!same_thread_group(leader, tsk));
1121 /*
1122 * An exec() starts a new thread group with the
1123 * TGID of the previous thread group. Rehash the
1124 * two threads with a switched PID, and release
1125 * the former thread group leader:
1126 */
1127
1128 /* Become a process group leader with the old leader's pid.
1129 * The old leader becomes a thread of the this thread group.
1130 */
1131 exchange_tids(tsk, leader);
1132 transfer_pid(leader, tsk, PIDTYPE_TGID);
1133 transfer_pid(leader, tsk, PIDTYPE_PGID);
1134 transfer_pid(leader, tsk, PIDTYPE_SID);
1135
1136 list_replace_rcu(&leader->tasks, &tsk->tasks);
1137 list_replace_init(&leader->sibling, &tsk->sibling);
1138
1139 tsk->group_leader = tsk;
1140 leader->group_leader = tsk;
1141
1142 tsk->exit_signal = SIGCHLD;
1143 leader->exit_signal = -1;
1144
1145 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1146 leader->exit_state = EXIT_DEAD;
1147
1148 /*
1149 * We are going to release_task()->ptrace_unlink() silently,
1150 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1151 * the tracer won't block again waiting for this thread.
1152 */
1153 if (unlikely(leader->ptrace))
1154 __wake_up_parent(leader, leader->parent);
1155 write_unlock_irq(&tasklist_lock);
1156 cgroup_threadgroup_change_end(tsk);
1157
1158 release_task(leader);
1159 }
1160
1161 sig->group_exec_task = NULL;
1162 sig->notify_count = 0;
1163
1164 no_thread_group:
1165 /* we have changed execution domain */
1166 tsk->exit_signal = SIGCHLD;
1167
1168 BUG_ON(!thread_group_leader(tsk));
1169 return 0;
1170
1171 killed:
1172 /* protects against exit_notify() and __exit_signal() */
1173 read_lock(&tasklist_lock);
1174 sig->group_exec_task = NULL;
1175 sig->notify_count = 0;
1176 read_unlock(&tasklist_lock);
1177 return -EAGAIN;
1178 }
1179
1180
1181 /*
1182 * This function makes sure the current process has its own signal table,
1183 * so that flush_signal_handlers can later reset the handlers without
1184 * disturbing other processes. (Other processes might share the signal
1185 * table via the CLONE_SIGHAND option to clone().)
1186 */
unshare_sighand(struct task_struct * me)1187 static int unshare_sighand(struct task_struct *me)
1188 {
1189 struct sighand_struct *oldsighand = me->sighand;
1190
1191 if (refcount_read(&oldsighand->count) != 1) {
1192 struct sighand_struct *newsighand;
1193 /*
1194 * This ->sighand is shared with the CLONE_SIGHAND
1195 * but not CLONE_THREAD task, switch to the new one.
1196 */
1197 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1198 if (!newsighand)
1199 return -ENOMEM;
1200
1201 refcount_set(&newsighand->count, 1);
1202
1203 write_lock_irq(&tasklist_lock);
1204 spin_lock(&oldsighand->siglock);
1205 memcpy(newsighand->action, oldsighand->action,
1206 sizeof(newsighand->action));
1207 rcu_assign_pointer(me->sighand, newsighand);
1208 spin_unlock(&oldsighand->siglock);
1209 write_unlock_irq(&tasklist_lock);
1210
1211 __cleanup_sighand(oldsighand);
1212 }
1213 return 0;
1214 }
1215
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1216 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1217 {
1218 task_lock(tsk);
1219 /* Always NUL terminated and zero-padded */
1220 strscpy_pad(buf, tsk->comm, buf_size);
1221 task_unlock(tsk);
1222 return buf;
1223 }
1224 EXPORT_SYMBOL_GPL(__get_task_comm);
1225
1226 /*
1227 * These functions flushes out all traces of the currently running executable
1228 * so that a new one can be started
1229 */
1230
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1231 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1232 {
1233 task_lock(tsk);
1234 trace_task_rename(tsk, buf);
1235 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1236 task_unlock(tsk);
1237 perf_event_comm(tsk, exec);
1238 }
1239
1240 /*
1241 * Calling this is the point of no return. None of the failures will be
1242 * seen by userspace since either the process is already taking a fatal
1243 * signal (via de_thread() or coredump), or will have SEGV raised
1244 * (after exec_mmap()) by search_binary_handler (see below).
