1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #ifdef CONFIG_MEM_PURGEABLE
81 #include <linux/mm_purgeable.h>
82 #endif
83 #include <trace/events/kmem.h>
84
85 #include <asm/io.h>
86 #include <asm/mmu_context.h>
87 #include <asm/pgalloc.h>
88 #include <linux/uaccess.h>
89 #include <asm/tlb.h>
90 #include <asm/tlbflush.h>
91
92 #include "pgalloc-track.h"
93 #include "internal.h"
94 #include "swap.h"
95
96 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
97 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
98 #endif
99
100 #ifndef CONFIG_NUMA
101 unsigned long max_mapnr;
102 EXPORT_SYMBOL(max_mapnr);
103
104 struct page *mem_map;
105 EXPORT_SYMBOL(mem_map);
106 #endif
107
108 static vm_fault_t do_fault(struct vm_fault *vmf);
109 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
110 static bool vmf_pte_changed(struct vm_fault *vmf);
111
112 /*
113 * Return true if the original pte was a uffd-wp pte marker (so the pte was
114 * wr-protected).
115 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)116 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
117 {
118 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
119 return false;
120
121 return pte_marker_uffd_wp(vmf->orig_pte);
122 }
123
124 /*
125 * A number of key systems in x86 including ioremap() rely on the assumption
126 * that high_memory defines the upper bound on direct map memory, then end
127 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
128 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
129 * and ZONE_HIGHMEM.
130 */
131 void *high_memory;
132 EXPORT_SYMBOL(high_memory);
133
134 /*
135 * Randomize the address space (stacks, mmaps, brk, etc.).
136 *
137 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
138 * as ancient (libc5 based) binaries can segfault. )
139 */
140 int randomize_va_space __read_mostly =
141 #ifdef CONFIG_COMPAT_BRK
142 1;
143 #else
144 2;
145 #endif
146
147 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)148 static inline bool arch_wants_old_prefaulted_pte(void)
149 {
150 /*
151 * Transitioning a PTE from 'old' to 'young' can be expensive on
152 * some architectures, even if it's performed in hardware. By
153 * default, "false" means prefaulted entries will be 'young'.
154 */
155 return false;
156 }
157 #endif
158
disable_randmaps(char * s)159 static int __init disable_randmaps(char *s)
160 {
161 randomize_va_space = 0;
162 return 1;
163 }
164 __setup("norandmaps", disable_randmaps);
165
166 unsigned long zero_pfn __read_mostly;
167 EXPORT_SYMBOL(zero_pfn);
168
169 unsigned long highest_memmap_pfn __read_mostly;
170
171 /*
172 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
173 */
init_zero_pfn(void)174 static int __init init_zero_pfn(void)
175 {
176 zero_pfn = page_to_pfn(ZERO_PAGE(0));
177 return 0;
178 }
179 early_initcall(init_zero_pfn);
180
mm_trace_rss_stat(struct mm_struct * mm,int member)181 void mm_trace_rss_stat(struct mm_struct *mm, int member)
182 {
183 trace_rss_stat(mm, member);
184 }
185
186 /*
187 * Note: this doesn't free the actual pages themselves. That
188 * has been handled earlier when unmapping all the memory regions.
189 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)190 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
191 unsigned long addr)
192 {
193 pgtable_t token = pmd_pgtable(*pmd);
194 pmd_clear(pmd);
195 pte_free_tlb(tlb, token, addr);
196 mm_dec_nr_ptes(tlb->mm);
197 }
198
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)199 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
200 unsigned long addr, unsigned long end,
201 unsigned long floor, unsigned long ceiling)
202 {
203 pmd_t *pmd;
204 unsigned long next;
205 unsigned long start;
206
207 start = addr;
208 pmd = pmd_offset(pud, addr);
209 do {
210 next = pmd_addr_end(addr, end);
211 if (pmd_none_or_clear_bad(pmd))
212 continue;
213 free_pte_range(tlb, pmd, addr);
214 } while (pmd++, addr = next, addr != end);
215
216 start &= PUD_MASK;
217 if (start < floor)
218 return;
219 if (ceiling) {
220 ceiling &= PUD_MASK;
221 if (!ceiling)
222 return;
223 }
224 if (end - 1 > ceiling - 1)
225 return;
226
227 pmd = pmd_offset(pud, start);
228 pud_clear(pud);
229 pmd_free_tlb(tlb, pmd, start);
230 mm_dec_nr_pmds(tlb->mm);
231 }
232
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)233 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
234 unsigned long addr, unsigned long end,
235 unsigned long floor, unsigned long ceiling)
236 {
237 pud_t *pud;
238 unsigned long next;
239 unsigned long start;
240
241 start = addr;
242 pud = pud_offset(p4d, addr);
243 do {
244 next = pud_addr_end(addr, end);
245 if (pud_none_or_clear_bad(pud))
246 continue;
247 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
248 } while (pud++, addr = next, addr != end);
249
250 start &= P4D_MASK;
251 if (start < floor)
252 return;
253 if (ceiling) {
254 ceiling &= P4D_MASK;
255 if (!ceiling)
256 return;
257 }
258 if (end - 1 > ceiling - 1)
259 return;
260
261 pud = pud_offset(p4d, start);
262 p4d_clear(p4d);
263 pud_free_tlb(tlb, pud, start);
264 mm_dec_nr_puds(tlb->mm);
265 }
266
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)267 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
268 unsigned long addr, unsigned long end,
269 unsigned long floor, unsigned long ceiling)
270 {
271 p4d_t *p4d;
272 unsigned long next;
273 unsigned long start;
274
275 start = addr;
276 p4d = p4d_offset(pgd, addr);
277 do {
278 next = p4d_addr_end(addr, end);
279 if (p4d_none_or_clear_bad(p4d))
280 continue;
281 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
282 } while (p4d++, addr = next, addr != end);
283
284 start &= PGDIR_MASK;
285 if (start < floor)
286 return;
287 if (ceiling) {
288 ceiling &= PGDIR_MASK;
289 if (!ceiling)
290 return;
291 }
292 if (end - 1 > ceiling - 1)
293 return;
294
295 p4d = p4d_offset(pgd, start);
296 pgd_clear(pgd);
297 p4d_free_tlb(tlb, p4d, start);
298 }
299
300 /*
301 * This function frees user-level page tables of a process.
302 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)303 void free_pgd_range(struct mmu_gather *tlb,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 pgd_t *pgd;
308 unsigned long next;
309
310 /*
311 * The next few lines have given us lots of grief...
312 *
313 * Why are we testing PMD* at this top level? Because often
314 * there will be no work to do at all, and we'd prefer not to
315 * go all the way down to the bottom just to discover that.
316 *
317 * Why all these "- 1"s? Because 0 represents both the bottom
318 * of the address space and the top of it (using -1 for the
319 * top wouldn't help much: the masks would do the wrong thing).
320 * The rule is that addr 0 and floor 0 refer to the bottom of
321 * the address space, but end 0 and ceiling 0 refer to the top
322 * Comparisons need to use "end - 1" and "ceiling - 1" (though
323 * that end 0 case should be mythical).
324 *
325 * Wherever addr is brought up or ceiling brought down, we must
326 * be careful to reject "the opposite 0" before it confuses the
327 * subsequent tests. But what about where end is brought down
328 * by PMD_SIZE below? no, end can't go down to 0 there.
329 *
330 * Whereas we round start (addr) and ceiling down, by different
331 * masks at different levels, in order to test whether a table
332 * now has no other vmas using it, so can be freed, we don't
333 * bother to round floor or end up - the tests don't need that.
334 */
335
336 addr &= PMD_MASK;
337 if (addr < floor) {
338 addr += PMD_SIZE;
339 if (!addr)
340 return;
341 }
342 if (ceiling) {
343 ceiling &= PMD_MASK;
344 if (!ceiling)
345 return;
346 }
347 if (end - 1 > ceiling - 1)
348 end -= PMD_SIZE;
349 if (addr > end - 1)
350 return;
351 /*
352 * We add page table cache pages with PAGE_SIZE,
353 * (see pte_free_tlb()), flush the tlb if we need
354 */
355 tlb_change_page_size(tlb, PAGE_SIZE);
356 pgd = pgd_offset(tlb->mm, addr);
357 do {
358 next = pgd_addr_end(addr, end);
359 if (pgd_none_or_clear_bad(pgd))
360 continue;
361 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
362 } while (pgd++, addr = next, addr != end);
363 }
364
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)365 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
366 struct vm_area_struct *vma, unsigned long floor,
367 unsigned long ceiling, bool mm_wr_locked)
368 {
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(mas, ceiling - 1);
378
379 /*
380 * Hide vma from rmap and truncate_pagecache before freeing
381 * pgtables
382 */
383 if (mm_wr_locked)
384 vma_start_write(vma);
385 unlink_anon_vmas(vma);
386 unlink_file_vma(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 floor, next ? next->vm_start : ceiling);
391 } else {
392 /*
393 * Optimization: gather nearby vmas into one call down
394 */
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 && !is_vm_hugetlb_page(next)) {
397 vma = next;
398 next = mas_find(mas, ceiling - 1);
399 if (mm_wr_locked)
400 vma_start_write(vma);
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403 }
404 free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 }
407 vma = next;
408 } while (vma);
409 }
410
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 spinlock_t *ptl = pmd_lock(mm, pmd);
414
415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 mm_inc_nr_ptes(mm);
417 /*
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
421 *
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
429 */
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 pmd_populate(mm, pmd, *pte);
432 *pte = NULL;
433 }
434 spin_unlock(ptl);
435 }
436
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 pmd_install(mm, pmd, &new);
444 if (new)
445 pte_free(mm, new);
446 return 0;
447 }
448
__pte_alloc_kernel(pmd_t * pmd)449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 pte_t *new = pte_alloc_one_kernel(&init_mm);
452 if (!new)
453 return -ENOMEM;
454
455 spin_lock(&init_mm.page_table_lock);
456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
457 smp_wmb(); /* See comment in pmd_install() */
458 pmd_populate_kernel(&init_mm, pmd, new);
459 new = NULL;
460 }
461 spin_unlock(&init_mm.page_table_lock);
462 if (new)
463 pte_free_kernel(&init_mm, new);
464 return 0;
465 }
466
init_rss_vec(int * rss)467 static inline void init_rss_vec(int *rss)
468 {
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471
add_mm_rss_vec(struct mm_struct * mm,int * rss)472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 int i;
475
476 if (current->mm == mm)
477 sync_mm_rss(mm);
478 for (i = 0; i < NR_MM_COUNTERS; i++)
479 if (rss[i])
480 add_mm_counter(mm, i, rss[i]);
481 }
482
483 /*
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
487 *
488 * The calling function must still handle the error.
489 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
492 {
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
498 pgoff_t index;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
502
503 /*
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
506 */
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
509 nr_unshown++;
510 return;
511 }
512 if (nr_unshown) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 nr_unshown);
515 nr_unshown = 0;
516 }
517 nr_shown = 0;
518 }
519 if (nr_shown++ == 0)
520 resume = jiffies + 60 * HZ;
521
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
524
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 current->comm,
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 if (page)
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 mapping ? mapping->a_ops->read_folio : NULL);
537 dump_stack();
538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540
541 /*
542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
543 *
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
547 *
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
551 * described below.
552 *
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
556 *
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
561 *
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 *
564 * And for normal mappings this is false.
565 *
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
570 *
571 *
572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573 *
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
581 *
582 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 pte_t pte)
585 {
586 unsigned long pfn = pte_pfn(pte);
587
588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 if (likely(!pte_special(pte)))
590 goto check_pfn;
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 return NULL;
595 if (is_zero_pfn(pfn))
596 return NULL;
597 if (pte_devmap(pte))
598 /*
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 */
606 return NULL;
607
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
610 }
611
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
627 }
628
629 if (is_zero_pfn(pfn))
630 return NULL;
631
632 check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642 out:
643 return pfn_to_page(pfn);
644 }
645
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte)
648 {
649 struct page *page = vm_normal_page(vma, addr, pte);
650
651 if (page)
652 return page_folio(page);
653 return NULL;
654 }
655
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t pmd)
659 {
660 unsigned long pfn = pmd_pfn(pmd);
661
662 /*
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 */
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
669 if (!pfn_valid(pfn))
670 return NULL;
671 goto out;
672 } else {
673 unsigned long off;
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
676 return NULL;
677 if (!is_cow_mapping(vma->vm_flags))
678 return NULL;
679 }
680 }
681
682 if (pmd_devmap(pmd))
683 return NULL;
684 if (is_huge_zero_pmd(pmd))
685 return NULL;
686 if (unlikely(pfn > highest_memmap_pfn))
687 return NULL;
688
689 /*
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
692 */
693 out:
694 return pfn_to_page(pfn);
695 }
696 #endif
697
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
700 pte_t *ptep)
701 {
702 pte_t orig_pte;
703 pte_t pte;
704 swp_entry_t entry;
705
706 orig_pte = ptep_get(ptep);
707 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
708 if (pte_swp_soft_dirty(orig_pte))
709 pte = pte_mksoft_dirty(pte);
710
711 entry = pte_to_swp_entry(orig_pte);
712 if (pte_swp_uffd_wp(orig_pte))
713 pte = pte_mkuffd_wp(pte);
714 else if (is_writable_device_exclusive_entry(entry))
715 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
716
717 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
718
719 /*
720 * No need to take a page reference as one was already
721 * created when the swap entry was made.
722 */
723 if (PageAnon(page))
724 page_add_anon_rmap(page, vma, address, RMAP_NONE);
725 else
726 /*
727 * Currently device exclusive access only supports anonymous
728 * memory so the entry shouldn't point to a filebacked page.
729 */
730 WARN_ON_ONCE(1);
731
732 set_pte_at(vma->vm_mm, address, ptep, pte);
733
734 /*
735 * No need to invalidate - it was non-present before. However
736 * secondary CPUs may have mappings that need invalidating.
737 */
738 update_mmu_cache(vma, address, ptep);
739 }
740
741 /*
742 * Tries to restore an exclusive pte if the page lock can be acquired without
743 * sleeping.
744 */
745 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)746 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
747 unsigned long addr)
748 {
749 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
750 struct page *page = pfn_swap_entry_to_page(entry);
751
752 if (trylock_page(page)) {
753 restore_exclusive_pte(vma, page, addr, src_pte);
754 unlock_page(page);
755 return 0;
756 }
757
758 return -EBUSY;
759 }
760
761 /*
762 * copy one vm_area from one task to the other. Assumes the page tables
763 * already present in the new task to be cleared in the whole range
764 * covered by this vma.
765 */
766
767 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)768 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
769 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
770 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
771 {
772 unsigned long vm_flags = dst_vma->vm_flags;
773 pte_t orig_pte = ptep_get(src_pte);
774 pte_t pte = orig_pte;
775 struct page *page;
776 swp_entry_t entry = pte_to_swp_entry(orig_pte);
777
778 if (likely(!non_swap_entry(entry))) {
779 if (swap_duplicate(entry) < 0)
780 return -EIO;
781
782 /* make sure dst_mm is on swapoff's mmlist. */
783 if (unlikely(list_empty(&dst_mm->mmlist))) {
784 spin_lock(&mmlist_lock);
785 if (list_empty(&dst_mm->mmlist))
786 list_add(&dst_mm->mmlist,
787 &src_mm->mmlist);
788 spin_unlock(&mmlist_lock);
789 }
790 /* Mark the swap entry as shared. */
791 if (pte_swp_exclusive(orig_pte)) {
792 pte = pte_swp_clear_exclusive(orig_pte);
793 set_pte_at(src_mm, addr, src_pte, pte);
794 }
795 rss[MM_SWAPENTS]++;
796 } else if (is_migration_entry(entry)) {
797 page = pfn_swap_entry_to_page(entry);
798
799 rss[mm_counter(page)]++;
800
801 if (!is_readable_migration_entry(entry) &&
802 is_cow_mapping(vm_flags)) {
803 /*
804 * COW mappings require pages in both parent and child
805 * to be set to read. A previously exclusive entry is
806 * now shared.
807 */
808 entry = make_readable_migration_entry(
809 swp_offset(entry));
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(orig_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(orig_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
816 }
817 } else if (is_device_private_entry(entry)) {
818 page = pfn_swap_entry_to_page(entry);
819
820 /*
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
823 * respect.
824 *
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
828 */
829 get_page(page);
830 rss[mm_counter(page)]++;
831 /* Cannot fail as these pages cannot get pinned. */
832 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
833
834 /*
835 * We do not preserve soft-dirty information, because so
836 * far, checkpoint/restore is the only feature that
837 * requires that. And checkpoint/restore does not work
838 * when a device driver is involved (you cannot easily
839 * save and restore device driver state).
840 */
841 if (is_writable_device_private_entry(entry) &&
842 is_cow_mapping(vm_flags)) {
843 entry = make_readable_device_private_entry(
844 swp_offset(entry));
845 pte = swp_entry_to_pte(entry);
846 if (pte_swp_uffd_wp(orig_pte))
847 pte = pte_swp_mkuffd_wp(pte);
848 set_pte_at(src_mm, addr, src_pte, pte);
849 }
850 } else if (is_device_exclusive_entry(entry)) {
851 /*
852 * Make device exclusive entries present by restoring the
853 * original entry then copying as for a present pte. Device
854 * exclusive entries currently only support private writable
855 * (ie. COW) mappings.
856 */
857 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
858 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
859 return -EBUSY;
860 return -ENOENT;
861 } else if (is_pte_marker_entry(entry)) {
862 pte_marker marker = copy_pte_marker(entry, dst_vma);
863
864 if (marker)
865 set_pte_at(dst_mm, addr, dst_pte,
866 make_pte_marker(marker));
867 return 0;
868 }
869 if (!userfaultfd_wp(dst_vma))
870 pte = pte_swp_clear_uffd_wp(pte);
871 set_pte_at(dst_mm, addr, dst_pte, pte);
872 return 0;
873 }
874
875 /*
876 * Copy a present and normal page.
877 *
878 * NOTE! The usual case is that this isn't required;
879 * instead, the caller can just increase the page refcount
880 * and re-use the pte the traditional way.
881 *
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
885 * lock.
886 */
887 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)888 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct folio **prealloc, struct page *page)
891 {
892 struct folio *new_folio;
893 pte_t pte;
894
895 new_folio = *prealloc;
896 if (!new_folio)
897 return -EAGAIN;
898
899 /*
900 * We have a prealloc page, all good! Take it
901 * over and copy the page & arm it.
902 */
903 *prealloc = NULL;
904 copy_user_highpage(&new_folio->page, page, addr, src_vma);
905 __folio_mark_uptodate(new_folio);
906 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
907 folio_add_lru_vma(new_folio, dst_vma);
908 rss[MM_ANONPAGES]++;
909
910 /* All done, just insert the new page copy in the child */
911 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
912 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
913 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
914 /* Uffd-wp needs to be delivered to dest pte as well */
915 pte = pte_mkuffd_wp(pte);
916 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
917 return 0;
918 }
919
920 /*
921 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
922 * is required to copy this pte.
923 */
924 static inline int
copy_present_pte(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc)925 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
926 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
927 struct folio **prealloc)
928 {
929 struct mm_struct *src_mm = src_vma->vm_mm;
930 unsigned long vm_flags = src_vma->vm_flags;
931 pte_t pte = ptep_get(src_pte);
932 struct page *page;
933 struct folio *folio;
934
935 page = vm_normal_page(src_vma, addr, pte);
936 if (page)
937 folio = page_folio(page);
938 if (page && folio_test_anon(folio)) {
939 /*
940 * If this page may have been pinned by the parent process,
941 * copy the page immediately for the child so that we'll always
942 * guarantee the pinned page won't be randomly replaced in the
943 * future.
944 */
945 folio_get(folio);
946 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
947 /* Page may be pinned, we have to copy. */
948 folio_put(folio);
949 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
950 addr, rss, prealloc, page);
951 }
952 rss[MM_ANONPAGES]++;
953 } else if (page) {
954 folio_get(folio);
955 page_dup_file_rmap(page, false);
956 rss[mm_counter_file(page)]++;
957 }
958
959 /*
960 * If it's a COW mapping, write protect it both
961 * in the parent and the child
962 */
963 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
964 ptep_set_wrprotect(src_mm, addr, src_pte);
965 pte = pte_wrprotect(pte);
966 }
967 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
976
977 if (!userfaultfd_wp(dst_vma))
978 pte = pte_clear_uffd_wp(pte);
979
980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
981 return 0;
982 }
983
page_copy_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr)984 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
985 struct vm_area_struct *vma, unsigned long addr)
986 {
987 struct folio *new_folio;
988
989 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
990 if (!new_folio)
991 return NULL;
992
993 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
994 folio_put(new_folio);
995 return NULL;
996 }
997 folio_throttle_swaprate(new_folio, GFP_KERNEL);
998
999 return new_folio;
1000 }
1001
1002 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1003 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005 unsigned long end)
1006 {
1007 struct mm_struct *dst_mm = dst_vma->vm_mm;
1008 struct mm_struct *src_mm = src_vma->vm_mm;
1009 pte_t *orig_src_pte, *orig_dst_pte;
1010 pte_t *src_pte, *dst_pte;
1011 pte_t ptent;
1012 spinlock_t *src_ptl, *dst_ptl;
1013 int progress, ret = 0;
1014 int rss[NR_MM_COUNTERS];
1015 swp_entry_t entry = (swp_entry_t){0};
1016 struct folio *prealloc = NULL;
1017
1018 again:
1019 progress = 0;
1020 init_rss_vec(rss);
1021
1022 /*
1023 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1024 * error handling here, assume that exclusive mmap_lock on dst and src
1025 * protects anon from unexpected THP transitions; with shmem and file
1026 * protected by mmap_lock-less collapse skipping areas with anon_vma
1027 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1028 * can remove such assumptions later, but this is good enough for now.
1029 */
1030 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1031 if (!dst_pte) {
1032 ret = -ENOMEM;
1033 goto out;
1034 }
1035 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1036 if (!src_pte) {
1037 pte_unmap_unlock(dst_pte, dst_ptl);
1038 /* ret == 0 */
1039 goto out;
1040 }
1041 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1042 orig_src_pte = src_pte;
1043 orig_dst_pte = dst_pte;
1044 arch_enter_lazy_mmu_mode();
1045
1046 do {
1047 /*
1048 * We are holding two locks at this point - either of them
1049 * could generate latencies in another task on another CPU.
