1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72
73 #include <linux/uaccess.h>
74 #include <linux/zswapd.h>
75
76 #include <trace/events/vmscan.h>
77
78 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79 EXPORT_SYMBOL(memory_cgrp_subsys);
80
81 struct mem_cgroup *root_mem_cgroup __read_mostly;
82
83 /* Active memory cgroup to use from an interrupt context */
84 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
85 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
86
87 /* Socket memory accounting disabled? */
88 static bool cgroup_memory_nosocket __ro_after_init;
89
90 /* Kernel memory accounting disabled? */
91 static bool cgroup_memory_nokmem = true;
92
93 /* BPF memory accounting disabled? */
94 static bool cgroup_memory_nobpf __ro_after_init;
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
104 }
105
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108
109 /*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
114 struct mem_cgroup_tree_per_node {
115 struct rb_root rb_root;
116 struct rb_node *rb_rightmost;
117 spinlock_t lock;
118 };
119
120 struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130 };
131
132 /*
133 * cgroup_event represents events which userspace want to receive.
134 */
135 struct mem_cgroup_event {
136 /*
137 * memcg which the event belongs to.
138 */
139 struct mem_cgroup *memcg;
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
153 int (*register_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd, const char *args);
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
160 void (*unregister_event)(struct mem_cgroup *memcg,
161 struct eventfd_ctx *eventfd);
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
168 wait_queue_entry_t wait;
169 struct work_struct remove;
170 };
171
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174
175 /* Stuffs for move charges at task migration. */
176 /*
177 * Types of charges to be moved.
178 */
179 #define MOVE_ANON 0x1U
180 #define MOVE_FILE 0x2U
181 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
182
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 spinlock_t lock; /* for from, to */
186 struct mm_struct *mm;
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
189 unsigned long flags;
190 unsigned long precharge;
191 unsigned long moved_charge;
192 unsigned long moved_swap;
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195 } mc = {
196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199
200 /*
201 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
204 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
205 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
206
207 /* for encoding cft->private value on file */
208 enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218
219 /*
220 * Iteration constructs for visiting all cgroups (under a tree). If
221 * loops are exited prematurely (break), mem_cgroup_iter_break() must
222 * be used for reference counting.
223 */
224 #define for_each_mem_cgroup_tree(iter, root) \
225 for (iter = mem_cgroup_iter(root, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(root, iter, NULL))
228
229 #define for_each_mem_cgroup(iter) \
230 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
231 iter != NULL; \
232 iter = mem_cgroup_iter(NULL, iter, NULL))
233
task_is_dying(void)234 static inline bool task_is_dying(void)
235 {
236 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
237 (current->flags & PF_EXITING);
238 }
239
240 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)241 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
242 {
243 if (!memcg)
244 memcg = root_mem_cgroup;
245 return &memcg->vmpressure;
246 }
247
vmpressure_to_memcg(struct vmpressure * vmpr)248 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
249 {
250 return container_of(vmpr, struct mem_cgroup, vmpressure);
251 }
252
253 #ifdef CONFIG_MEMCG_KMEM
254 static DEFINE_SPINLOCK(objcg_lock);
255
mem_cgroup_kmem_disabled(void)256 bool mem_cgroup_kmem_disabled(void)
257 {
258 return cgroup_memory_nokmem;
259 }
260
261 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
262 unsigned int nr_pages);
263
obj_cgroup_release(struct percpu_ref * ref)264 static void obj_cgroup_release(struct percpu_ref *ref)
265 {
266 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 if (nr_pages)
296 obj_cgroup_uncharge_pages(objcg, nr_pages);
297
298 spin_lock_irqsave(&objcg_lock, flags);
299 list_del(&objcg->list);
300 spin_unlock_irqrestore(&objcg_lock, flags);
301
302 percpu_ref_exit(ref);
303 kfree_rcu(objcg, rcu);
304 }
305
obj_cgroup_alloc(void)306 static struct obj_cgroup *obj_cgroup_alloc(void)
307 {
308 struct obj_cgroup *objcg;
309 int ret;
310
311 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
312 if (!objcg)
313 return NULL;
314
315 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
316 GFP_KERNEL);
317 if (ret) {
318 kfree(objcg);
319 return NULL;
320 }
321 INIT_LIST_HEAD(&objcg->list);
322 return objcg;
323 }
324
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)325 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
326 struct mem_cgroup *parent)
327 {
328 struct obj_cgroup *objcg, *iter;
329
330 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331
332 spin_lock_irq(&objcg_lock);
333
334 /* 1) Ready to reparent active objcg. */
335 list_add(&objcg->list, &memcg->objcg_list);
336 /* 2) Reparent active objcg and already reparented objcgs to parent. */
337 list_for_each_entry(iter, &memcg->objcg_list, list)
338 WRITE_ONCE(iter->memcg, parent);
339 /* 3) Move already reparented objcgs to the parent's list */
340 list_splice(&memcg->objcg_list, &parent->objcg_list);
341
342 spin_unlock_irq(&objcg_lock);
343
344 percpu_ref_kill(&objcg->refcnt);
345 }
346
347 /*
348 * A lot of the calls to the cache allocation functions are expected to be
349 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
350 * conditional to this static branch, we'll have to allow modules that does
351 * kmem_cache_alloc and the such to see this symbol as well
352 */
353 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
354 EXPORT_SYMBOL(memcg_kmem_online_key);
355
356 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
357 EXPORT_SYMBOL(memcg_bpf_enabled_key);
358 #endif
359
360 /**
361 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
362 * @folio: folio of interest
363 *
364 * If memcg is bound to the default hierarchy, css of the memcg associated
365 * with @folio is returned. The returned css remains associated with @folio
366 * until it is released.
367 *
368 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
369 * is returned.
370 */
mem_cgroup_css_from_folio(struct folio * folio)371 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
372 {
373 struct mem_cgroup *memcg = folio_memcg(folio);
374
375 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
376 memcg = root_mem_cgroup;
377
378 return &memcg->css;
379 }
380
381 /**
382 * page_cgroup_ino - return inode number of the memcg a page is charged to
383 * @page: the page
384 *
385 * Look up the closest online ancestor of the memory cgroup @page is charged to
386 * and return its inode number or 0 if @page is not charged to any cgroup. It
387 * is safe to call this function without holding a reference to @page.
388 *
389 * Note, this function is inherently racy, because there is nothing to prevent
390 * the cgroup inode from getting torn down and potentially reallocated a moment
391 * after page_cgroup_ino() returns, so it only should be used by callers that
392 * do not care (such as procfs interfaces).
393 */
page_cgroup_ino(struct page * page)394 ino_t page_cgroup_ino(struct page *page)
395 {
396 struct mem_cgroup *memcg;
397 unsigned long ino = 0;
398
399 rcu_read_lock();
400 /* page_folio() is racy here, but the entire function is racy anyway */
401 memcg = folio_memcg_check(page_folio(page));
402
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409 }
410
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
413 unsigned long new_usage_in_excess)
414 {
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
417 struct mem_cgroup_per_node *mz_node;
418 bool rightmost = true;
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 tree_node);
430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 p = &(*p)->rb_left;
432 rightmost = false;
433 } else {
434 p = &(*p)->rb_right;
435 }
436 }
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444 }
445
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
448 {
449 if (!mz->on_tree)
450 return;
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457 }
458
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
465 __mem_cgroup_remove_exceeded(mz, mctz);
466 spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468
soft_limit_excess(struct mem_cgroup * memcg)469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 #ifdef CONFIG_HYPERHOLD_FILE_LRU
472 struct mem_cgroup_per_node *mz = mem_cgroup_nodeinfo(memcg, 0);
473 struct lruvec *lruvec = &mz->lruvec;
474 unsigned long nr_pages = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON,
475 MAX_NR_ZONES) + lruvec_lru_size(lruvec, LRU_INACTIVE_ANON,
476 MAX_NR_ZONES);
477 #else
478 unsigned long nr_pages = page_counter_read(&memcg->memory);
479 #endif
480 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
481 unsigned long excess = 0;
482
483 if (nr_pages > soft_limit)
484 excess = nr_pages - soft_limit;
485
486 return excess;
487 }
488
mem_cgroup_update_tree(struct mem_cgroup * memcg,int nid)489 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
490 {
491 unsigned long excess;
492 struct mem_cgroup_per_node *mz;
493 struct mem_cgroup_tree_per_node *mctz;
494
495 if (lru_gen_enabled()) {
496 if (soft_limit_excess(memcg))
497 lru_gen_soft_reclaim(memcg, nid);
498 return;
499 }
500
501 mctz = soft_limit_tree.rb_tree_per_node[nid];
502 if (!mctz)
503 return;
504 /*
505 * Necessary to update all ancestors when hierarchy is used.
506 * because their event counter is not touched.
507 */
508 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
509 mz = memcg->nodeinfo[nid];
510 excess = soft_limit_excess(memcg);
511 /*
512 * We have to update the tree if mz is on RB-tree or
513 * mem is over its softlimit.
514 */
515 if (excess || mz->on_tree) {
516 unsigned long flags;
517
518 spin_lock_irqsave(&mctz->lock, flags);
519 /* if on-tree, remove it */
520 if (mz->on_tree)
521 __mem_cgroup_remove_exceeded(mz, mctz);
522 /*
523 * Insert again. mz->usage_in_excess will be updated.
524 * If excess is 0, no tree ops.
525 */
526 __mem_cgroup_insert_exceeded(mz, mctz, excess);
527 spin_unlock_irqrestore(&mctz->lock, flags);
528 }
529 }
530 }
531
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)532 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
533 {
534 struct mem_cgroup_tree_per_node *mctz;
535 struct mem_cgroup_per_node *mz;
536 int nid;
537
538 for_each_node(nid) {
539 mz = memcg->nodeinfo[nid];
540 mctz = soft_limit_tree.rb_tree_per_node[nid];
541 if (mctz)
542 mem_cgroup_remove_exceeded(mz, mctz);
543 }
544 }
545
546 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)547 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
548 {
549 struct mem_cgroup_per_node *mz;
550
551 retry:
552 mz = NULL;
553 if (!mctz->rb_rightmost)
554 goto done; /* Nothing to reclaim from */
555
556 mz = rb_entry(mctz->rb_rightmost,
557 struct mem_cgroup_per_node, tree_node);
558 /*
559 * Remove the node now but someone else can add it back,
560 * we will to add it back at the end of reclaim to its correct
561 * position in the tree.
562 */
563 __mem_cgroup_remove_exceeded(mz, mctz);
564 if (!soft_limit_excess(mz->memcg) ||
565 !css_tryget(&mz->memcg->css))
566 goto retry;
567 done:
568 return mz;
569 }
570
571 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)572 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
573 {
574 struct mem_cgroup_per_node *mz;
575
576 spin_lock_irq(&mctz->lock);
577 mz = __mem_cgroup_largest_soft_limit_node(mctz);
578 spin_unlock_irq(&mctz->lock);
579 return mz;
580 }
581
582 /*
583 * memcg and lruvec stats flushing
584 *
585 * Many codepaths leading to stats update or read are performance sensitive and
586 * adding stats flushing in such codepaths is not desirable. So, to optimize the
587 * flushing the kernel does:
588 *
589 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
590 * rstat update tree grow unbounded.
591 *
592 * 2) Flush the stats synchronously on reader side only when there are more than
593 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
594 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
595 * only for 2 seconds due to (1).
596 */
597 static void flush_memcg_stats_dwork(struct work_struct *w);
598 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
599 static DEFINE_PER_CPU(unsigned int, stats_updates);
600 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
601 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
602 static u64 flush_next_time;
603
604 #define FLUSH_TIME (2UL*HZ)
605
606 /*
607 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
608 * not rely on this as part of an acquired spinlock_t lock. These functions are
609 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
610 * is sufficient.
611 */
memcg_stats_lock(void)612 static void memcg_stats_lock(void)
613 {
614 preempt_disable_nested();
615 VM_WARN_ON_IRQS_ENABLED();
616 }
617
__memcg_stats_lock(void)618 static void __memcg_stats_lock(void)
619 {
620 preempt_disable_nested();
621 }
622
memcg_stats_unlock(void)623 static void memcg_stats_unlock(void)
624 {
625 preempt_enable_nested();
626 }
627
memcg_rstat_updated(struct mem_cgroup * memcg,int val)628 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
629 {
630 unsigned int x;
631
632 if (!val)
633 return;
634
635 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
636
637 x = __this_cpu_add_return(stats_updates, abs(val));
638 if (x > MEMCG_CHARGE_BATCH) {
639 /*
640 * If stats_flush_threshold exceeds the threshold
641 * (>num_online_cpus()), cgroup stats update will be triggered
642 * in __mem_cgroup_flush_stats(). Increasing this var further
643 * is redundant and simply adds overhead in atomic update.
644 */
645 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
646 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
647 __this_cpu_write(stats_updates, 0);
648 }
649 }
650
do_flush_stats(void)651 static void do_flush_stats(void)
652 {
653 /*
654 * We always flush the entire tree, so concurrent flushers can just
655 * skip. This avoids a thundering herd problem on the rstat global lock
656 * from memcg flushers (e.g. reclaim, refault, etc).
657 */
658 if (atomic_read(&stats_flush_ongoing) ||
659 atomic_xchg(&stats_flush_ongoing, 1))
660 return;
661
662 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
663
664 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
665
666 atomic_set(&stats_flush_threshold, 0);
667 atomic_set(&stats_flush_ongoing, 0);
668 }
669
mem_cgroup_flush_stats(void)670 void mem_cgroup_flush_stats(void)
671 {
672 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
673 do_flush_stats();
674 }
675
mem_cgroup_flush_stats_ratelimited(void)676 void mem_cgroup_flush_stats_ratelimited(void)
677 {
678 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
679 mem_cgroup_flush_stats();
680 }
681
flush_memcg_stats_dwork(struct work_struct * w)682 static void flush_memcg_stats_dwork(struct work_struct *w)
683 {
684 /*
685 * Always flush here so that flushing in latency-sensitive paths is
686 * as cheap as possible.
687 */
688 do_flush_stats();
689 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
690 }
691
692 /* Subset of vm_event_item to report for memcg event stats */
693 static const unsigned int memcg_vm_event_stat[] = {
694 PGPGIN,
695 PGPGOUT,
696 PGSCAN_KSWAPD,
697 PGSCAN_DIRECT,
698 PGSCAN_KHUGEPAGED,
699 PGSTEAL_KSWAPD,
700 PGSTEAL_DIRECT,
701 PGSTEAL_KHUGEPAGED,
702 PGFAULT,
703 PGMAJFAULT,
704 PGREFILL,
705 PGACTIVATE,
706 PGDEACTIVATE,
707 PGLAZYFREE,
708 PGLAZYFREED,
709 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
710 ZSWPIN,
711 ZSWPOUT,
712 #endif
713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
714 THP_FAULT_ALLOC,
715 THP_COLLAPSE_ALLOC,
716 #endif
717 };
718
719 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
720 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
721
init_memcg_events(void)722 static void init_memcg_events(void)
723 {
724 int i;
725
726 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
727 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
728 }
729
memcg_events_index(enum vm_event_item idx)730 static inline int memcg_events_index(enum vm_event_item idx)
731 {
732 return mem_cgroup_events_index[idx] - 1;
733 }
734
735 struct memcg_vmstats_percpu {
736 /* Local (CPU and cgroup) page state & events */
737 long state[MEMCG_NR_STAT];
738 unsigned long events[NR_MEMCG_EVENTS];
739
740 /* Delta calculation for lockless upward propagation */
741 long state_prev[MEMCG_NR_STAT];
742 unsigned long events_prev[NR_MEMCG_EVENTS];
743
744 /* Cgroup1: threshold notifications & softlimit tree updates */
745 unsigned long nr_page_events;
746 unsigned long targets[MEM_CGROUP_NTARGETS];
747 };
748
749 struct memcg_vmstats {
750 /* Aggregated (CPU and subtree) page state & events */
751 long state[MEMCG_NR_STAT];
752 unsigned long events[NR_MEMCG_EVENTS];
753
754 /* Non-hierarchical (CPU aggregated) page state & events */
755 long state_local[MEMCG_NR_STAT];
756 unsigned long events_local[NR_MEMCG_EVENTS];
757
758 /* Pending child counts during tree propagation */
759 long state_pending[MEMCG_NR_STAT];
760 unsigned long events_pending[NR_MEMCG_EVENTS];
761 };
762
memcg_page_state(struct mem_cgroup * memcg,int idx)763 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
764 {
765 long x = READ_ONCE(memcg->vmstats->state[idx]);
766 #ifdef CONFIG_SMP
767 if (x < 0)
768 x = 0;
769 #endif
770 return x;
771 }
772
773 /**
774 * __mod_memcg_state - update cgroup memory statistics
775 * @memcg: the memory cgroup
776 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777 * @val: delta to add to the counter, can be negative
778 */
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)779 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780 {
781 if (mem_cgroup_disabled())
782 return;
783
784 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
785 memcg_rstat_updated(memcg, val);
786 }
787
788 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)789 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
790 {
791 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
792
793 #ifdef CONFIG_SMP
794 if (x < 0)
795 x = 0;
796 #endif
797 return x;
798 }
799
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)800 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 int val)
802 {
803 struct mem_cgroup_per_node *pn;
804 struct mem_cgroup *memcg;
805
806 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
807 memcg = pn->memcg;
808
809 /*
810 * The caller from rmap relay on disabled preemption becase they never
811 * update their counter from in-interrupt context. For these two
812 * counters we check that the update is never performed from an
813 * interrupt context while other caller need to have disabled interrupt.
814 */
815 __memcg_stats_lock();
816 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
817 switch (idx) {
818 case NR_ANON_MAPPED:
819 case NR_FILE_MAPPED:
820 case NR_ANON_THPS:
821 case NR_SHMEM_PMDMAPPED:
822 case NR_FILE_PMDMAPPED:
823 WARN_ON_ONCE(!in_task());
824 break;
825 default:
826 VM_WARN_ON_IRQS_ENABLED();
827 }
828 }
829
830 /* Update memcg */
831 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
832
833 /* Update lruvec */
834 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
835
836 memcg_rstat_updated(memcg, val);
837 memcg_stats_unlock();
838 }
839
840 /**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)850 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852 {
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled()) {
858 #ifdef CONFIG_HYPERHOLD_FILE_LRU
859 if (is_node_lruvec(lruvec))
860 return;
861 #endif
862 __mod_memcg_lruvec_state(lruvec, idx, val);
863 }
864 }
865
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)866 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
867 int val)
868 {
869 struct page *head = compound_head(page); /* rmap on tail pages */
870 struct mem_cgroup *memcg;
871 pg_data_t *pgdat = page_pgdat(page);
872 struct lruvec *lruvec;
873
874 #ifdef CONFIG_HYPERHOLD_FILE_LRU
875 if (is_file_page(page) && !is_prot_page(page)) {
876 __mod_node_page_state(pgdat, idx, val);
877 return;
878 }
879 #endif
880
881 rcu_read_lock();
882 memcg = page_memcg(head);
883 /* Untracked pages have no memcg, no lruvec. Update only the node */
884 if (!memcg) {
885 rcu_read_unlock();
886 __mod_node_page_state(pgdat, idx, val);
887 return;
888 }
889
890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
891 __mod_lruvec_state(lruvec, idx, val);
892 rcu_read_unlock();
893 }
894 EXPORT_SYMBOL(__mod_lruvec_page_state);
895
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)896 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
897 {
898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
903 memcg = mem_cgroup_from_slab_obj(p);
904
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
912 __mod_node_page_state(pgdat, idx, val);
913 } else {
914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918 }
919
920 /**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
924 * @count: the number of events that occurred
925 */
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)926 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928 {
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
932 return;
933 #ifdef CONFIG_HYPERHOLD_FILE_LRU
934 if (!memcg)
935 return;
936 #endif
937
938 memcg_stats_lock();
939 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
940 memcg_rstat_updated(memcg, count);
941 memcg_stats_unlock();
942 }
943
memcg_events(struct mem_cgroup * memcg,int event)944 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
945 {
946 int index = memcg_events_index(event);
947
948 if (index < 0)
949 return 0;
950 return READ_ONCE(memcg->vmstats->events[index]);
951 }
952
memcg_events_local(struct mem_cgroup * memcg,int event)953 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
954 {
955 int index = memcg_events_index(event);
956
957 if (index < 0)
958 return 0;
959
960 return READ_ONCE(memcg->vmstats->events_local[index]);
961 }
962
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,int nr_pages)963 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
964 int nr_pages)
965 {
966 /* pagein of a big page is an event. So, ignore page size */
967 if (nr_pages > 0)
968 __count_memcg_events(memcg, PGPGIN, 1);
969 else {
970 __count_memcg_events(memcg, PGPGOUT, 1);
971 nr_pages = -nr_pages; /* for event */
972 }
973
974 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
975 }
976
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)977 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
979 {
980 unsigned long val, next;
981
982 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
983 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
984 /* from time_after() in jiffies.h */
985 if ((long)(next - val) < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 default:
994 break;
995 }
996 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
997 return true;
998 }
999 return false;
1000 }
1001
1002 /*
1003 * Check events in order.
1004 *
1005 */
memcg_check_events(struct mem_cgroup * memcg,int nid)1006 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1007 {
1008 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1009 return;
1010
1011 /* threshold event is triggered in finer grain than soft limit */
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
1014 bool do_softlimit;
1015
1016 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1017 MEM_CGROUP_TARGET_SOFTLIMIT);
1018 mem_cgroup_threshold(memcg);
1019 if (unlikely(do_softlimit))
1020 mem_cgroup_update_tree(memcg, nid);
1021 }
1022 }
1023
mem_cgroup_from_task(struct task_struct * p)1024 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1025 {
1026 /*
1027 * mm_update_next_owner() may clear mm->owner to NULL
1028 * if it races with swapoff, page migration, etc.
1029 * So this can be called with p == NULL.
1030 */
1031 if (unlikely(!p))
1032 return NULL;
1033
1034 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1035 }
1036 EXPORT_SYMBOL(mem_cgroup_from_task);
1037
active_memcg(void)1038 static __always_inline struct mem_cgroup *active_memcg(void)
1039 {
1040 if (!in_task())
1041 return this_cpu_read(int_active_memcg);
1042 else
1043 return current->active_memcg;
1044 }
1045
1046 /**
1047 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1048 * @mm: mm from which memcg should be extracted. It can be NULL.
1049 *
1050 * Obtain a reference on mm->memcg and returns it if successful. If mm
1051 * is NULL, then the memcg is chosen as follows:
1052 * 1) The active memcg, if set.
1053 * 2) current->mm->memcg, if available
1054 * 3) root memcg
1055 * If mem_cgroup is disabled, NULL is returned.
1056 */
get_mem_cgroup_from_mm(struct mm_struct * mm)1057 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1058 {
1059 struct mem_cgroup *memcg;
1060
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
1064 /*
1065 * Page cache insertions can happen without an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1068 *
1069 * No need to css_get on root memcg as the reference
1070 * counting is disabled on the root level in the
1071 * cgroup core. See CSS_NO_REF.
1072 */
1073 if (unlikely(!mm)) {
1074 memcg = active_memcg();
1075 if (unlikely(memcg)) {
1076 /* remote memcg must hold a ref */
1077 css_get(&memcg->css);
1078 return memcg;
1079 }
1080 mm = current->mm;
1081 if (unlikely(!mm))
1082 return root_mem_cgroup;
1083 }
1084
1085 rcu_read_lock();
1086 do {
1087 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1088 if (unlikely(!memcg))
1089 memcg = root_mem_cgroup;
1090 } while (!css_tryget(&memcg->css));
1091 rcu_read_unlock();
1092 return memcg;
1093 }
1094 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1095
memcg_kmem_bypass(void)1096 static __always_inline bool memcg_kmem_bypass(void)
1097 {
1098 /* Allow remote memcg charging from any context. */
1099 if (unlikely(active_memcg()))
1100 return false;
1101
1102 /* Memcg to charge can't be determined. */
1103 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1104 return true;
1105
1106 return false;
1107 }
1108
1109 /**
1110 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1111 * @root: hierarchy root
1112 * @prev: previously returned memcg, NULL on first invocation
1113 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1114 *
1115 * Returns references to children of the hierarchy below @root, or
1116 * @root itself, or %NULL after a full round-trip.
1117 *
1118 * Caller must pass the return value in @prev on subsequent
1119 * invocations for reference counting, or use mem_cgroup_iter_break()
1120 * to cancel a hierarchy walk before the round-trip is complete.
1121 *
1122 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1123 * in the hierarchy among all concurrent reclaimers operating on the
1124 * same node.
1125 */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1126 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1127 struct mem_cgroup *prev,
1128 struct mem_cgroup_reclaim_cookie *reclaim)
1129 {
1130 struct mem_cgroup_reclaim_iter *iter;
1131 struct cgroup_subsys_state *css = NULL;
1132 struct mem_cgroup *memcg = NULL;
1133 struct mem_cgroup *pos = NULL;
1134
1135 if (mem_cgroup_disabled())
1136 return NULL;
1137
1138 if (!root)
1139 root = root_mem_cgroup;
1140
1141 rcu_read_lock();
1142
1143 if (reclaim) {
1144 struct mem_cgroup_per_node *mz;
1145
1146 mz = root->nodeinfo[reclaim->pgdat->node_id];
1147 iter = &mz->iter;
1148
1149 /*
1150 * On start, join the current reclaim iteration cycle.
1151 * Exit when a concurrent walker completes it.
1152 */
1153 if (!prev)
1154 reclaim->generation = iter->generation;
1155 else if (reclaim->generation != iter->generation)
1156 goto out_unlock;
1157
1158 while (1) {
1159 pos = READ_ONCE(iter->position);
1160 if (!pos || css_tryget(&pos->css))
1161 break;
1162 /*
1163 * css reference reached zero, so iter->position will
1164 * be cleared by ->css_released. However, we should not
1165 * rely on this happening soon, because ->css_released
1166 * is called from a work queue, and by busy-waiting we
1167 * might block it. So we clear iter->position right
1168 * away.
1169 */
1170 (void)cmpxchg(&iter->position, pos, NULL);
1171 }
1172 } else if (prev) {
1173 pos = prev;
1174 }
1175
1176 if (pos)
1177 css = &pos->css;
1178
1179 for (;;) {
1180 css = css_next_descendant_pre(css, &root->css);
1181 if (!css) {
1182 /*
1183 * Reclaimers share the hierarchy walk, and a
1184 * new one might jump in right at the end of
1185 * the hierarchy - make sure they see at least
1186 * one group and restart from the beginning.
1187 */
1188 if (!prev)
1189 continue;
1190 break;
1191 }
1192
1193 /*
1194 * Verify the css and acquire a reference. The root
1195 * is provided by the caller, so we know it's alive
1196 * and kicking, and don't take an extra reference.
1197 */
1198 if (css == &root->css || css_tryget(css)) {
1199 memcg = mem_cgroup_from_css(css);
1200 break;
1201 }
1202 }
1203
1204 if (reclaim) {
1205 /*
1206 * The position could have already been updated by a competing
1207 * thread, so check that the value hasn't changed since we read
1208 * it to avoid reclaiming from the same cgroup twice.
1209 */
1210 (void)cmpxchg(&iter->position, pos, memcg);
1211
1212 if (pos)
1213 css_put(&pos->css);
1214
1215 if (!memcg)
1216 iter->generation++;
1217 }
1218
1219 out_unlock:
1220 rcu_read_unlock();
1221 if (prev && prev != root)
1222 css_put(&prev->css);
1223
1224 return memcg;
1225 }
1226
1227 /**
1228 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1229 * @root: hierarchy root
1230 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1231 */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1232 void mem_cgroup_iter_break(struct mem_cgroup *root,
1233 struct mem_cgroup *prev)
1234 {
1235 if (!root)
1236 root = root_mem_cgroup;
1237 if (prev && prev != root)
1238 css_put(&prev->css);
1239 }
1240
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1241 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1242 struct mem_cgroup *dead_memcg)
1243 {
1244 struct mem_cgroup_reclaim_iter *iter;
1245 struct mem_cgroup_per_node *mz;
1246 int nid;
1247
1248 for_each_node(nid) {
1249 mz = from->nodeinfo[nid];
1250 iter = &mz->iter;
1251 cmpxchg(&iter->position, dead_memcg, NULL);
1252 }
1253 }
1254
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1255 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1256 {
1257 struct mem_cgroup *memcg = dead_memcg;
1258 struct mem_cgroup *last;
1259
1260 do {
1261 __invalidate_reclaim_iterators(memcg, dead_memcg);
1262 last = memcg;
1263 } while ((memcg = parent_mem_cgroup(memcg)));
1264
1265 /*
1266 * When cgroup1 non-hierarchy mode is used,
1267 * parent_mem_cgroup() does not walk all the way up to the
1268 * cgroup root (root_mem_cgroup). So we have to handle
1269 * dead_memcg from cgroup root separately.
