1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/swap.h>
14 #include <linux/rmap.h>
15 #include <linux/tracepoint-defs.h>
16 #include <linux/types.h>
17 #include <linux/reclaim_acct.h>
18
19 struct folio_batch;
20
21 /*
22 * The set of flags that only affect watermark checking and reclaim
23 * behaviour. This is used by the MM to obey the caller constraints
24 * about IO, FS and watermark checking while ignoring placement
25 * hints such as HIGHMEM usage.
26 */
27 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
28 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
29 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
30 __GFP_NOLOCKDEP)
31
32 /* The GFP flags allowed during early boot */
33 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
34
35 /* Control allocation cpuset and node placement constraints */
36 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
37
38 /* Do not use these with a slab allocator */
39 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
40
41 enum reclaim_invoker {
42 ALL,
43 KSWAPD,
44 ZSWAPD,
45 DIRECT_RECLAIM,
46 NODE_RECLAIM,
47 SOFT_LIMIT,
48 RCC_RECLAIM,
49 FILE_RECLAIM,
50 ANON_RECLAIM
51 };
52
53 struct scan_control {
54 /* How many pages shrink_list() should reclaim */
55 unsigned long nr_to_reclaim;
56
57 /*
58 * Nodemask of nodes allowed by the caller. If NULL, all nodes
59 * are scanned.
60 */
61 nodemask_t *nodemask;
62
63 /*
64 * The memory cgroup that hit its limit and as a result is the
65 * primary target of this reclaim invocation.
66 */
67 struct mem_cgroup *target_mem_cgroup;
68
69 /*
70 * Scan pressure balancing between anon and file LRUs
71 */
72 unsigned long anon_cost;
73 unsigned long file_cost;
74
75 /* Can active folios be deactivated as part of reclaim? */
76 #define DEACTIVATE_ANON 1
77 #define DEACTIVATE_FILE 2
78 unsigned int may_deactivate:2;
79 unsigned int force_deactivate:1;
80 unsigned int skipped_deactivate:1;
81
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
84
85 /* Can mapped folios be reclaimed? */
86 unsigned int may_unmap:1;
87
88 /* Can folios be swapped as part of reclaim? */
89 unsigned int may_swap:1;
90
91 /* Proactive reclaim invoked by userspace through memory.reclaim */
92 unsigned int proactive:1;
93
94 /*
95 * Cgroup memory below memory.low is protected as long as we
96 * don't threaten to OOM. If any cgroup is reclaimed at
97 * reduced force or passed over entirely due to its memory.low
98 * setting (memcg_low_skipped), and nothing is reclaimed as a
99 * result, then go back for one more cycle that reclaims the protected
100 * memory (memcg_low_reclaim) to avert OOM.
101 */
102 unsigned int memcg_low_reclaim:1;
103 unsigned int memcg_low_skipped:1;
104
105 unsigned int hibernation_mode:1;
106
107 /* One of the zones is ready for compaction */
108 unsigned int compaction_ready:1;
109
110 /* There is easily reclaimable cold cache in the current node */
111 unsigned int cache_trim_mode:1;
112
113 /* The file folios on the current node are dangerously low */
114 unsigned int file_is_tiny:1;
115
116 /* Always discard instead of demoting to lower tier memory */
117 unsigned int no_demotion:1;
118
119 /* Allocation order */
120 s8 order;
121
122 /* Scan (total_size >> priority) pages at once */
123 s8 priority;
124
125 /* The highest zone to isolate folios for reclaim from */
126 s8 reclaim_idx;
127
128 /* This context's GFP mask */
129 gfp_t gfp_mask;
130
131 /* Incremented by the number of inactive pages that were scanned */
132 unsigned long nr_scanned;
133
134 /* Number of pages freed so far during a call to shrink_zones() */
135 unsigned long nr_reclaimed;
136
137 struct {
138 unsigned int dirty;
139 unsigned int unqueued_dirty;
140 unsigned int congested;
141 unsigned int writeback;
142 unsigned int immediate;
143 unsigned int file_taken;
144 unsigned int taken;
145 } nr;
146
147 enum reclaim_invoker invoker;
148 u32 isolate_count;
149 unsigned long nr_scanned_anon;
150 unsigned long nr_scanned_file;
151 unsigned long nr_reclaimed_anon;
152 unsigned long nr_reclaimed_file;
153
154 /* for recording the reclaimed slab by now */
155 struct reclaim_state reclaim_state;
156 };
157
158 enum scan_balance {
159 SCAN_EQUAL,
160 SCAN_FRACT,
161 SCAN_ANON,
162 SCAN_FILE,
163 };
164
165 /*
166 * Different from WARN_ON_ONCE(), no warning will be issued
167 * when we specify __GFP_NOWARN.
168 */
169 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
170 static bool __section(".data..once") __warned; \
171 int __ret_warn_once = !!(cond); \
172 \
173 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
174 __warned = true; \
175 WARN_ON(1); \
176 } \
177 unlikely(__ret_warn_once); \
178 })
179
180 void page_writeback_init(void);
181
182 /*
183 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
184 * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
185 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
186 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
187 */
188 #define COMPOUND_MAPPED 0x800000
189 #define FOLIO_PAGES_MAPPED (COMPOUND_MAPPED - 1)
190
191 /*
192 * Flags passed to __show_mem() and show_free_areas() to suppress output in
193 * various contexts.
194 */
195 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
196
197 /*
198 * How many individual pages have an elevated _mapcount. Excludes
199 * the folio's entire_mapcount.