1050 */
1051 if (progress >= 32) {
1052 progress = 0;
1053 if (need_resched() ||
1054 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1055 break;
1056 }
1057 ptent = ptep_get(src_pte);
1058 if (pte_none(ptent)) {
1059 progress++;
1060 continue;
1061 }
1062 if (unlikely(!pte_present(ptent))) {
1063 ret = copy_nonpresent_pte(dst_mm, src_mm,
1064 dst_pte, src_pte,
1065 dst_vma, src_vma,
1066 addr, rss);
1067 if (ret == -EIO) {
1068 entry = pte_to_swp_entry(ptep_get(src_pte));
1069 break;
1070 } else if (ret == -EBUSY) {
1071 break;
1072 } else if (!ret) {
1073 progress += 8;
1074 continue;
1075 }
1076
1077 /*
1078 * Device exclusive entry restored, continue by copying
1079 * the now present pte.
1080 */
1081 WARN_ON_ONCE(ret != -ENOENT);
1082 }
1083 /* copy_present_pte() will clear `*prealloc' if consumed */
1084 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1085 addr, rss, &prealloc);
1086 /*
1087 * If we need a pre-allocated page for this pte, drop the
1088 * locks, allocate, and try again.
1089 */
1090 if (unlikely(ret == -EAGAIN))
1091 break;
1092 if (unlikely(prealloc)) {
1093 /*
1094 * pre-alloc page cannot be reused by next time so as
1095 * to strictly follow mempolicy (e.g., alloc_page_vma()
1096 * will allocate page according to address). This
1097 * could only happen if one pinned pte changed.
1098 */
1099 folio_put(prealloc);
1100 prealloc = NULL;
1101 }
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105 arch_leave_lazy_mmu_mode();
1106 pte_unmap_unlock(orig_src_pte, src_ptl);
1107 add_mm_rss_vec(dst_mm, rss);
1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1109 cond_resched();
1110
1111 if (ret == -EIO) {
1112 VM_WARN_ON_ONCE(!entry.val);
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1114 ret = -ENOMEM;
1115 goto out;
1116 }
1117 entry.val = 0;
1118 } else if (ret == -EBUSY) {
1119 goto out;
1120 } else if (ret == -EAGAIN) {
1121 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1122 if (!prealloc)
1123 return -ENOMEM;
1124 } else if (ret) {
1125 VM_WARN_ON_ONCE(1);
1126 }
1127
1128 /* We've captured and resolved the error. Reset, try again. */
1129 ret = 0;
1130
1131 if (addr != end)
1132 goto again;
1133 out:
1134 if (unlikely(prealloc))
1135 folio_put(prealloc);
1136 return ret;
1137 }
1138
1139 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1140 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1142 unsigned long end)
1143 {
1144 struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 struct mm_struct *src_mm = src_vma->vm_mm;
1146 pmd_t *src_pmd, *dst_pmd;
1147 unsigned long next;
1148
1149 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1150 if (!dst_pmd)
1151 return -ENOMEM;
1152 src_pmd = pmd_offset(src_pud, addr);
1153 do {
1154 next = pmd_addr_end(addr, end);
1155 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1156 || pmd_devmap(*src_pmd)) {
1157 int err;
1158 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1159 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1160 addr, dst_vma, src_vma);
1161 if (err == -ENOMEM)
1162 return -ENOMEM;
1163 if (!err)
1164 continue;
1165 /* fall through */
1166 }
1167 if (pmd_none_or_clear_bad(src_pmd))
1168 continue;
1169 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1170 addr, next))
1171 return -ENOMEM;
1172 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1173 return 0;
1174 }
1175
1176 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1177 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1179 unsigned long end)
1180 {
1181 struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 struct mm_struct *src_mm = src_vma->vm_mm;
1183 pud_t *src_pud, *dst_pud;
1184 unsigned long next;
1185
1186 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1187 if (!dst_pud)
1188 return -ENOMEM;
1189 src_pud = pud_offset(src_p4d, addr);
1190 do {
1191 next = pud_addr_end(addr, end);
1192 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1193 int err;
1194
1195 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1196 err = copy_huge_pud(dst_mm, src_mm,
1197 dst_pud, src_pud, addr, src_vma);
1198 if (err == -ENOMEM)
1199 return -ENOMEM;
1200 if (!err)
1201 continue;
1202 /* fall through */
1203 }
1204 if (pud_none_or_clear_bad(src_pud))
1205 continue;
1206 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1207 addr, next))
1208 return -ENOMEM;
1209 } while (dst_pud++, src_pud++, addr = next, addr != end);
1210 return 0;
1211 }
1212
1213 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1214 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1215 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1216 unsigned long end)
1217 {
1218 struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 p4d_t *src_p4d, *dst_p4d;
1220 unsigned long next;
1221
1222 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1223 if (!dst_p4d)
1224 return -ENOMEM;
1225 src_p4d = p4d_offset(src_pgd, addr);
1226 do {
1227 next = p4d_addr_end(addr, end);
1228 if (p4d_none_or_clear_bad(src_p4d))
1229 continue;
1230 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1231 addr, next))
1232 return -ENOMEM;
1233 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1234 return 0;
1235 }
1236
1237 /*
1238 * Return true if the vma needs to copy the pgtable during this fork(). Return
1239 * false when we can speed up fork() by allowing lazy page faults later until
1240 * when the child accesses the memory range.
1241 */
1242 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1243 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1244 {
1245 /*
1246 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1247 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1248 * contains uffd-wp protection information, that's something we can't
1249 * retrieve from page cache, and skip copying will lose those info.
1250 */
1251 if (userfaultfd_wp(dst_vma))
1252 return true;
1253
1254 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1255 return true;
1256
1257 if (src_vma->anon_vma)
1258 return true;
1259
1260 /*
1261 * Don't copy ptes where a page fault will fill them correctly. Fork
1262 * becomes much lighter when there are big shared or private readonly
1263 * mappings. The tradeoff is that copy_page_range is more efficient
1264 * than faulting.
1265 */
1266 return false;
1267 }
1268
1269 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1270 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1271 {
1272 pgd_t *src_pgd, *dst_pgd;
1273 unsigned long next;
1274 unsigned long addr = src_vma->vm_start;
1275 unsigned long end = src_vma->vm_end;
1276 struct mm_struct *dst_mm = dst_vma->vm_mm;
1277 struct mm_struct *src_mm = src_vma->vm_mm;
1278 struct mmu_notifier_range range;
1279 bool is_cow;
1280 int ret;
1281
1282 if (!vma_needs_copy(dst_vma, src_vma))
1283 return 0;
1284
1285 if (is_vm_hugetlb_page(src_vma))
1286 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1287
1288 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1289 /*
1290 * We do not free on error cases below as remove_vma
1291 * gets called on error from higher level routine
1292 */
1293 ret = track_pfn_copy(src_vma);
1294 if (ret)
1295 return ret;
1296 }
1297
1298 /*
1299 * We need to invalidate the secondary MMU mappings only when
1300 * there could be a permission downgrade on the ptes of the
1301 * parent mm. And a permission downgrade will only happen if
1302 * is_cow_mapping() returns true.
1303 */
1304 is_cow = is_cow_mapping(src_vma->vm_flags);
1305
1306 if (is_cow) {
1307 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1308 0, src_mm, addr, end);
1309 mmu_notifier_invalidate_range_start(&range);
1310 /*
1311 * Disabling preemption is not needed for the write side, as
1312 * the read side doesn't spin, but goes to the mmap_lock.
1313 *
1314 * Use the raw variant of the seqcount_t write API to avoid
1315 * lockdep complaining about preemptibility.
1316 */
1317 vma_assert_write_locked(src_vma);
1318 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1319 }
1320
1321 ret = 0;
1322 dst_pgd = pgd_offset(dst_mm, addr);
1323 src_pgd = pgd_offset(src_mm, addr);
1324 do {
1325 next = pgd_addr_end(addr, end);
1326 if (pgd_none_or_clear_bad(src_pgd))
1327 continue;
1328 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1329 addr, next))) {
1330 untrack_pfn_clear(dst_vma);
1331 ret = -ENOMEM;
1332 break;
1333 }
1334 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1335
1336 if (is_cow) {
1337 raw_write_seqcount_end(&src_mm->write_protect_seq);
1338 mmu_notifier_invalidate_range_end(&range);
1339 }
1340 return ret;
1341 }
1342
1343 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1344 static inline bool should_zap_cows(struct zap_details *details)
1345 {
1346 /* By default, zap all pages */
1347 if (!details)
1348 return true;
1349
1350 /* Or, we zap COWed pages only if the caller wants to */
1351 return details->even_cows;
1352 }
1353
1354 /* Decides whether we should zap this page with the page pointer specified */
should_zap_page(struct zap_details * details,struct page * page)1355 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1356 {
1357 /* If we can make a decision without *page.. */
1358 if (should_zap_cows(details))
1359 return true;
1360
1361 /* E.g. the caller passes NULL for the case of a zero page */
1362 if (!page)
1363 return true;
1364
1365 /* Otherwise we should only zap non-anon pages */
1366 return !PageAnon(page);
1367 }
1368
zap_drop_file_uffd_wp(struct zap_details * details)1369 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370 {
1371 if (!details)
1372 return false;
1373
1374 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375 }
1376
1377 /*
1378 * This function makes sure that we'll replace the none pte with an uffd-wp
1379 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 */
1381 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,struct zap_details * details,pte_t pteval)1382 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 unsigned long addr, pte_t *pte,
1384 struct zap_details *details, pte_t pteval)
1385 {
1386 /* Zap on anonymous always means dropping everything */
1387 if (vma_is_anonymous(vma))
1388 return;
1389
1390 if (zap_drop_file_uffd_wp(details))
1391 return;
1392
1393 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1394 }
1395
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1396 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1397 struct vm_area_struct *vma, pmd_t *pmd,
1398 unsigned long addr, unsigned long end,
1399 struct zap_details *details)
1400 {
1401 struct mm_struct *mm = tlb->mm;
1402 int force_flush = 0;
1403 int rss[NR_MM_COUNTERS];
1404 spinlock_t *ptl;
1405 pte_t *start_pte;
1406 pte_t *pte;
1407 swp_entry_t entry;
1408
1409 tlb_change_page_size(tlb, PAGE_SIZE);
1410 init_rss_vec(rss);
1411 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 if (!pte)
1413 return addr;
1414
1415 flush_tlb_batched_pending(mm);
1416 arch_enter_lazy_mmu_mode();
1417 do {
1418 pte_t ptent = ptep_get(pte);
1419 struct page *page;
1420
1421 if (pte_none(ptent))
1422 continue;
1423
1424 if (need_resched())
1425 break;
1426
1427 if (pte_present(ptent)) {
1428 unsigned int delay_rmap;
1429
1430 page = vm_normal_page(vma, addr, ptent);
1431 #ifdef CONFIG_MEM_PURGEABLE
1432 if (vma->vm_flags & VM_USEREXPTE)
1433 page = NULL;
1434 #endif
1435 if (unlikely(!should_zap_page(details, page)))
1436 continue;
1437 ptent = ptep_get_and_clear_full(mm, addr, pte,
1438 tlb->fullmm);
1439 arch_check_zapped_pte(vma, ptent);
1440 tlb_remove_tlb_entry(tlb, pte, addr);
1441 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1442 ptent);
1443 if (unlikely(!page)) {
1444 ksm_might_unmap_zero_page(mm, ptent);
1445 continue;
1446 }
1447 #ifdef CONFIG_MEM_PURGEABLE
1448 if (vma->vm_flags & VM_PURGEABLE)
1449 uxpte_clear_present(vma, addr);
1450 #endif
1451 delay_rmap = 0;
1452 if (!PageAnon(page)) {
1453 if (pte_dirty(ptent)) {
1454 set_page_dirty(page);
1455 if (tlb_delay_rmap(tlb)) {
1456 delay_rmap = 1;
1457 force_flush = 1;
1458 }
1459 }
1460 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 mark_page_accessed(page);
1462 }
1463 rss[mm_counter(page)]--;
1464 if (!delay_rmap) {
1465 page_remove_rmap(page, vma, false);
1466 if (unlikely(page_mapcount(page) < 0))
1467 print_bad_pte(vma, addr, ptent, page);
1468 }
1469 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1470 force_flush = 1;
1471 addr += PAGE_SIZE;
1472 break;
1473 }
1474 continue;
1475 }
1476
1477 entry = pte_to_swp_entry(ptent);
1478 if (is_device_private_entry(entry) ||
1479 is_device_exclusive_entry(entry)) {
1480 page = pfn_swap_entry_to_page(entry);
1481 if (unlikely(!should_zap_page(details, page)))
1482 continue;
1483 /*
1484 * Both device private/exclusive mappings should only
1485 * work with anonymous page so far, so we don't need to
1486 * consider uffd-wp bit when zap. For more information,
1487 * see zap_install_uffd_wp_if_needed().
1488 */
1489 WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 rss[mm_counter(page)]--;
1491 if (is_device_private_entry(entry))
1492 page_remove_rmap(page, vma, false);
1493 put_page(page);
1494 } else if (!non_swap_entry(entry)) {
1495 /* Genuine swap entry, hence a private anon page */
1496 if (!should_zap_cows(details))
1497 continue;
1498 rss[MM_SWAPENTS]--;
1499 if (unlikely(!free_swap_and_cache(entry)))
1500 print_bad_pte(vma, addr, ptent, NULL);
1501 } else if (is_migration_entry(entry)) {
1502 page = pfn_swap_entry_to_page(entry);
1503 if (!should_zap_page(details, page))
1504 continue;
1505 rss[mm_counter(page)]--;
1506 } else if (pte_marker_entry_uffd_wp(entry)) {
1507 /*
1508 * For anon: always drop the marker; for file: only
1509 * drop the marker if explicitly requested.
1510 */
1511 if (!vma_is_anonymous(vma) &&
1512 !zap_drop_file_uffd_wp(details))
1513 continue;
1514 } else if (is_hwpoison_entry(entry) ||
1515 is_poisoned_swp_entry(entry)) {
1516 if (!should_zap_cows(details))
1517 continue;
1518 } else {
1519 /* We should have covered all the swap entry types */
1520 WARN_ON_ONCE(1);
1521 }
1522 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1523 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1524 } while (pte++, addr += PAGE_SIZE, addr != end);
1525
1526 add_mm_rss_vec(mm, rss);
1527 arch_leave_lazy_mmu_mode();
1528
1529 /* Do the actual TLB flush before dropping ptl */
1530 if (force_flush) {
1531 tlb_flush_mmu_tlbonly(tlb);
1532 tlb_flush_rmaps(tlb, vma);
1533 }
1534 pte_unmap_unlock(start_pte, ptl);
1535
1536 /*
1537 * If we forced a TLB flush (either due to running out of
1538 * batch buffers or because we needed to flush dirty TLB
1539 * entries before releasing the ptl), free the batched
1540 * memory too. Come back again if we didn't do everything.
1541 */
1542 if (force_flush)
1543 tlb_flush_mmu(tlb);
1544
1545 return addr;
1546 }
1547
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1548 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1549 struct vm_area_struct *vma, pud_t *pud,
1550 unsigned long addr, unsigned long end,
1551 struct zap_details *details)
1552 {
1553 pmd_t *pmd;
1554 unsigned long next;
1555
1556 pmd = pmd_offset(pud, addr);
1557 do {
1558 next = pmd_addr_end(addr, end);
1559 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1560 if (next - addr != HPAGE_PMD_SIZE)
1561 __split_huge_pmd(vma, pmd, addr, false, NULL);
1562 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1563 addr = next;
1564 continue;
1565 }
1566 /* fall through */
1567 } else if (details && details->single_folio &&
1568 folio_test_pmd_mappable(details->single_folio) &&
1569 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1570 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1571 /*
1572 * Take and drop THP pmd lock so that we cannot return
1573 * prematurely, while zap_huge_pmd() has cleared *pmd,
1574 * but not yet decremented compound_mapcount().
1575 */
1576 spin_unlock(ptl);
1577 }
1578 if (pmd_none(*pmd)) {
1579 addr = next;
1580 continue;
1581 }
1582 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1583 if (addr != next)
1584 pmd--;
1585 } while (pmd++, cond_resched(), addr != end);
1586
1587 return addr;
1588 }
1589
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1590 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1591 struct vm_area_struct *vma, p4d_t *p4d,
1592 unsigned long addr, unsigned long end,
1593 struct zap_details *details)
1594 {
1595 pud_t *pud;
1596 unsigned long next;
1597
1598 pud = pud_offset(p4d, addr);
1599 do {
1600 next = pud_addr_end(addr, end);
1601 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1602 if (next - addr != HPAGE_PUD_SIZE) {
1603 mmap_assert_locked(tlb->mm);
1604 split_huge_pud(vma, pud, addr);
1605 } else if (zap_huge_pud(tlb, vma, pud, addr))
1606 goto next;
1607 /* fall through */
1608 }
1609 if (pud_none_or_clear_bad(pud))
1610 continue;
1611 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1612 next:
1613 cond_resched();
1614 } while (pud++, addr = next, addr != end);
1615
1616 return addr;
1617 }
1618
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1619 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1620 struct vm_area_struct *vma, pgd_t *pgd,
1621 unsigned long addr, unsigned long end,
1622 struct zap_details *details)
1623 {
1624 p4d_t *p4d;
1625 unsigned long next;
1626
1627 p4d = p4d_offset(pgd, addr);
1628 do {
1629 next = p4d_addr_end(addr, end);
1630 if (p4d_none_or_clear_bad(p4d))
1631 continue;
1632 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1633 } while (p4d++, addr = next, addr != end);
1634
1635 return addr;
1636 }
1637
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1638 void unmap_page_range(struct mmu_gather *tlb,
1639 struct vm_area_struct *vma,
1640 unsigned long addr, unsigned long end,
1641 struct zap_details *details)
1642 {
1643 pgd_t *pgd;
1644 unsigned long next;
1645
1646 BUG_ON(addr >= end);
1647 tlb_start_vma(tlb, vma);
1648 pgd = pgd_offset(vma->vm_mm, addr);
1649 do {
1650 next = pgd_addr_end(addr, end);
1651 if (pgd_none_or_clear_bad(pgd))
1652 continue;
1653 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1654 } while (pgd++, addr = next, addr != end);
1655 tlb_end_vma(tlb, vma);
1656 }
1657
1658
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1659 static void unmap_single_vma(struct mmu_gather *tlb,
1660 struct vm_area_struct *vma, unsigned long start_addr,
1661 unsigned long end_addr,
1662 struct zap_details *details, bool mm_wr_locked)
1663 {
1664 unsigned long start = max(vma->vm_start, start_addr);
1665 unsigned long end;
1666
1667 if (start >= vma->vm_end)
1668 return;
1669 end = min(vma->vm_end, end_addr);
1670 if (end <= vma->vm_start)
1671 return;
1672
1673 if (vma->vm_file)
1674 uprobe_munmap(vma, start, end);
1675
1676 if (unlikely(vma->vm_flags & VM_PFNMAP))
1677 untrack_pfn(vma, 0, 0, mm_wr_locked);
1678
1679 if (start != end) {
1680 if (unlikely(is_vm_hugetlb_page(vma))) {
1681 /*
1682 * It is undesirable to test vma->vm_file as it
1683 * should be non-null for valid hugetlb area.
1684 * However, vm_file will be NULL in the error
1685 * cleanup path of mmap_region. When
1686 * hugetlbfs ->mmap method fails,
1687 * mmap_region() nullifies vma->vm_file
1688 * before calling this function to clean up.
1689 * Since no pte has actually been setup, it is
1690 * safe to do nothing in this case.
1691 */
1692 if (vma->vm_file) {
1693 zap_flags_t zap_flags = details ?
1694 details->zap_flags : 0;
1695 __unmap_hugepage_range(tlb, vma, start, end,
1696 NULL, zap_flags);
1697 }
1698 } else
1699 unmap_page_range(tlb, vma, start, end, details);
1700 }
1701 }
1702
1703 /**
1704 * unmap_vmas - unmap a range of memory covered by a list of vma's
1705 * @tlb: address of the caller's struct mmu_gather
1706 * @mas: the maple state
1707 * @vma: the starting vma
1708 * @start_addr: virtual address at which to start unmapping
1709 * @end_addr: virtual address at which to end unmapping
1710 * @tree_end: The maximum index to check
1711 * @mm_wr_locked: lock flag
1712 *
1713 * Unmap all pages in the vma list.
1714 *
1715 * Only addresses between `start' and `end' will be unmapped.
1716 *
1717 * The VMA list must be sorted in ascending virtual address order.
1718 *
1719 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1720 * range after unmap_vmas() returns. So the only responsibility here is to
1721 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1722 * drops the lock and schedules.
1723 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1724 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1725 struct vm_area_struct *vma, unsigned long start_addr,
1726 unsigned long end_addr, unsigned long tree_end,
1727 bool mm_wr_locked)
1728 {
1729 struct mmu_notifier_range range;
1730 struct zap_details details = {
1731 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1732 /* Careful - we need to zap private pages too! */
1733 .even_cows = true,
1734 };
1735
1736 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1737 start_addr, end_addr);
1738 mmu_notifier_invalidate_range_start(&range);
1739 do {
1740 unsigned long start = start_addr;
1741 unsigned long end = end_addr;
1742 hugetlb_zap_begin(vma, &start, &end);
1743 unmap_single_vma(tlb, vma, start, end, &details,
1744 mm_wr_locked);
1745 hugetlb_zap_end(vma, &details);
1746 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1747 mmu_notifier_invalidate_range_end(&range);
1748 }
1749
1750 /**
1751 * zap_page_range_single - remove user pages in a given range
1752 * @vma: vm_area_struct holding the applicable pages
1753 * @address: starting address of pages to zap
1754 * @size: number of bytes to zap
1755 * @details: details of shared cache invalidation
1756 *
1757 * The range must fit into one VMA.
1758 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1759 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1760 unsigned long size, struct zap_details *details)
1761 {
1762 const unsigned long end = address + size;
1763 struct mmu_notifier_range range;
1764 struct mmu_gather tlb;
1765
1766 lru_add_drain();
1767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1768 address, end);
1769 hugetlb_zap_begin(vma, &range.start, &range.end);
1770 tlb_gather_mmu(&tlb, vma->vm_mm);
1771 update_hiwater_rss(vma->vm_mm);
1772 mmu_notifier_invalidate_range_start(&range);
1773 /*
1774 * unmap 'address-end' not 'range.start-range.end' as range
1775 * could have been expanded for hugetlb pmd sharing.
1776 */
1777 unmap_single_vma(&tlb, vma, address, end, details, false);
1778 mmu_notifier_invalidate_range_end(&range);
1779 tlb_finish_mmu(&tlb);
1780 hugetlb_zap_end(vma, details);
1781 }
1782
1783 /**
1784 * zap_vma_ptes - remove ptes mapping the vma
1785 * @vma: vm_area_struct holding ptes to be zapped
1786 * @address: starting address of pages to zap
1787 * @size: number of bytes to zap
1788 *
1789 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1790 *
1791 * The entire address range must be fully contained within the vma.