1270 */
1271 if (!mem_cgroup_is_root(last))
1272 __invalidate_reclaim_iterators(root_mem_cgroup,
1273 dead_memcg);
1274 }
1275
1276 /**
1277 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1278 * @memcg: hierarchy root
1279 * @fn: function to call for each task
1280 * @arg: argument passed to @fn
1281 *
1282 * This function iterates over tasks attached to @memcg or to any of its
1283 * descendants and calls @fn for each task. If @fn returns a non-zero
1284 * value, the function breaks the iteration loop. Otherwise, it will iterate
1285 * over all tasks and return 0.
1286 *
1287 * This function must not be called for the root memory cgroup.
1288 */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1289 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1290 int (*fn)(struct task_struct *, void *), void *arg)
1291 {
1292 struct mem_cgroup *iter;
1293 int ret = 0;
1294 int i = 0;
1295
1296 BUG_ON(mem_cgroup_is_root(memcg));
1297
1298 for_each_mem_cgroup_tree(iter, memcg) {
1299 struct css_task_iter it;
1300 struct task_struct *task;
1301
1302 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1303 while (!ret && (task = css_task_iter_next(&it))) {
1304 /* Avoid potential softlockup warning */
1305 if ((++i & 1023) == 0)
1306 cond_resched();
1307 ret = fn(task, arg);
1308 }
1309 css_task_iter_end(&it);
1310 if (ret) {
1311 mem_cgroup_iter_break(memcg, iter);
1312 break;
1313 }
1314 }
1315 }
1316
1317 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1318 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1319 {
1320 struct mem_cgroup *memcg;
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
1325 memcg = folio_memcg(folio);
1326
1327 if (!memcg)
1328 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1329 else
1330 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1331 }
1332 #endif
1333
1334 /**
1335 * folio_lruvec_lock - Lock the lruvec for a folio.
1336 * @folio: Pointer to the folio.
1337 *
1338 * These functions are safe to use under any of the following conditions:
1339 * - folio locked
1340 * - folio_test_lru false
1341 * - folio_memcg_lock()
1342 * - folio frozen (refcount of 0)
1343 *
1344 * Return: The lruvec this folio is on with its lock held.
1345 */
folio_lruvec_lock(struct folio * folio)1346 struct lruvec *folio_lruvec_lock(struct folio *folio)
1347 {
1348 struct lruvec *lruvec = folio_lruvec(folio);
1349
1350 spin_lock(&lruvec->lru_lock);
1351 lruvec_memcg_debug(lruvec, folio);
1352
1353 return lruvec;
1354 }
1355
1356 /**
1357 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1358 * @folio: Pointer to the folio.
1359 *
1360 * These functions are safe to use under any of the following conditions:
1361 * - folio locked
1362 * - folio_test_lru false
1363 * - folio_memcg_lock()
1364 * - folio frozen (refcount of 0)
1365 *
1366 * Return: The lruvec this folio is on with its lock held and interrupts
1367 * disabled.
1368 */
folio_lruvec_lock_irq(struct folio * folio)1369 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1370 {
1371 struct lruvec *lruvec = folio_lruvec(folio);
1372
1373 spin_lock_irq(&lruvec->lru_lock);
1374 lruvec_memcg_debug(lruvec, folio);
1375
1376 return lruvec;
1377 }
1378
1379 /**
1380 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1381 * @folio: Pointer to the folio.
1382 * @flags: Pointer to irqsave flags.
1383 *
1384 * These functions are safe to use under any of the following conditions:
1385 * - folio locked
1386 * - folio_test_lru false
1387 * - folio_memcg_lock()
1388 * - folio frozen (refcount of 0)
1389 *
1390 * Return: The lruvec this folio is on with its lock held and interrupts
1391 * disabled.
1392 */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1393 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1394 unsigned long *flags)
1395 {
1396 struct lruvec *lruvec = folio_lruvec(folio);
1397
1398 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1399 lruvec_memcg_debug(lruvec, folio);
1400
1401 return lruvec;
1402 }
1403
1404 /**
1405 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1406 * @lruvec: mem_cgroup per zone lru vector
1407 * @lru: index of lru list the page is sitting on
1408 * @zid: zone id of the accounted pages
1409 * @nr_pages: positive when adding or negative when removing
1410 *
1411 * This function must be called under lru_lock, just before a page is added
1412 * to or just after a page is removed from an lru list.
1413 */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1414 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1415 int zid, int nr_pages)
1416 {
1417 struct mem_cgroup_per_node *mz;
1418 unsigned long *lru_size;
1419 long size;
1420
1421 if (mem_cgroup_disabled())
1422 return;
1423
1424 #ifdef CONFIG_HYPERHOLD_FILE_LRU
1425 if (is_node_lruvec(lruvec))
1426 return;
1427 #endif
1428
1429 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1430 lru_size = &mz->lru_zone_size[zid][lru];
1431
1432 if (nr_pages < 0)
1433 *lru_size += nr_pages;
1434
1435 size = *lru_size;
1436 if (WARN_ONCE(size < 0,
1437 "%s(%p, %d, %d): lru_size %ld\n",
1438 __func__, lruvec, lru, nr_pages, size)) {
1439 VM_BUG_ON(1);
1440 *lru_size = 0;
1441 }
1442
1443 if (nr_pages > 0)
1444 *lru_size += nr_pages;
1445 }
1446
1447 /**
1448 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1449 * @memcg: the memory cgroup
1450 *
1451 * Returns the maximum amount of memory @mem can be charged with, in
1452 * pages.
1453 */
mem_cgroup_margin(struct mem_cgroup * memcg)1454 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1455 {
1456 unsigned long margin = 0;
1457 unsigned long count;
1458 unsigned long limit;
1459
1460 count = page_counter_read(&memcg->memory);
1461 limit = READ_ONCE(memcg->memory.max);
1462 if (count < limit)
1463 margin = limit - count;
1464
1465 if (do_memsw_account()) {
1466 count = page_counter_read(&memcg->memsw);
1467 limit = READ_ONCE(memcg->memsw.max);
1468 if (count < limit)
1469 margin = min(margin, limit - count);
1470 else
1471 margin = 0;
1472 }
1473
1474 return margin;
1475 }
1476
1477 /*
1478 * A routine for checking "mem" is under move_account() or not.
1479 *
1480 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1481 * moving cgroups. This is for waiting at high-memory pressure
1482 * caused by "move".
1483 */
mem_cgroup_under_move(struct mem_cgroup * memcg)1484 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1485 {
1486 struct mem_cgroup *from;
1487 struct mem_cgroup *to;
1488 bool ret = false;
1489 /*
1490 * Unlike task_move routines, we access mc.to, mc.from not under
1491 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1492 */
1493 spin_lock(&mc.lock);
1494 from = mc.from;
1495 to = mc.to;
1496 if (!from)
1497 goto unlock;
1498
1499 ret = mem_cgroup_is_descendant(from, memcg) ||
1500 mem_cgroup_is_descendant(to, memcg);
1501 unlock:
1502 spin_unlock(&mc.lock);
1503 return ret;
1504 }
1505
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1506 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1507 {
1508 if (mc.moving_task && current != mc.moving_task) {
1509 if (mem_cgroup_under_move(memcg)) {
1510 DEFINE_WAIT(wait);
1511 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1512 /* moving charge context might have finished. */
1513 if (mc.moving_task)
1514 schedule();
1515 finish_wait(&mc.waitq, &wait);
1516 return true;
1517 }
1518 }
1519 return false;
1520 }
1521
1522 struct memory_stat {
1523 const char *name;
1524 unsigned int idx;
1525 };
1526
1527 static const struct memory_stat memory_stats[] = {
1528 { "anon", NR_ANON_MAPPED },
1529 { "file", NR_FILE_PAGES },
1530 { "kernel", MEMCG_KMEM },
1531 { "kernel_stack", NR_KERNEL_STACK_KB },
1532 { "pagetables", NR_PAGETABLE },
1533 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1534 { "percpu", MEMCG_PERCPU_B },
1535 { "sock", MEMCG_SOCK },
1536 { "vmalloc", MEMCG_VMALLOC },
1537 { "shmem", NR_SHMEM },
1538 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1539 { "zswap", MEMCG_ZSWAP_B },
1540 { "zswapped", MEMCG_ZSWAPPED },
1541 #endif
1542 { "file_mapped", NR_FILE_MAPPED },
1543 { "file_dirty", NR_FILE_DIRTY },
1544 { "file_writeback", NR_WRITEBACK },
1545 #ifdef CONFIG_SWAP
1546 { "swapcached", NR_SWAPCACHE },
1547 #endif
1548 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1549 { "anon_thp", NR_ANON_THPS },
1550 { "file_thp", NR_FILE_THPS },
1551 { "shmem_thp", NR_SHMEM_THPS },
1552 #endif
1553 { "inactive_anon", NR_INACTIVE_ANON },
1554 { "active_anon", NR_ACTIVE_ANON },
1555 { "inactive_file", NR_INACTIVE_FILE },
1556 { "active_file", NR_ACTIVE_FILE },
1557 { "unevictable", NR_UNEVICTABLE },
1558 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1559 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1560
1561 /* The memory events */
1562 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1563 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1564 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1565 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1566 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1567 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1568 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1569 };
1570
1571 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_unit(int item)1572 static int memcg_page_state_unit(int item)
1573 {
1574 switch (item) {
1575 case MEMCG_PERCPU_B:
1576 case MEMCG_ZSWAP_B:
1577 case NR_SLAB_RECLAIMABLE_B:
1578 case NR_SLAB_UNRECLAIMABLE_B:
1579 case WORKINGSET_REFAULT_ANON:
1580 case WORKINGSET_REFAULT_FILE:
1581 case WORKINGSET_ACTIVATE_ANON:
1582 case WORKINGSET_ACTIVATE_FILE:
1583 case WORKINGSET_RESTORE_ANON:
1584 case WORKINGSET_RESTORE_FILE:
1585 case WORKINGSET_NODERECLAIM:
1586 return 1;
1587 case NR_KERNEL_STACK_KB:
1588 return SZ_1K;
1589 default:
1590 return PAGE_SIZE;
1591 }
1592 }
1593
memcg_page_state_output(struct mem_cgroup * memcg,int item)1594 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1595 int item)
1596 {
1597 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1598 }
1599
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1600 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1601 {
1602 int i;
1603
1604 /*
1605 * Provide statistics on the state of the memory subsystem as
1606 * well as cumulative event counters that show past behavior.
1607 *
1608 * This list is ordered following a combination of these gradients:
1609 * 1) generic big picture -> specifics and details
1610 * 2) reflecting userspace activity -> reflecting kernel heuristics
1611 *
1612 * Current memory state:
1613 */
1614 mem_cgroup_flush_stats();
1615
1616 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1617 u64 size;
1618
1619 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1620 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1621
1622 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1623 size += memcg_page_state_output(memcg,
1624 NR_SLAB_RECLAIMABLE_B);
1625 seq_buf_printf(s, "slab %llu\n", size);
1626 }
1627 }
1628
1629 /* Accumulated memory events */
1630 seq_buf_printf(s, "pgscan %lu\n",
1631 memcg_events(memcg, PGSCAN_KSWAPD) +
1632 memcg_events(memcg, PGSCAN_DIRECT) +
1633 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1634 seq_buf_printf(s, "pgsteal %lu\n",
1635 memcg_events(memcg, PGSTEAL_KSWAPD) +
1636 memcg_events(memcg, PGSTEAL_DIRECT) +
1637 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1638
1639 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1640 if (memcg_vm_event_stat[i] == PGPGIN ||
1641 memcg_vm_event_stat[i] == PGPGOUT)
1642 continue;
1643
1644 seq_buf_printf(s, "%s %lu\n",
1645 vm_event_name(memcg_vm_event_stat[i]),
1646 memcg_events(memcg, memcg_vm_event_stat[i]));
1647 }
1648
1649 /* The above should easily fit into one page */
1650 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1651 }
1652
1653 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1654
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1655 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1656 {
1657 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1658 memcg_stat_format(memcg, s);
1659 else
1660 memcg1_stat_format(memcg, s);
1661 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1662 }
1663
1664 /**
1665 * mem_cgroup_print_oom_context: Print OOM information relevant to
1666 * memory controller.
1667 * @memcg: The memory cgroup that went over limit
1668 * @p: Task that is going to be killed
1669 *
1670 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1671 * enabled
1672 */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1673 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1674 {
1675 rcu_read_lock();
1676
1677 if (memcg) {
1678 pr_cont(",oom_memcg=");
1679 pr_cont_cgroup_path(memcg->css.cgroup);
1680 } else
1681 pr_cont(",global_oom");
1682 if (p) {
1683 pr_cont(",task_memcg=");
1684 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1685 }
1686 rcu_read_unlock();
1687 }
1688
1689 /**
1690 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1691 * memory controller.
1692 * @memcg: The memory cgroup that went over limit
1693 */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1694 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1695 {
1696 /* Use static buffer, for the caller is holding oom_lock. */
1697 static char buf[PAGE_SIZE];
1698 struct seq_buf s;
1699
1700 lockdep_assert_held(&oom_lock);
1701
1702 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1703 K((u64)page_counter_read(&memcg->memory)),
1704 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1705 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1706 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1707 K((u64)page_counter_read(&memcg->swap)),
1708 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1709 else {
1710 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1711 K((u64)page_counter_read(&memcg->memsw)),
1712 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1713 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1714 K((u64)page_counter_read(&memcg->kmem)),
1715 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1716 }
1717
1718 pr_info("Memory cgroup stats for ");
1719 pr_cont_cgroup_path(memcg->css.cgroup);
1720 pr_cont(":");
1721 seq_buf_init(&s, buf, sizeof(buf));
1722 memory_stat_format(memcg, &s);
1723 seq_buf_do_printk(&s, KERN_INFO);
1724 }
1725
1726 /*
1727 * Return the memory (and swap, if configured) limit for a memcg.
1728 */
mem_cgroup_get_max(struct mem_cgroup * memcg)1729 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1730 {
1731 unsigned long max = READ_ONCE(memcg->memory.max);
1732
1733 if (do_memsw_account()) {
1734 if (mem_cgroup_swappiness(memcg)) {
1735 /* Calculate swap excess capacity from memsw limit */
1736 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1737
1738 max += min(swap, (unsigned long)total_swap_pages);
1739 }
1740 } else {
1741 if (mem_cgroup_swappiness(memcg))
1742 max += min(READ_ONCE(memcg->swap.max),
1743 (unsigned long)total_swap_pages);
1744 }
1745 return max;
1746 }
1747
mem_cgroup_size(struct mem_cgroup * memcg)1748 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1749 {
1750 return page_counter_read(&memcg->memory);
1751 }
1752
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1753 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1754 int order)
1755 {
1756 struct oom_control oc = {
1757 .zonelist = NULL,
1758 .nodemask = NULL,
1759 .memcg = memcg,
1760 .gfp_mask = gfp_mask,
1761 .order = order,
1762 };
1763 bool ret = true;
1764
1765 if (mutex_lock_killable(&oom_lock))
1766 return true;
1767
1768 if (mem_cgroup_margin(memcg) >= (1 << order))
1769 goto unlock;
1770
1771 /*
1772 * A few threads which were not waiting at mutex_lock_killable() can
1773 * fail to bail out. Therefore, check again after holding oom_lock.
1774 */
1775 ret = task_is_dying() || out_of_memory(&oc);
1776
1777 unlock:
1778 mutex_unlock(&oom_lock);
1779 return ret;
1780 }
1781
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1782 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1783 pg_data_t *pgdat,
1784 gfp_t gfp_mask,
1785 unsigned long *total_scanned)
1786 {
1787 struct mem_cgroup *victim = NULL;
1788 int total = 0;
1789 int loop = 0;
1790 unsigned long excess;
1791 unsigned long nr_scanned;
1792 struct mem_cgroup_reclaim_cookie reclaim = {
1793 .pgdat = pgdat,
1794 };
1795
1796 excess = soft_limit_excess(root_memcg);
1797
1798 while (1) {
1799 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1800 if (!victim) {
1801 loop++;
1802 if (loop >= 2) {
1803 /*
1804 * If we have not been able to reclaim
1805 * anything, it might because there are
1806 * no reclaimable pages under this hierarchy
1807 */
1808 if (!total)
1809 break;
1810 /*
1811 * We want to do more targeted reclaim.
1812 * excess >> 2 is not to excessive so as to
1813 * reclaim too much, nor too less that we keep
1814 * coming back to reclaim from this cgroup
1815 */
1816 if (total >= (excess >> 2) ||
1817 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1818 break;
1819 }
1820 continue;
1821 }
1822 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1823 pgdat, &nr_scanned);
1824 *total_scanned += nr_scanned;
1825 if (!soft_limit_excess(root_memcg))
1826 break;
1827 }
1828 mem_cgroup_iter_break(root_memcg, victim);
1829 return total;
1830 }
1831
1832 #ifdef CONFIG_LOCKDEP
1833 static struct lockdep_map memcg_oom_lock_dep_map = {
1834 .name = "memcg_oom_lock",
1835 };
1836 #endif
1837
1838 static DEFINE_SPINLOCK(memcg_oom_lock);
1839
1840 /*
1841 * Check OOM-Killer is already running under our hierarchy.
1842 * If someone is running, return false.
1843 */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1844 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1845 {
1846 struct mem_cgroup *iter, *failed = NULL;
1847
1848 spin_lock(&memcg_oom_lock);
1849
1850 for_each_mem_cgroup_tree(iter, memcg) {
1851 if (iter->oom_lock) {
1852 /*
1853 * this subtree of our hierarchy is already locked
1854 * so we cannot give a lock.
1855 */
1856 failed = iter;
1857 mem_cgroup_iter_break(memcg, iter);
1858 break;
1859 } else
1860 iter->oom_lock = true;
1861 }
1862
1863 if (failed) {
1864 /*
1865 * OK, we failed to lock the whole subtree so we have
1866 * to clean up what we set up to the failing subtree
1867 */
1868 for_each_mem_cgroup_tree(iter, memcg) {
1869 if (iter == failed) {
1870 mem_cgroup_iter_break(memcg, iter);
1871 break;
1872 }
1873 iter->oom_lock = false;
1874 }
1875 } else
1876 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1877
1878 spin_unlock(&memcg_oom_lock);
1879
1880 return !failed;
1881 }
1882
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1883 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1884 {
1885 struct mem_cgroup *iter;
1886
1887 spin_lock(&memcg_oom_lock);
1888 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1889 for_each_mem_cgroup_tree(iter, memcg)
1890 iter->oom_lock = false;
1891 spin_unlock(&memcg_oom_lock);
1892 }
1893
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1894 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1895 {
1896 struct mem_cgroup *iter;
1897
1898 spin_lock(&memcg_oom_lock);
1899 for_each_mem_cgroup_tree(iter, memcg)
1900 iter->under_oom++;
1901 spin_unlock(&memcg_oom_lock);
1902 }
1903
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1904 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1905 {
1906 struct mem_cgroup *iter;
1907
1908 /*
1909 * Be careful about under_oom underflows because a child memcg
1910 * could have been added after mem_cgroup_mark_under_oom.
1911 */
1912 spin_lock(&memcg_oom_lock);
1913 for_each_mem_cgroup_tree(iter, memcg)
1914 if (iter->under_oom > 0)
1915 iter->under_oom--;
1916 spin_unlock(&memcg_oom_lock);
1917 }
1918
1919 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1920
1921 struct oom_wait_info {
1922 struct mem_cgroup *memcg;
1923 wait_queue_entry_t wait;
1924 };
1925
memcg_oom_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * arg)1926 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1927 unsigned mode, int sync, void *arg)
1928 {
1929 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1930 struct mem_cgroup *oom_wait_memcg;
1931 struct oom_wait_info *oom_wait_info;
1932
1933 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1934 oom_wait_memcg = oom_wait_info->memcg;
1935
1936 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1937 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1938 return 0;
1939 return autoremove_wake_function(wait, mode, sync, arg);
1940 }
1941
memcg_oom_recover(struct mem_cgroup * memcg)1942 static void memcg_oom_recover(struct mem_cgroup *memcg)
1943 {
1944 /*
1945 * For the following lockless ->under_oom test, the only required
1946 * guarantee is that it must see the state asserted by an OOM when
1947 * this function is called as a result of userland actions
1948 * triggered by the notification of the OOM. This is trivially
1949 * achieved by invoking mem_cgroup_mark_under_oom() before
1950 * triggering notification.
1951 */
1952 if (memcg && memcg->under_oom)
1953 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1954 }
1955
1956 /*
1957 * Returns true if successfully killed one or more processes. Though in some
1958 * corner cases it can return true even without killing any process.
1959 */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1960 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1961 {
1962 bool locked, ret;
1963
1964 if (order > PAGE_ALLOC_COSTLY_ORDER)
1965 return false;
1966
1967 memcg_memory_event(memcg, MEMCG_OOM);
1968
1969 /*
1970 * We are in the middle of the charge context here, so we
1971 * don't want to block when potentially sitting on a callstack
1972 * that holds all kinds of filesystem and mm locks.
1973 *
1974 * cgroup1 allows disabling the OOM killer and waiting for outside
1975 * handling until the charge can succeed; remember the context and put
1976 * the task to sleep at the end of the page fault when all locks are
1977 * released.
1978 *
1979 * On the other hand, in-kernel OOM killer allows for an async victim
1980 * memory reclaim (oom_reaper) and that means that we are not solely
1981 * relying on the oom victim to make a forward progress and we can
1982 * invoke the oom killer here.
1983 *
1984 * Please note that mem_cgroup_out_of_memory might fail to find a
1985 * victim and then we have to bail out from the charge path.
1986 */
1987 if (READ_ONCE(memcg->oom_kill_disable)) {
1988 if (current->in_user_fault) {
1989 css_get(&memcg->css);
1990 current->memcg_in_oom = memcg;
1991 current->memcg_oom_gfp_mask = mask;
1992 current->memcg_oom_order = order;
1993 }
1994 return false;
1995 }
1996
1997 mem_cgroup_mark_under_oom(memcg);
1998
1999 locked = mem_cgroup_oom_trylock(memcg);
2000
2001 if (locked)
2002 mem_cgroup_oom_notify(memcg);
2003
2004 mem_cgroup_unmark_under_oom(memcg);
2005 ret = mem_cgroup_out_of_memory(memcg, mask, order);
2006
2007 if (locked)
2008 mem_cgroup_oom_unlock(memcg);
2009
2010 return ret;
2011 }
2012
2013 /**
2014 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2015 * @handle: actually kill/wait or just clean up the OOM state
2016 *
2017 * This has to be called at the end of a page fault if the memcg OOM
2018 * handler was enabled.
2019 *
2020 * Memcg supports userspace OOM handling where failed allocations must
2021 * sleep on a waitqueue until the userspace task resolves the
2022 * situation. Sleeping directly in the charge context with all kinds
2023 * of locks held is not a good idea, instead we remember an OOM state
2024 * in the task and mem_cgroup_oom_synchronize() has to be called at
2025 * the end of the page fault to complete the OOM handling.
2026 *
2027 * Returns %true if an ongoing memcg OOM situation was detected and
2028 * completed, %false otherwise.
2029 */
mem_cgroup_oom_synchronize(bool handle)2030 bool mem_cgroup_oom_synchronize(bool handle)
2031 {
2032 struct mem_cgroup *memcg = current->memcg_in_oom;
2033 struct oom_wait_info owait;
2034 bool locked;
2035
2036 /* OOM is global, do not handle */
2037 if (!memcg)
2038 return false;
2039
2040 if (!handle)
2041 goto cleanup;
2042
2043 owait.memcg = memcg;
2044 owait.wait.flags = 0;
2045 owait.wait.func = memcg_oom_wake_function;
2046 owait.wait.private = current;
2047 INIT_LIST_HEAD(&owait.wait.entry);
2048
2049 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2050 mem_cgroup_mark_under_oom(memcg);
2051
2052 locked = mem_cgroup_oom_trylock(memcg);
2053
2054 if (locked)
2055 mem_cgroup_oom_notify(memcg);
2056
2057 schedule();
2058 mem_cgroup_unmark_under_oom(memcg);
2059 finish_wait(&memcg_oom_waitq, &owait.wait);
2060
2061 if (locked)
2062 mem_cgroup_oom_unlock(memcg);
2063 cleanup:
2064 current->memcg_in_oom = NULL;
2065 css_put(&memcg->css);
2066 return true;
2067 }
2068
2069 /**
2070 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2071 * @victim: task to be killed by the OOM killer
2072 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2073 *
2074 * Returns a pointer to a memory cgroup, which has to be cleaned up
2075 * by killing all belonging OOM-killable tasks.
2076 *
2077 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2078 */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)2079 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2080 struct mem_cgroup *oom_domain)
2081 {
2082 struct mem_cgroup *oom_group = NULL;
2083 struct mem_cgroup *memcg;
2084
2085 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2086 return NULL;
2087
2088 if (!oom_domain)
2089 oom_domain = root_mem_cgroup;
2090
2091 rcu_read_lock();
2092
2093 memcg = mem_cgroup_from_task(victim);
2094 if (mem_cgroup_is_root(memcg))
2095 goto out;
2096
2097 /*
2098 * If the victim task has been asynchronously moved to a different
2099 * memory cgroup, we might end up killing tasks outside oom_domain.
2100 * In this case it's better to ignore memory.group.oom.
2101 */
2102 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2103 goto out;
2104
2105 /*
2106 * Traverse the memory cgroup hierarchy from the victim task's
2107 * cgroup up to the OOMing cgroup (or root) to find the
2108 * highest-level memory cgroup with oom.group set.
2109 */
2110 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2111 if (READ_ONCE(memcg->oom_group))
2112 oom_group = memcg;
2113
2114 if (memcg == oom_domain)
2115 break;
2116 }
2117
2118 if (oom_group)
2119 css_get(&oom_group->css);
2120 out:
2121 rcu_read_unlock();
2122
2123 return oom_group;
2124 }
2125
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)2126 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2127 {
2128 pr_info("Tasks in ");
2129 pr_cont_cgroup_path(memcg->css.cgroup);
2130 pr_cont(" are going to be killed due to memory.oom.group set\n");
2131 }
2132
2133 /**
2134 * folio_memcg_lock - Bind a folio to its memcg.
2135 * @folio: The folio.
2136 *
2137 * This function prevents unlocked LRU folios from being moved to
2138 * another cgroup.
2139 *
2140 * It ensures lifetime of the bound memcg. The caller is responsible
2141 * for the lifetime of the folio.
2142 */
folio_memcg_lock(struct folio * folio)2143 void folio_memcg_lock(struct folio *folio)
2144 {
2145 struct mem_cgroup *memcg;
2146 unsigned long flags;
2147
2148 /*
2149 * The RCU lock is held throughout the transaction. The fast
2150 * path can get away without acquiring the memcg->move_lock
2151 * because page moving starts with an RCU grace period.
2152 */
2153 rcu_read_lock();
2154
2155 if (mem_cgroup_disabled())
2156 return;
2157 again:
2158 memcg = folio_memcg(folio);
2159 if (unlikely(!memcg))
2160 return;
2161
2162 #ifdef CONFIG_PROVE_LOCKING
2163 local_irq_save(flags);
2164 might_lock(&memcg->move_lock);
2165 local_irq_restore(flags);
2166 #endif
2167
2168 if (atomic_read(&memcg->moving_account) <= 0)
2169 return;
2170
2171 spin_lock_irqsave(&memcg->move_lock, flags);
2172 if (memcg != folio_memcg(folio)) {
2173 spin_unlock_irqrestore(&memcg->move_lock, flags);
2174 goto again;
2175 }
2176
2177 /*
2178 * When charge migration first begins, we can have multiple
2179 * critical sections holding the fast-path RCU lock and one
2180 * holding the slowpath move_lock. Track the task who has the
2181 * move_lock for folio_memcg_unlock().
2182 */
2183 memcg->move_lock_task = current;
2184 memcg->move_lock_flags = flags;
2185 }
2186
__folio_memcg_unlock(struct mem_cgroup * memcg)2187 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2188 {
2189 if (memcg && memcg->move_lock_task == current) {
2190 unsigned long flags = memcg->move_lock_flags;
2191
2192 memcg->move_lock_task = NULL;
2193 memcg->move_lock_flags = 0;
2194
2195 spin_unlock_irqrestore(&memcg->move_lock, flags);
2196 }
2197
2198 rcu_read_unlock();
2199 }
2200
2201 /**
2202 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2203 * @folio: The folio.
2204 *
2205 * This releases the binding created by folio_memcg_lock(). This does
2206 * not change the accounting of this folio to its memcg, but it does
2207 * permit others to change it.