1245 */
begin_new_exec(struct linux_binprm * bprm)1246 int begin_new_exec(struct linux_binprm * bprm)
1247 {
1248 struct task_struct *me = current;
1249 int retval;
1250
1251 /* Once we are committed compute the creds */
1252 retval = bprm_creds_from_file(bprm);
1253 if (retval)
1254 return retval;
1255
1256 /*
1257 * Ensure all future errors are fatal.
1258 */
1259 bprm->point_of_no_return = true;
1260
1261 /*
1262 * Make this the only thread in the thread group.
1263 */
1264 retval = de_thread(me);
1265 if (retval)
1266 goto out;
1267
1268 /*
1269 * Cancel any io_uring activity across execve
1270 */
1271 io_uring_task_cancel();
1272
1273 /* Ensure the files table is not shared. */
1274 retval = unshare_files();
1275 if (retval)
1276 goto out;
1277
1278 /*
1279 * Must be called _before_ exec_mmap() as bprm->mm is
1280 * not visible until then. Doing it here also ensures
1281 * we don't race against replace_mm_exe_file().
1282 */
1283 retval = set_mm_exe_file(bprm->mm, bprm->file);
1284 if (retval)
1285 goto out;
1286
1287 /* If the binary is not readable then enforce mm->dumpable=0 */
1288 would_dump(bprm, bprm->file);
1289 if (bprm->have_execfd)
1290 would_dump(bprm, bprm->executable);
1291
1292 /*
1293 * Release all of the old mmap stuff
1294 */
1295 acct_arg_size(bprm, 0);
1296 retval = exec_mmap(bprm->mm);
1297 if (retval)
1298 goto out;
1299
1300 bprm->mm = NULL;
1301
1302 retval = exec_task_namespaces();
1303 if (retval)
1304 goto out_unlock;
1305
1306 #ifdef CONFIG_POSIX_TIMERS
1307 spin_lock_irq(&me->sighand->siglock);
1308 posix_cpu_timers_exit(me);
1309 spin_unlock_irq(&me->sighand->siglock);
1310 exit_itimers(me);
1311 flush_itimer_signals();
1312 #endif
1313
1314 /*
1315 * Make the signal table private.
1316 */
1317 retval = unshare_sighand(me);
1318 if (retval)
1319 goto out_unlock;
1320
1321 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 flush_thread();
1324 me->personality &= ~bprm->per_clear;
1325
1326 clear_syscall_work_syscall_user_dispatch(me);
1327
1328 /*
1329 * We have to apply CLOEXEC before we change whether the process is
1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 * trying to access the should-be-closed file descriptors of a process
1332 * undergoing exec(2).
1333 */
1334 do_close_on_exec(me->files);
1335
1336 if (bprm->secureexec) {
1337 /* Make sure parent cannot signal privileged process. */
1338 me->pdeath_signal = 0;
1339
1340 /*
1341 * For secureexec, reset the stack limit to sane default to
1342 * avoid bad behavior from the prior rlimits. This has to
1343 * happen before arch_pick_mmap_layout(), which examines
1344 * RLIMIT_STACK, but after the point of no return to avoid
1345 * needing to clean up the change on failure.
1346 */
1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 }
1350
1351 me->sas_ss_sp = me->sas_ss_size = 0;
1352
1353 /*
1354 * Figure out dumpability. Note that this checking only of current
1355 * is wrong, but userspace depends on it. This should be testing
1356 * bprm->secureexec instead.
1357 */
1358 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 !(uid_eq(current_euid(), current_uid()) &&
1360 gid_eq(current_egid(), current_gid())))
1361 set_dumpable(current->mm, suid_dumpable);
1362 else
1363 set_dumpable(current->mm, SUID_DUMP_USER);
1364
1365 perf_event_exec();
1366
1367 /*
1368 * If the original filename was empty, alloc_bprm() made up a path
1369 * that will probably not be useful to admins running ps or similar.
1370 * Let's fix it up to be something reasonable.
1371 */
1372 if (bprm->comm_from_dentry) {
1373 /*
1374 * Hold RCU lock to keep the name from being freed behind our back.
1375 * Use acquire semantics to make sure the terminating NUL from
1376 * __d_alloc() is seen.
1377 *
1378 * Note, we're deliberately sloppy here. We don't need to care about
1379 * detecting a concurrent rename and just want a terminated name.