200 */
folio_nr_pages_mapped(struct folio * folio)201 static inline int folio_nr_pages_mapped(struct folio *folio)
202 {
203 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
204 }
205
folio_raw_mapping(struct folio * folio)206 static inline void *folio_raw_mapping(struct folio *folio)
207 {
208 unsigned long mapping = (unsigned long)folio->mapping;
209
210 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
211 }
212
213 /*
214 * This is a file-backed mapping, and is about to be memory mapped - invoke its
215 * mmap hook and safely handle error conditions. On error, VMA hooks will be
216 * mutated.
217 *
218 * @file: File which backs the mapping.
219 * @vma: VMA which we are mapping.
220 *
221 * Returns: 0 if success, error otherwise.
222 */
mmap_file(struct file * file,struct vm_area_struct * vma)223 static inline int mmap_file(struct file *file, struct vm_area_struct *vma)
224 {
225 int err = call_mmap(file, vma);
226
227 if (likely(!err))
228 return 0;
229
230 /*
231 * OK, we tried to call the file hook for mmap(), but an error
232 * arose. The mapping is in an inconsistent state and we most not invoke
233 * any further hooks on it.
234 */
235 vma->vm_ops = &vma_dummy_vm_ops;
236
237 return err;
238 }
239
240 /*
241 * If the VMA has a close hook then close it, and since closing it might leave
242 * it in an inconsistent state which makes the use of any hooks suspect, clear
243 * them down by installing dummy empty hooks.
244 */
vma_close(struct vm_area_struct * vma)245 static inline void vma_close(struct vm_area_struct *vma)
246 {
247 if (vma->vm_ops && vma->vm_ops->close) {
248 vma->vm_ops->close(vma);
249
250 /*
251 * The mapping is in an inconsistent state, and no further hooks
252 * may be invoked upon it.
253 */
254 vma->vm_ops = &vma_dummy_vm_ops;
255 }
256 }
257
258 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
259 int nr_throttled);
acct_reclaim_writeback(struct folio * folio)260 static inline void acct_reclaim_writeback(struct folio *folio)
261 {
262 pg_data_t *pgdat = folio_pgdat(folio);
263 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
264
265 if (nr_throttled)
266 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
267 }
268
wake_throttle_isolated(pg_data_t * pgdat)269 static inline void wake_throttle_isolated(pg_data_t *pgdat)
270 {
271 wait_queue_head_t *wqh;
272
273 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
274 if (waitqueue_active(wqh))
275 wake_up(wqh);
276 }
277
278 vm_fault_t do_swap_page(struct vm_fault *vmf);
279 void folio_rotate_reclaimable(struct folio *folio);
280 bool __folio_end_writeback(struct folio *folio);
281 void deactivate_file_folio(struct folio *folio);
282 void folio_activate(struct folio *folio);
283
284 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
285 struct vm_area_struct *start_vma, unsigned long floor,
286 unsigned long ceiling, bool mm_wr_locked);
287 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
288
289 struct zap_details;
290 void unmap_page_range(struct mmu_gather *tlb,
291 struct vm_area_struct *vma,
292 unsigned long addr, unsigned long end,
293 struct zap_details *details);
294
295 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
296 unsigned int order);
297 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
force_page_cache_readahead(struct address_space * mapping,struct file * file,pgoff_t index,unsigned long nr_to_read)298 static inline void force_page_cache_readahead(struct address_space *mapping,
299 struct file *file, pgoff_t index, unsigned long nr_to_read)
300 {
301 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
302 force_page_cache_ra(&ractl, nr_to_read);
303 }
304
305 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
306 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
307 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
308 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
309 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
310 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
311 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
312 loff_t end);
313 long invalidate_inode_page(struct page *page);
314 unsigned long mapping_try_invalidate(struct address_space *mapping,
315 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
316
317 /**
318 * folio_evictable - Test whether a folio is evictable.
319 * @folio: The folio to test.
320 *
321 * Test whether @folio is evictable -- i.e., should be placed on
322 * active/inactive lists vs unevictable list.
323 *
324 * Reasons folio might not be evictable:
325 * 1. folio's mapping marked unevictable
326 * 2. One of the pages in the folio is part of an mlocked VMA
327 */
folio_evictable(struct folio * folio)328 static inline bool folio_evictable(struct folio *folio)
329 {
330 bool ret;
331
332 /* Prevent address_space of inode and swap cache from being freed */
333 rcu_read_lock();
334 ret = !mapping_unevictable(folio_mapping(folio)) &&
335 !folio_test_mlocked(folio);
336 rcu_read_unlock();
337 return ret;
338 }
339
340 /*
341 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
342 * a count of one.
343 */
set_page_refcounted(struct page * page)344 static inline void set_page_refcounted(struct page *page)
345 {
346 VM_BUG_ON_PAGE(PageTail(page), page);
347 VM_BUG_ON_PAGE(page_ref_count(page), page);
348 set_page_count(page, 1);
349 }
350
351 /*
352 * Return true if a folio needs ->release_folio() calling upon it.
353 */
folio_needs_release(struct folio * folio)354 static inline bool folio_needs_release(struct folio *folio)
355 {
356 struct address_space *mapping = folio_mapping(folio);
357
358 return folio_has_private(folio) ||
359 (mapping && mapping_release_always(mapping));
360 }
361
362 extern unsigned long highest_memmap_pfn;
363
364 /*
365 * Maximum number of reclaim retries without progress before the OOM
366 * killer is consider the only way forward.