2208 */
folio_memcg_unlock(struct folio * folio)2209 void folio_memcg_unlock(struct folio *folio)
2210 {
2211 __folio_memcg_unlock(folio_memcg(folio));
2212 }
2213
2214 struct memcg_stock_pcp {
2215 local_lock_t stock_lock;
2216 struct mem_cgroup *cached; /* this never be root cgroup */
2217 unsigned int nr_pages;
2218
2219 #ifdef CONFIG_MEMCG_KMEM
2220 struct obj_cgroup *cached_objcg;
2221 struct pglist_data *cached_pgdat;
2222 unsigned int nr_bytes;
2223 int nr_slab_reclaimable_b;
2224 int nr_slab_unreclaimable_b;
2225 #endif
2226
2227 struct work_struct work;
2228 unsigned long flags;
2229 #define FLUSHING_CACHED_CHARGE 0
2230 };
2231 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2232 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2233 };
2234 static DEFINE_MUTEX(percpu_charge_mutex);
2235
2236 #ifdef CONFIG_MEMCG_KMEM
2237 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2238 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2239 struct mem_cgroup *root_memcg);
2240 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2241
2242 #else
drain_obj_stock(struct memcg_stock_pcp * stock)2243 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2244 {
2245 return NULL;
2246 }
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)2247 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2248 struct mem_cgroup *root_memcg)
2249 {
2250 return false;
2251 }
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)2252 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2253 {
2254 }
2255 #endif
2256
2257 /**
2258 * consume_stock: Try to consume stocked charge on this cpu.
2259 * @memcg: memcg to consume from.
2260 * @nr_pages: how many pages to charge.
2261 *
2262 * The charges will only happen if @memcg matches the current cpu's memcg
2263 * stock, and at least @nr_pages are available in that stock. Failure to
2264 * service an allocation will refill the stock.
2265 *
2266 * returns true if successful, false otherwise.
2267 */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2268 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2269 {
2270 struct memcg_stock_pcp *stock;
2271 unsigned long flags;
2272 bool ret = false;
2273
2274 if (nr_pages > MEMCG_CHARGE_BATCH)
2275 return ret;
2276
2277 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2278
2279 stock = this_cpu_ptr(&memcg_stock);
2280 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2281 stock->nr_pages -= nr_pages;
2282 ret = true;
2283 }
2284
2285 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2286
2287 return ret;
2288 }
2289
2290 /*
2291 * Returns stocks cached in percpu and reset cached information.
2292 */
drain_stock(struct memcg_stock_pcp * stock)2293 static void drain_stock(struct memcg_stock_pcp *stock)
2294 {
2295 struct mem_cgroup *old = READ_ONCE(stock->cached);
2296
2297 if (!old)
2298 return;
2299
2300 if (stock->nr_pages) {
2301 page_counter_uncharge(&old->memory, stock->nr_pages);
2302 if (do_memsw_account())
2303 page_counter_uncharge(&old->memsw, stock->nr_pages);
2304 stock->nr_pages = 0;
2305 }
2306
2307 css_put(&old->css);
2308 WRITE_ONCE(stock->cached, NULL);
2309 }
2310
drain_local_stock(struct work_struct * dummy)2311 static void drain_local_stock(struct work_struct *dummy)
2312 {
2313 struct memcg_stock_pcp *stock;
2314 struct obj_cgroup *old = NULL;
2315 unsigned long flags;
2316
2317 /*
2318 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2319 * drain_stock races is that we always operate on local CPU stock
2320 * here with IRQ disabled
2321 */
2322 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2323
2324 stock = this_cpu_ptr(&memcg_stock);
2325 old = drain_obj_stock(stock);
2326 drain_stock(stock);
2327 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2328
2329 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330 if (old)
2331 obj_cgroup_put(old);
2332 }
2333
2334 /*
2335 * Cache charges(val) to local per_cpu area.
2336 * This will be consumed by consume_stock() function, later.
2337 */
__refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2338 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2339 {
2340 struct memcg_stock_pcp *stock;
2341
2342 stock = this_cpu_ptr(&memcg_stock);
2343 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2344 drain_stock(stock);
2345 css_get(&memcg->css);
2346 WRITE_ONCE(stock->cached, memcg);
2347 }
2348 stock->nr_pages += nr_pages;
2349
2350 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2351 drain_stock(stock);
2352 }
2353
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)2354 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355 {
2356 unsigned long flags;
2357
2358 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2359 __refill_stock(memcg, nr_pages);
2360 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2361 }
2362
2363 /*
2364 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2365 * of the hierarchy under it.
2366 */
drain_all_stock(struct mem_cgroup * root_memcg)2367 static void drain_all_stock(struct mem_cgroup *root_memcg)
2368 {
2369 int cpu, curcpu;
2370
2371 /* If someone's already draining, avoid adding running more workers. */
2372 if (!mutex_trylock(&percpu_charge_mutex))
2373 return;
2374 /*
2375 * Notify other cpus that system-wide "drain" is running
2376 * We do not care about races with the cpu hotplug because cpu down
2377 * as well as workers from this path always operate on the local
2378 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2379 */
2380 migrate_disable();
2381 curcpu = smp_processor_id();
2382 for_each_online_cpu(cpu) {
2383 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2384 struct mem_cgroup *memcg;
2385 bool flush = false;
2386
2387 rcu_read_lock();
2388 memcg = READ_ONCE(stock->cached);
2389 if (memcg && stock->nr_pages &&
2390 mem_cgroup_is_descendant(memcg, root_memcg))
2391 flush = true;
2392 else if (obj_stock_flush_required(stock, root_memcg))
2393 flush = true;
2394 rcu_read_unlock();
2395
2396 if (flush &&
2397 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2398 if (cpu == curcpu)
2399 drain_local_stock(&stock->work);
2400 else if (!cpu_is_isolated(cpu))
2401 schedule_work_on(cpu, &stock->work);
2402 }
2403 }
2404 migrate_enable();
2405 mutex_unlock(&percpu_charge_mutex);
2406 }
2407
memcg_hotplug_cpu_dead(unsigned int cpu)2408 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2409 {
2410 struct memcg_stock_pcp *stock;
2411
2412 stock = &per_cpu(memcg_stock, cpu);
2413 drain_stock(stock);
2414
2415 return 0;
2416 }
2417
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2418 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2419 unsigned int nr_pages,
2420 gfp_t gfp_mask)
2421 {
2422 unsigned long nr_reclaimed = 0;
2423
2424 do {
2425 unsigned long pflags;
2426
2427 if (page_counter_read(&memcg->memory) <=
2428 READ_ONCE(memcg->memory.high))
2429 continue;
2430
2431 memcg_memory_event(memcg, MEMCG_HIGH);
2432
2433 psi_memstall_enter(&pflags);
2434 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2435 gfp_mask,
2436 MEMCG_RECLAIM_MAY_SWAP);
2437 psi_memstall_leave(&pflags);
2438 } while ((memcg = parent_mem_cgroup(memcg)) &&
2439 !mem_cgroup_is_root(memcg));
2440
2441 return nr_reclaimed;
2442 }
2443
high_work_func(struct work_struct * work)2444 static void high_work_func(struct work_struct *work)
2445 {
2446 struct mem_cgroup *memcg;
2447
2448 memcg = container_of(work, struct mem_cgroup, high_work);
2449 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2450 }
2451
2452 /*
2453 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2454 * enough to still cause a significant slowdown in most cases, while still
2455 * allowing diagnostics and tracing to proceed without becoming stuck.
2456 */
2457 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2458
2459 /*
2460 * When calculating the delay, we use these either side of the exponentiation to
2461 * maintain precision and scale to a reasonable number of jiffies (see the table
2462 * below.
2463 *
2464 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2465 * overage ratio to a delay.
2466 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2467 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2468 * to produce a reasonable delay curve.
2469 *
2470 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2471 * reasonable delay curve compared to precision-adjusted overage, not
2472 * penalising heavily at first, but still making sure that growth beyond the
2473 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2474 * example, with a high of 100 megabytes:
2475 *
2476 * +-------+------------------------+
2477 * | usage | time to allocate in ms |
2478 * +-------+------------------------+
2479 * | 100M | 0 |
2480 * | 101M | 6 |
2481 * | 102M | 25 |
2482 * | 103M | 57 |
2483 * | 104M | 102 |
2484 * | 105M | 159 |
2485 * | 106M | 230 |
2486 * | 107M | 313 |
2487 * | 108M | 409 |
2488 * | 109M | 518 |
2489 * | 110M | 639 |
2490 * | 111M | 774 |
2491 * | 112M | 921 |
2492 * | 113M | 1081 |
2493 * | 114M | 1254 |
2494 * | 115M | 1439 |
2495 * | 116M | 1638 |
2496 * | 117M | 1849 |
2497 * | 118M | 2000 |
2498 * | 119M | 2000 |
2499 * | 120M | 2000 |
2500 * +-------+------------------------+
2501 */
2502 #define MEMCG_DELAY_PRECISION_SHIFT 20
2503 #define MEMCG_DELAY_SCALING_SHIFT 14
2504
calculate_overage(unsigned long usage,unsigned long high)2505 static u64 calculate_overage(unsigned long usage, unsigned long high)
2506 {
2507 u64 overage;
2508
2509 if (usage <= high)
2510 return 0;
2511
2512 /*
2513 * Prevent division by 0 in overage calculation by acting as if
2514 * it was a threshold of 1 page
2515 */
2516 high = max(high, 1UL);
2517
2518 overage = usage - high;
2519 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2520 return div64_u64(overage, high);
2521 }
2522
mem_find_max_overage(struct mem_cgroup * memcg)2523 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2524 {
2525 u64 overage, max_overage = 0;
2526
2527 do {
2528 overage = calculate_overage(page_counter_read(&memcg->memory),
2529 READ_ONCE(memcg->memory.high));
2530 max_overage = max(overage, max_overage);
2531 } while ((memcg = parent_mem_cgroup(memcg)) &&
2532 !mem_cgroup_is_root(memcg));
2533
2534 return max_overage;
2535 }
2536
swap_find_max_overage(struct mem_cgroup * memcg)2537 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2538 {
2539 u64 overage, max_overage = 0;
2540
2541 do {
2542 overage = calculate_overage(page_counter_read(&memcg->swap),
2543 READ_ONCE(memcg->swap.high));
2544 if (overage)
2545 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2546 max_overage = max(overage, max_overage);
2547 } while ((memcg = parent_mem_cgroup(memcg)) &&
2548 !mem_cgroup_is_root(memcg));
2549
2550 return max_overage;
2551 }
2552
2553 /*
2554 * Get the number of jiffies that we should penalise a mischievous cgroup which
2555 * is exceeding its memory.high by checking both it and its ancestors.
2556 */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2557 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2558 unsigned int nr_pages,
2559 u64 max_overage)
2560 {
2561 unsigned long penalty_jiffies;
2562
2563 if (!max_overage)
2564 return 0;
2565
2566 /*
2567 * We use overage compared to memory.high to calculate the number of
2568 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2569 * fairly lenient on small overages, and increasingly harsh when the
2570 * memcg in question makes it clear that it has no intention of stopping
2571 * its crazy behaviour, so we exponentially increase the delay based on
2572 * overage amount.
2573 */
2574 penalty_jiffies = max_overage * max_overage * HZ;
2575 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2576 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2577
2578 /*
2579 * Factor in the task's own contribution to the overage, such that four
2580 * N-sized allocations are throttled approximately the same as one
2581 * 4N-sized allocation.
2582 *
2583 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2584 * larger the current charge patch is than that.
2585 */
2586 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2587 }
2588
2589 /*
2590 * Scheduled by try_charge() to be executed from the userland return path
2591 * and reclaims memory over the high limit.
2592 */
mem_cgroup_handle_over_high(gfp_t gfp_mask)2593 void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2594 {
2595 unsigned long penalty_jiffies;
2596 unsigned long pflags;
2597 unsigned long nr_reclaimed;
2598 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2599 int nr_retries = MAX_RECLAIM_RETRIES;
2600 struct mem_cgroup *memcg;
2601 bool in_retry = false;
2602
2603 if (likely(!nr_pages))
2604 return;
2605
2606 memcg = get_mem_cgroup_from_mm(current->mm);
2607 current->memcg_nr_pages_over_high = 0;
2608
2609 retry_reclaim:
2610 /*
2611 * The allocating task should reclaim at least the batch size, but for
2612 * subsequent retries we only want to do what's necessary to prevent oom
2613 * or breaching resource isolation.
2614 *
2615 * This is distinct from memory.max or page allocator behaviour because
2616 * memory.high is currently batched, whereas memory.max and the page
2617 * allocator run every time an allocation is made.
2618 */
2619 nr_reclaimed = reclaim_high(memcg,
2620 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2621 gfp_mask);
2622
2623 /*
2624 * memory.high is breached and reclaim is unable to keep up. Throttle
2625 * allocators proactively to slow down excessive growth.
2626 */
2627 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2628 mem_find_max_overage(memcg));
2629
2630 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2631 swap_find_max_overage(memcg));
2632
2633 /*
2634 * Clamp the max delay per usermode return so as to still keep the
2635 * application moving forwards and also permit diagnostics, albeit
2636 * extremely slowly.
2637 */
2638 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2639
2640 /*
2641 * Don't sleep if the amount of jiffies this memcg owes us is so low
2642 * that it's not even worth doing, in an attempt to be nice to those who
2643 * go only a small amount over their memory.high value and maybe haven't
2644 * been aggressively reclaimed enough yet.
2645 */
2646 if (penalty_jiffies <= HZ / 100)
2647 goto out;
2648
2649 /*
2650 * If reclaim is making forward progress but we're still over
2651 * memory.high, we want to encourage that rather than doing allocator
2652 * throttling.
2653 */
2654 if (nr_reclaimed || nr_retries--) {
2655 in_retry = true;
2656 goto retry_reclaim;
2657 }
2658
2659 /*
2660 * If we exit early, we're guaranteed to die (since
2661 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2662 * need to account for any ill-begotten jiffies to pay them off later.
2663 */
2664 psi_memstall_enter(&pflags);
2665 schedule_timeout_killable(penalty_jiffies);
2666 psi_memstall_leave(&pflags);
2667
2668 out:
2669 css_put(&memcg->css);
2670 }
2671
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2672 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2673 unsigned int nr_pages)
2674 {
2675 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2676 int nr_retries = MAX_RECLAIM_RETRIES;
2677 struct mem_cgroup *mem_over_limit;
2678 struct page_counter *counter;
2679 unsigned long nr_reclaimed;
2680 bool passed_oom = false;
2681 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2682 bool drained = false;
2683 bool raised_max_event = false;
2684 unsigned long pflags;
2685
2686 retry:
2687 if (consume_stock(memcg, nr_pages))
2688 return 0;
2689
2690 if (!do_memsw_account() ||
2691 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2692 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2693 goto done_restock;
2694 if (do_memsw_account())
2695 page_counter_uncharge(&memcg->memsw, batch);
2696 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2697 } else {
2698 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2699 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2700 }
2701
2702 if (batch > nr_pages) {
2703 batch = nr_pages;
2704 goto retry;
2705 }
2706
2707 /*
2708 * Prevent unbounded recursion when reclaim operations need to
2709 * allocate memory. This might exceed the limits temporarily,
2710 * but we prefer facilitating memory reclaim and getting back
2711 * under the limit over triggering OOM kills in these cases.
2712 */
2713 if (unlikely(current->flags & PF_MEMALLOC))
2714 goto force;
2715
2716 if (unlikely(task_in_memcg_oom(current)))
2717 goto nomem;
2718
2719 if (!gfpflags_allow_blocking(gfp_mask))
2720 goto nomem;
2721
2722 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2723 raised_max_event = true;
2724
2725 psi_memstall_enter(&pflags);
2726 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2727 gfp_mask, reclaim_options);
2728 psi_memstall_leave(&pflags);
2729
2730 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2731 goto retry;
2732
2733 if (!drained) {
2734 drain_all_stock(mem_over_limit);
2735 drained = true;
2736 goto retry;
2737 }
2738
2739 if (gfp_mask & __GFP_NORETRY)
2740 goto nomem;
2741 /*
2742 * Even though the limit is exceeded at this point, reclaim
2743 * may have been able to free some pages. Retry the charge
2744 * before killing the task.
2745 *
2746 * Only for regular pages, though: huge pages are rather
2747 * unlikely to succeed so close to the limit, and we fall back
2748 * to regular pages anyway in case of failure.
2749 */
2750 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2751 goto retry;
2752 /*
2753 * At task move, charge accounts can be doubly counted. So, it's
2754 * better to wait until the end of task_move if something is going on.
2755 */
2756 if (mem_cgroup_wait_acct_move(mem_over_limit))
2757 goto retry;
2758
2759 if (nr_retries--)
2760 goto retry;
2761
2762 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2763 goto nomem;
2764
2765 /* Avoid endless loop for tasks bypassed by the oom killer */
2766 if (passed_oom && task_is_dying())
2767 goto nomem;
2768
2769 /*
2770 * keep retrying as long as the memcg oom killer is able to make
2771 * a forward progress or bypass the charge if the oom killer
2772 * couldn't make any progress.
2773 */
2774 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2775 get_order(nr_pages * PAGE_SIZE))) {
2776 passed_oom = true;
2777 nr_retries = MAX_RECLAIM_RETRIES;
2778 goto retry;
2779 }
2780 nomem:
2781 /*
2782 * Memcg doesn't have a dedicated reserve for atomic
2783 * allocations. But like the global atomic pool, we need to
2784 * put the burden of reclaim on regular allocation requests
2785 * and let these go through as privileged allocations.
2786 */
2787 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2788 return -ENOMEM;
2789 force:
2790 /*
2791 * If the allocation has to be enforced, don't forget to raise
2792 * a MEMCG_MAX event.
2793 */
2794 if (!raised_max_event)
2795 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2796
2797 /*
2798 * The allocation either can't fail or will lead to more memory
2799 * being freed very soon. Allow memory usage go over the limit
2800 * temporarily by force charging it.
2801 */
2802 page_counter_charge(&memcg->memory, nr_pages);
2803 if (do_memsw_account())
2804 page_counter_charge(&memcg->memsw, nr_pages);
2805
2806 return 0;
2807
2808 done_restock:
2809 if (batch > nr_pages)
2810 refill_stock(memcg, batch - nr_pages);
2811
2812 /*
2813 * If the hierarchy is above the normal consumption range, schedule
2814 * reclaim on returning to userland. We can perform reclaim here
2815 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2816 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2817 * not recorded as it most likely matches current's and won't
2818 * change in the meantime. As high limit is checked again before
2819 * reclaim, the cost of mismatch is negligible.
2820 */
2821 do {
2822 bool mem_high, swap_high;
2823
2824 mem_high = page_counter_read(&memcg->memory) >
2825 READ_ONCE(memcg->memory.high);
2826 swap_high = page_counter_read(&memcg->swap) >
2827 READ_ONCE(memcg->swap.high);
2828
2829 /* Don't bother a random interrupted task */
2830 if (!in_task()) {
2831 if (mem_high) {
2832 schedule_work(&memcg->high_work);
2833 break;
2834 }
2835 continue;
2836 }
2837
2838 if (mem_high || swap_high) {
2839 /*
2840 * The allocating tasks in this cgroup will need to do
2841 * reclaim or be throttled to prevent further growth
2842 * of the memory or swap footprints.
2843 *
2844 * Target some best-effort fairness between the tasks,
2845 * and distribute reclaim work and delay penalties
2846 * based on how much each task is actually allocating.
2847 */
2848 current->memcg_nr_pages_over_high += batch;
2849 set_notify_resume(current);
2850 break;
2851 }
2852 } while ((memcg = parent_mem_cgroup(memcg)));
2853
2854 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2855 !(current->flags & PF_MEMALLOC) &&
2856 gfpflags_allow_blocking(gfp_mask)) {
2857 mem_cgroup_handle_over_high(gfp_mask);
2858 }
2859 return 0;
2860 }
2861
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2862 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2863 unsigned int nr_pages)
2864 {
2865 if (mem_cgroup_is_root(memcg))
2866 return 0;
2867
2868 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2869 }
2870
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2871 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2872 {
2873 if (mem_cgroup_is_root(memcg))
2874 return;
2875
2876 page_counter_uncharge(&memcg->memory, nr_pages);
2877 if (do_memsw_account())
2878 page_counter_uncharge(&memcg->memsw, nr_pages);
2879 }
2880
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2881 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2882 {
2883 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2884 /*
2885 * Any of the following ensures page's memcg stability:
2886 *
2887 * - the page lock
2888 * - LRU isolation
2889 * - folio_memcg_lock()
2890 * - exclusive reference
2891 * - mem_cgroup_trylock_pages()
2892 */
2893 folio->memcg_data = (unsigned long)memcg;
2894 }
2895
2896 #ifdef CONFIG_MEMCG_KMEM
2897 /*
2898 * The allocated objcg pointers array is not accounted directly.
2899 * Moreover, it should not come from DMA buffer and is not readily
2900 * reclaimable. So those GFP bits should be masked off.
2901 */
2902 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2903 __GFP_ACCOUNT | __GFP_NOFAIL)
2904
2905 /*
2906 * mod_objcg_mlstate() may be called with irq enabled, so
2907 * mod_memcg_lruvec_state() should be used.
2908 */
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2909 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2910 struct pglist_data *pgdat,
2911 enum node_stat_item idx, int nr)
2912 {
2913 struct mem_cgroup *memcg;
2914 struct lruvec *lruvec;
2915
2916 rcu_read_lock();
2917 memcg = obj_cgroup_memcg(objcg);
2918 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2919 mod_memcg_lruvec_state(lruvec, idx, nr);
2920 rcu_read_unlock();
2921 }
2922
memcg_alloc_slab_cgroups(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2923 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2924 gfp_t gfp, bool new_slab)
2925 {
2926 unsigned int objects = objs_per_slab(s, slab);
2927 unsigned long memcg_data;
2928 void *vec;
2929
2930 gfp &= ~OBJCGS_CLEAR_MASK;
2931 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2932 slab_nid(slab));
2933 if (!vec)
2934 return -ENOMEM;
2935
2936 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2937 if (new_slab) {
2938 /*
2939 * If the slab is brand new and nobody can yet access its
2940 * memcg_data, no synchronization is required and memcg_data can
2941 * be simply assigned.
2942 */
2943 slab->memcg_data = memcg_data;
2944 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2945 /*
2946 * If the slab is already in use, somebody can allocate and
2947 * assign obj_cgroups in parallel. In this case the existing
2948 * objcg vector should be reused.
2949 */
2950 kfree(vec);
2951 return 0;
2952 }
2953
2954 kmemleak_not_leak(vec);
2955 return 0;
2956 }
2957
2958 static __always_inline
mem_cgroup_from_obj_folio(struct folio * folio,void * p)2959 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2960 {
2961 /*
2962 * Slab objects are accounted individually, not per-page.
2963 * Memcg membership data for each individual object is saved in
2964 * slab->memcg_data.
2965 */
2966 if (folio_test_slab(folio)) {
2967 struct obj_cgroup **objcgs;
2968 struct slab *slab;
2969 unsigned int off;
2970
2971 slab = folio_slab(folio);
2972 objcgs = slab_objcgs(slab);
2973 if (!objcgs)
2974 return NULL;
2975
2976 off = obj_to_index(slab->slab_cache, slab, p);
2977 if (objcgs[off])
2978 return obj_cgroup_memcg(objcgs[off]);
2979
2980 return NULL;
2981 }
2982
2983 /*
2984 * folio_memcg_check() is used here, because in theory we can encounter
2985 * a folio where the slab flag has been cleared already, but
2986 * slab->memcg_data has not been freed yet
2987 * folio_memcg_check() will guarantee that a proper memory
2988 * cgroup pointer or NULL will be returned.
2989 */
2990 return folio_memcg_check(folio);
2991 }
2992
2993 /*
2994 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2995 *
2996 * A passed kernel object can be a slab object, vmalloc object or a generic
2997 * kernel page, so different mechanisms for getting the memory cgroup pointer
2998 * should be used.
2999 *
3000 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3001 * can not know for sure how the kernel object is implemented.
3002 * mem_cgroup_from_obj() can be safely used in such cases.
3003 *
3004 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3005 * cgroup_mutex, etc.
3006 */
mem_cgroup_from_obj(void * p)3007 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3008 {
3009 struct folio *folio;
3010
3011 if (mem_cgroup_disabled())
3012 return NULL;
3013
3014 if (unlikely(is_vmalloc_addr(p)))
3015 folio = page_folio(vmalloc_to_page(p));
3016 else
3017 folio = virt_to_folio(p);
3018
3019 return mem_cgroup_from_obj_folio(folio, p);
3020 }
3021
3022 /*
3023 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3024 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3025 * allocated using vmalloc().
3026 *
3027 * A passed kernel object must be a slab object or a generic kernel page.
3028 *
3029 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3030 * cgroup_mutex, etc.
3031 */
mem_cgroup_from_slab_obj(void * p)3032 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3033 {
3034 if (mem_cgroup_disabled())
3035 return NULL;
3036
3037 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3038 }
3039
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)3040 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3041 {
3042 struct obj_cgroup *objcg = NULL;
3043
3044 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3045 objcg = rcu_dereference(memcg->objcg);
3046 if (objcg && obj_cgroup_tryget(objcg))
3047 break;
3048 objcg = NULL;
3049 }
3050 return objcg;
3051 }
3052
get_obj_cgroup_from_current(void)3053 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3054 {
3055 struct obj_cgroup *objcg = NULL;
3056 struct mem_cgroup *memcg;
3057
3058 if (memcg_kmem_bypass())
3059 return NULL;
3060
3061 rcu_read_lock();
3062 if (unlikely(active_memcg()))
3063 memcg = active_memcg();
3064 else
3065 memcg = mem_cgroup_from_task(current);
3066 objcg = __get_obj_cgroup_from_memcg(memcg);
3067 rcu_read_unlock();
3068 return objcg;
3069 }
3070
get_obj_cgroup_from_folio(struct folio * folio)3071 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3072 {
3073 struct obj_cgroup *objcg;
3074
3075 if (!memcg_kmem_online())
3076 return NULL;
3077
3078 if (folio_memcg_kmem(folio)) {
3079 objcg = __folio_objcg(folio);
3080 obj_cgroup_get(objcg);
3081 } else {
3082 struct mem_cgroup *memcg;
3083
3084 rcu_read_lock();
3085 memcg = __folio_memcg(folio);
3086 if (memcg)
3087 objcg = __get_obj_cgroup_from_memcg(memcg);
3088 else
3089 objcg = NULL;
3090 rcu_read_unlock();
3091 }
3092 return objcg;
3093 }
3094
memcg_account_kmem(struct mem_cgroup * memcg,int nr_pages)3095 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3096 {
3097 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3098 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3099 if (nr_pages > 0)
3100 page_counter_charge(&memcg->kmem, nr_pages);
3101 else
3102 page_counter_uncharge(&memcg->kmem, -nr_pages);
3103 }
3104 }
3105
3106
3107 /*
3108 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3109 * @objcg: object cgroup to uncharge
3110 * @nr_pages: number of pages to uncharge
3111 */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)3112 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3113 unsigned int nr_pages)
3114 {
3115 struct mem_cgroup *memcg;
3116
3117 memcg = get_mem_cgroup_from_objcg(objcg);
3118
3119 memcg_account_kmem(memcg, -nr_pages);
3120 refill_stock(memcg, nr_pages);
3121
3122 css_put(&memcg->css);
3123 }
3124
3125 /*
3126 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3127 * @objcg: object cgroup to charge
3128 * @gfp: reclaim mode
3129 * @nr_pages: number of pages to charge
3130 *
3131 * Returns 0 on success, an error code on failure.
3132 */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)3133 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3134 unsigned int nr_pages)
3135 {
3136 struct mem_cgroup *memcg;
3137 int ret;
3138
3139 memcg = get_mem_cgroup_from_objcg(objcg);
3140
3141 ret = try_charge_memcg(memcg, gfp, nr_pages);
3142 if (ret)
3143 goto out;
3144
3145 memcg_account_kmem(memcg, nr_pages);
3146 out:
3147 css_put(&memcg->css);
3148
3149 return ret;
3150 }
3151
3152 /**
3153 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3154 * @page: page to charge
3155 * @gfp: reclaim mode
3156 * @order: allocation order
3157 *
3158 * Returns 0 on success, an error code on failure.
3159 */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)3160 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3161 {
3162 struct obj_cgroup *objcg;
3163 int ret = 0;
3164
3165 objcg = get_obj_cgroup_from_current();
3166 if (objcg) {
3167 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3168 if (!ret) {
3169 page->memcg_data = (unsigned long)objcg |
3170 MEMCG_DATA_KMEM;
3171 return 0;
3172 }
3173 obj_cgroup_put(objcg);
3174 }
3175 return ret;
3176 }
3177
3178 /**
3179 * __memcg_kmem_uncharge_page: uncharge a kmem page
3180 * @page: page to uncharge
3181 * @order: allocation order
3182 */
__memcg_kmem_uncharge_page(struct page * page,int order)3183 void __memcg_kmem_uncharge_page(struct page *page, int order)
3184 {
3185 struct folio *folio = page_folio(page);
3186 struct obj_cgroup *objcg;
3187 unsigned int nr_pages = 1 << order;
3188
3189 if (!folio_memcg_kmem(folio))
3190 return;
3191
3192 objcg = __folio_objcg(folio);
3193 obj_cgroup_uncharge_pages(objcg, nr_pages);
3194 folio->memcg_data = 0;
3195 obj_cgroup_put(objcg);
3196 }
3197
mod_objcg_state(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)3198 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3199 enum node_stat_item idx, int nr)
3200 {
3201 struct memcg_stock_pcp *stock;
3202 struct obj_cgroup *old = NULL;
3203 unsigned long flags;
3204 int *bytes;
3205
3206 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3207 stock = this_cpu_ptr(&memcg_stock);
3208
3209 /*
3210 * Save vmstat data in stock and skip vmstat array update unless
3211 * accumulating over a page of vmstat data or when pgdat or idx
3212 * changes.