1380 */
1381 rcu_read_lock();
1382 __set_task_comm(me, smp_load_acquire(&bprm->file->f_path.dentry->d_name.name),
1383 true);
1384 rcu_read_unlock();
1385 } else {
1386 __set_task_comm(me, kbasename(bprm->filename), true);
1387 }
1388
1389 /* An exec changes our domain. We are no longer part of the thread
1390 group */
1391 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1392 flush_signal_handlers(me, 0);
1393
1394 retval = set_cred_ucounts(bprm->cred);
1395 if (retval < 0)
1396 goto out_unlock;
1397
1398 /*
1399 * install the new credentials for this executable
1400 */
1401 security_bprm_committing_creds(bprm);
1402
1403 commit_creds(bprm->cred);
1404 bprm->cred = NULL;
1405
1406 /*
1407 * Disable monitoring for regular users
1408 * when executing setuid binaries. Must
1409 * wait until new credentials are committed
1410 * by commit_creds() above
1411 */
1412 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1413 perf_event_exit_task(me);
1414 /*
1415 * cred_guard_mutex must be held at least to this point to prevent
1416 * ptrace_attach() from altering our determination of the task's
1417 * credentials; any time after this it may be unlocked.
1418 */
1419 security_bprm_committed_creds(bprm);
1420
1421 /* Pass the opened binary to the interpreter. */
1422 if (bprm->have_execfd) {
1423 retval = get_unused_fd_flags(0);
1424 if (retval < 0)
1425 goto out_unlock;
1426 fd_install(retval, bprm->executable);
1427 bprm->executable = NULL;
1428 bprm->execfd = retval;
1429 }
1430 return 0;
1431
1432 out_unlock:
1433 up_write(&me->signal->exec_update_lock);
1434 if (!bprm->cred)
1435 mutex_unlock(&me->signal->cred_guard_mutex);
1436
1437 out:
1438 return retval;
1439 }
1440 EXPORT_SYMBOL(begin_new_exec);
1441
would_dump(struct linux_binprm * bprm,struct file * file)1442 void would_dump(struct linux_binprm *bprm, struct file *file)
1443 {
1444 struct inode *inode = file_inode(file);
1445 struct mnt_idmap *idmap = file_mnt_idmap(file);
1446 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1447 struct user_namespace *old, *user_ns;
1448 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1449
1450 /* Ensure mm->user_ns contains the executable */
1451 user_ns = old = bprm->mm->user_ns;
1452 while ((user_ns != &init_user_ns) &&
1453 !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1454 user_ns = user_ns->parent;
1455
1456 if (old != user_ns) {
1457 bprm->mm->user_ns = get_user_ns(user_ns);
1458 put_user_ns(old);
1459 }
1460 }
1461 }
1462 EXPORT_SYMBOL(would_dump);
1463
setup_new_exec(struct linux_binprm * bprm)1464 void setup_new_exec(struct linux_binprm * bprm)
1465 {
1466 /* Setup things that can depend upon the personality */
1467 struct task_struct *me = current;
1468
1469 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1470
1471 arch_setup_new_exec();
1472
1473 /* Set the new mm task size. We have to do that late because it may
1474 * depend on TIF_32BIT which is only updated in flush_thread() on
1475 * some architectures like powerpc
1476 */
1477 me->mm->task_size = TASK_SIZE;
1478 up_write(&me->signal->exec_update_lock);
1479 mutex_unlock(&me->signal->cred_guard_mutex);
1480 }
1481 EXPORT_SYMBOL(setup_new_exec);
1482
1483 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1484 void finalize_exec(struct linux_binprm *bprm)
1485 {
1486 /* Store any stack rlimit changes before starting thread. */
1487 task_lock(current->group_leader);
1488 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1489 task_unlock(current->group_leader);
1490 }
1491 EXPORT_SYMBOL(finalize_exec);
1492
1493 /*
1494 * Prepare credentials and lock ->cred_guard_mutex.
1495 * setup_new_exec() commits the new creds and drops the lock.
1496 * Or, if exec fails before, free_bprm() should release ->cred
1497 * and unlock.