1792 *
1793 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795 unsigned long size)
1796 {
1797 if (!range_in_vma(vma, address, address + size) ||
1798 !(vma->vm_flags & VM_PFNMAP))
1799 return;
1800
1801 zap_page_range_single(vma, address, size, NULL);
1802 }
1803 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1804
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1805 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1806 {
1807 pgd_t *pgd;
1808 p4d_t *p4d;
1809 pud_t *pud;
1810 pmd_t *pmd;
1811
1812 pgd = pgd_offset(mm, addr);
1813 p4d = p4d_alloc(mm, pgd, addr);
1814 if (!p4d)
1815 return NULL;
1816 pud = pud_alloc(mm, p4d, addr);
1817 if (!pud)
1818 return NULL;
1819 pmd = pmd_alloc(mm, pud, addr);
1820 if (!pmd)
1821 return NULL;
1822
1823 VM_BUG_ON(pmd_trans_huge(*pmd));
1824 return pmd;
1825 }
1826
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1828 spinlock_t **ptl)
1829 {
1830 pmd_t *pmd = walk_to_pmd(mm, addr);
1831
1832 if (!pmd)
1833 return NULL;
1834 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1835 }
1836
validate_page_before_insert(struct page * page)1837 static int validate_page_before_insert(struct page *page)
1838 {
1839 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1840 return -EINVAL;
1841 flush_dcache_page(page);
1842 return 0;
1843 }
1844
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1845 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1846 unsigned long addr, struct page *page, pgprot_t prot)
1847 {
1848 if (!pte_none(ptep_get(pte)))
1849 return -EBUSY;
1850 /* Ok, finally just insert the thing.. */
1851 get_page(page);
1852 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1853 page_add_file_rmap(page, vma, false);
1854 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1855 return 0;
1856 }
1857
1858 /*
1859 * This is the old fallback for page remapping.
1860 *
1861 * For historical reasons, it only allows reserved pages. Only
1862 * old drivers should use this, and they needed to mark their
1863 * pages reserved for the old functions anyway.
1864 */
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)1865 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1866 struct page *page, pgprot_t prot)
1867 {
1868 int retval;
1869 pte_t *pte;
1870 spinlock_t *ptl;
1871
1872 retval = validate_page_before_insert(page);
1873 if (retval)
1874 goto out;
1875 retval = -ENOMEM;
1876 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1877 if (!pte)
1878 goto out;
1879 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 pte_unmap_unlock(pte, ptl);
1881 out:
1882 return retval;
1883 }
1884
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)1885 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1886 unsigned long addr, struct page *page, pgprot_t prot)
1887 {
1888 int err;
1889
1890 if (!page_count(page))
1891 return -EINVAL;
1892 err = validate_page_before_insert(page);
1893 if (err)
1894 return err;
1895 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1896 }
1897
1898 /* insert_pages() amortizes the cost of spinlock operations
1899 * when inserting pages in a loop.
1900 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)1901 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1902 struct page **pages, unsigned long *num, pgprot_t prot)
1903 {
1904 pmd_t *pmd = NULL;
1905 pte_t *start_pte, *pte;
1906 spinlock_t *pte_lock;
1907 struct mm_struct *const mm = vma->vm_mm;
1908 unsigned long curr_page_idx = 0;
1909 unsigned long remaining_pages_total = *num;
1910 unsigned long pages_to_write_in_pmd;
1911 int ret;
1912 more:
1913 ret = -EFAULT;
1914 pmd = walk_to_pmd(mm, addr);
1915 if (!pmd)
1916 goto out;
1917
1918 pages_to_write_in_pmd = min_t(unsigned long,
1919 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1920
1921 /* Allocate the PTE if necessary; takes PMD lock once only. */
1922 ret = -ENOMEM;
1923 if (pte_alloc(mm, pmd))
1924 goto out;
1925
1926 while (pages_to_write_in_pmd) {
1927 int pte_idx = 0;
1928 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1929
1930 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1931 if (!start_pte) {
1932 ret = -EFAULT;
1933 goto out;
1934 }
1935 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1936 int err = insert_page_in_batch_locked(vma, pte,
1937 addr, pages[curr_page_idx], prot);
1938 if (unlikely(err)) {
1939 pte_unmap_unlock(start_pte, pte_lock);
1940 ret = err;
1941 remaining_pages_total -= pte_idx;
1942 goto out;
1943 }
1944 addr += PAGE_SIZE;
1945 ++curr_page_idx;
1946 }
1947 pte_unmap_unlock(start_pte, pte_lock);
1948 pages_to_write_in_pmd -= batch_size;
1949 remaining_pages_total -= batch_size;
1950 }
1951 if (remaining_pages_total)
1952 goto more;
1953 ret = 0;
1954 out:
1955 *num = remaining_pages_total;
1956 return ret;
1957 }
1958
1959 /**
1960 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1961 * @vma: user vma to map to
1962 * @addr: target start user address of these pages
1963 * @pages: source kernel pages
1964 * @num: in: number of pages to map. out: number of pages that were *not*
1965 * mapped. (0 means all pages were successfully mapped).
1966 *
1967 * Preferred over vm_insert_page() when inserting multiple pages.
1968 *
1969 * In case of error, we may have mapped a subset of the provided
1970 * pages. It is the caller's responsibility to account for this case.
1971 *
1972 * The same restrictions apply as in vm_insert_page().
1973 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)1974 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1975 struct page **pages, unsigned long *num)
1976 {
1977 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1978
1979 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1980 return -EFAULT;
1981 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1982 BUG_ON(mmap_read_trylock(vma->vm_mm));
1983 BUG_ON(vma->vm_flags & VM_PFNMAP);
1984 vm_flags_set(vma, VM_MIXEDMAP);
1985 }
1986 /* Defer page refcount checking till we're about to map that page. */
1987 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1988 }
1989 EXPORT_SYMBOL(vm_insert_pages);
1990
1991 /**
1992 * vm_insert_page - insert single page into user vma
1993 * @vma: user vma to map to
1994 * @addr: target user address of this page
1995 * @page: source kernel page
1996 *
1997 * This allows drivers to insert individual pages they've allocated
1998 * into a user vma.
1999 *
2000 * The page has to be a nice clean _individual_ kernel allocation.
2001 * If you allocate a compound page, you need to have marked it as
2002 * such (__GFP_COMP), or manually just split the page up yourself
2003 * (see split_page()).
2004 *
2005 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2006 * took an arbitrary page protection parameter. This doesn't allow
2007 * that. Your vma protection will have to be set up correctly, which
2008 * means that if you want a shared writable mapping, you'd better
2009 * ask for a shared writable mapping!
2010 *
2011 * The page does not need to be reserved.
2012 *
2013 * Usually this function is called from f_op->mmap() handler
2014 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2015 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2016 * function from other places, for example from page-fault handler.
2017 *
2018 * Return: %0 on success, negative error code otherwise.
2019 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2021 struct page *page)
2022 {
2023 if (addr < vma->vm_start || addr >= vma->vm_end)
2024 return -EFAULT;
2025 if (!page_count(page))
2026 return -EINVAL;
2027 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2028 BUG_ON(mmap_read_trylock(vma->vm_mm));
2029 BUG_ON(vma->vm_flags & VM_PFNMAP);
2030 vm_flags_set(vma, VM_MIXEDMAP);
2031 }
2032 return insert_page(vma, addr, page, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vm_insert_page);
2035
2036 /*
2037 * __vm_map_pages - maps range of kernel pages into user vma
2038 * @vma: user vma to map to
2039 * @pages: pointer to array of source kernel pages
2040 * @num: number of pages in page array
2041 * @offset: user's requested vm_pgoff
2042 *
2043 * This allows drivers to map range of kernel pages into a user vma.
2044 *
2045 * Return: 0 on success and error code otherwise.
2046 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2048 unsigned long num, unsigned long offset)
2049 {
2050 unsigned long count = vma_pages(vma);
2051 unsigned long uaddr = vma->vm_start;
2052 int ret, i;
2053
2054 /* Fail if the user requested offset is beyond the end of the object */
2055 if (offset >= num)
2056 return -ENXIO;
2057
2058 /* Fail if the user requested size exceeds available object size */
2059 if (count > num - offset)
2060 return -ENXIO;
2061
2062 for (i = 0; i < count; i++) {
2063 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2064 if (ret < 0)
2065 return ret;
2066 uaddr += PAGE_SIZE;
2067 }
2068
2069 return 0;
2070 }
2071
2072 /**
2073 * vm_map_pages - maps range of kernel pages starts with non zero offset
2074 * @vma: user vma to map to
2075 * @pages: pointer to array of source kernel pages
2076 * @num: number of pages in page array
2077 *
2078 * Maps an object consisting of @num pages, catering for the user's
2079 * requested vm_pgoff
2080 *
2081 * If we fail to insert any page into the vma, the function will return
2082 * immediately leaving any previously inserted pages present. Callers
2083 * from the mmap handler may immediately return the error as their caller
2084 * will destroy the vma, removing any successfully inserted pages. Other
2085 * callers should make their own arrangements for calling unmap_region().
2086 *
2087 * Context: Process context. Called by mmap handlers.
2088 * Return: 0 on success and error code otherwise.
2089 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2091 unsigned long num)
2092 {
2093 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2094 }
2095 EXPORT_SYMBOL(vm_map_pages);
2096
2097 /**
2098 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2099 * @vma: user vma to map to
2100 * @pages: pointer to array of source kernel pages
2101 * @num: number of pages in page array
2102 *
2103 * Similar to vm_map_pages(), except that it explicitly sets the offset
2104 * to 0. This function is intended for the drivers that did not consider
2105 * vm_pgoff.
2106 *
2107 * Context: Process context. Called by mmap handlers.
2108 * Return: 0 on success and error code otherwise.
2109 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2111 unsigned long num)
2112 {
2113 return __vm_map_pages(vma, pages, num, 0);
2114 }
2115 EXPORT_SYMBOL(vm_map_pages_zero);
2116
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 pfn_t pfn, pgprot_t prot, bool mkwrite)
2119 {
2120 struct mm_struct *mm = vma->vm_mm;
2121 pte_t *pte, entry;
2122 spinlock_t *ptl;
2123
2124 pte = get_locked_pte(mm, addr, &ptl);
2125 if (!pte)
2126 return VM_FAULT_OOM;
2127 entry = ptep_get(pte);
2128 if (!pte_none(entry)) {
2129 if (mkwrite) {
2130 /*
2131 * For read faults on private mappings the PFN passed
2132 * in may not match the PFN we have mapped if the
2133 * mapped PFN is a writeable COW page. In the mkwrite
2134 * case we are creating a writable PTE for a shared
2135 * mapping and we expect the PFNs to match. If they
2136 * don't match, we are likely racing with block
2137 * allocation and mapping invalidation so just skip the
2138 * update.
2139 */
2140 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2141 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2142 goto out_unlock;
2143 }
2144 entry = pte_mkyoung(entry);
2145 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2146 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2147 update_mmu_cache(vma, addr, pte);
2148 }
2149 goto out_unlock;
2150 }
2151
2152 /* Ok, finally just insert the thing.. */
2153 if (pfn_t_devmap(pfn))
2154 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2155 else
2156 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2157
2158 if (mkwrite) {
2159 entry = pte_mkyoung(entry);
2160 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2161 }
2162
2163 set_pte_at(mm, addr, pte, entry);
2164 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2165
2166 out_unlock:
2167 pte_unmap_unlock(pte, ptl);
2168 return VM_FAULT_NOPAGE;
2169 }
2170
2171 /**
2172 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2173 * @vma: user vma to map to
2174 * @addr: target user address of this page
2175 * @pfn: source kernel pfn
2176 * @pgprot: pgprot flags for the inserted page
2177 *
2178 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2179 * to override pgprot on a per-page basis.
2180 *
2181 * This only makes sense for IO mappings, and it makes no sense for
2182 * COW mappings. In general, using multiple vmas is preferable;
2183 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2184 * impractical.
2185 *
2186 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2187 * caching- and encryption bits different than those of @vma->vm_page_prot,
2188 * because the caching- or encryption mode may not be known at mmap() time.
2189 *
2190 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2191 * to set caching and encryption bits for those vmas (except for COW pages).
2192 * This is ensured by core vm only modifying these page table entries using
2193 * functions that don't touch caching- or encryption bits, using pte_modify()
2194 * if needed. (See for example mprotect()).
2195 *
2196 * Also when new page-table entries are created, this is only done using the
2197 * fault() callback, and never using the value of vma->vm_page_prot,
2198 * except for page-table entries that point to anonymous pages as the result
2199 * of COW.
2200 *
2201 * Context: Process context. May allocate using %GFP_KERNEL.
2202 * Return: vm_fault_t value.
2203 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 unsigned long pfn, pgprot_t pgprot)
2206 {
2207 /*
2208 * Technically, architectures with pte_special can avoid all these
2209 * restrictions (same for remap_pfn_range). However we would like
2210 * consistency in testing and feature parity among all, so we should
2211 * try to keep these invariants in place for everybody.
2212 */
2213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2215 (VM_PFNMAP|VM_MIXEDMAP));
2216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2217 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2218
2219 if (addr < vma->vm_start || addr >= vma->vm_end)
2220 return VM_FAULT_SIGBUS;
2221
2222 if (!pfn_modify_allowed(pfn, pgprot))
2223 return VM_FAULT_SIGBUS;
2224
2225 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2226
2227 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2228 false);
2229 }
2230 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2231
2232 /**
2233 * vmf_insert_pfn - insert single pfn into user vma
2234 * @vma: user vma to map to
2235 * @addr: target user address of this page
2236 * @pfn: source kernel pfn
2237 *
2238 * Similar to vm_insert_page, this allows drivers to insert individual pages
2239 * they've allocated into a user vma. Same comments apply.
2240 *
2241 * This function should only be called from a vm_ops->fault handler, and
2242 * in that case the handler should return the result of this function.
2243 *
2244 * vma cannot be a COW mapping.
2245 *
2246 * As this is called only for pages that do not currently exist, we
2247 * do not need to flush old virtual caches or the TLB.
2248 *
2249 * Context: Process context. May allocate using %GFP_KERNEL.
2250 * Return: vm_fault_t value.
2251 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2253 unsigned long pfn)
2254 {
2255 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2256 }
2257 EXPORT_SYMBOL(vmf_insert_pfn);
2258
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn)2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2260 {
2261 /* these checks mirror the abort conditions in vm_normal_page */
2262 if (vma->vm_flags & VM_MIXEDMAP)
2263 return true;
2264 if (pfn_t_devmap(pfn))
2265 return true;
2266 if (pfn_t_special(pfn))
2267 return true;
2268 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2269 return true;
2270 return false;
2271 }
2272
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2274 unsigned long addr, pfn_t pfn, bool mkwrite)
2275 {
2276 pgprot_t pgprot = vma->vm_page_prot;
2277 int err;
2278
2279 BUG_ON(!vm_mixed_ok(vma, pfn));
2280
2281 if (addr < vma->vm_start || addr >= vma->vm_end)
2282 return VM_FAULT_SIGBUS;
2283
2284 track_pfn_insert(vma, &pgprot, pfn);
2285
2286 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2287 return VM_FAULT_SIGBUS;
2288
2289 /*
2290 * If we don't have pte special, then we have to use the pfn_valid()
2291 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2292 * refcount the page if pfn_valid is true (hence insert_page rather
2293 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2294 * without pte special, it would there be refcounted as a normal page.
2295 */
2296 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2297 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2298 struct page *page;
2299
2300 /*
2301 * At this point we are committed to insert_page()
2302 * regardless of whether the caller specified flags that
2303 * result in pfn_t_has_page() == false.
2304 */
2305 page = pfn_to_page(pfn_t_to_pfn(pfn));
2306 err = insert_page(vma, addr, page, pgprot);
2307 } else {
2308 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2309 }
2310
2311 if (err == -ENOMEM)
2312 return VM_FAULT_OOM;
2313 if (err < 0 && err != -EBUSY)
2314 return VM_FAULT_SIGBUS;
2315
2316 return VM_FAULT_NOPAGE;
2317 }
2318
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2320 pfn_t pfn)
2321 {
2322 return __vm_insert_mixed(vma, addr, pfn, false);
2323 }
2324 EXPORT_SYMBOL(vmf_insert_mixed);
2325
2326 /*
2327 * If the insertion of PTE failed because someone else already added a
2328 * different entry in the mean time, we treat that as success as we assume
2329 * the same entry was actually inserted.
2330 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2332 unsigned long addr, pfn_t pfn)
2333 {
2334 return __vm_insert_mixed(vma, addr, pfn, true);
2335 }
2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2337
2338 /*
2339 * maps a range of physical memory into the requested pages. the old
2340 * mappings are removed. any references to nonexistent pages results
2341 * in null mappings (currently treated as "copy-on-access")
2342 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2344 unsigned long addr, unsigned long end,
2345 unsigned long pfn, pgprot_t prot)
2346 {
2347 pte_t *pte, *mapped_pte;
2348 spinlock_t *ptl;
2349 int err = 0;
2350
2351 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2352 if (!pte)
2353 return -ENOMEM;
2354 arch_enter_lazy_mmu_mode();
2355 do {
2356 BUG_ON(!pte_none(ptep_get(pte)));
2357 if (!pfn_modify_allowed(pfn, prot)) {
2358 err = -EACCES;
2359 break;
2360 }
2361 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2362 pfn++;
2363 } while (pte++, addr += PAGE_SIZE, addr != end);
2364 arch_leave_lazy_mmu_mode();
2365 pte_unmap_unlock(mapped_pte, ptl);
2366 return err;
2367 }
2368
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2370 unsigned long addr, unsigned long end,
2371 unsigned long pfn, pgprot_t prot)
2372 {
2373 pmd_t *pmd;
2374 unsigned long next;
2375 int err;
2376
2377 pfn -= addr >> PAGE_SHIFT;
2378 pmd = pmd_alloc(mm, pud, addr);
2379 if (!pmd)
2380 return -ENOMEM;
2381 VM_BUG_ON(pmd_trans_huge(*pmd));
2382 do {
2383 next = pmd_addr_end(addr, end);
2384 err = remap_pte_range(mm, pmd, addr, next,
2385 pfn + (addr >> PAGE_SHIFT), prot);
2386 if (err)
2387 return err;
2388 } while (pmd++, addr = next, addr != end);
2389 return 0;
2390 }
2391
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2393 unsigned long addr, unsigned long end,
2394 unsigned long pfn, pgprot_t prot)
2395 {
2396 pud_t *pud;
2397 unsigned long next;
2398 int err;
2399
2400 pfn -= addr >> PAGE_SHIFT;
2401 pud = pud_alloc(mm, p4d, addr);
2402 if (!pud)
2403 return -ENOMEM;
2404 do {
2405 next = pud_addr_end(addr, end);
2406 err = remap_pmd_range(mm, pud, addr, next,
2407 pfn + (addr >> PAGE_SHIFT), prot);
2408 if (err)
2409 return err;
2410 } while (pud++, addr = next, addr != end);
2411 return 0;
2412 }
2413
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2415 unsigned long addr, unsigned long end,
2416 unsigned long pfn, pgprot_t prot)
2417 {
2418 p4d_t *p4d;
2419 unsigned long next;
2420 int err;
2421
2422 pfn -= addr >> PAGE_SHIFT;
2423 p4d = p4d_alloc(mm, pgd, addr);
2424 if (!p4d)
2425 return -ENOMEM;
2426 do {
2427 next = p4d_addr_end(addr, end);
2428 err = remap_pud_range(mm, p4d, addr, next,
2429 pfn + (addr >> PAGE_SHIFT), prot);
2430 if (err)
2431 return err;
2432 } while (p4d++, addr = next, addr != end);
2433 return 0;
2434 }
2435
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2436 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2437 unsigned long pfn, unsigned long size, pgprot_t prot)
2438 {
2439 pgd_t *pgd;
2440 unsigned long next;
2441 unsigned long end = addr + PAGE_ALIGN(size);
2442 struct mm_struct *mm = vma->vm_mm;
2443 int err;
2444
2445 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2446 return -EINVAL;
2447
2448 /*
2449 * Physically remapped pages are special. Tell the
2450 * rest of the world about it:
2451 * VM_IO tells people not to look at these pages
2452 * (accesses can have side effects).
2453 * VM_PFNMAP tells the core MM that the base pages are just
2454 * raw PFN mappings, and do not have a "struct page" associated
2455 * with them.
2456 * VM_DONTEXPAND
2457 * Disable vma merging and expanding with mremap().
2458 * VM_DONTDUMP
2459 * Omit vma from core dump, even when VM_IO turned off.
2460 *
2461 * There's a horrible special case to handle copy-on-write
2462 * behaviour that some programs depend on. We mark the "original"
2463 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2464 * See vm_normal_page() for details.
2465 */
2466 if (is_cow_mapping(vma->vm_flags)) {
2467 if (addr != vma->vm_start || end != vma->vm_end)
2468 return -EINVAL;
2469 vma->vm_pgoff = pfn;
2470 }
2471
2472 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2473
2474 BUG_ON(addr >= end);
2475 pfn -= addr >> PAGE_SHIFT;
2476 pgd = pgd_offset(mm, addr);
2477 flush_cache_range(vma, addr, end);
2478 do {
2479 next = pgd_addr_end(addr, end);
2480 err = remap_p4d_range(mm, pgd, addr, next,
2481 pfn + (addr >> PAGE_SHIFT), prot);
2482 if (err)
2483 return err;
2484 } while (pgd++, addr = next, addr != end);
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2491 * must have pre-validated the caching bits of the pgprot_t.
2492 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2493 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2494 unsigned long pfn, unsigned long size, pgprot_t prot)
2495 {
2496 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2497
2498 if (!error)
2499 return 0;
2500
2501 /*
2502 * A partial pfn range mapping is dangerous: it does not
2503 * maintain page reference counts, and callers may free
2504 * pages due to the error. So zap it early.
2505 */
2506 zap_page_range_single(vma, addr, size, NULL);
2507 return error;
2508 }
2509
2510 /**
2511 * remap_pfn_range - remap kernel memory to userspace
2512 * @vma: user vma to map to
2513 * @addr: target page aligned user address to start at
2514 * @pfn: page frame number of kernel physical memory address
2515 * @size: size of mapping area
2516 * @prot: page protection flags for this mapping
2517 *
2518 * Note: this is only safe if the mm semaphore is held when called.
2519 *
2520 * Return: %0 on success, negative error code otherwise.