367 */
368 #define MAX_RECLAIM_RETRIES 16
369
370 /*
371 * in mm/vmscan.c:
372 */
373 #ifdef CONFIG_MEMORY_MONITOR
374 extern void kswapd_monitor_wake_up_queue(void);
375 #endif
376 bool isolate_lru_page(struct page *page);
377 bool folio_isolate_lru(struct folio *folio);
378 void putback_lru_page(struct page *page);
379 void folio_putback_lru(struct folio *folio);
380 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
381 extern unsigned int shrink_folio_list(struct list_head *page_list, struct pglist_data *pgdat,
382 struct scan_control *sc, struct reclaim_stat *stat, bool ignore_references);
383 extern unsigned long isolate_lru_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
384 struct list_head *dst, unsigned long *nr_scanned, struct scan_control *sc,
385 enum lru_list lru);
386 extern unsigned move_folios_to_lru(struct lruvec *lruvec, struct list_head *list);
387 extern void shrink_active_list(unsigned long nr_to_scan, struct lruvec *lruvec,
388 struct scan_control *sc, enum lru_list lru);
389 extern unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
390 struct scan_control *sc, enum lru_list lru);
391 extern void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc);
392
393 /*
394 * in mm/rmap.c:
395 */
396 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
397
398 /*
399 * in mm/page_alloc.c
400 */
401 #define K(x) ((x) << (PAGE_SHIFT-10))
402
403 extern char * const zone_names[MAX_NR_ZONES];
404
405 /* perform sanity checks on struct pages being allocated or freed */
406 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
407
408 extern int min_free_kbytes;
409
410 void setup_per_zone_wmarks(void);
411 void calculate_min_free_kbytes(void);
412 int __meminit init_per_zone_wmark_min(void);
413 void page_alloc_sysctl_init(void);
414
415 /*
416 * Structure for holding the mostly immutable allocation parameters passed
417 * between functions involved in allocations, including the alloc_pages*
418 * family of functions.
419 *
420 * nodemask, migratetype and highest_zoneidx are initialized only once in
421 * __alloc_pages() and then never change.
422 *
423 * zonelist, preferred_zone and highest_zoneidx are set first in
424 * __alloc_pages() for the fast path, and might be later changed
425 * in __alloc_pages_slowpath(). All other functions pass the whole structure
426 * by a const pointer.
427 */
428 struct alloc_context {
429 struct zonelist *zonelist;
430 nodemask_t *nodemask;
431 struct zoneref *preferred_zoneref;
432 int migratetype;
433
434 /*
435 * highest_zoneidx represents highest usable zone index of
436 * the allocation request. Due to the nature of the zone,
437 * memory on lower zone than the highest_zoneidx will be
438 * protected by lowmem_reserve[highest_zoneidx].
439 *
440 * highest_zoneidx is also used by reclaim/compaction to limit
441 * the target zone since higher zone than this index cannot be
442 * usable for this allocation request.
443 */
444 enum zone_type highest_zoneidx;
445 bool spread_dirty_pages;
446 };
447
448 /*
449 * This function returns the order of a free page in the buddy system. In
450 * general, page_zone(page)->lock must be held by the caller to prevent the
451 * page from being allocated in parallel and returning garbage as the order.
452 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
453 * page cannot be allocated or merged in parallel. Alternatively, it must
454 * handle invalid values gracefully, and use buddy_order_unsafe() below.
455 */
buddy_order(struct page * page)456 static inline unsigned int buddy_order(struct page *page)
457 {
458 /* PageBuddy() must be checked by the caller */
459 return page_private(page);
460 }
461
462 /*
463 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
464 * PageBuddy() should be checked first by the caller to minimize race window,
465 * and invalid values must be handled gracefully.
466 *
467 * READ_ONCE is used so that if the caller assigns the result into a local
468 * variable and e.g. tests it for valid range before using, the compiler cannot
469 * decide to remove the variable and inline the page_private(page) multiple
470 * times, potentially observing different values in the tests and the actual
471 * use of the result.
472 */
473 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
474
475 /*
476 * This function checks whether a page is free && is the buddy
477 * we can coalesce a page and its buddy if
478 * (a) the buddy is not in a hole (check before calling!) &&
479 * (b) the buddy is in the buddy system &&
480 * (c) a page and its buddy have the same order &&
481 * (d) a page and its buddy are in the same zone.
482 *
483 * For recording whether a page is in the buddy system, we set PageBuddy.
484 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
485 *
486 * For recording page's order, we use page_private(page).
487 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)488 static inline bool page_is_buddy(struct page *page, struct page *buddy,
489 unsigned int order)
490 {
491 if (!page_is_guard(buddy) && !PageBuddy(buddy))
492 return false;
493
494 if (buddy_order(buddy) != order)
495 return false;
496
497 /*
498 * zone check is done late to avoid uselessly calculating
499 * zone/node ids for pages that could never merge.
500 */
501 if (page_zone_id(page) != page_zone_id(buddy))
502 return false;
503
504 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
505
506 return true;
507 }
508
509 /*
510 * Locate the struct page for both the matching buddy in our
511 * pair (buddy1) and the combined O(n+1) page they form (page).
512 *
513 * 1) Any buddy B1 will have an order O twin B2 which satisfies
514 * the following equation:
515 * B2 = B1 ^ (1 << O)
516 * For example, if the starting buddy (buddy2) is #8 its order
517 * 1 buddy is #10:
518 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
519 *
520 * 2) Any buddy B will have an order O+1 parent P which
521 * satisfies the following equation:
522 * P = B & ~(1 << O)
523 *
524 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
525 */
526 static inline unsigned long
__find_buddy_pfn(unsigned long page_pfn,unsigned int order)527 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
528 {
529 return page_pfn ^ (1 << order);
530 }
531
532 /*
533 * Find the buddy of @page and validate it.
534 * @page: The input page
535 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
536 * function is used in the performance-critical __free_one_page().
537 * @order: The order of the page
538 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
539 * page_to_pfn().
