• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/zswapd.h>
55 #ifdef CONFIG_RECLAIM_ACCT
56 #include <linux/reclaim_acct.h>
57 #endif
58 #include <linux/delayacct.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61 #include "shuffle.h"
62 #include "page_reporting.h"
63 
64 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
65 typedef int __bitwise fpi_t;
66 
67 /* No special request */
68 #define FPI_NONE		((__force fpi_t)0)
69 
70 /*
71  * Skip free page reporting notification for the (possibly merged) page.
72  * This does not hinder free page reporting from grabbing the page,
73  * reporting it and marking it "reported" -  it only skips notifying
74  * the free page reporting infrastructure about a newly freed page. For
75  * example, used when temporarily pulling a page from a freelist and
76  * putting it back unmodified.
77  */
78 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
79 
80 /*
81  * Place the (possibly merged) page to the tail of the freelist. Will ignore
82  * page shuffling (relevant code - e.g., memory onlining - is expected to
83  * shuffle the whole zone).
84  *
85  * Note: No code should rely on this flag for correctness - it's purely
86  *       to allow for optimizations when handing back either fresh pages
87  *       (memory onlining) or untouched pages (page isolation, free page
88  *       reporting).
89  */
90 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
91 
92 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
93 static DEFINE_MUTEX(pcp_batch_high_lock);
94 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 
96 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 /*
98  * On SMP, spin_trylock is sufficient protection.
99  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100  */
101 #define pcp_trylock_prepare(flags)	do { } while (0)
102 #define pcp_trylock_finish(flag)	do { } while (0)
103 #else
104 
105 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
106 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
107 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
108 #endif
109 
110 /*
111  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
112  * a migration causing the wrong PCP to be locked and remote memory being
113  * potentially allocated, pin the task to the CPU for the lookup+lock.
114  * preempt_disable is used on !RT because it is faster than migrate_disable.
115  * migrate_disable is used on RT because otherwise RT spinlock usage is
116  * interfered with and a high priority task cannot preempt the allocator.
117  */
118 #ifndef CONFIG_PREEMPT_RT
119 #define pcpu_task_pin()		preempt_disable()
120 #define pcpu_task_unpin()	preempt_enable()
121 #else
122 #define pcpu_task_pin()		migrate_disable()
123 #define pcpu_task_unpin()	migrate_enable()
124 #endif
125 
126 /*
127  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
128  * Return value should be used with equivalent unlock helper.
129  */
130 #define pcpu_spin_lock(type, member, ptr)				\
131 ({									\
132 	type *_ret;							\
133 	pcpu_task_pin();						\
134 	_ret = this_cpu_ptr(ptr);					\
135 	spin_lock(&_ret->member);					\
136 	_ret;								\
137 })
138 
139 #define pcpu_spin_trylock(type, member, ptr)				\
140 ({									\
141 	type *_ret;							\
142 	pcpu_task_pin();						\
143 	_ret = this_cpu_ptr(ptr);					\
144 	if (!spin_trylock(&_ret->member)) {				\
145 		pcpu_task_unpin();					\
146 		_ret = NULL;						\
147 	}								\
148 	_ret;								\
149 })
150 
151 #define pcpu_spin_unlock(member, ptr)					\
152 ({									\
153 	spin_unlock(&ptr->member);					\
154 	pcpu_task_unpin();						\
155 })
156 
157 /* struct per_cpu_pages specific helpers. */
158 #define pcp_spin_lock(ptr)						\
159 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_trylock(ptr)						\
162 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 
164 #define pcp_spin_unlock(ptr)						\
165 	pcpu_spin_unlock(lock, ptr)
166 
167 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
168 DEFINE_PER_CPU(int, numa_node);
169 EXPORT_PER_CPU_SYMBOL(numa_node);
170 #endif
171 
172 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173 
174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 /*
176  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
177  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
178  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
179  * defined in <linux/topology.h>.
180  */
181 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
182 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
183 #endif
184 
185 static DEFINE_MUTEX(pcpu_drain_mutex);
186 
187 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
188 volatile unsigned long latent_entropy __latent_entropy;
189 EXPORT_SYMBOL(latent_entropy);
190 #endif
191 
192 /*
193  * Array of node states.
194  */
195 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
196 	[N_POSSIBLE] = NODE_MASK_ALL,
197 	[N_ONLINE] = { { [0] = 1UL } },
198 #ifndef CONFIG_NUMA
199 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
200 #ifdef CONFIG_HIGHMEM
201 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
202 #endif
203 	[N_MEMORY] = { { [0] = 1UL } },
204 	[N_CPU] = { { [0] = 1UL } },
205 #endif	/* NUMA */
206 };
207 EXPORT_SYMBOL(node_states);
208 
209 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210 
211 /*
212  * A cached value of the page's pageblock's migratetype, used when the page is
213  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215  * Also the migratetype set in the page does not necessarily match the pcplist
216  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217  * other index - this ensures that it will be put on the correct CMA freelist.
218  */
get_pcppage_migratetype(struct page * page)219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 	return page->index;
222 }
223 
set_pcppage_migratetype(struct page * page,int migratetype)224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 	page->index = migratetype;
227 }
228 
229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
230 unsigned int pageblock_order __read_mostly;
231 #endif
232 
233 static void __free_pages_ok(struct page *page, unsigned int order,
234 			    fpi_t fpi_flags);
235 
236 /*
237  * results with 256, 32 in the lowmem_reserve sysctl:
238  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
239  *	1G machine -> (16M dma, 784M normal, 224M high)
240  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
241  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
242  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
243  *
244  * TBD: should special case ZONE_DMA32 machines here - in those we normally
245  * don't need any ZONE_NORMAL reservation
246  */
247 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
248 #ifdef CONFIG_ZONE_DMA
249 	[ZONE_DMA] = 256,
250 #endif
251 #ifdef CONFIG_ZONE_DMA32
252 	[ZONE_DMA32] = 256,
253 #endif
254 	[ZONE_NORMAL] = 32,
255 #ifdef CONFIG_HIGHMEM
256 	[ZONE_HIGHMEM] = 0,
257 #endif
258 	[ZONE_MOVABLE] = 0,
259 };
260 
261 char * const zone_names[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	 "DMA",
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	 "DMA32",
267 #endif
268 	 "Normal",
269 #ifdef CONFIG_HIGHMEM
270 	 "HighMem",
271 #endif
272 	 "Movable",
273 #ifdef CONFIG_ZONE_DEVICE
274 	 "Device",
275 #endif
276 };
277 
278 const char * const migratetype_names[MIGRATE_TYPES] = {
279 	"Unmovable",
280 	"Movable",
281 	"Reclaimable",
282 #ifdef CONFIG_CMA_REUSE
283 	"CMA",
284 #endif
285 	"HighAtomic",
286 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
287 	"CMA",
288 #endif
289 #ifdef CONFIG_MEMORY_ISOLATION
290 	"Isolate",
291 #endif
292 };
293 
294 int min_free_kbytes = 1024;
295 int user_min_free_kbytes = -1;
296 static int watermark_boost_factor __read_mostly = 15000;
297 static int watermark_scale_factor = 10;
298 
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300 int movable_zone;
301 EXPORT_SYMBOL(movable_zone);
302 
303 #if MAX_NUMNODES > 1
304 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
305 unsigned int nr_online_nodes __read_mostly = 1;
306 EXPORT_SYMBOL(nr_node_ids);
307 EXPORT_SYMBOL(nr_online_nodes);
308 #endif
309 
310 static bool page_contains_unaccepted(struct page *page, unsigned int order);
311 static void accept_page(struct page *page, unsigned int order);
312 static bool cond_accept_memory(struct zone *zone, unsigned int order);
313 static inline bool has_unaccepted_memory(void);
314 static bool __free_unaccepted(struct page *page);
315 
316 int page_group_by_mobility_disabled __read_mostly;
317 
318 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
319 /*
320  * During boot we initialize deferred pages on-demand, as needed, but once
321  * page_alloc_init_late() has finished, the deferred pages are all initialized,
322  * and we can permanently disable that path.
323  */
324 DEFINE_STATIC_KEY_TRUE(deferred_pages);
325 
deferred_pages_enabled(void)326 static inline bool deferred_pages_enabled(void)
327 {
328 	return static_branch_unlikely(&deferred_pages);
329 }
330 
331 /*
332  * deferred_grow_zone() is __init, but it is called from
333  * get_page_from_freelist() during early boot until deferred_pages permanently
334  * disables this call. This is why we have refdata wrapper to avoid warning,
335  * and to ensure that the function body gets unloaded.
336  */
337 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)338 _deferred_grow_zone(struct zone *zone, unsigned int order)
339 {
340        return deferred_grow_zone(zone, order);
341 }
342 #else
deferred_pages_enabled(void)343 static inline bool deferred_pages_enabled(void)
344 {
345 	return false;
346 }
347 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
348 
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)350 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
351 							unsigned long pfn)
352 {
353 #ifdef CONFIG_SPARSEMEM
354 	return section_to_usemap(__pfn_to_section(pfn));
355 #else
356 	return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
358 }
359 
pfn_to_bitidx(const struct page * page,unsigned long pfn)360 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 	pfn &= (PAGES_PER_SECTION-1);
364 #else
365 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
366 #endif /* CONFIG_SPARSEMEM */
367 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 }
369 
370 /**
371  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
372  * @page: The page within the block of interest
373  * @pfn: The target page frame number
374  * @mask: mask of bits that the caller is interested in
375  *
376  * Return: pageblock_bits flags
377  */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)378 unsigned long get_pfnblock_flags_mask(const struct page *page,
379 					unsigned long pfn, unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 	/*
390 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
391 	 * a consistent read of the memory array, so that results, even though
392 	 * racy, are not corrupted.
393 	 */
394 	word = READ_ONCE(bitmap[word_bitidx]);
395 	return (word >> bitidx) & mask;
396 }
397 
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)398 static __always_inline int get_pfnblock_migratetype(const struct page *page,
399 					unsigned long pfn)
400 {
401 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
402 }
403 
404 /**
405  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406  * @page: The page within the block of interest
407  * @flags: The flags to set
408  * @pfn: The target page frame number
409  * @mask: mask of bits that the caller is interested in
410  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)411 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
412 					unsigned long pfn,
413 					unsigned long mask)
414 {
415 	unsigned long *bitmap;
416 	unsigned long bitidx, word_bitidx;
417 	unsigned long word;
418 
419 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
420 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
421 
422 	bitmap = get_pageblock_bitmap(page, pfn);
423 	bitidx = pfn_to_bitidx(page, pfn);
424 	word_bitidx = bitidx / BITS_PER_LONG;
425 	bitidx &= (BITS_PER_LONG-1);
426 
427 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
428 
429 	mask <<= bitidx;
430 	flags <<= bitidx;
431 
432 	word = READ_ONCE(bitmap[word_bitidx]);
433 	do {
434 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
435 }
436 
set_pageblock_migratetype(struct page * page,int migratetype)437 void set_pageblock_migratetype(struct page *page, int migratetype)
438 {
439 	if (unlikely(page_group_by_mobility_disabled &&
440 		     migratetype < MIGRATE_PCPTYPES))
441 		migratetype = MIGRATE_UNMOVABLE;
442 
443 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
444 				page_to_pfn(page), MIGRATETYPE_MASK);
445 }
446 
447 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)448 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
449 {
450 	int ret;
451 	unsigned seq;
452 	unsigned long pfn = page_to_pfn(page);
453 	unsigned long sp, start_pfn;
454 
455 	do {
456 		seq = zone_span_seqbegin(zone);
457 		start_pfn = zone->zone_start_pfn;
458 		sp = zone->spanned_pages;
459 		ret = !zone_spans_pfn(zone, pfn);
460 	} while (zone_span_seqretry(zone, seq));
461 
462 	if (ret)
463 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
464 			pfn, zone_to_nid(zone), zone->name,
465 			start_pfn, start_pfn + sp);
466 
467 	return ret;
468 }
469 
470 /*
471  * Temporary debugging check for pages not lying within a given zone.
472  */
bad_range(struct zone * zone,struct page * page)473 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
474 {
475 	if (page_outside_zone_boundaries(zone, page))
476 		return 1;
477 	if (zone != page_zone(page))
478 		return 1;
479 
480 	return 0;
481 }
482 #else
bad_range(struct zone * zone,struct page * page)483 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
484 {
485 	return 0;
486 }
487 #endif
488 
bad_page(struct page * page,const char * reason)489 static void bad_page(struct page *page, const char *reason)
490 {
491 	static unsigned long resume;
492 	static unsigned long nr_shown;
493 	static unsigned long nr_unshown;
494 
495 	/*
496 	 * Allow a burst of 60 reports, then keep quiet for that minute;
497 	 * or allow a steady drip of one report per second.
498 	 */
499 	if (nr_shown == 60) {
500 		if (time_before(jiffies, resume)) {
501 			nr_unshown++;
502 			goto out;
503 		}
504 		if (nr_unshown) {
505 			pr_alert(
506 			      "BUG: Bad page state: %lu messages suppressed\n",
507 				nr_unshown);
508 			nr_unshown = 0;
509 		}
510 		nr_shown = 0;
511 	}
512 	if (nr_shown++ == 0)
513 		resume = jiffies + 60 * HZ;
514 
515 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
516 		current->comm, page_to_pfn(page));
517 	dump_page(page, reason);
518 
519 	print_modules();
520 	dump_stack();
521 out:
522 	/* Leave bad fields for debug, except PageBuddy could make trouble */
523 	page_mapcount_reset(page); /* remove PageBuddy */
524 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
525 }
526 
order_to_pindex(int migratetype,int order)527 static inline unsigned int order_to_pindex(int migratetype, int order)
528 {
529 	bool __maybe_unused movable;
530 
531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
532 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
533 		VM_BUG_ON(order != pageblock_order);
534 
535 		movable = migratetype == MIGRATE_MOVABLE;
536 
537 		return NR_LOWORDER_PCP_LISTS + movable;
538 	}
539 #else
540 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
541 #endif
542 
543 	return (MIGRATE_PCPTYPES * order) + migratetype;
544 }
545 
pindex_to_order(unsigned int pindex)546 static inline int pindex_to_order(unsigned int pindex)
547 {
548 	int order = pindex / MIGRATE_PCPTYPES;
549 
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 	if (pindex >= NR_LOWORDER_PCP_LISTS)
552 		order = pageblock_order;
553 #else
554 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
555 #endif
556 
557 	return order;
558 }
559 
pcp_allowed_order(unsigned int order)560 static inline bool pcp_allowed_order(unsigned int order)
561 {
562 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
563 		return true;
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565 	if (order == pageblock_order)
566 		return true;
567 #endif
568 	return false;
569 }
570 
free_the_page(struct page * page,unsigned int order)571 static inline void free_the_page(struct page *page, unsigned int order)
572 {
573 	if (pcp_allowed_order(order))		/* Via pcp? */
574 		free_unref_page(page, order);
575 	else
576 		__free_pages_ok(page, order, FPI_NONE);
577 }
578 
579 /*
580  * Higher-order pages are called "compound pages".  They are structured thusly:
581  *
582  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
583  *
584  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
585  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
586  *
587  * The first tail page's ->compound_order holds the order of allocation.
588  * This usage means that zero-order pages may not be compound.