2521 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2522 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2523 unsigned long pfn, unsigned long size, pgprot_t prot)
2524 {
2525 int err;
2526
2527 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2528 if (err)
2529 return -EINVAL;
2530
2531 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2532 if (err)
2533 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2534 return err;
2535 }
2536 EXPORT_SYMBOL(remap_pfn_range);
2537
2538 /**
2539 * vm_iomap_memory - remap memory to userspace
2540 * @vma: user vma to map to
2541 * @start: start of the physical memory to be mapped
2542 * @len: size of area
2543 *
2544 * This is a simplified io_remap_pfn_range() for common driver use. The
2545 * driver just needs to give us the physical memory range to be mapped,
2546 * we'll figure out the rest from the vma information.
2547 *
2548 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2549 * whatever write-combining details or similar.
2550 *
2551 * Return: %0 on success, negative error code otherwise.
2552 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2553 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2554 {
2555 unsigned long vm_len, pfn, pages;
2556
2557 /* Check that the physical memory area passed in looks valid */
2558 if (start + len < start)
2559 return -EINVAL;
2560 /*
2561 * You *really* shouldn't map things that aren't page-aligned,
2562 * but we've historically allowed it because IO memory might
2563 * just have smaller alignment.
2564 */
2565 len += start & ~PAGE_MASK;
2566 pfn = start >> PAGE_SHIFT;
2567 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2568 if (pfn + pages < pfn)
2569 return -EINVAL;
2570
2571 /* We start the mapping 'vm_pgoff' pages into the area */
2572 if (vma->vm_pgoff > pages)
2573 return -EINVAL;
2574 pfn += vma->vm_pgoff;
2575 pages -= vma->vm_pgoff;
2576
2577 /* Can we fit all of the mapping? */
2578 vm_len = vma->vm_end - vma->vm_start;
2579 if (vm_len >> PAGE_SHIFT > pages)
2580 return -EINVAL;
2581
2582 /* Ok, let it rip */
2583 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2584 }
2585 EXPORT_SYMBOL(vm_iomap_memory);
2586
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2587 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2588 unsigned long addr, unsigned long end,
2589 pte_fn_t fn, void *data, bool create,
2590 pgtbl_mod_mask *mask)
2591 {
2592 pte_t *pte, *mapped_pte;
2593 int err = 0;
2594 spinlock_t *ptl;
2595
2596 if (create) {
2597 mapped_pte = pte = (mm == &init_mm) ?
2598 pte_alloc_kernel_track(pmd, addr, mask) :
2599 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2600 if (!pte)
2601 return -ENOMEM;
2602 } else {
2603 mapped_pte = pte = (mm == &init_mm) ?
2604 pte_offset_kernel(pmd, addr) :
2605 pte_offset_map_lock(mm, pmd, addr, &ptl);
2606 if (!pte)
2607 return -EINVAL;
2608 }
2609
2610 arch_enter_lazy_mmu_mode();
2611
2612 if (fn) {
2613 do {
2614 if (create || !pte_none(ptep_get(pte))) {
2615 err = fn(pte++, addr, data);
2616 if (err)
2617 break;
2618 }
2619 } while (addr += PAGE_SIZE, addr != end);
2620 }
2621 *mask |= PGTBL_PTE_MODIFIED;
2622
2623 arch_leave_lazy_mmu_mode();
2624
2625 if (mm != &init_mm)
2626 pte_unmap_unlock(mapped_pte, ptl);
2627 return err;
2628 }
2629
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2630 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2631 unsigned long addr, unsigned long end,
2632 pte_fn_t fn, void *data, bool create,
2633 pgtbl_mod_mask *mask)
2634 {
2635 pmd_t *pmd;
2636 unsigned long next;
2637 int err = 0;
2638
2639 BUG_ON(pud_huge(*pud));
2640
2641 if (create) {
2642 pmd = pmd_alloc_track(mm, pud, addr, mask);
2643 if (!pmd)
2644 return -ENOMEM;
2645 } else {
2646 pmd = pmd_offset(pud, addr);
2647 }
2648 do {
2649 next = pmd_addr_end(addr, end);
2650 if (pmd_none(*pmd) && !create)
2651 continue;
2652 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2653 return -EINVAL;
2654 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2655 if (!create)
2656 continue;
2657 pmd_clear_bad(pmd);
2658 }
2659 err = apply_to_pte_range(mm, pmd, addr, next,
2660 fn, data, create, mask);
2661 if (err)
2662 break;
2663 } while (pmd++, addr = next, addr != end);
2664
2665 return err;
2666 }
2667
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2668 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2669 unsigned long addr, unsigned long end,
2670 pte_fn_t fn, void *data, bool create,
2671 pgtbl_mod_mask *mask)
2672 {
2673 pud_t *pud;
2674 unsigned long next;
2675 int err = 0;
2676
2677 if (create) {
2678 pud = pud_alloc_track(mm, p4d, addr, mask);
2679 if (!pud)
2680 return -ENOMEM;
2681 } else {
2682 pud = pud_offset(p4d, addr);
2683 }
2684 do {
2685 next = pud_addr_end(addr, end);
2686 if (pud_none(*pud) && !create)
2687 continue;
2688 if (WARN_ON_ONCE(pud_leaf(*pud)))
2689 return -EINVAL;
2690 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2691 if (!create)
2692 continue;
2693 pud_clear_bad(pud);
2694 }
2695 err = apply_to_pmd_range(mm, pud, addr, next,
2696 fn, data, create, mask);
2697 if (err)
2698 break;
2699 } while (pud++, addr = next, addr != end);
2700
2701 return err;
2702 }
2703
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2704 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2705 unsigned long addr, unsigned long end,
2706 pte_fn_t fn, void *data, bool create,
2707 pgtbl_mod_mask *mask)
2708 {
2709 p4d_t *p4d;
2710 unsigned long next;
2711 int err = 0;
2712
2713 if (create) {
2714 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2715 if (!p4d)
2716 return -ENOMEM;
2717 } else {
2718 p4d = p4d_offset(pgd, addr);
2719 }
2720 do {
2721 next = p4d_addr_end(addr, end);
2722 if (p4d_none(*p4d) && !create)
2723 continue;
2724 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2725 return -EINVAL;
2726 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2727 if (!create)
2728 continue;
2729 p4d_clear_bad(p4d);
2730 }
2731 err = apply_to_pud_range(mm, p4d, addr, next,
2732 fn, data, create, mask);
2733 if (err)
2734 break;
2735 } while (p4d++, addr = next, addr != end);
2736
2737 return err;
2738 }
2739
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2740 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2741 unsigned long size, pte_fn_t fn,
2742 void *data, bool create)
2743 {
2744 pgd_t *pgd;
2745 unsigned long start = addr, next;
2746 unsigned long end = addr + size;
2747 pgtbl_mod_mask mask = 0;
2748 int err = 0;
2749
2750 if (WARN_ON(addr >= end))
2751 return -EINVAL;
2752
2753 pgd = pgd_offset(mm, addr);
2754 do {
2755 next = pgd_addr_end(addr, end);
2756 if (pgd_none(*pgd) && !create)
2757 continue;
2758 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
2759 err = -EINVAL;
2760 break;
2761 }
2762 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2763 if (!create)
2764 continue;
2765 pgd_clear_bad(pgd);
2766 }
2767 err = apply_to_p4d_range(mm, pgd, addr, next,
2768 fn, data, create, &mask);
2769 if (err)
2770 break;
2771 } while (pgd++, addr = next, addr != end);
2772
2773 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2774 arch_sync_kernel_mappings(start, start + size);
2775
2776 return err;
2777 }
2778
2779 /*
2780 * Scan a region of virtual memory, filling in page tables as necessary
2781 * and calling a provided function on each leaf page table.
2782 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2783 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2784 unsigned long size, pte_fn_t fn, void *data)
2785 {
2786 return __apply_to_page_range(mm, addr, size, fn, data, true);
2787 }
2788 EXPORT_SYMBOL_GPL(apply_to_page_range);
2789
2790 /*
2791 * Scan a region of virtual memory, calling a provided function on
2792 * each leaf page table where it exists.
2793 *
2794 * Unlike apply_to_page_range, this does _not_ fill in page tables
2795 * where they are absent.
2796 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2797 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2798 unsigned long size, pte_fn_t fn, void *data)
2799 {
2800 return __apply_to_page_range(mm, addr, size, fn, data, false);
2801 }
2802 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2803
2804 /*
2805 * handle_pte_fault chooses page fault handler according to an entry which was
2806 * read non-atomically. Before making any commitment, on those architectures
2807 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2808 * parts, do_swap_page must check under lock before unmapping the pte and
2809 * proceeding (but do_wp_page is only called after already making such a check;
2810 * and do_anonymous_page can safely check later on).
2811 */
pte_unmap_same(struct vm_fault * vmf)2812 static inline int pte_unmap_same(struct vm_fault *vmf)
2813 {
2814 int same = 1;
2815 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2816 if (sizeof(pte_t) > sizeof(unsigned long)) {
2817 spin_lock(vmf->ptl);
2818 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2819 spin_unlock(vmf->ptl);
2820 }
2821 #endif
2822 pte_unmap(vmf->pte);
2823 vmf->pte = NULL;
2824 return same;
2825 }
2826
2827 /*
2828 * Return:
2829 * 0: copied succeeded
2830 * -EHWPOISON: copy failed due to hwpoison in source page
2831 * -EAGAIN: copied failed (some other reason)
2832 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)2833 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2834 struct vm_fault *vmf)
2835 {
2836 int ret;
2837 void *kaddr;
2838 void __user *uaddr;
2839 struct vm_area_struct *vma = vmf->vma;
2840 struct mm_struct *mm = vma->vm_mm;
2841 unsigned long addr = vmf->address;
2842
2843 if (likely(src)) {
2844 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2845 memory_failure_queue(page_to_pfn(src), 0);
2846 return -EHWPOISON;
2847 }
2848 return 0;
2849 }
2850
2851 /*
2852 * If the source page was a PFN mapping, we don't have
2853 * a "struct page" for it. We do a best-effort copy by
2854 * just copying from the original user address. If that
2855 * fails, we just zero-fill it. Live with it.
2856 */
2857 kaddr = kmap_atomic(dst);
2858 uaddr = (void __user *)(addr & PAGE_MASK);
2859
2860 /*
2861 * On architectures with software "accessed" bits, we would
2862 * take a double page fault, so mark it accessed here.
2863 */
2864 vmf->pte = NULL;
2865 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2866 pte_t entry;
2867
2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2869 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2870 /*
2871 * Other thread has already handled the fault
2872 * and update local tlb only
2873 */
2874 if (vmf->pte)
2875 update_mmu_tlb(vma, addr, vmf->pte);
2876 ret = -EAGAIN;
2877 goto pte_unlock;
2878 }
2879
2880 entry = pte_mkyoung(vmf->orig_pte);
2881 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2882 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2883 }
2884
2885 /*
2886 * This really shouldn't fail, because the page is there
2887 * in the page tables. But it might just be unreadable,
2888 * in which case we just give up and fill the result with
2889 * zeroes.
2890 */
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892 if (vmf->pte)
2893 goto warn;
2894
2895 /* Re-validate under PTL if the page is still mapped */
2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2897 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2898 /* The PTE changed under us, update local tlb */
2899 if (vmf->pte)
2900 update_mmu_tlb(vma, addr, vmf->pte);
2901 ret = -EAGAIN;
2902 goto pte_unlock;
2903 }
2904
2905 /*
2906 * The same page can be mapped back since last copy attempt.
2907 * Try to copy again under PTL.
2908 */
2909 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2910 /*
2911 * Give a warn in case there can be some obscure
2912 * use-case
2913 */
2914 warn:
2915 WARN_ON_ONCE(1);
2916 clear_page(kaddr);
2917 }
2918 }
2919
2920 ret = 0;
2921
2922 pte_unlock:
2923 if (vmf->pte)
2924 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 kunmap_atomic(kaddr);
2926 flush_dcache_page(dst);
2927
2928 return ret;
2929 }
2930
__get_fault_gfp_mask(struct vm_area_struct * vma)2931 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2932 {
2933 struct file *vm_file = vma->vm_file;
2934
2935 if (vm_file)
2936 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2937
2938 /*
2939 * Special mappings (e.g. VDSO) do not have any file so fake
2940 * a default GFP_KERNEL for them.
2941 */
2942 return GFP_KERNEL;
2943 }
2944
2945 /*
2946 * Notify the address space that the page is about to become writable so that
2947 * it can prohibit this or wait for the page to get into an appropriate state.
2948 *
2949 * We do this without the lock held, so that it can sleep if it needs to.
2950 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)2951 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2952 {
2953 vm_fault_t ret;
2954 unsigned int old_flags = vmf->flags;
2955
2956 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2957
2958 if (vmf->vma->vm_file &&
2959 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2960 return VM_FAULT_SIGBUS;
2961
2962 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2963 /* Restore original flags so that caller is not surprised */
2964 vmf->flags = old_flags;
2965 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2966 return ret;
2967 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2968 folio_lock(folio);
2969 if (!folio->mapping) {
2970 folio_unlock(folio);
2971 return 0; /* retry */
2972 }
2973 ret |= VM_FAULT_LOCKED;
2974 } else
2975 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2976 return ret;
2977 }
2978
2979 /*
2980 * Handle dirtying of a page in shared file mapping on a write fault.
2981 *
2982 * The function expects the page to be locked and unlocks it.
2983 */
fault_dirty_shared_page(struct vm_fault * vmf)2984 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2985 {
2986 struct vm_area_struct *vma = vmf->vma;
2987 struct address_space *mapping;
2988 struct folio *folio = page_folio(vmf->page);
2989 bool dirtied;
2990 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2991
2992 dirtied = folio_mark_dirty(folio);
2993 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2994 /*
2995 * Take a local copy of the address_space - folio.mapping may be zeroed
2996 * by truncate after folio_unlock(). The address_space itself remains
2997 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
2998 * release semantics to prevent the compiler from undoing this copying.
2999 */
3000 mapping = folio_raw_mapping(folio);
3001 folio_unlock(folio);
3002
3003 if (!page_mkwrite)
3004 file_update_time(vma->vm_file);
3005
3006 /*
3007 * Throttle page dirtying rate down to writeback speed.
3008 *
3009 * mapping may be NULL here because some device drivers do not
3010 * set page.mapping but still dirty their pages
3011 *
3012 * Drop the mmap_lock before waiting on IO, if we can. The file
3013 * is pinning the mapping, as per above.
3014 */
3015 if ((dirtied || page_mkwrite) && mapping) {
3016 struct file *fpin;
3017
3018 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3019 balance_dirty_pages_ratelimited(mapping);
3020 if (fpin) {
3021 fput(fpin);
3022 return VM_FAULT_COMPLETED;
3023 }
3024 }
3025
3026 return 0;
3027 }
3028
3029 /*
3030 * Handle write page faults for pages that can be reused in the current vma
3031 *
3032 * This can happen either due to the mapping being with the VM_SHARED flag,
3033 * or due to us being the last reference standing to the page. In either
3034 * case, all we need to do here is to mark the page as writable and update
3035 * any related book-keeping.
3036 */
wp_page_reuse(struct vm_fault * vmf)3037 static inline void wp_page_reuse(struct vm_fault *vmf)
3038 __releases(vmf->ptl)
3039 {
3040 struct vm_area_struct *vma = vmf->vma;
3041 struct page *page = vmf->page;
3042 pte_t entry;
3043
3044 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3045 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3046
3047 /*
3048 * Clear the pages cpupid information as the existing
3049 * information potentially belongs to a now completely
3050 * unrelated process.
3051 */
3052 if (page)
3053 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3054
3055 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3056 entry = pte_mkyoung(vmf->orig_pte);
3057 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3058 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3059 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3060 pte_unmap_unlock(vmf->pte, vmf->ptl);
3061 count_vm_event(PGREUSE);
3062 }
3063
3064 /*
3065 * Handle the case of a page which we actually need to copy to a new page,
3066 * either due to COW or unsharing.
3067 *
3068 * Called with mmap_lock locked and the old page referenced, but
3069 * without the ptl held.
3070 *
3071 * High level logic flow:
3072 *
3073 * - Allocate a page, copy the content of the old page to the new one.
3074 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3075 * - Take the PTL. If the pte changed, bail out and release the allocated page
3076 * - If the pte is still the way we remember it, update the page table and all
3077 * relevant references. This includes dropping the reference the page-table
3078 * held to the old page, as well as updating the rmap.
3079 * - In any case, unlock the PTL and drop the reference we took to the old page.
3080 */
wp_page_copy(struct vm_fault * vmf)3081 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3082 {
3083 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3084 struct vm_area_struct *vma = vmf->vma;
3085 struct mm_struct *mm = vma->vm_mm;
3086 struct folio *old_folio = NULL;
3087 struct folio *new_folio = NULL;
3088 pte_t entry;
3089 int page_copied = 0;
3090 struct mmu_notifier_range range;
3091 int ret;
3092
3093 delayacct_wpcopy_start();
3094
3095 if (vmf->page)
3096 old_folio = page_folio(vmf->page);
3097 if (unlikely(anon_vma_prepare(vma)))
3098 goto oom;
3099
3100 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3101 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3102 if (!new_folio)
3103 goto oom;
3104 } else {
3105 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3106 vmf->address, false);
3107 if (!new_folio)
3108 goto oom;
3109
3110 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3111 if (ret) {
3112 /*
3113 * COW failed, if the fault was solved by other,
3114 * it's fine. If not, userspace would re-fault on
3115 * the same address and we will handle the fault
3116 * from the second attempt.
3117 * The -EHWPOISON case will not be retried.
3118 */
3119 folio_put(new_folio);
3120 if (old_folio)
3121 folio_put(old_folio);
3122
3123 delayacct_wpcopy_end();
3124 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3125 }
3126 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3127 }
3128
3129 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3130 goto oom_free_new;
3131 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3132
3133 __folio_mark_uptodate(new_folio);
3134
3135 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3136 vmf->address & PAGE_MASK,
3137 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3138 mmu_notifier_invalidate_range_start(&range);
3139
3140 /*
3141 * Re-check the pte - we dropped the lock
3142 */
3143 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3144 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3145 if (old_folio) {
3146 if (!folio_test_anon(old_folio)) {
3147 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3148 inc_mm_counter(mm, MM_ANONPAGES);
3149 }
3150 } else {
3151 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3152 inc_mm_counter(mm, MM_ANONPAGES);
3153 }
3154 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3155 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3156 entry = pte_sw_mkyoung(entry);
3157 if (unlikely(unshare)) {
3158 if (pte_soft_dirty(vmf->orig_pte))
3159 entry = pte_mksoft_dirty(entry);
3160 if (pte_uffd_wp(vmf->orig_pte))
3161 entry = pte_mkuffd_wp(entry);
3162 } else {
3163 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3164 }
3165
3166 /*
3167 * Clear the pte entry and flush it first, before updating the
3168 * pte with the new entry, to keep TLBs on different CPUs in
3169 * sync. This code used to set the new PTE then flush TLBs, but
3170 * that left a window where the new PTE could be loaded into
3171 * some TLBs while the old PTE remains in others.
3172 */
3173 ptep_clear_flush(vma, vmf->address, vmf->pte);
3174 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3175 #ifdef CONFIG_MEM_PURGEABLE
3176 if (vma->vm_flags & VM_PURGEABLE) {
3177 pr_info("set wp new folio %lx purgeable\n", folio_pfn(new_folio));
3178 folio_set_purgeable(new_folio);
3179 uxpte_set_present(vma, vmf->address);
3180 }
3181 #endif
3182 folio_add_lru_vma(new_folio, vma);
3183 /*
3184 * We call the notify macro here because, when using secondary
3185 * mmu page tables (such as kvm shadow page tables), we want the
3186 * new page to be mapped directly into the secondary page table.
3187 */
3188 BUG_ON(unshare && pte_write(entry));
3189 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3190 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3191 if (old_folio) {
3192 /*
3193 * Only after switching the pte to the new page may
3194 * we remove the mapcount here. Otherwise another
3195 * process may come and find the rmap count decremented
3196 * before the pte is switched to the new page, and
3197 * "reuse" the old page writing into it while our pte
3198 * here still points into it and can be read by other
3199 * threads.
3200 *
3201 * The critical issue is to order this
3202 * page_remove_rmap with the ptp_clear_flush above.
3203 * Those stores are ordered by (if nothing else,)
3204 * the barrier present in the atomic_add_negative
3205 * in page_remove_rmap.
3206 *
3207 * Then the TLB flush in ptep_clear_flush ensures that
3208 * no process can access the old page before the
3209 * decremented mapcount is visible. And the old page
3210 * cannot be reused until after the decremented
3211 * mapcount is visible. So transitively, TLBs to
3212 * old page will be flushed before it can be reused.
3213 */
3214 page_remove_rmap(vmf->page, vma, false);
3215 }
3216
3217 /* Free the old page.. */
3218 new_folio = old_folio;
3219 page_copied = 1;
3220 pte_unmap_unlock(vmf->pte, vmf->ptl);
3221 } else if (vmf->pte) {
3222 update_mmu_tlb(vma, vmf->address, vmf->pte);
3223 pte_unmap_unlock(vmf->pte, vmf->ptl);
3224 }
3225
3226 mmu_notifier_invalidate_range_end(&range);
3227
3228 if (new_folio)
3229 folio_put(new_folio);
3230 if (old_folio) {
3231 if (page_copied)
3232 free_swap_cache(&old_folio->page);
3233 folio_put(old_folio);
3234 }
3235
3236 delayacct_wpcopy_end();
3237 return 0;
3238 oom_free_new:
3239 folio_put(new_folio);
3240 oom:
3241 if (old_folio)
3242 folio_put(old_folio);
3243
3244 delayacct_wpcopy_end();
3245 return VM_FAULT_OOM;
3246 }
3247
3248 /**
3249 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3250 * writeable once the page is prepared
3251 *
3252 * @vmf: structure describing the fault
3253 *
3254 * This function handles all that is needed to finish a write page fault in a
3255 * shared mapping due to PTE being read-only once the mapped page is prepared.
3256 * It handles locking of PTE and modifying it.
3257 *
3258 * The function expects the page to be locked or other protection against
3259 * concurrent faults / writeback (such as DAX radix tree locks).
3260 *
3261 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3262 * we acquired PTE lock.
3263 */
finish_mkwrite_fault(struct vm_fault * vmf)3264 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3265 {
3266 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3267 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3268 &vmf->ptl);
3269 if (!vmf->pte)
3270 return VM_FAULT_NOPAGE;
3271 /*
3272 * We might have raced with another page fault while we released the
3273 * pte_offset_map_lock.
