1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 #include <linux/memcg_policy.h>
25 #include <linux/pagemap.h>
26
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 MEMCG_SOCK,
37 MEMCG_PERCPU_B,
38 MEMCG_VMALLOC,
39 MEMCG_KMEM,
40 MEMCG_ZSWAP_B,
41 MEMCG_ZSWAPPED,
42 MEMCG_NR_STAT,
43 };
44
45 enum memcg_memory_event {
46 MEMCG_LOW,
47 MEMCG_HIGH,
48 MEMCG_MAX,
49 MEMCG_OOM,
50 MEMCG_OOM_KILL,
51 MEMCG_OOM_GROUP_KILL,
52 MEMCG_SWAP_HIGH,
53 MEMCG_SWAP_MAX,
54 MEMCG_SWAP_FAIL,
55 MEMCG_NR_MEMORY_EVENTS,
56 };
57
58 struct mem_cgroup_reclaim_cookie {
59 pg_data_t *pgdat;
60 unsigned int generation;
61 };
62
is_prot_page(struct page * page)63 static inline bool is_prot_page(struct page *page)
64 {
65 return false;
66 }
67
68 #ifdef CONFIG_MEMCG
69
70 #define MEM_CGROUP_ID_SHIFT 16
71
72 struct mem_cgroup_id {
73 int id;
74 refcount_t ref;
75 };
76
77 /*
78 * Per memcg event counter is incremented at every pagein/pageout. With THP,
79 * it will be incremented by the number of pages. This counter is used
80 * to trigger some periodic events. This is straightforward and better
81 * than using jiffies etc. to handle periodic memcg event.
82 */
83 enum mem_cgroup_events_target {
84 MEM_CGROUP_TARGET_THRESH,
85 MEM_CGROUP_TARGET_SOFTLIMIT,
86 MEM_CGROUP_NTARGETS,
87 };
88
89 struct memcg_vmstats_percpu;
90 struct memcg_vmstats;
91
92 struct mem_cgroup_reclaim_iter {
93 struct mem_cgroup *position;
94 /* scan generation, increased every round-trip */
95 unsigned int generation;
96 };
97
98 /*
99 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
100 * shrinkers, which have elements charged to this memcg.
101 */
102 struct shrinker_info {
103 struct rcu_head rcu;
104 atomic_long_t *nr_deferred;
105 unsigned long *map;
106 int map_nr_max;
107 };
108
109 struct lruvec_stats_percpu {
110 /* Local (CPU and cgroup) state */
111 long state[NR_VM_NODE_STAT_ITEMS];
112
113 /* Delta calculation for lockless upward propagation */
114 long state_prev[NR_VM_NODE_STAT_ITEMS];
115 };
116
117 struct lruvec_stats {
118 /* Aggregated (CPU and subtree) state */
119 long state[NR_VM_NODE_STAT_ITEMS];
120
121 /* Non-hierarchical (CPU aggregated) state */
122 long state_local[NR_VM_NODE_STAT_ITEMS];
123
124 /* Pending child counts during tree propagation */
125 long state_pending[NR_VM_NODE_STAT_ITEMS];
126 };
127
128 /*
129 * per-node information in memory controller.
130 */
131 struct mem_cgroup_per_node {
132 struct lruvec lruvec;
133
134 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
135 struct lruvec_stats lruvec_stats;
136
137 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter iter;
140
141 struct shrinker_info __rcu *shrinker_info;
142
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *memcg; /* Back pointer, we cannot */
148 /* use container_of */
149 };
150
151 struct mem_cgroup_threshold {
152 struct eventfd_ctx *eventfd;
153 unsigned long threshold;
154 };
155
156 /* For threshold */
157 struct mem_cgroup_threshold_ary {
158 /* An array index points to threshold just below or equal to usage. */
159 int current_threshold;
160 /* Size of entries[] */
161 unsigned int size;
162 /* Array of thresholds */
163 struct mem_cgroup_threshold entries[];
164 };
165
166 struct mem_cgroup_thresholds {
167 /* Primary thresholds array */
168 struct mem_cgroup_threshold_ary *primary;
169 /*
170 * Spare threshold array.
171 * This is needed to make mem_cgroup_unregister_event() "never fail".
172 * It must be able to store at least primary->size - 1 entries.
173 */
174 struct mem_cgroup_threshold_ary *spare;
175 };
176
177 /*
178 * Remember four most recent foreign writebacks with dirty pages in this
179 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
180 * one in a given round, we're likely to catch it later if it keeps
181 * foreign-dirtying, so a fairly low count should be enough.
182 *
183 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
184 */
185 #define MEMCG_CGWB_FRN_CNT 4
186
187 struct memcg_cgwb_frn {
188 u64 bdi_id; /* bdi->id of the foreign inode */
189 int memcg_id; /* memcg->css.id of foreign inode */
190 u64 at; /* jiffies_64 at the time of dirtying */
191 struct wb_completion done; /* tracks in-flight foreign writebacks */
192 };
193
194 /*
195 * Bucket for arbitrarily byte-sized objects charged to a memory
196 * cgroup. The bucket can be reparented in one piece when the cgroup
197 * is destroyed, without having to round up the individual references
198 * of all live memory objects in the wild.
199 */
200 struct obj_cgroup {
201 struct percpu_ref refcnt;
202 struct mem_cgroup *memcg;
203 atomic_t nr_charged_bytes;
204 union {
205 struct list_head list; /* protected by objcg_lock */
206 struct rcu_head rcu;
207 };
208 };
209
210 /*
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
215 */
216 struct mem_cgroup {
217 struct cgroup_subsys_state css;
218
219 /* Private memcg ID. Used to ID objects that outlive the cgroup */
220 struct mem_cgroup_id id;
221
222 /* Accounted resources */
223 struct page_counter memory; /* Both v1 & v2 */
224
225 union {
226 struct page_counter swap; /* v2 only */
227 struct page_counter memsw; /* v1 only */
228 };
229
230 /* Legacy consumer-oriented counters */
231 struct page_counter kmem; /* v1 only */
232 struct page_counter tcpmem; /* v1 only */
233
234 /* Range enforcement for interrupt charges */
235 struct work_struct high_work;
236
237 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
238 unsigned long zswap_max;
239 #endif
240
241 unsigned long soft_limit;
242
243 /* vmpressure notifications */
244 struct vmpressure vmpressure;
245
246 /*
247 * Should the OOM killer kill all belonging tasks, had it kill one?