3213 */
3214 if (READ_ONCE(stock->cached_objcg) != objcg) {
3215 old = drain_obj_stock(stock);
3216 obj_cgroup_get(objcg);
3217 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3218 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3219 WRITE_ONCE(stock->cached_objcg, objcg);
3220 stock->cached_pgdat = pgdat;
3221 } else if (stock->cached_pgdat != pgdat) {
3222 /* Flush the existing cached vmstat data */
3223 struct pglist_data *oldpg = stock->cached_pgdat;
3224
3225 if (stock->nr_slab_reclaimable_b) {
3226 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3227 stock->nr_slab_reclaimable_b);
3228 stock->nr_slab_reclaimable_b = 0;
3229 }
3230 if (stock->nr_slab_unreclaimable_b) {
3231 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3232 stock->nr_slab_unreclaimable_b);
3233 stock->nr_slab_unreclaimable_b = 0;
3234 }
3235 stock->cached_pgdat = pgdat;
3236 }
3237
3238 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3239 : &stock->nr_slab_unreclaimable_b;
3240 /*
3241 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3242 * cached locally at least once before pushing it out.
3243 */
3244 if (!*bytes) {
3245 *bytes = nr;
3246 nr = 0;
3247 } else {
3248 *bytes += nr;
3249 if (abs(*bytes) > PAGE_SIZE) {
3250 nr = *bytes;
3251 *bytes = 0;
3252 } else {
3253 nr = 0;
3254 }
3255 }
3256 if (nr)
3257 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3258
3259 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3260 if (old)
3261 obj_cgroup_put(old);
3262 }
3263
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes)3264 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3265 {
3266 struct memcg_stock_pcp *stock;
3267 unsigned long flags;
3268 bool ret = false;
3269
3270 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3271
3272 stock = this_cpu_ptr(&memcg_stock);
3273 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3274 stock->nr_bytes -= nr_bytes;
3275 ret = true;
3276 }
3277
3278 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3279
3280 return ret;
3281 }
3282
drain_obj_stock(struct memcg_stock_pcp * stock)3283 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3284 {
3285 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3286
3287 if (!old)
3288 return NULL;
3289
3290 if (stock->nr_bytes) {
3291 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3292 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3293
3294 if (nr_pages) {
3295 struct mem_cgroup *memcg;
3296
3297 memcg = get_mem_cgroup_from_objcg(old);
3298
3299 memcg_account_kmem(memcg, -nr_pages);
3300 __refill_stock(memcg, nr_pages);
3301
3302 css_put(&memcg->css);
3303 }
3304
3305 /*
3306 * The leftover is flushed to the centralized per-memcg value.
3307 * On the next attempt to refill obj stock it will be moved
3308 * to a per-cpu stock (probably, on an other CPU), see
3309 * refill_obj_stock().
3310 *
3311 * How often it's flushed is a trade-off between the memory
3312 * limit enforcement accuracy and potential CPU contention,
3313 * so it might be changed in the future.
3314 */
3315 atomic_add(nr_bytes, &old->nr_charged_bytes);
3316 stock->nr_bytes = 0;
3317 }
3318
3319 /*
3320 * Flush the vmstat data in current stock
3321 */
3322 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3323 if (stock->nr_slab_reclaimable_b) {
3324 mod_objcg_mlstate(old, stock->cached_pgdat,
3325 NR_SLAB_RECLAIMABLE_B,
3326 stock->nr_slab_reclaimable_b);
3327 stock->nr_slab_reclaimable_b = 0;
3328 }
3329 if (stock->nr_slab_unreclaimable_b) {
3330 mod_objcg_mlstate(old, stock->cached_pgdat,
3331 NR_SLAB_UNRECLAIMABLE_B,
3332 stock->nr_slab_unreclaimable_b);
3333 stock->nr_slab_unreclaimable_b = 0;
3334 }
3335 stock->cached_pgdat = NULL;
3336 }
3337
3338 WRITE_ONCE(stock->cached_objcg, NULL);
3339 /*
3340 * The `old' objects needs to be released by the caller via
3341 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3342 */
3343 return old;
3344 }
3345
obj_stock_flush_required(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)3346 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3347 struct mem_cgroup *root_memcg)
3348 {
3349 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3350 struct mem_cgroup *memcg;
3351
3352 if (objcg) {
3353 memcg = obj_cgroup_memcg(objcg);
3354 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3355 return true;
3356 }
3357
3358 return false;
3359 }
3360
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge)3361 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3362 bool allow_uncharge)
3363 {
3364 struct memcg_stock_pcp *stock;
3365 struct obj_cgroup *old = NULL;
3366 unsigned long flags;
3367 unsigned int nr_pages = 0;
3368
3369 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3370
3371 stock = this_cpu_ptr(&memcg_stock);
3372 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3373 old = drain_obj_stock(stock);
3374 obj_cgroup_get(objcg);
3375 WRITE_ONCE(stock->cached_objcg, objcg);
3376 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3377 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3378 allow_uncharge = true; /* Allow uncharge when objcg changes */
3379 }
3380 stock->nr_bytes += nr_bytes;
3381
3382 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3383 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3384 stock->nr_bytes &= (PAGE_SIZE - 1);
3385 }
3386
3387 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3388 if (old)
3389 obj_cgroup_put(old);
3390
3391 if (nr_pages)
3392 obj_cgroup_uncharge_pages(objcg, nr_pages);
3393 }
3394
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3395 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3396 {
3397 unsigned int nr_pages, nr_bytes;
3398 int ret;
3399
3400 if (consume_obj_stock(objcg, size))
3401 return 0;
3402
3403 /*
3404 * In theory, objcg->nr_charged_bytes can have enough
3405 * pre-charged bytes to satisfy the allocation. However,
3406 * flushing objcg->nr_charged_bytes requires two atomic
3407 * operations, and objcg->nr_charged_bytes can't be big.
3408 * The shared objcg->nr_charged_bytes can also become a
3409 * performance bottleneck if all tasks of the same memcg are
3410 * trying to update it. So it's better to ignore it and try
3411 * grab some new pages. The stock's nr_bytes will be flushed to
3412 * objcg->nr_charged_bytes later on when objcg changes.
3413 *
3414 * The stock's nr_bytes may contain enough pre-charged bytes
3415 * to allow one less page from being charged, but we can't rely
3416 * on the pre-charged bytes not being changed outside of
3417 * consume_obj_stock() or refill_obj_stock(). So ignore those
3418 * pre-charged bytes as well when charging pages. To avoid a
3419 * page uncharge right after a page charge, we set the
3420 * allow_uncharge flag to false when calling refill_obj_stock()
3421 * to temporarily allow the pre-charged bytes to exceed the page
3422 * size limit. The maximum reachable value of the pre-charged
3423 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3424 * race.
3425 */
3426 nr_pages = size >> PAGE_SHIFT;
3427 nr_bytes = size & (PAGE_SIZE - 1);
3428
3429 if (nr_bytes)
3430 nr_pages += 1;
3431
3432 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3433 if (!ret && nr_bytes)
3434 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3435
3436 return ret;
3437 }
3438
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3439 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3440 {
3441 refill_obj_stock(objcg, size, true);
3442 }
3443
3444 #endif /* CONFIG_MEMCG_KMEM */
3445
3446 /*
3447 * Because page_memcg(head) is not set on tails, set it now.
3448 */
split_page_memcg(struct page * head,unsigned int nr)3449 void split_page_memcg(struct page *head, unsigned int nr)
3450 {
3451 struct folio *folio = page_folio(head);
3452 struct mem_cgroup *memcg = folio_memcg(folio);
3453 int i;
3454
3455 if (mem_cgroup_disabled() || !memcg)
3456 return;
3457
3458 for (i = 1; i < nr; i++)
3459 folio_page(folio, i)->memcg_data = folio->memcg_data;
3460
3461 if (folio_memcg_kmem(folio))
3462 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3463 else
3464 css_get_many(&memcg->css, nr - 1);
3465 }
3466
3467 #ifdef CONFIG_SWAP
3468 /**
3469 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3470 * @entry: swap entry to be moved
3471 * @from: mem_cgroup which the entry is moved from
3472 * @to: mem_cgroup which the entry is moved to
3473 *
3474 * It succeeds only when the swap_cgroup's record for this entry is the same
3475 * as the mem_cgroup's id of @from.
3476 *
3477 * Returns 0 on success, -EINVAL on failure.
3478 *
3479 * The caller must have charged to @to, IOW, called page_counter_charge() about
3480 * both res and memsw, and called css_get().
3481 */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3482 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3483 struct mem_cgroup *from, struct mem_cgroup *to)
3484 {
3485 unsigned short old_id, new_id;
3486
3487 old_id = mem_cgroup_id(from);
3488 new_id = mem_cgroup_id(to);
3489
3490 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3491 mod_memcg_state(from, MEMCG_SWAP, -1);
3492 mod_memcg_state(to, MEMCG_SWAP, 1);
3493 return 0;
3494 }
3495 return -EINVAL;
3496 }
3497 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)3498 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3499 struct mem_cgroup *from, struct mem_cgroup *to)
3500 {
3501 return -EINVAL;
3502 }
3503 #endif
3504
3505 static DEFINE_MUTEX(memcg_max_mutex);
3506
mem_cgroup_resize_max(struct mem_cgroup * memcg,unsigned long max,bool memsw)3507 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3508 unsigned long max, bool memsw)
3509 {
3510 bool enlarge = false;
3511 bool drained = false;
3512 int ret;
3513 bool limits_invariant;
3514 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3515
3516 do {
3517 if (signal_pending(current)) {
3518 ret = -EINTR;
3519 break;
3520 }
3521
3522 mutex_lock(&memcg_max_mutex);
3523 /*
3524 * Make sure that the new limit (memsw or memory limit) doesn't
3525 * break our basic invariant rule memory.max <= memsw.max.
3526 */
3527 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3528 max <= memcg->memsw.max;
3529 if (!limits_invariant) {
3530 mutex_unlock(&memcg_max_mutex);
3531 ret = -EINVAL;
3532 break;
3533 }
3534 if (max > counter->max)
3535 enlarge = true;
3536 ret = page_counter_set_max(counter, max);
3537 mutex_unlock(&memcg_max_mutex);
3538
3539 if (!ret)
3540 break;
3541
3542 if (!drained) {
3543 drain_all_stock(memcg);
3544 drained = true;
3545 continue;
3546 }
3547
3548 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3549 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3550 ret = -EBUSY;
3551 break;
3552 }
3553 } while (true);
3554
3555 if (!ret && enlarge)
3556 memcg_oom_recover(memcg);
3557
3558 return ret;
3559 }
3560
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)3561 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3562 gfp_t gfp_mask,
3563 unsigned long *total_scanned)
3564 {
3565 unsigned long nr_reclaimed = 0;
3566 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3567 unsigned long reclaimed;
3568 int loop = 0;
3569 struct mem_cgroup_tree_per_node *mctz;
3570 unsigned long excess;
3571
3572 if (lru_gen_enabled())
3573 return 0;
3574
3575 if (order > 0)
3576 return 0;
3577
3578 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3579
3580 /*
3581 * Do not even bother to check the largest node if the root
3582 * is empty. Do it lockless to prevent lock bouncing. Races
3583 * are acceptable as soft limit is best effort anyway.
3584 */
3585 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3586 return 0;
3587
3588 /*
3589 * This loop can run a while, specially if mem_cgroup's continuously
3590 * keep exceeding their soft limit and putting the system under
3591 * pressure
3592 */
3593 do {
3594 if (next_mz)
3595 mz = next_mz;
3596 else
3597 mz = mem_cgroup_largest_soft_limit_node(mctz);
3598 if (!mz)
3599 break;
3600
3601 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3602 gfp_mask, total_scanned);
3603 nr_reclaimed += reclaimed;
3604 spin_lock_irq(&mctz->lock);
3605
3606 /*
3607 * If we failed to reclaim anything from this memory cgroup
3608 * it is time to move on to the next cgroup
3609 */
3610 next_mz = NULL;
3611 if (!reclaimed)
3612 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3613
3614 excess = soft_limit_excess(mz->memcg);
3615 /*
3616 * One school of thought says that we should not add
3617 * back the node to the tree if reclaim returns 0.
3618 * But our reclaim could return 0, simply because due
3619 * to priority we are exposing a smaller subset of
3620 * memory to reclaim from. Consider this as a longer
3621 * term TODO.
3622 */
3623 /* If excess == 0, no tree ops */
3624 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3625 spin_unlock_irq(&mctz->lock);
3626 css_put(&mz->memcg->css);
3627 loop++;
3628 /*
3629 * Could not reclaim anything and there are no more
3630 * mem cgroups to try or we seem to be looping without
3631 * reclaiming anything.
3632 */
3633 if (!nr_reclaimed &&
3634 (next_mz == NULL ||
3635 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3636 break;
3637 } while (!nr_reclaimed);
3638 if (next_mz)
3639 css_put(&next_mz->memcg->css);
3640 return nr_reclaimed;
3641 }
3642
3643 /*
3644 * Reclaims as many pages from the given memcg as possible.
3645 *
3646 * Caller is responsible for holding css reference for memcg.
3647 */
mem_cgroup_force_empty(struct mem_cgroup * memcg)3648 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3649 {
3650 int nr_retries = MAX_RECLAIM_RETRIES;
3651
3652 /* we call try-to-free pages for make this cgroup empty */
3653 lru_add_drain_all();
3654
3655 drain_all_stock(memcg);
3656
3657 /* try to free all pages in this cgroup */
3658 while (nr_retries && page_counter_read(&memcg->memory)) {
3659 if (signal_pending(current))
3660 return -EINTR;
3661
3662 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3663 MEMCG_RECLAIM_MAY_SWAP))
3664 nr_retries--;
3665 }
3666
3667 return 0;
3668 }
3669
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3671 char *buf, size_t nbytes,
3672 loff_t off)
3673 {
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3675
3676 if (mem_cgroup_is_root(memcg))
3677 return -EINVAL;
3678 return mem_cgroup_force_empty(memcg) ?: nbytes;
3679 }
3680
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)3681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3682 struct cftype *cft)
3683 {
3684 return 1;
3685 }
3686
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3688 struct cftype *cft, u64 val)
3689 {
3690 if (val == 1)
3691 return 0;
3692
3693 pr_warn_once("Non-hierarchical mode is deprecated. "
3694 "Please report your usecase to linux-mm@kvack.org if you "
3695 "depend on this functionality.\n");
3696
3697 return -EINVAL;
3698 }
3699
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3700 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3701 {
3702 unsigned long val;
3703
3704 if (mem_cgroup_is_root(memcg)) {
3705 /*
3706 * Approximate root's usage from global state. This isn't
3707 * perfect, but the root usage was always an approximation.
3708 */
3709 val = global_node_page_state(NR_FILE_PAGES) +
3710 global_node_page_state(NR_ANON_MAPPED);
3711 if (swap)
3712 val += total_swap_pages - get_nr_swap_pages();
3713 } else {
3714 if (!swap)
3715 val = page_counter_read(&memcg->memory);
3716 else
3717 val = page_counter_read(&memcg->memsw);
3718 }
3719 return val;
3720 }
3721
3722 enum {
3723 RES_USAGE,
3724 RES_LIMIT,
3725 RES_MAX_USAGE,
3726 RES_FAILCNT,
3727 RES_SOFT_LIMIT,
3728 };
3729
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)3730 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3731 struct cftype *cft)
3732 {
3733 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3734 struct page_counter *counter;
3735
3736 switch (MEMFILE_TYPE(cft->private)) {
3737 case _MEM:
3738 counter = &memcg->memory;
3739 break;
3740 case _MEMSWAP:
3741 counter = &memcg->memsw;
3742 break;
3743 case _KMEM:
3744 counter = &memcg->kmem;
3745 break;
3746 case _TCP:
3747 counter = &memcg->tcpmem;
3748 break;
3749 default:
3750 BUG();
3751 }
3752
3753 switch (MEMFILE_ATTR(cft->private)) {
3754 case RES_USAGE:
3755 if (counter == &memcg->memory)
3756 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3757 if (counter == &memcg->memsw)
3758 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3759 return (u64)page_counter_read(counter) * PAGE_SIZE;
3760 case RES_LIMIT:
3761 return (u64)counter->max * PAGE_SIZE;
3762 case RES_MAX_USAGE:
3763 return (u64)counter->watermark * PAGE_SIZE;
3764 case RES_FAILCNT:
3765 return counter->failcnt;
3766 case RES_SOFT_LIMIT:
3767 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3768 default:
3769 BUG();
3770 }
3771 }
3772
3773 /*
3774 * This function doesn't do anything useful. Its only job is to provide a read
3775 * handler for a file so that cgroup_file_mode() will add read permissions.
3776 */
mem_cgroup_dummy_seq_show(__always_unused struct seq_file * m,__always_unused void * v)3777 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3778 __always_unused void *v)
3779 {
3780 return -EINVAL;
3781 }
3782
3783 #ifdef CONFIG_MEMCG_KMEM
memcg_online_kmem(struct mem_cgroup * memcg)3784 static int memcg_online_kmem(struct mem_cgroup *memcg)
3785 {
3786 struct obj_cgroup *objcg;
3787
3788 if (mem_cgroup_kmem_disabled())
3789 return 0;
3790
3791 if (unlikely(mem_cgroup_is_root(memcg)))
3792 return 0;
3793
3794 objcg = obj_cgroup_alloc();
3795 if (!objcg)
3796 return -ENOMEM;
3797
3798 objcg->memcg = memcg;
3799 rcu_assign_pointer(memcg->objcg, objcg);
3800
3801 static_branch_enable(&memcg_kmem_online_key);
3802
3803 memcg->kmemcg_id = memcg->id.id;
3804
3805 return 0;
3806 }
3807
memcg_offline_kmem(struct mem_cgroup * memcg)3808 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3809 {
3810 struct mem_cgroup *parent;
3811
3812 if (mem_cgroup_kmem_disabled())
3813 return;
3814
3815 if (unlikely(mem_cgroup_is_root(memcg)))
3816 return;
3817
3818 parent = parent_mem_cgroup(memcg);
3819 if (!parent)
3820 parent = root_mem_cgroup;
3821
3822 memcg_reparent_objcgs(memcg, parent);
3823
3824 /*
3825 * After we have finished memcg_reparent_objcgs(), all list_lrus
3826 * corresponding to this cgroup are guaranteed to remain empty.
3827 * The ordering is imposed by list_lru_node->lock taken by
3828 * memcg_reparent_list_lrus().
3829 */
3830 memcg_reparent_list_lrus(memcg, parent);
3831 }
3832 #else
memcg_online_kmem(struct mem_cgroup * memcg)3833 static int memcg_online_kmem(struct mem_cgroup *memcg)
3834 {
3835 return 0;
3836 }
memcg_offline_kmem(struct mem_cgroup * memcg)3837 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3838 {
3839 }
3840 #endif /* CONFIG_MEMCG_KMEM */
3841
memcg_update_tcp_max(struct mem_cgroup * memcg,unsigned long max)3842 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3843 {
3844 int ret;
3845
3846 mutex_lock(&memcg_max_mutex);
3847
3848 ret = page_counter_set_max(&memcg->tcpmem, max);
3849 if (ret)
3850 goto out;
3851
3852 if (!memcg->tcpmem_active) {
3853 /*
3854 * The active flag needs to be written after the static_key
3855 * update. This is what guarantees that the socket activation
3856 * function is the last one to run. See mem_cgroup_sk_alloc()
3857 * for details, and note that we don't mark any socket as
3858 * belonging to this memcg until that flag is up.
3859 *
3860 * We need to do this, because static_keys will span multiple
3861 * sites, but we can't control their order. If we mark a socket
3862 * as accounted, but the accounting functions are not patched in
3863 * yet, we'll lose accounting.
3864 *
3865 * We never race with the readers in mem_cgroup_sk_alloc(),
3866 * because when this value change, the code to process it is not
3867 * patched in yet.
3868 */
3869 static_branch_inc(&memcg_sockets_enabled_key);
3870 memcg->tcpmem_active = true;
3871 }
3872 out:
3873 mutex_unlock(&memcg_max_mutex);
3874 return ret;
3875 }
3876
3877 /*
3878 * The user of this function is...
3879 * RES_LIMIT.
3880 */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3881 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3882 char *buf, size_t nbytes, loff_t off)
3883 {
3884 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3885 unsigned long nr_pages;
3886 int ret;
3887
3888 buf = strstrip(buf);
3889 ret = page_counter_memparse(buf, "-1", &nr_pages);
3890 if (ret)
3891 return ret;
3892
3893 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3894 case RES_LIMIT:
3895 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3896 ret = -EINVAL;
3897 break;
3898 }
3899 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3900 case _MEM:
3901 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3902 break;
3903 case _MEMSWAP:
3904 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3905 break;
3906 case _KMEM:
3907 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3908 "Writing any value to this file has no effect. "
3909 "Please report your usecase to linux-mm@kvack.org if you "
3910 "depend on this functionality.\n");
3911 ret = 0;
3912 break;
3913 case _TCP:
3914 ret = memcg_update_tcp_max(memcg, nr_pages);
3915 break;
3916 }
3917 break;
3918 case RES_SOFT_LIMIT:
3919 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3920 ret = -EOPNOTSUPP;
3921 } else {
3922 WRITE_ONCE(memcg->soft_limit, nr_pages);
3923 ret = 0;
3924 }
3925 break;
3926 }
3927 return ret ?: nbytes;
3928 }
3929
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3930 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3931 size_t nbytes, loff_t off)
3932 {
3933 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3934 struct page_counter *counter;
3935
3936 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3937 case _MEM:
3938 counter = &memcg->memory;
3939 break;
3940 case _MEMSWAP:
3941 counter = &memcg->memsw;
3942 break;
3943 case _KMEM:
3944 counter = &memcg->kmem;
3945 break;
3946 case _TCP:
3947 counter = &memcg->tcpmem;
3948 break;
3949 default:
3950 BUG();
3951 }
3952
3953 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3954 case RES_MAX_USAGE:
3955 page_counter_reset_watermark(counter);
3956 break;
3957 case RES_FAILCNT:
3958 counter->failcnt = 0;
3959 break;
3960 default:
3961 BUG();
3962 }
3963
3964 return nbytes;
3965 }
3966
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3967 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3968 struct cftype *cft)
3969 {
3970 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3971 }
3972
3973 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3974 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3975 struct cftype *cft, u64 val)
3976 {
3977 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3978
3979 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3980 "Please report your usecase to linux-mm@kvack.org if you "
3981 "depend on this functionality.\n");
3982
3983 if (val & ~MOVE_MASK)
3984 return -EINVAL;
3985
3986 /*
3987 * No kind of locking is needed in here, because ->can_attach() will
3988 * check this value once in the beginning of the process, and then carry
3989 * on with stale data. This means that changes to this value will only
3990 * affect task migrations starting after the change.
3991 */
3992 memcg->move_charge_at_immigrate = val;
3993 return 0;
3994 }
3995 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3996 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3997 struct cftype *cft, u64 val)
3998 {
3999 return -ENOSYS;
4000 }
4001 #endif
4002
4003 #ifdef CONFIG_NUMA
4004
4005 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4006 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4007 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4008
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask,bool tree)4009 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4010 int nid, unsigned int lru_mask, bool tree)
4011 {
4012 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4013 unsigned long nr = 0;
4014 enum lru_list lru;
4015
4016 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4017
4018 for_each_lru(lru) {
4019 if (!(BIT(lru) & lru_mask))
4020 continue;
4021 if (tree)
4022 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4023 else
4024 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4025 }
4026 return nr;
4027 }
4028
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask,bool tree)4029 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4030 unsigned int lru_mask,
4031 bool tree)
4032 {
4033 unsigned long nr = 0;
4034 enum lru_list lru;
4035
4036 for_each_lru(lru) {
4037 if (!(BIT(lru) & lru_mask))
4038 continue;
4039 if (tree)
4040 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4041 else
4042 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4043 }
4044 return nr;
4045 }
4046
memcg_numa_stat_show(struct seq_file * m,void * v)4047 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4048 {
4049 struct numa_stat {
4050 const char *name;
4051 unsigned int lru_mask;
4052 };
4053
4054 static const struct numa_stat stats[] = {
4055 { "total", LRU_ALL },
4056 { "file", LRU_ALL_FILE },
4057 { "anon", LRU_ALL_ANON },
4058 { "unevictable", BIT(LRU_UNEVICTABLE) },
4059 };
4060 const struct numa_stat *stat;
4061 int nid;
4062 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4063
4064 mem_cgroup_flush_stats();
4065
4066 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4067 seq_printf(m, "%s=%lu", stat->name,
4068 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4069 false));
4070 for_each_node_state(nid, N_MEMORY)
4071 seq_printf(m, " N%d=%lu", nid,
4072 mem_cgroup_node_nr_lru_pages(memcg, nid,
4073 stat->lru_mask, false));
4074 seq_putc(m, '\n');
4075 }
4076
4077 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4078
4079 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4080 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4081 true));
4082 for_each_node_state(nid, N_MEMORY)
4083 seq_printf(m, " N%d=%lu", nid,
4084 mem_cgroup_node_nr_lru_pages(memcg, nid,
4085 stat->lru_mask, true));
4086 seq_putc(m, '\n');
4087 }
4088
4089 return 0;
4090 }
4091 #endif /* CONFIG_NUMA */
4092
4093 static const unsigned int memcg1_stats[] = {
4094 NR_FILE_PAGES,
4095 NR_ANON_MAPPED,
4096 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4097 NR_ANON_THPS,
4098 #endif
4099 NR_SHMEM,
4100 NR_FILE_MAPPED,
4101 NR_FILE_DIRTY,
4102 NR_WRITEBACK,
4103 WORKINGSET_REFAULT_ANON,
4104 WORKINGSET_REFAULT_FILE,
4105 MEMCG_SWAP,
4106 };
4107
4108 static const char *const memcg1_stat_names[] = {
4109 "cache",
4110 "rss",
4111 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4112 "rss_huge",
4113 #endif
4114 "shmem",
4115 "mapped_file",
4116 "dirty",
4117 "writeback",
4118 "workingset_refault_anon",
4119 "workingset_refault_file",
4120 "swap",
4121 };
4122
4123 /* Universal VM events cgroup1 shows, original sort order */
4124 static const unsigned int memcg1_events[] = {
4125 PGPGIN,
4126 PGPGOUT,
4127 PGFAULT,
4128 PGMAJFAULT,
4129 };
4130
memcg1_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)4131 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4132 {
4133 unsigned long memory, memsw;
4134 struct mem_cgroup *mi;
4135 unsigned int i;
4136
4137 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4138
4139 mem_cgroup_flush_stats();
4140
4141 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4142 unsigned long nr;
4143
4144 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4145 continue;
4146 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4147 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4148 nr * memcg_page_state_unit(memcg1_stats[i]));
4149 }
4150
4151 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4152 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4153 memcg_events_local(memcg, memcg1_events[i]));
4154
4155 for (i = 0; i < NR_LRU_LISTS; i++)
4156 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4157 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4158 PAGE_SIZE);
4159
4160 /* Hierarchical information */
4161 memory = memsw = PAGE_COUNTER_MAX;
4162 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4163 memory = min(memory, READ_ONCE(mi->memory.max));
4164 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4165 }
4166 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4167 (u64)memory * PAGE_SIZE);
4168 if (do_memsw_account())
4169 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4170 (u64)memsw * PAGE_SIZE);
4171
4172 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4173 unsigned long nr;
4174
4175 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4176 continue;
4177 nr = memcg_page_state(memcg, memcg1_stats[i]);
4178 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4179 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4180 }
4181
4182 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4183 seq_buf_printf(s, "total_%s %llu\n",
4184 vm_event_name(memcg1_events[i]),
4185 (u64)memcg_events(memcg, memcg1_events[i]));
4186
4187 for (i = 0; i < NR_LRU_LISTS; i++)
4188 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4189 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4190 PAGE_SIZE);
4191
4192 #ifdef CONFIG_DEBUG_VM
4193 {
4194 pg_data_t *pgdat;
4195 struct mem_cgroup_per_node *mz;
4196 unsigned long anon_cost = 0;
4197 unsigned long file_cost = 0;
4198
4199 for_each_online_pgdat(pgdat) {
4200 mz = memcg->nodeinfo[pgdat->node_id];
4201
4202 anon_cost += mz->lruvec.anon_cost;
4203 file_cost += mz->lruvec.file_cost;
4204 }
4205 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4206 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4207 }
4208 #endif
4209 }
4210
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)4211 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4212 struct cftype *cft)
4213 {
4214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4215
4216 return mem_cgroup_swappiness(memcg);
4217 }
4218
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4219 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4220 struct cftype *cft, u64 val)
4221 {
4222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4223
4224 if (val > 200)
4225 return -EINVAL;
4226
4227 if (!mem_cgroup_is_root(memcg))
4228 WRITE_ONCE(memcg->swappiness, val);
4229 else
4230 WRITE_ONCE(vm_swappiness, val);
4231
4232 return 0;
4233 }
4234
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)4235 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4236 {
4237 struct mem_cgroup_threshold_ary *t;
4238 unsigned long usage;
4239 int i;
4240
4241 rcu_read_lock();
4242 if (!swap)
4243 t = rcu_dereference(memcg->thresholds.primary);
4244 else
4245 t = rcu_dereference(memcg->memsw_thresholds.primary);
4246
4247 if (!t)
4248 goto unlock;
4249
4250 usage = mem_cgroup_usage(memcg, swap);
4251
4252 /*
4253 * current_threshold points to threshold just below or equal to usage.
