• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10 
11 /*
12  * This allows printing both to /proc/sched_debug and
13  * to the console
14  */
15 #define SEQ_printf(m, x...)			\
16  do {						\
17 	if (m)					\
18 		seq_printf(m, x);		\
19 	else					\
20 		pr_cont(x);			\
21  } while (0)
22 
23 /*
24  * Ease the printing of nsec fields:
25  */
nsec_high(unsigned long long nsec)26 static long long nsec_high(unsigned long long nsec)
27 {
28 	if ((long long)nsec < 0) {
29 		nsec = -nsec;
30 		do_div(nsec, 1000000);
31 		return -nsec;
32 	}
33 	do_div(nsec, 1000000);
34 
35 	return nsec;
36 }
37 
nsec_low(unsigned long long nsec)38 static unsigned long nsec_low(unsigned long long nsec)
39 {
40 	if ((long long)nsec < 0)
41 		nsec = -nsec;
42 
43 	return do_div(nsec, 1000000);
44 }
45 
46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	#name ,
50 
51 static const char * const sched_feat_names[] = {
52 #include "features.h"
53 };
54 
55 #undef SCHED_FEAT
56 
sched_feat_show(struct seq_file * m,void * v)57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59 	int i;
60 
61 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
62 		if (!(sysctl_sched_features & (1UL << i)))
63 			seq_puts(m, "NO_");
64 		seq_printf(m, "%s ", sched_feat_names[i]);
65 	}
66 	seq_puts(m, "\n");
67 
68 	return 0;
69 }
70 
71 #ifdef CONFIG_JUMP_LABEL
72 
73 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75 
76 #define SCHED_FEAT(name, enabled)	\
77 	jump_label_key__##enabled ,
78 
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82 
83 #undef SCHED_FEAT
84 
sched_feat_disable(int i)85 static void sched_feat_disable(int i)
86 {
87 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
88 }
89 
sched_feat_enable(int i)90 static void sched_feat_enable(int i)
91 {
92 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
93 }
94 #else
sched_feat_disable(int i)95 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)96 static void sched_feat_enable(int i) { };
97 #endif /* CONFIG_JUMP_LABEL */
98 
sched_feat_set(char * cmp)99 static int sched_feat_set(char *cmp)
100 {
101 	int i;
102 	int neg = 0;
103 
104 	if (strncmp(cmp, "NO_", 3) == 0) {
105 		neg = 1;
106 		cmp += 3;
107 	}
108 
109 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
110 	if (i < 0)
111 		return i;
112 
113 	if (neg) {
114 		sysctl_sched_features &= ~(1UL << i);
115 		sched_feat_disable(i);
116 	} else {
117 		sysctl_sched_features |= (1UL << i);
118 		sched_feat_enable(i);
119 	}
120 
121 	return 0;
122 }
123 
124 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)125 sched_feat_write(struct file *filp, const char __user *ubuf,
126 		size_t cnt, loff_t *ppos)
127 {
128 	char buf[64];
129 	char *cmp;
130 	int ret;
131 	struct inode *inode;
132 
133 	if (cnt > 63)
134 		cnt = 63;
135 
136 	if (copy_from_user(&buf, ubuf, cnt))
137 		return -EFAULT;
138 
139 	buf[cnt] = 0;
140 	cmp = strstrip(buf);
141 
142 	/* Ensure the static_key remains in a consistent state */
143 	inode = file_inode(filp);
144 	cpus_read_lock();
145 	inode_lock(inode);
146 	ret = sched_feat_set(cmp);
147 	inode_unlock(inode);
148 	cpus_read_unlock();
149 	if (ret < 0)
150 		return ret;
151 
152 	*ppos += cnt;
153 
154 	return cnt;
155 }
156 
sched_feat_open(struct inode * inode,struct file * filp)157 static int sched_feat_open(struct inode *inode, struct file *filp)
158 {
159 	return single_open(filp, sched_feat_show, NULL);
160 }
161 
162 static const struct file_operations sched_feat_fops = {
163 	.open		= sched_feat_open,
164 	.write		= sched_feat_write,
165 	.read		= seq_read,
166 	.llseek		= seq_lseek,
167 	.release	= single_release,
168 };
169 
170 #ifdef CONFIG_SMP
171 
sched_scaling_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
173 				   size_t cnt, loff_t *ppos)
174 {