1498 */
prepare_bprm_creds(struct linux_binprm * bprm)1499 static int prepare_bprm_creds(struct linux_binprm *bprm)
1500 {
1501 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1502 return -ERESTARTNOINTR;
1503
1504 bprm->cred = prepare_exec_creds();
1505 if (likely(bprm->cred))
1506 return 0;
1507
1508 mutex_unlock(¤t->signal->cred_guard_mutex);
1509 return -ENOMEM;
1510 }
1511
free_bprm(struct linux_binprm * bprm)1512 static void free_bprm(struct linux_binprm *bprm)
1513 {
1514 if (bprm->mm) {
1515 acct_arg_size(bprm, 0);
1516 mmput(bprm->mm);
1517 }
1518 free_arg_pages(bprm);
1519 if (bprm->cred) {
1520 mutex_unlock(¤t->signal->cred_guard_mutex);
1521 abort_creds(bprm->cred);
1522 }
1523 if (bprm->file) {
1524 allow_write_access(bprm->file);
1525 fput(bprm->file);
1526 }
1527 if (bprm->executable)
1528 fput(bprm->executable);
1529 /* If a binfmt changed the interp, free it. */
1530 if (bprm->interp != bprm->filename)
1531 kfree(bprm->interp);
1532 kfree(bprm->fdpath);
1533 kfree(bprm);
1534 }
1535
alloc_bprm(int fd,struct filename * filename)1536 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1537 {
1538 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1539 int retval = -ENOMEM;
1540 if (!bprm)
1541 goto out;
1542
1543 if (fd == AT_FDCWD || filename->name[0] == '/') {
1544 bprm->filename = filename->name;
1545 } else {
1546 if (filename->name[0] == '\0') {
1547 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1548 bprm->comm_from_dentry = 1;
1549 } else {
1550 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1551 fd, filename->name);
1552 }
1553 if (!bprm->fdpath)
1554 goto out_free;
1555
1556 bprm->filename = bprm->fdpath;
1557 }
1558 bprm->interp = bprm->filename;
1559
1560 retval = bprm_mm_init(bprm);
1561 if (retval)
1562 goto out_free;
1563 return bprm;
1564
1565 out_free:
1566 free_bprm(bprm);
1567 out:
1568 return ERR_PTR(retval);
1569 }
1570
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1571 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1572 {
1573 /* If a binfmt changed the interp, free it first. */
1574 if (bprm->interp != bprm->filename)
1575 kfree(bprm->interp);
1576 bprm->interp = kstrdup(interp, GFP_KERNEL);
1577 if (!bprm->interp)
1578 return -ENOMEM;
1579 return 0;
1580 }
1581 EXPORT_SYMBOL(bprm_change_interp);
1582
1583 /*
1584 * determine how safe it is to execute the proposed program
1585 * - the caller must hold ->cred_guard_mutex to protect against
1586 * PTRACE_ATTACH or seccomp thread-sync
1587 */
check_unsafe_exec(struct linux_binprm * bprm)1588 static void check_unsafe_exec(struct linux_binprm *bprm)
1589 {
1590 struct task_struct *p = current, *t;
1591 unsigned n_fs;
1592
1593 if (p->ptrace)
1594 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1595
1596 /*
1597 * This isn't strictly necessary, but it makes it harder for LSMs to
1598 * mess up.
1599 */
1600 if (task_no_new_privs(current))
1601 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1602
1603 /*
1604 * If another task is sharing our fs, we cannot safely
1605 * suid exec because the differently privileged task
1606 * will be able to manipulate the current directory, etc.
1607 * It would be nice to force an unshare instead...
1608 */
1609 t = p;
1610 n_fs = 1;
1611 spin_lock(&p->fs->lock);
1612 rcu_read_lock();
1613 while_each_thread(p, t) {
1614 if (t->fs == p->fs)
1615 n_fs++;
1616 }
1617 rcu_read_unlock();
1618
1619 if (p->fs->users > n_fs)
1620 bprm->unsafe |= LSM_UNSAFE_SHARE;
1621 else
1622 p->fs->in_exec = 1;
1623 spin_unlock(&p->fs->lock);
1624 }
1625
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1626 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1627 {
1628 /* Handle suid and sgid on files */
1629 struct mnt_idmap *idmap;
1630 struct inode *inode = file_inode(file);
1631 unsigned int mode;
1632 vfsuid_t vfsuid;
1633 vfsgid_t vfsgid;
1634 int err;
1635
1636 if (!mnt_may_suid(file->f_path.mnt))
1637 return;
1638
1639 if (task_no_new_privs(current))
1640 return;
1641
1642 mode = READ_ONCE(inode->i_mode);
1643 if (!(mode & (S_ISUID|S_ISGID)))
1644 return;
1645
1646 idmap = file_mnt_idmap(file);
1647
1648 /* Be careful if suid/sgid is set */
1649 inode_lock(inode);
1650
1651 /* Atomically reload and check mode/uid/gid now that lock held. */
1652 mode = inode->i_mode;
1653 vfsuid = i_uid_into_vfsuid(idmap, inode);
1654 vfsgid = i_gid_into_vfsgid(idmap, inode);
1655 err = inode_permission(idmap, inode, MAY_EXEC);
1656 inode_unlock(inode);
1657
1658 /* Did the exec bit vanish out from under us? Give up. */
1659 if (err)
1660 return;
1661
1662 /* We ignore suid/sgid if there are no mappings for them in the ns */
1663 if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1664 !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1665 return;
1666
1667 if (mode & S_ISUID) {
1668 bprm->per_clear |= PER_CLEAR_ON_SETID;
1669 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1670 }
1671
1672 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1673 bprm->per_clear |= PER_CLEAR_ON_SETID;
1674 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1675 }
1676 }
1677
1678 /*
1679 * Compute brpm->cred based upon the final binary.