540 *
541 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
542 * not the same as @page. The validation is necessary before use it.
543 *
544 * Return: the found buddy page or NULL if not found.
545 */
find_buddy_page_pfn(struct page * page,unsigned long pfn,unsigned int order,unsigned long * buddy_pfn)546 static inline struct page *find_buddy_page_pfn(struct page *page,
547 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
548 {
549 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
550 struct page *buddy;
551
552 buddy = page + (__buddy_pfn - pfn);
553 if (buddy_pfn)
554 *buddy_pfn = __buddy_pfn;
555
556 if (page_is_buddy(page, buddy, order))
557 return buddy;
558 return NULL;
559 }
560
561 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
562 unsigned long end_pfn, struct zone *zone);
563
pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)564 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
565 unsigned long end_pfn, struct zone *zone)
566 {
567 if (zone->contiguous)
568 return pfn_to_page(start_pfn);
569
570 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
571 }
572
573 void set_zone_contiguous(struct zone *zone);
574
clear_zone_contiguous(struct zone * zone)575 static inline void clear_zone_contiguous(struct zone *zone)
576 {
577 zone->contiguous = false;
578 }
579
580 extern int __isolate_free_page(struct page *page, unsigned int order);
581 extern void __putback_isolated_page(struct page *page, unsigned int order,
582 int mt);
583 extern void memblock_free_pages(struct page *page, unsigned long pfn,
584 unsigned int order);
585 extern void __free_pages_core(struct page *page, unsigned int order);
586
587 /*
588 * This will have no effect, other than possibly generating a warning, if the
589 * caller passes in a non-large folio.
590 */
folio_set_order(struct folio * folio,unsigned int order)591 static inline void folio_set_order(struct folio *folio, unsigned int order)
592 {
593 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
594 return;
595
596 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
597 #ifdef CONFIG_64BIT
598 folio->_folio_nr_pages = 1U << order;
599 #endif
600 }
601
602 bool __folio_unqueue_deferred_split(struct folio *folio);
folio_unqueue_deferred_split(struct folio * folio)603 static inline bool folio_unqueue_deferred_split(struct folio *folio)
604 {
605 if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
606 return false;
607
608 /*
609 * At this point, there is no one trying to add the folio to
610 * deferred_list. If folio is not in deferred_list, it's safe
611 * to check without acquiring the split_queue_lock.
612 */
613 if (data_race(list_empty(&folio->_deferred_list)))
614 return false;
615
616 return __folio_unqueue_deferred_split(folio);
617 }
618
page_rmappable_folio(struct page * page)619 static inline struct folio *page_rmappable_folio(struct page *page)
620 {
621 struct folio *folio = (struct folio *)page;
622
623 folio_prep_large_rmappable(folio);
624 return folio;
625 }
626
prep_compound_head(struct page * page,unsigned int order)627 static inline void prep_compound_head(struct page *page, unsigned int order)
628 {
629 struct folio *folio = (struct folio *)page;
630
631 folio_set_order(folio, order);
632 atomic_set(&folio->_entire_mapcount, -1);
633 atomic_set(&folio->_nr_pages_mapped, 0);
634 atomic_set(&folio->_pincount, 0);
635 if (order > 1)
636 INIT_LIST_HEAD(&folio->_deferred_list);
637 }
638
prep_compound_tail(struct page * head,int tail_idx)639 static inline void prep_compound_tail(struct page *head, int tail_idx)
640 {
641 struct page *p = head + tail_idx;
642
643 p->mapping = TAIL_MAPPING;
644 set_compound_head(p, head);
645 set_page_private(p, 0);
646 }
647
648 extern void prep_compound_page(struct page *page, unsigned int order);
649
650 extern void post_alloc_hook(struct page *page, unsigned int order,
651 gfp_t gfp_flags);
652 extern int user_min_free_kbytes;
653
654 extern void free_unref_page(struct page *page, unsigned int order);
655 extern void free_unref_page_list(struct list_head *list);
656
657 extern void zone_pcp_reset(struct zone *zone);
658 extern void zone_pcp_disable(struct zone *zone);
659 extern void zone_pcp_enable(struct zone *zone);
660 extern void zone_pcp_init(struct zone *zone);
661
662 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
663 phys_addr_t min_addr,
664 int nid, bool exact_nid);
665
666 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
667 unsigned long, enum meminit_context, struct vmem_altmap *, int);
668
669
670 int split_free_page(struct page *free_page,
671 unsigned int order, unsigned long split_pfn_offset);
672
673 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
674
675 /*
676 * in mm/compaction.c
677 */
678 /*
679 * compact_control is used to track pages being migrated and the free pages
680 * they are being migrated to during memory compaction. The free_pfn starts
681 * at the end of a zone and migrate_pfn begins at the start. Movable pages
682 * are moved to the end of a zone during a compaction run and the run
683 * completes when free_pfn <= migrate_pfn
684 */
685 struct compact_control {
686 struct list_head freepages; /* List of free pages to migrate to */
687 struct list_head migratepages; /* List of pages being migrated */
688 unsigned int nr_freepages; /* Number of isolated free pages */
689 unsigned int nr_migratepages; /* Number of pages to migrate */
690 unsigned long free_pfn; /* isolate_freepages search base */
691 /*
692 * Acts as an in/out parameter to page isolation for migration.
693 * isolate_migratepages uses it as a search base.
694 * isolate_migratepages_block will update the value to the next pfn
695 * after the last isolated one.