4254 * If it's not true, a threshold was crossed after last
4255 * call of __mem_cgroup_threshold().
4256 */
4257 i = t->current_threshold;
4258
4259 /*
4260 * Iterate backward over array of thresholds starting from
4261 * current_threshold and check if a threshold is crossed.
4262 * If none of thresholds below usage is crossed, we read
4263 * only one element of the array here.
4264 */
4265 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4266 eventfd_signal(t->entries[i].eventfd, 1);
4267
4268 /* i = current_threshold + 1 */
4269 i++;
4270
4271 /*
4272 * Iterate forward over array of thresholds starting from
4273 * current_threshold+1 and check if a threshold is crossed.
4274 * If none of thresholds above usage is crossed, we read
4275 * only one element of the array here.
4276 */
4277 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4278 eventfd_signal(t->entries[i].eventfd, 1);
4279
4280 /* Update current_threshold */
4281 t->current_threshold = i - 1;
4282 unlock:
4283 rcu_read_unlock();
4284 }
4285
mem_cgroup_threshold(struct mem_cgroup * memcg)4286 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4287 {
4288 while (memcg) {
4289 __mem_cgroup_threshold(memcg, false);
4290 if (do_memsw_account())
4291 __mem_cgroup_threshold(memcg, true);
4292
4293 memcg = parent_mem_cgroup(memcg);
4294 }
4295 }
4296
compare_thresholds(const void * a,const void * b)4297 static int compare_thresholds(const void *a, const void *b)
4298 {
4299 const struct mem_cgroup_threshold *_a = a;
4300 const struct mem_cgroup_threshold *_b = b;
4301
4302 if (_a->threshold > _b->threshold)
4303 return 1;
4304
4305 if (_a->threshold < _b->threshold)
4306 return -1;
4307
4308 return 0;
4309 }
4310
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)4311 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4312 {
4313 struct mem_cgroup_eventfd_list *ev;
4314
4315 spin_lock(&memcg_oom_lock);
4316
4317 list_for_each_entry(ev, &memcg->oom_notify, list)
4318 eventfd_signal(ev->eventfd, 1);
4319
4320 spin_unlock(&memcg_oom_lock);
4321 return 0;
4322 }
4323
mem_cgroup_oom_notify(struct mem_cgroup * memcg)4324 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4325 {
4326 struct mem_cgroup *iter;
4327
4328 for_each_mem_cgroup_tree(iter, memcg)
4329 mem_cgroup_oom_notify_cb(iter);
4330 }
4331
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)4332 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4333 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4334 {
4335 struct mem_cgroup_thresholds *thresholds;
4336 struct mem_cgroup_threshold_ary *new;
4337 unsigned long threshold;
4338 unsigned long usage;
4339 int i, size, ret;
4340
4341 ret = page_counter_memparse(args, "-1", &threshold);
4342 if (ret)
4343 return ret;
4344
4345 mutex_lock(&memcg->thresholds_lock);
4346
4347 if (type == _MEM) {
4348 thresholds = &memcg->thresholds;
4349 usage = mem_cgroup_usage(memcg, false);
4350 } else if (type == _MEMSWAP) {
4351 thresholds = &memcg->memsw_thresholds;
4352 usage = mem_cgroup_usage(memcg, true);
4353 } else
4354 BUG();
4355
4356 /* Check if a threshold crossed before adding a new one */
4357 if (thresholds->primary)
4358 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4359
4360 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4361
4362 /* Allocate memory for new array of thresholds */
4363 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4364 if (!new) {
4365 ret = -ENOMEM;
4366 goto unlock;
4367 }
4368 new->size = size;
4369
4370 /* Copy thresholds (if any) to new array */
4371 if (thresholds->primary)
4372 memcpy(new->entries, thresholds->primary->entries,
4373 flex_array_size(new, entries, size - 1));
4374
4375 /* Add new threshold */
4376 new->entries[size - 1].eventfd = eventfd;
4377 new->entries[size - 1].threshold = threshold;
4378
4379 /* Sort thresholds. Registering of new threshold isn't time-critical */
4380 sort(new->entries, size, sizeof(*new->entries),
4381 compare_thresholds, NULL);
4382
4383 /* Find current threshold */
4384 new->current_threshold = -1;
4385 for (i = 0; i < size; i++) {
4386 if (new->entries[i].threshold <= usage) {
4387 /*
4388 * new->current_threshold will not be used until
4389 * rcu_assign_pointer(), so it's safe to increment
4390 * it here.
4391 */
4392 ++new->current_threshold;
4393 } else
4394 break;
4395 }
4396
4397 /* Free old spare buffer and save old primary buffer as spare */
4398 kfree(thresholds->spare);
4399 thresholds->spare = thresholds->primary;
4400
4401 rcu_assign_pointer(thresholds->primary, new);
4402
4403 /* To be sure that nobody uses thresholds */
4404 synchronize_rcu();
4405
4406 unlock:
4407 mutex_unlock(&memcg->thresholds_lock);
4408
4409 return ret;
4410 }
4411
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4412 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4413 struct eventfd_ctx *eventfd, const char *args)
4414 {
4415 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4416 }
4417
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4418 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4419 struct eventfd_ctx *eventfd, const char *args)
4420 {
4421 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4422 }
4423
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)4424 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4425 struct eventfd_ctx *eventfd, enum res_type type)
4426 {
4427 struct mem_cgroup_thresholds *thresholds;
4428 struct mem_cgroup_threshold_ary *new;
4429 unsigned long usage;
4430 int i, j, size, entries;
4431
4432 mutex_lock(&memcg->thresholds_lock);
4433
4434 if (type == _MEM) {
4435 thresholds = &memcg->thresholds;
4436 usage = mem_cgroup_usage(memcg, false);
4437 } else if (type == _MEMSWAP) {
4438 thresholds = &memcg->memsw_thresholds;
4439 usage = mem_cgroup_usage(memcg, true);
4440 } else
4441 BUG();
4442
4443 if (!thresholds->primary)
4444 goto unlock;
4445
4446 /* Check if a threshold crossed before removing */
4447 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4448
4449 /* Calculate new number of threshold */
4450 size = entries = 0;
4451 for (i = 0; i < thresholds->primary->size; i++) {
4452 if (thresholds->primary->entries[i].eventfd != eventfd)
4453 size++;
4454 else
4455 entries++;
4456 }
4457
4458 new = thresholds->spare;
4459
4460 /* If no items related to eventfd have been cleared, nothing to do */
4461 if (!entries)
4462 goto unlock;
4463
4464 /* Set thresholds array to NULL if we don't have thresholds */
4465 if (!size) {
4466 kfree(new);
4467 new = NULL;
4468 goto swap_buffers;
4469 }
4470
4471 new->size = size;
4472
4473 /* Copy thresholds and find current threshold */
4474 new->current_threshold = -1;
4475 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4476 if (thresholds->primary->entries[i].eventfd == eventfd)
4477 continue;
4478
4479 new->entries[j] = thresholds->primary->entries[i];
4480 if (new->entries[j].threshold <= usage) {
4481 /*
4482 * new->current_threshold will not be used
4483 * until rcu_assign_pointer(), so it's safe to increment
4484 * it here.
4485 */
4486 ++new->current_threshold;
4487 }
4488 j++;
4489 }
4490
4491 swap_buffers:
4492 /* Swap primary and spare array */
4493 thresholds->spare = thresholds->primary;
4494
4495 rcu_assign_pointer(thresholds->primary, new);
4496
4497 /* To be sure that nobody uses thresholds */
4498 synchronize_rcu();
4499
4500 /* If all events are unregistered, free the spare array */
4501 if (!new) {
4502 kfree(thresholds->spare);
4503 thresholds->spare = NULL;
4504 }
4505 unlock:
4506 mutex_unlock(&memcg->thresholds_lock);
4507 }
4508
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4509 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4510 struct eventfd_ctx *eventfd)
4511 {
4512 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4513 }
4514
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4515 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4516 struct eventfd_ctx *eventfd)
4517 {
4518 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4519 }
4520
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)4521 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4522 struct eventfd_ctx *eventfd, const char *args)
4523 {
4524 struct mem_cgroup_eventfd_list *event;
4525
4526 event = kmalloc(sizeof(*event), GFP_KERNEL);
4527 if (!event)
4528 return -ENOMEM;
4529
4530 spin_lock(&memcg_oom_lock);
4531
4532 event->eventfd = eventfd;
4533 list_add(&event->list, &memcg->oom_notify);
4534
4535 /* already in OOM ? */
4536 if (memcg->under_oom)
4537 eventfd_signal(eventfd, 1);
4538 spin_unlock(&memcg_oom_lock);
4539
4540 return 0;
4541 }
4542
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)4543 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4544 struct eventfd_ctx *eventfd)
4545 {
4546 struct mem_cgroup_eventfd_list *ev, *tmp;
4547
4548 spin_lock(&memcg_oom_lock);
4549
4550 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4551 if (ev->eventfd == eventfd) {
4552 list_del(&ev->list);
4553 kfree(ev);
4554 }
4555 }
4556
4557 spin_unlock(&memcg_oom_lock);
4558 }
4559
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)4560 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4561 {
4562 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4563
4564 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4565 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4566 seq_printf(sf, "oom_kill %lu\n",
4567 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4568 return 0;
4569 }
4570
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4571 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4572 struct cftype *cft, u64 val)
4573 {
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
4576 /* cannot set to root cgroup and only 0 and 1 are allowed */
4577 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4578 return -EINVAL;
4579
4580 WRITE_ONCE(memcg->oom_kill_disable, val);
4581 if (!val)
4582 memcg_oom_recover(memcg);
4583
4584 return 0;
4585 }
4586
4587 #ifdef CONFIG_CGROUP_WRITEBACK
4588
4589 #include <trace/events/writeback.h>
4590
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4591 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4592 {
4593 return wb_domain_init(&memcg->cgwb_domain, gfp);
4594 }
4595
memcg_wb_domain_exit(struct mem_cgroup * memcg)4596 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4597 {
4598 wb_domain_exit(&memcg->cgwb_domain);
4599 }
4600
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4601 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4602 {
4603 wb_domain_size_changed(&memcg->cgwb_domain);
4604 }
4605
mem_cgroup_wb_domain(struct bdi_writeback * wb)4606 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4607 {
4608 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4609
4610 if (!memcg->css.parent)
4611 return NULL;
4612
4613 return &memcg->cgwb_domain;
4614 }
4615
4616 /**
4617 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4618 * @wb: bdi_writeback in question
4619 * @pfilepages: out parameter for number of file pages
4620 * @pheadroom: out parameter for number of allocatable pages according to memcg
4621 * @pdirty: out parameter for number of dirty pages
4622 * @pwriteback: out parameter for number of pages under writeback
4623 *
4624 * Determine the numbers of file, headroom, dirty, and writeback pages in
4625 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4626 * is a bit more involved.
4627 *
4628 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4629 * headroom is calculated as the lowest headroom of itself and the
4630 * ancestors. Note that this doesn't consider the actual amount of
4631 * available memory in the system. The caller should further cap
4632 * *@pheadroom accordingly.
4633 */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)4634 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4635 unsigned long *pheadroom, unsigned long *pdirty,
4636 unsigned long *pwriteback)
4637 {
4638 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4639 struct mem_cgroup *parent;
4640
4641 mem_cgroup_flush_stats();
4642
4643 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4644 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4645 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4646 memcg_page_state(memcg, NR_ACTIVE_FILE);
4647
4648 *pheadroom = PAGE_COUNTER_MAX;
4649 while ((parent = parent_mem_cgroup(memcg))) {
4650 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4651 READ_ONCE(memcg->memory.high));
4652 unsigned long used = page_counter_read(&memcg->memory);
4653
4654 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4655 memcg = parent;
4656 }
4657 }
4658
4659 /*
4660 * Foreign dirty flushing
4661 *
4662 * There's an inherent mismatch between memcg and writeback. The former
4663 * tracks ownership per-page while the latter per-inode. This was a
4664 * deliberate design decision because honoring per-page ownership in the
4665 * writeback path is complicated, may lead to higher CPU and IO overheads
4666 * and deemed unnecessary given that write-sharing an inode across
4667 * different cgroups isn't a common use-case.
4668 *
4669 * Combined with inode majority-writer ownership switching, this works well
4670 * enough in most cases but there are some pathological cases. For
4671 * example, let's say there are two cgroups A and B which keep writing to
4672 * different but confined parts of the same inode. B owns the inode and
4673 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4674 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4675 * triggering background writeback. A will be slowed down without a way to
4676 * make writeback of the dirty pages happen.
4677 *
4678 * Conditions like the above can lead to a cgroup getting repeatedly and
4679 * severely throttled after making some progress after each
4680 * dirty_expire_interval while the underlying IO device is almost
4681 * completely idle.
4682 *
4683 * Solving this problem completely requires matching the ownership tracking
4684 * granularities between memcg and writeback in either direction. However,
4685 * the more egregious behaviors can be avoided by simply remembering the
4686 * most recent foreign dirtying events and initiating remote flushes on
4687 * them when local writeback isn't enough to keep the memory clean enough.
4688 *
4689 * The following two functions implement such mechanism. When a foreign
4690 * page - a page whose memcg and writeback ownerships don't match - is
4691 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4692 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4693 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4694 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4695 * foreign bdi_writebacks which haven't expired. Both the numbers of
4696 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4697 * limited to MEMCG_CGWB_FRN_CNT.
4698 *
4699 * The mechanism only remembers IDs and doesn't hold any object references.
4700 * As being wrong occasionally doesn't matter, updates and accesses to the
4701 * records are lockless and racy.
4702 */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)4703 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4704 struct bdi_writeback *wb)
4705 {
4706 struct mem_cgroup *memcg = folio_memcg(folio);
4707 struct memcg_cgwb_frn *frn;
4708 u64 now = get_jiffies_64();
4709 u64 oldest_at = now;
4710 int oldest = -1;
4711 int i;
4712
4713 trace_track_foreign_dirty(folio, wb);
4714
4715 /*
4716 * Pick the slot to use. If there is already a slot for @wb, keep
4717 * using it. If not replace the oldest one which isn't being
4718 * written out.
4719 */
4720 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4721 frn = &memcg->cgwb_frn[i];
4722 if (frn->bdi_id == wb->bdi->id &&
4723 frn->memcg_id == wb->memcg_css->id)
4724 break;
4725 if (time_before64(frn->at, oldest_at) &&
4726 atomic_read(&frn->done.cnt) == 1) {
4727 oldest = i;
4728 oldest_at = frn->at;
4729 }
4730 }
4731
4732 if (i < MEMCG_CGWB_FRN_CNT) {
4733 /*
4734 * Re-using an existing one. Update timestamp lazily to
4735 * avoid making the cacheline hot. We want them to be
4736 * reasonably up-to-date and significantly shorter than
4737 * dirty_expire_interval as that's what expires the record.
4738 * Use the shorter of 1s and dirty_expire_interval / 8.
4739 */
4740 unsigned long update_intv =
4741 min_t(unsigned long, HZ,
4742 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4743
4744 if (time_before64(frn->at, now - update_intv))
4745 frn->at = now;
4746 } else if (oldest >= 0) {
4747 /* replace the oldest free one */
4748 frn = &memcg->cgwb_frn[oldest];
4749 frn->bdi_id = wb->bdi->id;
4750 frn->memcg_id = wb->memcg_css->id;
4751 frn->at = now;
4752 }
4753 }
4754
4755 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)4756 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4757 {
4758 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4759 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4760 u64 now = jiffies_64;
4761 int i;
4762
4763 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4764 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4765
4766 /*
4767 * If the record is older than dirty_expire_interval,
4768 * writeback on it has already started. No need to kick it
4769 * off again. Also, don't start a new one if there's
4770 * already one in flight.
4771 */
4772 if (time_after64(frn->at, now - intv) &&
4773 atomic_read(&frn->done.cnt) == 1) {
4774 frn->at = 0;
4775 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4776 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4777 WB_REASON_FOREIGN_FLUSH,
4778 &frn->done);
4779 }
4780 }
4781 }
4782
4783 #else /* CONFIG_CGROUP_WRITEBACK */
4784
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)4785 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4786 {
4787 return 0;
4788 }
4789
memcg_wb_domain_exit(struct mem_cgroup * memcg)4790 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4791 {
4792 }
4793
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)4794 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4795 {
4796 }
4797
4798 #endif /* CONFIG_CGROUP_WRITEBACK */
4799
4800 /*
4801 * DO NOT USE IN NEW FILES.
4802 *
4803 * "cgroup.event_control" implementation.
4804 *
4805 * This is way over-engineered. It tries to support fully configurable
4806 * events for each user. Such level of flexibility is completely
4807 * unnecessary especially in the light of the planned unified hierarchy.
4808 *
4809 * Please deprecate this and replace with something simpler if at all
4810 * possible.
4811 */
4812
4813 /*
4814 * Unregister event and free resources.
4815 *
4816 * Gets called from workqueue.
4817 */
memcg_event_remove(struct work_struct * work)4818 static void memcg_event_remove(struct work_struct *work)
4819 {
4820 struct mem_cgroup_event *event =
4821 container_of(work, struct mem_cgroup_event, remove);
4822 struct mem_cgroup *memcg = event->memcg;
4823
4824 remove_wait_queue(event->wqh, &event->wait);
4825
4826 event->unregister_event(memcg, event->eventfd);
4827
4828 /* Notify userspace the event is going away. */
4829 eventfd_signal(event->eventfd, 1);
4830
4831 eventfd_ctx_put(event->eventfd);
4832 kfree(event);
4833 css_put(&memcg->css);
4834 }
4835
4836 /*
4837 * Gets called on EPOLLHUP on eventfd when user closes it.
4838 *
4839 * Called with wqh->lock held and interrupts disabled.
4840 */
memcg_event_wake(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)4841 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4842 int sync, void *key)
4843 {
4844 struct mem_cgroup_event *event =
4845 container_of(wait, struct mem_cgroup_event, wait);
4846 struct mem_cgroup *memcg = event->memcg;
4847 __poll_t flags = key_to_poll(key);
4848
4849 if (flags & EPOLLHUP) {
4850 /*
4851 * If the event has been detached at cgroup removal, we
4852 * can simply return knowing the other side will cleanup
4853 * for us.
4854 *
4855 * We can't race against event freeing since the other
4856 * side will require wqh->lock via remove_wait_queue(),
4857 * which we hold.
4858 */
4859 spin_lock(&memcg->event_list_lock);
4860 if (!list_empty(&event->list)) {
4861 list_del_init(&event->list);
4862 /*
4863 * We are in atomic context, but cgroup_event_remove()
4864 * may sleep, so we have to call it in workqueue.
4865 */
4866 schedule_work(&event->remove);
4867 }
4868 spin_unlock(&memcg->event_list_lock);
4869 }
4870
4871 return 0;
4872 }
4873
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)4874 static void memcg_event_ptable_queue_proc(struct file *file,
4875 wait_queue_head_t *wqh, poll_table *pt)
4876 {
4877 struct mem_cgroup_event *event =
4878 container_of(pt, struct mem_cgroup_event, pt);
4879
4880 event->wqh = wqh;
4881 add_wait_queue(wqh, &event->wait);
4882 }
4883
4884 /*
4885 * DO NOT USE IN NEW FILES.
4886 *
4887 * Parse input and register new cgroup event handler.
4888 *
4889 * Input must be in format '<event_fd> <control_fd> <args>'.
4890 * Interpretation of args is defined by control file implementation.
4891 */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4892 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4893 char *buf, size_t nbytes, loff_t off)
4894 {
4895 struct cgroup_subsys_state *css = of_css(of);
4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897 struct mem_cgroup_event *event;
4898 struct cgroup_subsys_state *cfile_css;
4899 unsigned int efd, cfd;
4900 struct fd efile;
4901 struct fd cfile;
4902 struct dentry *cdentry;
4903 const char *name;
4904 char *endp;
4905 int ret;
4906
4907 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4908 return -EOPNOTSUPP;
4909
4910 buf = strstrip(buf);
4911
4912 efd = simple_strtoul(buf, &endp, 10);
4913 if (*endp != ' ')
4914 return -EINVAL;
4915 buf = endp + 1;
4916
4917 cfd = simple_strtoul(buf, &endp, 10);
4918 if (*endp == '\0')
4919 buf = endp;
4920 else if (*endp == ' ')
4921 buf = endp + 1;
4922 else
4923 return -EINVAL;
4924
4925 event = kzalloc(sizeof(*event), GFP_KERNEL);
4926 if (!event)
4927 return -ENOMEM;
4928
4929 event->memcg = memcg;
4930 INIT_LIST_HEAD(&event->list);
4931 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4932 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4933 INIT_WORK(&event->remove, memcg_event_remove);
4934
4935 efile = fdget(efd);
4936 if (!efile.file) {
4937 ret = -EBADF;
4938 goto out_kfree;
4939 }
4940
4941 event->eventfd = eventfd_ctx_fileget(efile.file);
4942 if (IS_ERR(event->eventfd)) {
4943 ret = PTR_ERR(event->eventfd);
4944 goto out_put_efile;
4945 }
4946
4947 cfile = fdget(cfd);
4948 if (!cfile.file) {
4949 ret = -EBADF;
4950 goto out_put_eventfd;
4951 }
4952
4953 /* the process need read permission on control file */
4954 /* AV: shouldn't we check that it's been opened for read instead? */
4955 ret = file_permission(cfile.file, MAY_READ);
4956 if (ret < 0)
4957 goto out_put_cfile;
4958
4959 /*
4960 * The control file must be a regular cgroup1 file. As a regular cgroup
4961 * file can't be renamed, it's safe to access its name afterwards.
4962 */
4963 cdentry = cfile.file->f_path.dentry;
4964 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4965 ret = -EINVAL;
4966 goto out_put_cfile;
4967 }
4968
4969 /*
4970 * Determine the event callbacks and set them in @event. This used
4971 * to be done via struct cftype but cgroup core no longer knows
4972 * about these events. The following is crude but the whole thing
4973 * is for compatibility anyway.
4974 *
4975 * DO NOT ADD NEW FILES.
4976 */
4977 name = cdentry->d_name.name;
4978
4979 if (!strcmp(name, "memory.usage_in_bytes")) {
4980 event->register_event = mem_cgroup_usage_register_event;
4981 event->unregister_event = mem_cgroup_usage_unregister_event;
4982 } else if (!strcmp(name, "memory.oom_control")) {
4983 event->register_event = mem_cgroup_oom_register_event;
4984 event->unregister_event = mem_cgroup_oom_unregister_event;
4985 } else if (!strcmp(name, "memory.pressure_level")) {
4986 event->register_event = vmpressure_register_event;
4987 event->unregister_event = vmpressure_unregister_event;
4988 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4989 event->register_event = memsw_cgroup_usage_register_event;
4990 event->unregister_event = memsw_cgroup_usage_unregister_event;
4991 } else {
4992 ret = -EINVAL;
4993 goto out_put_cfile;
4994 }
4995
4996 /*
4997 * Verify @cfile should belong to @css. Also, remaining events are
4998 * automatically removed on cgroup destruction but the removal is
4999 * asynchronous, so take an extra ref on @css.
5000 */
5001 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5002 &memory_cgrp_subsys);
5003 ret = -EINVAL;
5004 if (IS_ERR(cfile_css))
5005 goto out_put_cfile;
5006 if (cfile_css != css) {
5007 css_put(cfile_css);
5008 goto out_put_cfile;
5009 }
5010
5011 ret = event->register_event(memcg, event->eventfd, buf);
5012 if (ret)
5013 goto out_put_css;
5014
5015 vfs_poll(efile.file, &event->pt);
5016
5017 spin_lock_irq(&memcg->event_list_lock);
5018 list_add(&event->list, &memcg->event_list);
5019 spin_unlock_irq(&memcg->event_list_lock);
5020
5021 fdput(cfile);
5022 fdput(efile);
5023
5024 return nbytes;
5025
5026 out_put_css:
5027 css_put(css);
5028 out_put_cfile:
5029 fdput(cfile);
5030 out_put_eventfd:
5031 eventfd_ctx_put(event->eventfd);
5032 out_put_efile:
5033 fdput(efile);
5034 out_kfree:
5035 kfree(event);
5036
5037 return ret;
5038 }
5039
5040 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
mem_cgroup_slab_show(struct seq_file * m,void * p)5041 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5042 {
5043 /*
5044 * Deprecated.
5045 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5046 */
5047 return 0;
5048 }
5049 #endif
5050
5051 static int memory_stat_show(struct seq_file *m, void *v);
5052
5053 static struct cftype mem_cgroup_legacy_files[] = {
5054 {
5055 .name = "usage_in_bytes",
5056 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5057 .read_u64 = mem_cgroup_read_u64,
5058 },
5059 {
5060 .name = "max_usage_in_bytes",
5061 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5062 .write = mem_cgroup_reset,
5063 .read_u64 = mem_cgroup_read_u64,
5064 },
5065 {
5066 .name = "limit_in_bytes",
5067 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5068 .write = mem_cgroup_write,
5069 .read_u64 = mem_cgroup_read_u64,
5070 },
5071 {
5072 .name = "soft_limit_in_bytes",
5073 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5074 .write = mem_cgroup_write,
5075 .read_u64 = mem_cgroup_read_u64,
5076 },
5077 {
5078 .name = "failcnt",
5079 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5080 .write = mem_cgroup_reset,
5081 .read_u64 = mem_cgroup_read_u64,
5082 },
5083 {
5084 .name = "stat",
5085 .seq_show = memory_stat_show,
5086 },
5087 {
5088 .name = "force_empty",
5089 .write = mem_cgroup_force_empty_write,
5090 },
5091 {
5092 .name = "use_hierarchy",
5093 .write_u64 = mem_cgroup_hierarchy_write,
5094 .read_u64 = mem_cgroup_hierarchy_read,
5095 },
5096 {
5097 .name = "cgroup.event_control", /* XXX: for compat */
5098 .write = memcg_write_event_control,
5099 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5100 },
5101 {
5102 .name = "swappiness",
5103 .read_u64 = mem_cgroup_swappiness_read,
5104 .write_u64 = mem_cgroup_swappiness_write,
5105 },
5106 {
5107 .name = "move_charge_at_immigrate",
5108 .read_u64 = mem_cgroup_move_charge_read,
5109 .write_u64 = mem_cgroup_move_charge_write,
5110 },
5111 {
5112 .name = "oom_control",
5113 .seq_show = mem_cgroup_oom_control_read,
5114 .write_u64 = mem_cgroup_oom_control_write,
5115 },
5116 {
5117 .name = "pressure_level",
5118 .seq_show = mem_cgroup_dummy_seq_show,
5119 },
5120 #ifdef CONFIG_NUMA
5121 {
5122 .name = "numa_stat",
5123 .seq_show = memcg_numa_stat_show,
5124 },
5125 #endif
5126 {
5127 .name = "kmem.limit_in_bytes",
5128 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5129 .write = mem_cgroup_write,
5130 .read_u64 = mem_cgroup_read_u64,
5131 },
5132 {
5133 .name = "kmem.usage_in_bytes",
5134 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5135 .read_u64 = mem_cgroup_read_u64,
5136 },
5137 {
5138 .name = "kmem.failcnt",
5139 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5140 .write = mem_cgroup_reset,
5141 .read_u64 = mem_cgroup_read_u64,
5142 },
5143 {
5144 .name = "kmem.max_usage_in_bytes",
5145 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5146 .write = mem_cgroup_reset,
5147 .read_u64 = mem_cgroup_read_u64,
5148 },
5149 #if defined(CONFIG_MEMCG_KMEM) && \
5150 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5151 {
5152 .name = "kmem.slabinfo",
5153 .seq_show = mem_cgroup_slab_show,
5154 },
5155 #endif
5156 {
5157 .name = "kmem.tcp.limit_in_bytes",
5158 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5159 .write = mem_cgroup_write,
5160 .read_u64 = mem_cgroup_read_u64,
5161 },
5162 {
5163 .name = "kmem.tcp.usage_in_bytes",
5164 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5165 .read_u64 = mem_cgroup_read_u64,
5166 },
5167 {
5168 .name = "kmem.tcp.failcnt",
5169 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5170 .write = mem_cgroup_reset,
5171 .read_u64 = mem_cgroup_read_u64,
5172 },
5173 {
5174 .name = "kmem.tcp.max_usage_in_bytes",
5175 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5176 .write = mem_cgroup_reset,
5177 .read_u64 = mem_cgroup_read_u64,
5178 },
5179 { }, /* terminate */
5180 };
5181
5182 /*
5183 * Private memory cgroup IDR
5184 *
5185 * Swap-out records and page cache shadow entries need to store memcg
5186 * references in constrained space, so we maintain an ID space that is
5187 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5188 * memory-controlled cgroups to 64k.