1680 */
bprm_creds_from_file(struct linux_binprm * bprm)1681 static int bprm_creds_from_file(struct linux_binprm *bprm)
1682 {
1683 /* Compute creds based on which file? */
1684 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1685
1686 bprm_fill_uid(bprm, file);
1687 return security_bprm_creds_from_file(bprm, file);
1688 }
1689
1690 /*
1691 * Fill the binprm structure from the inode.
1692 * Read the first BINPRM_BUF_SIZE bytes
1693 *
1694 * This may be called multiple times for binary chains (scripts for example).
1695 */
prepare_binprm(struct linux_binprm * bprm)1696 static int prepare_binprm(struct linux_binprm *bprm)
1697 {
1698 loff_t pos = 0;
1699
1700 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1701 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1702 }
1703
1704 /*
1705 * Arguments are '\0' separated strings found at the location bprm->p
1706 * points to; chop off the first by relocating brpm->p to right after
1707 * the first '\0' encountered.
1708 */
remove_arg_zero(struct linux_binprm * bprm)1709 int remove_arg_zero(struct linux_binprm *bprm)
1710 {
1711 int ret = 0;
1712 unsigned long offset;
1713 char *kaddr;
1714 struct page *page;
1715
1716 if (!bprm->argc)
1717 return 0;
1718
1719 do {
1720 offset = bprm->p & ~PAGE_MASK;
1721 page = get_arg_page(bprm, bprm->p, 0);
1722 if (!page) {
1723 ret = -EFAULT;
1724 goto out;
1725 }
1726 kaddr = kmap_local_page(page);
1727
1728 for (; offset < PAGE_SIZE && kaddr[offset];
1729 offset++, bprm->p++)
1730 ;
1731
1732 kunmap_local(kaddr);
1733 put_arg_page(page);
1734 } while (offset == PAGE_SIZE);
1735
1736 bprm->p++;
1737 bprm->argc--;
1738 ret = 0;
1739
1740 out:
1741 return ret;
1742 }
1743 EXPORT_SYMBOL(remove_arg_zero);
1744
1745 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1746 /*
1747 * cycle the list of binary formats handler, until one recognizes the image
1748 */
search_binary_handler(struct linux_binprm * bprm)1749 static int search_binary_handler(struct linux_binprm *bprm)
1750 {
1751 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1752 struct linux_binfmt *fmt;
1753 int retval;
1754
1755 retval = prepare_binprm(bprm);
1756 if (retval < 0)
1757 return retval;
1758
1759 retval = security_bprm_check(bprm);
1760 if (retval)
1761 return retval;
1762
1763 retval = -ENOENT;
1764 retry:
1765 read_lock(&binfmt_lock);
1766 list_for_each_entry(fmt, &formats, lh) {
1767 if (!try_module_get(fmt->module))
1768 continue;
1769 read_unlock(&binfmt_lock);
1770
1771 retval = fmt->load_binary(bprm);
1772
1773 read_lock(&binfmt_lock);
1774 put_binfmt(fmt);
1775 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1776 read_unlock(&binfmt_lock);
1777 return retval;
1778 }
1779 }
1780 read_unlock(&binfmt_lock);
1781
1782 if (need_retry) {
1783 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1784 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1785 return retval;
1786 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1787 return retval;
1788 need_retry = false;
1789 goto retry;
1790 }
1791
1792 return retval;
1793 }
1794
1795 /* binfmt handlers will call back into begin_new_exec() on success. */
exec_binprm(struct linux_binprm * bprm)1796 static int exec_binprm(struct linux_binprm *bprm)
1797 {
1798 pid_t old_pid, old_vpid;
1799 int ret, depth;
1800
1801 /* Need to fetch pid before load_binary changes it */
1802 old_pid = current->pid;
1803 rcu_read_lock();
1804 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1805 rcu_read_unlock();
1806
1807 /* This allows 4 levels of binfmt rewrites before failing hard. */
1808 for (depth = 0;; depth++) {
1809 struct file *exec;
1810 if (depth > 5)