696 */
697 unsigned long migrate_pfn;
698 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
699 struct zone *zone;
700 unsigned long total_migrate_scanned;
701 unsigned long total_free_scanned;
702 unsigned short fast_search_fail;/* failures to use free list searches */
703 short search_order; /* order to start a fast search at */
704 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
705 int order; /* order a direct compactor needs */
706 int migratetype; /* migratetype of direct compactor */
707 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
708 const int highest_zoneidx; /* zone index of a direct compactor */
709 enum migrate_mode mode; /* Async or sync migration mode */
710 bool ignore_skip_hint; /* Scan blocks even if marked skip */
711 bool no_set_skip_hint; /* Don't mark blocks for skipping */
712 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
713 bool direct_compaction; /* False from kcompactd or /proc/... */
714 bool proactive_compaction; /* kcompactd proactive compaction */
715 bool whole_zone; /* Whole zone should/has been scanned */
716 bool contended; /* Signal lock contention */
717 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
718 * when there are potentially transient
719 * isolation or migration failures to
720 * ensure forward progress.
721 */
722 bool alloc_contig; /* alloc_contig_range allocation */
723 };
724
725 /*
726 * Used in direct compaction when a page should be taken from the freelists
727 * immediately when one is created during the free path.
728 */
729 struct capture_control {
730 struct compact_control *cc;
731 struct page *page;
732 };
733
734 unsigned long
735 isolate_freepages_range(struct compact_control *cc,
736 unsigned long start_pfn, unsigned long end_pfn);
737 int
738 isolate_migratepages_range(struct compact_control *cc,
739 unsigned long low_pfn, unsigned long end_pfn);
740
741 int __alloc_contig_migrate_range(struct compact_control *cc,
742 unsigned long start, unsigned long end);
743
744 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
745 void init_cma_reserved_pageblock(struct page *page);
746
747 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
748
749 int find_suitable_fallback(struct free_area *area, unsigned int order,
750 int migratetype, bool only_stealable, bool *can_steal);
751
free_area_empty(struct free_area * area,int migratetype)752 static inline bool free_area_empty(struct free_area *area, int migratetype)
753 {
754 return list_empty(&area->free_list[migratetype]);
755 }
756
757 /*
758 * These three helpers classifies VMAs for virtual memory accounting.
759 */
760
761 /*
762 * Executable code area - executable, not writable, not stack
763 */
is_exec_mapping(vm_flags_t flags)764 static inline bool is_exec_mapping(vm_flags_t flags)
765 {
766 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
767 }
768
769 /*
770 * Stack area (including shadow stacks)
771 *
772 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
773 * do_mmap() forbids all other combinations.
774 */
is_stack_mapping(vm_flags_t flags)775 static inline bool is_stack_mapping(vm_flags_t flags)
776 {
777 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
778 }
779
780 /*
781 * Data area - private, writable, not stack
782 */
is_data_mapping(vm_flags_t flags)783 static inline bool is_data_mapping(vm_flags_t flags)
784 {
785 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
786 }
787
788 /* mm/util.c */
789 struct anon_vma *folio_anon_vma(struct folio *folio);
790
791 #ifdef CONFIG_MMU
792 void unmap_mapping_folio(struct folio *folio);
793 extern long populate_vma_page_range(struct vm_area_struct *vma,
794 unsigned long start, unsigned long end, int *locked);
795 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
796 unsigned long end, bool write, int *locked);
797 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
798 unsigned long bytes);
799 /*
800 * mlock_vma_folio() and munlock_vma_folio():
801 * should be called with vma's mmap_lock held for read or write,
802 * under page table lock for the pte/pmd being added or removed.
803 *
804 * mlock is usually called at the end of page_add_*_rmap(), munlock at
805 * the end of page_remove_rmap(); but new anon folios are managed by
806 * folio_add_lru_vma() calling mlock_new_folio().
807 *
808 * @compound is used to include pmd mappings of THPs, but filter out
809 * pte mappings of THPs, which cannot be consistently counted: a pte
810 * mapping of the THP head cannot be distinguished by the page alone.
811 */
812 void mlock_folio(struct folio *folio);
mlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)813 static inline void mlock_vma_folio(struct folio *folio,
814 struct vm_area_struct *vma, bool compound)
815 {
816 /*
817 * The VM_SPECIAL check here serves two purposes.
818 * 1) VM_IO check prevents migration from double-counting during mlock.
819 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
820 * is never left set on a VM_SPECIAL vma, there is an interval while
821 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
822 * still be set while VM_SPECIAL bits are added: so ignore it then.
823 */
824 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
825 (compound || !folio_test_large(folio)))
826 mlock_folio(folio);
827 }
828
829 void munlock_folio(struct folio *folio);
munlock_vma_folio(struct folio * folio,struct vm_area_struct * vma,bool compound)830 static inline void munlock_vma_folio(struct folio *folio,
831 struct vm_area_struct *vma, bool compound)
832 {
833 if (unlikely(vma->vm_flags & VM_LOCKED) &&
834 (compound || !folio_test_large(folio)))
835 munlock_folio(folio);
836 }
837
838 void mlock_new_folio(struct folio *folio);
839 bool need_mlock_drain(int cpu);
840 void mlock_drain_local(void);
841 void mlock_drain_remote(int cpu);
842
843 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
844
845 /*
846 * Return the start of user virtual address at the specific offset within
847 * a vma.
848 */
849 static inline unsigned long
vma_pgoff_address(pgoff_t pgoff,unsigned long nr_pages,struct vm_area_struct * vma)850 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
851 struct vm_area_struct *vma)
852 {
853 unsigned long address;
854
855 if (pgoff >= vma->vm_pgoff) {
856 address = vma->vm_start +
857 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
858 /* Check for address beyond vma (or wrapped through 0?) */
859 if (address < vma->vm_start || address >= vma->vm_end)
860 address = -EFAULT;
861 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
862 /* Test above avoids possibility of wrap to 0 on 32-bit */
863 address = vma->vm_start;
864 } else {
865 address = -EFAULT;
866 }
867 return address;
868 }
869
870 /*
871 * Return the start of user virtual address of a page within a vma.