3274 */
3275 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3276 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3277 pte_unmap_unlock(vmf->pte, vmf->ptl);
3278 return VM_FAULT_NOPAGE;
3279 }
3280 wp_page_reuse(vmf);
3281 return 0;
3282 }
3283
3284 /*
3285 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3286 * mapping
3287 */
wp_pfn_shared(struct vm_fault * vmf)3288 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3289 {
3290 struct vm_area_struct *vma = vmf->vma;
3291
3292 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3293 vm_fault_t ret;
3294
3295 pte_unmap_unlock(vmf->pte, vmf->ptl);
3296 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3297 vma_end_read(vmf->vma);
3298 return VM_FAULT_RETRY;
3299 }
3300
3301 vmf->flags |= FAULT_FLAG_MKWRITE;
3302 ret = vma->vm_ops->pfn_mkwrite(vmf);
3303 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3304 return ret;
3305 return finish_mkwrite_fault(vmf);
3306 }
3307 wp_page_reuse(vmf);
3308 return 0;
3309 }
3310
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3311 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3312 __releases(vmf->ptl)
3313 {
3314 struct vm_area_struct *vma = vmf->vma;
3315 vm_fault_t ret = 0;
3316
3317 folio_get(folio);
3318
3319 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3320 vm_fault_t tmp;
3321
3322 pte_unmap_unlock(vmf->pte, vmf->ptl);
3323 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3324 folio_put(folio);
3325 vma_end_read(vmf->vma);
3326 return VM_FAULT_RETRY;
3327 }
3328
3329 tmp = do_page_mkwrite(vmf, folio);
3330 if (unlikely(!tmp || (tmp &
3331 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3332 folio_put(folio);
3333 return tmp;
3334 }
3335 tmp = finish_mkwrite_fault(vmf);
3336 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3337 folio_unlock(folio);
3338 folio_put(folio);
3339 return tmp;
3340 }
3341 } else {
3342 wp_page_reuse(vmf);
3343 folio_lock(folio);
3344 }
3345 ret |= fault_dirty_shared_page(vmf);
3346 folio_put(folio);
3347
3348 return ret;
3349 }
3350
3351 /*
3352 * This routine handles present pages, when
3353 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3354 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3355 * (FAULT_FLAG_UNSHARE)
3356 *
3357 * It is done by copying the page to a new address and decrementing the
3358 * shared-page counter for the old page.
3359 *
3360 * Note that this routine assumes that the protection checks have been
3361 * done by the caller (the low-level page fault routine in most cases).
3362 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3363 * done any necessary COW.
3364 *
3365 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3366 * though the page will change only once the write actually happens. This
3367 * avoids a few races, and potentially makes it more efficient.
3368 *
3369 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3370 * but allow concurrent faults), with pte both mapped and locked.
3371 * We return with mmap_lock still held, but pte unmapped and unlocked.
3372 */
do_wp_page(struct vm_fault * vmf)3373 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3374 __releases(vmf->ptl)
3375 {
3376 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3377 struct vm_area_struct *vma = vmf->vma;
3378 struct folio *folio = NULL;
3379
3380 if (likely(!unshare)) {
3381 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3382 pte_unmap_unlock(vmf->pte, vmf->ptl);
3383 return handle_userfault(vmf, VM_UFFD_WP);
3384 }
3385
3386 /*
3387 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3388 * is flushed in this case before copying.
3389 */
3390 if (unlikely(userfaultfd_wp(vmf->vma) &&
3391 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3392 flush_tlb_page(vmf->vma, vmf->address);
3393 }
3394
3395 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3396
3397 if (vmf->page)
3398 folio = page_folio(vmf->page);
3399
3400 /*
3401 * Shared mapping: we are guaranteed to have VM_WRITE and
3402 * FAULT_FLAG_WRITE set at this point.
3403 */
3404 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3405 /*
3406 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3407 * VM_PFNMAP VMA.
3408 *
3409 * We should not cow pages in a shared writeable mapping.
3410 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3411 */
3412 if (!vmf->page)
3413 return wp_pfn_shared(vmf);
3414 return wp_page_shared(vmf, folio);
3415 }
3416
3417 /*
3418 * Private mapping: create an exclusive anonymous page copy if reuse
3419 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3420 */
3421 if (folio && folio_test_anon(folio)) {
3422 /*
3423 * If the page is exclusive to this process we must reuse the
3424 * page without further checks.
3425 */
3426 if (PageAnonExclusive(vmf->page))
3427 goto reuse;
3428
3429 /*
3430 * We have to verify under folio lock: these early checks are
3431 * just an optimization to avoid locking the folio and freeing
3432 * the swapcache if there is little hope that we can reuse.
3433 *
3434 * KSM doesn't necessarily raise the folio refcount.
3435 */
3436 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3437 goto copy;
3438 if (!folio_test_lru(folio))
3439 /*
3440 * We cannot easily detect+handle references from
3441 * remote LRU caches or references to LRU folios.
3442 */
3443 lru_add_drain();
3444 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3445 goto copy;
3446 if (!folio_trylock(folio))
3447 goto copy;
3448 if (folio_test_swapcache(folio))
3449 folio_free_swap(folio);
3450 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3451 folio_unlock(folio);
3452 goto copy;
3453 }
3454 /*
3455 * Ok, we've got the only folio reference from our mapping
3456 * and the folio is locked, it's dark out, and we're wearing
3457 * sunglasses. Hit it.
3458 */
3459 page_move_anon_rmap(vmf->page, vma);
3460 folio_unlock(folio);
3461 reuse:
3462 if (unlikely(unshare)) {
3463 pte_unmap_unlock(vmf->pte, vmf->ptl);
3464 return 0;
3465 }
3466 wp_page_reuse(vmf);
3467 return 0;
3468 }
3469 copy:
3470 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3471 pte_unmap_unlock(vmf->pte, vmf->ptl);
3472 vma_end_read(vmf->vma);
3473 return VM_FAULT_RETRY;
3474 }
3475
3476 /*
3477 * Ok, we need to copy. Oh, well..
3478 */
3479 if (folio)
3480 folio_get(folio);
3481
3482 pte_unmap_unlock(vmf->pte, vmf->ptl);
3483 #ifdef CONFIG_KSM
3484 if (folio && folio_test_ksm(folio))
3485 count_vm_event(COW_KSM);
3486 #endif
3487 return wp_page_copy(vmf);
3488 }
3489
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3490 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3491 unsigned long start_addr, unsigned long end_addr,
3492 struct zap_details *details)
3493 {
3494 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3495 }
3496
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3497 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3498 pgoff_t first_index,
3499 pgoff_t last_index,
3500 struct zap_details *details)
3501 {
3502 struct vm_area_struct *vma;
3503 pgoff_t vba, vea, zba, zea;
3504
3505 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3506 vba = vma->vm_pgoff;
3507 vea = vba + vma_pages(vma) - 1;
3508 zba = max(first_index, vba);
3509 zea = min(last_index, vea);
3510
3511 unmap_mapping_range_vma(vma,
3512 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3513 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3514 details);
3515 }
3516 }
3517
3518 /**
3519 * unmap_mapping_folio() - Unmap single folio from processes.
3520 * @folio: The locked folio to be unmapped.
3521 *
3522 * Unmap this folio from any userspace process which still has it mmaped.
3523 * Typically, for efficiency, the range of nearby pages has already been
3524 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3525 * truncation or invalidation holds the lock on a folio, it may find that
3526 * the page has been remapped again: and then uses unmap_mapping_folio()
3527 * to unmap it finally.
3528 */
unmap_mapping_folio(struct folio * folio)3529 void unmap_mapping_folio(struct folio *folio)
3530 {
3531 struct address_space *mapping = folio->mapping;
3532 struct zap_details details = { };
3533 pgoff_t first_index;
3534 pgoff_t last_index;
3535
3536 VM_BUG_ON(!folio_test_locked(folio));
3537
3538 first_index = folio->index;
3539 last_index = folio_next_index(folio) - 1;
3540
3541 details.even_cows = false;
3542 details.single_folio = folio;
3543 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3544
3545 i_mmap_lock_read(mapping);
3546 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3547 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3548 last_index, &details);
3549 i_mmap_unlock_read(mapping);
3550 }
3551
3552 /**
3553 * unmap_mapping_pages() - Unmap pages from processes.
3554 * @mapping: The address space containing pages to be unmapped.
3555 * @start: Index of first page to be unmapped.
3556 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3557 * @even_cows: Whether to unmap even private COWed pages.
3558 *
3559 * Unmap the pages in this address space from any userspace process which
3560 * has them mmaped. Generally, you want to remove COWed pages as well when
3561 * a file is being truncated, but not when invalidating pages from the page
3562 * cache.
3563 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3564 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3565 pgoff_t nr, bool even_cows)
3566 {
3567 struct zap_details details = { };
3568 pgoff_t first_index = start;
3569 pgoff_t last_index = start + nr - 1;
3570
3571 details.even_cows = even_cows;
3572 if (last_index < first_index)
3573 last_index = ULONG_MAX;
3574
3575 i_mmap_lock_read(mapping);
3576 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3577 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3578 last_index, &details);
3579 i_mmap_unlock_read(mapping);
3580 }
3581 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3582
3583 /**
3584 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3585 * address_space corresponding to the specified byte range in the underlying
3586 * file.
3587 *
3588 * @mapping: the address space containing mmaps to be unmapped.
3589 * @holebegin: byte in first page to unmap, relative to the start of
3590 * the underlying file. This will be rounded down to a PAGE_SIZE
3591 * boundary. Note that this is different from truncate_pagecache(), which
3592 * must keep the partial page. In contrast, we must get rid of
3593 * partial pages.
3594 * @holelen: size of prospective hole in bytes. This will be rounded
3595 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3596 * end of the file.
3597 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3598 * but 0 when invalidating pagecache, don't throw away private data.
3599 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3600 void unmap_mapping_range(struct address_space *mapping,
3601 loff_t const holebegin, loff_t const holelen, int even_cows)
3602 {
3603 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3604 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3605
3606 /* Check for overflow. */
3607 if (sizeof(holelen) > sizeof(hlen)) {
3608 long long holeend =
3609 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3610 if (holeend & ~(long long)ULONG_MAX)
3611 hlen = ULONG_MAX - hba + 1;
3612 }
3613
3614 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3615 }
3616 EXPORT_SYMBOL(unmap_mapping_range);
3617
3618 /*
3619 * Restore a potential device exclusive pte to a working pte entry
3620 */
remove_device_exclusive_entry(struct vm_fault * vmf)3621 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3622 {
3623 struct folio *folio = page_folio(vmf->page);
3624 struct vm_area_struct *vma = vmf->vma;
3625 struct mmu_notifier_range range;
3626 vm_fault_t ret;
3627
3628 /*
3629 * We need a reference to lock the folio because we don't hold
3630 * the PTL so a racing thread can remove the device-exclusive
3631 * entry and unmap it. If the folio is free the entry must
3632 * have been removed already. If it happens to have already
3633 * been re-allocated after being freed all we do is lock and
3634 * unlock it.
3635 */
3636 if (!folio_try_get(folio))
3637 return 0;
3638
3639 ret = folio_lock_or_retry(folio, vmf);
3640 if (ret) {
3641 folio_put(folio);
3642 return ret;
3643 }
3644 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3645 vma->vm_mm, vmf->address & PAGE_MASK,
3646 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3647 mmu_notifier_invalidate_range_start(&range);
3648
3649 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3650 &vmf->ptl);
3651 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3652 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3653
3654 if (vmf->pte)
3655 pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 folio_unlock(folio);
3657 folio_put(folio);
3658
3659 mmu_notifier_invalidate_range_end(&range);
3660 return 0;
3661 }
3662
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3663 static inline bool should_try_to_free_swap(struct folio *folio,
3664 struct vm_area_struct *vma,
3665 unsigned int fault_flags)
3666 {
3667 if (!folio_test_swapcache(folio))
3668 return false;
3669 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3670 folio_test_mlocked(folio))
3671 return true;
3672 /*
3673 * If we want to map a page that's in the swapcache writable, we
3674 * have to detect via the refcount if we're really the exclusive
3675 * user. Try freeing the swapcache to get rid of the swapcache
3676 * reference only in case it's likely that we'll be the exlusive user.
3677 */
3678 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3679 folio_ref_count(folio) == 2;
3680 }
3681
pte_marker_clear(struct vm_fault * vmf)3682 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3683 {
3684 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3685 vmf->address, &vmf->ptl);
3686 if (!vmf->pte)
3687 return 0;
3688 /*
3689 * Be careful so that we will only recover a special uffd-wp pte into a
3690 * none pte. Otherwise it means the pte could have changed, so retry.
3691 *
3692 * This should also cover the case where e.g. the pte changed
3693 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3694 * So is_pte_marker() check is not enough to safely drop the pte.
3695 */
3696 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3697 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3698 pte_unmap_unlock(vmf->pte, vmf->ptl);
3699 return 0;
3700 }
3701
do_pte_missing(struct vm_fault * vmf)3702 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3703 {
3704 if (vma_is_anonymous(vmf->vma))
3705 return do_anonymous_page(vmf);
3706 else
3707 return do_fault(vmf);
3708 }
3709
3710 /*
3711 * This is actually a page-missing access, but with uffd-wp special pte
3712 * installed. It means this pte was wr-protected before being unmapped.
3713 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3714 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3715 {
3716 /*
3717 * Just in case there're leftover special ptes even after the region
3718 * got unregistered - we can simply clear them.
3719 */
3720 if (unlikely(!userfaultfd_wp(vmf->vma)))
3721 return pte_marker_clear(vmf);
3722
3723 return do_pte_missing(vmf);
3724 }
3725
handle_pte_marker(struct vm_fault * vmf)3726 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3727 {
3728 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3729 unsigned long marker = pte_marker_get(entry);
3730
3731 /*
3732 * PTE markers should never be empty. If anything weird happened,
3733 * the best thing to do is to kill the process along with its mm.
3734 */
3735 if (WARN_ON_ONCE(!marker))
3736 return VM_FAULT_SIGBUS;
3737
3738 /* Higher priority than uffd-wp when data corrupted */
3739 if (marker & PTE_MARKER_POISONED)
3740 return VM_FAULT_HWPOISON;
3741
3742 if (pte_marker_entry_uffd_wp(entry))
3743 return pte_marker_handle_uffd_wp(vmf);
3744
3745 /* This is an unknown pte marker */
3746 return VM_FAULT_SIGBUS;
3747 }
3748
3749 /*
3750 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3751 * but allow concurrent faults), and pte mapped but not yet locked.
3752 * We return with pte unmapped and unlocked.
3753 *
3754 * We return with the mmap_lock locked or unlocked in the same cases
3755 * as does filemap_fault().
3756 */
do_swap_page(struct vm_fault * vmf)3757 vm_fault_t do_swap_page(struct vm_fault *vmf)
3758 {
3759 struct vm_area_struct *vma = vmf->vma;
3760 struct folio *swapcache, *folio = NULL;
3761 struct page *page;
3762 struct swap_info_struct *si = NULL;
3763 rmap_t rmap_flags = RMAP_NONE;
3764 bool need_clear_cache = false;
3765 bool exclusive = false;
3766 swp_entry_t entry;
3767 pte_t pte;
3768 vm_fault_t ret = 0;
3769 void *shadow = NULL;
3770
3771 if (!pte_unmap_same(vmf))
3772 goto out;
3773
3774 entry = pte_to_swp_entry(vmf->orig_pte);
3775 if (unlikely(non_swap_entry(entry))) {
3776 if (is_migration_entry(entry)) {
3777 migration_entry_wait(vma->vm_mm, vmf->pmd,
3778 vmf->address);
3779 } else if (is_device_exclusive_entry(entry)) {
3780 vmf->page = pfn_swap_entry_to_page(entry);
3781 ret = remove_device_exclusive_entry(vmf);
3782 } else if (is_device_private_entry(entry)) {
3783 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3784 /*
3785 * migrate_to_ram is not yet ready to operate
3786 * under VMA lock.
3787 */
3788 vma_end_read(vma);
3789 ret = VM_FAULT_RETRY;
3790 goto out;
3791 }
3792
3793 vmf->page = pfn_swap_entry_to_page(entry);
3794 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3795 vmf->address, &vmf->ptl);
3796 if (unlikely(!vmf->pte ||
3797 !pte_same(ptep_get(vmf->pte),
3798 vmf->orig_pte)))
3799 goto unlock;
3800
3801 /*
3802 * Get a page reference while we know the page can't be
3803 * freed.
3804 */
3805 get_page(vmf->page);
3806 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3808 put_page(vmf->page);
3809 } else if (is_hwpoison_entry(entry)) {
3810 ret = VM_FAULT_HWPOISON;
3811 } else if (is_pte_marker_entry(entry)) {
3812 ret = handle_pte_marker(vmf);
3813 } else {
3814 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3815 ret = VM_FAULT_SIGBUS;
3816 }
3817 goto out;
3818 }
3819
3820 /* Prevent swapoff from happening to us. */
3821 si = get_swap_device(entry);
3822 if (unlikely(!si))
3823 goto out;
3824
3825 folio = swap_cache_get_folio(entry, vma, vmf->address);
3826 if (folio)
3827 page = folio_file_page(folio, swp_offset(entry));
3828 swapcache = folio;
3829
3830 if (!folio) {
3831 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3832 __swap_count(entry) == 1) {
3833 /*
3834 * Prevent parallel swapin from proceeding with
3835 * the cache flag. Otherwise, another thread may
3836 * finish swapin first, free the entry, and swapout
3837 * reusing the same entry. It's undetectable as
3838 * pte_same() returns true due to entry reuse.
3839 */
3840 if (swapcache_prepare(entry)) {
3841 /* Relax a bit to prevent rapid repeated page faults */
3842 schedule_timeout_uninterruptible(1);
3843 goto out;
3844 }
3845 need_clear_cache = true;
3846
3847 /* skip swapcache */
3848 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3849 vma, vmf->address, false);
3850 page = &folio->page;
3851 if (folio) {
3852 __folio_set_locked(folio);
3853 __folio_set_swapbacked(folio);
3854
3855 if (mem_cgroup_swapin_charge_folio(folio,
3856 vma->vm_mm, GFP_KERNEL,
3857 entry)) {
3858 ret = VM_FAULT_OOM;
3859 goto out_page;
3860 }
3861 mem_cgroup_swapin_uncharge_swap(entry);
3862
3863 shadow = get_shadow_from_swap_cache(entry);
3864 if (shadow)
3865 workingset_refault(folio, shadow);
3866
3867 folio_add_lru(folio);
3868
3869 /* To provide entry to swap_readpage() */
3870 folio->swap = entry;
3871 swap_readpage(page, true, NULL);
3872 folio->private = NULL;
3873 }
3874 } else {
3875 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3876 vmf);
3877 if (page)
3878 folio = page_folio(page);
3879 swapcache = folio;
3880 }
3881
3882 if (!folio) {
3883 /*
3884 * Back out if somebody else faulted in this pte
3885 * while we released the pte lock.
3886 */
3887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3888 vmf->address, &vmf->ptl);
3889 if (likely(vmf->pte &&
3890 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3891 ret = VM_FAULT_OOM;
3892 goto unlock;
3893 }
3894
3895 /* Had to read the page from swap area: Major fault */
3896 ret = VM_FAULT_MAJOR;
3897 count_vm_event(PGMAJFAULT);
3898 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3899 } else if (PageHWPoison(page)) {
3900 /*
3901 * hwpoisoned dirty swapcache pages are kept for killing
3902 * owner processes (which may be unknown at hwpoison time)
3903 */
3904 ret = VM_FAULT_HWPOISON;
3905 goto out_release;
3906 }
3907
3908 ret |= folio_lock_or_retry(folio, vmf);
3909 if (ret & VM_FAULT_RETRY)
3910 goto out_release;
3911
3912 if (swapcache) {
3913 /*
3914 * Make sure folio_free_swap() or swapoff did not release the
3915 * swapcache from under us. The page pin, and pte_same test
3916 * below, are not enough to exclude that. Even if it is still
3917 * swapcache, we need to check that the page's swap has not
3918 * changed.
3919 */
3920 if (unlikely(!folio_test_swapcache(folio) ||
3921 page_swap_entry(page).val != entry.val))
3922 goto out_page;
3923
3924 /*
3925 * KSM sometimes has to copy on read faults, for example, if
3926 * page->index of !PageKSM() pages would be nonlinear inside the
3927 * anon VMA -- PageKSM() is lost on actual swapout.
3928 */
3929 page = ksm_might_need_to_copy(page, vma, vmf->address);
3930 if (unlikely(!page)) {
3931 ret = VM_FAULT_OOM;
3932 goto out_page;
3933 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3934 ret = VM_FAULT_HWPOISON;
3935 goto out_page;
3936 }
3937 folio = page_folio(page);
3938
3939 /*
3940 * If we want to map a page that's in the swapcache writable, we
3941 * have to detect via the refcount if we're really the exclusive
3942 * owner. Try removing the extra reference from the local LRU
3943 * caches if required.
3944 */
3945 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3946 !folio_test_ksm(folio) && !folio_test_lru(folio))
3947 lru_add_drain();
3948 }
3949
3950 folio_throttle_swaprate(folio, GFP_KERNEL);
3951
3952 /*
3953 * Back out if somebody else already faulted in this pte.
3954 */
3955 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3956 &vmf->ptl);
3957 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3958 goto out_nomap;
3959
3960 if (unlikely(!folio_test_uptodate(folio))) {
3961 ret = VM_FAULT_SIGBUS;
3962 goto out_nomap;
3963 }
3964
3965 /*
3966 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3967 * must never point at an anonymous page in the swapcache that is
3968 * PG_anon_exclusive. Sanity check that this holds and especially, that
3969 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3970 * check after taking the PT lock and making sure that nobody
3971 * concurrently faulted in this page and set PG_anon_exclusive.
3972 */
3973 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3974 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3975
3976 /*
3977 * Check under PT lock (to protect against concurrent fork() sharing
3978 * the swap entry concurrently) for certainly exclusive pages.
3979 */
3980 if (!folio_test_ksm(folio)) {
3981 exclusive = pte_swp_exclusive(vmf->orig_pte);
3982 if (folio != swapcache) {
3983 /*
3984 * We have a fresh page that is not exposed to the
3985 * swapcache -> certainly exclusive.
3986 */
3987 exclusive = true;
3988 } else if (exclusive && folio_test_writeback(folio) &&
3989 data_race(si->flags & SWP_STABLE_WRITES)) {
3990 /*
3991 * This is tricky: not all swap backends support
3992 * concurrent page modifications while under writeback.
3993 *
3994 * So if we stumble over such a page in the swapcache
3995 * we must not set the page exclusive, otherwise we can
3996 * map it writable without further checks and modify it
3997 * while still under writeback.
3998 *
3999 * For these problematic swap backends, simply drop the
4000 * exclusive marker: this is perfectly fine as we start
4001 * writeback only if we fully unmapped the page and
4002 * there are no unexpected references on the page after
4003 * unmapping succeeded. After fully unmapped, no
4004 * further GUP references (FOLL_GET and FOLL_PIN) can
4005 * appear, so dropping the exclusive marker and mapping
4006 * it only R/O is fine.