1811 return -ELOOP;
1812
1813 ret = search_binary_handler(bprm);
1814 if (ret < 0)
1815 return ret;
1816 if (!bprm->interpreter)
1817 break;
1818
1819 exec = bprm->file;
1820 bprm->file = bprm->interpreter;
1821 bprm->interpreter = NULL;
1822
1823 allow_write_access(exec);
1824 if (unlikely(bprm->have_execfd)) {
1825 if (bprm->executable) {
1826 fput(exec);
1827 return -ENOEXEC;
1828 }
1829 bprm->executable = exec;
1830 } else
1831 fput(exec);
1832 }
1833
1834 audit_bprm(bprm);
1835 trace_sched_process_exec(current, old_pid, bprm);
1836 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1837 proc_exec_connector(current);
1838 return 0;
1839 }
1840
1841 /*
1842 * sys_execve() executes a new program.
1843 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1844 static int bprm_execve(struct linux_binprm *bprm,
1845 int fd, struct filename *filename, int flags)
1846 {
1847 struct file *file;
1848 int retval;
1849
1850 retval = prepare_bprm_creds(bprm);
1851 if (retval)
1852 return retval;
1853
1854 /*
1855 * Check for unsafe execution states before exec_binprm(), which
1856 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1857 * where setuid-ness is evaluated.
1858 */
1859 check_unsafe_exec(bprm);
1860 current->in_execve = 1;
1861 sched_mm_cid_before_execve(current);
1862
1863 file = do_open_execat(fd, filename, flags);
1864 retval = PTR_ERR(file);
1865 if (IS_ERR(file))
1866 goto out_unmark;
1867
1868 sched_exec();
1869
1870 bprm->file = file;
1871 /*
1872 * Record that a name derived from an O_CLOEXEC fd will be
1873 * inaccessible after exec. This allows the code in exec to
1874 * choose to fail when the executable is not mmaped into the
1875 * interpreter and an open file descriptor is not passed to
1876 * the interpreter. This makes for a better user experience
1877 * than having the interpreter start and then immediately fail
1878 * when it finds the executable is inaccessible.
1879 */
1880 if (bprm->fdpath && get_close_on_exec(fd))
1881 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1882
1883 /* Set the unchanging part of bprm->cred */
1884 retval = security_bprm_creds_for_exec(bprm);
1885 if (retval)
1886 goto out;
1887
1888 retval = exec_binprm(bprm);
1889 if (retval < 0)
1890 goto out;
1891
1892 sched_mm_cid_after_execve(current);
1893 /* execve succeeded */
1894 current->fs->in_exec = 0;
1895 current->in_execve = 0;
1896 rseq_execve(current);
1897 user_events_execve(current);
1898 acct_update_integrals(current);
1899 task_numa_free(current, false);
1900 CALL_HCK_LITE_HOOK(ced_detection_lhck, current);
1901 return retval;
1902
1903 out:
1904 /*
1905 * If past the point of no return ensure the code never
1906 * returns to the userspace process. Use an existing fatal
1907 * signal if present otherwise terminate the process with
1908 * SIGSEGV.
1909 */
1910 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1911 force_fatal_sig(SIGSEGV);
1912
1913 out_unmark:
1914 sched_mm_cid_after_execve(current);
1915 current->fs->in_exec = 0;
1916 current->in_execve = 0;
1917
1918 return retval;
1919 }
1920
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1921 static int do_execveat_common(int fd, struct filename *filename,
1922 struct user_arg_ptr argv,
1923 struct user_arg_ptr envp,
1924 int flags)
1925 {
1926 struct linux_binprm *bprm;
1927 int retval;
1928
1929 if (IS_ERR(filename))
1930 return PTR_ERR(filename);
1931
1932 /*
1933 * We move the actual failure in case of RLIMIT_NPROC excess from
1934 * set*uid() to execve() because too many poorly written programs
1935 * don't check setuid() return code. Here we additionally recheck
1936 * whether NPROC limit is still exceeded.