589  */
590 
prep_compound_page(struct page * page,unsigned int order)591 void prep_compound_page(struct page *page, unsigned int order)
592 {
593 	int i;
594 	int nr_pages = 1 << order;
595 
596 	__SetPageHead(page);
597 	for (i = 1; i < nr_pages; i++)
598 		prep_compound_tail(page, i);
599 
600 	prep_compound_head(page, order);
601 }
602 
destroy_large_folio(struct folio * folio)603 void destroy_large_folio(struct folio *folio)
604 {
605 	if (folio_test_hugetlb(folio)) {
606 		free_huge_folio(folio);
607 		return;
608 	}
609 
610 	folio_unqueue_deferred_split(folio);
611 	mem_cgroup_uncharge(folio);
612 	free_the_page(&folio->page, folio_order(folio));
613 }
614 
set_buddy_order(struct page * page,unsigned int order)615 static inline void set_buddy_order(struct page *page, unsigned int order)
616 {
617 	set_page_private(page, order);
618 	__SetPageBuddy(page);
619 }
620 
621 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	struct capture_control *capc = current->capture_control;
625 
626 	return unlikely(capc) &&
627 		!(current->flags & PF_KTHREAD) &&
628 		!capc->page &&
629 		capc->cc->zone == zone ? capc : NULL;
630 }
631 
632 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)633 compaction_capture(struct capture_control *capc, struct page *page,
634 		   int order, int migratetype)
635 {
636 	if (!capc || order != capc->cc->order)
637 		return false;
638 
639 	/* Do not accidentally pollute CMA or isolated regions*/
640 	if (is_migrate_cma(migratetype) ||
641 	    is_migrate_isolate(migratetype))
642 		return false;
643 
644 	/*
645 	 * Do not let lower order allocations pollute a movable pageblock.
646 	 * This might let an unmovable request use a reclaimable pageblock
647 	 * and vice-versa but no more than normal fallback logic which can
648 	 * have trouble finding a high-order free page.
649 	 */
650 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
651 		return false;
652 
653 	capc->page = page;
654 	return true;
655 }
656 
657 #else
task_capc(struct zone * zone)658 static inline struct capture_control *task_capc(struct zone *zone)
659 {
660 	return NULL;
661 }
662 
663 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)664 compaction_capture(struct capture_control *capc, struct page *page,
665 		   int order, int migratetype)
666 {
667 	return false;
668 }
669 #endif /* CONFIG_COMPACTION */
670 
671 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)672 static inline void add_to_free_list(struct page *page, struct zone *zone,
673 				    unsigned int order, int migratetype)
674 {
675 	struct free_area *area = &zone->free_area[order];
676 
677 	list_add(&page->buddy_list, &area->free_list[migratetype]);
678 	area->nr_free++;
679 }
680 
681 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)682 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
683 					 unsigned int order, int migratetype)
684 {
685 	struct free_area *area = &zone->free_area[order];
686 
687 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
688 	area->nr_free++;
689 }
690 
691 /*
692  * Used for pages which are on another list. Move the pages to the tail
693  * of the list - so the moved pages won't immediately be considered for
694  * allocation again (e.g., optimization for memory onlining).
695  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)696 static inline void move_to_free_list(struct page *page, struct zone *zone,
697 				     unsigned int order, int migratetype)
698 {
699 	struct free_area *area = &zone->free_area[order];
700 
701 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
702 }
703 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)704 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
705 					   unsigned int order)
706 {
707 	/* clear reported state and update reported page count */
708 	if (page_reported(page))
709 		__ClearPageReported(page);
710 
711 	list_del(&page->buddy_list);
712 	__ClearPageBuddy(page);
713 	set_page_private(page, 0);
714 	zone->free_area[order].nr_free--;
715 }
716 
get_page_from_free_area(struct free_area * area,int migratetype)717 static inline struct page *get_page_from_free_area(struct free_area *area,
718 					    int migratetype)
719 {
720 	return list_first_entry_or_null(&area->free_list[migratetype],
721 					struct page, buddy_list);
722 }
723 
724 /*
725  * If this is not the largest possible page, check if the buddy
726  * of the next-highest order is free. If it is, it's possible
727  * that pages are being freed that will coalesce soon. In case,
728  * that is happening, add the free page to the tail of the list
729  * so it's less likely to be used soon and more likely to be merged
730  * as a higher order page
731  */
732 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)733 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
734 		   struct page *page, unsigned int order)
735 {
736 	unsigned long higher_page_pfn;
737 	struct page *higher_page;
738 
739 	if (order >= MAX_ORDER - 1)
740 		return false;
741 
742 	higher_page_pfn = buddy_pfn & pfn;
743 	higher_page = page + (higher_page_pfn - pfn);
744 
745 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
746 			NULL) != NULL;
747 }
748 
749 /*
750  * Freeing function for a buddy system allocator.
751  *
752  * The concept of a buddy system is to maintain direct-mapped table
753  * (containing bit values) for memory blocks of various "orders".
754  * The bottom level table contains the map for the smallest allocatable
755  * units of memory (here, pages), and each level above it describes
756  * pairs of units from the levels below, hence, "buddies".
757  * At a high level, all that happens here is marking the table entry
758  * at the bottom level available, and propagating the changes upward
759  * as necessary, plus some accounting needed to play nicely with other
760  * parts of the VM system.
761  * At each level, we keep a list of pages, which are heads of continuous
762  * free pages of length of (1 << order) and marked with PageBuddy.
763  * Page's order is recorded in page_private(page) field.
764  * So when we are allocating or freeing one, we can derive the state of the
765  * other.  That is, if we allocate a small block, and both were
766  * free, the remainder of the region must be split into blocks.
767  * If a block is freed, and its buddy is also free, then this
768  * triggers coalescing into a block of larger size.
769  *
770  * -- nyc
771  */
772 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)773 static inline void __free_one_page(struct page *page,
774 		unsigned long pfn,
775 		struct zone *zone, unsigned int order,
776 		int migratetype, fpi_t fpi_flags)
777 {
778 	struct capture_control *capc = task_capc(zone);
779 	unsigned long buddy_pfn = 0;
780 	unsigned long combined_pfn;
781 	struct page *buddy;
782 	bool to_tail;
783 
784 	VM_BUG_ON(!zone_is_initialized(zone));
785 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
786 
787 	VM_BUG_ON(migratetype == -1);
788 	if (likely(!is_migrate_isolate(migratetype)))
789 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
790 
791 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
793 
794 	while (order < MAX_ORDER) {
795 		if (compaction_capture(capc, page, order, migratetype)) {
796 			__mod_zone_freepage_state(zone, -(1 << order),
797 								migratetype);
798 			return;
799 		}
800 
801 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
802 		if (!buddy)
803 			goto done_merging;
804 
805 		if (unlikely(order >= pageblock_order)) {
806 			/*
807 			 * We want to prevent merge between freepages on pageblock
808 			 * without fallbacks and normal pageblock. Without this,
809 			 * pageblock isolation could cause incorrect freepage or CMA
810 			 * accounting or HIGHATOMIC accounting.
811 			 */
812 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
813 
814 			if (migratetype != buddy_mt
815 					&& (!migratetype_is_mergeable(migratetype) ||
816 						!migratetype_is_mergeable(buddy_mt)))
817 				goto done_merging;
818 		}
819 
820 		/*
821 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
822 		 * merge with it and move up one order.
823 		 */
824 		if (page_is_guard(buddy))
825 			clear_page_guard(zone, buddy, order, migratetype);
826 		else
827 			del_page_from_free_list(buddy, zone, order);
828 		combined_pfn = buddy_pfn & pfn;
829 		page = page + (combined_pfn - pfn);
830 		pfn = combined_pfn;
831 		order++;
832 	}
833 
834 done_merging:
835 	set_buddy_order(page, order);
836 
837 	if (fpi_flags & FPI_TO_TAIL)
838 		to_tail = true;
839 	else if (is_shuffle_order(order))
840 		to_tail = shuffle_pick_tail();
841 	else
842 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843 
844 	if (to_tail)
845 		add_to_free_list_tail(page, zone, order, migratetype);
846 	else
847 		add_to_free_list(page, zone, order, migratetype);
848 
849 	/* Notify page reporting subsystem of freed page */
850 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
851 		page_reporting_notify_free(order);
852 }
853 
854 /**
855  * split_free_page() -- split a free page at split_pfn_offset
856  * @free_page:		the original free page
857  * @order:		the order of the page
858  * @split_pfn_offset:	split offset within the page
859  *
860  * Return -ENOENT if the free page is changed, otherwise 0
861  *
862  * It is used when the free page crosses two pageblocks with different migratetypes
863  * at split_pfn_offset within the page. The split free page will be put into
864  * separate migratetype lists afterwards. Otherwise, the function achieves
865  * nothing.
866  */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)867 int split_free_page(struct page *free_page,
868 			unsigned int order, unsigned long split_pfn_offset)
869 {
870 	struct zone *zone = page_zone(free_page);
871 	unsigned long free_page_pfn = page_to_pfn(free_page);
872 	unsigned long pfn;
873 	unsigned long flags;
874 	int free_page_order;
875 	int mt;
876 	int ret = 0;
877 
878 	if (split_pfn_offset == 0)
879 		return ret;
880 
881 	spin_lock_irqsave(&zone->lock, flags);
882 
883 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
884 		ret = -ENOENT;
885 		goto out;
886 	}
887 
888 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
889 	if (likely(!is_migrate_isolate(mt)))
890 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
891 
892 	del_page_from_free_list(free_page, zone, order);
893 	for (pfn = free_page_pfn;
894 	     pfn < free_page_pfn + (1UL << order);) {
895 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
896 
897 		free_page_order = min_t(unsigned int,
898 					pfn ? __ffs(pfn) : order,
899 					__fls(split_pfn_offset));
900 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
901 				mt, FPI_NONE);
902 		pfn += 1UL << free_page_order;
903 		split_pfn_offset -= (1UL << free_page_order);
904 		/* we have done the first part, now switch to second part */
905 		if (split_pfn_offset == 0)
906 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
907 	}
908 out:
909 	spin_unlock_irqrestore(&zone->lock, flags);
910 	return ret;
911 }
912 /*
913  * A bad page could be due to a number of fields. Instead of multiple branches,
914  * try and check multiple fields with one check. The caller must do a detailed
915  * check if necessary.
916  */
page_expected_state(struct page * page,unsigned long check_flags)917 static inline bool page_expected_state(struct page *page,
918 					unsigned long check_flags)
919 {
920 	if (unlikely(atomic_read(&page->_mapcount) != -1))
921 		return false;
922 
923 	if (unlikely((unsigned long)page->mapping |
924 			page_ref_count(page) |
925 #ifdef CONFIG_MEMCG
926 			page->memcg_data |
927 #endif
928 			(page->flags & check_flags)))
929 		return false;
930 
931 	return true;
932 }
933 
page_bad_reason(struct page * page,unsigned long flags)934 static const char *page_bad_reason(struct page *page, unsigned long flags)
935 {
936 	const char *bad_reason = NULL;
937 
938 	if (unlikely(atomic_read(&page->_mapcount) != -1))
939 		bad_reason = "nonzero mapcount";
940 	if (unlikely(page->mapping != NULL))
941 		bad_reason = "non-NULL mapping";
942 	if (unlikely(page_ref_count(page) != 0))
943 		bad_reason = "nonzero _refcount";
944 	if (unlikely(page->flags & flags)) {
945 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
946 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
947 		else
948 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 	}
950 #ifdef CONFIG_MEMCG
951 	if (unlikely(page->memcg_data))
952 		bad_reason = "page still charged to cgroup";
953 #endif
954 	return bad_reason;
955 }
956 
free_page_is_bad_report(struct page * page)957 static void free_page_is_bad_report(struct page *page)
958 {
959 	bad_page(page,
960 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
961 }
962 
free_page_is_bad(struct page * page)963 static inline bool free_page_is_bad(struct page *page)
964 {
965 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
966 		return false;
967 
968 	/* Something has gone sideways, find it */
969 	free_page_is_bad_report(page);
970 	return true;
971 }
972 
is_check_pages_enabled(void)973 static inline bool is_check_pages_enabled(void)
974 {
975 	return static_branch_unlikely(&check_pages_enabled);
976 }
977 
free_tail_page_prepare(struct page * head_page,struct page * page)978 static int free_tail_page_prepare(struct page *head_page, struct page *page)
979 {
980 	struct folio *folio = (struct folio *)head_page;
981 	int ret = 1;
982 
983 	/*
984 	 * We rely page->lru.next never has bit 0 set, unless the page
985 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
986 	 */
987 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
988 
989 	if (!is_check_pages_enabled()) {
990 		ret = 0;
991 		goto out;
992 	}
993 	switch (page - head_page) {
994 	case 1:
995 		/* the first tail page: these may be in place of ->mapping */
996 		if (unlikely(folio_entire_mapcount(folio))) {
997 			bad_page(page, "nonzero entire_mapcount");
998 			goto out;
999 		}
1000 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1001 			bad_page(page, "nonzero nr_pages_mapped");
1002 			goto out;
1003 		}
1004 		if (unlikely(atomic_read(&folio->_pincount))) {
1005 			bad_page(page, "nonzero pincount");
1006 			goto out;
1007 		}
1008 		break;
1009 	case 2:
1010 		/* the second tail page: deferred_list overlaps ->mapping */
1011 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1012 			bad_page(page, "on deferred list");
1013 			goto out;
1014 		}
1015 		break;
1016 	default:
1017 		if (page->mapping != TAIL_MAPPING) {
1018 			bad_page(page, "corrupted mapping in tail page");
1019 			goto out;
1020 		}
1021 		break;
1022 	}
1023 	if (unlikely(!PageTail(page))) {
1024 		bad_page(page, "PageTail not set");
1025 		goto out;
1026 	}
1027 	if (unlikely(compound_head(page) != head_page)) {
1028 		bad_page(page, "compound_head not consistent");
1029 		goto out;
1030 	}
1031 	ret = 0;
1032 out:
1033 	page->mapping = NULL;
1034 	clear_compound_head(page);
1035 	return ret;
1036 }
1037 
1038 /*
1039  * Skip KASAN memory poisoning when either:
1040  *
1041  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1042  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1043  *    using page tags instead (see below).
1044  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1045  *    that error detection is disabled for accesses via the page address.
1046  *
1047  * Pages will have match-all tags in the following circumstances:
1048  *
1049  * 1. Pages are being initialized for the first time, including during deferred
1050  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1051  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1052  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1053  * 3. The allocation was excluded from being checked due to sampling,
1054  *    see the call to kasan_unpoison_pages.
1055  *
1056  * Poisoning pages during deferred memory init will greatly lengthen the
1057  * process and cause problem in large memory systems as the deferred pages
1058  * initialization is done with interrupt disabled.
1059  *
1060  * Assuming that there will be no reference to those newly initialized
1061  * pages before they are ever allocated, this should have no effect on
1062  * KASAN memory tracking as the poison will be properly inserted at page
1063  * allocation time. The only corner case is when pages are allocated by
1064  * on-demand allocation and then freed again before the deferred pages
1065  * initialization is done, but this is not likely to happen.