4007 */
4008 exclusive = false;
4009 }
4010 }
4011
4012 /*
4013 * Some architectures may have to restore extra metadata to the page
4014 * when reading from swap. This metadata may be indexed by swap entry
4015 * so this must be called before swap_free().
4016 */
4017 arch_swap_restore(entry, folio);
4018
4019 /*
4020 * Remove the swap entry and conditionally try to free up the swapcache.
4021 * We're already holding a reference on the page but haven't mapped it
4022 * yet.
4023 */
4024 swap_free(entry);
4025 if (should_try_to_free_swap(folio, vma, vmf->flags))
4026 folio_free_swap(folio);
4027
4028 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4029 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4030 pte = mk_pte(page, vma->vm_page_prot);
4031
4032 /*
4033 * Same logic as in do_wp_page(); however, optimize for pages that are
4034 * certainly not shared either because we just allocated them without
4035 * exposing them to the swapcache or because the swap entry indicates
4036 * exclusivity.
4037 */
4038 if (!folio_test_ksm(folio) &&
4039 (exclusive || folio_ref_count(folio) == 1)) {
4040 if (vmf->flags & FAULT_FLAG_WRITE) {
4041 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4042 vmf->flags &= ~FAULT_FLAG_WRITE;
4043 }
4044 rmap_flags |= RMAP_EXCLUSIVE;
4045 }
4046 flush_icache_page(vma, page);
4047 if (pte_swp_soft_dirty(vmf->orig_pte))
4048 pte = pte_mksoft_dirty(pte);
4049 if (pte_swp_uffd_wp(vmf->orig_pte))
4050 pte = pte_mkuffd_wp(pte);
4051 vmf->orig_pte = pte;
4052
4053 /* ksm created a completely new copy */
4054 if (unlikely(folio != swapcache && swapcache)) {
4055 page_add_new_anon_rmap(page, vma, vmf->address);
4056 folio_add_lru_vma(folio, vma);
4057 } else {
4058 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4059 }
4060
4061 VM_BUG_ON(!folio_test_anon(folio) ||
4062 (pte_write(pte) && !PageAnonExclusive(page)));
4063 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4064 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4065
4066 folio_unlock(folio);
4067 if (folio != swapcache && swapcache) {
4068 /*
4069 * Hold the lock to avoid the swap entry to be reused
4070 * until we take the PT lock for the pte_same() check
4071 * (to avoid false positives from pte_same). For
4072 * further safety release the lock after the swap_free
4073 * so that the swap count won't change under a
4074 * parallel locked swapcache.
4075 */
4076 folio_unlock(swapcache);
4077 folio_put(swapcache);
4078 }
4079
4080 if (vmf->flags & FAULT_FLAG_WRITE) {
4081 ret |= do_wp_page(vmf);
4082 if (ret & VM_FAULT_ERROR)
4083 ret &= VM_FAULT_ERROR;
4084 goto out;
4085 }
4086
4087 /* No need to invalidate - it was non-present before */
4088 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4089 unlock:
4090 if (vmf->pte)
4091 pte_unmap_unlock(vmf->pte, vmf->ptl);
4092 out:
4093 /* Clear the swap cache pin for direct swapin after PTL unlock */
4094 if (need_clear_cache)
4095 swapcache_clear(si, entry);
4096 if (si)
4097 put_swap_device(si);
4098 return ret;
4099 out_nomap:
4100 if (vmf->pte)
4101 pte_unmap_unlock(vmf->pte, vmf->ptl);
4102 out_page:
4103 folio_unlock(folio);
4104 out_release:
4105 folio_put(folio);
4106 if (folio != swapcache && swapcache) {
4107 folio_unlock(swapcache);
4108 folio_put(swapcache);
4109 }
4110 if (need_clear_cache)
4111 swapcache_clear(si, entry);
4112 if (si)
4113 put_swap_device(si);
4114 return ret;
4115 }
4116
4117 /*
4118 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4119 * but allow concurrent faults), and pte mapped but not yet locked.
4120 * We return with mmap_lock still held, but pte unmapped and unlocked.
4121 */
do_anonymous_page(struct vm_fault * vmf)4122 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4123 {
4124 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4125 struct vm_area_struct *vma = vmf->vma;
4126 struct folio *folio;
4127 vm_fault_t ret = 0;
4128 pte_t entry;
4129
4130 /* File mapping without ->vm_ops ? */
4131 if (vma->vm_flags & VM_SHARED)
4132 return VM_FAULT_SIGBUS;
4133
4134 /*
4135 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4136 * be distinguished from a transient failure of pte_offset_map().
4137 */
4138 if (pte_alloc(vma->vm_mm, vmf->pmd))
4139 return VM_FAULT_OOM;
4140
4141 #ifdef CONFIG_MEM_PURGEABLE
4142 /* use extra page table for userexpte */
4143 if (vma->vm_flags & VM_USEREXPTE) {
4144 if (do_uxpte_page_fault(vmf, &entry))
4145 goto oom;
4146 else
4147 goto got_page;
4148 }
4149 #endif
4150 /* Use the zero-page for reads */
4151 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4152 !mm_forbids_zeropage(vma->vm_mm)) {
4153 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4154 vma->vm_page_prot));
4155 #ifdef CONFIG_MEM_PURGEABLE
4156 got_page:
4157 #endif
4158 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4159 vmf->address, &vmf->ptl);
4160 if (!vmf->pte)
4161 goto unlock;
4162 if (vmf_pte_changed(vmf)) {
4163 update_mmu_tlb(vma, vmf->address, vmf->pte);
4164 goto unlock;
4165 }
4166 ret = check_stable_address_space(vma->vm_mm);
4167 if (ret)
4168 goto unlock;
4169 /* Deliver the page fault to userland, check inside PT lock */
4170 if (userfaultfd_missing(vma)) {
4171 pte_unmap_unlock(vmf->pte, vmf->ptl);
4172 return handle_userfault(vmf, VM_UFFD_MISSING);
4173 }
4174 goto setpte;
4175 }
4176
4177 /* Allocate our own private page. */
4178 if (unlikely(anon_vma_prepare(vma)))
4179 goto oom;
4180 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4181 if (!folio)
4182 goto oom;
4183
4184 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4185 goto oom_free_page;
4186 folio_throttle_swaprate(folio, GFP_KERNEL);
4187
4188 /*
4189 * The memory barrier inside __folio_mark_uptodate makes sure that
4190 * preceding stores to the page contents become visible before
4191 * the set_pte_at() write.
4192 */
4193 __folio_mark_uptodate(folio);
4194
4195 entry = mk_pte(&folio->page, vma->vm_page_prot);
4196 entry = pte_sw_mkyoung(entry);
4197 if (vma->vm_flags & VM_WRITE)
4198 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4199
4200 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4201 &vmf->ptl);
4202 if (!vmf->pte)
4203 goto release;
4204 if (vmf_pte_changed(vmf)) {
4205 update_mmu_tlb(vma, vmf->address, vmf->pte);
4206 goto release;
4207 }
4208
4209 ret = check_stable_address_space(vma->vm_mm);
4210 if (ret)
4211 goto release;
4212
4213 /* Deliver the page fault to userland, check inside PT lock */
4214 if (userfaultfd_missing(vma)) {
4215 pte_unmap_unlock(vmf->pte, vmf->ptl);
4216 folio_put(folio);
4217 return handle_userfault(vmf, VM_UFFD_MISSING);
4218 }
4219
4220 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4221 folio_add_new_anon_rmap(folio, vma, vmf->address);
4222 #ifdef CONFIG_MEM_PURGEABLE
4223 if (vma->vm_flags & VM_PURGEABLE)
4224 folio_set_purgeable(folio);
4225 #endif
4226 folio_add_lru_vma(folio, vma);
4227 setpte:
4228 #ifdef CONFIG_MEM_PURGEABLE
4229 if (vma->vm_flags & VM_PURGEABLE)
4230 uxpte_set_present(vma, vmf->address);
4231 #endif
4232 if (uffd_wp)
4233 entry = pte_mkuffd_wp(entry);
4234 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4235
4236 /* No need to invalidate - it was non-present before */
4237 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4238 unlock:
4239 if (vmf->pte)
4240 pte_unmap_unlock(vmf->pte, vmf->ptl);
4241 return ret;
4242 release:
4243 folio_put(folio);
4244 goto unlock;
4245 oom_free_page:
4246 folio_put(folio);
4247 oom:
4248 return VM_FAULT_OOM;
4249 }
4250
4251 /*
4252 * The mmap_lock must have been held on entry, and may have been
4253 * released depending on flags and vma->vm_ops->fault() return value.
4254 * See filemap_fault() and __lock_page_retry().
4255 */
__do_fault(struct vm_fault * vmf)4256 static vm_fault_t __do_fault(struct vm_fault *vmf)
4257 {
4258 struct vm_area_struct *vma = vmf->vma;
4259 vm_fault_t ret;
4260
4261 /*
4262 * Preallocate pte before we take page_lock because this might lead to
4263 * deadlocks for memcg reclaim which waits for pages under writeback:
4264 * lock_page(A)
4265 * SetPageWriteback(A)
4266 * unlock_page(A)
4267 * lock_page(B)
4268 * lock_page(B)
4269 * pte_alloc_one
4270 * shrink_page_list
4271 * wait_on_page_writeback(A)
4272 * SetPageWriteback(B)
4273 * unlock_page(B)
4274 * # flush A, B to clear the writeback
4275 */
4276 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4277 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4278 if (!vmf->prealloc_pte)
4279 return VM_FAULT_OOM;
4280 }
4281
4282 ret = vma->vm_ops->fault(vmf);
4283 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4284 VM_FAULT_DONE_COW)))
4285 return ret;
4286
4287 if (unlikely(PageHWPoison(vmf->page))) {
4288 struct page *page = vmf->page;
4289 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4290 if (ret & VM_FAULT_LOCKED) {
4291 if (page_mapped(page))
4292 unmap_mapping_pages(page_mapping(page),
4293 page->index, 1, false);
4294 /* Retry if a clean page was removed from the cache. */
4295 if (invalidate_inode_page(page))
4296 poisonret = VM_FAULT_NOPAGE;
4297 unlock_page(page);
4298 }
4299 put_page(page);
4300 vmf->page = NULL;
4301 return poisonret;
4302 }
4303
4304 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4305 lock_page(vmf->page);
4306 else
4307 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4308
4309 return ret;
4310 }
4311
4312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4313 static void deposit_prealloc_pte(struct vm_fault *vmf)
4314 {
4315 struct vm_area_struct *vma = vmf->vma;
4316
4317 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4318 /*
4319 * We are going to consume the prealloc table,
4320 * count that as nr_ptes.
4321 */
4322 mm_inc_nr_ptes(vma->vm_mm);
4323 vmf->prealloc_pte = NULL;
4324 }
4325
do_set_pmd(struct vm_fault * vmf,struct page * page)4326 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4327 {
4328 struct vm_area_struct *vma = vmf->vma;
4329 bool write = vmf->flags & FAULT_FLAG_WRITE;
4330 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4331 pmd_t entry;
4332 vm_fault_t ret = VM_FAULT_FALLBACK;
4333
4334 /*
4335 * It is too late to allocate a small folio, we already have a large
4336 * folio in the pagecache: especially s390 KVM cannot tolerate any
4337 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4338 * PMD mappings if THPs are disabled.
4339 */
4340 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4341 return ret;
4342
4343 if (!transhuge_vma_suitable(vma, haddr))
4344 return ret;
4345
4346 page = compound_head(page);
4347 if (compound_order(page) != HPAGE_PMD_ORDER)
4348 return ret;
4349
4350 /*
4351 * Just backoff if any subpage of a THP is corrupted otherwise
4352 * the corrupted page may mapped by PMD silently to escape the
4353 * check. This kind of THP just can be PTE mapped. Access to
4354 * the corrupted subpage should trigger SIGBUS as expected.
4355 */
4356 if (unlikely(PageHasHWPoisoned(page)))
4357 return ret;
4358
4359 /*
4360 * Archs like ppc64 need additional space to store information
4361 * related to pte entry. Use the preallocated table for that.
4362 */
4363 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4364 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4365 if (!vmf->prealloc_pte)
4366 return VM_FAULT_OOM;
4367 }
4368
4369 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4370 if (unlikely(!pmd_none(*vmf->pmd)))
4371 goto out;
4372
4373 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4374
4375 entry = mk_huge_pmd(page, vma->vm_page_prot);
4376 if (write)
4377 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4378
4379 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4380 page_add_file_rmap(page, vma, true);
4381
4382 /*
4383 * deposit and withdraw with pmd lock held
4384 */
4385 if (arch_needs_pgtable_deposit())
4386 deposit_prealloc_pte(vmf);
4387
4388 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4389
4390 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4391
4392 /* fault is handled */
4393 ret = 0;
4394 count_vm_event(THP_FILE_MAPPED);
4395 out:
4396 spin_unlock(vmf->ptl);
4397 return ret;
4398 }
4399 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)4400 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4401 {
4402 return VM_FAULT_FALLBACK;
4403 }
4404 #endif
4405
4406 /**
4407 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4408 * @vmf: Fault decription.
4409 * @folio: The folio that contains @page.
4410 * @page: The first page to create a PTE for.
4411 * @nr: The number of PTEs to create.
4412 * @addr: The first address to create a PTE for.
4413 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)4414 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4415 struct page *page, unsigned int nr, unsigned long addr)
4416 {
4417 struct vm_area_struct *vma = vmf->vma;
4418 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4419 bool write = vmf->flags & FAULT_FLAG_WRITE;
4420 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
4421 pte_t entry;
4422
4423 flush_icache_pages(vma, page, nr);
4424 entry = mk_pte(page, vma->vm_page_prot);
4425
4426 if (prefault && arch_wants_old_prefaulted_pte())
4427 entry = pte_mkold(entry);
4428 else
4429 entry = pte_sw_mkyoung(entry);
4430
4431 if (write)
4432 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4433 if (unlikely(uffd_wp))
4434 entry = pte_mkuffd_wp(entry);
4435 /* copy-on-write page */
4436 if (write && !(vma->vm_flags & VM_SHARED)) {
4437 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4438 VM_BUG_ON_FOLIO(nr != 1, folio);
4439 folio_add_new_anon_rmap(folio, vma, addr);
4440 folio_add_lru_vma(folio, vma);
4441 } else {
4442 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4443 folio_add_file_rmap_range(folio, page, nr, vma, false);
4444 }
4445 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4446
4447 /* no need to invalidate: a not-present page won't be cached */
4448 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4449 }
4450
vmf_pte_changed(struct vm_fault * vmf)4451 static bool vmf_pte_changed(struct vm_fault *vmf)
4452 {
4453 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4454 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4455
4456 return !pte_none(ptep_get(vmf->pte));
4457 }
4458
4459 /**
4460 * finish_fault - finish page fault once we have prepared the page to fault
4461 *
4462 * @vmf: structure describing the fault
4463 *
4464 * This function handles all that is needed to finish a page fault once the
4465 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4466 * given page, adds reverse page mapping, handles memcg charges and LRU
4467 * addition.
4468 *
4469 * The function expects the page to be locked and on success it consumes a
4470 * reference of a page being mapped (for the PTE which maps it).
4471 *
4472 * Return: %0 on success, %VM_FAULT_ code in case of error.
4473 */
finish_fault(struct vm_fault * vmf)4474 vm_fault_t finish_fault(struct vm_fault *vmf)
4475 {
4476 struct vm_area_struct *vma = vmf->vma;
4477 struct page *page;
4478 vm_fault_t ret;
4479
4480 /* Did we COW the page? */
4481 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4482 page = vmf->cow_page;
4483 else
4484 page = vmf->page;
4485
4486 /*
4487 * check even for read faults because we might have lost our CoWed
4488 * page
4489 */
4490 if (!(vma->vm_flags & VM_SHARED)) {
4491 ret = check_stable_address_space(vma->vm_mm);
4492 if (ret)
4493 return ret;
4494 }
4495
4496 if (pmd_none(*vmf->pmd)) {
4497 if (PageTransCompound(page)) {
4498 ret = do_set_pmd(vmf, page);
4499 if (ret != VM_FAULT_FALLBACK)
4500 return ret;
4501 }
4502
4503 if (vmf->prealloc_pte)
4504 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4505 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4506 return VM_FAULT_OOM;
4507 }
4508
4509 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4510 vmf->address, &vmf->ptl);
4511 if (!vmf->pte)
4512 return VM_FAULT_NOPAGE;
4513
4514 /* Re-check under ptl */
4515 if (likely(!vmf_pte_changed(vmf))) {
4516 struct folio *folio = page_folio(page);
4517
4518 set_pte_range(vmf, folio, page, 1, vmf->address);
4519 ret = 0;
4520 } else {
4521 update_mmu_tlb(vma, vmf->address, vmf->pte);
4522 ret = VM_FAULT_NOPAGE;
4523 }
4524
4525 pte_unmap_unlock(vmf->pte, vmf->ptl);
4526 return ret;
4527 }
4528
4529 static unsigned long fault_around_pages __read_mostly =
4530 65536 >> PAGE_SHIFT;
4531
4532 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)4533 static int fault_around_bytes_get(void *data, u64 *val)
4534 {
4535 *val = fault_around_pages << PAGE_SHIFT;
4536 return 0;
4537 }
4538
4539 /*
4540 * fault_around_bytes must be rounded down to the nearest page order as it's
4541 * what do_fault_around() expects to see.
4542 */
fault_around_bytes_set(void * data,u64 val)4543 static int fault_around_bytes_set(void *data, u64 val)
4544 {
4545 if (val / PAGE_SIZE > PTRS_PER_PTE)
4546 return -EINVAL;
4547
4548 /*
4549 * The minimum value is 1 page, however this results in no fault-around
4550 * at all. See should_fault_around().
4551 */
4552 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4553
4554 return 0;
4555 }
4556 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4557 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4558
fault_around_debugfs(void)4559 static int __init fault_around_debugfs(void)
4560 {
4561 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4562 &fault_around_bytes_fops);
4563 return 0;
4564 }
4565 late_initcall(fault_around_debugfs);
4566 #endif
4567
4568 /*
4569 * do_fault_around() tries to map few pages around the fault address. The hope
4570 * is that the pages will be needed soon and this will lower the number of
4571 * faults to handle.
4572 *
4573 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4574 * not ready to be mapped: not up-to-date, locked, etc.
4575 *
4576 * This function doesn't cross VMA or page table boundaries, in order to call
4577 * map_pages() and acquire a PTE lock only once.
4578 *
4579 * fault_around_pages defines how many pages we'll try to map.
4580 * do_fault_around() expects it to be set to a power of two less than or equal
4581 * to PTRS_PER_PTE.
4582 *
4583 * The virtual address of the area that we map is naturally aligned to
4584 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4585 * (and therefore to page order). This way it's easier to guarantee
4586 * that we don't cross page table boundaries.
4587 */
do_fault_around(struct vm_fault * vmf)4588 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4589 {
4590 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4591 pgoff_t pte_off = pte_index(vmf->address);
4592 /* The page offset of vmf->address within the VMA. */
4593 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4594 pgoff_t from_pte, to_pte;
4595 vm_fault_t ret;
4596
4597 /* The PTE offset of the start address, clamped to the VMA. */
4598 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4599 pte_off - min(pte_off, vma_off));
4600
4601 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4602 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4603 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4604
4605 if (pmd_none(*vmf->pmd)) {
4606 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4607 if (!vmf->prealloc_pte)
4608 return VM_FAULT_OOM;
4609 }
4610
4611 rcu_read_lock();
4612 ret = vmf->vma->vm_ops->map_pages(vmf,
4613 vmf->pgoff + from_pte - pte_off,
4614 vmf->pgoff + to_pte - pte_off);
4615 rcu_read_unlock();
4616
4617 return ret;
4618 }
4619
4620 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)4621 static inline bool should_fault_around(struct vm_fault *vmf)
4622 {
4623 /* No ->map_pages? No way to fault around... */
4624 if (!vmf->vma->vm_ops->map_pages)
4625 return false;
4626
4627 if (uffd_disable_fault_around(vmf->vma))
4628 return false;
4629
4630 /* A single page implies no faulting 'around' at all. */
4631 return fault_around_pages > 1;
4632 }
4633
do_read_fault(struct vm_fault * vmf)4634 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4635 {
4636 vm_fault_t ret = 0;
4637 struct folio *folio;
4638
4639 /*
4640 * Let's call ->map_pages() first and use ->fault() as fallback
4641 * if page by the offset is not ready to be mapped (cold cache or
4642 * something).
4643 */
4644 if (should_fault_around(vmf)) {
4645 ret = do_fault_around(vmf);
4646 if (ret)
4647 return ret;
4648 }
4649
4650 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4651 vma_end_read(vmf->vma);
4652 return VM_FAULT_RETRY;
4653 }
4654
4655 ret = __do_fault(vmf);
4656 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4657 return ret;
4658
4659 ret |= finish_fault(vmf);
4660 folio = page_folio(vmf->page);
4661 folio_unlock(folio);
4662 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4663 folio_put(folio);
4664 return ret;
4665 }
4666
do_cow_fault(struct vm_fault * vmf)4667 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4668 {
4669 struct vm_area_struct *vma = vmf->vma;
4670 vm_fault_t ret;
4671
4672 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4673 vma_end_read(vma);
4674 return VM_FAULT_RETRY;
4675 }
4676
4677 if (unlikely(anon_vma_prepare(vma)))
4678 return VM_FAULT_OOM;
4679
4680 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4681 if (!vmf->cow_page)
4682 return VM_FAULT_OOM;
4683
4684 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4685 GFP_KERNEL)) {
4686 put_page(vmf->cow_page);
4687 return VM_FAULT_OOM;
4688 }
4689 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4690
4691 ret = __do_fault(vmf);
4692 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4693 goto uncharge_out;
4694 if (ret & VM_FAULT_DONE_COW)
4695 return ret;
4696
4697 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4698 __SetPageUptodate(vmf->cow_page);
4699
4700 ret |= finish_fault(vmf);
4701 unlock_page(vmf->page);
4702 put_page(vmf->page);
4703 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4704 goto uncharge_out;
4705 return ret;
4706 uncharge_out:
4707 put_page(vmf->cow_page);
4708 return ret;
4709 }
4710
do_shared_fault(struct vm_fault * vmf)4711 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4712 {
4713 struct vm_area_struct *vma = vmf->vma;
4714 vm_fault_t ret, tmp;
4715 struct folio *folio;
4716
4717 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4718 vma_end_read(vma);
4719 return VM_FAULT_RETRY;
4720 }
4721
4722 ret = __do_fault(vmf);
4723 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4724 return ret;
4725
4726 folio = page_folio(vmf->page);
4727
4728 /*
4729 * Check if the backing address space wants to know that the page is
4730 * about to become writable
4731 */
4732 if (vma->vm_ops->page_mkwrite) {
4733 folio_unlock(folio);
4734 tmp = do_page_mkwrite(vmf, folio);
4735 if (unlikely(!tmp ||
4736 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4737 folio_put(folio);
4738 return tmp;
4739 }
4740 }
4741
4742 ret |= finish_fault(vmf);
4743 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4744 VM_FAULT_RETRY))) {
4745 folio_unlock(folio);
4746 folio_put(folio);
4747 return ret;
4748 }
4749
4750 ret |= fault_dirty_shared_page(vmf);
4751 return ret;
4752 }
4753
4754 /*
4755 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4756 * but allow concurrent faults).