872 * Returns -EFAULT if all of the page is outside the range of vma.
873 * If page is a compound head, the entire compound page is considered.
874 */
875 static inline unsigned long
vma_address(struct page * page,struct vm_area_struct * vma)876 vma_address(struct page *page, struct vm_area_struct *vma)
877 {
878 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
879 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
880 }
881
882 /*
883 * Then at what user virtual address will none of the range be found in vma?
884 * Assumes that vma_address() already returned a good starting address.
885 */
vma_address_end(struct page_vma_mapped_walk * pvmw)886 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
887 {
888 struct vm_area_struct *vma = pvmw->vma;
889 pgoff_t pgoff;
890 unsigned long address;
891
892 /* Common case, plus ->pgoff is invalid for KSM */
893 if (pvmw->nr_pages == 1)
894 return pvmw->address + PAGE_SIZE;
895
896 pgoff = pvmw->pgoff + pvmw->nr_pages;
897 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
898 /* Check for address beyond vma (or wrapped through 0?) */
899 if (address < vma->vm_start || address > vma->vm_end)
900 address = vma->vm_end;
901 return address;
902 }
903
maybe_unlock_mmap_for_io(struct vm_fault * vmf,struct file * fpin)904 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
905 struct file *fpin)
906 {
907 int flags = vmf->flags;
908
909 if (fpin)
910 return fpin;
911
912 /*
913 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
914 * anything, so we only pin the file and drop the mmap_lock if only
915 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
916 */
917 if (fault_flag_allow_retry_first(flags) &&
918 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
919 fpin = get_file(vmf->vma->vm_file);
920 release_fault_lock(vmf);
921 }
922 return fpin;
923 }
924 #else /* !CONFIG_MMU */
unmap_mapping_folio(struct folio * folio)925 static inline void unmap_mapping_folio(struct folio *folio) { }
mlock_new_folio(struct folio * folio)926 static inline void mlock_new_folio(struct folio *folio) { }
need_mlock_drain(int cpu)927 static inline bool need_mlock_drain(int cpu) { return false; }
mlock_drain_local(void)928 static inline void mlock_drain_local(void) { }
mlock_drain_remote(int cpu)929 static inline void mlock_drain_remote(int cpu) { }
vunmap_range_noflush(unsigned long start,unsigned long end)930 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
931 {
932 }
933 #endif /* !CONFIG_MMU */
934
935 /* Memory initialisation debug and verification */
936 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
937 DECLARE_STATIC_KEY_TRUE(deferred_pages);
938
939 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
940 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
941
942 enum mminit_level {
943 MMINIT_WARNING,
944 MMINIT_VERIFY,
945 MMINIT_TRACE
946 };
947
948 #ifdef CONFIG_DEBUG_MEMORY_INIT
949
950 extern int mminit_loglevel;
951
952 #define mminit_dprintk(level, prefix, fmt, arg...) \
953 do { \
954 if (level < mminit_loglevel) { \
955 if (level <= MMINIT_WARNING) \
956 pr_warn("mminit::" prefix " " fmt, ##arg); \
957 else \
958 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
959 } \
960 } while (0)
961
962 extern void mminit_verify_pageflags_layout(void);
963 extern void mminit_verify_zonelist(void);
964 #else
965
mminit_dprintk(enum mminit_level level,const char * prefix,const char * fmt,...)966 static inline void mminit_dprintk(enum mminit_level level,
967 const char *prefix, const char *fmt, ...)
968 {
969 }
970
mminit_verify_pageflags_layout(void)971 static inline void mminit_verify_pageflags_layout(void)
972 {
973 }
974
mminit_verify_zonelist(void)975 static inline void mminit_verify_zonelist(void)
976 {
977 }
978 #endif /* CONFIG_DEBUG_MEMORY_INIT */
979
980 #define NODE_RECLAIM_NOSCAN -2
981 #define NODE_RECLAIM_FULL -1
982 #define NODE_RECLAIM_SOME 0
983 #define NODE_RECLAIM_SUCCESS 1
984
985 #ifdef CONFIG_NUMA
986 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
987 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
988 #else
node_reclaim(struct pglist_data * pgdat,gfp_t mask,unsigned int order)989 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
990 unsigned int order)
991 {
992 return NODE_RECLAIM_NOSCAN;
993 }
find_next_best_node(int node,nodemask_t * used_node_mask)994 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
995 {
996 return NUMA_NO_NODE;
997 }
998 #endif
999
1000 /*
1001 * mm/memory-failure.c
1002 */
1003 extern int hwpoison_filter(struct page *p);
1004
1005 extern u32 hwpoison_filter_dev_major;
1006 extern u32 hwpoison_filter_dev_minor;
1007 extern u64 hwpoison_filter_flags_mask;
1008 extern u64 hwpoison_filter_flags_value;
1009 extern u64 hwpoison_filter_memcg;
1010 extern u32 hwpoison_filter_enable;
1011
1012 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
1013 unsigned long, unsigned long,
1014 unsigned long, unsigned long);
1015
1016 extern void set_pageblock_order(void);
1017 unsigned long reclaim_pages(struct list_head *folio_list);
1018 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1019 struct list_head *folio_list);
1020 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1021 #define ALLOC_WMARK_MIN WMARK_MIN
1022 #define ALLOC_WMARK_LOW WMARK_LOW
1023 #define ALLOC_WMARK_HIGH WMARK_HIGH
1024 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1025
1026 /* Mask to get the watermark bits */
1027 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1028
1029 /*
1030 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1031 * cannot assume a reduced access to memory reserves is sufficient for
1032 * !MMU
1033 */
1034 #ifdef CONFIG_MMU
1035 #define ALLOC_OOM 0x08
1036 #else
1037 #define ALLOC_OOM ALLOC_NO_WATERMARKS
1038 #endif
1039
1040 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
1041 * to 25% of the min watermark or
1042 * 62.5% if __GFP_HIGH is set.