1066  */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1067 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1068 {
1069 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1070 		return deferred_pages_enabled();
1071 
1072 	return page_kasan_tag(page) == 0xff;
1073 }
1074 
kernel_init_pages(struct page * page,int numpages)1075 static void kernel_init_pages(struct page *page, int numpages)
1076 {
1077 	int i;
1078 
1079 	/* s390's use of memset() could override KASAN redzones. */
1080 	kasan_disable_current();
1081 	for (i = 0; i < numpages; i++)
1082 		clear_highpage_kasan_tagged(page + i);
1083 	kasan_enable_current();
1084 }
1085 
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1086 static __always_inline bool free_pages_prepare(struct page *page,
1087 			unsigned int order, fpi_t fpi_flags)
1088 {
1089 	int bad = 0;
1090 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1091 	bool init = want_init_on_free();
1092 	struct folio *folio = page_folio(page);
1093 
1094 	VM_BUG_ON_PAGE(PageTail(page), page);
1095 
1096 	trace_mm_page_free(page, order);
1097 	kmsan_free_page(page, order);
1098 
1099 	/*
1100 	 * In rare cases, when truncation or holepunching raced with
1101 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1102 	 * found set here.  This does not indicate a problem, unless
1103 	 * "unevictable_pgs_cleared" appears worryingly large.
1104 	 */
1105 	if (unlikely(folio_test_mlocked(folio))) {
1106 		long nr_pages = folio_nr_pages(folio);
1107 
1108 		__folio_clear_mlocked(folio);
1109 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1110 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1111 	}
1112 
1113 	if (unlikely(PageHWPoison(page)) && !order) {
1114 		/*
1115 		 * Do not let hwpoison pages hit pcplists/buddy
1116 		 * Untie memcg state and reset page's owner
1117 		 */
1118 		if (memcg_kmem_online() && PageMemcgKmem(page))
1119 			__memcg_kmem_uncharge_page(page, order);
1120 		reset_page_owner(page, order);
1121 		page_table_check_free(page, order);
1122 		return false;
1123 	}
1124 
1125 	/*
1126 	 * Check tail pages before head page information is cleared to
1127 	 * avoid checking PageCompound for order-0 pages.
1128 	 */
1129 	if (unlikely(order)) {
1130 		bool compound = PageCompound(page);
1131 		int i;
1132 
1133 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1134 
1135 		if (compound)
1136 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1137 		for (i = 1; i < (1 << order); i++) {
1138 			if (compound)
1139 				bad += free_tail_page_prepare(page, page + i);
1140 			if (is_check_pages_enabled()) {
1141 				if (free_page_is_bad(page + i)) {
1142 					bad++;
1143 					continue;
1144 				}
1145 			}
1146 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1147 		}
1148 	}
1149 	if (PageMappingFlags(page))
1150 		page->mapping = NULL;
1151 	if (memcg_kmem_online() && PageMemcgKmem(page))
1152 		__memcg_kmem_uncharge_page(page, order);
1153 	if (is_check_pages_enabled()) {
1154 		if (free_page_is_bad(page))
1155 			bad++;
1156 		if (bad)
1157 			return false;
1158 	}
1159 
1160 	page_cpupid_reset_last(page);
1161 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1162 	reset_page_owner(page, order);
1163 	page_table_check_free(page, order);
1164 
1165 	if (!PageHighMem(page)) {
1166 		debug_check_no_locks_freed(page_address(page),
1167 					   PAGE_SIZE << order);
1168 		debug_check_no_obj_freed(page_address(page),
1169 					   PAGE_SIZE << order);
1170 	}
1171 
1172 	kernel_poison_pages(page, 1 << order);
1173 
1174 	/*
1175 	 * As memory initialization might be integrated into KASAN,
1176 	 * KASAN poisoning and memory initialization code must be
1177 	 * kept together to avoid discrepancies in behavior.
1178 	 *
1179 	 * With hardware tag-based KASAN, memory tags must be set before the
1180 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1181 	 */
1182 	if (!skip_kasan_poison) {
1183 		kasan_poison_pages(page, order, init);
1184 
1185 		/* Memory is already initialized if KASAN did it internally. */
1186 		if (kasan_has_integrated_init())
1187 			init = false;
1188 	}
1189 	if (init)
1190 		kernel_init_pages(page, 1 << order);
1191 
1192 	/*
1193 	 * arch_free_page() can make the page's contents inaccessible.  s390
1194 	 * does this.  So nothing which can access the page's contents should
1195 	 * happen after this.
1196 	 */
1197 	arch_free_page(page, order);
1198 
1199 	debug_pagealloc_unmap_pages(page, 1 << order);
1200 
1201 	return true;
1202 }
1203 
1204 /*
1205  * Frees a number of pages from the PCP lists
1206  * Assumes all pages on list are in same zone.
1207  * count is the number of pages to free.
1208  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1209 static void free_pcppages_bulk(struct zone *zone, int count,
1210 					struct per_cpu_pages *pcp,
1211 					int pindex)
1212 {
1213 	unsigned long flags;
1214 	unsigned int order;
1215 	bool isolated_pageblocks;
1216 	struct page *page;
1217 
1218 	/*
1219 	 * Ensure proper count is passed which otherwise would stuck in the
1220 	 * below while (list_empty(list)) loop.
1221 	 */
1222 	count = min(pcp->count, count);
1223 
1224 	/* Ensure requested pindex is drained first. */
1225 	pindex = pindex - 1;
1226 
1227 	spin_lock_irqsave(&zone->lock, flags);
1228 	isolated_pageblocks = has_isolate_pageblock(zone);
1229 
1230 	while (count > 0) {
1231 		struct list_head *list;
1232 		int nr_pages;
1233 
1234 		/* Remove pages from lists in a round-robin fashion. */
1235 		do {
1236 			if (++pindex > NR_PCP_LISTS - 1)
1237 				pindex = 0;
1238 			list = &pcp->lists[pindex];
1239 		} while (list_empty(list));
1240 
1241 		order = pindex_to_order(pindex);
1242 		nr_pages = 1 << order;
1243 		do {
1244 			int mt;
1245 
1246 			page = list_last_entry(list, struct page, pcp_list);
1247 			mt = get_pcppage_migratetype(page);
1248 
1249 			/* must delete to avoid corrupting pcp list */
1250 			list_del(&page->pcp_list);
1251 			count -= nr_pages;
1252 			pcp->count -= nr_pages;
1253 
1254 			/* MIGRATE_ISOLATE page should not go to pcplists */
1255 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1256 			/* Pageblock could have been isolated meanwhile */
1257 			if (unlikely(isolated_pageblocks))
1258 				mt = get_pageblock_migratetype(page);
1259 
1260 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1261 			trace_mm_page_pcpu_drain(page, order, mt);
1262 		} while (count > 0 && !list_empty(list));
1263 	}
1264 
1265 	spin_unlock_irqrestore(&zone->lock, flags);
1266 }
1267 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1268 static void free_one_page(struct zone *zone,
1269 				struct page *page, unsigned long pfn,
1270 				unsigned int order,
1271 				int migratetype, fpi_t fpi_flags)
1272 {
1273 	unsigned long flags;
1274 
1275 	spin_lock_irqsave(&zone->lock, flags);
1276 	if (unlikely(has_isolate_pageblock(zone) ||
1277 		is_migrate_isolate(migratetype))) {
1278 		migratetype = get_pfnblock_migratetype(page, pfn);
1279 	}
1280 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1281 	spin_unlock_irqrestore(&zone->lock, flags);
1282 }
1283 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1284 static void __free_pages_ok(struct page *page, unsigned int order,
1285 			    fpi_t fpi_flags)
1286 {
1287 	unsigned long flags;
1288 	int migratetype;
1289 	unsigned long pfn = page_to_pfn(page);
1290 	struct zone *zone = page_zone(page);
1291 
1292 	if (!free_pages_prepare(page, order, fpi_flags))
1293 		return;
1294 
1295 	/*
1296 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1297 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1298 	 * This will reduce the lock holding time.
1299 	 */
1300 	migratetype = get_pfnblock_migratetype(page, pfn);
1301 
1302 	spin_lock_irqsave(&zone->lock, flags);
1303 	if (unlikely(has_isolate_pageblock(zone) ||
1304 		is_migrate_isolate(migratetype))) {
1305 		migratetype = get_pfnblock_migratetype(page, pfn);
1306 	}
1307 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1308 	spin_unlock_irqrestore(&zone->lock, flags);
1309 
1310 	__count_vm_events(PGFREE, 1 << order);
1311 }
1312 
__free_pages_core(struct page * page,unsigned int order)1313 void __free_pages_core(struct page *page, unsigned int order)
1314 {
1315 	unsigned int nr_pages = 1 << order;
1316 	struct page *p = page;
1317 	unsigned int loop;
1318 
1319 	/*
1320 	 * When initializing the memmap, __init_single_page() sets the refcount
1321 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1322 	 * refcount of all involved pages to 0.
1323 	 */
1324 	prefetchw(p);
1325 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1326 		prefetchw(p + 1);
1327 		__ClearPageReserved(p);
1328 		set_page_count(p, 0);
1329 	}
1330 	__ClearPageReserved(p);
1331 	set_page_count(p, 0);
1332 
1333 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1334 
1335 	if (page_contains_unaccepted(page, order)) {
1336 		if (order == MAX_ORDER && __free_unaccepted(page))
1337 			return;
1338 
1339 		accept_page(page, order);
1340 	}
1341 
1342 	/*
1343 	 * Bypass PCP and place fresh pages right to the tail, primarily
1344 	 * relevant for memory onlining.
1345 	 */
1346 	__free_pages_ok(page, order, FPI_TO_TAIL);
1347 }
1348 
1349 /*
1350  * Check that the whole (or subset of) a pageblock given by the interval of
1351  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352  * with the migration of free compaction scanner.
1353  *
1354  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1355  *
1356  * It's possible on some configurations to have a setup like node0 node1 node0
1357  * i.e. it's possible that all pages within a zones range of pages do not
1358  * belong to a single zone. We assume that a border between node0 and node1
1359  * can occur within a single pageblock, but not a node0 node1 node0
1360  * interleaving within a single pageblock. It is therefore sufficient to check
1361  * the first and last page of a pageblock and avoid checking each individual
1362  * page in a pageblock.
1363  *
1364  * Note: the function may return non-NULL struct page even for a page block
1365  * which contains a memory hole (i.e. there is no physical memory for a subset
1366  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1367  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1368  * even though the start pfn is online and valid. This should be safe most of
1369  * the time because struct pages are still initialized via init_unavailable_range()
1370  * and pfn walkers shouldn't touch any physical memory range for which they do
1371  * not recognize any specific metadata in struct pages.
1372  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 				     unsigned long end_pfn, struct zone *zone)
1375 {
1376 	struct page *start_page;
1377 	struct page *end_page;
1378 
1379 	/* end_pfn is one past the range we are checking */
1380 	end_pfn--;
1381 
1382 	if (!pfn_valid(end_pfn))
1383 		return NULL;
1384 
1385 	start_page = pfn_to_online_page(start_pfn);
1386 	if (!start_page)
1387 		return NULL;
1388 
1389 	if (page_zone(start_page) != zone)
1390 		return NULL;
1391 
1392 	end_page = pfn_to_page(end_pfn);
1393 
1394 	/* This gives a shorter code than deriving page_zone(end_page) */
1395 	if (page_zone_id(start_page) != page_zone_id(end_page))
1396 		return NULL;
1397 
1398 	return start_page;
1399 }
1400 
1401 /*
1402  * The order of subdivision here is critical for the IO subsystem.
1403  * Please do not alter this order without good reasons and regression
1404  * testing. Specifically, as large blocks of memory are subdivided,
1405  * the order in which smaller blocks are delivered depends on the order
1406  * they're subdivided in this function. This is the primary factor
1407  * influencing the order in which pages are delivered to the IO
1408  * subsystem according to empirical testing, and this is also justified
1409  * by considering the behavior of a buddy system containing a single
1410  * large block of memory acted on by a series of small allocations.
1411  * This behavior is a critical factor in sglist merging's success.
1412  *
1413  * -- nyc
1414  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1415 static inline void expand(struct zone *zone, struct page *page,
1416 	int low, int high, int migratetype)
1417 {
1418 	unsigned long size = 1 << high;
1419 
1420 	while (high > low) {
1421 		high--;
1422 		size >>= 1;
1423 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1424 
1425 		/*
1426 		 * Mark as guard pages (or page), that will allow to
1427 		 * merge back to allocator when buddy will be freed.
1428 		 * Corresponding page table entries will not be touched,
1429 		 * pages will stay not present in virtual address space
1430 		 */
1431 		if (set_page_guard(zone, &page[size], high, migratetype))
1432 			continue;
1433 
1434 		add_to_free_list(&page[size], zone, high, migratetype);
1435 		set_buddy_order(&page[size], high);
1436 	}
1437 }
1438 
check_new_page_bad(struct page * page)1439 static void check_new_page_bad(struct page *page)
1440 {
1441 	if (unlikely(page->flags & __PG_HWPOISON)) {
1442 		/* Don't complain about hwpoisoned pages */
1443 		page_mapcount_reset(page); /* remove PageBuddy */
1444 		return;
1445 	}
1446 
1447 	bad_page(page,
1448 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1449 }
1450 
1451 /*
1452  * This page is about to be returned from the page allocator
1453  */
check_new_page(struct page * page)1454 static int check_new_page(struct page *page)
1455 {
1456 	if (likely(page_expected_state(page,
1457 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1458 		return 0;
1459 
1460 	check_new_page_bad(page);
1461 	return 1;
1462 }
1463 
check_new_pages(struct page * page,unsigned int order)1464 static inline bool check_new_pages(struct page *page, unsigned int order)
1465 {
1466 	if (is_check_pages_enabled()) {
1467 		for (int i = 0; i < (1 << order); i++) {
1468 			struct page *p = page + i;
1469 
1470 			if (check_new_page(p))
1471 				return true;
1472 		}
1473 	}
1474 
1475 	return false;
1476 }
1477 
should_skip_kasan_unpoison(gfp_t flags)1478 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1479 {
1480 	/* Don't skip if a software KASAN mode is enabled. */
1481 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1482 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1483 		return false;
1484 
1485 	/* Skip, if hardware tag-based KASAN is not enabled. */
1486 	if (!kasan_hw_tags_enabled())
1487 		return true;
1488 
1489 	/*
1490 	 * With hardware tag-based KASAN enabled, skip if this has been
1491 	 * requested via __GFP_SKIP_KASAN.
1492 	 */
1493 	return flags & __GFP_SKIP_KASAN;
1494 }
1495 
should_skip_init(gfp_t flags)1496 static inline bool should_skip_init(gfp_t flags)
1497 {
1498 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1499 	if (!kasan_hw_tags_enabled())
1500 		return false;
1501 
1502 	/* For hardware tag-based KASAN, skip if requested. */
1503 	return (flags & __GFP_SKIP_ZERO);
1504 }
1505 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1506 inline void post_alloc_hook(struct page *page, unsigned int order,
1507 				gfp_t gfp_flags)
1508 {
1509 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1510 			!should_skip_init(gfp_flags);
1511 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1512 	int i;
1513 
1514 	set_page_private(page, 0);
1515 	set_page_refcounted(page);
1516 
1517 	arch_alloc_page(page, order);
1518 	debug_pagealloc_map_pages(page, 1 << order);
1519 
1520 	/*
1521 	 * Page unpoisoning must happen before memory initialization.
1522 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1523 	 * allocations and the page unpoisoning code will complain.
1524 	 */
1525 	kernel_unpoison_pages(page, 1 << order);
1526 
1527 	/*
1528 	 * As memory initialization might be integrated into KASAN,
1529 	 * KASAN unpoisoning and memory initializion code must be
1530 	 * kept together to avoid discrepancies in behavior.