248 */
249 bool oom_group;
250
251 /* protected by memcg_oom_lock */
252 bool oom_lock;
253 int under_oom;
254
255 int swappiness;
256 /* OOM-Killer disable */
257 int oom_kill_disable;
258
259 /* memory.events and memory.events.local */
260 struct cgroup_file events_file;
261 struct cgroup_file events_local_file;
262
263 /* handle for "memory.swap.events" */
264 struct cgroup_file swap_events_file;
265
266 /* protect arrays of thresholds */
267 struct mutex thresholds_lock;
268
269 /* thresholds for memory usage. RCU-protected */
270 struct mem_cgroup_thresholds thresholds;
271
272 /* thresholds for mem+swap usage. RCU-protected */
273 struct mem_cgroup_thresholds memsw_thresholds;
274
275 /* For oom notifier event fd */
276 struct list_head oom_notify;
277
278 /*
279 * Should we move charges of a task when a task is moved into this
280 * mem_cgroup ? And what type of charges should we move ?
281 */
282 unsigned long move_charge_at_immigrate;
283 /* taken only while moving_account > 0 */
284 spinlock_t move_lock;
285 unsigned long move_lock_flags;
286
287 CACHELINE_PADDING(_pad1_);
288
289 /* memory.stat */
290 struct memcg_vmstats *vmstats;
291
292 /* memory.events */
293 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
294 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
295
296 /*
297 * Hint of reclaim pressure for socket memroy management. Note
298 * that this indicator should NOT be used in legacy cgroup mode
299 * where socket memory is accounted/charged separately.
300 */
301 unsigned long socket_pressure;
302
303 /* Legacy tcp memory accounting */
304 bool tcpmem_active;
305 int tcpmem_pressure;
306
307 #ifdef CONFIG_HYPERHOLD_MEMCG
308 struct list_head score_node;
309 #define MEM_CGROUP_NAME_MAX_LEN 100
310 char name[MEM_CGROUP_NAME_MAX_LEN];
311 struct memcg_reclaim memcg_reclaimed;
312 #endif
313
314 #ifdef CONFIG_MEMCG_KMEM
315 int kmemcg_id;
316 struct obj_cgroup __rcu *objcg;
317 /* list of inherited objcgs, protected by objcg_lock */
318 struct list_head objcg_list;
319 #endif
320
321 CACHELINE_PADDING(_pad2_);
322
323 /*
324 * set > 0 if pages under this cgroup are moving to other cgroup.
325 */
326 atomic_t moving_account;
327 struct task_struct *move_lock_task;
328
329 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
330
331 #ifdef CONFIG_CGROUP_WRITEBACK
332 struct list_head cgwb_list;
333 struct wb_domain cgwb_domain;
334 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
335 #endif
336
337 /* List of events which userspace want to receive */
338 struct list_head event_list;
339 spinlock_t event_list_lock;
340
341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
342 struct deferred_split deferred_split_queue;
343 #endif
344
345 #ifdef CONFIG_LRU_GEN
346 /* per-memcg mm_struct list */
347 struct lru_gen_mm_list mm_list;
348 #endif
349
350 struct mem_cgroup_per_node *nodeinfo[];
351 };
352
353 /*
354 * size of first charge trial.
355 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
356 * workload.
357 */
358 #define MEMCG_CHARGE_BATCH 64U
359
360 extern struct mem_cgroup *root_mem_cgroup;
361
362 enum page_memcg_data_flags {
363 /* page->memcg_data is a pointer to an objcgs vector */
364 MEMCG_DATA_OBJCGS = (1UL << 0),
365 /* page has been accounted as a non-slab kernel page */
366 MEMCG_DATA_KMEM = (1UL << 1),
367 /* the next bit after the last actual flag */
368 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
369 };
370
371 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
372
373 static inline bool folio_memcg_kmem(struct folio *folio);
374
375 /*
376 * After the initialization objcg->memcg is always pointing at
377 * a valid memcg, but can be atomically swapped to the parent memcg.
378 *
379 * The caller must ensure that the returned memcg won't be released:
380 * e.g. acquire the rcu_read_lock or css_set_lock.
381 */
obj_cgroup_memcg(struct obj_cgroup * objcg)382 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
383 {
384 return READ_ONCE(objcg->memcg);
385 }
386
387 /*
388 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
389 * @folio: Pointer to the folio.
390 *
391 * Returns a pointer to the memory cgroup associated with the folio,
392 * or NULL. This function assumes that the folio is known to have a
393 * proper memory cgroup pointer. It's not safe to call this function
394 * against some type of folios, e.g. slab folios or ex-slab folios or
395 * kmem folios.
396 */
__folio_memcg(struct folio * folio)397 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
398 {
399 unsigned long memcg_data = folio->memcg_data;
400
401 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
403 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
404
405 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
406 }
407
408 /*
409 * __folio_objcg - get the object cgroup associated with a kmem folio.
410 * @folio: Pointer to the folio.
411 *
412 * Returns a pointer to the object cgroup associated with the folio,
413 * or NULL. This function assumes that the folio is known to have a
414 * proper object cgroup pointer. It's not safe to call this function
415 * against some type of folios, e.g. slab folios or ex-slab folios or
416 * LRU folios.
417 */
__folio_objcg(struct folio * folio)418 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
419 {
420 unsigned long memcg_data = folio->memcg_data;
421
422 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
423 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
424 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
425
426 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
427 }
428
429 /*
430 * folio_memcg - Get the memory cgroup associated with a folio.
431 * @folio: Pointer to the folio.
432 *
433 * Returns a pointer to the memory cgroup associated with the folio,
434 * or NULL. This function assumes that the folio is known to have a
435 * proper memory cgroup pointer. It's not safe to call this function
436 * against some type of folios, e.g. slab folios or ex-slab folios.
437 *
438 * For a non-kmem folio any of the following ensures folio and memcg binding
439 * stability:
440 *
441 * - the folio lock
442 * - LRU isolation
443 * - folio_memcg_lock()
444 * - exclusive reference
445 * - mem_cgroup_trylock_pages()
446 *
447 * For a kmem folio a caller should hold an rcu read lock to protect memcg
448 * associated with a kmem folio from being released.
449 */
folio_memcg(struct folio * folio)450 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
451 {
452 if (folio_memcg_kmem(folio))
453 return obj_cgroup_memcg(__folio_objcg(folio));
454 return __folio_memcg(folio);
455 }
456
page_memcg(struct page * page)457 static inline struct mem_cgroup *page_memcg(struct page *page)
458 {
459 return folio_memcg(page_folio(page));
460 }
461
462 /**
463 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
464 * @folio: Pointer to the folio.