175 	char buf[16];
176 	unsigned int scaling;
177 
178 	if (cnt > 15)
179 		cnt = 15;
180 
181 	if (copy_from_user(&buf, ubuf, cnt))
182 		return -EFAULT;
183 	buf[cnt] = '\0';
184 
185 	if (kstrtouint(buf, 10, &scaling))
186 		return -EINVAL;
187 
188 	if (scaling >= SCHED_TUNABLESCALING_END)
189 		return -EINVAL;
190 
191 	sysctl_sched_tunable_scaling = scaling;
192 	if (sched_update_scaling())
193 		return -EINVAL;
194 
195 	*ppos += cnt;
196 	return cnt;
197 }
198 
sched_scaling_show(struct seq_file * m,void * v)199 static int sched_scaling_show(struct seq_file *m, void *v)
200 {
201 	seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
202 	return 0;
203 }
204 
sched_scaling_open(struct inode * inode,struct file * filp)205 static int sched_scaling_open(struct inode *inode, struct file *filp)
206 {
207 	return single_open(filp, sched_scaling_show, NULL);
208 }
209 
210 static const struct file_operations sched_scaling_fops = {
211 	.open		= sched_scaling_open,
212 	.write		= sched_scaling_write,
213 	.read		= seq_read,
214 	.llseek		= seq_lseek,
215 	.release	= single_release,
216 };
217 
218 #endif /* SMP */
219 
220 #ifdef CONFIG_PREEMPT_DYNAMIC
221 
sched_dynamic_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)222 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
223 				   size_t cnt, loff_t *ppos)
224 {
225 	char buf[16];
226 	int mode;
227 
228 	if (cnt > 15)
229 		cnt = 15;
230 
231 	if (copy_from_user(&buf, ubuf, cnt))
232 		return -EFAULT;
233 
234 	buf[cnt] = 0;
235 	mode = sched_dynamic_mode(strstrip(buf));
236 	if (mode < 0)
237 		return mode;
238 
239 	sched_dynamic_update(mode);
240 
241 	*ppos += cnt;
242 
243 	return cnt;
244 }
245 
sched_dynamic_show(struct seq_file * m,void * v)246 static int sched_dynamic_show(struct seq_file *m, void *v)
247 {
248 	static const char * preempt_modes[] = {
249 		"none", "voluntary", "full"
250 	};
251 	int i;
252 
253 	for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
254 		if (preempt_dynamic_mode == i)
255 			seq_puts(m, "(");
256 		seq_puts(m, preempt_modes[i]);
257 		if (preempt_dynamic_mode == i)
258 			seq_puts(m, ")");
259 
260 		seq_puts(m, " ");
261 	}
262 
263 	seq_puts(m, "\n");
264 	return 0;
265 }
266 
sched_dynamic_open(struct inode * inode,struct file * filp)267 static int sched_dynamic_open(struct inode *inode, struct file *filp)
268 {
269 	return single_open(filp, sched_dynamic_show, NULL);
270 }
271 
272 static const struct file_operations sched_dynamic_fops = {
273 	.open		= sched_dynamic_open,
274 	.write		= sched_dynamic_write,
275 	.read		= seq_read,
276 	.llseek		= seq_lseek,
277 	.release	= single_release,
278 };
279 
280 #endif /* CONFIG_PREEMPT_DYNAMIC */
281 
282 __read_mostly bool sched_debug_verbose;
283 
284 #ifdef CONFIG_SMP
285 static struct dentry           *sd_dentry;
286 
287 
sched_verbose_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)288 static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
289 				  size_t cnt, loff_t *ppos)
290 {
291 	ssize_t result;
292 	bool orig;
293 
294 	cpus_read_lock();
295 	mutex_lock(&sched_domains_mutex);
296 
297 	orig = sched_debug_verbose;
298 	result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
299 
300 	if (sched_debug_verbose && !orig)
301 		update_sched_domain_debugfs();
302 	else if (!sched_debug_verbose && orig) {
303 		debugfs_remove(sd_dentry);
304 		sd_dentry = NULL;
305 	}
306 
307 	mutex_unlock(&sched_domains_mutex);
308 	cpus_read_unlock();
309 
310 	return result;
311 }
312 #else
313 #define sched_verbose_write debugfs_write_file_bool
314 #endif
315 
316 static const struct file_operations sched_verbose_fops = {
317 	.read =         debugfs_read_file_bool,
318 	.write =        sched_verbose_write,
319 	.open =         simple_open,