1531 	 */
1532 
1533 	/*
1534 	 * If memory tags should be zeroed
1535 	 * (which happens only when memory should be initialized as well).
1536 	 */
1537 	if (zero_tags) {
1538 		/* Initialize both memory and memory tags. */
1539 		for (i = 0; i != 1 << order; ++i)
1540 			tag_clear_highpage(page + i);
1541 
1542 		/* Take note that memory was initialized by the loop above. */
1543 		init = false;
1544 	}
1545 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1546 	    kasan_unpoison_pages(page, order, init)) {
1547 		/* Take note that memory was initialized by KASAN. */
1548 		if (kasan_has_integrated_init())
1549 			init = false;
1550 	} else {
1551 		/*
1552 		 * If memory tags have not been set by KASAN, reset the page
1553 		 * tags to ensure page_address() dereferencing does not fault.
1554 		 */
1555 		for (i = 0; i != 1 << order; ++i)
1556 			page_kasan_tag_reset(page + i);
1557 	}
1558 	/* If memory is still not initialized, initialize it now. */
1559 	if (init)
1560 		kernel_init_pages(page, 1 << order);
1561 
1562 	set_page_owner(page, order, gfp_flags);
1563 	page_table_check_alloc(page, order);
1564 }
1565 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1566 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1567 							unsigned int alloc_flags)
1568 {
1569 	post_alloc_hook(page, order, gfp_flags);
1570 
1571 	if (order && (gfp_flags & __GFP_COMP))
1572 		prep_compound_page(page, order);
1573 
1574 	/*
1575 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1576 	 * allocate the page. The expectation is that the caller is taking
1577 	 * steps that will free more memory. The caller should avoid the page
1578 	 * being used for !PFMEMALLOC purposes.
1579 	 */
1580 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1581 		set_page_pfmemalloc(page);
1582 	else
1583 		clear_page_pfmemalloc(page);
1584 }
1585 
1586 /*
1587  * Go through the free lists for the given migratetype and remove
1588  * the smallest available page from the freelists
1589  */
1590 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1591 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1592 						int migratetype)
1593 {
1594 	unsigned int current_order;
1595 	struct free_area *area;
1596 	struct page *page;
1597 
1598 	/* Find a page of the appropriate size in the preferred list */
1599 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1600 		area = &(zone->free_area[current_order]);
1601 		page = get_page_from_free_area(area, migratetype);
1602 		if (!page)
1603 			continue;
1604 		del_page_from_free_list(page, zone, current_order);
1605 		expand(zone, page, order, current_order, migratetype);
1606 		set_pcppage_migratetype(page, migratetype);
1607 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1608 				pcp_allowed_order(order) &&
1609 				migratetype < MIGRATE_PCPTYPES);
1610 		return page;
1611 	}
1612 
1613 	return NULL;
1614 }
1615 
1616 
1617 /*
1618  * This array describes the order lists are fallen back to when
1619  * the free lists for the desirable migrate type are depleted
1620  *
1621  * The other migratetypes do not have fallbacks.
1622  */
1623 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1624 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1625 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1626 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1627 };
1628 
1629 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1630 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1631 					unsigned int order)
1632 {
1633 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1634 }
1635 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1636 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1637 					unsigned int order) { return NULL; }
1638 #endif
1639 
1640 /*
1641  * Move the free pages in a range to the freelist tail of the requested type.
1642  * Note that start_page and end_pages are not aligned on a pageblock
1643  * boundary. If alignment is required, use move_freepages_block()
1644  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1645 static int move_freepages(struct zone *zone,
1646 			  unsigned long start_pfn, unsigned long end_pfn,
1647 			  int migratetype, int *num_movable)
1648 {
1649 	struct page *page;
1650 	unsigned long pfn;
1651 	unsigned int order;
1652 	int pages_moved = 0;
1653 
1654 	for (pfn = start_pfn; pfn <= end_pfn;) {
1655 		page = pfn_to_page(pfn);
1656 		if (!PageBuddy(page)) {
1657 			/*
1658 			 * We assume that pages that could be isolated for
1659 			 * migration are movable. But we don't actually try
1660 			 * isolating, as that would be expensive.
1661 			 */
1662 			if (num_movable &&
1663 					(PageLRU(page) || __PageMovable(page)))
1664 				(*num_movable)++;
1665 			pfn++;
1666 			continue;
1667 		}
1668 
1669 		/* Make sure we are not inadvertently changing nodes */
1670 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1671 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1672 
1673 		order = buddy_order(page);
1674 		move_to_free_list(page, zone, order, migratetype);
1675 		pfn += 1 << order;
1676 		pages_moved += 1 << order;
1677 	}
1678 
1679 	return pages_moved;
1680 }
1681 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1682 int move_freepages_block(struct zone *zone, struct page *page,
1683 				int migratetype, int *num_movable)
1684 {
1685 	unsigned long start_pfn, end_pfn, pfn;
1686 
1687 	if (num_movable)
1688 		*num_movable = 0;
1689 
1690 	pfn = page_to_pfn(page);
1691 	start_pfn = pageblock_start_pfn(pfn);
1692 	end_pfn = pageblock_end_pfn(pfn) - 1;
1693 
1694 	/* Do not cross zone boundaries */
1695 	if (!zone_spans_pfn(zone, start_pfn))
1696 		start_pfn = pfn;
1697 	if (!zone_spans_pfn(zone, end_pfn))
1698 		return 0;
1699 
1700 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1701 								num_movable);
1702 }
1703 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1704 static void change_pageblock_range(struct page *pageblock_page,
1705 					int start_order, int migratetype)
1706 {
1707 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1708 
1709 	while (nr_pageblocks--) {
1710 		set_pageblock_migratetype(pageblock_page, migratetype);
1711 		pageblock_page += pageblock_nr_pages;
1712 	}
1713 }
1714 
1715 /*
1716  * When we are falling back to another migratetype during allocation, try to
1717  * steal extra free pages from the same pageblocks to satisfy further
1718  * allocations, instead of polluting multiple pageblocks.
1719  *
1720  * If we are stealing a relatively large buddy page, it is likely there will
1721  * be more free pages in the pageblock, so try to steal them all. For
1722  * reclaimable and unmovable allocations, we steal regardless of page size,
1723  * as fragmentation caused by those allocations polluting movable pageblocks
1724  * is worse than movable allocations stealing from unmovable and reclaimable
1725  * pageblocks.
1726  */
can_steal_fallback(unsigned int order,int start_mt)1727 static bool can_steal_fallback(unsigned int order, int start_mt)
1728 {
1729 	/*
1730 	 * Leaving this order check is intended, although there is
1731 	 * relaxed order check in next check. The reason is that
1732 	 * we can actually steal whole pageblock if this condition met,
1733 	 * but, below check doesn't guarantee it and that is just heuristic
1734 	 * so could be changed anytime.
1735 	 */
1736 	if (order >= pageblock_order)
1737 		return true;
1738 
1739 	if (order >= pageblock_order / 2 ||
1740 		start_mt == MIGRATE_RECLAIMABLE ||
1741 		start_mt == MIGRATE_UNMOVABLE ||
1742 		page_group_by_mobility_disabled)
1743 		return true;
1744 
1745 	return false;
1746 }
1747 
boost_watermark(struct zone * zone)1748 static inline bool boost_watermark(struct zone *zone)
1749 {
1750 	unsigned long max_boost;
1751 
1752 	if (!watermark_boost_factor)
1753 		return false;
1754 	/*
1755 	 * Don't bother in zones that are unlikely to produce results.
1756 	 * On small machines, including kdump capture kernels running
1757 	 * in a small area, boosting the watermark can cause an out of
1758 	 * memory situation immediately.
1759 	 */
1760 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1761 		return false;
1762 
1763 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1764 			watermark_boost_factor, 10000);
1765 
1766 	/*
1767 	 * high watermark may be uninitialised if fragmentation occurs
1768 	 * very early in boot so do not boost. We do not fall
1769 	 * through and boost by pageblock_nr_pages as failing
1770 	 * allocations that early means that reclaim is not going
1771 	 * to help and it may even be impossible to reclaim the
1772 	 * boosted watermark resulting in a hang.
1773 	 */
1774 	if (!max_boost)
1775 		return false;
1776 
1777 	max_boost = max(pageblock_nr_pages, max_boost);
1778 
1779 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1780 		max_boost);
1781 
1782 	return true;
1783 }
1784 
1785 /*
1786  * This function implements actual steal behaviour. If order is large enough,
1787  * we can steal whole pageblock. If not, we first move freepages in this
1788  * pageblock to our migratetype and determine how many already-allocated pages
1789  * are there in the pageblock with a compatible migratetype. If at least half
1790  * of pages are free or compatible, we can change migratetype of the pageblock
1791  * itself, so pages freed in the future will be put on the correct free list.
1792  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1793 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1794 		unsigned int alloc_flags, int start_type, bool whole_block)
1795 {
1796 	unsigned int current_order = buddy_order(page);
1797 	int free_pages, movable_pages, alike_pages;
1798 	int old_block_type;
1799 
1800 	old_block_type = get_pageblock_migratetype(page);
1801 
1802 	/*
1803 	 * This can happen due to races and we want to prevent broken
1804 	 * highatomic accounting.
1805 	 */
1806 	if (is_migrate_highatomic(old_block_type))
1807 		goto single_page;
1808 
1809 	/* Take ownership for orders >= pageblock_order */
1810 	if (current_order >= pageblock_order) {
1811 		change_pageblock_range(page, current_order, start_type);
1812 		goto single_page;
1813 	}
1814 
1815 	/*
1816 	 * Boost watermarks to increase reclaim pressure to reduce the
1817 	 * likelihood of future fallbacks. Wake kswapd now as the node
1818 	 * may be balanced overall and kswapd will not wake naturally.
1819 	 */
1820 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1821 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1822 
1823 	/* We are not allowed to try stealing from the whole block */
1824 	if (!whole_block)
1825 		goto single_page;
1826 
1827 	free_pages = move_freepages_block(zone, page, start_type,
1828 						&movable_pages);
1829 	/* moving whole block can fail due to zone boundary conditions */
1830 	if (!free_pages)
1831 		goto single_page;
1832 
1833 	/*
1834 	 * Determine how many pages are compatible with our allocation.
1835 	 * For movable allocation, it's the number of movable pages which
1836 	 * we just obtained. For other types it's a bit more tricky.
1837 	 */
1838 	if (start_type == MIGRATE_MOVABLE) {
1839 		alike_pages = movable_pages;
1840 	} else {
1841 		/*
1842 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1843 		 * to MOVABLE pageblock, consider all non-movable pages as
1844 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1845 		 * vice versa, be conservative since we can't distinguish the
1846 		 * exact migratetype of non-movable pages.
1847 		 */
1848 		if (old_block_type == MIGRATE_MOVABLE)
1849 			alike_pages = pageblock_nr_pages
1850 						- (free_pages + movable_pages);
1851 		else
1852 			alike_pages = 0;
1853 	}
1854 	/*
1855 	 * If a sufficient number of pages in the block are either free or of
1856 	 * compatible migratability as our allocation, claim the whole block.
1857 	 */
1858 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1859 			page_group_by_mobility_disabled)
1860 		set_pageblock_migratetype(page, start_type);
1861 
1862 	return;
1863 
1864 single_page:
1865 	move_to_free_list(page, zone, current_order, start_type);
1866 }
1867 
1868 /*
1869  * Check whether there is a suitable fallback freepage with requested order.
1870  * If only_stealable is true, this function returns fallback_mt only if
1871  * we can steal other freepages all together. This would help to reduce
1872  * fragmentation due to mixed migratetype pages in one pageblock.
1873  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1874 int find_suitable_fallback(struct free_area *area, unsigned int order,
1875 			int migratetype, bool only_stealable, bool *can_steal)
1876 {
1877 	int i;
1878 	int fallback_mt;
1879 
1880 	if (area->nr_free == 0)
1881 		return -1;
1882 
1883 	*can_steal = false;
1884 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1885 		fallback_mt = fallbacks[migratetype][i];
1886 		if (free_area_empty(area, fallback_mt))
1887 			continue;
1888 
1889 		if (can_steal_fallback(order, migratetype))
1890 			*can_steal = true;
1891 
1892 		if (!only_stealable)
1893 			return fallback_mt;
1894 
1895 		if (*can_steal)
1896 			return fallback_mt;
1897 	}
1898 
1899 	return -1;
1900 }
1901 
1902 /*
1903  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1904  * there are no empty page blocks that contain a page with a suitable order
1905  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1906 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1907 {
1908 	int mt;
1909 	unsigned long max_managed, flags;
1910 
1911 	/*
1912 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1913 	 * Check is race-prone but harmless.
1914 	 */
1915 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1916 	if (zone->nr_reserved_highatomic >= max_managed)
1917 		return;
1918 
1919 	spin_lock_irqsave(&zone->lock, flags);
1920 
1921 	/* Recheck the nr_reserved_highatomic limit under the lock */
1922 	if (zone->nr_reserved_highatomic >= max_managed)
1923 		goto out_unlock;
1924 
1925 	/* Yoink! */
1926 	mt = get_pageblock_migratetype(page);
1927 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1928 	if (migratetype_is_mergeable(mt)) {
1929 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1930 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1931 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1932 	}
1933 
1934 out_unlock:
1935 	spin_unlock_irqrestore(&zone->lock, flags);
1936 }
1937 
1938 /*
1939  * Used when an allocation is about to fail under memory pressure. This
1940  * potentially hurts the reliability of high-order allocations when under
1941  * intense memory pressure but failed atomic allocations should be easier
1942  * to recover from than an OOM.
1943  *
1944  * If @force is true, try to unreserve a pageblock even though highatomic
1945  * pageblock is exhausted.
1946  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1947 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1948 						bool force)
1949 {
1950 	struct zonelist *zonelist = ac->zonelist;
1951 	unsigned long flags;
1952 	struct zoneref *z;
1953 	struct zone *zone;
1954 	struct page *page;
1955 	int order;
1956 	bool ret;
1957 
1958 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1959 								ac->nodemask) {
1960 		/*
1961 		 * Preserve at least one pageblock unless memory pressure
1962 		 * is really high.
1963 		 */
1964 		if (!force && zone->nr_reserved_highatomic <=
1965 					pageblock_nr_pages)
1966 			continue;
1967 
1968 		spin_lock_irqsave(&zone->lock, flags);
1969 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1970 			struct free_area *area = &(zone->free_area[order]);
1971 
1972 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1973 			if (!page)
1974 				continue;
1975 
1976 			/*
1977 			 * In page freeing path, migratetype change is racy so
1978 			 * we can counter several free pages in a pageblock
1979 			 * in this loop although we changed the pageblock type
1980 			 * from highatomic to ac->migratetype. So we should
1981 			 * adjust the count once.
1982 			 */
1983 			if (is_migrate_highatomic_page(page)) {
1984 				/*
1985 				 * It should never happen but changes to
1986 				 * locking could inadvertently allow a per-cpu
1987 				 * drain to add pages to MIGRATE_HIGHATOMIC
1988 				 * while unreserving so be safe and watch for
1989 				 * underflows.