465 *
466 * This function assumes that the folio is known to have a
467 * proper memory cgroup pointer. It's not safe to call this function
468 * against some type of folios, e.g. slab folios or ex-slab folios.
469 *
470 * Return: A pointer to the memory cgroup associated with the folio,
471 * or NULL.
472 */
folio_memcg_rcu(struct folio * folio)473 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
474 {
475 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
476
477 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
478 WARN_ON_ONCE(!rcu_read_lock_held());
479
480 if (memcg_data & MEMCG_DATA_KMEM) {
481 struct obj_cgroup *objcg;
482
483 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
484 return obj_cgroup_memcg(objcg);
485 }
486
487 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
488 }
489
490 /*
491 * folio_memcg_check - Get the memory cgroup associated with a folio.
492 * @folio: Pointer to the folio.
493 *
494 * Returns a pointer to the memory cgroup associated with the folio,
495 * or NULL. This function unlike folio_memcg() can take any folio
496 * as an argument. It has to be used in cases when it's not known if a folio
497 * has an associated memory cgroup pointer or an object cgroups vector or
498 * an object cgroup.
499 *
500 * For a non-kmem folio any of the following ensures folio and memcg binding
501 * stability:
502 *
503 * - the folio lock
504 * - LRU isolation
505 * - lock_folio_memcg()
506 * - exclusive reference
507 * - mem_cgroup_trylock_pages()
508 *
509 * For a kmem folio a caller should hold an rcu read lock to protect memcg
510 * associated with a kmem folio from being released.
511 */
folio_memcg_check(struct folio * folio)512 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
513 {
514 /*
515 * Because folio->memcg_data might be changed asynchronously
516 * for slabs, READ_ONCE() should be used here.
517 */
518 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
519
520 if (memcg_data & MEMCG_DATA_OBJCGS)
521 return NULL;
522
523 if (memcg_data & MEMCG_DATA_KMEM) {
524 struct obj_cgroup *objcg;
525
526 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
527 return obj_cgroup_memcg(objcg);
528 }
529
530 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
531 }
532
page_memcg_check(struct page * page)533 static inline struct mem_cgroup *page_memcg_check(struct page *page)
534 {
535 if (PageTail(page))
536 return NULL;
537 return folio_memcg_check((struct folio *)page);
538 }
539
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)540 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
541 {
542 struct mem_cgroup *memcg;
543
544 rcu_read_lock();
545 retry:
546 memcg = obj_cgroup_memcg(objcg);
547 if (unlikely(!css_tryget(&memcg->css)))
548 goto retry;
549 rcu_read_unlock();
550
551 return memcg;
552 }
553
554 #ifdef CONFIG_MEMCG_KMEM
555 /*
556 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
557 * @folio: Pointer to the folio.
558 *
559 * Checks if the folio has MemcgKmem flag set. The caller must ensure
560 * that the folio has an associated memory cgroup. It's not safe to call
561 * this function against some types of folios, e.g. slab folios.
562 */
folio_memcg_kmem(struct folio * folio)563 static inline bool folio_memcg_kmem(struct folio *folio)
564 {
565 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
566 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
567 return folio->memcg_data & MEMCG_DATA_KMEM;
568 }
569
570
571 #else
folio_memcg_kmem(struct folio * folio)572 static inline bool folio_memcg_kmem(struct folio *folio)
573 {
574 return false;
575 }
576
577 #endif
578
PageMemcgKmem(struct page * page)579 static inline bool PageMemcgKmem(struct page *page)
580 {
581 return folio_memcg_kmem(page_folio(page));
582 }
583
mem_cgroup_is_root(struct mem_cgroup * memcg)584 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
585 {
586 return (memcg == root_mem_cgroup);
587 }
588
mem_cgroup_disabled(void)589 static inline bool mem_cgroup_disabled(void)
590 {
591 return !cgroup_subsys_enabled(memory_cgrp_subsys);
592 }
593
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)594 static inline void mem_cgroup_protection(struct mem_cgroup *root,
595 struct mem_cgroup *memcg,
596 unsigned long *min,
597 unsigned long *low)
598 {
599 *min = *low = 0;
600
601 if (mem_cgroup_disabled())
602 return;
603
604 /*
605 * There is no reclaim protection applied to a targeted reclaim.
606 * We are special casing this specific case here because
607 * mem_cgroup_calculate_protection is not robust enough to keep
608 * the protection invariant for calculated effective values for
609 * parallel reclaimers with different reclaim target. This is
610 * especially a problem for tail memcgs (as they have pages on LRU)
611 * which would want to have effective values 0 for targeted reclaim
612 * but a different value for external reclaim.
613 *
614 * Example
615 * Let's have global and A's reclaim in parallel:
616 * |
617 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
618 * |\
619 * | C (low = 1G, usage = 2.5G)
620 * B (low = 1G, usage = 0.5G)
621 *
622 * For the global reclaim
623 * A.elow = A.low
624 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
625 * C.elow = min(C.usage, C.low)
626 *
627 * With the effective values resetting we have A reclaim
628 * A.elow = 0
629 * B.elow = B.low
630 * C.elow = C.low
631 *
632 * If the global reclaim races with A's reclaim then
633 * B.elow = C.elow = 0 because children_low_usage > A.elow)
634 * is possible and reclaiming B would be violating the protection.
635 *
636 */
637 if (root == memcg)
638 return;
639
640 *min = READ_ONCE(memcg->memory.emin);
641 *low = READ_ONCE(memcg->memory.elow);
642 }
643
644 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
645 struct mem_cgroup *memcg);
646
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)647 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
648 struct mem_cgroup *memcg)
649 {
650 /*
651 * The root memcg doesn't account charges, and doesn't support
652 * protection. The target memcg's protection is ignored, see
653 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
654 */
655 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
656 memcg == target;
657 }
658
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)659 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
660 struct mem_cgroup *memcg)
661 {
662 if (mem_cgroup_unprotected(target, memcg))
663 return false;
664
665 return READ_ONCE(memcg->memory.elow) >=
666 page_counter_read(&memcg->memory);
667 }
668
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)669 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
670 struct mem_cgroup *memcg)
671 {
672 if (mem_cgroup_unprotected(target, memcg))
673 return false;
674
675 return READ_ONCE(memcg->memory.emin) >=
676 page_counter_read(&memcg->memory);
677 }
678
679 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
680
681 /**
682 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
683 * @folio: Folio to charge.