320 	.llseek =       default_llseek,
321 };
322 
323 static const struct seq_operations sched_debug_sops;
324 
sched_debug_open(struct inode * inode,struct file * filp)325 static int sched_debug_open(struct inode *inode, struct file *filp)
326 {
327 	return seq_open(filp, &sched_debug_sops);
328 }
329 
330 static const struct file_operations sched_debug_fops = {
331 	.open		= sched_debug_open,
332 	.read		= seq_read,
333 	.llseek		= seq_lseek,
334 	.release	= seq_release,
335 };
336 
337 static struct dentry *debugfs_sched;
338 
sched_init_debug(void)339 static __init int sched_init_debug(void)
340 {
341 	struct dentry __maybe_unused *numa;
342 
343 	debugfs_sched = debugfs_create_dir("sched", NULL);
344 
345 	debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
346 	debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
347 #ifdef CONFIG_PREEMPT_DYNAMIC
348 	debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
349 #endif
350 
351 	debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
352 
353 	debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
354 	debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
355 
356 #ifdef CONFIG_SMP
357 	debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
358 	debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
359 	debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
360 
361 	mutex_lock(&sched_domains_mutex);
362 	update_sched_domain_debugfs();
363 	mutex_unlock(&sched_domains_mutex);
364 #endif
365 
366 #ifdef CONFIG_NUMA_BALANCING
367 	numa = debugfs_create_dir("numa_balancing", debugfs_sched);
368 
369 	debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
370 	debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
371 	debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
372 	debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
373 	debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
374 #endif
375 
376 	debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
377 
378 	return 0;
379 }
380 late_initcall(sched_init_debug);
381 
382 #ifdef CONFIG_SMP
383 
384 static cpumask_var_t		sd_sysctl_cpus;
385 
sd_flags_show(struct seq_file * m,void * v)386 static int sd_flags_show(struct seq_file *m, void *v)
387 {
388 	unsigned long flags = *(unsigned int *)m->private;
389 	int idx;
390 
391 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
392 		seq_puts(m, sd_flag_debug[idx].name);
393 		seq_puts(m, " ");
394 	}
395 	seq_puts(m, "\n");
396 
397 	return 0;
398 }
399 
sd_flags_open(struct inode * inode,struct file * file)400 static int sd_flags_open(struct inode *inode, struct file *file)
401 {
402 	return single_open(file, sd_flags_show, inode->i_private);
403 }
404 
405 static const struct file_operations sd_flags_fops = {
406 	.open		= sd_flags_open,
407 	.read		= seq_read,
408 	.llseek		= seq_lseek,
409 	.release	= single_release,
410 };
411 
register_sd(struct sched_domain * sd,struct dentry * parent)412 static void register_sd(struct sched_domain *sd, struct dentry *parent)
413 {
414 #define SDM(type, mode, member)	\
415 	debugfs_create_##type(#member, mode, parent, &sd->member)
416 
417 	SDM(ulong, 0644, min_interval);
418 	SDM(ulong, 0644, max_interval);
419 	SDM(u64,   0644, max_newidle_lb_cost);
420 	SDM(u32,   0644, busy_factor);
421 	SDM(u32,   0644, imbalance_pct);
422 	SDM(u32,   0644, cache_nice_tries);
423 	SDM(str,   0444, name);
424 
425 #undef SDM
426 
427 	debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
428 	debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
429 }
430 
update_sched_domain_debugfs(void)431 void update_sched_domain_debugfs(void)
432 {
433 	int cpu, i;
434 
435 	/*
436 	 * This can unfortunately be invoked before sched_debug_init() creates
437 	 * the debug directory. Don't touch sd_sysctl_cpus until then.