1990 				 */
1991 				zone->nr_reserved_highatomic -= min(
1992 						pageblock_nr_pages,
1993 						zone->nr_reserved_highatomic);
1994 			}
1995 
1996 			/*
1997 			 * Convert to ac->migratetype and avoid the normal
1998 			 * pageblock stealing heuristics. Minimally, the caller
1999 			 * is doing the work and needs the pages. More
2000 			 * importantly, if the block was always converted to
2001 			 * MIGRATE_UNMOVABLE or another type then the number
2002 			 * of pageblocks that cannot be completely freed
2003 			 * may increase.
2004 			 */
2005 			set_pageblock_migratetype(page, ac->migratetype);
2006 			ret = move_freepages_block(zone, page, ac->migratetype,
2007 									NULL);
2008 			if (ret) {
2009 				spin_unlock_irqrestore(&zone->lock, flags);
2010 				return ret;
2011 			}
2012 		}
2013 		spin_unlock_irqrestore(&zone->lock, flags);
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 /*
2020  * Try finding a free buddy page on the fallback list and put it on the free
2021  * list of requested migratetype, possibly along with other pages from the same
2022  * block, depending on fragmentation avoidance heuristics. Returns true if
2023  * fallback was found so that __rmqueue_smallest() can grab it.
2024  *
2025  * The use of signed ints for order and current_order is a deliberate
2026  * deviation from the rest of this file, to make the for loop
2027  * condition simpler.
2028  */
2029 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2030 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2031 						unsigned int alloc_flags)
2032 {
2033 	struct free_area *area;
2034 	int current_order;
2035 	int min_order = order;
2036 	struct page *page;
2037 	int fallback_mt;
2038 	bool can_steal;
2039 
2040 	/*
2041 	 * Do not steal pages from freelists belonging to other pageblocks
2042 	 * i.e. orders < pageblock_order. If there are no local zones free,
2043 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2044 	 */
2045 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2046 		min_order = pageblock_order;
2047 
2048 	/*
2049 	 * Find the largest available free page in the other list. This roughly
2050 	 * approximates finding the pageblock with the most free pages, which
2051 	 * would be too costly to do exactly.
2052 	 */
2053 	for (current_order = MAX_ORDER; current_order >= min_order;
2054 				--current_order) {
2055 		area = &(zone->free_area[current_order]);
2056 		fallback_mt = find_suitable_fallback(area, current_order,
2057 				start_migratetype, false, &can_steal);
2058 		if (fallback_mt == -1)
2059 			continue;
2060 
2061 		/*
2062 		 * We cannot steal all free pages from the pageblock and the
2063 		 * requested migratetype is movable. In that case it's better to
2064 		 * steal and split the smallest available page instead of the
2065 		 * largest available page, because even if the next movable
2066 		 * allocation falls back into a different pageblock than this
2067 		 * one, it won't cause permanent fragmentation.
2068 		 */
2069 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2070 					&& current_order > order)
2071 			goto find_smallest;
2072 
2073 		goto do_steal;
2074 	}
2075 
2076 	return false;
2077 
2078 find_smallest:
2079 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2080 		area = &(zone->free_area[current_order]);
2081 		fallback_mt = find_suitable_fallback(area, current_order,
2082 				start_migratetype, false, &can_steal);
2083 		if (fallback_mt != -1)
2084 			break;
2085 	}
2086 
2087 	/*
2088 	 * This should not happen - we already found a suitable fallback
2089 	 * when looking for the largest page.
2090 	 */
2091 	VM_BUG_ON(current_order > MAX_ORDER);
2092 
2093 do_steal:
2094 	page = get_page_from_free_area(area, fallback_mt);
2095 
2096 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2097 								can_steal);
2098 
2099 	trace_mm_page_alloc_extfrag(page, order, current_order,
2100 		start_migratetype, fallback_mt);
2101 
2102 	return true;
2103 
2104 }
2105 
2106 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2107 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2108 					int migratetype, unsigned int alloc_flags)
2109 {
2110     struct page *page = NULL;
2111 retry:
2112 	page = __rmqueue_smallest(zone, order, migratetype);
2113 
2114     if (unlikely(!page) && is_migrate_cma(migratetype)) {
2115         migratetype = MIGRATE_MOVABLE;
2116         alloc_flags &= ~ALLOC_CMA;
2117         page = __rmqueue_smallest(zone, order, migratetype);
2118     }
2119 
2120     if (unlikely(!page) &&
2121 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2122         goto retry;
2123 
2124     return page;
2125 }
2126 
2127 /*
2128  * Do the hard work of removing an element from the buddy allocator.
2129  * Call me with the zone->lock already held.
2130  */
2131 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2132 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2133 						unsigned int alloc_flags)
2134 {
2135 	struct page *page;
2136 
2137 #ifdef CONFIG_CMA_REUSE
2138 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2139 	if (page)
2140 		return page;
2141 #endif
2142 
2143 	if (IS_ENABLED(CONFIG_CMA)) {
2144 		/*
2145 		 * Balance movable allocations between regular and CMA areas by
2146 		 * allocating from CMA when over half of the zone's free memory
2147 		 * is in the CMA area.
2148 		 */
2149 		if (alloc_flags & ALLOC_CMA &&
2150 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2151 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2152 			page = __rmqueue_cma_fallback(zone, order);
2153 			if (page)
2154 				return page;
2155 		}
2156 	}
2157 retry:
2158 	page = __rmqueue_smallest(zone, order, migratetype);
2159 	if (unlikely(!page)) {
2160 		if (alloc_flags & ALLOC_CMA)
2161 			page = __rmqueue_cma_fallback(zone, order);
2162 
2163 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2164 								alloc_flags))
2165 			goto retry;
2166 	}
2167 	return page;
2168 }
2169 
2170 /*
2171  * Obtain a specified number of elements from the buddy allocator, all under
2172  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2173  * Returns the number of new pages which were placed at *list.
2174  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2175 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2176 			unsigned long count, struct list_head *list,
2177 			int migratetype, unsigned int alloc_flags)
2178 {
2179 	unsigned long flags;
2180 	int i;
2181 
2182 	spin_lock_irqsave(&zone->lock, flags);
2183 	for (i = 0; i < count; ++i) {
2184 		struct page *page = __rmqueue(zone, order, migratetype,
2185 								alloc_flags);
2186 		if (unlikely(page == NULL))
2187 			break;
2188 
2189 		/*
2190 		 * Split buddy pages returned by expand() are received here in
2191 		 * physical page order. The page is added to the tail of
2192 		 * caller's list. From the callers perspective, the linked list
2193 		 * is ordered by page number under some conditions. This is
2194 		 * useful for IO devices that can forward direction from the
2195 		 * head, thus also in the physical page order. This is useful
2196 		 * for IO devices that can merge IO requests if the physical
2197 		 * pages are ordered properly.
2198 		 */
2199 		list_add_tail(&page->pcp_list, list);
2200 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2201 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2202 					      -(1 << order));
2203 	}
2204 
2205 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 	spin_unlock_irqrestore(&zone->lock, flags);
2207 
2208 	return i;
2209 }
2210 
2211 #ifdef CONFIG_NUMA
2212 /*
2213  * Called from the vmstat counter updater to drain pagesets of this
2214  * currently executing processor on remote nodes after they have
2215  * expired.
2216  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2217 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2218 {
2219 	int to_drain, batch;
2220 
2221 	batch = READ_ONCE(pcp->batch);
2222 	to_drain = min(pcp->count, batch);
2223 	if (to_drain > 0) {
2224 		spin_lock(&pcp->lock);
2225 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2226 		spin_unlock(&pcp->lock);
2227 	}
2228 }
2229 #endif
2230 
2231 /*
2232  * Drain pcplists of the indicated processor and zone.
2233  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2234 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2235 {
2236 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2237 	int count;
2238 
2239 	do {
2240 		spin_lock(&pcp->lock);
2241 		count = pcp->count;
2242 		if (count) {
2243 			int to_drain = min(count,
2244 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2245 
2246 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2247 			count -= to_drain;
2248 		}
2249 		spin_unlock(&pcp->lock);
2250 	} while (count);
2251 }
2252 
2253 /*
2254  * Drain pcplists of all zones on the indicated processor.
2255  */
drain_pages(unsigned int cpu)2256 static void drain_pages(unsigned int cpu)
2257 {
2258 	struct zone *zone;
2259 
2260 	for_each_populated_zone(zone) {
2261 		drain_pages_zone(cpu, zone);
2262 	}
2263 }
2264 
2265 /*
2266  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2267  */
drain_local_pages(struct zone * zone)2268 void drain_local_pages(struct zone *zone)
2269 {
2270 	int cpu = smp_processor_id();
2271 
2272 	if (zone)
2273 		drain_pages_zone(cpu, zone);
2274 	else
2275 		drain_pages(cpu);
2276 }
2277 
2278 /*
2279  * The implementation of drain_all_pages(), exposing an extra parameter to
2280  * drain on all cpus.
2281  *
2282  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2283  * not empty. The check for non-emptiness can however race with a free to
2284  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2285  * that need the guarantee that every CPU has drained can disable the
2286  * optimizing racy check.
2287  */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2288 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2289 {
2290 	int cpu;
2291 
2292 	/*
2293 	 * Allocate in the BSS so we won't require allocation in
2294 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2295 	 */
2296 	static cpumask_t cpus_with_pcps;
2297 
2298 	/*
2299 	 * Do not drain if one is already in progress unless it's specific to
2300 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2301 	 * the drain to be complete when the call returns.
2302 	 */
2303 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2304 		if (!zone)
2305 			return;
2306 		mutex_lock(&pcpu_drain_mutex);
2307 	}
2308 
2309 	/*
2310 	 * We don't care about racing with CPU hotplug event
2311 	 * as offline notification will cause the notified
2312 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2313 	 * disables preemption as part of its processing
2314 	 */
2315 	for_each_online_cpu(cpu) {
2316 		struct per_cpu_pages *pcp;
2317 		struct zone *z;
2318 		bool has_pcps = false;
2319 
2320 		if (force_all_cpus) {
2321 			/*
2322 			 * The pcp.count check is racy, some callers need a
2323 			 * guarantee that no cpu is missed.
2324 			 */
2325 			has_pcps = true;
2326 		} else if (zone) {
2327 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2328 			if (pcp->count)
2329 				has_pcps = true;
2330 		} else {
2331 			for_each_populated_zone(z) {
2332 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2333 				if (pcp->count) {
2334 					has_pcps = true;
2335 					break;
2336 				}
2337 			}
2338 		}
2339 
2340 		if (has_pcps)
2341 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 		else
2343 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 	}
2345 
2346 	for_each_cpu(cpu, &cpus_with_pcps) {
2347 		if (zone)
2348 			drain_pages_zone(cpu, zone);
2349 		else
2350 			drain_pages(cpu);
2351 	}
2352 
2353 	mutex_unlock(&pcpu_drain_mutex);
2354 }
2355 
2356 /*
2357  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2358  *
2359  * When zone parameter is non-NULL, spill just the single zone's pages.
2360  */
drain_all_pages(struct zone * zone)2361 void drain_all_pages(struct zone *zone)
2362 {
2363 	__drain_all_pages(zone, false);
2364 }
2365 
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2366 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2367 							unsigned int order)
2368 {
2369 	int migratetype;
2370 
2371 	if (!free_pages_prepare(page, order, FPI_NONE))
2372 		return false;
2373 
2374 	migratetype = get_pfnblock_migratetype(page, pfn);
2375 	set_pcppage_migratetype(page, migratetype);
2376 	return true;
2377 }
2378 
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2379 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2380 {
2381 	int min_nr_free, max_nr_free;
2382 	int batch = READ_ONCE(pcp->batch);
2383 
2384 	/* Free everything if batch freeing high-order pages. */
2385 	if (unlikely(free_high))
2386 		return pcp->count;
2387 
2388 	/* Check for PCP disabled or boot pageset */
2389 	if (unlikely(high < batch))
2390 		return 1;
2391 
2392 	/* Leave at least pcp->batch pages on the list */
2393 	min_nr_free = batch;
2394 	max_nr_free = high - batch;
2395 
2396 	/*
2397 	 * Double the number of pages freed each time there is subsequent
2398 	 * freeing of pages without any allocation.
2399 	 */
2400 	batch <<= pcp->free_factor;
2401 	if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2402 		pcp->free_factor++;
2403 	batch = clamp(batch, min_nr_free, max_nr_free);
2404 
2405 	return batch;
2406 }
2407 
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2408 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2409 		       bool free_high)
2410 {
2411 	int high = READ_ONCE(pcp->high);
2412 
2413 	if (unlikely(!high || free_high))
2414 		return 0;
2415 
2416 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2417 		return high;
2418 
2419 	/*
2420 	 * If reclaim is active, limit the number of pages that can be
2421 	 * stored on pcp lists
2422 	 */
2423 	return min(READ_ONCE(pcp->batch) << 2, high);
2424 }
2425 
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2426 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2427 				   struct page *page, int migratetype,
2428 				   unsigned int order)
2429 {
2430 	int high;
2431 	int pindex;
2432 	bool free_high;
2433 
2434 	__count_vm_events(PGFREE, 1 << order);
2435 	pindex = order_to_pindex(migratetype, order);
2436 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2437 	pcp->count += 1 << order;
2438 
2439 	/*
2440 	 * As high-order pages other than THP's stored on PCP can contribute
2441 	 * to fragmentation, limit the number stored when PCP is heavily
2442 	 * freeing without allocation. The remainder after bulk freeing
2443 	 * stops will be drained from vmstat refresh context.
2444 	 */
2445 	free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2446 
2447 	high = nr_pcp_high(pcp, zone, free_high);
2448 	if (pcp->count >= high) {
2449 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2450 	}
2451 }
2452 
2453 /*
2454  * Free a pcp page
2455  */
free_unref_page(struct page * page,unsigned int order)2456 void free_unref_page(struct page *page, unsigned int order)
2457 {
2458 	unsigned long __maybe_unused UP_flags;
2459 	struct per_cpu_pages *pcp;
2460 	struct zone *zone;
2461 	unsigned long pfn = page_to_pfn(page);
2462 	int migratetype, pcpmigratetype;
2463 
2464 	if (!free_unref_page_prepare(page, pfn, order))
2465 		return;
2466 
2467 	/*
2468 	 * We only track unmovable, reclaimable and movable on pcp lists.
2469 	 * Place ISOLATE pages on the isolated list because they are being
2470 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2471 	 * get those areas back if necessary. Otherwise, we may have to free
2472 	 * excessively into the page allocator
2473 	 */
2474 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2475 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2476 		if (unlikely(is_migrate_isolate(migratetype))) {
2477 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2478 			return;
2479 		}
2480 		pcpmigratetype = MIGRATE_MOVABLE;
2481 	}
2482 
2483 	zone = page_zone(page);
2484 	pcp_trylock_prepare(UP_flags);
2485 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2486 	if (pcp) {
2487 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2488 		pcp_spin_unlock(pcp);
2489 	} else {
2490 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2491 	}
2492 	pcp_trylock_finish(UP_flags);
2493 }
2494 
2495 /*
2496  * Free a list of 0-order pages
2497  */
free_unref_page_list(struct list_head * list)2498 void free_unref_page_list(struct list_head *list)
2499 {
2500 	unsigned long __maybe_unused UP_flags;
2501 	struct page *page, *next;
2502 	struct per_cpu_pages *pcp = NULL;
2503 	struct zone *locked_zone = NULL;
2504 	int batch_count = 0;
2505 	int migratetype;
2506 
2507 	/* Prepare pages for freeing */
2508 	list_for_each_entry_safe(page, next, list, lru) {
2509 		unsigned long pfn = page_to_pfn(page);
2510 		if (!free_unref_page_prepare(page, pfn, 0)) {
2511 			list_del(&page->lru);
2512 			continue;
2513 		}
2514 
2515 		/*
2516 		 * Free isolated pages directly to the allocator, see
2517 		 * comment in free_unref_page.