684 * @mm: mm context of the allocating task.
685 * @gfp: Reclaim mode.
686 *
687 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
688 * pages according to @gfp if necessary. If @mm is NULL, try to
689 * charge to the active memcg.
690 *
691 * Do not use this for folios allocated for swapin.
692 *
693 * Return: 0 on success. Otherwise, an error code is returned.
694 */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)695 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
696 gfp_t gfp)
697 {
698 if (mem_cgroup_disabled())
699 return 0;
700 return __mem_cgroup_charge(folio, mm, gfp);
701 }
702
703 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
704 gfp_t gfp, swp_entry_t entry);
705 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
706
707 void __mem_cgroup_uncharge(struct folio *folio);
708
709 /**
710 * mem_cgroup_uncharge - Uncharge a folio.
711 * @folio: Folio to uncharge.
712 *
713 * Uncharge a folio previously charged with mem_cgroup_charge().
714 */
mem_cgroup_uncharge(struct folio * folio)715 static inline void mem_cgroup_uncharge(struct folio *folio)
716 {
717 if (mem_cgroup_disabled())
718 return;
719 __mem_cgroup_uncharge(folio);
720 }
721
722 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)723 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
724 {
725 if (mem_cgroup_disabled())
726 return;
727 __mem_cgroup_uncharge_list(page_list);
728 }
729
730 void mem_cgroup_migrate(struct folio *old, struct folio *new);
731
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)732 static inline struct mem_cgroup_per_node *mem_cgroup_nodeinfo(struct mem_cgroup *memcg,
733 int nid)
734 {
735 return memcg->nodeinfo[nid];
736 }
737
738 /**
739 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
740 * @memcg: memcg of the wanted lruvec
741 * @pgdat: pglist_data
742 *
743 * Returns the lru list vector holding pages for a given @memcg &
744 * @pgdat combination. This can be the node lruvec, if the memory
745 * controller is disabled.
746 */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)747 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
748 struct pglist_data *pgdat)
749 {
750 struct mem_cgroup_per_node *mz;
751 struct lruvec *lruvec;
752
753 if (mem_cgroup_disabled()) {
754 lruvec = &pgdat->__lruvec;
755 goto out;
756 }
757
758 if (!memcg)
759 memcg = root_mem_cgroup;
760
761 mz = memcg->nodeinfo[pgdat->node_id];
762 lruvec = &mz->lruvec;
763 out:
764 /*
765 * Since a node can be onlined after the mem_cgroup was created,
766 * we have to be prepared to initialize lruvec->pgdat here;
767 * and if offlined then reonlined, we need to reinitialize it.
768 */
769 if (unlikely(lruvec->pgdat != pgdat))
770 lruvec->pgdat = pgdat;
771 return lruvec;
772 }
773
774 /**
775 * folio_lruvec - return lruvec for isolating/putting an LRU folio
776 * @folio: Pointer to the folio.
777 *
778 * This function relies on folio->mem_cgroup being stable.
779 */
folio_lruvec(struct folio * folio)780 static inline struct lruvec *folio_lruvec(struct folio *folio)
781 {
782 struct mem_cgroup *memcg = folio_memcg(folio);
783
784 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
785 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
786 }
787
788 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
789
790 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
791
792 struct lruvec *folio_lruvec_lock(struct folio *folio);
793 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
794 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
795 unsigned long *flags);
796
797 #ifdef CONFIG_DEBUG_VM
798 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
799 #else
800 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)801 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
802 {
803 }
804 #endif
805
806 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)807 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
808 return css ? container_of(css, struct mem_cgroup, css) : NULL;
809 }
810
obj_cgroup_tryget(struct obj_cgroup * objcg)811 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
812 {
813 return percpu_ref_tryget(&objcg->refcnt);
814 }
815
obj_cgroup_get(struct obj_cgroup * objcg)816 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
817 {
818 percpu_ref_get(&objcg->refcnt);
819 }
820
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)821 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
822 unsigned long nr)
823 {
824 percpu_ref_get_many(&objcg->refcnt, nr);
825 }
826
obj_cgroup_put(struct obj_cgroup * objcg)827 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
828 {
829 percpu_ref_put(&objcg->refcnt);
830 }
831
mem_cgroup_tryget(struct mem_cgroup * memcg)832 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
833 {
834 return !memcg || css_tryget(&memcg->css);
835 }
836
mem_cgroup_put(struct mem_cgroup * memcg)837 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
838 {
839 if (memcg)
840 css_put(&memcg->css);
841 }
842
843 #define mem_cgroup_from_counter(counter, member) \
844 container_of(counter, struct mem_cgroup, member)
845
846 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
847 struct mem_cgroup *,
848 struct mem_cgroup_reclaim_cookie *);
849 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
850 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
851 int (*)(struct task_struct *, void *), void *arg);
852
mem_cgroup_id(struct mem_cgroup * memcg)853 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
854 {
855 if (mem_cgroup_disabled())
856 return 0;
857 #ifdef CONFIG_HYPERHOLD_FILE_LRU
858 if (!memcg)
859 return -1;
860 #endif
861
862 return memcg->id.id;
863 }
864 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
865
866 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)867 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
868 {
869 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
870 }
871
872 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
873 #endif
874
mem_cgroup_from_seq(struct seq_file * m)875 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
876 {
877 return mem_cgroup_from_css(seq_css(m));
878 }
879
lruvec_memcg(struct lruvec * lruvec)880 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
881 {
882 struct mem_cgroup_per_node *mz;
883
884 if (mem_cgroup_disabled())
885 return NULL;
886
887 #ifdef CONFIG_HYPERHOLD_FILE_LRU
888 if (is_node_lruvec(lruvec))
889 return NULL;
890 #endif
891
892 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
893 return mz->memcg;
894 }
895
896 /**
897 * parent_mem_cgroup - find the accounting parent of a memcg
898 * @memcg: memcg whose parent to find
899 *
900 * Returns the parent memcg, or NULL if this is the root.