1937 */
1938 if ((current->flags & PF_NPROC_EXCEEDED) &&
1939 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1940 retval = -EAGAIN;
1941 goto out_ret;
1942 }
1943
1944 /* We're below the limit (still or again), so we don't want to make
1945 * further execve() calls fail. */
1946 current->flags &= ~PF_NPROC_EXCEEDED;
1947
1948 bprm = alloc_bprm(fd, filename);
1949 if (IS_ERR(bprm)) {
1950 retval = PTR_ERR(bprm);
1951 goto out_ret;
1952 }
1953
1954 retval = count(argv, MAX_ARG_STRINGS);
1955 if (retval == 0)
1956 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1957 current->comm, bprm->filename);
1958 if (retval < 0)
1959 goto out_free;
1960 bprm->argc = retval;
1961
1962 retval = count(envp, MAX_ARG_STRINGS);
1963 if (retval < 0)
1964 goto out_free;
1965 bprm->envc = retval;
1966
1967 retval = bprm_stack_limits(bprm);
1968 if (retval < 0)
1969 goto out_free;
1970
1971 retval = copy_string_kernel(bprm->filename, bprm);
1972 if (retval < 0)
1973 goto out_free;
1974 bprm->exec = bprm->p;
1975
1976 retval = copy_strings(bprm->envc, envp, bprm);
1977 if (retval < 0)
1978 goto out_free;
1979
1980 retval = copy_strings(bprm->argc, argv, bprm);
1981 if (retval < 0)
1982 goto out_free;
1983
1984 /*
1985 * When argv is empty, add an empty string ("") as argv[0] to
1986 * ensure confused userspace programs that start processing
1987 * from argv[1] won't end up walking envp. See also
1988 * bprm_stack_limits().
1989 */
1990 if (bprm->argc == 0) {
1991 retval = copy_string_kernel("", bprm);
1992 if (retval < 0)
1993 goto out_free;
1994 bprm->argc = 1;
1995 }
1996
1997 retval = bprm_execve(bprm, fd, filename, flags);
1998 out_free:
1999 free_bprm(bprm);
2000
2001 out_ret:
2002 putname(filename);
2003 return retval;
2004 }
2005
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)2006 int kernel_execve(const char *kernel_filename,
2007 const char *const *argv, const char *const *envp)
2008 {
2009 struct filename *filename;
2010 struct linux_binprm *bprm;
2011 int fd = AT_FDCWD;
2012 int retval;
2013
2014 /* It is non-sense for kernel threads to call execve */
2015 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
2016 return -EINVAL;
2017
2018 filename = getname_kernel(kernel_filename);
2019 if (IS_ERR(filename))
2020 return PTR_ERR(filename);
2021
2022 bprm = alloc_bprm(fd, filename);
2023 if (IS_ERR(bprm)) {
2024 retval = PTR_ERR(bprm);
2025 goto out_ret;
2026 }
2027
2028 retval = count_strings_kernel(argv);
2029 if (WARN_ON_ONCE(retval == 0))
2030 retval = -EINVAL;
2031 if (retval < 0)
2032 goto out_free;
2033 bprm->argc = retval;
2034
2035 retval = count_strings_kernel(envp);
2036 if (retval < 0)
2037 goto out_free;
2038 bprm->envc = retval;
2039
2040 retval = bprm_stack_limits(bprm);
2041 if (retval < 0)
2042 goto out_free;
2043
2044 retval = copy_string_kernel(bprm->filename, bprm);
2045 if (retval < 0)
2046 goto out_free;
2047 bprm->exec = bprm->p;
2048
2049 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2050 if (retval < 0)
2051 goto out_free;
2052
2053 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2054 if (retval < 0)
2055 goto out_free;
2056
2057 retval = bprm_execve(bprm, fd, filename, 0);
2058 out_free:
2059 free_bprm(bprm);
2060 out_ret:
2061 putname(filename);
2062 return retval;
2063 }
2064
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2065 static int do_execve(struct filename *filename,
2066 const char __user *const __user *__argv,
2067 const char __user *const __user *__envp)
2068 {
2069 struct user_arg_ptr argv = { .ptr.native = __argv };
2070 struct user_arg_ptr envp = { .ptr.native = __envp };
2071 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2072 }
2073
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2074 static int do_execveat(int fd, struct filename *filename,
2075 const char __user *const __user *__argv,
2076 const char __user *const __user *__envp,
2077 int flags)
2078 {
2079 struct user_arg_ptr argv = { .ptr.native = __argv };