2518 		 */
2519 		migratetype = get_pcppage_migratetype(page);
2520 		if (unlikely(is_migrate_isolate(migratetype))) {
2521 			list_del(&page->lru);
2522 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2523 			continue;
2524 		}
2525 	}
2526 
2527 	list_for_each_entry_safe(page, next, list, lru) {
2528 		struct zone *zone = page_zone(page);
2529 
2530 		list_del(&page->lru);
2531 		migratetype = get_pcppage_migratetype(page);
2532 
2533 		/*
2534 		 * Either different zone requiring a different pcp lock or
2535 		 * excessive lock hold times when freeing a large list of
2536 		 * pages.
2537 		 */
2538 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2539 			if (pcp) {
2540 				pcp_spin_unlock(pcp);
2541 				pcp_trylock_finish(UP_flags);
2542 			}
2543 
2544 			batch_count = 0;
2545 
2546 			/*
2547 			 * trylock is necessary as pages may be getting freed
2548 			 * from IRQ or SoftIRQ context after an IO completion.
2549 			 */
2550 			pcp_trylock_prepare(UP_flags);
2551 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2552 			if (unlikely(!pcp)) {
2553 				pcp_trylock_finish(UP_flags);
2554 				free_one_page(zone, page, page_to_pfn(page),
2555 					      0, migratetype, FPI_NONE);
2556 				locked_zone = NULL;
2557 				continue;
2558 			}
2559 			locked_zone = zone;
2560 		}
2561 
2562 		/*
2563 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2564 		 * to the MIGRATE_MOVABLE pcp list.
2565 		 */
2566 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2567 			migratetype = MIGRATE_MOVABLE;
2568 
2569 		trace_mm_page_free_batched(page);
2570 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2571 		batch_count++;
2572 	}
2573 
2574 	if (pcp) {
2575 		pcp_spin_unlock(pcp);
2576 		pcp_trylock_finish(UP_flags);
2577 	}
2578 }
2579 
2580 /*
2581  * split_page takes a non-compound higher-order page, and splits it into
2582  * n (1<<order) sub-pages: page[0..n]
2583  * Each sub-page must be freed individually.
2584  *
2585  * Note: this is probably too low level an operation for use in drivers.
2586  * Please consult with lkml before using this in your driver.
2587  */
split_page(struct page * page,unsigned int order)2588 void split_page(struct page *page, unsigned int order)
2589 {
2590 	int i;
2591 
2592 	VM_BUG_ON_PAGE(PageCompound(page), page);
2593 	VM_BUG_ON_PAGE(!page_count(page), page);
2594 
2595 	for (i = 1; i < (1 << order); i++)
2596 		set_page_refcounted(page + i);
2597 	split_page_owner(page, 1 << order);
2598 	split_page_memcg(page, 1 << order);
2599 }
2600 EXPORT_SYMBOL_GPL(split_page);
2601 
__isolate_free_page(struct page * page,unsigned int order)2602 int __isolate_free_page(struct page *page, unsigned int order)
2603 {
2604 	struct zone *zone = page_zone(page);
2605 	int mt = get_pageblock_migratetype(page);
2606 
2607 	if (!is_migrate_isolate(mt)) {
2608 		unsigned long watermark;
2609 		/*
2610 		 * Obey watermarks as if the page was being allocated. We can
2611 		 * emulate a high-order watermark check with a raised order-0
2612 		 * watermark, because we already know our high-order page
2613 		 * exists.
2614 		 */
2615 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2616 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2617 			return 0;
2618 
2619 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2620 	}
2621 
2622 	del_page_from_free_list(page, zone, order);
2623 
2624 	/*
2625 	 * Set the pageblock if the isolated page is at least half of a
2626 	 * pageblock
2627 	 */
2628 	if (order >= pageblock_order - 1) {
2629 		struct page *endpage = page + (1 << order) - 1;
2630 		for (; page < endpage; page += pageblock_nr_pages) {
2631 			int mt = get_pageblock_migratetype(page);
2632 			/*
2633 			 * Only change normal pageblocks (i.e., they can merge
2634 			 * with others)
2635 			 */
2636 			if (migratetype_is_mergeable(mt))
2637 				set_pageblock_migratetype(page,
2638 							  MIGRATE_MOVABLE);
2639 		}
2640 	}
2641 
2642 	return 1UL << order;
2643 }
2644 
2645 /**
2646  * __putback_isolated_page - Return a now-isolated page back where we got it
2647  * @page: Page that was isolated
2648  * @order: Order of the isolated page
2649  * @mt: The page's pageblock's migratetype
2650  *
2651  * This function is meant to return a page pulled from the free lists via
2652  * __isolate_free_page back to the free lists they were pulled from.
2653  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2654 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2655 {
2656 	struct zone *zone = page_zone(page);
2657 
2658 	/* zone lock should be held when this function is called */
2659 	lockdep_assert_held(&zone->lock);
2660 
2661 	/* Return isolated page to tail of freelist. */
2662 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2663 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2664 }
2665 
2666 /*
2667  * Update NUMA hit/miss statistics
2668  */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2670 				   long nr_account)
2671 {
2672 #ifdef CONFIG_NUMA
2673 	enum numa_stat_item local_stat = NUMA_LOCAL;
2674 
2675 	/* skip numa counters update if numa stats is disabled */
2676 	if (!static_branch_likely(&vm_numa_stat_key))
2677 		return;
2678 
2679 	if (zone_to_nid(z) != numa_node_id())
2680 		local_stat = NUMA_OTHER;
2681 
2682 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2683 		__count_numa_events(z, NUMA_HIT, nr_account);
2684 	else {
2685 		__count_numa_events(z, NUMA_MISS, nr_account);
2686 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2687 	}
2688 	__count_numa_events(z, local_stat, nr_account);
2689 #endif
2690 }
2691 
2692 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2693 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2694 			   unsigned int order, unsigned int alloc_flags,
2695 			   int migratetype)
2696 {
2697 	struct page *page;
2698 	unsigned long flags;
2699 
2700 	do {
2701 		page = NULL;
2702 		spin_lock_irqsave(&zone->lock, flags);
2703 		if (alloc_flags & ALLOC_HIGHATOMIC)
2704 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2705 		if (!page) {
2706 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2707 
2708 			/*
2709 			 * If the allocation fails, allow OOM handling and
2710 			 * order-0 (atomic) allocs access to HIGHATOMIC
2711 			 * reserves as failing now is worse than failing a
2712 			 * high-order atomic allocation in the future.
2713 			 */
2714 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2715 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2716 
2717 			if (!page) {
2718 				spin_unlock_irqrestore(&zone->lock, flags);
2719 				return NULL;
2720 			}
2721 		}
2722 		__mod_zone_freepage_state(zone, -(1 << order),
2723 					  get_pcppage_migratetype(page));
2724 		spin_unlock_irqrestore(&zone->lock, flags);
2725 	} while (check_new_pages(page, order));
2726 
2727 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2728 	zone_statistics(preferred_zone, zone, 1);
2729 
2730 	return page;
2731 }
2732 
2733 /* Remove page from the per-cpu list, caller must protect the list */
2734 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2735 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2736 			int migratetype,
2737 			unsigned int alloc_flags,
2738 			struct per_cpu_pages *pcp,
2739 			struct list_head *list)
2740 {
2741 	struct page *page;
2742 
2743 	do {
2744 		if (list_empty(list)) {
2745 			int batch = READ_ONCE(pcp->batch);
2746 			int alloced;
2747 
2748 			/*
2749 			 * Scale batch relative to order if batch implies
2750 			 * free pages can be stored on the PCP. Batch can
2751 			 * be 1 for small zones or for boot pagesets which
2752 			 * should never store free pages as the pages may
2753 			 * belong to arbitrary zones.
2754 			 */
2755 			if (batch > 1)
2756 				batch = max(batch >> order, 2);
2757 			alloced = rmqueue_bulk(zone, order,
2758 					batch, list,
2759 					migratetype, alloc_flags);
2760 
2761 			pcp->count += alloced << order;
2762 			if (unlikely(list_empty(list)))
2763 				return NULL;
2764 		}
2765 
2766 		page = list_first_entry(list, struct page, pcp_list);
2767 		list_del(&page->pcp_list);
2768 		pcp->count -= 1 << order;
2769 	} while (check_new_pages(page, order));
2770 
2771 	return page;
2772 }
2773 
2774 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2775 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2776 			struct zone *zone, unsigned int order,
2777 			int migratetype, unsigned int alloc_flags)
2778 {
2779 	struct per_cpu_pages *pcp;
2780 	struct list_head *list;
2781 	struct page *page;
2782 	unsigned long __maybe_unused UP_flags;
2783 
2784 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2785 	pcp_trylock_prepare(UP_flags);
2786 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2787 	if (!pcp) {
2788 		pcp_trylock_finish(UP_flags);
2789 		return NULL;
2790 	}
2791 
2792 	/*
2793 	 * On allocation, reduce the number of pages that are batch freed.
2794 	 * See nr_pcp_free() where free_factor is increased for subsequent
2795 	 * frees.
2796 	 */
2797 	pcp->free_factor >>= 1;
2798 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2799 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2800 	pcp_spin_unlock(pcp);
2801 	pcp_trylock_finish(UP_flags);
2802 	if (page) {
2803 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 		zone_statistics(preferred_zone, zone, 1);
2805 	}
2806 	return page;
2807 }
2808 
2809 /*
2810  * Allocate a page from the given zone.
2811  * Use pcplists for THP or "cheap" high-order allocations.
2812  */
2813 
2814 /*
2815  * Do not instrument rmqueue() with KMSAN. This function may call
2816  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2817  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2818  * may call rmqueue() again, which will result in a deadlock.
2819  */
2820 __no_sanitize_memory
2821 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2822 struct page *rmqueue(struct zone *preferred_zone,
2823 			struct zone *zone, unsigned int order,
2824 			gfp_t gfp_flags, unsigned int alloc_flags,
2825 			int migratetype)
2826 {
2827 	struct page *page;
2828 
2829 	/*
2830 	 * We most definitely don't want callers attempting to
2831 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2832 	 */
2833 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2834 
2835 	if (likely(pcp_allowed_order(order))) {
2836 		page = rmqueue_pcplist(preferred_zone, zone, order,
2837 				       migratetype, alloc_flags);
2838 		if (likely(page))
2839 			goto out;
2840 	}
2841 
2842 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2843 							migratetype);
2844 
2845 out:
2846 	/* Separate test+clear to avoid unnecessary atomics */
2847 	if ((alloc_flags & ALLOC_KSWAPD) &&
2848 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2849 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2850 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2851 	}
2852 
2853 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2854 	return page;
2855 }
2856 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2857 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2858 {
2859 	return __should_fail_alloc_page(gfp_mask, order);
2860 }
2861 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2862 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2863 static inline long __zone_watermark_unusable_free(struct zone *z,
2864 				unsigned int order, unsigned int alloc_flags)
2865 {
2866 	long unusable_free = (1 << order) - 1;
2867 
2868 	/*
2869 	 * If the caller does not have rights to reserves below the min
2870 	 * watermark then subtract the high-atomic reserves. This will
2871 	 * over-estimate the size of the atomic reserve but it avoids a search.
2872 	 */
2873 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2874 		unusable_free += z->nr_reserved_highatomic;
2875 
2876 #ifdef CONFIG_CMA
2877 	/* If allocation can't use CMA areas don't use free CMA pages */
2878 	if (!(alloc_flags & ALLOC_CMA))
2879 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2880 #endif
2881 
2882 	return unusable_free;
2883 }
2884 
2885 /*
2886  * Return true if free base pages are above 'mark'. For high-order checks it
2887  * will return true of the order-0 watermark is reached and there is at least
2888  * one free page of a suitable size. Checking now avoids taking the zone lock
2889  * to check in the allocation paths if no pages are free.
2890  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2891 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2892 			 int highest_zoneidx, unsigned int alloc_flags,
2893 			 long free_pages)
2894 {
2895 	long min = mark;
2896 	int o;
2897 
2898 	/* free_pages may go negative - that's OK */
2899 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2900 
2901 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2902 		/*
2903 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2904 		 * as OOM.
2905 		 */
2906 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2907 			min -= min / 2;
2908 
2909 			/*
2910 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2911 			 * access more reserves than just __GFP_HIGH. Other
2912 			 * non-blocking allocations requests such as GFP_NOWAIT
2913 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2914 			 * access to the min reserve.
2915 			 */
2916 			if (alloc_flags & ALLOC_NON_BLOCK)
2917 				min -= min / 4;
2918 		}
2919 
2920 		/*
2921 		 * OOM victims can try even harder than the normal reserve
2922 		 * users on the grounds that it's definitely going to be in
2923 		 * the exit path shortly and free memory. Any allocation it
2924 		 * makes during the free path will be small and short-lived.
2925 		 */
2926 		if (alloc_flags & ALLOC_OOM)
2927 			min -= min / 2;
2928 	}
2929 
2930 	/*
2931 	 * Check watermarks for an order-0 allocation request. If these
2932 	 * are not met, then a high-order request also cannot go ahead
2933 	 * even if a suitable page happened to be free.
2934 	 */
2935 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2936 		return false;
2937 
2938 	/* If this is an order-0 request then the watermark is fine */
2939 	if (!order)
2940 		return true;
2941 
2942 	/* For a high-order request, check at least one suitable page is free */
2943 	for (o = order; o < NR_PAGE_ORDERS; o++) {
2944 		struct free_area *area = &z->free_area[o];
2945 		int mt;
2946 
2947 		if (!area->nr_free)
2948 			continue;
2949 
2950 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2951 			if (!free_area_empty(area, mt))
2952 				return true;
2953 		}
2954 
2955 #ifdef CONFIG_CMA
2956 		if ((alloc_flags & ALLOC_CMA) &&
2957 		    !free_area_empty(area, MIGRATE_CMA)) {
2958 			return true;
2959 		}
2960 #endif
2961 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2962 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2963 			return true;
2964 		}
2965 	}
2966 	return false;
2967 }
2968 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2969 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2970 		      int highest_zoneidx, unsigned int alloc_flags)
2971 {
2972 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2973 					zone_page_state(z, NR_FREE_PAGES));
2974 }
2975 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2976 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2977 				unsigned long mark, int highest_zoneidx,
2978 				unsigned int alloc_flags, gfp_t gfp_mask)
2979 {
2980 	long free_pages;
2981 
2982 	free_pages = zone_page_state(z, NR_FREE_PAGES);
2983 
2984 	/*
2985 	 * Fast check for order-0 only. If this fails then the reserves
2986 	 * need to be calculated.
2987 	 */
2988 	if (!order) {
2989 		long usable_free;
2990 		long reserved;
2991 
2992 		usable_free = free_pages;
2993 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2994 
2995 		/* reserved may over estimate high-atomic reserves. */
2996 		usable_free -= min(usable_free, reserved);
2997 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2998 			return true;
2999 	}
3000 
3001 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3002 					free_pages))
3003 		return true;
3004 
3005 	/*
3006 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3007 	 * when checking the min watermark. The min watermark is the
3008 	 * point where boosting is ignored so that kswapd is woken up
3009 	 * when below the low watermark.