4757 * The mmap_lock may have been released depending on flags and our
4758 * return value. See filemap_fault() and __folio_lock_or_retry().
4759 * If mmap_lock is released, vma may become invalid (for example
4760 * by other thread calling munmap()).
4761 */
do_fault(struct vm_fault * vmf)4762 static vm_fault_t do_fault(struct vm_fault *vmf)
4763 {
4764 struct vm_area_struct *vma = vmf->vma;
4765 struct mm_struct *vm_mm = vma->vm_mm;
4766 vm_fault_t ret;
4767
4768 /*
4769 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4770 */
4771 if (!vma->vm_ops->fault) {
4772 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4773 vmf->address, &vmf->ptl);
4774 if (unlikely(!vmf->pte))
4775 ret = VM_FAULT_SIGBUS;
4776 else {
4777 /*
4778 * Make sure this is not a temporary clearing of pte
4779 * by holding ptl and checking again. A R/M/W update
4780 * of pte involves: take ptl, clearing the pte so that
4781 * we don't have concurrent modification by hardware
4782 * followed by an update.
4783 */
4784 if (unlikely(pte_none(ptep_get(vmf->pte))))
4785 ret = VM_FAULT_SIGBUS;
4786 else
4787 ret = VM_FAULT_NOPAGE;
4788
4789 pte_unmap_unlock(vmf->pte, vmf->ptl);
4790 }
4791 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4792 ret = do_read_fault(vmf);
4793 else if (!(vma->vm_flags & VM_SHARED))
4794 ret = do_cow_fault(vmf);
4795 else
4796 ret = do_shared_fault(vmf);
4797
4798 /* preallocated pagetable is unused: free it */
4799 if (vmf->prealloc_pte) {
4800 pte_free(vm_mm, vmf->prealloc_pte);
4801 vmf->prealloc_pte = NULL;
4802 }
4803 return ret;
4804 }
4805
numa_migrate_prep(struct page * page,struct vm_area_struct * vma,unsigned long addr,int page_nid,int * flags)4806 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4807 unsigned long addr, int page_nid, int *flags)
4808 {
4809 get_page(page);
4810
4811 /* Record the current PID acceesing VMA */
4812 vma_set_access_pid_bit(vma);
4813
4814 count_vm_numa_event(NUMA_HINT_FAULTS);
4815 if (page_nid == numa_node_id()) {
4816 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4817 *flags |= TNF_FAULT_LOCAL;
4818 }
4819
4820 return mpol_misplaced(page, vma, addr);
4821 }
4822
do_numa_page(struct vm_fault * vmf)4823 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4824 {
4825 struct vm_area_struct *vma = vmf->vma;
4826 struct page *page = NULL;
4827 int page_nid = NUMA_NO_NODE;
4828 bool writable = false;
4829 int last_cpupid;
4830 int target_nid;
4831 pte_t pte, old_pte;
4832 int flags = 0;
4833
4834 /*
4835 * The "pte" at this point cannot be used safely without
4836 * validation through pte_unmap_same(). It's of NUMA type but
4837 * the pfn may be screwed if the read is non atomic.
4838 */
4839 spin_lock(vmf->ptl);
4840 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4841 pte_unmap_unlock(vmf->pte, vmf->ptl);
4842 return 0;
4843 }
4844
4845 /* Get the normal PTE */
4846 old_pte = ptep_get(vmf->pte);
4847 pte = pte_modify(old_pte, vma->vm_page_prot);
4848
4849 /*
4850 * Detect now whether the PTE could be writable; this information
4851 * is only valid while holding the PT lock.
4852 */
4853 writable = pte_write(pte);
4854 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4855 can_change_pte_writable(vma, vmf->address, pte))
4856 writable = true;
4857
4858 page = vm_normal_page(vma, vmf->address, pte);
4859 if (!page || is_zone_device_page(page))
4860 goto out_map;
4861
4862 /* TODO: handle PTE-mapped THP */
4863 if (PageCompound(page))
4864 goto out_map;
4865
4866 /*
4867 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4868 * much anyway since they can be in shared cache state. This misses
4869 * the case where a mapping is writable but the process never writes
4870 * to it but pte_write gets cleared during protection updates and
4871 * pte_dirty has unpredictable behaviour between PTE scan updates,
4872 * background writeback, dirty balancing and application behaviour.
4873 */
4874 if (!writable)
4875 flags |= TNF_NO_GROUP;
4876
4877 /*
4878 * Flag if the page is shared between multiple address spaces. This
4879 * is later used when determining whether to group tasks together
4880 */
4881 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4882 flags |= TNF_SHARED;
4883
4884 page_nid = page_to_nid(page);
4885 /*
4886 * For memory tiering mode, cpupid of slow memory page is used
4887 * to record page access time. So use default value.
4888 */
4889 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4890 !node_is_toptier(page_nid))
4891 last_cpupid = (-1 & LAST_CPUPID_MASK);
4892 else
4893 last_cpupid = page_cpupid_last(page);
4894 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4895 &flags);
4896 if (target_nid == NUMA_NO_NODE) {
4897 put_page(page);
4898 goto out_map;
4899 }
4900 pte_unmap_unlock(vmf->pte, vmf->ptl);
4901 writable = false;
4902
4903 /* Migrate to the requested node */
4904 if (migrate_misplaced_page(page, vma, target_nid)) {
4905 page_nid = target_nid;
4906 flags |= TNF_MIGRATED;
4907 task_numa_fault(last_cpupid, page_nid, 1, flags);
4908 return 0;
4909 }
4910
4911 flags |= TNF_MIGRATE_FAIL;
4912 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4913 vmf->address, &vmf->ptl);
4914 if (unlikely(!vmf->pte))
4915 return 0;
4916 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4917 pte_unmap_unlock(vmf->pte, vmf->ptl);
4918 return 0;
4919 }
4920 out_map:
4921 /*
4922 * Make it present again, depending on how arch implements
4923 * non-accessible ptes, some can allow access by kernel mode.
4924 */
4925 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4926 pte = pte_modify(old_pte, vma->vm_page_prot);
4927 pte = pte_mkyoung(pte);
4928 if (writable)
4929 pte = pte_mkwrite(pte, vma);
4930 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4931 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4932 pte_unmap_unlock(vmf->pte, vmf->ptl);
4933
4934 if (page_nid != NUMA_NO_NODE)
4935 task_numa_fault(last_cpupid, page_nid, 1, flags);
4936 return 0;
4937 }
4938
create_huge_pmd(struct vm_fault * vmf)4939 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4940 {
4941 struct vm_area_struct *vma = vmf->vma;
4942 if (vma_is_anonymous(vma))
4943 return do_huge_pmd_anonymous_page(vmf);
4944 if (vma->vm_ops->huge_fault)
4945 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4946 return VM_FAULT_FALLBACK;
4947 }
4948
4949 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)4950 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4951 {
4952 struct vm_area_struct *vma = vmf->vma;
4953 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4954 vm_fault_t ret;
4955
4956 if (vma_is_anonymous(vma)) {
4957 if (likely(!unshare) &&
4958 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4959 return handle_userfault(vmf, VM_UFFD_WP);
4960 return do_huge_pmd_wp_page(vmf);
4961 }
4962
4963 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4964 if (vma->vm_ops->huge_fault) {
4965 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4966 if (!(ret & VM_FAULT_FALLBACK))
4967 return ret;
4968 }
4969 }
4970
4971 /* COW or write-notify handled on pte level: split pmd. */
4972 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4973
4974 return VM_FAULT_FALLBACK;
4975 }
4976
create_huge_pud(struct vm_fault * vmf)4977 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4978 {
4979 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4980 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4981 struct vm_area_struct *vma = vmf->vma;
4982 /* No support for anonymous transparent PUD pages yet */
4983 if (vma_is_anonymous(vma))
4984 return VM_FAULT_FALLBACK;
4985 if (vma->vm_ops->huge_fault)
4986 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4987 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4988 return VM_FAULT_FALLBACK;
4989 }
4990
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)4991 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4992 {
4993 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4994 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4995 struct vm_area_struct *vma = vmf->vma;
4996 vm_fault_t ret;
4997
4998 /* No support for anonymous transparent PUD pages yet */
4999 if (vma_is_anonymous(vma))
5000 goto split;
5001 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5002 if (vma->vm_ops->huge_fault) {
5003 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5004 if (!(ret & VM_FAULT_FALLBACK))
5005 return ret;
5006 }
5007 }
5008 split:
5009 /* COW or write-notify not handled on PUD level: split pud.*/
5010 __split_huge_pud(vma, vmf->pud, vmf->address);
5011 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5012 return VM_FAULT_FALLBACK;
5013 }
5014
5015 /*
5016 * These routines also need to handle stuff like marking pages dirty
5017 * and/or accessed for architectures that don't do it in hardware (most
5018 * RISC architectures). The early dirtying is also good on the i386.
5019 *
5020 * There is also a hook called "update_mmu_cache()" that architectures
5021 * with external mmu caches can use to update those (ie the Sparc or
5022 * PowerPC hashed page tables that act as extended TLBs).
5023 *
5024 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5025 * concurrent faults).
5026 *
5027 * The mmap_lock may have been released depending on flags and our return value.
5028 * See filemap_fault() and __folio_lock_or_retry().
5029 */
handle_pte_fault(struct vm_fault * vmf)5030 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5031 {
5032 pte_t entry;
5033
5034 if (unlikely(pmd_none(*vmf->pmd))) {
5035 /*
5036 * Leave __pte_alloc() until later: because vm_ops->fault may
5037 * want to allocate huge page, and if we expose page table
5038 * for an instant, it will be difficult to retract from
5039 * concurrent faults and from rmap lookups.
5040 */
5041 vmf->pte = NULL;
5042 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5043 } else {
5044 /*
5045 * A regular pmd is established and it can't morph into a huge
5046 * pmd by anon khugepaged, since that takes mmap_lock in write
5047 * mode; but shmem or file collapse to THP could still morph
5048 * it into a huge pmd: just retry later if so.
5049 */
5050 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5051 vmf->address, &vmf->ptl);
5052 if (unlikely(!vmf->pte))
5053 return 0;
5054 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5055 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5056
5057 if (pte_none(vmf->orig_pte)) {
5058 pte_unmap(vmf->pte);
5059 vmf->pte = NULL;
5060 }
5061 }
5062
5063 if (!vmf->pte)
5064 return do_pte_missing(vmf);
5065
5066 if (!pte_present(vmf->orig_pte))
5067 return do_swap_page(vmf);
5068
5069 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5070 return do_numa_page(vmf);
5071
5072 spin_lock(vmf->ptl);
5073 entry = vmf->orig_pte;
5074 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5075 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5076 goto unlock;
5077 }
5078 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5079 if (!pte_write(entry))
5080 return do_wp_page(vmf);
5081 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5082 entry = pte_mkdirty(entry);
5083 }
5084 entry = pte_mkyoung(entry);
5085 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5086 vmf->flags & FAULT_FLAG_WRITE)) {
5087 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5088 vmf->pte, 1);
5089 } else {
5090 /* Skip spurious TLB flush for retried page fault */
5091 if (vmf->flags & FAULT_FLAG_TRIED)
5092 goto unlock;
5093 /*
5094 * This is needed only for protection faults but the arch code
5095 * is not yet telling us if this is a protection fault or not.
5096 * This still avoids useless tlb flushes for .text page faults
5097 * with threads.
5098 */
5099 if (vmf->flags & FAULT_FLAG_WRITE)
5100 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5101 vmf->pte);
5102 }
5103 unlock:
5104 pte_unmap_unlock(vmf->pte, vmf->ptl);
5105 return 0;
5106 }
5107
5108 /*
5109 * On entry, we hold either the VMA lock or the mmap_lock
5110 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5111 * the result, the mmap_lock is not held on exit. See filemap_fault()
5112 * and __folio_lock_or_retry().
5113 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5114 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5115 unsigned long address, unsigned int flags)
5116 {
5117 struct vm_fault vmf = {
5118 .vma = vma,
5119 .address = address & PAGE_MASK,
5120 .real_address = address,
5121 .flags = flags,
5122 .pgoff = linear_page_index(vma, address),
5123 .gfp_mask = __get_fault_gfp_mask(vma),
5124 };
5125 struct mm_struct *mm = vma->vm_mm;
5126 unsigned long vm_flags = vma->vm_flags;
5127 pgd_t *pgd;
5128 p4d_t *p4d;
5129 vm_fault_t ret;
5130
5131 pgd = pgd_offset(mm, address);
5132 p4d = p4d_alloc(mm, pgd, address);
5133 if (!p4d)
5134 return VM_FAULT_OOM;
5135
5136 vmf.pud = pud_alloc(mm, p4d, address);
5137 if (!vmf.pud)
5138 return VM_FAULT_OOM;
5139 retry_pud:
5140 if (pud_none(*vmf.pud) &&
5141 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5142 ret = create_huge_pud(&vmf);
5143 if (!(ret & VM_FAULT_FALLBACK))
5144 return ret;
5145 } else {
5146 pud_t orig_pud = *vmf.pud;
5147
5148 barrier();
5149 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5150
5151 /*
5152 * TODO once we support anonymous PUDs: NUMA case and
5153 * FAULT_FLAG_UNSHARE handling.
5154 */
5155 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5156 ret = wp_huge_pud(&vmf, orig_pud);
5157 if (!(ret & VM_FAULT_FALLBACK))
5158 return ret;
5159 } else {
5160 huge_pud_set_accessed(&vmf, orig_pud);
5161 return 0;
5162 }
5163 }
5164 }
5165
5166 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5167 if (!vmf.pmd)
5168 return VM_FAULT_OOM;
5169
5170 /* Huge pud page fault raced with pmd_alloc? */
5171 if (pud_trans_unstable(vmf.pud))
5172 goto retry_pud;
5173
5174 if (pmd_none(*vmf.pmd) &&
5175 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5176 ret = create_huge_pmd(&vmf);
5177 if (!(ret & VM_FAULT_FALLBACK))
5178 return ret;
5179 } else {
5180 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5181
5182 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5183 VM_BUG_ON(thp_migration_supported() &&
5184 !is_pmd_migration_entry(vmf.orig_pmd));
5185 if (is_pmd_migration_entry(vmf.orig_pmd))
5186 pmd_migration_entry_wait(mm, vmf.pmd);
5187 return 0;
5188 }
5189 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5190 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5191 return do_huge_pmd_numa_page(&vmf);
5192
5193 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5194 !pmd_write(vmf.orig_pmd)) {
5195 ret = wp_huge_pmd(&vmf);
5196 if (!(ret & VM_FAULT_FALLBACK))
5197 return ret;
5198 } else {
5199 huge_pmd_set_accessed(&vmf);
5200 return 0;
5201 }
5202 }
5203 }
5204
5205 return handle_pte_fault(&vmf);
5206 }
5207
5208 /**
5209 * mm_account_fault - Do page fault accounting
5210 * @mm: mm from which memcg should be extracted. It can be NULL.
5211 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5212 * of perf event counters, but we'll still do the per-task accounting to
5213 * the task who triggered this page fault.
5214 * @address: the faulted address.
5215 * @flags: the fault flags.
5216 * @ret: the fault retcode.
5217 *
5218 * This will take care of most of the page fault accounting. Meanwhile, it
5219 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5220 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5221 * still be in per-arch page fault handlers at the entry of page fault.
5222 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5223 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5224 unsigned long address, unsigned int flags,
5225 vm_fault_t ret)
5226 {
5227 bool major;
5228
5229 /* Incomplete faults will be accounted upon completion. */
5230 if (ret & VM_FAULT_RETRY)
5231 return;
5232
5233 /*
5234 * To preserve the behavior of older kernels, PGFAULT counters record
5235 * both successful and failed faults, as opposed to perf counters,
5236 * which ignore failed cases.
5237 */
5238 count_vm_event(PGFAULT);
5239 count_memcg_event_mm(mm, PGFAULT);
5240
5241 /*
5242 * Do not account for unsuccessful faults (e.g. when the address wasn't
5243 * valid). That includes arch_vma_access_permitted() failing before
5244 * reaching here. So this is not a "this many hardware page faults"
5245 * counter. We should use the hw profiling for that.
5246 */
5247 if (ret & VM_FAULT_ERROR)
5248 return;
5249
5250 /*
5251 * We define the fault as a major fault when the final successful fault
5252 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5253 * handle it immediately previously).
5254 */
5255 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5256
5257 if (major)
5258 current->maj_flt++;
5259 else
5260 current->min_flt++;
5261
5262 /*
5263 * If the fault is done for GUP, regs will be NULL. We only do the
5264 * accounting for the per thread fault counters who triggered the
5265 * fault, and we skip the perf event updates.
5266 */
5267 if (!regs)
5268 return;
5269
5270 if (major)
5271 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5272 else
5273 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5274 }
5275
5276 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5277 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5278 {
5279 /* the LRU algorithm only applies to accesses with recency */
5280 current->in_lru_fault = vma_has_recency(vma);
5281 }
5282
lru_gen_exit_fault(void)5283 static void lru_gen_exit_fault(void)
5284 {
5285 current->in_lru_fault = false;
5286 }
5287 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5288 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5289 {
5290 }
5291
lru_gen_exit_fault(void)5292 static void lru_gen_exit_fault(void)
5293 {
5294 }
5295 #endif /* CONFIG_LRU_GEN */
5296
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)5297 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5298 unsigned int *flags)
5299 {
5300 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5301 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5302 return VM_FAULT_SIGSEGV;
5303 /*
5304 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5305 * just treat it like an ordinary read-fault otherwise.
5306 */
5307 if (!is_cow_mapping(vma->vm_flags))
5308 *flags &= ~FAULT_FLAG_UNSHARE;
5309 } else if (*flags & FAULT_FLAG_WRITE) {
5310 /* Write faults on read-only mappings are impossible ... */
5311 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5312 return VM_FAULT_SIGSEGV;
5313 /* ... and FOLL_FORCE only applies to COW mappings. */
5314 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5315 !is_cow_mapping(vma->vm_flags)))
5316 return VM_FAULT_SIGSEGV;
5317 }
5318 #ifdef CONFIG_PER_VMA_LOCK
5319 /*
5320 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5321 * the assumption that lock is dropped on VM_FAULT_RETRY.
5322 */
5323 if (WARN_ON_ONCE((*flags &
5324 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5325 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5326 return VM_FAULT_SIGSEGV;
5327 #endif
5328
5329 return 0;
5330 }
5331
5332 /*
5333 * By the time we get here, we already hold the mm semaphore
5334 *
5335 * The mmap_lock may have been released depending on flags and our
5336 * return value. See filemap_fault() and __folio_lock_or_retry().
5337 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)5338 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5339 unsigned int flags, struct pt_regs *regs)
5340 {
5341 /* If the fault handler drops the mmap_lock, vma may be freed */
5342 struct mm_struct *mm = vma->vm_mm;
5343 vm_fault_t ret;
5344
5345 __set_current_state(TASK_RUNNING);
5346
5347 ret = sanitize_fault_flags(vma, &flags);
5348 if (ret)
5349 goto out;
5350
5351 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5352 flags & FAULT_FLAG_INSTRUCTION,
5353 flags & FAULT_FLAG_REMOTE)) {
5354 ret = VM_FAULT_SIGSEGV;
5355 goto out;
5356 }
5357
5358 /*
5359 * Enable the memcg OOM handling for faults triggered in user
5360 * space. Kernel faults are handled more gracefully.
5361 */
5362 if (flags & FAULT_FLAG_USER)
5363 mem_cgroup_enter_user_fault();
5364
5365 lru_gen_enter_fault(vma);
5366
5367 if (unlikely(is_vm_hugetlb_page(vma)))
5368 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5369 else
5370 ret = __handle_mm_fault(vma, address, flags);
5371
5372 lru_gen_exit_fault();
5373
5374 if (flags & FAULT_FLAG_USER) {
5375 mem_cgroup_exit_user_fault();
5376 /*
5377 * The task may have entered a memcg OOM situation but
5378 * if the allocation error was handled gracefully (no
5379 * VM_FAULT_OOM), there is no need to kill anything.
5380 * Just clean up the OOM state peacefully.
5381 */
5382 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5383 mem_cgroup_oom_synchronize(false);
5384 }
5385 out:
5386 mm_account_fault(mm, regs, address, flags, ret);
5387
5388 return ret;
5389 }
5390 EXPORT_SYMBOL_GPL(handle_mm_fault);
5391
5392 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5393 #include <linux/extable.h>
5394
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5395 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5396 {
5397 if (likely(mmap_read_trylock(mm)))
5398 return true;
5399
5400 if (regs && !user_mode(regs)) {
5401 unsigned long ip = exception_ip(regs);
5402 if (!search_exception_tables(ip))
5403 return false;
5404 }
5405
5406 return !mmap_read_lock_killable(mm);
5407 }
5408
mmap_upgrade_trylock(struct mm_struct * mm)5409 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5410 {
5411 /*
5412 * We don't have this operation yet.
5413 *
5414 * It should be easy enough to do: it's basically a
5415 * atomic_long_try_cmpxchg_acquire()
5416 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5417 * it also needs the proper lockdep magic etc.
5418 */
5419 return false;
5420 }
5421
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)5422 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5423 {
5424 mmap_read_unlock(mm);
5425 if (regs && !user_mode(regs)) {
5426 unsigned long ip = exception_ip(regs);
5427 if (!search_exception_tables(ip))
5428 return false;
5429 }
5430 return !mmap_write_lock_killable(mm);
5431 }
5432
5433 /*
5434 * Helper for page fault handling.
5435 *
5436 * This is kind of equivalend to "mmap_read_lock()" followed
5437 * by "find_extend_vma()", except it's a lot more careful about
5438 * the locking (and will drop the lock on failure).
5439 *
5440 * For example, if we have a kernel bug that causes a page
5441 * fault, we don't want to just use mmap_read_lock() to get
5442 * the mm lock, because that would deadlock if the bug were
5443 * to happen while we're holding the mm lock for writing.