1043 */
1044 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
1045 * of the min watermark.
1046 */
1047 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1048 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
1049 #ifdef CONFIG_ZONE_DMA32
1050 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
1051 #else
1052 #define ALLOC_NOFRAGMENT 0x0
1053 #endif
1054 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1055 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1056
1057 /* Flags that allow allocations below the min watermark. */
1058 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1059
1060 enum ttu_flags;
1061 struct tlbflush_unmap_batch;
1062
1063
1064 /*
1065 * only for MM internal work items which do not depend on
1066 * any allocations or locks which might depend on allocations
1067 */
1068 extern struct workqueue_struct *mm_percpu_wq;
1069
1070 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1071 void try_to_unmap_flush(void);
1072 void try_to_unmap_flush_dirty(void);
1073 void flush_tlb_batched_pending(struct mm_struct *mm);
1074 #else
try_to_unmap_flush(void)1075 static inline void try_to_unmap_flush(void)
1076 {
1077 }
try_to_unmap_flush_dirty(void)1078 static inline void try_to_unmap_flush_dirty(void)
1079 {
1080 }
flush_tlb_batched_pending(struct mm_struct * mm)1081 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1082 {
1083 }
1084 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1085
1086 extern const struct trace_print_flags pageflag_names[];
1087 extern const struct trace_print_flags pagetype_names[];
1088 extern const struct trace_print_flags vmaflag_names[];
1089 extern const struct trace_print_flags gfpflag_names[];
1090
is_migrate_highatomic(enum migratetype migratetype)1091 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1092 {
1093 return migratetype == MIGRATE_HIGHATOMIC;
1094 }
1095
is_migrate_highatomic_page(struct page * page)1096 static inline bool is_migrate_highatomic_page(struct page *page)
1097 {
1098 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
1099 }
1100
1101 void setup_zone_pageset(struct zone *zone);
1102
1103 struct migration_target_control {
1104 int nid; /* preferred node id */
1105 nodemask_t *nmask;
1106 gfp_t gfp_mask;
1107 };
1108
1109 /*
1110 * mm/filemap.c
1111 */
1112 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1113 struct folio *folio, loff_t fpos, size_t size);
1114
1115 /*
1116 * mm/vmalloc.c
1117 */
1118 #ifdef CONFIG_MMU
1119 void __init vmalloc_init(void);
1120 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1121 pgprot_t prot, struct page **pages, unsigned int page_shift);
1122 #else
vmalloc_init(void)1123 static inline void vmalloc_init(void)
1124 {
1125 }
1126
1127 static inline
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)1128 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1129 pgprot_t prot, struct page **pages, unsigned int page_shift)
1130 {
1131 return -EINVAL;
1132 }
1133 #endif
1134
1135 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1136 unsigned long end, pgprot_t prot,
1137 struct page **pages, unsigned int page_shift);
1138
1139 void vunmap_range_noflush(unsigned long start, unsigned long end);
1140
1141 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1142
1143 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
1144 unsigned long addr, int page_nid, int *flags);
1145
1146 void free_zone_device_page(struct page *page);
1147 int migrate_device_coherent_page(struct page *page);
1148
1149 /*
1150 * mm/gup.c
1151 */
1152 int __must_check try_grab_folio(struct folio *folio, int refs,
1153 unsigned int flags);
1154
1155 /*
1156 * mm/huge_memory.c
1157 */
1158 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1159 unsigned long addr, pmd_t *pmd,
1160 unsigned int flags);
1161
1162 enum {
1163 /* mark page accessed */
1164 FOLL_TOUCH = 1 << 16,
1165 /* a retry, previous pass started an IO */
1166 FOLL_TRIED = 1 << 17,
1167 /* we are working on non-current tsk/mm */
1168 FOLL_REMOTE = 1 << 18,
1169 /* pages must be released via unpin_user_page */
1170 FOLL_PIN = 1 << 19,
1171 /* gup_fast: prevent fall-back to slow gup */
1172 FOLL_FAST_ONLY = 1 << 20,
1173 /* allow unlocking the mmap lock */
1174 FOLL_UNLOCKABLE = 1 << 21,
1175 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1176 FOLL_MADV_POPULATE = 1 << 22,
1177 };
1178
1179 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1180 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1181 FOLL_MADV_POPULATE)
1182
1183 /*
1184 * Indicates for which pages that are write-protected in the page table,
1185 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1186 * GUP pin will remain consistent with the pages mapped into the page tables
1187 * of the MM.
1188 *
1189 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1190 * PageAnonExclusive() has to protect against concurrent GUP:
1191 * * Ordinary GUP: Using the PT lock
1192 * * GUP-fast and fork(): mm->write_protect_seq
1193 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1194 * page_try_share_anon_rmap()
1195 *
1196 * Must be called with the (sub)page that's actually referenced via the
1197 * page table entry, which might not necessarily be the head page for a
1198 * PTE-mapped THP.
1199 *
1200 * If the vma is NULL, we're coming from the GUP-fast path and might have
1201 * to fallback to the slow path just to lookup the vma.