2080 struct user_arg_ptr envp = { .ptr.native = __envp };
2081
2082 return do_execveat_common(fd, filename, argv, envp, flags);
2083 }
2084
2085 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2086 static int compat_do_execve(struct filename *filename,
2087 const compat_uptr_t __user *__argv,
2088 const compat_uptr_t __user *__envp)
2089 {
2090 struct user_arg_ptr argv = {
2091 .is_compat = true,
2092 .ptr.compat = __argv,
2093 };
2094 struct user_arg_ptr envp = {
2095 .is_compat = true,
2096 .ptr.compat = __envp,
2097 };
2098 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2099 }
2100
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2101 static int compat_do_execveat(int fd, struct filename *filename,
2102 const compat_uptr_t __user *__argv,
2103 const compat_uptr_t __user *__envp,
2104 int flags)
2105 {
2106 struct user_arg_ptr argv = {
2107 .is_compat = true,
2108 .ptr.compat = __argv,
2109 };
2110 struct user_arg_ptr envp = {
2111 .is_compat = true,
2112 .ptr.compat = __envp,
2113 };
2114 return do_execveat_common(fd, filename, argv, envp, flags);
2115 }
2116 #endif
2117
set_binfmt(struct linux_binfmt * new)2118 void set_binfmt(struct linux_binfmt *new)
2119 {
2120 struct mm_struct *mm = current->mm;
2121
2122 if (mm->binfmt)
2123 module_put(mm->binfmt->module);
2124
2125 mm->binfmt = new;
2126 if (new)
2127 __module_get(new->module);
2128 }
2129 EXPORT_SYMBOL(set_binfmt);
2130
2131 /*
2132 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2133 */
set_dumpable(struct mm_struct * mm,int value)2134 void set_dumpable(struct mm_struct *mm, int value)
2135 {
2136 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2137 return;
2138
2139 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2140 }
2141
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2142 SYSCALL_DEFINE3(execve,
2143 const char __user *, filename,
2144 const char __user *const __user *, argv,
2145 const char __user *const __user *, envp)
2146 {
2147 return do_execve(getname(filename), argv, envp);
2148 }
2149
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2150 SYSCALL_DEFINE5(execveat,
2151 int, fd, const char __user *, filename,
2152 const char __user *const __user *, argv,
2153 const char __user *const __user *, envp,
2154 int, flags)
2155 {
2156 return do_execveat(fd,
2157 getname_uflags(filename, flags),
2158 argv, envp, flags);
2159 }
2160
2161 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2162 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2163 const compat_uptr_t __user *, argv,
2164 const compat_uptr_t __user *, envp)
2165 {
2166 return compat_do_execve(getname(filename), argv, envp);
2167 }
2168
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2169 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2170 const char __user *, filename,
2171 const compat_uptr_t __user *, argv,
2172 const compat_uptr_t __user *, envp,
2173 int, flags)
2174 {
2175 return compat_do_execveat(fd,
2176 getname_uflags(filename, flags),
2177 argv, envp, flags);
2178 }
2179 #endif
2180
2181 #ifdef CONFIG_SYSCTL
2182
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2183 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2184 void *buffer, size_t *lenp, loff_t *ppos)
2185 {
2186 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2187
2188 if (!error)
2189 validate_coredump_safety();
2190 return error;
2191 }
2192
2193 static struct ctl_table fs_exec_sysctls[] = {
2194 {
2195 .procname = "suid_dumpable",
2196 .data = &suid_dumpable,
2197 .maxlen = sizeof(int),
2198 .mode = 0644,
2199 .proc_handler = proc_dointvec_minmax_coredump,
2200 .extra1 = SYSCTL_ZERO,
2201 .extra2 = SYSCTL_TWO,
2202 },
2203 { }
2204 };
2205
init_fs_exec_sysctls(void)2206 static int __init init_fs_exec_sysctls(void)
2207 {
2208 register_sysctl_init("fs", fs_exec_sysctls);
2209 return 0;
2210 }
2211
2212 fs_initcall(init_fs_exec_sysctls);
2213 #endif /* CONFIG_SYSCTL */
2214