5444 *
5445 * So this checks the exception tables on kernel faults in
5446 * order to only do this all for instructions that are actually
5447 * expected to fault.
5448 *
5449 * We can also actually take the mm lock for writing if we
5450 * need to extend the vma, which helps the VM layer a lot.
5451 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)5452 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5453 unsigned long addr, struct pt_regs *regs)
5454 {
5455 struct vm_area_struct *vma;
5456
5457 if (!get_mmap_lock_carefully(mm, regs))
5458 return NULL;
5459
5460 vma = find_vma(mm, addr);
5461 if (likely(vma && (vma->vm_start <= addr)))
5462 return vma;
5463
5464 /*
5465 * Well, dang. We might still be successful, but only
5466 * if we can extend a vma to do so.
5467 */
5468 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5469 mmap_read_unlock(mm);
5470 return NULL;
5471 }
5472
5473 /*
5474 * We can try to upgrade the mmap lock atomically,
5475 * in which case we can continue to use the vma
5476 * we already looked up.
5477 *
5478 * Otherwise we'll have to drop the mmap lock and
5479 * re-take it, and also look up the vma again,
5480 * re-checking it.
5481 */
5482 if (!mmap_upgrade_trylock(mm)) {
5483 if (!upgrade_mmap_lock_carefully(mm, regs))
5484 return NULL;
5485
5486 vma = find_vma(mm, addr);
5487 if (!vma)
5488 goto fail;
5489 if (vma->vm_start <= addr)
5490 goto success;
5491 if (!(vma->vm_flags & VM_GROWSDOWN))
5492 goto fail;
5493 }
5494
5495 if (expand_stack_locked(vma, addr))
5496 goto fail;
5497
5498 success:
5499 mmap_write_downgrade(mm);
5500 return vma;
5501
5502 fail:
5503 mmap_write_unlock(mm);
5504 return NULL;
5505 }
5506 #endif
5507
5508 #ifdef CONFIG_PER_VMA_LOCK
5509 /*
5510 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5511 * stable and not isolated. If the VMA is not found or is being modified the
5512 * function returns NULL.
5513 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)5514 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5515 unsigned long address)
5516 {
5517 MA_STATE(mas, &mm->mm_mt, address, address);
5518 struct vm_area_struct *vma;
5519
5520 rcu_read_lock();
5521 retry:
5522 vma = mas_walk(&mas);
5523 if (!vma)
5524 goto inval;
5525
5526 if (!vma_start_read(vma))
5527 goto inval;
5528
5529 /*
5530 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5531 * This check must happen after vma_start_read(); otherwise, a
5532 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5533 * from its anon_vma.
5534 */
5535 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5536 goto inval_end_read;
5537
5538 /* Check since vm_start/vm_end might change before we lock the VMA */
5539 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5540 goto inval_end_read;
5541
5542 /* Check if the VMA got isolated after we found it */
5543 if (vma->detached) {
5544 vma_end_read(vma);
5545 count_vm_vma_lock_event(VMA_LOCK_MISS);
5546 /* The area was replaced with another one */
5547 goto retry;
5548 }
5549
5550 rcu_read_unlock();
5551 return vma;
5552
5553 inval_end_read:
5554 vma_end_read(vma);
5555 inval:
5556 rcu_read_unlock();
5557 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5558 return NULL;
5559 }
5560 #endif /* CONFIG_PER_VMA_LOCK */
5561
5562 #ifndef __PAGETABLE_P4D_FOLDED
5563 /*
5564 * Allocate p4d page table.
5565 * We've already handled the fast-path in-line.
5566 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)5567 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5568 {
5569 p4d_t *new = p4d_alloc_one(mm, address);
5570 if (!new)
5571 return -ENOMEM;
5572
5573 spin_lock(&mm->page_table_lock);
5574 if (pgd_present(*pgd)) { /* Another has populated it */
5575 p4d_free(mm, new);
5576 } else {
5577 smp_wmb(); /* See comment in pmd_install() */
5578 pgd_populate(mm, pgd, new);
5579 }
5580 spin_unlock(&mm->page_table_lock);
5581 return 0;
5582 }
5583 #endif /* __PAGETABLE_P4D_FOLDED */
5584
5585 #ifndef __PAGETABLE_PUD_FOLDED
5586 /*
5587 * Allocate page upper directory.
5588 * We've already handled the fast-path in-line.
5589 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)5590 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5591 {
5592 pud_t *new = pud_alloc_one(mm, address);
5593 if (!new)
5594 return -ENOMEM;
5595
5596 spin_lock(&mm->page_table_lock);
5597 if (!p4d_present(*p4d)) {
5598 mm_inc_nr_puds(mm);
5599 smp_wmb(); /* See comment in pmd_install() */
5600 p4d_populate(mm, p4d, new);
5601 } else /* Another has populated it */
5602 pud_free(mm, new);
5603 spin_unlock(&mm->page_table_lock);
5604 return 0;
5605 }
5606 #endif /* __PAGETABLE_PUD_FOLDED */
5607
5608 #ifndef __PAGETABLE_PMD_FOLDED
5609 /*
5610 * Allocate page middle directory.
5611 * We've already handled the fast-path in-line.
5612 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)5613 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5614 {
5615 spinlock_t *ptl;
5616 pmd_t *new = pmd_alloc_one(mm, address);
5617 if (!new)
5618 return -ENOMEM;
5619
5620 ptl = pud_lock(mm, pud);
5621 if (!pud_present(*pud)) {
5622 mm_inc_nr_pmds(mm);
5623 smp_wmb(); /* See comment in pmd_install() */
5624 pud_populate(mm, pud, new);
5625 } else { /* Another has populated it */
5626 pmd_free(mm, new);
5627 }
5628 spin_unlock(ptl);
5629 return 0;
5630 }
5631 #endif /* __PAGETABLE_PMD_FOLDED */
5632
5633 /**
5634 * follow_pte - look up PTE at a user virtual address
5635 * @mm: the mm_struct of the target address space
5636 * @address: user virtual address
5637 * @ptepp: location to store found PTE
5638 * @ptlp: location to store the lock for the PTE
5639 *
5640 * On a successful return, the pointer to the PTE is stored in @ptepp;
5641 * the corresponding lock is taken and its location is stored in @ptlp.
5642 * The contents of the PTE are only stable until @ptlp is released;
5643 * any further use, if any, must be protected against invalidation
5644 * with MMU notifiers.
5645 *
5646 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5647 * should be taken for read.
5648 *
5649 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5650 * it is not a good general-purpose API.
5651 *
5652 * Return: zero on success, -ve otherwise.
5653 */
follow_pte(struct mm_struct * mm,unsigned long address,pte_t ** ptepp,spinlock_t ** ptlp)5654 int follow_pte(struct mm_struct *mm, unsigned long address,
5655 pte_t **ptepp, spinlock_t **ptlp)
5656 {
5657 pgd_t *pgd;
5658 p4d_t *p4d;
5659 pud_t *pud;
5660 pmd_t *pmd;
5661 pte_t *ptep;
5662
5663 pgd = pgd_offset(mm, address);
5664 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5665 goto out;
5666
5667 p4d = p4d_offset(pgd, address);
5668 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5669 goto out;
5670
5671 pud = pud_offset(p4d, address);
5672 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5673 goto out;
5674
5675 pmd = pmd_offset(pud, address);
5676 VM_BUG_ON(pmd_trans_huge(*pmd));
5677
5678 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5679 if (!ptep)
5680 goto out;
5681 if (!pte_present(ptep_get(ptep)))
5682 goto unlock;
5683 *ptepp = ptep;
5684 return 0;
5685 unlock:
5686 pte_unmap_unlock(ptep, *ptlp);
5687 out:
5688 return -EINVAL;
5689 }
5690 EXPORT_SYMBOL_GPL(follow_pte);
5691
5692 /**
5693 * follow_pfn - look up PFN at a user virtual address
5694 * @vma: memory mapping
5695 * @address: user virtual address
5696 * @pfn: location to store found PFN
5697 *
5698 * Only IO mappings and raw PFN mappings are allowed.
5699 *
5700 * This function does not allow the caller to read the permissions
5701 * of the PTE. Do not use it.
5702 *
5703 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5704 */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)5705 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5706 unsigned long *pfn)
5707 {
5708 int ret = -EINVAL;
5709 spinlock_t *ptl;
5710 pte_t *ptep;
5711
5712 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5713 return ret;
5714
5715 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5716 if (ret)
5717 return ret;
5718 *pfn = pte_pfn(ptep_get(ptep));
5719 pte_unmap_unlock(ptep, ptl);
5720 return 0;
5721 }
5722 EXPORT_SYMBOL(follow_pfn);
5723
5724 #ifdef CONFIG_HAVE_IOREMAP_PROT
follow_phys(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned long * prot,resource_size_t * phys)5725 int follow_phys(struct vm_area_struct *vma,
5726 unsigned long address, unsigned int flags,
5727 unsigned long *prot, resource_size_t *phys)
5728 {
5729 int ret = -EINVAL;
5730 pte_t *ptep, pte;
5731 spinlock_t *ptl;
5732
5733 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5734 goto out;
5735
5736 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5737 goto out;
5738 pte = ptep_get(ptep);
5739
5740 /* Never return PFNs of anon folios in COW mappings. */
5741 if (vm_normal_folio(vma, address, pte))
5742 goto unlock;
5743
5744 if ((flags & FOLL_WRITE) && !pte_write(pte))
5745 goto unlock;
5746
5747 *prot = pgprot_val(pte_pgprot(pte));
5748 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5749
5750 ret = 0;
5751 unlock:
5752 pte_unmap_unlock(ptep, ptl);
5753 out:
5754 return ret;
5755 }
5756
5757 /**
5758 * generic_access_phys - generic implementation for iomem mmap access
5759 * @vma: the vma to access
5760 * @addr: userspace address, not relative offset within @vma
5761 * @buf: buffer to read/write
5762 * @len: length of transfer
5763 * @write: set to FOLL_WRITE when writing, otherwise reading
5764 *
5765 * This is a generic implementation for &vm_operations_struct.access for an
5766 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5767 * not page based.
5768 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)5769 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5770 void *buf, int len, int write)
5771 {
5772 resource_size_t phys_addr;
5773 unsigned long prot = 0;
5774 void __iomem *maddr;
5775 pte_t *ptep, pte;
5776 spinlock_t *ptl;
5777 int offset = offset_in_page(addr);
5778 int ret = -EINVAL;
5779
5780 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5781 return -EINVAL;
5782
5783 retry:
5784 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5785 return -EINVAL;
5786 pte = ptep_get(ptep);
5787 pte_unmap_unlock(ptep, ptl);
5788
5789 prot = pgprot_val(pte_pgprot(pte));
5790 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5791
5792 if ((write & FOLL_WRITE) && !pte_write(pte))
5793 return -EINVAL;
5794
5795 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5796 if (!maddr)
5797 return -ENOMEM;
5798
5799 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5800 goto out_unmap;
5801
5802 if (!pte_same(pte, ptep_get(ptep))) {
5803 pte_unmap_unlock(ptep, ptl);
5804 iounmap(maddr);
5805
5806 goto retry;
5807 }
5808
5809 if (write)
5810 memcpy_toio(maddr + offset, buf, len);
5811 else
5812 memcpy_fromio(buf, maddr + offset, len);
5813 ret = len;
5814 pte_unmap_unlock(ptep, ptl);
5815 out_unmap:
5816 iounmap(maddr);
5817
5818 return ret;
5819 }
5820 EXPORT_SYMBOL_GPL(generic_access_phys);
5821 #endif
5822
5823 /*
5824 * Access another process' address space as given in mm.
5825 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5826 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5827 int len, unsigned int gup_flags)
5828 {
5829 void *old_buf = buf;
5830 int write = gup_flags & FOLL_WRITE;
5831
5832 if (mmap_read_lock_killable(mm))
5833 return 0;
5834
5835 /* Untag the address before looking up the VMA */
5836 addr = untagged_addr_remote(mm, addr);
5837
5838 /* Avoid triggering the temporary warning in __get_user_pages */
5839 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5840 return 0;
5841
5842 /* ignore errors, just check how much was successfully transferred */
5843 while (len) {
5844 int bytes, offset;
5845 void *maddr;
5846 struct vm_area_struct *vma = NULL;
5847 struct page *page = get_user_page_vma_remote(mm, addr,
5848 gup_flags, &vma);
5849
5850 if (IS_ERR_OR_NULL(page)) {
5851 /* We might need to expand the stack to access it */
5852 vma = vma_lookup(mm, addr);
5853 if (!vma) {
5854 vma = expand_stack(mm, addr);
5855
5856 /* mmap_lock was dropped on failure */
5857 if (!vma)
5858 return buf - old_buf;
5859
5860 /* Try again if stack expansion worked */
5861 continue;
5862 }
5863
5864
5865 /*
5866 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5867 * we can access using slightly different code.
5868 */
5869 bytes = 0;
5870 #ifdef CONFIG_HAVE_IOREMAP_PROT
5871 if (vma->vm_ops && vma->vm_ops->access)
5872 bytes = vma->vm_ops->access(vma, addr, buf,
5873 len, write);
5874 #endif
5875 if (bytes <= 0)
5876 break;
5877 } else {
5878 bytes = len;
5879 offset = addr & (PAGE_SIZE-1);
5880 if (bytes > PAGE_SIZE-offset)
5881 bytes = PAGE_SIZE-offset;
5882
5883 maddr = kmap(page);
5884 if (write) {
5885 copy_to_user_page(vma, page, addr,
5886 maddr + offset, buf, bytes);
5887 set_page_dirty_lock(page);
5888 } else {
5889 copy_from_user_page(vma, page, addr,
5890 buf, maddr + offset, bytes);
5891 }
5892 kunmap(page);
5893 put_page(page);
5894 }
5895 len -= bytes;
5896 buf += bytes;
5897 addr += bytes;
5898 }
5899 mmap_read_unlock(mm);
5900
5901 return buf - old_buf;
5902 }
5903
5904 /**
5905 * access_remote_vm - access another process' address space
5906 * @mm: the mm_struct of the target address space
5907 * @addr: start address to access
5908 * @buf: source or destination buffer
5909 * @len: number of bytes to transfer
5910 * @gup_flags: flags modifying lookup behaviour
5911 *
5912 * The caller must hold a reference on @mm.
5913 *
5914 * Return: number of bytes copied from source to destination.
5915 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)5916 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5917 void *buf, int len, unsigned int gup_flags)
5918 {
5919 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5920 }
5921
5922 /*
5923 * Access another process' address space.
5924 * Source/target buffer must be kernel space,
5925 * Do not walk the page table directly, use get_user_pages
5926 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)5927 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5928 void *buf, int len, unsigned int gup_flags)
5929 {
5930 struct mm_struct *mm;
5931 int ret;
5932
5933 mm = get_task_mm(tsk);
5934 if (!mm)
5935 return 0;
5936
5937 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5938
5939 mmput(mm);
5940
5941 return ret;
5942 }
5943 EXPORT_SYMBOL_GPL(access_process_vm);
5944
5945 /*
5946 * Print the name of a VMA.
5947 */
print_vma_addr(char * prefix,unsigned long ip)5948 void print_vma_addr(char *prefix, unsigned long ip)
5949 {
5950 struct mm_struct *mm = current->mm;
5951 struct vm_area_struct *vma;
5952
5953 /*
5954 * we might be running from an atomic context so we cannot sleep
5955 */
5956 if (!mmap_read_trylock(mm))
5957 return;
5958
5959 vma = find_vma(mm, ip);
5960 if (vma && vma->vm_file) {
5961 struct file *f = vma->vm_file;
5962 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5963 if (buf) {
5964 char *p;
5965
5966 p = file_path(f, buf, PAGE_SIZE);
5967 if (IS_ERR(p))
5968 p = "?";
5969 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5970 vma->vm_start,
5971 vma->vm_end - vma->vm_start);
5972 free_page((unsigned long)buf);
5973 }
5974 }
5975 mmap_read_unlock(mm);
5976 }
5977
5978 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)5979 void __might_fault(const char *file, int line)
5980 {
5981 if (pagefault_disabled())
5982 return;
5983 __might_sleep(file, line);
5984 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5985 if (current->mm)
5986 might_lock_read(¤t->mm->mmap_lock);
5987 #endif
5988 }
5989 EXPORT_SYMBOL(__might_fault);
5990 #endif
5991
5992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5993 /*
5994 * Process all subpages of the specified huge page with the specified
5995 * operation. The target subpage will be processed last to keep its
5996 * cache lines hot.
5997 */
process_huge_page(unsigned long addr_hint,unsigned int pages_per_huge_page,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)5998 static inline int process_huge_page(
5999 unsigned long addr_hint, unsigned int pages_per_huge_page,
6000 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6001 void *arg)
6002 {
6003 int i, n, base, l, ret;
6004 unsigned long addr = addr_hint &
6005 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6006
6007 /* Process target subpage last to keep its cache lines hot */
6008 might_sleep();
6009 n = (addr_hint - addr) / PAGE_SIZE;
6010 if (2 * n <= pages_per_huge_page) {
6011 /* If target subpage in first half of huge page */
6012 base = 0;
6013 l = n;
6014 /* Process subpages at the end of huge page */
6015 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6016 cond_resched();
6017 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6018 if (ret)
6019 return ret;
6020 }
6021 } else {
6022 /* If target subpage in second half of huge page */
6023 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6024 l = pages_per_huge_page - n;
6025 /* Process subpages at the begin of huge page */
6026 for (i = 0; i < base; i++) {
6027 cond_resched();
6028 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6029 if (ret)
6030 return ret;
6031 }
6032 }
6033 /*
6034 * Process remaining subpages in left-right-left-right pattern
6035 * towards the target subpage
6036 */
6037 for (i = 0; i < l; i++) {
6038 int left_idx = base + i;
6039 int right_idx = base + 2 * l - 1 - i;
6040
6041 cond_resched();
6042 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6043 if (ret)
6044 return ret;
6045 cond_resched();
6046 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6047 if (ret)
6048 return ret;
6049 }
6050 return 0;
6051 }
6052
clear_gigantic_page(struct page * page,unsigned long addr,unsigned int pages_per_huge_page)6053 static void clear_gigantic_page(struct page *page,
6054 unsigned long addr,
6055 unsigned int pages_per_huge_page)
6056 {
6057 int i;
6058 struct page *p;
6059
6060 might_sleep();
6061 for (i = 0; i < pages_per_huge_page; i++) {
6062 p = nth_page(page, i);
6063 cond_resched();
6064 clear_user_highpage(p, addr + i * PAGE_SIZE);
6065 }
6066 }
6067
clear_subpage(unsigned long addr,int idx,void * arg)6068 static int clear_subpage(unsigned long addr, int idx, void *arg)
6069 {
6070 struct page *page = arg;
6071
6072 clear_user_highpage(page + idx, addr);
6073 return 0;
6074 }
6075
clear_huge_page(struct page * page,unsigned long addr_hint,unsigned int pages_per_huge_page)6076 void clear_huge_page(struct page *page,
6077 unsigned long addr_hint, unsigned int pages_per_huge_page)
6078 {
6079 unsigned long addr = addr_hint &
6080 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6081
6082 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6083 clear_gigantic_page(page, addr, pages_per_huge_page);
6084 return;
6085 }
6086
6087 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6088 }
6089
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int pages_per_huge_page)6090 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6091 unsigned long addr,
6092 struct vm_area_struct *vma,
6093 unsigned int pages_per_huge_page)
6094 {
6095 int i;
6096 struct page *dst_page;
6097 struct page *src_page;
6098
6099 for (i = 0; i < pages_per_huge_page; i++) {
6100 dst_page = folio_page(dst, i);
6101 src_page = folio_page(src, i);
6102
6103 cond_resched();
6104 if (copy_mc_user_highpage(dst_page, src_page,
6105 addr + i*PAGE_SIZE, vma)) {
6106 memory_failure_queue(page_to_pfn(src_page), 0);
6107 return -EHWPOISON;
6108 }
6109 }
6110 return 0;
6111 }
6112
6113 struct copy_subpage_arg {
6114 struct page *dst;
6115 struct page *src;
6116 struct vm_area_struct *vma;
6117 };
6118
copy_subpage(unsigned long addr,int idx,void * arg)6119 static int copy_subpage(unsigned long addr, int idx, void *arg)
6120 {
6121 struct copy_subpage_arg *copy_arg = arg;
6122
6123 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6124 addr, copy_arg->vma)) {
6125 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6126 return -EHWPOISON;
6127 }
6128 return 0;
6129 }
6130
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6131 int copy_user_large_folio(struct folio *dst, struct folio *src,
6132 unsigned long addr_hint, struct vm_area_struct *vma)
6133 {
6134 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6135 unsigned long addr = addr_hint &
6136 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6137 struct copy_subpage_arg arg = {
6138 .dst = &dst->page,
6139 .src = &src->page,
6140 .vma = vma,
6141 };
6142
6143 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6144 return copy_user_gigantic_page(dst, src, addr, vma,
6145 pages_per_huge_page);
6146
6147 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6148 }
6149
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6150 long copy_folio_from_user(struct folio *dst_folio,
6151 const void __user *usr_src,
6152 bool allow_pagefault)
6153 {
6154 void *kaddr;
6155 unsigned long i, rc = 0;
6156 unsigned int nr_pages = folio_nr_pages(dst_folio);
6157 unsigned long ret_val = nr_pages * PAGE_SIZE;
6158 struct page *subpage;
6159
6160 for (i = 0; i < nr_pages; i++) {
6161 subpage = folio_page(dst_folio, i);
6162 kaddr = kmap_local_page(subpage);
6163 if (!allow_pagefault)
6164 pagefault_disable();
6165 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6166 if (!allow_pagefault)
6167 pagefault_enable();
6168 kunmap_local(kaddr);
6169
6170 ret_val -= (PAGE_SIZE - rc);
6171 if (rc)
6172 break;
6173
6174 flush_dcache_page(subpage);
6175
6176 cond_resched();
6177 }
6178 return ret_val;
6179 }
6180 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6181
6182 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6183
6184 static struct kmem_cache *page_ptl_cachep;
6185
ptlock_cache_init(void)6186 void __init ptlock_cache_init(void)
6187 {
6188 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6189 SLAB_PANIC, NULL);
6190 }
6191
ptlock_alloc(struct ptdesc * ptdesc)6192 bool ptlock_alloc(struct ptdesc *ptdesc)
6193 {
6194 spinlock_t *ptl;
6195
6196 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6197 if (!ptl)
6198 return false;
6199 ptdesc->ptl = ptl;
6200 return true;
6201 }
6202
ptlock_free(struct ptdesc * ptdesc)6203 void ptlock_free(struct ptdesc *ptdesc)
6204 {
6205 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6206 }
6207 #endif
6208