438 	 */
439 	if (!debugfs_sched)
440 		return;
441 
442 	if (!sched_debug_verbose)
443 		return;
444 
445 	if (!cpumask_available(sd_sysctl_cpus)) {
446 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
447 			return;
448 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
449 	}
450 
451 	if (!sd_dentry) {
452 		sd_dentry = debugfs_create_dir("domains", debugfs_sched);
453 
454 		/* rebuild sd_sysctl_cpus if empty since it gets cleared below */
455 		if (cpumask_empty(sd_sysctl_cpus))
456 			cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
457 	}
458 
459 	for_each_cpu(cpu, sd_sysctl_cpus) {
460 		struct sched_domain *sd;
461 		struct dentry *d_cpu;
462 		char buf[32];
463 
464 		snprintf(buf, sizeof(buf), "cpu%d", cpu);
465 		debugfs_lookup_and_remove(buf, sd_dentry);
466 		d_cpu = debugfs_create_dir(buf, sd_dentry);
467 
468 		i = 0;
469 		for_each_domain(cpu, sd) {
470 			struct dentry *d_sd;
471 
472 			snprintf(buf, sizeof(buf), "domain%d", i);
473 			d_sd = debugfs_create_dir(buf, d_cpu);
474 
475 			register_sd(sd, d_sd);
476 			i++;
477 		}
478 
479 		__cpumask_clear_cpu(cpu, sd_sysctl_cpus);
480 	}
481 }
482 
dirty_sched_domain_sysctl(int cpu)483 void dirty_sched_domain_sysctl(int cpu)
484 {
485 	if (cpumask_available(sd_sysctl_cpus))
486 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
487 }
488 
489 #endif /* CONFIG_SMP */
490 
491 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)492 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
493 {
494 	struct sched_entity *se = tg->se[cpu];
495 
496 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
497 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	\
498 		#F, (long long)schedstat_val(stats->F))
499 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
500 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", \
501 		#F, SPLIT_NS((long long)schedstat_val(stats->F)))
502 
503 	if (!se)
504 		return;
505 
506 	PN(se->exec_start);
507 	PN(se->vruntime);
508 	PN(se->sum_exec_runtime);
509 
510 	if (schedstat_enabled()) {
511 		struct sched_statistics *stats;
512 		stats = __schedstats_from_se(se);
513 
514 		PN_SCHEDSTAT(wait_start);
515 		PN_SCHEDSTAT(sleep_start);
516 		PN_SCHEDSTAT(block_start);
517 		PN_SCHEDSTAT(sleep_max);
518 		PN_SCHEDSTAT(block_max);
519 		PN_SCHEDSTAT(exec_max);
520 		PN_SCHEDSTAT(slice_max);
521 		PN_SCHEDSTAT(wait_max);
522 		PN_SCHEDSTAT(wait_sum);
523 		P_SCHEDSTAT(wait_count);
524 	}
525 
526 	P(se->load.weight);
527 #ifdef CONFIG_SMP
528 	P(se->avg.load_avg);
529 	P(se->avg.util_avg);
530 	P(se->avg.runnable_avg);
531 #endif
532 
533 #undef PN_SCHEDSTAT
534 #undef PN
535 #undef P_SCHEDSTAT
536 #undef P
537 }
538 #endif
539 
540 #ifdef CONFIG_CGROUP_SCHED
541 static DEFINE_SPINLOCK(sched_debug_lock);
542 static char group_path[PATH_MAX];
543 
task_group_path(struct task_group * tg,char * path,int plen)544 static void task_group_path(struct task_group *tg, char *path, int plen)
545 {
546 	if (autogroup_path(tg, path, plen))
547 		return;
548 
549 	cgroup_path(tg->css.cgroup, path, plen);
550 }
551 
552 /*
553  * Only 1 SEQ_printf_task_group_path() caller can use the full length
554  * group_path[] for cgroup path. Other simultaneous callers will have
555  * to use a shorter stack buffer. A "..." suffix is appended at the end
556  * of the stack buffer so that it will show up in case the output length
557  * matches the given buffer size to indicate possible path name truncation.
558  */
559 #define SEQ_printf_task_group_path(m, tg, fmt...)			\
560 {									\
561 	if (spin_trylock(&sched_debug_lock)) {				\
562 		task_group_path(tg, group_path, sizeof(group_path));	\
563 		SEQ_printf(m, fmt, group_path);				\
564 		spin_unlock(&sched_debug_lock);				\
565 	} else {							\
566 		char buf[128];						\
567 		char *bufend = buf + sizeof(buf) - 3;			\
568 		task_group_path(tg, buf, bufend - buf);			\
569 		strcpy(bufend - 1, "...");				\
570 		SEQ_printf(m, fmt, buf);				\
571 	}								\
572 }
573 #endif
574 
575 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)576 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
577 {
578 	if (task_current(rq, p))
579 		SEQ_printf(m, ">R");
580 	else
581 		SEQ_printf(m, " %c", task_state_to_char(p));
582 
583 	SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
584 		p->comm, task_pid_nr(p),
585 		SPLIT_NS(p->se.vruntime),
586 		entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
587 		SPLIT_NS(p->se.deadline),
588 		SPLIT_NS(p->se.slice),
589 		SPLIT_NS(p->se.sum_exec_runtime),
590 		(long long)(p->nvcsw + p->nivcsw),
591 		p->prio);
592 
593 	SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
594 		SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
595 		SPLIT_NS(p->se.sum_exec_runtime),
596 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
597 		SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