901 */
parent_mem_cgroup(struct mem_cgroup * memcg)902 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
903 {
904 return mem_cgroup_from_css(memcg->css.parent);
905 }
906
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)907 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
908 struct mem_cgroup *root)
909 {
910 if (root == memcg)
911 return true;
912 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
913 }
914
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)915 static inline bool mm_match_cgroup(struct mm_struct *mm,
916 struct mem_cgroup *memcg)
917 {
918 struct mem_cgroup *task_memcg;
919 bool match = false;
920
921 rcu_read_lock();
922 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
923 if (task_memcg)
924 match = mem_cgroup_is_descendant(task_memcg, memcg);
925 rcu_read_unlock();
926 return match;
927 }
928
929 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
930 ino_t page_cgroup_ino(struct page *page);
931
mem_cgroup_online(struct mem_cgroup * memcg)932 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
933 {
934 if (mem_cgroup_disabled())
935 return true;
936 return !!(memcg->css.flags & CSS_ONLINE);
937 }
938
939 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
940 int zid, int nr_pages);
941
942 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)943 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
944 enum lru_list lru, int zone_idx)
945 {
946 struct mem_cgroup_per_node *mz;
947
948 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
949 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
950 }
951
952 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
953
954 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
955
956 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
957
958 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
959 struct task_struct *p);
960
961 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
962
mem_cgroup_enter_user_fault(void)963 static inline void mem_cgroup_enter_user_fault(void)
964 {
965 WARN_ON(current->in_user_fault);
966 current->in_user_fault = 1;
967 }
968
mem_cgroup_exit_user_fault(void)969 static inline void mem_cgroup_exit_user_fault(void)
970 {
971 WARN_ON(!current->in_user_fault);
972 current->in_user_fault = 0;
973 }
974
task_in_memcg_oom(struct task_struct * p)975 static inline bool task_in_memcg_oom(struct task_struct *p)
976 {
977 return p->memcg_in_oom;
978 }
979
980 bool mem_cgroup_oom_synchronize(bool wait);
981 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
982 struct mem_cgroup *oom_domain);
983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
984
985 void folio_memcg_lock(struct folio *folio);
986 void folio_memcg_unlock(struct folio *folio);
987
988 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
989
990 /* try to stablize folio_memcg() for all the pages in a memcg */
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)991 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
992 {
993 rcu_read_lock();
994
995 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
996 return true;
997
998 rcu_read_unlock();
999 return false;
1000 }
1001
mem_cgroup_unlock_pages(void)1002 static inline void mem_cgroup_unlock_pages(void)
1003 {
1004 rcu_read_unlock();
1005 }
1006
1007 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)1008 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1009 int idx, int val)
1010 {
1011 unsigned long flags;
1012
1013 local_irq_save(flags);
1014 __mod_memcg_state(memcg, idx, val);
1015 local_irq_restore(flags);
1016 }
1017
mod_memcg_page_state(struct page * page,int idx,int val)1018 static inline void mod_memcg_page_state(struct page *page,
1019 int idx, int val)
1020 {
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return;
1025
1026 rcu_read_lock();
1027 memcg = page_memcg(page);
1028 if (memcg)
1029 mod_memcg_state(memcg, idx, val);
1030 rcu_read_unlock();
1031 }
1032
1033 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1034
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1035 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1036 enum node_stat_item idx)
1037 {
1038 struct mem_cgroup_per_node *pn;
1039 long x;
1040
1041 if (mem_cgroup_disabled())
1042 return node_page_state(lruvec_pgdat(lruvec), idx);
1043
1044 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1045 if (is_node_lruvec(lruvec))
1046 return node_page_state(lruvec_pgdat(lruvec), idx);
1047 #endif
1048 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1049 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1050 #ifdef CONFIG_SMP
1051 if (x < 0)
1052 x = 0;
1053 #endif
1054 return x;
1055 }
1056
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1057 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1058 enum node_stat_item idx)
1059 {
1060 struct mem_cgroup_per_node *pn;
1061 long x = 0;
1062
1063 if (mem_cgroup_disabled())
1064 return node_page_state(lruvec_pgdat(lruvec), idx);
1065
1066 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1067 if (is_node_lruvec(lruvec))
1068 return node_page_state(lruvec_pgdat(lruvec), idx);
1069 #endif
1070
1071 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1072 x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1073 #ifdef CONFIG_SMP
1074 if (x < 0)
1075 x = 0;
1076 #endif
1077 return x;
1078 }
1079
1080 void mem_cgroup_flush_stats(void);
1081 void mem_cgroup_flush_stats_ratelimited(void);
1082
1083 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1084 int val);
1085 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1086
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1087 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1088 int val)
1089 {
1090 unsigned long flags;
1091
1092 local_irq_save(flags);
1093 __mod_lruvec_kmem_state(p, idx, val);
1094 local_irq_restore(flags);
1095 }
1096
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1097 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1098 enum node_stat_item idx, int val)
1099 {
1100 unsigned long flags;
1101
1102 local_irq_save(flags);
1103 __mod_memcg_lruvec_state(lruvec, idx, val);
1104 local_irq_restore(flags);
1105 }
1106
1107 #ifdef CONFIG_HYPERHOLD_FILE_LRU
is_file_page(struct page * page)1108 static __always_inline bool is_file_page(struct page *page)
1109 {
1110 if (!PageUnevictable(page) && !PageSwapBacked(page) && page_mapping(page))
1111 return true;
1112
1113 return false;
1114
1115 }
1116 #endif
1117
1118 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1119 unsigned long count);
1120
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1121 static inline void count_memcg_events(struct mem_cgroup *memcg,
1122 enum vm_event_item idx,
1123 unsigned long count)
1124 {
1125 unsigned long flags;
1126
1127 local_irq_save(flags);
1128 __count_memcg_events(memcg, idx, count);
1129 local_irq_restore(flags);
1130 }
1131
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1132 static inline void count_memcg_folio_events(struct folio *folio,
1133 enum vm_event_item idx, unsigned long nr)
1134 {
1135 struct mem_cgroup *memcg = folio_memcg(folio);
1136
1137 if (memcg)
1138 count_memcg_events(memcg, idx, nr);
1139 }
1140
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1141 static inline void count_memcg_event_mm(struct mm_struct *mm,
1142 enum vm_event_item idx)
1143 {
1144 struct mem_cgroup *memcg;
1145
1146 if (mem_cgroup_disabled())
1147 return;
1148
1149 rcu_read_lock();
1150 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1151 if (likely(memcg))
1152 count_memcg_events(memcg, idx, 1);
1153 rcu_read_unlock();
1154 }
1155
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1156 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1157 enum memcg_memory_event event)
1158 {
1159 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1160 event == MEMCG_SWAP_FAIL;
1161
1162 atomic_long_inc(&memcg->memory_events_local[event]);