5189 *
5190 * However, there usually are many references to the offline CSS after
5191 * the cgroup has been destroyed, such as page cache or reclaimable
5192 * slab objects, that don't need to hang on to the ID. We want to keep
5193 * those dead CSS from occupying IDs, or we might quickly exhaust the
5194 * relatively small ID space and prevent the creation of new cgroups
5195 * even when there are much fewer than 64k cgroups - possibly none.
5196 *
5197 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5198 * be freed and recycled when it's no longer needed, which is usually
5199 * when the CSS is offlined.
5200 *
5201 * The only exception to that are records of swapped out tmpfs/shmem
5202 * pages that need to be attributed to live ancestors on swapin. But
5203 * those references are manageable from userspace.
5204 */
5205
5206 #define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5207 static DEFINE_IDR(mem_cgroup_idr);
5208 static DEFINE_SPINLOCK(memcg_idr_lock);
5209
mem_cgroup_alloc_id(void)5210 static int mem_cgroup_alloc_id(void)
5211 {
5212 int ret;
5213
5214 idr_preload(GFP_KERNEL);
5215 spin_lock(&memcg_idr_lock);
5216 ret = idr_alloc(&mem_cgroup_idr, NULL, 1, MEM_CGROUP_ID_MAX + 1,
5217 GFP_NOWAIT);
5218 spin_unlock(&memcg_idr_lock);
5219 idr_preload_end();
5220 return ret;
5221 }
5222
mem_cgroup_id_remove(struct mem_cgroup * memcg)5223 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5224 {
5225 if (memcg->id.id > 0) {
5226 spin_lock(&memcg_idr_lock);
5227 idr_remove(&mem_cgroup_idr, memcg->id.id);
5228 spin_unlock(&memcg_idr_lock);
5229
5230 memcg->id.id = 0;
5231 }
5232 }
5233
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)5234 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5235 unsigned int n)
5236 {
5237 refcount_add(n, &memcg->id.ref);
5238 }
5239
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)5240 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5241 {
5242 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5243 mem_cgroup_id_remove(memcg);
5244
5245 /* Memcg ID pins CSS */
5246 css_put(&memcg->css);
5247 }
5248 }
5249
mem_cgroup_id_put(struct mem_cgroup * memcg)5250 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5251 {
5252 mem_cgroup_id_put_many(memcg, 1);
5253 }
5254
5255 /**
5256 * mem_cgroup_from_id - look up a memcg from a memcg id
5257 * @id: the memcg id to look up
5258 *
5259 * Caller must hold rcu_read_lock().
5260 */
mem_cgroup_from_id(unsigned short id)5261 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5262 {
5263 WARN_ON_ONCE(!rcu_read_lock_held());
5264 #ifdef CONFIG_HYPERHOLD_FILE_LRU
5265 if (id == -1)
5266 return NULL;
5267 #endif
5268 return idr_find(&mem_cgroup_idr, id);
5269 }
5270
5271 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)5272 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5273 {
5274 struct cgroup *cgrp;
5275 struct cgroup_subsys_state *css;
5276 struct mem_cgroup *memcg;
5277
5278 cgrp = cgroup_get_from_id(ino);
5279 if (IS_ERR(cgrp))
5280 return ERR_CAST(cgrp);
5281
5282 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5283 if (css)
5284 memcg = container_of(css, struct mem_cgroup, css);
5285 else
5286 memcg = ERR_PTR(-ENOENT);
5287
5288 cgroup_put(cgrp);
5289
5290 return memcg;
5291 }
5292 #endif
5293
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5294 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5295 {
5296 struct mem_cgroup_per_node *pn;
5297
5298 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5299 if (!pn)
5300 return 1;
5301
5302 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5303 GFP_KERNEL_ACCOUNT);
5304 if (!pn->lruvec_stats_percpu) {
5305 kfree(pn);
5306 return 1;
5307 }
5308
5309 lruvec_init(&pn->lruvec);
5310 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
5311 pn->lruvec.pgdat = NODE_DATA(node);
5312 #endif
5313 pn->memcg = memcg;
5314
5315 memcg->nodeinfo[node] = pn;
5316 return 0;
5317 }
5318
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)5319 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5320 {
5321 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5322
5323 if (!pn)
5324 return;
5325
5326 free_percpu(pn->lruvec_stats_percpu);
5327 kfree(pn);
5328 }
5329
__mem_cgroup_free(struct mem_cgroup * memcg)5330 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5331 {
5332 int node;
5333
5334 for_each_node(node)
5335 free_mem_cgroup_per_node_info(memcg, node);
5336 kfree(memcg->vmstats);
5337 free_percpu(memcg->vmstats_percpu);
5338 kfree(memcg);
5339 }
5340
mem_cgroup_free(struct mem_cgroup * memcg)5341 static void mem_cgroup_free(struct mem_cgroup *memcg)
5342 {
5343 lru_gen_exit_memcg(memcg);
5344 memcg_wb_domain_exit(memcg);
5345 __mem_cgroup_free(memcg);
5346 }
5347
mem_cgroup_alloc(void)5348 static struct mem_cgroup *mem_cgroup_alloc(void)
5349 {
5350 struct mem_cgroup *memcg;
5351 int node;
5352 int __maybe_unused i;
5353 long error = -ENOMEM;
5354
5355 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5356 if (!memcg)
5357 return ERR_PTR(error);
5358
5359 memcg->id.id = mem_cgroup_alloc_id();
5360 if (memcg->id.id < 0) {
5361 error = memcg->id.id;
5362 goto fail;
5363 }
5364
5365 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5366 if (!memcg->vmstats)
5367 goto fail;
5368
5369 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5370 GFP_KERNEL_ACCOUNT);
5371 if (!memcg->vmstats_percpu)
5372 goto fail;
5373
5374 for_each_node(node)
5375 if (alloc_mem_cgroup_per_node_info(memcg, node))
5376 goto fail;
5377
5378 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5379 goto fail;
5380
5381 INIT_WORK(&memcg->high_work, high_work_func);
5382 INIT_LIST_HEAD(&memcg->oom_notify);
5383 mutex_init(&memcg->thresholds_lock);
5384 spin_lock_init(&memcg->move_lock);
5385 vmpressure_init(&memcg->vmpressure);
5386 INIT_LIST_HEAD(&memcg->event_list);
5387 spin_lock_init(&memcg->event_list_lock);
5388 memcg->socket_pressure = jiffies;
5389 #ifdef CONFIG_MEMCG_KMEM
5390 memcg->kmemcg_id = -1;
5391 INIT_LIST_HEAD(&memcg->objcg_list);
5392 #endif
5393 #ifdef CONFIG_CGROUP_WRITEBACK
5394 INIT_LIST_HEAD(&memcg->cgwb_list);
5395 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5396 memcg->cgwb_frn[i].done =
5397 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5398 #endif
5399 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5400 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5401 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5402 memcg->deferred_split_queue.split_queue_len = 0;
5403 #endif
5404
5405 #ifdef CONFIG_HYPERHOLD_MEMCG
5406 if (unlikely(!score_head_inited)) {
5407 INIT_LIST_HEAD(&score_head);
5408 score_head_inited = true;
5409 }
5410 #endif
5411
5412 #ifdef CONFIG_HYPERHOLD_MEMCG
5413 INIT_LIST_HEAD(&memcg->score_node);
5414 #endif
5415
5416 lru_gen_init_memcg(memcg);
5417 return memcg;
5418 fail:
5419 mem_cgroup_id_remove(memcg);
5420 __mem_cgroup_free(memcg);
5421 return ERR_PTR(error);
5422 }
5423
5424 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)5425 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5426 {
5427 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5428 struct mem_cgroup *memcg, *old_memcg;
5429
5430 old_memcg = set_active_memcg(parent);
5431 memcg = mem_cgroup_alloc();
5432 set_active_memcg(old_memcg);
5433 if (IS_ERR(memcg))
5434 return ERR_CAST(memcg);
5435
5436 #ifdef CONFIG_HYPERHOLD_MEMCG
5437 atomic64_set(&memcg->memcg_reclaimed.app_score, 300);
5438 #endif
5439 #ifdef CONFIG_HYPERHOLD_ZSWAPD
5440 atomic_set(&memcg->memcg_reclaimed.ub_zram2ufs_ratio, 10);
5441 atomic_set(&memcg->memcg_reclaimed.ub_mem2zram_ratio, 60);
5442 atomic_set(&memcg->memcg_reclaimed.refault_threshold, 50);
5443 #endif
5444 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5445 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5446 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5447 memcg->zswap_max = PAGE_COUNTER_MAX;
5448 #endif
5449 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5450 if (parent) {
5451 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5452 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5453
5454 page_counter_init(&memcg->memory, &parent->memory);
5455 page_counter_init(&memcg->swap, &parent->swap);
5456 page_counter_init(&memcg->kmem, &parent->kmem);
5457 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5458 } else {
5459 init_memcg_events();
5460 page_counter_init(&memcg->memory, NULL);
5461 page_counter_init(&memcg->swap, NULL);
5462 page_counter_init(&memcg->kmem, NULL);
5463 page_counter_init(&memcg->tcpmem, NULL);
5464
5465 root_mem_cgroup = memcg;
5466 return &memcg->css;
5467 }
5468
5469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5470 static_branch_inc(&memcg_sockets_enabled_key);
5471
5472 #if defined(CONFIG_MEMCG_KMEM)
5473 if (!cgroup_memory_nobpf)
5474 static_branch_inc(&memcg_bpf_enabled_key);
5475 #endif
5476
5477 return &memcg->css;
5478 }
5479
mem_cgroup_css_online(struct cgroup_subsys_state * css)5480 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5481 {
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483
5484 if (memcg_online_kmem(memcg))
5485 goto remove_id;
5486
5487 /*
5488 * A memcg must be visible for expand_shrinker_info()
5489 * by the time the maps are allocated. So, we allocate maps
5490 * here, when for_each_mem_cgroup() can't skip it.
5491 */
5492 if (alloc_shrinker_info(memcg))
5493 goto offline_kmem;
5494
5495 if (unlikely(mem_cgroup_is_root(memcg)))
5496 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5497 FLUSH_TIME);
5498 lru_gen_online_memcg(memcg);
5499
5500 #ifdef CONFIG_HYPERHOLD_MEMCG
5501 memcg_app_score_update(memcg);
5502 css_get(css);
5503 #endif
5504
5505 /* Online state pins memcg ID, memcg ID pins CSS */
5506 refcount_set(&memcg->id.ref, 1);
5507 css_get(css);
5508
5509 /*
5510 * Ensure mem_cgroup_from_id() works once we're fully online.
5511 *
5512 * We could do this earlier and require callers to filter with
5513 * css_tryget_online(). But right now there are no users that
5514 * need earlier access, and the workingset code relies on the
5515 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5516 * publish it here at the end of onlining. This matches the
5517 * regular ID destruction during offlining.
5518 */
5519 spin_lock(&memcg_idr_lock);
5520 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5521 spin_unlock(&memcg_idr_lock);
5522
5523 return 0;
5524 offline_kmem:
5525 memcg_offline_kmem(memcg);
5526 remove_id:
5527 mem_cgroup_id_remove(memcg);
5528 return -ENOMEM;
5529 }
5530
mem_cgroup_css_offline(struct cgroup_subsys_state * css)5531 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5532 {
5533 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5534 struct mem_cgroup_event *event, *tmp;
5535
5536 #ifdef CONFIG_HYPERHOLD_MEMCG
5537 unsigned long flags;
5538
5539 write_lock_irqsave(&score_list_lock, flags);
5540 list_del_init(&memcg->score_node);
5541 write_unlock_irqrestore(&score_list_lock, flags);
5542 css_put(css);
5543 #endif
5544
5545 /*
5546 * Unregister events and notify userspace.
5547 * Notify userspace about cgroup removing only after rmdir of cgroup
5548 * directory to avoid race between userspace and kernelspace.
5549 */
5550 spin_lock_irq(&memcg->event_list_lock);
5551 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5552 list_del_init(&event->list);
5553 schedule_work(&event->remove);
5554 }
5555 spin_unlock_irq(&memcg->event_list_lock);
5556
5557 page_counter_set_min(&memcg->memory, 0);
5558 page_counter_set_low(&memcg->memory, 0);
5559
5560 memcg_offline_kmem(memcg);
5561 reparent_shrinker_deferred(memcg);
5562 wb_memcg_offline(memcg);
5563 lru_gen_offline_memcg(memcg);
5564
5565 drain_all_stock(memcg);
5566
5567 mem_cgroup_id_put(memcg);
5568 }
5569
mem_cgroup_css_released(struct cgroup_subsys_state * css)5570 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5571 {
5572 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5573
5574 invalidate_reclaim_iterators(memcg);
5575 lru_gen_release_memcg(memcg);
5576 }
5577
mem_cgroup_css_free(struct cgroup_subsys_state * css)5578 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5579 {
5580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5581 int __maybe_unused i;
5582
5583 #ifdef CONFIG_CGROUP_WRITEBACK
5584 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5585 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5586 #endif
5587 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5588 static_branch_dec(&memcg_sockets_enabled_key);
5589
5590 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5591 static_branch_dec(&memcg_sockets_enabled_key);
5592
5593 #if defined(CONFIG_MEMCG_KMEM)
5594 if (!cgroup_memory_nobpf)
5595 static_branch_dec(&memcg_bpf_enabled_key);
5596 #endif
5597
5598 vmpressure_cleanup(&memcg->vmpressure);
5599 cancel_work_sync(&memcg->high_work);
5600 mem_cgroup_remove_from_trees(memcg);
5601 free_shrinker_info(memcg);
5602 mem_cgroup_free(memcg);
5603 }
5604
5605 /**
5606 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5607 * @css: the target css
5608 *
5609 * Reset the states of the mem_cgroup associated with @css. This is
5610 * invoked when the userland requests disabling on the default hierarchy
5611 * but the memcg is pinned through dependency. The memcg should stop
5612 * applying policies and should revert to the vanilla state as it may be
5613 * made visible again.
5614 *
5615 * The current implementation only resets the essential configurations.
5616 * This needs to be expanded to cover all the visible parts.
5617 */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)5618 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5619 {
5620 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5621
5622 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5623 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5624 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5625 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5626 page_counter_set_min(&memcg->memory, 0);
5627 page_counter_set_low(&memcg->memory, 0);
5628 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5629 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5630 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5631 memcg_wb_domain_size_changed(memcg);
5632 }
5633
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)5634 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5635 {
5636 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5637 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5638 struct memcg_vmstats_percpu *statc;
5639 long delta, delta_cpu, v;
5640 int i, nid;
5641
5642 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5643
5644 for (i = 0; i < MEMCG_NR_STAT; i++) {
5645 /*
5646 * Collect the aggregated propagation counts of groups
5647 * below us. We're in a per-cpu loop here and this is
5648 * a global counter, so the first cycle will get them.
5649 */
5650 delta = memcg->vmstats->state_pending[i];
5651 if (delta)
5652 memcg->vmstats->state_pending[i] = 0;
5653
5654 /* Add CPU changes on this level since the last flush */
5655 delta_cpu = 0;
5656 v = READ_ONCE(statc->state[i]);
5657 if (v != statc->state_prev[i]) {
5658 delta_cpu = v - statc->state_prev[i];
5659 delta += delta_cpu;
5660 statc->state_prev[i] = v;
5661 }
5662
5663 /* Aggregate counts on this level and propagate upwards */
5664 if (delta_cpu)
5665 memcg->vmstats->state_local[i] += delta_cpu;
5666
5667 if (delta) {
5668 memcg->vmstats->state[i] += delta;
5669 if (parent)
5670 parent->vmstats->state_pending[i] += delta;
5671 }
5672 }
5673
5674 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5675 delta = memcg->vmstats->events_pending[i];
5676 if (delta)
5677 memcg->vmstats->events_pending[i] = 0;
5678
5679 delta_cpu = 0;
5680 v = READ_ONCE(statc->events[i]);
5681 if (v != statc->events_prev[i]) {
5682 delta_cpu = v - statc->events_prev[i];
5683 delta += delta_cpu;
5684 statc->events_prev[i] = v;
5685 }
5686
5687 if (delta_cpu)
5688 memcg->vmstats->events_local[i] += delta_cpu;
5689
5690 if (delta) {
5691 memcg->vmstats->events[i] += delta;
5692 if (parent)
5693 parent->vmstats->events_pending[i] += delta;
5694 }
5695 }
5696
5697 for_each_node_state(nid, N_MEMORY) {
5698 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5699 struct mem_cgroup_per_node *ppn = NULL;
5700 struct lruvec_stats_percpu *lstatc;
5701
5702 if (parent)
5703 ppn = parent->nodeinfo[nid];
5704
5705 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5706
5707 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5708 delta = pn->lruvec_stats.state_pending[i];
5709 if (delta)
5710 pn->lruvec_stats.state_pending[i] = 0;
5711
5712 delta_cpu = 0;
5713 v = READ_ONCE(lstatc->state[i]);
5714 if (v != lstatc->state_prev[i]) {
5715 delta_cpu = v - lstatc->state_prev[i];
5716 delta += delta_cpu;
5717 lstatc->state_prev[i] = v;
5718 }
5719
5720 if (delta_cpu)
5721 pn->lruvec_stats.state_local[i] += delta_cpu;
5722
5723 if (delta) {
5724 pn->lruvec_stats.state[i] += delta;
5725 if (ppn)
5726 ppn->lruvec_stats.state_pending[i] += delta;
5727 }
5728 }
5729 }
5730 }
5731
5732 #ifdef CONFIG_MMU
5733 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)5734 static int mem_cgroup_do_precharge(unsigned long count)
5735 {
5736 int ret;
5737
5738 /* Try a single bulk charge without reclaim first, kswapd may wake */
5739 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5740 if (!ret) {
5741 mc.precharge += count;
5742 return ret;
5743 }
5744
5745 /* Try charges one by one with reclaim, but do not retry */
5746 while (count--) {
5747 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5748 if (ret)
5749 return ret;
5750 mc.precharge++;
5751 cond_resched();
5752 }
5753 return 0;
5754 }
5755
5756 union mc_target {
5757 struct page *page;
5758 swp_entry_t ent;
5759 };
5760
5761 enum mc_target_type {
5762 MC_TARGET_NONE = 0,
5763 MC_TARGET_PAGE,
5764 MC_TARGET_SWAP,
5765 MC_TARGET_DEVICE,
5766 };
5767
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5768 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5769 unsigned long addr, pte_t ptent)
5770 {
5771 struct page *page = vm_normal_page(vma, addr, ptent);
5772
5773 if (!page)
5774 return NULL;
5775 if (PageAnon(page)) {
5776 if (!(mc.flags & MOVE_ANON))
5777 return NULL;
5778 } else {
5779 if (!(mc.flags & MOVE_FILE))
5780 return NULL;
5781 }
5782 get_page(page);
5783
5784 return page;
5785 }
5786
5787 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5788 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5789 pte_t ptent, swp_entry_t *entry)
5790 {
5791 struct page *page = NULL;
5792 swp_entry_t ent = pte_to_swp_entry(ptent);
5793
5794 if (!(mc.flags & MOVE_ANON))
5795 return NULL;
5796
5797 /*
5798 * Handle device private pages that are not accessible by the CPU, but
5799 * stored as special swap entries in the page table.
5800 */
5801 if (is_device_private_entry(ent)) {
5802 page = pfn_swap_entry_to_page(ent);
5803 if (!get_page_unless_zero(page))
5804 return NULL;
5805 return page;
5806 }
5807
5808 if (non_swap_entry(ent))
5809 return NULL;
5810
5811 /*
5812 * Because swap_cache_get_folio() updates some statistics counter,
5813 * we call find_get_page() with swapper_space directly.
5814 */
5815 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5816 entry->val = ent.val;
5817
5818 return page;
5819 }
5820 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)5821 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5822 pte_t ptent, swp_entry_t *entry)
5823 {
5824 return NULL;
5825 }
5826 #endif
5827
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)5828 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5829 unsigned long addr, pte_t ptent)
5830 {
5831 unsigned long index;
5832 struct folio *folio;
5833
5834 if (!vma->vm_file) /* anonymous vma */
5835 return NULL;
5836 if (!(mc.flags & MOVE_FILE))
5837 return NULL;
5838
5839 /* folio is moved even if it's not RSS of this task(page-faulted). */
5840 /* shmem/tmpfs may report page out on swap: account for that too. */
5841 index = linear_page_index(vma, addr);
5842 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5843 if (IS_ERR(folio))
5844 return NULL;
5845 return folio_file_page(folio, index);
5846 }
5847
5848 /**
5849 * mem_cgroup_move_account - move account of the page
5850 * @page: the page
5851 * @compound: charge the page as compound or small page
5852 * @from: mem_cgroup which the page is moved from.
5853 * @to: mem_cgroup which the page is moved to. @from != @to.
5854 *
5855 * The page must be locked and not on the LRU.
5856 *
5857 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5858 * from old cgroup.
5859 */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)5860 static int mem_cgroup_move_account(struct page *page,
5861 bool compound,
5862 struct mem_cgroup *from,
5863 struct mem_cgroup *to)
5864 {
5865 struct folio *folio = page_folio(page);
5866 struct lruvec *from_vec, *to_vec;
5867 struct pglist_data *pgdat;
5868 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5869 int nid, ret;
5870
5871 VM_BUG_ON(from == to);
5872 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5873 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5874 VM_BUG_ON(compound && !folio_test_large(folio));
5875
5876 ret = -EINVAL;
5877 if (folio_memcg(folio) != from)
5878 goto out;
5879
5880 pgdat = folio_pgdat(folio);
5881 from_vec = mem_cgroup_lruvec(from, pgdat);
5882 to_vec = mem_cgroup_lruvec(to, pgdat);
5883
5884 folio_memcg_lock(folio);
5885
5886 if (folio_test_anon(folio)) {
5887 if (folio_mapped(folio)) {
5888 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5889 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5890 if (folio_test_pmd_mappable(folio)) {
5891 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5892 -nr_pages);
5893 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5894 nr_pages);
5895 }
5896 }
5897 } else {
5898 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5899 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5900
5901 if (folio_test_swapbacked(folio)) {
5902 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5903 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5904 }
5905
5906 if (folio_mapped(folio)) {
5907 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5908 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5909 }
5910
5911 if (folio_test_dirty(folio)) {
5912 struct address_space *mapping = folio_mapping(folio);
5913
5914 if (mapping_can_writeback(mapping)) {
5915 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5916 -nr_pages);
5917 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5918 nr_pages);
5919 }
5920 }
5921 }
5922
5923 #ifdef CONFIG_SWAP
5924 if (folio_test_swapcache(folio)) {
5925 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5926 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5927 }
5928 #endif
5929 if (folio_test_writeback(folio)) {
5930 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5931 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5932 }
5933
5934 /*
5935 * All state has been migrated, let's switch to the new memcg.
5936 *
5937 * It is safe to change page's memcg here because the page
5938 * is referenced, charged, isolated, and locked: we can't race
5939 * with (un)charging, migration, LRU putback, or anything else
5940 * that would rely on a stable page's memory cgroup.
5941 *
5942 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5943 * to save space. As soon as we switch page's memory cgroup to a
5944 * new memcg that isn't locked, the above state can change
5945 * concurrently again. Make sure we're truly done with it.
5946 */
5947 smp_mb();
5948
5949 css_get(&to->css);
5950 css_put(&from->css);
5951
5952 /* Warning should never happen, so don't worry about refcount non-0 */
5953 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
5954 folio->memcg_data = (unsigned long)to;
5955
5956 __folio_memcg_unlock(from);
5957
5958 ret = 0;
5959 nid = folio_nid(folio);
5960
5961 local_irq_disable();
5962 mem_cgroup_charge_statistics(to, nr_pages);
5963 memcg_check_events(to, nid);
5964 mem_cgroup_charge_statistics(from, -nr_pages);
5965 memcg_check_events(from, nid);
5966 local_irq_enable();
5967 out:
5968 return ret;
5969 }
5970
5971 /**
5972 * get_mctgt_type - get target type of moving charge
5973 * @vma: the vma the pte to be checked belongs
5974 * @addr: the address corresponding to the pte to be checked
5975 * @ptent: the pte to be checked
5976 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5977 *
5978 * Context: Called with pte lock held.
5979 * Return:
5980 * * MC_TARGET_NONE - If the pte is not a target for move charge.
5981 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
5982 * move charge. If @target is not NULL, the page is stored in target->page
5983 * with extra refcnt taken (Caller should release it).
5984 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
5985 * target for charge migration. If @target is not NULL, the entry is
5986 * stored in target->ent.
5987 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
5988 * thus not on the lru. For now such page is charged like a regular page
5989 * would be as it is just special memory taking the place of a regular page.
5990 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5991 */
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)5992 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5993 unsigned long addr, pte_t ptent, union mc_target *target)
5994 {
5995 struct page *page = NULL;
5996 enum mc_target_type ret = MC_TARGET_NONE;
5997 swp_entry_t ent = { .val = 0 };
5998
5999 if (pte_present(ptent))
6000 page = mc_handle_present_pte(vma, addr, ptent);
6001 else if (pte_none_mostly(ptent))
6002 /*
6003 * PTE markers should be treated as a none pte here, separated
6004 * from other swap handling below.
6005 */
6006 page = mc_handle_file_pte(vma, addr, ptent);
6007 else if (is_swap_pte(ptent))
6008 page = mc_handle_swap_pte(vma, ptent, &ent);
6009
6010 if (target && page) {
6011 if (!trylock_page(page)) {
6012 put_page(page);
6013 return ret;
6014 }
6015 /*
6016 * page_mapped() must be stable during the move. This
6017 * pte is locked, so if it's present, the page cannot
6018 * become unmapped. If it isn't, we have only partial
6019 * control over the mapped state: the page lock will
6020 * prevent new faults against pagecache and swapcache,
6021 * so an unmapped page cannot become mapped. However,
6022 * if the page is already mapped elsewhere, it can
6023 * unmap, and there is nothing we can do about it.
6024 * Alas, skip moving the page in this case.
6025 */
6026 if (!pte_present(ptent) && page_mapped(page)) {
6027 unlock_page(page);
6028 put_page(page);
6029 return ret;
6030 }
6031 }
6032
6033 if (!page && !ent.val)
6034 return ret;
6035 if (page) {
6036 /*
6037 * Do only loose check w/o serialization.
6038 * mem_cgroup_move_account() checks the page is valid or
6039 * not under LRU exclusion.
6040 */
6041 if (page_memcg(page) == mc.from) {
6042 ret = MC_TARGET_PAGE;
6043 if (is_device_private_page(page) ||
6044 is_device_coherent_page(page))
6045 ret = MC_TARGET_DEVICE;
6046 if (target)
6047 target->page = page;
6048 }
6049 if (!ret || !target) {
6050 if (target)
6051 unlock_page(page);
6052 put_page(page);
6053 }
6054 }
6055 /*
6056 * There is a swap entry and a page doesn't exist or isn't charged.
6057 * But we cannot move a tail-page in a THP.
6058 */
6059 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6060 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6061 ret = MC_TARGET_SWAP;
6062 if (target)
6063 target->ent = ent;
6064 }
6065 return ret;
6066 }
6067
6068 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6069 /*
6070 * We don't consider PMD mapped swapping or file mapped pages because THP does
6071 * not support them for now.
6072 * Caller should make sure that pmd_trans_huge(pmd) is true.