598 
599 #ifdef CONFIG_NUMA_BALANCING
600 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
601 #endif
602 #ifdef CONFIG_CGROUP_SCHED
603 	SEQ_printf_task_group_path(m, task_group(p), " %s")
604 #endif
605 
606 	SEQ_printf(m, "\n");
607 }
608 
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)609 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
610 {
611 	struct task_struct *g, *p;
612 
613 	SEQ_printf(m, "\n");
614 	SEQ_printf(m, "runnable tasks:\n");
615 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
616 		   "     wait-time             sum-exec        sum-sleep\n");
617 	SEQ_printf(m, "-------------------------------------------------------"
618 		   "------------------------------------------------------\n");
619 
620 	rcu_read_lock();
621 	for_each_process_thread(g, p) {
622 		if (task_cpu(p) != rq_cpu)
623 			continue;
624 
625 		print_task(m, rq, p);
626 	}
627 	rcu_read_unlock();
628 }
629 
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)630 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
631 {
632 	s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, spread;
633 	struct sched_entity *last, *first;
634 	struct rq *rq = cpu_rq(cpu);
635 	unsigned long flags;
636 
637 #ifdef CONFIG_FAIR_GROUP_SCHED
638 	SEQ_printf(m, "\n");
639 	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
640 #else
641 	SEQ_printf(m, "\n");
642 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
643 #endif
644 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
645 			SPLIT_NS(cfs_rq->exec_clock));
646 
647 	raw_spin_rq_lock_irqsave(rq, flags);
648 	first = __pick_first_entity(cfs_rq);
649 	if (first)
650 		left_vruntime = first->vruntime;
651 	last = __pick_last_entity(cfs_rq);
652 	if (last)
653 		right_vruntime = last->vruntime;
654 	min_vruntime = cfs_rq->min_vruntime;
655 	raw_spin_rq_unlock_irqrestore(rq, flags);
656 
657 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "left_vruntime",
658 			SPLIT_NS(left_vruntime));
659 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
660 			SPLIT_NS(min_vruntime));
661 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "avg_vruntime",
662 			SPLIT_NS(avg_vruntime(cfs_rq)));
663 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "right_vruntime",
664 			SPLIT_NS(right_vruntime));
665 	spread = right_vruntime - left_vruntime;
666 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
667 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
668 			cfs_rq->nr_spread_over);
669 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
670 	SEQ_printf(m, "  .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
671 	SEQ_printf(m, "  .%-30s: %d\n", "idle_nr_running",
672 			cfs_rq->idle_nr_running);
673 	SEQ_printf(m, "  .%-30s: %d\n", "idle_h_nr_running",
674 			cfs_rq->idle_h_nr_running);
675 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
676 #ifdef CONFIG_SMP
677 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
678 			cfs_rq->avg.load_avg);
679 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
680 			cfs_rq->avg.runnable_avg);
681 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
682 			cfs_rq->avg.util_avg);
683 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
684 			cfs_rq->avg.util_est.enqueued);
685 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
686 			cfs_rq->removed.load_avg);
687 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
688 			cfs_rq->removed.util_avg);
689 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
690 			cfs_rq->removed.runnable_avg);
691 #ifdef CONFIG_FAIR_GROUP_SCHED
692 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
693 			cfs_rq->tg_load_avg_contrib);
694 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
695 			atomic_long_read(&cfs_rq->tg->load_avg));
696 #endif
697 #endif
698 #ifdef CONFIG_CFS_BANDWIDTH
699 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
700 			cfs_rq->throttled);
701 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
702 			cfs_rq->throttle_count);
703 #endif
704 
705 #ifdef CONFIG_FAIR_GROUP_SCHED
706 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
707 #endif
708 }
709 
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)710 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
711 {
712 #ifdef CONFIG_RT_GROUP_SCHED
713 	SEQ_printf(m, "\n");
714 	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
715 #else
716 	SEQ_printf(m, "\n");
717 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
718 #endif
719 
720 #define P(x) \
721 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
722 #define PU(x) \
723 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
724 #define PN(x) \
725 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
726 
727 	PU(rt_nr_running);
728 #ifdef CONFIG_SMP
729 	PU(rt_nr_migratory);
730 #endif
731 	P(rt_throttled);
732 	PN(rt_time);
733 	PN(rt_runtime);
734 