1163 if (!swap_event)
1164 cgroup_file_notify(&memcg->events_local_file);
1165
1166 do {
1167 atomic_long_inc(&memcg->memory_events[event]);
1168 if (swap_event)
1169 cgroup_file_notify(&memcg->swap_events_file);
1170 else
1171 cgroup_file_notify(&memcg->events_file);
1172
1173 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1174 break;
1175 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1176 break;
1177 } while ((memcg = parent_mem_cgroup(memcg)) &&
1178 !mem_cgroup_is_root(memcg));
1179 }
1180
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1181 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1182 enum memcg_memory_event event)
1183 {
1184 struct mem_cgroup *memcg;
1185
1186 if (mem_cgroup_disabled())
1187 return;
1188
1189 rcu_read_lock();
1190 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1191 if (likely(memcg))
1192 memcg_memory_event(memcg, event);
1193 rcu_read_unlock();
1194 }
1195
1196 void split_page_memcg(struct page *head, unsigned int nr);
1197
1198 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1199 gfp_t gfp_mask,
1200 unsigned long *total_scanned);
1201
1202 #else /* CONFIG_MEMCG */
1203
1204 #define MEM_CGROUP_ID_SHIFT 0
1205
folio_memcg(struct folio * folio)1206 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1207 {
1208 return NULL;
1209 }
1210
page_memcg(struct page * page)1211 static inline struct mem_cgroup *page_memcg(struct page *page)
1212 {
1213 return NULL;
1214 }
1215
folio_memcg_rcu(struct folio * folio)1216 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1217 {
1218 WARN_ON_ONCE(!rcu_read_lock_held());
1219 return NULL;
1220 }
1221
folio_memcg_check(struct folio * folio)1222 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1223 {
1224 return NULL;
1225 }
1226
page_memcg_check(struct page * page)1227 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1228 {
1229 return NULL;
1230 }
1231
folio_memcg_kmem(struct folio * folio)1232 static inline bool folio_memcg_kmem(struct folio *folio)
1233 {
1234 return false;
1235 }
1236
PageMemcgKmem(struct page * page)1237 static inline bool PageMemcgKmem(struct page *page)
1238 {
1239 return false;
1240 }
1241
mem_cgroup_is_root(struct mem_cgroup * memcg)1242 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1243 {
1244 return true;
1245 }
1246
mem_cgroup_disabled(void)1247 static inline bool mem_cgroup_disabled(void)
1248 {
1249 return true;
1250 }
1251
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1252 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1253 enum memcg_memory_event event)
1254 {
1255 }
1256
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1257 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1258 enum memcg_memory_event event)
1259 {
1260 }
1261
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1262 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1263 struct mem_cgroup *memcg,
1264 unsigned long *min,
1265 unsigned long *low)
1266 {
1267 *min = *low = 0;
1268 }
1269
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1270 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1271 struct mem_cgroup *memcg)
1272 {
1273 }
1274
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1275 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1276 struct mem_cgroup *memcg)
1277 {
1278 return true;
1279 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1280 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1281 struct mem_cgroup *memcg)
1282 {
1283 return false;
1284 }
1285
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1286 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1287 struct mem_cgroup *memcg)
1288 {
1289 return false;
1290 }
1291
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1292 static inline int mem_cgroup_charge(struct folio *folio,
1293 struct mm_struct *mm, gfp_t gfp)
1294 {
1295 return 0;
1296 }
1297
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1298 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1299 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1300 {
1301 return 0;
1302 }
1303
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1304 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1305 {
1306 }
1307
mem_cgroup_uncharge(struct folio * folio)1308 static inline void mem_cgroup_uncharge(struct folio *folio)
1309 {
1310 }
1311
mem_cgroup_uncharge_list(struct list_head * page_list)1312 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1313 {
1314 }
1315
mem_cgroup_migrate(struct folio * old,struct folio * new)1316 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1317 {
1318 }
1319
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1320 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1321 struct pglist_data *pgdat)
1322 {
1323 return &pgdat->__lruvec;
1324 }
1325
folio_lruvec(struct folio * folio)1326 static inline struct lruvec *folio_lruvec(struct folio *folio)
1327 {
1328 struct pglist_data *pgdat = folio_pgdat(folio);
1329 return &pgdat->__lruvec;
1330 }
1331
1332 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1333 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1334 {
1335 }
1336
parent_mem_cgroup(struct mem_cgroup * memcg)1337 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1338 {
1339 return NULL;
1340 }
1341
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1342 static inline bool mm_match_cgroup(struct mm_struct *mm,
1343 struct mem_cgroup *memcg)
1344 {
1345 return true;
1346 }
1347
get_mem_cgroup_from_mm(struct mm_struct * mm)1348 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1349 {
1350 return NULL;
1351 }
1352
1353 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1354 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1355 {
1356 return NULL;
1357 }
1358
obj_cgroup_put(struct obj_cgroup * objcg)1359 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1360 {
1361 }
1362
mem_cgroup_tryget(struct mem_cgroup * memcg)1363 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1364 {
1365 return true;
1366 }
1367
mem_cgroup_put(struct mem_cgroup * memcg)1368 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1369 {
1370 }
1371
folio_lruvec_lock(struct folio * folio)1372 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1373 {
1374 struct pglist_data *pgdat = folio_pgdat(folio);
1375
1376 spin_lock(&pgdat->__lruvec.lru_lock);
1377 return &pgdat->__lruvec;
1378 }
1379
folio_lruvec_lock_irq(struct folio * folio)1380 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1381 {
1382 struct pglist_data *pgdat = folio_pgdat(folio);
1383
1384 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1385 return &pgdat->__lruvec;
1386 }
1387
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1388 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1389 unsigned long *flagsp)
1390 {
1391 struct pglist_data *pgdat = folio_pgdat(folio);
1392
1393 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1394 return &pgdat->__lruvec;
1395 }
1396
1397 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1398 mem_cgroup_iter(struct mem_cgroup *root,
1399 struct mem_cgroup *prev,
1400 struct mem_cgroup_reclaim_cookie *reclaim)
1401 {
1402 return NULL;
1403 }
1404
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1405 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1406 struct mem_cgroup *prev)
1407 {
1408 }
1409
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1410 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1411 int (*fn)(struct task_struct *, void *), void *arg)
1412 {
1413 }
1414
mem_cgroup_id(struct mem_cgroup * memcg)1415 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1416 {
1417 return 0;
1418 }
1419
mem_cgroup_from_id(unsigned short id)1420 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1421 {
1422 WARN_ON_ONCE(id);
1423 /* XXX: This should always return root_mem_cgroup */
1424 return NULL;
1425 }
1426