3010 	 */
3011 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3012 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3013 		mark = z->_watermark[WMARK_MIN];
3014 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3015 					alloc_flags, free_pages);
3016 	}
3017 
3018 	return false;
3019 }
3020 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3021 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3022 			unsigned long mark, int highest_zoneidx)
3023 {
3024 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3025 
3026 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3027 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3028 
3029 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3030 								free_pages);
3031 }
3032 
3033 #ifdef CONFIG_NUMA
3034 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3035 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3036 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3037 {
3038 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3039 				node_reclaim_distance;
3040 }
3041 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3042 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3043 {
3044 	return true;
3045 }
3046 #endif	/* CONFIG_NUMA */
3047 
3048 /*
3049  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3050  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3051  * premature use of a lower zone may cause lowmem pressure problems that
3052  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3053  * probably too small. It only makes sense to spread allocations to avoid
3054  * fragmentation between the Normal and DMA32 zones.
3055  */
3056 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3057 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3058 {
3059 	unsigned int alloc_flags;
3060 
3061 	/*
3062 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3063 	 * to save a branch.
3064 	 */
3065 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3066 
3067 #ifdef CONFIG_ZONE_DMA32
3068 	if (!zone)
3069 		return alloc_flags;
3070 
3071 	if (zone_idx(zone) != ZONE_NORMAL)
3072 		return alloc_flags;
3073 
3074 	/*
3075 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3076 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3077 	 * on UMA that if Normal is populated then so is DMA32.
3078 	 */
3079 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3080 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3081 		return alloc_flags;
3082 
3083 	alloc_flags |= ALLOC_NOFRAGMENT;
3084 #endif /* CONFIG_ZONE_DMA32 */
3085 	return alloc_flags;
3086 }
3087 
3088 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3089 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3090 						  unsigned int alloc_flags)
3091 {
3092 #ifdef CONFIG_CMA
3093 	if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3094 		alloc_flags |= ALLOC_CMA;
3095 #endif
3096 	return alloc_flags;
3097 }
3098 
3099 /*
3100  * get_page_from_freelist goes through the zonelist trying to allocate
3101  * a page.
3102  */
3103 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3104 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3105 						const struct alloc_context *ac)
3106 {
3107 	struct zoneref *z;
3108 	struct zone *zone;
3109 	struct pglist_data *last_pgdat = NULL;
3110 	bool last_pgdat_dirty_ok = false;
3111 	bool no_fallback;
3112 
3113 retry:
3114 	/*
3115 	 * Scan zonelist, looking for a zone with enough free.
3116 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3117 	 */
3118 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3119 	z = ac->preferred_zoneref;
3120 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3121 					ac->nodemask) {
3122 		struct page *page;
3123 		unsigned long mark;
3124 
3125 		if (cpusets_enabled() &&
3126 			(alloc_flags & ALLOC_CPUSET) &&
3127 			!__cpuset_zone_allowed(zone, gfp_mask))
3128 				continue;
3129 		/*
3130 		 * When allocating a page cache page for writing, we
3131 		 * want to get it from a node that is within its dirty
3132 		 * limit, such that no single node holds more than its
3133 		 * proportional share of globally allowed dirty pages.
3134 		 * The dirty limits take into account the node's
3135 		 * lowmem reserves and high watermark so that kswapd
3136 		 * should be able to balance it without having to
3137 		 * write pages from its LRU list.
3138 		 *
3139 		 * XXX: For now, allow allocations to potentially
3140 		 * exceed the per-node dirty limit in the slowpath
3141 		 * (spread_dirty_pages unset) before going into reclaim,
3142 		 * which is important when on a NUMA setup the allowed
3143 		 * nodes are together not big enough to reach the
3144 		 * global limit.  The proper fix for these situations
3145 		 * will require awareness of nodes in the
3146 		 * dirty-throttling and the flusher threads.
3147 		 */
3148 		if (ac->spread_dirty_pages) {
3149 			if (last_pgdat != zone->zone_pgdat) {
3150 				last_pgdat = zone->zone_pgdat;
3151 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3152 			}
3153 
3154 			if (!last_pgdat_dirty_ok)
3155 				continue;
3156 		}
3157 
3158 		if (no_fallback && nr_online_nodes > 1 &&
3159 		    zone != ac->preferred_zoneref->zone) {
3160 			int local_nid;
3161 
3162 			/*
3163 			 * If moving to a remote node, retry but allow
3164 			 * fragmenting fallbacks. Locality is more important
3165 			 * than fragmentation avoidance.
3166 			 */
3167 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3168 			if (zone_to_nid(zone) != local_nid) {
3169 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3170 				goto retry;
3171 			}
3172 		}
3173 
3174 		cond_accept_memory(zone, order);
3175 
3176 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3177 		if (!zone_watermark_fast(zone, order, mark,
3178 				       ac->highest_zoneidx, alloc_flags,
3179 				       gfp_mask)) {
3180 			int ret;
3181 
3182 			if (cond_accept_memory(zone, order))
3183 				goto try_this_zone;
3184 
3185 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3186 			/*
3187 			 * Watermark failed for this zone, but see if we can
3188 			 * grow this zone if it contains deferred pages.
3189 			 */
3190 			if (deferred_pages_enabled()) {
3191 				if (_deferred_grow_zone(zone, order))
3192 					goto try_this_zone;
3193 			}
3194 #endif
3195 			/* Checked here to keep the fast path fast */
3196 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3197 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3198 				goto try_this_zone;
3199 
3200 			if (!node_reclaim_enabled() ||
3201 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3202 				continue;
3203 
3204 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3205 			switch (ret) {
3206 			case NODE_RECLAIM_NOSCAN:
3207 				/* did not scan */
3208 				continue;
3209 			case NODE_RECLAIM_FULL:
3210 				/* scanned but unreclaimable */
3211 				continue;
3212 			default:
3213 				/* did we reclaim enough */
3214 				if (zone_watermark_ok(zone, order, mark,
3215 					ac->highest_zoneidx, alloc_flags))
3216 					goto try_this_zone;
3217 
3218 				continue;
3219 			}
3220 		}
3221 
3222 try_this_zone:
3223 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3224 				gfp_mask, alloc_flags, ac->migratetype);
3225 		if (page) {
3226 			prep_new_page(page, order, gfp_mask, alloc_flags);
3227 
3228 			/*
3229 			 * If this is a high-order atomic allocation then check
3230 			 * if the pageblock should be reserved for the future
3231 			 */
3232 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3233 				reserve_highatomic_pageblock(page, zone);
3234 
3235 			return page;
3236 		} else {
3237 			if (cond_accept_memory(zone, order))
3238 				goto try_this_zone;
3239 
3240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3241 			/* Try again if zone has deferred pages */
3242 			if (deferred_pages_enabled()) {
3243 				if (_deferred_grow_zone(zone, order))
3244 					goto try_this_zone;
3245 			}
3246 #endif
3247 		}
3248 	}
3249 
3250 	/*
3251 	 * It's possible on a UMA machine to get through all zones that are
3252 	 * fragmented. If avoiding fragmentation, reset and try again.
3253 	 */
3254 	if (no_fallback) {
3255 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3256 		goto retry;
3257 	}
3258 
3259 	return NULL;
3260 }
3261 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3262 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3263 {
3264 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3265 
3266 	/*
3267 	 * This documents exceptions given to allocations in certain
3268 	 * contexts that are allowed to allocate outside current's set
3269 	 * of allowed nodes.
3270 	 */
3271 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3272 		if (tsk_is_oom_victim(current) ||
3273 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3274 			filter &= ~SHOW_MEM_FILTER_NODES;
3275 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3276 		filter &= ~SHOW_MEM_FILTER_NODES;
3277 
3278 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3279 }
3280 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3281 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3282 {
3283 	struct va_format vaf;
3284 	va_list args;
3285 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3286 
3287 	if ((gfp_mask & __GFP_NOWARN) ||
3288 	     !__ratelimit(&nopage_rs) ||
3289 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3290 		return;
3291 
3292 	va_start(args, fmt);
3293 	vaf.fmt = fmt;
3294 	vaf.va = &args;
3295 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3296 			current->comm, &vaf, gfp_mask, &gfp_mask,
3297 			nodemask_pr_args(nodemask));
3298 	va_end(args);
3299 
3300 	cpuset_print_current_mems_allowed();
3301 	pr_cont("\n");
3302 	dump_stack();
3303 	warn_alloc_show_mem(gfp_mask, nodemask);
3304 }
3305 
3306 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3307 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3308 			      unsigned int alloc_flags,
3309 			      const struct alloc_context *ac)
3310 {
3311 	struct page *page;
3312 
3313 	page = get_page_from_freelist(gfp_mask, order,
3314 			alloc_flags|ALLOC_CPUSET, ac);
3315 	/*
3316 	 * fallback to ignore cpuset restriction if our nodes
3317 	 * are depleted
3318 	 */
3319 	if (!page)
3320 		page = get_page_from_freelist(gfp_mask, order,
3321 				alloc_flags, ac);
3322 
3323 	return page;
3324 }
3325 
3326 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3327 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3328 	const struct alloc_context *ac, unsigned long *did_some_progress)
3329 {
3330 	struct oom_control oc = {
3331 		.zonelist = ac->zonelist,
3332 		.nodemask = ac->nodemask,
3333 		.memcg = NULL,
3334 		.gfp_mask = gfp_mask,
3335 		.order = order,
3336 	};
3337 	struct page *page;
3338 
3339 	*did_some_progress = 0;
3340 
3341 	/*
3342 	 * Acquire the oom lock.  If that fails, somebody else is
3343 	 * making progress for us.
3344 	 */
3345 	if (!mutex_trylock(&oom_lock)) {
3346 		*did_some_progress = 1;
3347 		schedule_timeout_uninterruptible(1);
3348 		return NULL;
3349 	}
3350 
3351 	/*
3352 	 * Go through the zonelist yet one more time, keep very high watermark
3353 	 * here, this is only to catch a parallel oom killing, we must fail if
3354 	 * we're still under heavy pressure. But make sure that this reclaim
3355 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3356 	 * allocation which will never fail due to oom_lock already held.
3357 	 */
3358 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3359 				      ~__GFP_DIRECT_RECLAIM, order,
3360 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3361 	if (page)
3362 		goto out;
3363 
3364 	/* Coredumps can quickly deplete all memory reserves */
3365 	if (current->flags & PF_DUMPCORE)
3366 		goto out;
3367 	/* The OOM killer will not help higher order allocs */
3368 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3369 		goto out;
3370 	/*
3371 	 * We have already exhausted all our reclaim opportunities without any
3372 	 * success so it is time to admit defeat. We will skip the OOM killer
3373 	 * because it is very likely that the caller has a more reasonable
3374 	 * fallback than shooting a random task.
3375 	 *
3376 	 * The OOM killer may not free memory on a specific node.
3377 	 */
3378 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3379 		goto out;
3380 	/* The OOM killer does not needlessly kill tasks for lowmem */
3381 	if (ac->highest_zoneidx < ZONE_NORMAL)
3382 		goto out;
3383 	if (pm_suspended_storage())
3384 		goto out;
3385 	/*
3386 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3387 	 * other request to make a forward progress.
3388 	 * We are in an unfortunate situation where out_of_memory cannot
3389 	 * do much for this context but let's try it to at least get
3390 	 * access to memory reserved if the current task is killed (see
3391 	 * out_of_memory). Once filesystems are ready to handle allocation
3392 	 * failures more gracefully we should just bail out here.
3393 	 */
3394 
3395 	/* Exhausted what can be done so it's blame time */
3396 	if (out_of_memory(&oc) ||
3397 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3398 		*did_some_progress = 1;
3399 
3400 		/*
3401 		 * Help non-failing allocations by giving them access to memory
3402 		 * reserves
3403 		 */
3404 		if (gfp_mask & __GFP_NOFAIL)
3405 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3406 					ALLOC_NO_WATERMARKS, ac);
3407 	}
3408 out:
3409 	mutex_unlock(&oom_lock);
3410 	return page;
3411 }
3412 
3413 /*
3414  * Maximum number of compaction retries with a progress before OOM
3415  * killer is consider as the only way to move forward.
3416  */
3417 #define MAX_COMPACT_RETRIES 16
3418 
3419 #ifdef CONFIG_COMPACTION
3420 /* Try memory compaction for high-order allocations before reclaim */
3421 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3422 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3423 		unsigned int alloc_flags, const struct alloc_context *ac,
3424 		enum compact_priority prio, enum compact_result *compact_result)
3425 {
3426 	struct page *page = NULL;
3427 	unsigned long pflags;
3428 	unsigned int noreclaim_flag;
3429 
3430 	if (!order)
3431 		return NULL;
3432 
3433 	psi_memstall_enter(&pflags);
3434 	delayacct_compact_start();
3435 	noreclaim_flag = memalloc_noreclaim_save();
3436 
3437 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3438 								prio, &page);
3439 
3440 	memalloc_noreclaim_restore(noreclaim_flag);
3441 	psi_memstall_leave(&pflags);
3442 	delayacct_compact_end();
3443 
3444 	if (*compact_result == COMPACT_SKIPPED)
3445 		return NULL;
3446 	/*
3447 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3448 	 * count a compaction stall
3449 	 */
3450 	count_vm_event(COMPACTSTALL);
3451 
3452 	/* Prep a captured page if available */
3453 	if (page)
3454 		prep_new_page(page, order, gfp_mask, alloc_flags);
3455 
3456 	/* Try get a page from the freelist if available */
3457 	if (!page)
3458 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3459 
3460 	if (page) {
3461 		struct zone *zone = page_zone(page);
3462 
3463 		zone->compact_blockskip_flush = false;
3464 		compaction_defer_reset(zone, order, true);
3465 		count_vm_event(COMPACTSUCCESS);
3466 		return page;
3467 	}
3468 
3469 	/*
3470 	 * It's bad if compaction run occurs and fails. The most likely reason
3471 	 * is that pages exist, but not enough to satisfy watermarks.
3472 	 */
3473 	count_vm_event(COMPACTFAIL);
3474 
3475 	cond_resched();
3476 
3477 	return NULL;
3478 }
3479 
3480 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3481 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3482 		     enum compact_result compact_result,
3483 		     enum compact_priority *compact_priority,
3484 		     int *compaction_retries)
3485 {
3486 	int max_retries = MAX_COMPACT_RETRIES;
3487 	int min_priority;
3488 	bool ret = false;
3489 	int retries = *compaction_retries;
3490 	enum compact_priority priority = *compact_priority;
3491 
3492 	if (!order)
3493 		return false;
3494 
3495 	if (fatal_signal_pending(current))
3496 		return false;
3497 
3498 	/*
3499 	 * Compaction was skipped due to a lack of free order-0
3500 	 * migration targets. Continue if reclaim can help.
3501 	 */
3502 	if (compact_result == COMPACT_SKIPPED) {
3503 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3504 		goto out;
3505 	}
3506 
3507 	/*
3508 	 * Compaction managed to coalesce some page blocks, but the
3509 	 * allocation failed presumably due to a race. Retry some.
3510 	 */
3511 	if (compact_result == COMPACT_SUCCESS) {
3512 		/*
3513 		 * !costly requests are much more important than
3514 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3515 		 * facto nofail and invoke OOM killer to move on while
3516 		 * costly can fail and users are ready to cope with
3517 		 * that. 1/4 retries is rather arbitrary but we would
3518 		 * need much more detailed feedback from compaction to
3519 		 * make a better decision.