735 #undef PN
736 #undef PU
737 #undef P
738 }
739 
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)740 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
741 {
742 	struct dl_bw *dl_bw;
743 
744 	SEQ_printf(m, "\n");
745 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
746 
747 #define PU(x) \
748 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
749 
750 	PU(dl_nr_running);
751 #ifdef CONFIG_SMP
752 	PU(dl_nr_migratory);
753 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
754 #else
755 	dl_bw = &dl_rq->dl_bw;
756 #endif
757 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
758 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
759 
760 #undef PU
761 }
762 
print_cpu(struct seq_file * m,int cpu)763 static void print_cpu(struct seq_file *m, int cpu)
764 {
765 	struct rq *rq = cpu_rq(cpu);
766 
767 #ifdef CONFIG_X86
768 	{
769 		unsigned int freq = cpu_khz ? : 1;
770 
771 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
772 			   cpu, freq / 1000, (freq % 1000));
773 	}
774 #else
775 	SEQ_printf(m, "cpu#%d\n", cpu);
776 #endif
777 
778 #define P(x)								\
779 do {									\
780 	if (sizeof(rq->x) == 4)						\
781 		SEQ_printf(m, "  .%-30s: %d\n", #x, (int)(rq->x));	\
782 	else								\
783 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
784 } while (0)
785 
786 #define PN(x) \
787 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
788 
789 	P(nr_running);
790 	P(nr_switches);
791 	P(nr_uninterruptible);
792 	PN(next_balance);
793 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
794 	PN(clock);
795 	PN(clock_task);
796 #ifdef CONFIG_SCHED_WALT
797 	P(cluster->load_scale_factor);
798 	P(cluster->capacity);
799 	P(cluster->max_possible_capacity);
800 	P(cluster->efficiency);
801 	P(cluster->cur_freq);
802 	P(cluster->max_freq);
803 	P(cluster->exec_scale_factor);
804 	SEQ_printf(m, "  .%-30s: %llu\n", "walt_stats.cumulative_runnable_avg",
805 			rq->walt_stats.cumulative_runnable_avg_scaled);
806 #endif
807 #undef P
808 #undef PN
809 
810 #ifdef CONFIG_SMP
811 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
812 	P64(avg_idle);
813 	P64(max_idle_balance_cost);
814 #undef P64
815 #endif
816 
817 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
818 	if (schedstat_enabled()) {
819 		P(yld_count);
820 		P(sched_count);
821 		P(sched_goidle);
822 		P(ttwu_count);
823 		P(ttwu_local);
824 	}
825 #undef P
826 
827 	print_cfs_stats(m, cpu);
828 	print_rt_stats(m, cpu);
829 	print_dl_stats(m, cpu);
830 
831 	print_rq(m, rq, cpu);
832 	SEQ_printf(m, "\n");
833 }
834 
835 static const char *sched_tunable_scaling_names[] = {
836 	"none",
837 	"logarithmic",
838 	"linear"
839 };
840 
sched_debug_header(struct seq_file * m)841 static void sched_debug_header(struct seq_file *m)
842 {
843 	u64 ktime, sched_clk, cpu_clk;
844 	unsigned long flags;
845 
846 	local_irq_save(flags);
847 	ktime = ktime_to_ns(ktime_get());
848 	sched_clk = sched_clock();
849 	cpu_clk = local_clock();
850 	local_irq_restore(flags);
851 
852 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
853 		init_utsname()->release,
854 		(int)strcspn(init_utsname()->version, " "),
855 		init_utsname()->version);
856 
857 #define P(x) \
858 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
859 #define PN(x) \
860 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
861 	PN(ktime);
862 	PN(sched_clk);
863 	PN(cpu_clk);
864 	P(jiffies);
865 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
866 	P(sched_clock_stable());
867 #endif
868 #undef PN
869 #undef P
870 
871 	SEQ_printf(m, "\n");
872 	SEQ_printf(m, "sysctl_sched\n");
873 
874 #define P(x) \
875 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
876 #define PN(x) \
877 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
878 	PN(sysctl_sched_base_slice);
879 	P(sysctl_sched_child_runs_first);
880 	P(sysctl_sched_features);
881 #ifdef CONFIG_SCHED_WALT
882 	P(sched_init_task_load_windows);
883 	P(min_capacity);
884 	P(max_capacity);
885 	P(sched_ravg_window);
886 #endif
887 #undef PN
888 #undef P
889 
890 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
891 		"sysctl_sched_tunable_scaling",
892 		sysctl_sched_tunable_scaling,
893 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
894 	SEQ_printf(m, "\n");
895 }
896 
sched_debug_show(struct seq_file * m,void * v)897 static int sched_debug_show(struct seq_file *m, void *v)
898 {
899 	int cpu = (unsigned long)(v - 2);
900 
901 	if (cpu != -1)
902 		print_cpu(m, cpu);
903 	else
904 		sched_debug_header(m);
905 
906 	return 0;
907 }
908 
sysrq_sched_debug_show(void)909 void sysrq_sched_debug_show(void)
910 {
911 	int cpu;
912 
913 	sched_debug_header(NULL);
914 	for_each_online_cpu(cpu) {
915 		/*
916 		 * Need to reset softlockup watchdogs on all CPUs, because
917 		 * another CPU might be blocked waiting for us to process
918 		 * an IPI or stop_machine.