1427 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1428 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1429 {
1430 return 0;
1431 }
1432
mem_cgroup_get_from_ino(unsigned long ino)1433 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1434 {
1435 return NULL;
1436 }
1437 #endif
1438
mem_cgroup_from_seq(struct seq_file * m)1439 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1440 {
1441 return NULL;
1442 }
1443
lruvec_memcg(struct lruvec * lruvec)1444 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1445 {
1446 return NULL;
1447 }
1448
mem_cgroup_online(struct mem_cgroup * memcg)1449 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1450 {
1451 return true;
1452 }
1453
1454 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1455 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1456 enum lru_list lru, int zone_idx)
1457 {
1458 return 0;
1459 }
1460
mem_cgroup_get_max(struct mem_cgroup * memcg)1461 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1462 {
1463 return 0;
1464 }
1465
mem_cgroup_size(struct mem_cgroup * memcg)1466 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1467 {
1468 return 0;
1469 }
1470
1471 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1472 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1473 {
1474 }
1475
1476 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1477 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1478 {
1479 }
1480
folio_memcg_lock(struct folio * folio)1481 static inline void folio_memcg_lock(struct folio *folio)
1482 {
1483 }
1484
folio_memcg_unlock(struct folio * folio)1485 static inline void folio_memcg_unlock(struct folio *folio)
1486 {
1487 }
1488
mem_cgroup_trylock_pages(struct mem_cgroup * memcg)1489 static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1490 {
1491 /* to match folio_memcg_rcu() */
1492 rcu_read_lock();
1493 return true;
1494 }
1495
mem_cgroup_unlock_pages(void)1496 static inline void mem_cgroup_unlock_pages(void)
1497 {
1498 rcu_read_unlock();
1499 }
1500
mem_cgroup_handle_over_high(gfp_t gfp_mask)1501 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1502 {
1503 }
1504
mem_cgroup_enter_user_fault(void)1505 static inline void mem_cgroup_enter_user_fault(void)
1506 {
1507 }
1508
mem_cgroup_exit_user_fault(void)1509 static inline void mem_cgroup_exit_user_fault(void)
1510 {
1511 }
1512
task_in_memcg_oom(struct task_struct * p)1513 static inline bool task_in_memcg_oom(struct task_struct *p)
1514 {
1515 return false;
1516 }
1517
mem_cgroup_oom_synchronize(bool wait)1518 static inline bool mem_cgroup_oom_synchronize(bool wait)
1519 {
1520 return false;
1521 }
1522
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1523 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1524 struct task_struct *victim, struct mem_cgroup *oom_domain)
1525 {
1526 return NULL;
1527 }
1528
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1529 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1530 {
1531 }
1532
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1533 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1534 int idx,
1535 int nr)
1536 {
1537 }
1538
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1539 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1540 int idx,
1541 int nr)
1542 {
1543 }
1544
mod_memcg_page_state(struct page * page,int idx,int val)1545 static inline void mod_memcg_page_state(struct page *page,
1546 int idx, int val)
1547 {
1548 }
1549
memcg_page_state(struct mem_cgroup * memcg,int idx)1550 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1551 {
1552 return 0;
1553 }
1554
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1555 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1556 enum node_stat_item idx)
1557 {
1558 return node_page_state(lruvec_pgdat(lruvec), idx);
1559 }
1560
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1561 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1562 enum node_stat_item idx)
1563 {
1564 return node_page_state(lruvec_pgdat(lruvec), idx);
1565 }
1566
mem_cgroup_flush_stats(void)1567 static inline void mem_cgroup_flush_stats(void)
1568 {
1569 }
1570
mem_cgroup_flush_stats_ratelimited(void)1571 static inline void mem_cgroup_flush_stats_ratelimited(void)
1572 {
1573 }
1574
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1575 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1576 enum node_stat_item idx, int val)
1577 {
1578 }
1579
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1580 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1581 int val)
1582 {
1583 struct page *page = virt_to_head_page(p);
1584
1585 __mod_node_page_state(page_pgdat(page), idx, val);
1586 }
1587
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1588 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1589 int val)
1590 {
1591 struct page *page = virt_to_head_page(p);
1592
1593 mod_node_page_state(page_pgdat(page), idx, val);
1594 }
1595
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1596 static inline void count_memcg_events(struct mem_cgroup *memcg,
1597 enum vm_event_item idx,
1598 unsigned long count)
1599 {
1600 }
1601
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1602 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1603 enum vm_event_item idx,
1604 unsigned long count)
1605 {
1606 }
1607
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1608 static inline void count_memcg_folio_events(struct folio *folio,
1609 enum vm_event_item idx, unsigned long nr)
1610 {
1611 }
1612
1613 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1614 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1615 {
1616 }
1617
split_page_memcg(struct page * head,unsigned int nr)1618 static inline void split_page_memcg(struct page *head, unsigned int nr)
1619 {
1620 }
1621
1622 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1623 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1624 gfp_t gfp_mask,
1625 unsigned long *total_scanned)
1626 {
1627 return 0;
1628 }
1629 #endif /* CONFIG_MEMCG */
1630
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1631 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1632 {
1633 __mod_lruvec_kmem_state(p, idx, 1);
1634 }
1635
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1636 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1637 {
1638 __mod_lruvec_kmem_state(p, idx, -1);
1639 }
1640
parent_lruvec(struct lruvec * lruvec)1641 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1642 {
1643 struct mem_cgroup *memcg;
1644
1645 memcg = lruvec_memcg(lruvec);
1646 if (!memcg)
1647 return NULL;
1648 memcg = parent_mem_cgroup(memcg);
1649 if (!memcg)
1650 return NULL;
1651 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1652 }
1653
unlock_page_lruvec(struct lruvec * lruvec)1654 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1655 {
1656 spin_unlock(&lruvec->lru_lock);
1657 }
1658
unlock_page_lruvec_irq(struct lruvec * lruvec)1659 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1660 {
1661 spin_unlock_irq(&lruvec->lru_lock);
1662 }
1663
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1664 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1665 unsigned long flags)
1666 {
1667 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1668 }
1669
1670 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1671 static inline bool folio_matches_lruvec(struct folio *folio,
1672 struct lruvec *lruvec)
1673 {
1674 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1675 lruvec_memcg(lruvec) == folio_memcg(folio);
1676 }
1677
1678 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1679 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1680 struct lruvec *locked_lruvec)
1681 {
1682 if (locked_lruvec) {
1683 if (folio_matches_lruvec(folio, locked_lruvec))
1684 return locked_lruvec;
1685
1686 unlock_page_lruvec_irq(locked_lruvec);
1687 }
1688
1689 return folio_lruvec_lock_irq(folio);
1690 }
1691