6073 */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6074 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6075 unsigned long addr, pmd_t pmd, union mc_target *target)
6076 {
6077 struct page *page = NULL;
6078 enum mc_target_type ret = MC_TARGET_NONE;
6079
6080 if (unlikely(is_swap_pmd(pmd))) {
6081 VM_BUG_ON(thp_migration_supported() &&
6082 !is_pmd_migration_entry(pmd));
6083 return ret;
6084 }
6085 page = pmd_page(pmd);
6086 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6087 if (!(mc.flags & MOVE_ANON))
6088 return ret;
6089 if (page_memcg(page) == mc.from) {
6090 ret = MC_TARGET_PAGE;
6091 if (target) {
6092 get_page(page);
6093 if (!trylock_page(page)) {
6094 put_page(page);
6095 return MC_TARGET_NONE;
6096 }
6097 target->page = page;
6098 }
6099 }
6100 return ret;
6101 }
6102 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)6103 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6104 unsigned long addr, pmd_t pmd, union mc_target *target)
6105 {
6106 return MC_TARGET_NONE;
6107 }
6108 #endif
6109
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6110 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6111 unsigned long addr, unsigned long end,
6112 struct mm_walk *walk)
6113 {
6114 struct vm_area_struct *vma = walk->vma;
6115 pte_t *pte;
6116 spinlock_t *ptl;
6117
6118 ptl = pmd_trans_huge_lock(pmd, vma);
6119 if (ptl) {
6120 /*
6121 * Note their can not be MC_TARGET_DEVICE for now as we do not
6122 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6123 * this might change.
6124 */
6125 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6126 mc.precharge += HPAGE_PMD_NR;
6127 spin_unlock(ptl);
6128 return 0;
6129 }
6130
6131 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6132 if (!pte)
6133 return 0;
6134 for (; addr != end; pte++, addr += PAGE_SIZE)
6135 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6136 mc.precharge++; /* increment precharge temporarily */
6137 pte_unmap_unlock(pte - 1, ptl);
6138 cond_resched();
6139
6140 return 0;
6141 }
6142
6143 static const struct mm_walk_ops precharge_walk_ops = {
6144 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6145 .walk_lock = PGWALK_RDLOCK,
6146 };
6147
mem_cgroup_count_precharge(struct mm_struct * mm)6148 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6149 {
6150 unsigned long precharge;
6151
6152 mmap_read_lock(mm);
6153 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6154 mmap_read_unlock(mm);
6155
6156 precharge = mc.precharge;
6157 mc.precharge = 0;
6158
6159 return precharge;
6160 }
6161
mem_cgroup_precharge_mc(struct mm_struct * mm)6162 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6163 {
6164 unsigned long precharge = mem_cgroup_count_precharge(mm);
6165
6166 VM_BUG_ON(mc.moving_task);
6167 mc.moving_task = current;
6168 return mem_cgroup_do_precharge(precharge);
6169 }
6170
6171 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)6172 static void __mem_cgroup_clear_mc(void)
6173 {
6174 struct mem_cgroup *from = mc.from;
6175 struct mem_cgroup *to = mc.to;
6176
6177 /* we must uncharge all the leftover precharges from mc.to */
6178 if (mc.precharge) {
6179 cancel_charge(mc.to, mc.precharge);
6180 mc.precharge = 0;
6181 }
6182 /*
6183 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6184 * we must uncharge here.
6185 */
6186 if (mc.moved_charge) {
6187 cancel_charge(mc.from, mc.moved_charge);
6188 mc.moved_charge = 0;
6189 }
6190 /* we must fixup refcnts and charges */
6191 if (mc.moved_swap) {
6192 /* uncharge swap account from the old cgroup */
6193 if (!mem_cgroup_is_root(mc.from))
6194 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6195
6196 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6197
6198 /*
6199 * we charged both to->memory and to->memsw, so we
6200 * should uncharge to->memory.
6201 */
6202 if (!mem_cgroup_is_root(mc.to))
6203 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6204
6205 mc.moved_swap = 0;
6206 }
6207 memcg_oom_recover(from);
6208 memcg_oom_recover(to);
6209 wake_up_all(&mc.waitq);
6210 }
6211
mem_cgroup_clear_mc(void)6212 static void mem_cgroup_clear_mc(void)
6213 {
6214 struct mm_struct *mm = mc.mm;
6215
6216 /*
6217 * we must clear moving_task before waking up waiters at the end of
6218 * task migration.
6219 */
6220 mc.moving_task = NULL;
6221 __mem_cgroup_clear_mc();
6222 spin_lock(&mc.lock);
6223 mc.from = NULL;
6224 mc.to = NULL;
6225 mc.mm = NULL;
6226 spin_unlock(&mc.lock);
6227
6228 mmput(mm);
6229 }
6230
mem_cgroup_can_attach(struct cgroup_taskset * tset)6231 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6232 {
6233 struct cgroup_subsys_state *css;
6234 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6235 struct mem_cgroup *from;
6236 struct task_struct *leader, *p;
6237 struct mm_struct *mm;
6238 unsigned long move_flags;
6239 int ret = 0;
6240
6241 /* charge immigration isn't supported on the default hierarchy */
6242 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6243 return 0;
6244
6245 /*
6246 * Multi-process migrations only happen on the default hierarchy
6247 * where charge immigration is not used. Perform charge
6248 * immigration if @tset contains a leader and whine if there are
6249 * multiple.
6250 */
6251 p = NULL;
6252 cgroup_taskset_for_each_leader(leader, css, tset) {
6253 WARN_ON_ONCE(p);
6254 p = leader;
6255 memcg = mem_cgroup_from_css(css);
6256 }
6257 if (!p)
6258 return 0;
6259
6260 /*
6261 * We are now committed to this value whatever it is. Changes in this
6262 * tunable will only affect upcoming migrations, not the current one.
6263 * So we need to save it, and keep it going.
6264 */
6265 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6266 if (!move_flags)
6267 return 0;
6268
6269 from = mem_cgroup_from_task(p);
6270
6271 VM_BUG_ON(from == memcg);
6272
6273 mm = get_task_mm(p);
6274 if (!mm)
6275 return 0;
6276 /* We move charges only when we move a owner of the mm */
6277 if (mm->owner == p) {
6278 VM_BUG_ON(mc.from);
6279 VM_BUG_ON(mc.to);
6280 VM_BUG_ON(mc.precharge);
6281 VM_BUG_ON(mc.moved_charge);
6282 VM_BUG_ON(mc.moved_swap);
6283
6284 spin_lock(&mc.lock);
6285 mc.mm = mm;
6286 mc.from = from;
6287 mc.to = memcg;
6288 mc.flags = move_flags;
6289 spin_unlock(&mc.lock);
6290 /* We set mc.moving_task later */
6291
6292 ret = mem_cgroup_precharge_mc(mm);
6293 if (ret)
6294 mem_cgroup_clear_mc();
6295 } else {
6296 mmput(mm);
6297 }
6298 return ret;
6299 }
6300
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6301 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6302 {
6303 if (mc.to)
6304 mem_cgroup_clear_mc();
6305 }
6306
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)6307 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6308 unsigned long addr, unsigned long end,
6309 struct mm_walk *walk)
6310 {
6311 int ret = 0;
6312 struct vm_area_struct *vma = walk->vma;
6313 pte_t *pte;
6314 spinlock_t *ptl;
6315 enum mc_target_type target_type;
6316 union mc_target target;
6317 struct page *page;
6318 struct folio *folio;
6319 bool tried_split_before = false;
6320
6321 retry_pmd:
6322 ptl = pmd_trans_huge_lock(pmd, vma);
6323 if (ptl) {
6324 if (mc.precharge < HPAGE_PMD_NR) {
6325 spin_unlock(ptl);
6326 return 0;
6327 }
6328 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6329 if (target_type == MC_TARGET_PAGE) {
6330 page = target.page;
6331 folio = page_folio(page);
6332 /*
6333 * Deferred split queue locking depends on memcg,
6334 * and unqueue is unsafe unless folio refcount is 0:
6335 * split or skip if on the queue? first try to split.
6336 */
6337 if (!list_empty(&folio->_deferred_list)) {
6338 spin_unlock(ptl);
6339 if (!tried_split_before)
6340 split_folio(folio);
6341 folio_unlock(folio);
6342 folio_put(folio);
6343 if (tried_split_before)
6344 return 0;
6345 tried_split_before = true;
6346 goto retry_pmd;
6347 }
6348 /*
6349 * So long as that pmd lock is held, the folio cannot
6350 * be racily added to the _deferred_list, because
6351 * page_remove_rmap() will find it still pmdmapped.
6352 */
6353 if (isolate_lru_page(page)) {
6354 if (!mem_cgroup_move_account(page, true,
6355 mc.from, mc.to)) {
6356 mc.precharge -= HPAGE_PMD_NR;
6357 mc.moved_charge += HPAGE_PMD_NR;
6358 }
6359 putback_lru_page(page);
6360 }
6361 unlock_page(page);
6362 put_page(page);
6363 } else if (target_type == MC_TARGET_DEVICE) {
6364 page = target.page;
6365 if (!mem_cgroup_move_account(page, true,
6366 mc.from, mc.to)) {
6367 mc.precharge -= HPAGE_PMD_NR;
6368 mc.moved_charge += HPAGE_PMD_NR;
6369 }
6370 unlock_page(page);
6371 put_page(page);
6372 }
6373 spin_unlock(ptl);
6374 return 0;
6375 }
6376
6377 retry:
6378 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6379 if (!pte)
6380 return 0;
6381 for (; addr != end; addr += PAGE_SIZE) {
6382 pte_t ptent = ptep_get(pte++);
6383 bool device = false;
6384 swp_entry_t ent;
6385
6386 if (!mc.precharge)
6387 break;
6388
6389 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6390 case MC_TARGET_DEVICE:
6391 device = true;
6392 fallthrough;
6393 case MC_TARGET_PAGE:
6394 page = target.page;
6395 /*
6396 * We can have a part of the split pmd here. Moving it
6397 * can be done but it would be too convoluted so simply
6398 * ignore such a partial THP and keep it in original
6399 * memcg. There should be somebody mapping the head.
6400 */
6401 if (PageTransCompound(page))
6402 goto put;
6403 if (!device && !isolate_lru_page(page))
6404 goto put;
6405 if (!mem_cgroup_move_account(page, false,
6406 mc.from, mc.to)) {
6407 mc.precharge--;
6408 /* we uncharge from mc.from later. */
6409 mc.moved_charge++;
6410 }
6411 if (!device)
6412 putback_lru_page(page);
6413 put: /* get_mctgt_type() gets & locks the page */
6414 unlock_page(page);
6415 put_page(page);
6416 break;
6417 case MC_TARGET_SWAP:
6418 ent = target.ent;
6419 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6420 mc.precharge--;
6421 mem_cgroup_id_get_many(mc.to, 1);
6422 /* we fixup other refcnts and charges later. */
6423 mc.moved_swap++;
6424 }
6425 break;
6426 default:
6427 break;
6428 }
6429 }
6430 pte_unmap_unlock(pte - 1, ptl);
6431 cond_resched();
6432
6433 if (addr != end) {
6434 /*
6435 * We have consumed all precharges we got in can_attach().
6436 * We try charge one by one, but don't do any additional
6437 * charges to mc.to if we have failed in charge once in attach()
6438 * phase.
6439 */
6440 ret = mem_cgroup_do_precharge(1);
6441 if (!ret)
6442 goto retry;
6443 }
6444
6445 return ret;
6446 }
6447
6448 static const struct mm_walk_ops charge_walk_ops = {
6449 .pmd_entry = mem_cgroup_move_charge_pte_range,
6450 .walk_lock = PGWALK_RDLOCK,
6451 };
6452
mem_cgroup_move_charge(void)6453 static void mem_cgroup_move_charge(void)
6454 {
6455 lru_add_drain_all();
6456 /*
6457 * Signal folio_memcg_lock() to take the memcg's move_lock
6458 * while we're moving its pages to another memcg. Then wait
6459 * for already started RCU-only updates to finish.
6460 */
6461 atomic_inc(&mc.from->moving_account);
6462 synchronize_rcu();
6463 retry:
6464 if (unlikely(!mmap_read_trylock(mc.mm))) {
6465 /*
6466 * Someone who are holding the mmap_lock might be waiting in
6467 * waitq. So we cancel all extra charges, wake up all waiters,
6468 * and retry. Because we cancel precharges, we might not be able
6469 * to move enough charges, but moving charge is a best-effort
6470 * feature anyway, so it wouldn't be a big problem.
6471 */
6472 __mem_cgroup_clear_mc();
6473 cond_resched();
6474 goto retry;
6475 }
6476 /*
6477 * When we have consumed all precharges and failed in doing
6478 * additional charge, the page walk just aborts.
6479 */
6480 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6481 mmap_read_unlock(mc.mm);
6482 atomic_dec(&mc.from->moving_account);
6483 }
6484
mem_cgroup_move_task(void)6485 static void mem_cgroup_move_task(void)
6486 {
6487 if (mc.to) {
6488 mem_cgroup_move_charge();
6489 mem_cgroup_clear_mc();
6490 }
6491 }
6492 #else /* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)6493 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6494 {
6495 return 0;
6496 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)6497 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6498 {
6499 }
mem_cgroup_move_task(void)6500 static void mem_cgroup_move_task(void)
6501 {
6502 }
6503 #endif
6504
6505 #ifdef CONFIG_LRU_GEN
mem_cgroup_attach(struct cgroup_taskset * tset)6506 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6507 {
6508 struct task_struct *task;
6509 struct cgroup_subsys_state *css;
6510
6511 /* find the first leader if there is any */
6512 cgroup_taskset_for_each_leader(task, css, tset)
6513 break;
6514
6515 if (!task)
6516 return;
6517
6518 task_lock(task);
6519 if (task->mm && READ_ONCE(task->mm->owner) == task)
6520 lru_gen_migrate_mm(task->mm);
6521 task_unlock(task);
6522 }
6523 #else
mem_cgroup_attach(struct cgroup_taskset * tset)6524 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6525 {
6526 }
6527 #endif /* CONFIG_LRU_GEN */
6528
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)6529 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6530 {
6531 if (value == PAGE_COUNTER_MAX)
6532 seq_puts(m, "max\n");
6533 else
6534 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6535
6536 return 0;
6537 }
6538
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6539 static u64 memory_current_read(struct cgroup_subsys_state *css,
6540 struct cftype *cft)
6541 {
6542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6543
6544 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6545 }
6546
memory_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)6547 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6548 struct cftype *cft)
6549 {
6550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6551
6552 return (u64)memcg->memory.watermark * PAGE_SIZE;
6553 }
6554
memory_min_show(struct seq_file * m,void * v)6555 static int memory_min_show(struct seq_file *m, void *v)
6556 {
6557 return seq_puts_memcg_tunable(m,
6558 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6559 }
6560
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6561 static ssize_t memory_min_write(struct kernfs_open_file *of,
6562 char *buf, size_t nbytes, loff_t off)
6563 {
6564 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6565 unsigned long min;
6566 int err;
6567
6568 buf = strstrip(buf);
6569 err = page_counter_memparse(buf, "max", &min);
6570 if (err)
6571 return err;
6572
6573 page_counter_set_min(&memcg->memory, min);
6574
6575 return nbytes;
6576 }
6577
memory_low_show(struct seq_file * m,void * v)6578 static int memory_low_show(struct seq_file *m, void *v)
6579 {
6580 return seq_puts_memcg_tunable(m,
6581 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6582 }
6583
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6584 static ssize_t memory_low_write(struct kernfs_open_file *of,
6585 char *buf, size_t nbytes, loff_t off)
6586 {
6587 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6588 unsigned long low;
6589 int err;
6590
6591 buf = strstrip(buf);
6592 err = page_counter_memparse(buf, "max", &low);
6593 if (err)
6594 return err;
6595
6596 page_counter_set_low(&memcg->memory, low);
6597
6598 return nbytes;
6599 }
6600
memory_high_show(struct seq_file * m,void * v)6601 static int memory_high_show(struct seq_file *m, void *v)
6602 {
6603 return seq_puts_memcg_tunable(m,
6604 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6605 }
6606
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6607 static ssize_t memory_high_write(struct kernfs_open_file *of,
6608 char *buf, size_t nbytes, loff_t off)
6609 {
6610 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6611 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6612 bool drained = false;
6613 unsigned long high;
6614 int err;
6615
6616 buf = strstrip(buf);
6617 err = page_counter_memparse(buf, "max", &high);
6618 if (err)
6619 return err;
6620
6621 page_counter_set_high(&memcg->memory, high);
6622
6623 for (;;) {
6624 unsigned long nr_pages = page_counter_read(&memcg->memory);
6625 unsigned long reclaimed;
6626
6627 if (nr_pages <= high)
6628 break;
6629
6630 if (signal_pending(current))
6631 break;
6632
6633 if (!drained) {
6634 drain_all_stock(memcg);
6635 drained = true;
6636 continue;
6637 }
6638
6639 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6640 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6641
6642 if (!reclaimed && !nr_retries--)
6643 break;
6644 }
6645
6646 memcg_wb_domain_size_changed(memcg);
6647 return nbytes;
6648 }
6649
memory_max_show(struct seq_file * m,void * v)6650 static int memory_max_show(struct seq_file *m, void *v)
6651 {
6652 return seq_puts_memcg_tunable(m,
6653 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6654 }
6655
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6656 static ssize_t memory_max_write(struct kernfs_open_file *of,
6657 char *buf, size_t nbytes, loff_t off)
6658 {
6659 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6660 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6661 bool drained = false;
6662 unsigned long max;
6663 int err;
6664
6665 buf = strstrip(buf);
6666 err = page_counter_memparse(buf, "max", &max);
6667 if (err)
6668 return err;
6669
6670 xchg(&memcg->memory.max, max);
6671
6672 for (;;) {
6673 unsigned long nr_pages = page_counter_read(&memcg->memory);
6674
6675 if (nr_pages <= max)
6676 break;
6677
6678 if (signal_pending(current))
6679 break;
6680
6681 if (!drained) {
6682 drain_all_stock(memcg);
6683 drained = true;
6684 continue;
6685 }
6686
6687 if (nr_reclaims) {
6688 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6689 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6690 nr_reclaims--;
6691 continue;
6692 }
6693
6694 memcg_memory_event(memcg, MEMCG_OOM);
6695 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6696 break;
6697 }
6698
6699 memcg_wb_domain_size_changed(memcg);
6700 return nbytes;
6701 }
6702
__memory_events_show(struct seq_file * m,atomic_long_t * events)6703 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6704 {
6705 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6706 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6707 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6708 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6709 seq_printf(m, "oom_kill %lu\n",
6710 atomic_long_read(&events[MEMCG_OOM_KILL]));
6711 seq_printf(m, "oom_group_kill %lu\n",
6712 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6713 }
6714
memory_events_show(struct seq_file * m,void * v)6715 static int memory_events_show(struct seq_file *m, void *v)
6716 {
6717 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6718
6719 __memory_events_show(m, memcg->memory_events);
6720 return 0;
6721 }
6722
memory_events_local_show(struct seq_file * m,void * v)6723 static int memory_events_local_show(struct seq_file *m, void *v)
6724 {
6725 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6726
6727 __memory_events_show(m, memcg->memory_events_local);
6728 return 0;
6729 }
6730
memory_stat_show(struct seq_file * m,void * v)6731 static int memory_stat_show(struct seq_file *m, void *v)
6732 {
6733 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6734 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6735 struct seq_buf s;
6736
6737 if (!buf)
6738 return -ENOMEM;
6739 seq_buf_init(&s, buf, PAGE_SIZE);
6740 memory_stat_format(memcg, &s);
6741 seq_puts(m, buf);
6742 kfree(buf);
6743 #ifdef CONFIG_HYPERHOLD_DEBUG
6744 memcg_eswap_info_show(m);
6745 #endif
6746 return 0;
6747 }
6748
6749 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)6750 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6751 int item)
6752 {
6753 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6754 }
6755
memory_numa_stat_show(struct seq_file * m,void * v)6756 static int memory_numa_stat_show(struct seq_file *m, void *v)
6757 {
6758 int i;
6759 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6760
6761 mem_cgroup_flush_stats();
6762
6763 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6764 int nid;
6765
6766 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6767 continue;
6768
6769 seq_printf(m, "%s", memory_stats[i].name);
6770 for_each_node_state(nid, N_MEMORY) {
6771 u64 size;
6772 struct lruvec *lruvec;
6773
6774 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6775 size = lruvec_page_state_output(lruvec,
6776 memory_stats[i].idx);
6777 seq_printf(m, " N%d=%llu", nid, size);
6778 }
6779 seq_putc(m, '\n');
6780 }
6781
6782 return 0;
6783 }
6784 #endif
6785
memory_oom_group_show(struct seq_file * m,void * v)6786 static int memory_oom_group_show(struct seq_file *m, void *v)
6787 {
6788 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6789
6790 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6791
6792 return 0;
6793 }
6794
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6795 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6796 char *buf, size_t nbytes, loff_t off)
6797 {
6798 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6799 int ret, oom_group;
6800
6801 buf = strstrip(buf);
6802 if (!buf)
6803 return -EINVAL;
6804
6805 ret = kstrtoint(buf, 0, &oom_group);
6806 if (ret)
6807 return ret;
6808
6809 if (oom_group != 0 && oom_group != 1)
6810 return -EINVAL;
6811
6812 WRITE_ONCE(memcg->oom_group, oom_group);
6813
6814 return nbytes;
6815 }
6816
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6817 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6818 size_t nbytes, loff_t off)
6819 {
6820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6821 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6822 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6823 unsigned int reclaim_options;
6824 int err;
6825
6826 buf = strstrip(buf);
6827 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6828 if (err)
6829 return err;
6830
6831 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6832 while (nr_reclaimed < nr_to_reclaim) {
6833 unsigned long reclaimed;
6834
6835 if (signal_pending(current))
6836 return -EINTR;
6837
6838 /*
6839 * This is the final attempt, drain percpu lru caches in the
6840 * hope of introducing more evictable pages for
6841 * try_to_free_mem_cgroup_pages().
6842 */
6843 if (!nr_retries)
6844 lru_add_drain_all();
6845
6846 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6847 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6848 GFP_KERNEL, reclaim_options);
6849
6850 if (!reclaimed && !nr_retries--)
6851 return -EAGAIN;
6852
6853 nr_reclaimed += reclaimed;
6854 }
6855
6856 return nbytes;
6857 }
6858
6859 static struct cftype memory_files[] = {
6860 {
6861 .name = "current",
6862 .flags = CFTYPE_NOT_ON_ROOT,
6863 .read_u64 = memory_current_read,
6864 },
6865 {
6866 .name = "peak",
6867 .flags = CFTYPE_NOT_ON_ROOT,
6868 .read_u64 = memory_peak_read,
6869 },
6870 {
6871 .name = "min",
6872 .flags = CFTYPE_NOT_ON_ROOT,
6873 .seq_show = memory_min_show,
6874 .write = memory_min_write,
6875 },
6876 {
6877 .name = "low",
6878 .flags = CFTYPE_NOT_ON_ROOT,
6879 .seq_show = memory_low_show,
6880 .write = memory_low_write,
6881 },
6882 {
6883 .name = "high",
6884 .flags = CFTYPE_NOT_ON_ROOT,
6885 .seq_show = memory_high_show,
6886 .write = memory_high_write,
6887 },
6888 {
6889 .name = "max",
6890 .flags = CFTYPE_NOT_ON_ROOT,
6891 .seq_show = memory_max_show,
6892 .write = memory_max_write,
6893 },
6894 {
6895 .name = "events",
6896 .flags = CFTYPE_NOT_ON_ROOT,
6897 .file_offset = offsetof(struct mem_cgroup, events_file),
6898 .seq_show = memory_events_show,
6899 },
6900 {
6901 .name = "events.local",
6902 .flags = CFTYPE_NOT_ON_ROOT,
6903 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6904 .seq_show = memory_events_local_show,
6905 },
6906 {
6907 .name = "stat",
6908 .seq_show = memory_stat_show,
6909 },
6910 #ifdef CONFIG_NUMA
6911 {
6912 .name = "numa_stat",
6913 .seq_show = memory_numa_stat_show,
6914 },
6915 #endif
6916 {
6917 .name = "oom.group",
6918 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6919 .seq_show = memory_oom_group_show,
6920 .write = memory_oom_group_write,
6921 },
6922 {
6923 .name = "reclaim",
6924 .flags = CFTYPE_NS_DELEGATABLE,
6925 .write = memory_reclaim,
6926 },
6927 { } /* terminate */
6928 };
6929
6930 struct cgroup_subsys memory_cgrp_subsys = {
6931 .css_alloc = mem_cgroup_css_alloc,
6932 .css_online = mem_cgroup_css_online,
6933 .css_offline = mem_cgroup_css_offline,
6934 .css_released = mem_cgroup_css_released,
6935 .css_free = mem_cgroup_css_free,
6936 .css_reset = mem_cgroup_css_reset,
6937 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6938 .can_attach = mem_cgroup_can_attach,
6939 .attach = mem_cgroup_attach,
6940 .cancel_attach = mem_cgroup_cancel_attach,
6941 .post_attach = mem_cgroup_move_task,
6942 .dfl_cftypes = memory_files,
6943 .legacy_cftypes = mem_cgroup_legacy_files,
6944 .early_init = 0,
6945 };
6946
6947 /*
6948 * This function calculates an individual cgroup's effective
6949 * protection which is derived from its own memory.min/low, its
6950 * parent's and siblings' settings, as well as the actual memory
6951 * distribution in the tree.
6952 *
6953 * The following rules apply to the effective protection values:
6954 *
6955 * 1. At the first level of reclaim, effective protection is equal to
6956 * the declared protection in memory.min and memory.low.
6957 *
6958 * 2. To enable safe delegation of the protection configuration, at
6959 * subsequent levels the effective protection is capped to the
6960 * parent's effective protection.
6961 *
6962 * 3. To make complex and dynamic subtrees easier to configure, the
6963 * user is allowed to overcommit the declared protection at a given
6964 * level. If that is the case, the parent's effective protection is
6965 * distributed to the children in proportion to how much protection
6966 * they have declared and how much of it they are utilizing.
6967 *
6968 * This makes distribution proportional, but also work-conserving:
6969 * if one cgroup claims much more protection than it uses memory,
6970 * the unused remainder is available to its siblings.
6971 *
6972 * 4. Conversely, when the declared protection is undercommitted at a
6973 * given level, the distribution of the larger parental protection
6974 * budget is NOT proportional. A cgroup's protection from a sibling
6975 * is capped to its own memory.min/low setting.
6976 *
6977 * 5. However, to allow protecting recursive subtrees from each other
6978 * without having to declare each individual cgroup's fixed share
6979 * of the ancestor's claim to protection, any unutilized -
6980 * "floating" - protection from up the tree is distributed in
6981 * proportion to each cgroup's *usage*. This makes the protection
6982 * neutral wrt sibling cgroups and lets them compete freely over
6983 * the shared parental protection budget, but it protects the
6984 * subtree as a whole from neighboring subtrees.
6985 *
6986 * Note that 4. and 5. are not in conflict: 4. is about protecting
6987 * against immediate siblings whereas 5. is about protecting against
6988 * neighboring subtrees.
6989 */
effective_protection(unsigned long usage,unsigned long parent_usage,unsigned long setting,unsigned long parent_effective,unsigned long siblings_protected)6990 static unsigned long effective_protection(unsigned long usage,
6991 unsigned long parent_usage,
6992 unsigned long setting,
6993 unsigned long parent_effective,
6994 unsigned long siblings_protected)
6995 {
6996 unsigned long protected;
6997 unsigned long ep;
6998
6999 protected = min(usage, setting);
7000 /*
7001 * If all cgroups at this level combined claim and use more
7002 * protection than what the parent affords them, distribute
7003 * shares in proportion to utilization.
7004 *
7005 * We are using actual utilization rather than the statically
7006 * claimed protection in order to be work-conserving: claimed
7007 * but unused protection is available to siblings that would
7008 * otherwise get a smaller chunk than what they claimed.
7009 */
7010 if (siblings_protected > parent_effective)
7011 return protected * parent_effective / siblings_protected;
7012
7013 /*
7014 * Ok, utilized protection of all children is within what the
7015 * parent affords them, so we know whatever this child claims
7016 * and utilizes is effectively protected.
7017 *
7018 * If there is unprotected usage beyond this value, reclaim
7019 * will apply pressure in proportion to that amount.
7020 *
7021 * If there is unutilized protection, the cgroup will be fully
7022 * shielded from reclaim, but we do return a smaller value for
7023 * protection than what the group could enjoy in theory. This
7024 * is okay. With the overcommit distribution above, effective
7025 * protection is always dependent on how memory is actually
7026 * consumed among the siblings anyway.
7027 */
7028 ep = protected;
7029
7030 /*
7031 * If the children aren't claiming (all of) the protection
7032 * afforded to them by the parent, distribute the remainder in
7033 * proportion to the (unprotected) memory of each cgroup. That
7034 * way, cgroups that aren't explicitly prioritized wrt each
7035 * other compete freely over the allowance, but they are
7036 * collectively protected from neighboring trees.
7037 *
7038 * We're using unprotected memory for the weight so that if
7039 * some cgroups DO claim explicit protection, we don't protect
7040 * the same bytes twice.
7041 *
7042 * Check both usage and parent_usage against the respective
7043 * protected values. One should imply the other, but they
7044 * aren't read atomically - make sure the division is sane.