919 		 */
920 		touch_nmi_watchdog();
921 		touch_all_softlockup_watchdogs();
922 		print_cpu(NULL, cpu);
923 	}
924 }
925 
926 /*
927  * This iterator needs some explanation.
928  * It returns 1 for the header position.
929  * This means 2 is CPU 0.
930  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
931  * to use cpumask_* to iterate over the CPUs.
932  */
sched_debug_start(struct seq_file * file,loff_t * offset)933 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
934 {
935 	unsigned long n = *offset;
936 
937 	if (n == 0)
938 		return (void *) 1;
939 
940 	n--;
941 
942 	if (n > 0)
943 		n = cpumask_next(n - 1, cpu_online_mask);
944 	else
945 		n = cpumask_first(cpu_online_mask);
946 
947 	*offset = n + 1;
948 
949 	if (n < nr_cpu_ids)
950 		return (void *)(unsigned long)(n + 2);
951 
952 	return NULL;
953 }
954 
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)955 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
956 {
957 	(*offset)++;
958 	return sched_debug_start(file, offset);
959 }
960 
sched_debug_stop(struct seq_file * file,void * data)961 static void sched_debug_stop(struct seq_file *file, void *data)
962 {
963 }
964 
965 static const struct seq_operations sched_debug_sops = {
966 	.start		= sched_debug_start,
967 	.next		= sched_debug_next,
968 	.stop		= sched_debug_stop,
969 	.show		= sched_debug_show,
970 };
971 
972 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
973 #define __P(F) __PS(#F, F)
974 #define   P(F) __PS(#F, p->F)
975 #define   PM(F, M) __PS(#F, p->F & (M))
976 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
977 #define __PN(F) __PSN(#F, F)
978 #define   PN(F) __PSN(#F, p->F)
979 
980 
981 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)982 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
983 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
984 {
985 	SEQ_printf(m, "numa_faults node=%d ", node);
986 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
987 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
988 }
989 #endif
990 
991 
sched_show_numa(struct task_struct * p,struct seq_file * m)992 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
993 {
994 #ifdef CONFIG_NUMA_BALANCING
995 	if (p->mm)
996 		P(mm->numa_scan_seq);
997 
998 	P(numa_pages_migrated);
999 	P(numa_preferred_nid);
1000 	P(total_numa_faults);
1001 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
1002 			task_node(p), task_numa_group_id(p));
1003 	show_numa_stats(p, m);
1004 #endif
1005 }
1006 
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)1007 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
1008 						  struct seq_file *m)
1009 {
1010 	unsigned long nr_switches;
1011 
1012 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
1013 						get_nr_threads(p));
1014 	SEQ_printf(m,
1015 		"---------------------------------------------------------"
1016 		"----------\n");
1017 
1018 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->stats.F))
1019 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1020 
1021 	PN(se.exec_start);
1022 	PN(se.vruntime);
1023 	PN(se.sum_exec_runtime);
1024 
1025 	nr_switches = p->nvcsw + p->nivcsw;
1026 
1027 	P(se.nr_migrations);
1028 
1029 	if (schedstat_enabled()) {
1030 		u64 avg_atom, avg_per_cpu;
1031 
1032 		PN_SCHEDSTAT(sum_sleep_runtime);
1033 		PN_SCHEDSTAT(sum_block_runtime);
1034 		PN_SCHEDSTAT(wait_start);
1035 		PN_SCHEDSTAT(sleep_start);