1692 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1693 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1694 struct lruvec *locked_lruvec, unsigned long *flags)
1695 {
1696 if (locked_lruvec) {
1697 if (folio_matches_lruvec(folio, locked_lruvec))
1698 return locked_lruvec;
1699
1700 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1701 }
1702
1703 return folio_lruvec_lock_irqsave(folio, flags);
1704 }
1705
1706 #ifdef CONFIG_CGROUP_WRITEBACK
1707
1708 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1709 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1710 unsigned long *pheadroom, unsigned long *pdirty,
1711 unsigned long *pwriteback);
1712
1713 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1714 struct bdi_writeback *wb);
1715
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1716 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1717 struct bdi_writeback *wb)
1718 {
1719 struct mem_cgroup *memcg;
1720
1721 if (mem_cgroup_disabled())
1722 return;
1723
1724 memcg = folio_memcg(folio);
1725 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1726 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1727 }
1728
1729 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1730
1731 #else /* CONFIG_CGROUP_WRITEBACK */
1732
mem_cgroup_wb_domain(struct bdi_writeback * wb)1733 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1734 {
1735 return NULL;
1736 }
1737
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1738 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1739 unsigned long *pfilepages,
1740 unsigned long *pheadroom,
1741 unsigned long *pdirty,
1742 unsigned long *pwriteback)
1743 {
1744 }
1745
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1746 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1747 struct bdi_writeback *wb)
1748 {
1749 }
1750
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1751 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1752 {
1753 }
1754
1755 #endif /* CONFIG_CGROUP_WRITEBACK */
1756
1757 struct sock;
1758 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1759 gfp_t gfp_mask);
1760 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1761 #ifdef CONFIG_MEMCG
1762 extern struct static_key_false memcg_sockets_enabled_key;
1763 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1764 void mem_cgroup_sk_alloc(struct sock *sk);
1765 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1766 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1767 {
1768 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1769 return !!memcg->tcpmem_pressure;
1770 do {
1771 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1772 return true;
1773 } while ((memcg = parent_mem_cgroup(memcg)));
1774 return false;
1775 }
1776
1777 int alloc_shrinker_info(struct mem_cgroup *memcg);
1778 void free_shrinker_info(struct mem_cgroup *memcg);
1779 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1780 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1781 #else
1782 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1783 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1784 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1785 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1786 {
1787 return false;
1788 }
1789
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1790 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1791 int nid, int shrinker_id)
1792 {
1793 }
1794 #endif
1795
1796 #ifdef CONFIG_MEMCG_KMEM
1797 bool mem_cgroup_kmem_disabled(void);
1798 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1799 void __memcg_kmem_uncharge_page(struct page *page, int order);
1800
1801 struct obj_cgroup *get_obj_cgroup_from_current(void);
1802 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1803
1804 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1805 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1806
1807 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1808 static inline bool memcg_bpf_enabled(void)
1809 {
1810 return static_branch_likely(&memcg_bpf_enabled_key);
1811 }
1812
1813 extern struct static_key_false memcg_kmem_online_key;
1814
memcg_kmem_online(void)1815 static inline bool memcg_kmem_online(void)
1816 {
1817 return static_branch_likely(&memcg_kmem_online_key);
1818 }
1819
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1820 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1821 int order)
1822 {
1823 if (memcg_kmem_online())
1824 return __memcg_kmem_charge_page(page, gfp, order);
1825 return 0;
1826 }
1827
memcg_kmem_uncharge_page(struct page * page,int order)1828 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1829 {
1830 if (memcg_kmem_online())
1831 __memcg_kmem_uncharge_page(page, order);
1832 }
1833
1834 /*
1835 * A helper for accessing memcg's kmem_id, used for getting
1836 * corresponding LRU lists.
1837 */
memcg_kmem_id(struct mem_cgroup * memcg)1838 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1839 {
1840 return memcg ? memcg->kmemcg_id : -1;
1841 }
1842
1843 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1844 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1845
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1846 static inline void count_objcg_event(struct obj_cgroup *objcg,
1847 enum vm_event_item idx)
1848 {
1849 struct mem_cgroup *memcg;
1850
1851 if (!memcg_kmem_online())
1852 return;
1853
1854 rcu_read_lock();
1855 memcg = obj_cgroup_memcg(objcg);
1856 count_memcg_events(memcg, idx, 1);
1857 rcu_read_unlock();
1858 }
1859
1860 #else
mem_cgroup_kmem_disabled(void)1861 static inline bool mem_cgroup_kmem_disabled(void)
1862 {
1863 return true;
1864 }
1865
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1866 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1867 int order)
1868 {
1869 return 0;
1870 }
1871
memcg_kmem_uncharge_page(struct page * page,int order)1872 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1873 {
1874 }
1875
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1876 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1877 int order)
1878 {
1879 return 0;
1880 }
1881
__memcg_kmem_uncharge_page(struct page * page,int order)1882 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1883 {
1884 }
1885
get_obj_cgroup_from_folio(struct folio * folio)1886 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1887 {
1888 return NULL;
1889 }
1890
memcg_bpf_enabled(void)1891 static inline bool memcg_bpf_enabled(void)
1892 {
1893 return false;
1894 }
1895
memcg_kmem_online(void)1896 static inline bool memcg_kmem_online(void)
1897 {
1898 return false;
1899 }
1900
memcg_kmem_id(struct mem_cgroup * memcg)1901 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1902 {
1903 return -1;
1904 }
1905
mem_cgroup_from_obj(void * p)1906 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1907 {
1908 return NULL;
1909 }
1910
mem_cgroup_from_slab_obj(void * p)1911 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1912 {
1913 return NULL;
1914 }
1915
count_objcg_event(struct obj_cgroup * objcg,enum vm_event_item idx)1916 static inline void count_objcg_event(struct obj_cgroup *objcg,
1917 enum vm_event_item idx)
1918 {
1919 }
1920
1921 #endif /* CONFIG_MEMCG_KMEM */
1922
1923 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1924 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1925 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1926 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1927 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1928 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1929 {
1930 return true;
1931 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1932 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1933 size_t size)
1934 {
1935 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1936 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1937 size_t size)
1938 {
1939 }
1940 #endif
1941
1942 #endif /* _LINUX_MEMCONTROL_H */
1943