1202 */
gup_must_unshare(struct vm_area_struct * vma,unsigned int flags,struct page * page)1203 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1204 unsigned int flags, struct page *page)
1205 {
1206 /*
1207 * FOLL_WRITE is implicitly handled correctly as the page table entry
1208 * has to be writable -- and if it references (part of) an anonymous
1209 * folio, that part is required to be marked exclusive.
1210 */
1211 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1212 return false;
1213 /*
1214 * Note: PageAnon(page) is stable until the page is actually getting
1215 * freed.
1216 */
1217 if (!PageAnon(page)) {
1218 /*
1219 * We only care about R/O long-term pining: R/O short-term
1220 * pinning does not have the semantics to observe successive
1221 * changes through the process page tables.
1222 */
1223 if (!(flags & FOLL_LONGTERM))
1224 return false;
1225
1226 /* We really need the vma ... */
1227 if (!vma)
1228 return true;
1229
1230 /*
1231 * ... because we only care about writable private ("COW")
1232 * mappings where we have to break COW early.
1233 */
1234 return is_cow_mapping(vma->vm_flags);
1235 }
1236
1237 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
1238 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1239 smp_rmb();
1240
1241 /*
1242 * During GUP-fast we might not get called on the head page for a
1243 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1244 * not work with the abstracted hugetlb PTEs that always point at the
1245 * head page. For hugetlb, PageAnonExclusive only applies on the head
1246 * page (as it cannot be partially COW-shared), so lookup the head page.
1247 */
1248 if (unlikely(!PageHead(page) && PageHuge(page)))
1249 page = compound_head(page);
1250
1251 /*
1252 * Note that PageKsm() pages cannot be exclusive, and consequently,
1253 * cannot get pinned.
1254 */
1255 return !PageAnonExclusive(page);
1256 }
1257
1258 extern bool mirrored_kernelcore;
1259 extern bool memblock_has_mirror(void);
1260
vma_soft_dirty_enabled(struct vm_area_struct * vma)1261 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1262 {
1263 /*
1264 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1265 * enablements, because when without soft-dirty being compiled in,
1266 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1267 * will be constantly true.
1268 */
1269 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1270 return false;
1271
1272 /*
1273 * Soft-dirty is kind of special: its tracking is enabled when the
1274 * vma flags not set.
1275 */
1276 return !(vma->vm_flags & VM_SOFTDIRTY);
1277 }
1278
vma_iter_config(struct vma_iterator * vmi,unsigned long index,unsigned long last)1279 static inline void vma_iter_config(struct vma_iterator *vmi,
1280 unsigned long index, unsigned long last)
1281 {
1282 MAS_BUG_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1283 (vmi->mas.index > index || vmi->mas.last < index));
1284 __mas_set_range(&vmi->mas, index, last - 1);
1285 }
1286
1287 /*
1288 * VMA Iterator functions shared between nommu and mmap
1289 */
vma_iter_prealloc(struct vma_iterator * vmi,struct vm_area_struct * vma)1290 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1291 struct vm_area_struct *vma)
1292 {
1293 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1294 }
1295
vma_iter_clear(struct vma_iterator * vmi)1296 static inline void vma_iter_clear(struct vma_iterator *vmi)
1297 {
1298 mas_store_prealloc(&vmi->mas, NULL);
1299 }
1300
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1301 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1302 unsigned long start, unsigned long end, gfp_t gfp)
1303 {
1304 __mas_set_range(&vmi->mas, start, end - 1);
1305 mas_store_gfp(&vmi->mas, NULL, gfp);
1306 if (unlikely(mas_is_err(&vmi->mas)))
1307 return -ENOMEM;
1308
1309 return 0;
1310 }
1311
vma_iter_load(struct vma_iterator * vmi)1312 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1313 {
1314 return mas_walk(&vmi->mas);
1315 }
1316
1317 /* Store a VMA with preallocated memory */
vma_iter_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1318 static inline void vma_iter_store(struct vma_iterator *vmi,
1319 struct vm_area_struct *vma)
1320 {
1321
1322 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1323 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1324 vmi->mas.index > vma->vm_start)) {
1325 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1326 vmi->mas.index, vma->vm_start, vma->vm_start,
1327 vma->vm_end, vmi->mas.index, vmi->mas.last);
1328 }
1329 if (MAS_WARN_ON(&vmi->mas, vmi->mas.node != MAS_START &&
1330 vmi->mas.last < vma->vm_start)) {
1331 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1332 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1333 vmi->mas.index, vmi->mas.last);
1334 }
1335 #endif
1336
1337 if (vmi->mas.node != MAS_START &&
1338 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1339 vma_iter_invalidate(vmi);
1340
1341 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1342 mas_store_prealloc(&vmi->mas, vma);
1343 }
1344
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)1345 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1346 struct vm_area_struct *vma, gfp_t gfp)
1347 {
1348 if (vmi->mas.node != MAS_START &&
1349 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1350 vma_iter_invalidate(vmi);
1351
1352 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1353 mas_store_gfp(&vmi->mas, vma, gfp);
1354 if (unlikely(mas_is_err(&vmi->mas)))
1355 return -ENOMEM;
1356
1357 return 0;
1358 }
1359
1360 /*
1361 * VMA lock generalization
1362 */
1363 struct vma_prepare {
1364 struct vm_area_struct *vma;
1365 struct vm_area_struct *adj_next;
1366 struct file *file;
1367 struct address_space *mapping;
1368 struct anon_vma *anon_vma;
1369 struct vm_area_struct *insert;
1370 struct vm_area_struct *remove;
1371 struct vm_area_struct *remove2;
1372 };
1373 #endif /* __MM_INTERNAL_H */
1374