7045 */
7046 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7047 return ep;
7048 if (parent_effective > siblings_protected &&
7049 parent_usage > siblings_protected &&
7050 usage > protected) {
7051 unsigned long unclaimed;
7052
7053 unclaimed = parent_effective - siblings_protected;
7054 unclaimed *= usage - protected;
7055 unclaimed /= parent_usage - siblings_protected;
7056
7057 ep += unclaimed;
7058 }
7059
7060 return ep;
7061 }
7062
7063 /**
7064 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7065 * @root: the top ancestor of the sub-tree being checked
7066 * @memcg: the memory cgroup to check
7067 *
7068 * WARNING: This function is not stateless! It can only be used as part
7069 * of a top-down tree iteration, not for isolated queries.
7070 */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)7071 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7072 struct mem_cgroup *memcg)
7073 {
7074 unsigned long usage, parent_usage;
7075 struct mem_cgroup *parent;
7076
7077 if (mem_cgroup_disabled())
7078 return;
7079
7080 if (!root)
7081 root = root_mem_cgroup;
7082
7083 /*
7084 * Effective values of the reclaim targets are ignored so they
7085 * can be stale. Have a look at mem_cgroup_protection for more
7086 * details.
7087 * TODO: calculation should be more robust so that we do not need
7088 * that special casing.
7089 */
7090 if (memcg == root)
7091 return;
7092
7093 usage = page_counter_read(&memcg->memory);
7094 if (!usage)
7095 return;
7096
7097 parent = parent_mem_cgroup(memcg);
7098
7099 if (parent == root) {
7100 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7101 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7102 return;
7103 }
7104
7105 parent_usage = page_counter_read(&parent->memory);
7106
7107 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7108 READ_ONCE(memcg->memory.min),
7109 READ_ONCE(parent->memory.emin),
7110 atomic_long_read(&parent->memory.children_min_usage)));
7111
7112 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7113 READ_ONCE(memcg->memory.low),
7114 READ_ONCE(parent->memory.elow),
7115 atomic_long_read(&parent->memory.children_low_usage)));
7116 }
7117
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)7118 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7119 gfp_t gfp)
7120 {
7121 long nr_pages = folio_nr_pages(folio);
7122 int ret;
7123
7124 ret = try_charge(memcg, gfp, nr_pages);
7125 if (ret)
7126 goto out;
7127
7128 css_get(&memcg->css);
7129 commit_charge(folio, memcg);
7130
7131 local_irq_disable();
7132 mem_cgroup_charge_statistics(memcg, nr_pages);
7133 memcg_check_events(memcg, folio_nid(folio));
7134 local_irq_enable();
7135 out:
7136 return ret;
7137 }
7138
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)7139 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7140 {
7141 struct mem_cgroup *memcg;
7142 int ret;
7143
7144 memcg = get_mem_cgroup_from_mm(mm);
7145 ret = charge_memcg(folio, memcg, gfp);
7146 css_put(&memcg->css);
7147
7148 return ret;
7149 }
7150
7151 /**
7152 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7153 * @folio: folio to charge.
7154 * @mm: mm context of the victim
7155 * @gfp: reclaim mode
7156 * @entry: swap entry for which the folio is allocated
7157 *
7158 * This function charges a folio allocated for swapin. Please call this before
7159 * adding the folio to the swapcache.
7160 *
7161 * Returns 0 on success. Otherwise, an error code is returned.
7162 */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)7163 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7164 gfp_t gfp, swp_entry_t entry)
7165 {
7166 struct mem_cgroup *memcg;
7167 unsigned short id;
7168 int ret;
7169
7170 if (mem_cgroup_disabled())
7171 return 0;
7172
7173 id = lookup_swap_cgroup_id(entry);
7174 rcu_read_lock();
7175 memcg = mem_cgroup_from_id(id);
7176 if (!memcg || !css_tryget_online(&memcg->css))
7177 memcg = get_mem_cgroup_from_mm(mm);
7178 rcu_read_unlock();
7179
7180 ret = charge_memcg(folio, memcg, gfp);
7181
7182 css_put(&memcg->css);
7183 return ret;
7184 }
7185
7186 /*
7187 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7188 * @entry: swap entry for which the page is charged
7189 *
7190 * Call this function after successfully adding the charged page to swapcache.
7191 *
7192 * Note: This function assumes the page for which swap slot is being uncharged
7193 * is order 0 page.
7194 */
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)7195 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7196 {
7197 /*
7198 * Cgroup1's unified memory+swap counter has been charged with the
7199 * new swapcache page, finish the transfer by uncharging the swap
7200 * slot. The swap slot would also get uncharged when it dies, but
7201 * it can stick around indefinitely and we'd count the page twice
7202 * the entire time.
7203 *
7204 * Cgroup2 has separate resource counters for memory and swap,
7205 * so this is a non-issue here. Memory and swap charge lifetimes
7206 * correspond 1:1 to page and swap slot lifetimes: we charge the
7207 * page to memory here, and uncharge swap when the slot is freed.
7208 */
7209 if (!mem_cgroup_disabled() && do_memsw_account()) {
7210 /*
7211 * The swap entry might not get freed for a long time,
7212 * let's not wait for it. The page already received a
7213 * memory+swap charge, drop the swap entry duplicate.
7214 */
7215 mem_cgroup_uncharge_swap(entry, 1);
7216 }
7217 }
7218
7219 struct uncharge_gather {
7220 struct mem_cgroup *memcg;
7221 unsigned long nr_memory;
7222 unsigned long pgpgout;
7223 unsigned long nr_kmem;
7224 int nid;
7225 };
7226
uncharge_gather_clear(struct uncharge_gather * ug)7227 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7228 {
7229 memset(ug, 0, sizeof(*ug));
7230 }
7231
uncharge_batch(const struct uncharge_gather * ug)7232 static void uncharge_batch(const struct uncharge_gather *ug)
7233 {
7234 unsigned long flags;
7235
7236 if (ug->nr_memory) {
7237 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7238 if (do_memsw_account())
7239 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7240 if (ug->nr_kmem)
7241 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7242 memcg_oom_recover(ug->memcg);
7243 }
7244
7245 local_irq_save(flags);
7246 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7247 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7248 memcg_check_events(ug->memcg, ug->nid);
7249 local_irq_restore(flags);
7250
7251 /* drop reference from uncharge_folio */
7252 css_put(&ug->memcg->css);
7253 }
7254
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)7255 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7256 {
7257 long nr_pages;
7258 struct mem_cgroup *memcg;
7259 struct obj_cgroup *objcg;
7260
7261 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7262
7263 /*
7264 * Nobody should be changing or seriously looking at
7265 * folio memcg or objcg at this point, we have fully
7266 * exclusive access to the folio.
7267 */
7268 if (folio_memcg_kmem(folio)) {
7269 objcg = __folio_objcg(folio);
7270 /*
7271 * This get matches the put at the end of the function and
7272 * kmem pages do not hold memcg references anymore.
7273 */
7274 memcg = get_mem_cgroup_from_objcg(objcg);
7275 } else {
7276 memcg = __folio_memcg(folio);
7277 }
7278
7279 if (!memcg)
7280 return;
7281
7282 if (ug->memcg != memcg) {
7283 if (ug->memcg) {
7284 uncharge_batch(ug);
7285 uncharge_gather_clear(ug);
7286 }
7287 ug->memcg = memcg;
7288 ug->nid = folio_nid(folio);
7289
7290 /* pairs with css_put in uncharge_batch */
7291 css_get(&memcg->css);
7292 }
7293
7294 nr_pages = folio_nr_pages(folio);
7295
7296 if (folio_memcg_kmem(folio)) {
7297 ug->nr_memory += nr_pages;
7298 ug->nr_kmem += nr_pages;
7299
7300 folio->memcg_data = 0;
7301 obj_cgroup_put(objcg);
7302 } else {
7303 /* LRU pages aren't accounted at the root level */
7304 if (!mem_cgroup_is_root(memcg))
7305 ug->nr_memory += nr_pages;
7306 ug->pgpgout++;
7307
7308 WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
7309 folio->memcg_data = 0;
7310 }
7311
7312 css_put(&memcg->css);
7313 }
7314
__mem_cgroup_uncharge(struct folio * folio)7315 void __mem_cgroup_uncharge(struct folio *folio)
7316 {
7317 struct uncharge_gather ug;
7318
7319 /* Don't touch folio->lru of any random page, pre-check: */
7320 if (!folio_memcg(folio))
7321 return;
7322
7323 uncharge_gather_clear(&ug);
7324 uncharge_folio(folio, &ug);
7325 uncharge_batch(&ug);
7326 }
7327
7328 /**
7329 * __mem_cgroup_uncharge_list - uncharge a list of page
7330 * @page_list: list of pages to uncharge
7331 *
7332 * Uncharge a list of pages previously charged with
7333 * __mem_cgroup_charge().
7334 */
__mem_cgroup_uncharge_list(struct list_head * page_list)7335 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7336 {
7337 struct uncharge_gather ug;
7338 struct folio *folio;
7339
7340 uncharge_gather_clear(&ug);
7341 list_for_each_entry(folio, page_list, lru)
7342 uncharge_folio(folio, &ug);
7343 if (ug.memcg)
7344 uncharge_batch(&ug);
7345 }
7346
7347 /**
7348 * mem_cgroup_migrate - Charge a folio's replacement.
7349 * @old: Currently circulating folio.
7350 * @new: Replacement folio.
7351 *
7352 * Charge @new as a replacement folio for @old. @old will
7353 * be uncharged upon free.
7354 *
7355 * Both folios must be locked, @new->mapping must be set up.
7356 */
mem_cgroup_migrate(struct folio * old,struct folio * new)7357 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7358 {
7359 struct mem_cgroup *memcg;
7360 long nr_pages = folio_nr_pages(new);
7361 unsigned long flags;
7362
7363 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7364 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7365 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7366 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7367
7368 if (mem_cgroup_disabled())
7369 return;
7370
7371 /* Page cache replacement: new folio already charged? */
7372 if (folio_memcg(new))
7373 return;
7374
7375 memcg = folio_memcg(old);
7376 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7377 if (!memcg)
7378 return;
7379
7380 /* Force-charge the new page. The old one will be freed soon */
7381 if (!mem_cgroup_is_root(memcg)) {
7382 page_counter_charge(&memcg->memory, nr_pages);
7383 if (do_memsw_account())
7384 page_counter_charge(&memcg->memsw, nr_pages);
7385 }
7386
7387 css_get(&memcg->css);
7388 commit_charge(new, memcg);
7389
7390 local_irq_save(flags);
7391 mem_cgroup_charge_statistics(memcg, nr_pages);
7392 memcg_check_events(memcg, folio_nid(new));
7393 local_irq_restore(flags);
7394 }
7395
7396 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7397 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7398
mem_cgroup_sk_alloc(struct sock * sk)7399 void mem_cgroup_sk_alloc(struct sock *sk)
7400 {
7401 struct mem_cgroup *memcg;
7402
7403 if (!mem_cgroup_sockets_enabled)
7404 return;
7405
7406 /* Do not associate the sock with unrelated interrupted task's memcg. */
7407 if (!in_task())
7408 return;
7409
7410 rcu_read_lock();
7411 memcg = mem_cgroup_from_task(current);
7412 if (mem_cgroup_is_root(memcg))
7413 goto out;
7414 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7415 goto out;
7416 if (css_tryget(&memcg->css))
7417 sk->sk_memcg = memcg;
7418 out:
7419 rcu_read_unlock();
7420 }
7421
mem_cgroup_sk_free(struct sock * sk)7422 void mem_cgroup_sk_free(struct sock *sk)
7423 {
7424 if (sk->sk_memcg)
7425 css_put(&sk->sk_memcg->css);
7426 }
7427
7428 /**
7429 * mem_cgroup_charge_skmem - charge socket memory
7430 * @memcg: memcg to charge
7431 * @nr_pages: number of pages to charge
7432 * @gfp_mask: reclaim mode
7433 *
7434 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7435 * @memcg's configured limit, %false if it doesn't.
7436 */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)7437 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7438 gfp_t gfp_mask)
7439 {
7440 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7441 struct page_counter *fail;
7442
7443 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7444 memcg->tcpmem_pressure = 0;
7445 return true;
7446 }
7447 memcg->tcpmem_pressure = 1;
7448 if (gfp_mask & __GFP_NOFAIL) {
7449 page_counter_charge(&memcg->tcpmem, nr_pages);
7450 return true;
7451 }
7452 return false;
7453 }
7454
7455 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7456 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7457 return true;
7458 }
7459
7460 return false;
7461 }
7462
7463 /**
7464 * mem_cgroup_uncharge_skmem - uncharge socket memory
7465 * @memcg: memcg to uncharge
7466 * @nr_pages: number of pages to uncharge
7467 */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)7468 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7469 {
7470 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7471 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7472 return;
7473 }
7474
7475 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7476
7477 refill_stock(memcg, nr_pages);
7478 }
7479
cgroup_memory(char * s)7480 static int __init cgroup_memory(char *s)
7481 {
7482 char *token;
7483
7484 while ((token = strsep(&s, ",")) != NULL) {
7485 if (!*token)
7486 continue;
7487 if (!strcmp(token, "nosocket"))
7488 cgroup_memory_nosocket = true;
7489 if (!strcmp(token, "nokmem"))
7490 cgroup_memory_nokmem = true;
7491 if (!strcmp(token, "nobpf"))
7492 cgroup_memory_nobpf = true;
7493 if (!strcmp(token, "kmem"))
7494 cgroup_memory_nokmem = false;
7495 }
7496 return 1;
7497 }
7498 __setup("cgroup.memory=", cgroup_memory);
7499
7500 /*
7501 * subsys_initcall() for memory controller.
7502 *
7503 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7504 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7505 * basically everything that doesn't depend on a specific mem_cgroup structure
7506 * should be initialized from here.
7507 */
mem_cgroup_init(void)7508 static int __init mem_cgroup_init(void)
7509 {
7510 int cpu, node;
7511
7512 /*
7513 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7514 * used for per-memcg-per-cpu caching of per-node statistics. In order
7515 * to work fine, we should make sure that the overfill threshold can't
7516 * exceed S32_MAX / PAGE_SIZE.
7517 */
7518 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7519
7520 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7521 memcg_hotplug_cpu_dead);
7522
7523 for_each_possible_cpu(cpu)
7524 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7525 drain_local_stock);
7526
7527 for_each_node(node) {
7528 struct mem_cgroup_tree_per_node *rtpn;
7529
7530 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7531
7532 rtpn->rb_root = RB_ROOT;
7533 rtpn->rb_rightmost = NULL;
7534 spin_lock_init(&rtpn->lock);
7535 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7536 }
7537
7538 return 0;
7539 }
7540 subsys_initcall(mem_cgroup_init);
7541
7542 #ifdef CONFIG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)7543 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7544 {
7545 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7546 /*
7547 * The root cgroup cannot be destroyed, so it's refcount must
7548 * always be >= 1.
7549 */
7550 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7551 VM_BUG_ON(1);
7552 break;
7553 }
7554 memcg = parent_mem_cgroup(memcg);
7555 if (!memcg)
7556 memcg = root_mem_cgroup;
7557 }
7558 return memcg;
7559 }
7560
7561 /**
7562 * mem_cgroup_swapout - transfer a memsw charge to swap
7563 * @folio: folio whose memsw charge to transfer
7564 * @entry: swap entry to move the charge to
7565 *
7566 * Transfer the memsw charge of @folio to @entry.
7567 */
mem_cgroup_swapout(struct folio * folio,swp_entry_t entry)7568 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7569 {
7570 struct mem_cgroup *memcg, *swap_memcg;
7571 unsigned int nr_entries;
7572 unsigned short oldid;
7573
7574 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7575 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7576
7577 if (mem_cgroup_disabled())
7578 return;
7579
7580 if (!do_memsw_account())
7581 return;
7582
7583 memcg = folio_memcg(folio);
7584
7585 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7586 if (!memcg)
7587 return;
7588
7589 /*
7590 * In case the memcg owning these pages has been offlined and doesn't
7591 * have an ID allocated to it anymore, charge the closest online
7592 * ancestor for the swap instead and transfer the memory+swap charge.
7593 */
7594 swap_memcg = mem_cgroup_id_get_online(memcg);
7595 nr_entries = folio_nr_pages(folio);
7596 /* Get references for the tail pages, too */
7597 if (nr_entries > 1)
7598 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7599 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7600 nr_entries);
7601 VM_BUG_ON_FOLIO(oldid, folio);
7602 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7603
7604 folio_unqueue_deferred_split(folio);
7605 folio->memcg_data = 0;
7606
7607 if (!mem_cgroup_is_root(memcg))
7608 page_counter_uncharge(&memcg->memory, nr_entries);
7609
7610 if (memcg != swap_memcg) {
7611 if (!mem_cgroup_is_root(swap_memcg))
7612 page_counter_charge(&swap_memcg->memsw, nr_entries);
7613 page_counter_uncharge(&memcg->memsw, nr_entries);
7614 }
7615
7616 /*
7617 * Interrupts should be disabled here because the caller holds the
7618 * i_pages lock which is taken with interrupts-off. It is
7619 * important here to have the interrupts disabled because it is the
7620 * only synchronisation we have for updating the per-CPU variables.
7621 */
7622 memcg_stats_lock();
7623 mem_cgroup_charge_statistics(memcg, -nr_entries);
7624 memcg_stats_unlock();
7625 memcg_check_events(memcg, folio_nid(folio));
7626
7627 css_put(&memcg->css);
7628 }
7629
7630 /**
7631 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7632 * @folio: folio being added to swap
7633 * @entry: swap entry to charge
7634 *
7635 * Try to charge @folio's memcg for the swap space at @entry.
7636 *
7637 * Returns 0 on success, -ENOMEM on failure.
7638 */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)7639 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7640 {
7641 unsigned int nr_pages = folio_nr_pages(folio);
7642 struct page_counter *counter;
7643 struct mem_cgroup *memcg;
7644 unsigned short oldid;
7645
7646 if (do_memsw_account())
7647 return 0;
7648
7649 memcg = folio_memcg(folio);
7650
7651 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7652 if (!memcg)
7653 return 0;
7654
7655 if (!entry.val) {
7656 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7657 return 0;
7658 }
7659
7660 memcg = mem_cgroup_id_get_online(memcg);
7661
7662 if (!mem_cgroup_is_root(memcg) &&
7663 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7664 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7665 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7666 mem_cgroup_id_put(memcg);
7667 return -ENOMEM;
7668 }
7669
7670 /* Get references for the tail pages, too */
7671 if (nr_pages > 1)
7672 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7673 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7674 VM_BUG_ON_FOLIO(oldid, folio);
7675 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7676
7677 return 0;
7678 }
7679
7680 /**
7681 * __mem_cgroup_uncharge_swap - uncharge swap space
7682 * @entry: swap entry to uncharge
7683 * @nr_pages: the amount of swap space to uncharge
7684 */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)7685 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7686 {
7687 struct mem_cgroup *memcg;
7688 unsigned short id;
7689
7690 id = swap_cgroup_record(entry, 0, nr_pages);
7691 rcu_read_lock();
7692 memcg = mem_cgroup_from_id(id);
7693 if (memcg) {
7694 if (!mem_cgroup_is_root(memcg)) {
7695 if (do_memsw_account())
7696 page_counter_uncharge(&memcg->memsw, nr_pages);
7697 else
7698 page_counter_uncharge(&memcg->swap, nr_pages);
7699 }
7700 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7701 mem_cgroup_id_put_many(memcg, nr_pages);
7702 }
7703 rcu_read_unlock();
7704 }
7705
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)7706 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7707 {
7708 long nr_swap_pages = get_nr_swap_pages();
7709
7710 if (mem_cgroup_disabled() || do_memsw_account())
7711 return nr_swap_pages;
7712 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7713 nr_swap_pages = min_t(long, nr_swap_pages,
7714 READ_ONCE(memcg->swap.max) -
7715 page_counter_read(&memcg->swap));
7716 return nr_swap_pages;
7717 }
7718
mem_cgroup_swap_full(struct folio * folio)7719 bool mem_cgroup_swap_full(struct folio *folio)
7720 {
7721 struct mem_cgroup *memcg;
7722
7723 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7724
7725 if (vm_swap_full())
7726 return true;
7727 if (do_memsw_account())
7728 return false;
7729
7730 memcg = folio_memcg(folio);
7731 if (!memcg)
7732 return false;
7733
7734 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7735 unsigned long usage = page_counter_read(&memcg->swap);
7736
7737 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7738 usage * 2 >= READ_ONCE(memcg->swap.max))
7739 return true;
7740 }
7741
7742 return false;
7743 }
7744
setup_swap_account(char * s)7745 static int __init setup_swap_account(char *s)
7746 {
7747 bool res;
7748
7749 if (!kstrtobool(s, &res) && !res)
7750 pr_warn_once("The swapaccount=0 commandline option is deprecated "
7751 "in favor of configuring swap control via cgroupfs. "
7752 "Please report your usecase to linux-mm@kvack.org if you "
7753 "depend on this functionality.\n");
7754 return 1;
7755 }
7756 __setup("swapaccount=", setup_swap_account);
7757
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7758 static u64 swap_current_read(struct cgroup_subsys_state *css,
7759 struct cftype *cft)
7760 {
7761 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7762
7763 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7764 }
7765
swap_peak_read(struct cgroup_subsys_state * css,struct cftype * cft)7766 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7767 struct cftype *cft)
7768 {
7769 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7770
7771 return (u64)memcg->swap.watermark * PAGE_SIZE;
7772 }
7773
swap_high_show(struct seq_file * m,void * v)7774 static int swap_high_show(struct seq_file *m, void *v)
7775 {
7776 return seq_puts_memcg_tunable(m,
7777 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7778 }
7779
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7780 static ssize_t swap_high_write(struct kernfs_open_file *of,
7781 char *buf, size_t nbytes, loff_t off)
7782 {
7783 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7784 unsigned long high;
7785 int err;
7786
7787 buf = strstrip(buf);
7788 err = page_counter_memparse(buf, "max", &high);
7789 if (err)
7790 return err;
7791
7792 page_counter_set_high(&memcg->swap, high);
7793
7794 return nbytes;
7795 }
7796
swap_max_show(struct seq_file * m,void * v)7797 static int swap_max_show(struct seq_file *m, void *v)
7798 {
7799 return seq_puts_memcg_tunable(m,
7800 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7801 }
7802
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7803 static ssize_t swap_max_write(struct kernfs_open_file *of,
7804 char *buf, size_t nbytes, loff_t off)
7805 {
7806 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7807 unsigned long max;
7808 int err;
7809
7810 buf = strstrip(buf);
7811 err = page_counter_memparse(buf, "max", &max);
7812 if (err)
7813 return err;
7814
7815 xchg(&memcg->swap.max, max);
7816
7817 return nbytes;
7818 }
7819
swap_events_show(struct seq_file * m,void * v)7820 static int swap_events_show(struct seq_file *m, void *v)
7821 {
7822 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7823
7824 seq_printf(m, "high %lu\n",
7825 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7826 seq_printf(m, "max %lu\n",
7827 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7828 seq_printf(m, "fail %lu\n",
7829 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7830
7831 return 0;
7832 }
7833
7834 static struct cftype swap_files[] = {
7835 {
7836 .name = "swap.current",
7837 .flags = CFTYPE_NOT_ON_ROOT,
7838 .read_u64 = swap_current_read,
7839 },
7840 {
7841 .name = "swap.high",
7842 .flags = CFTYPE_NOT_ON_ROOT,
7843 .seq_show = swap_high_show,
7844 .write = swap_high_write,
7845 },
7846 {
7847 .name = "swap.max",
7848 .flags = CFTYPE_NOT_ON_ROOT,
7849 .seq_show = swap_max_show,
7850 .write = swap_max_write,
7851 },
7852 {
7853 .name = "swap.peak",
7854 .flags = CFTYPE_NOT_ON_ROOT,
7855 .read_u64 = swap_peak_read,
7856 },
7857 {
7858 .name = "swap.events",
7859 .flags = CFTYPE_NOT_ON_ROOT,
7860 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7861 .seq_show = swap_events_show,
7862 },
7863 { } /* terminate */
7864 };
7865
7866 static struct cftype memsw_files[] = {
7867 {
7868 .name = "memsw.usage_in_bytes",
7869 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7870 .read_u64 = mem_cgroup_read_u64,
7871 },
7872 {
7873 .name = "memsw.max_usage_in_bytes",
7874 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7875 .write = mem_cgroup_reset,
7876 .read_u64 = mem_cgroup_read_u64,
7877 },
7878 {
7879 .name = "memsw.limit_in_bytes",
7880 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7881 .write = mem_cgroup_write,
7882 .read_u64 = mem_cgroup_read_u64,
7883 },
7884 {
7885 .name = "memsw.failcnt",
7886 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7887 .write = mem_cgroup_reset,
7888 .read_u64 = mem_cgroup_read_u64,
7889 },
7890 { }, /* terminate */
7891 };
7892
7893 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7894 /**
7895 * obj_cgroup_may_zswap - check if this cgroup can zswap
7896 * @objcg: the object cgroup
7897 *
7898 * Check if the hierarchical zswap limit has been reached.
7899 *
7900 * This doesn't check for specific headroom, and it is not atomic
7901 * either. But with zswap, the size of the allocation is only known
7902 * once compression has occured, and this optimistic pre-check avoids
7903 * spending cycles on compression when there is already no room left
7904 * or zswap is disabled altogether somewhere in the hierarchy.
7905 */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)7906 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7907 {
7908 struct mem_cgroup *memcg, *original_memcg;
7909 bool ret = true;
7910
7911 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7912 return true;
7913
7914 original_memcg = get_mem_cgroup_from_objcg(objcg);
7915 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7916 memcg = parent_mem_cgroup(memcg)) {
7917 unsigned long max = READ_ONCE(memcg->zswap_max);
7918 unsigned long pages;
7919
7920 if (max == PAGE_COUNTER_MAX)
7921 continue;
7922 if (max == 0) {
7923 ret = false;
7924 break;
7925 }
7926
7927 cgroup_rstat_flush(memcg->css.cgroup);
7928 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7929 if (pages < max)
7930 continue;
7931 ret = false;
7932 break;
7933 }
7934 mem_cgroup_put(original_memcg);
7935 return ret;
7936 }
7937
7938 /**
7939 * obj_cgroup_charge_zswap - charge compression backend memory
7940 * @objcg: the object cgroup
7941 * @size: size of compressed object
7942 *
7943 * This forces the charge after obj_cgroup_may_zswap() allowed
7944 * compression and storage in zwap for this cgroup to go ahead.
7945 */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)7946 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7947 {
7948 struct mem_cgroup *memcg;
7949
7950 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7951 return;
7952
7953 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7954
7955 /* PF_MEMALLOC context, charging must succeed */
7956 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7957 VM_WARN_ON_ONCE(1);
7958
7959 rcu_read_lock();
7960 memcg = obj_cgroup_memcg(objcg);
7961 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7962 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7963 rcu_read_unlock();
7964 }
7965
7966 /**
7967 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7968 * @objcg: the object cgroup
7969 * @size: size of compressed object
7970 *
7971 * Uncharges zswap memory on page in.
7972 */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)7973 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7974 {
7975 struct mem_cgroup *memcg;
7976
7977 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7978 return;
7979
7980 obj_cgroup_uncharge(objcg, size);
7981
7982 rcu_read_lock();
7983 memcg = obj_cgroup_memcg(objcg);
7984 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7985 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7986 rcu_read_unlock();
7987 }
7988
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)7989 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7990 struct cftype *cft)
7991 {
7992 cgroup_rstat_flush(css->cgroup);
7993 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7994 }
7995
zswap_max_show(struct seq_file * m,void * v)7996 static int zswap_max_show(struct seq_file *m, void *v)
7997 {
7998 return seq_puts_memcg_tunable(m,
7999 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8000 }
8001
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8002 static ssize_t zswap_max_write(struct kernfs_open_file *of,
8003 char *buf, size_t nbytes, loff_t off)
8004 {
8005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8006 unsigned long max;
8007 int err;
8008
8009 buf = strstrip(buf);
8010 err = page_counter_memparse(buf, "max", &max);
8011 if (err)
8012 return err;
8013
8014 xchg(&memcg->zswap_max, max);
8015
8016 return nbytes;
8017 }
8018
8019 static struct cftype zswap_files[] = {
8020 {
8021 .name = "zswap.current",
8022 .flags = CFTYPE_NOT_ON_ROOT,
8023 .read_u64 = zswap_current_read,
8024 },
8025 {
8026 .name = "zswap.max",
8027 .flags = CFTYPE_NOT_ON_ROOT,
8028 .seq_show = zswap_max_show,
8029 .write = zswap_max_write,
8030 },
8031 { } /* terminate */
8032 };
8033 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8034
mem_cgroup_swap_init(void)8035 static int __init mem_cgroup_swap_init(void)
8036 {
8037 if (mem_cgroup_disabled())
8038 return 0;
8039
8040 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8041 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8042 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8043 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8044 #endif
8045 return 0;
8046 }
8047 subsys_initcall(mem_cgroup_swap_init);
8048
8049 #endif /* CONFIG_SWAP */
8050