1036 		PN_SCHEDSTAT(block_start);
1037 		PN_SCHEDSTAT(sleep_max);
1038 		PN_SCHEDSTAT(block_max);
1039 		PN_SCHEDSTAT(exec_max);
1040 		PN_SCHEDSTAT(slice_max);
1041 		PN_SCHEDSTAT(wait_max);
1042 		PN_SCHEDSTAT(wait_sum);
1043 		P_SCHEDSTAT(wait_count);
1044 		PN_SCHEDSTAT(iowait_sum);
1045 		P_SCHEDSTAT(iowait_count);
1046 		P_SCHEDSTAT(nr_migrations_cold);
1047 		P_SCHEDSTAT(nr_failed_migrations_affine);
1048 		P_SCHEDSTAT(nr_failed_migrations_running);
1049 		P_SCHEDSTAT(nr_failed_migrations_hot);
1050 		P_SCHEDSTAT(nr_forced_migrations);
1051 		P_SCHEDSTAT(nr_wakeups);
1052 		P_SCHEDSTAT(nr_wakeups_sync);
1053 		P_SCHEDSTAT(nr_wakeups_migrate);
1054 		P_SCHEDSTAT(nr_wakeups_local);
1055 		P_SCHEDSTAT(nr_wakeups_remote);
1056 		P_SCHEDSTAT(nr_wakeups_affine);
1057 		P_SCHEDSTAT(nr_wakeups_affine_attempts);
1058 		P_SCHEDSTAT(nr_wakeups_passive);
1059 		P_SCHEDSTAT(nr_wakeups_idle);
1060 #ifdef CONFIG_SCHED_WALT
1061 		P(ravg.demand);
1062 #endif
1063 
1064 		avg_atom = p->se.sum_exec_runtime;
1065 		if (nr_switches)
1066 			avg_atom = div64_ul(avg_atom, nr_switches);
1067 		else
1068 			avg_atom = -1LL;
1069 
1070 		avg_per_cpu = p->se.sum_exec_runtime;
1071 		if (p->se.nr_migrations) {
1072 			avg_per_cpu = div64_u64(avg_per_cpu,
1073 						p->se.nr_migrations);
1074 		} else {
1075 			avg_per_cpu = -1LL;
1076 		}
1077 
1078 		__PN(avg_atom);
1079 		__PN(avg_per_cpu);
1080 
1081 #ifdef CONFIG_SCHED_CORE
1082 		PN_SCHEDSTAT(core_forceidle_sum);
1083 #endif
1084 	}
1085 
1086 	__P(nr_switches);
1087 	__PS("nr_voluntary_switches", p->nvcsw);
1088 	__PS("nr_involuntary_switches", p->nivcsw);
1089 
1090 	P(se.load.weight);
1091 #ifdef CONFIG_SMP
1092 	P(se.avg.load_sum);
1093 	P(se.avg.runnable_sum);
1094 	P(se.avg.util_sum);
1095 	P(se.avg.load_avg);
1096 	P(se.avg.runnable_avg);
1097 	P(se.avg.util_avg);
1098 	P(se.avg.last_update_time);
1099 	P(se.avg.util_est.ewma);
1100 	PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1101 #endif
1102 #ifdef CONFIG_UCLAMP_TASK
1103 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1104 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1105 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1106 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1107 #endif
1108 	P(policy);
1109 	P(prio);
1110 #ifdef CONFIG_SCHED_LATENCY_NICE
1111 	P(latency_prio);
1112 #endif
1113 	if (task_has_dl_policy(p)) {
1114 		P(dl.runtime);
1115 		P(dl.deadline);
1116 	} else if (fair_policy(p->policy)) {
1117 		P(se.slice);
1118 	}
1119 #undef PN_SCHEDSTAT
1120 #undef P_SCHEDSTAT
1121 
1122 	{
1123 		unsigned int this_cpu = raw_smp_processor_id();
1124 		u64 t0, t1;
1125 
1126 		t0 = cpu_clock(this_cpu);
1127 		t1 = cpu_clock(this_cpu);
1128 		__PS("clock-delta", t1-t0);
1129 	}
1130 
1131 	sched_show_numa(p, m);
1132 }
1133 
proc_sched_set_task(struct task_struct * p)1134 void proc_sched_set_task(struct task_struct *p)
1135 {
1136 #ifdef CONFIG_SCHEDSTATS
1137 	memset(&p->stats, 0, sizeof(p->stats));
1138 #endif
1139 }
1140 
resched_latency_warn(int cpu,u64 latency)1141 void resched_latency_warn(int cpu, u64 latency)
1142 {
1143 	static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1144 
1145 	WARN(__ratelimit(&latency_check_ratelimit),
1146 	     "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1147 	     "without schedule\n",
1148 	     cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1149 }
1150