3520 		 */
3521 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3522 			max_retries /= 4;
3523 
3524 		if (++(*compaction_retries) <= max_retries) {
3525 			ret = true;
3526 			goto out;
3527 		}
3528 	}
3529 
3530 	/*
3531 	 * Compaction failed. Retry with increasing priority.
3532 	 */
3533 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3534 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3535 
3536 	if (*compact_priority > min_priority) {
3537 		(*compact_priority)--;
3538 		*compaction_retries = 0;
3539 		ret = true;
3540 	}
3541 out:
3542 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3543 	return ret;
3544 }
3545 #else
3546 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548 		unsigned int alloc_flags, const struct alloc_context *ac,
3549 		enum compact_priority prio, enum compact_result *compact_result)
3550 {
3551 	*compact_result = COMPACT_SKIPPED;
3552 	return NULL;
3553 }
3554 
3555 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3556 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3557 		     enum compact_result compact_result,
3558 		     enum compact_priority *compact_priority,
3559 		     int *compaction_retries)
3560 {
3561 	struct zone *zone;
3562 	struct zoneref *z;
3563 
3564 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3565 		return false;
3566 
3567 	/*
3568 	 * There are setups with compaction disabled which would prefer to loop
3569 	 * inside the allocator rather than hit the oom killer prematurely.
3570 	 * Let's give them a good hope and keep retrying while the order-0
3571 	 * watermarks are OK.
3572 	 */
3573 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3574 				ac->highest_zoneidx, ac->nodemask) {
3575 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3576 					ac->highest_zoneidx, alloc_flags))
3577 			return true;
3578 	}
3579 	return false;
3580 }
3581 #endif /* CONFIG_COMPACTION */
3582 
3583 #ifdef CONFIG_LOCKDEP
3584 static struct lockdep_map __fs_reclaim_map =
3585 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3586 
__need_reclaim(gfp_t gfp_mask)3587 static bool __need_reclaim(gfp_t gfp_mask)
3588 {
3589 	/* no reclaim without waiting on it */
3590 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3591 		return false;
3592 
3593 	/* this guy won't enter reclaim */
3594 	if (current->flags & PF_MEMALLOC)
3595 		return false;
3596 
3597 	if (gfp_mask & __GFP_NOLOCKDEP)
3598 		return false;
3599 
3600 	return true;
3601 }
3602 
__fs_reclaim_acquire(unsigned long ip)3603 void __fs_reclaim_acquire(unsigned long ip)
3604 {
3605 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3606 }
3607 
__fs_reclaim_release(unsigned long ip)3608 void __fs_reclaim_release(unsigned long ip)
3609 {
3610 	lock_release(&__fs_reclaim_map, ip);
3611 }
3612 
fs_reclaim_acquire(gfp_t gfp_mask)3613 void fs_reclaim_acquire(gfp_t gfp_mask)
3614 {
3615 	gfp_mask = current_gfp_context(gfp_mask);
3616 
3617 	if (__need_reclaim(gfp_mask)) {
3618 		if (gfp_mask & __GFP_FS)
3619 			__fs_reclaim_acquire(_RET_IP_);
3620 
3621 #ifdef CONFIG_MMU_NOTIFIER
3622 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3623 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3624 #endif
3625 
3626 	}
3627 }
3628 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3629 
fs_reclaim_release(gfp_t gfp_mask)3630 void fs_reclaim_release(gfp_t gfp_mask)
3631 {
3632 	gfp_mask = current_gfp_context(gfp_mask);
3633 
3634 	if (__need_reclaim(gfp_mask)) {
3635 		if (gfp_mask & __GFP_FS)
3636 			__fs_reclaim_release(_RET_IP_);
3637 	}
3638 }
3639 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3640 #endif
3641 
3642 /*
3643  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3644  * have been rebuilt so allocation retries. Reader side does not lock and
3645  * retries the allocation if zonelist changes. Writer side is protected by the
3646  * embedded spin_lock.
3647  */
3648 static DEFINE_SEQLOCK(zonelist_update_seq);
3649 
zonelist_iter_begin(void)3650 static unsigned int zonelist_iter_begin(void)
3651 {
3652 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3653 		return read_seqbegin(&zonelist_update_seq);
3654 
3655 	return 0;
3656 }
3657 
check_retry_zonelist(unsigned int seq)3658 static unsigned int check_retry_zonelist(unsigned int seq)
3659 {
3660 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3661 		return read_seqretry(&zonelist_update_seq, seq);
3662 
3663 	return seq;
3664 }
3665 
3666 /* Perform direct synchronous page reclaim */
3667 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3668 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3669 					const struct alloc_context *ac)
3670 {
3671 	unsigned int noreclaim_flag;
3672 	unsigned long progress;
3673 
3674 	cond_resched();
3675 
3676 	/* We now go into synchronous reclaim */
3677 	cpuset_memory_pressure_bump();
3678 	fs_reclaim_acquire(gfp_mask);
3679 	noreclaim_flag = memalloc_noreclaim_save();
3680 
3681 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3682 								ac->nodemask);
3683 
3684 	memalloc_noreclaim_restore(noreclaim_flag);
3685 	fs_reclaim_release(gfp_mask);
3686 
3687 	cond_resched();
3688 
3689 	return progress;
3690 }
3691 
3692 /* The really slow allocator path where we enter direct reclaim */
3693 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3694 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3695 		unsigned int alloc_flags, const struct alloc_context *ac,
3696 		unsigned long *did_some_progress)
3697 {
3698 	struct page *page = NULL;
3699 	unsigned long pflags;
3700 	bool drained = false;
3701 
3702 	psi_memstall_enter(&pflags);
3703 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3704 	if (unlikely(!(*did_some_progress)))
3705 		goto out;
3706 
3707 retry:
3708 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3709 
3710 	/*
3711 	 * If an allocation failed after direct reclaim, it could be because
3712 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3713 	 * Shrink them and try again
3714 	 */
3715 	if (!page && !drained) {
3716 		unreserve_highatomic_pageblock(ac, false);
3717 		drain_all_pages(NULL);
3718 		drained = true;
3719 		goto retry;
3720 	}
3721 out:
3722 	psi_memstall_leave(&pflags);
3723 
3724 	return page;
3725 }
3726 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3727 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3728 			     const struct alloc_context *ac)
3729 {
3730 	struct zoneref *z;
3731 	struct zone *zone;
3732 	pg_data_t *last_pgdat = NULL;
3733 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3734 
3735 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3736 					ac->nodemask) {
3737 		if (!managed_zone(zone))
3738 			continue;
3739 		if (last_pgdat != zone->zone_pgdat) {
3740 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3741 			last_pgdat = zone->zone_pgdat;
3742 		}
3743 	}
3744 }
3745 
3746 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3747 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3748 {
3749 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3750 
3751 	/*
3752 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3753 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3754 	 * to save two branches.
3755 	 */
3756 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3757 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3758 
3759 	/*
3760 	 * The caller may dip into page reserves a bit more if the caller
3761 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3762 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3763 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3764 	 */
3765 	alloc_flags |= (__force int)
3766 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3767 
3768 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3769 		/*
3770 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3771 		 * if it can't schedule.
3772 		 */
3773 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3774 			alloc_flags |= ALLOC_NON_BLOCK;
3775 
3776 			if (order > 0)
3777 				alloc_flags |= ALLOC_HIGHATOMIC;
3778 		}
3779 
3780 		/*
3781 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3782 		 * GFP_ATOMIC) rather than fail, see the comment for
3783 		 * cpuset_node_allowed().
3784 		 */
3785 		if (alloc_flags & ALLOC_MIN_RESERVE)
3786 			alloc_flags &= ~ALLOC_CPUSET;
3787 	} else if (unlikely(rt_task(current)) && in_task())
3788 		alloc_flags |= ALLOC_MIN_RESERVE;
3789 
3790 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3791 
3792 	return alloc_flags;
3793 }
3794 
oom_reserves_allowed(struct task_struct * tsk)3795 static bool oom_reserves_allowed(struct task_struct *tsk)
3796 {
3797 	if (!tsk_is_oom_victim(tsk))
3798 		return false;
3799 
3800 	/*
3801 	 * !MMU doesn't have oom reaper so give access to memory reserves
3802 	 * only to the thread with TIF_MEMDIE set
3803 	 */
3804 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3805 		return false;
3806 
3807 	return true;
3808 }
3809 
3810 /*
3811  * Distinguish requests which really need access to full memory
3812  * reserves from oom victims which can live with a portion of it
3813  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3814 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3815 {
3816 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3817 		return 0;
3818 	if (gfp_mask & __GFP_MEMALLOC)
3819 		return ALLOC_NO_WATERMARKS;
3820 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3821 		return ALLOC_NO_WATERMARKS;
3822 	if (!in_interrupt()) {
3823 		if (current->flags & PF_MEMALLOC)
3824 			return ALLOC_NO_WATERMARKS;
3825 		else if (oom_reserves_allowed(current))
3826 			return ALLOC_OOM;
3827 	}
3828 
3829 	return 0;
3830 }
3831 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3832 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3833 {
3834 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3835 }
3836 
3837 /*
3838  * Checks whether it makes sense to retry the reclaim to make a forward progress
3839  * for the given allocation request.
3840  *
3841  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3842  * without success, or when we couldn't even meet the watermark if we
3843  * reclaimed all remaining pages on the LRU lists.
3844  *
3845  * Returns true if a retry is viable or false to enter the oom path.
3846  */
3847 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3848 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3849 		     struct alloc_context *ac, int alloc_flags,
3850 		     bool did_some_progress, int *no_progress_loops)
3851 {
3852 	struct zone *zone;
3853 	struct zoneref *z;
3854 	bool ret = false;
3855 
3856 	/*
3857 	 * Costly allocations might have made a progress but this doesn't mean
3858 	 * their order will become available due to high fragmentation so
3859 	 * always increment the no progress counter for them
3860 	 */
3861 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3862 		*no_progress_loops = 0;
3863 	else
3864 		(*no_progress_loops)++;
3865 
3866 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3867 		goto out;
3868 
3869 
3870 	/*
3871 	 * Keep reclaiming pages while there is a chance this will lead
3872 	 * somewhere.  If none of the target zones can satisfy our allocation
3873 	 * request even if all reclaimable pages are considered then we are
3874 	 * screwed and have to go OOM.
3875 	 */
3876 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3877 				ac->highest_zoneidx, ac->nodemask) {
3878 		unsigned long available;
3879 		unsigned long reclaimable;
3880 		unsigned long min_wmark = min_wmark_pages(zone);
3881 		bool wmark;
3882 
3883 		available = reclaimable = zone_reclaimable_pages(zone);
3884 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3885 
3886 		/*
3887 		 * Would the allocation succeed if we reclaimed all
3888 		 * reclaimable pages?
3889 		 */
3890 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3891 				ac->highest_zoneidx, alloc_flags, available);
3892 		trace_reclaim_retry_zone(z, order, reclaimable,
3893 				available, min_wmark, *no_progress_loops, wmark);
3894 		if (wmark) {
3895 			ret = true;
3896 			break;
3897 		}
3898 	}
3899 
3900 	/*
3901 	 * Memory allocation/reclaim might be called from a WQ context and the
3902 	 * current implementation of the WQ concurrency control doesn't
3903 	 * recognize that a particular WQ is congested if the worker thread is
3904 	 * looping without ever sleeping. Therefore we have to do a short sleep
3905 	 * here rather than calling cond_resched().
3906 	 */
3907 	if (current->flags & PF_WQ_WORKER)
3908 		schedule_timeout_uninterruptible(1);
3909 	else
3910 		cond_resched();
3911 out:
3912 	/* Before OOM, exhaust highatomic_reserve */
3913 	if (!ret)
3914 		return unreserve_highatomic_pageblock(ac, true);
3915 
3916 	return ret;
3917 }
3918 
3919 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3920 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3921 {
3922 	/*
3923 	 * It's possible that cpuset's mems_allowed and the nodemask from
3924 	 * mempolicy don't intersect. This should be normally dealt with by
3925 	 * policy_nodemask(), but it's possible to race with cpuset update in
3926 	 * such a way the check therein was true, and then it became false
3927 	 * before we got our cpuset_mems_cookie here.
3928 	 * This assumes that for all allocations, ac->nodemask can come only
3929 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3930 	 * when it does not intersect with the cpuset restrictions) or the
3931 	 * caller can deal with a violated nodemask.
3932 	 */
3933 	if (cpusets_enabled() && ac->nodemask &&
3934 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3935 		ac->nodemask = NULL;
3936 		return true;
3937 	}
3938 
3939 	/*
3940 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3941 	 * possible to race with parallel threads in such a way that our
3942 	 * allocation can fail while the mask is being updated. If we are about
3943 	 * to fail, check if the cpuset changed during allocation and if so,
3944 	 * retry.
3945 	 */
3946 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3947 		return true;
3948 
3949 	return false;
3950 }
3951 
3952 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3953 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3954 						struct alloc_context *ac)
3955 {
3956 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3957 	bool can_compact = gfp_compaction_allowed(gfp_mask);
3958 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3959 	struct page *page = NULL;
3960 	unsigned int alloc_flags;
3961 	unsigned long did_some_progress;
3962 	enum compact_priority compact_priority;
3963 	enum compact_result compact_result;
3964 	int compaction_retries;
3965 	int no_progress_loops;
3966 	unsigned int cpuset_mems_cookie;
3967 	unsigned int zonelist_iter_cookie;
3968 	int reserve_flags;
3969 
3970 restart:
3971 	compaction_retries = 0;
3972 	no_progress_loops = 0;
3973 	compact_result = COMPACT_SKIPPED;
3974 	compact_priority = DEF_COMPACT_PRIORITY;
3975 	cpuset_mems_cookie = read_mems_allowed_begin();
3976 	zonelist_iter_cookie = zonelist_iter_begin();
3977 
3978 	/*
3979 	 * The fast path uses conservative alloc_flags to succeed only until
3980 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3981 	 * alloc_flags precisely. So we do that now.
3982 	 */
3983 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3984 
3985 	/*
3986 	 * We need to recalculate the starting point for the zonelist iterator
3987 	 * because we might have used different nodemask in the fast path, or
3988 	 * there was a cpuset modification and we are retrying - otherwise we
3989 	 * could end up iterating over non-eligible zones endlessly.
3990 	 */
3991 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3992 					ac->highest_zoneidx, ac->nodemask);
3993 	if (!ac->preferred_zoneref->zone)
3994 		goto nopage;
3995 
3996 	/*
3997 	 * Check for insane configurations where the cpuset doesn't contain
3998 	 * any suitable zone to satisfy the request - e.g. non-movable
3999 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4000 	 */
4001 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4002 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4003 					ac->highest_zoneidx,
4004 					&cpuset_current_mems_allowed);
4005 		if (!z->zone)
4006 			goto nopage;
4007 	}
4008 
4009 	if (alloc_flags & ALLOC_KSWAPD)
4010 		wake_all_kswapds(order, gfp_mask, ac);
4011 
4012 	/*
4013 	 * The adjusted alloc_flags might result in immediate success, so try
4014 	 * that first
4015 	 */
4016 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4017 	if (page)
4018 		goto got_pg;
4019 
4020 	/*
4021 	 * For costly allocations, try direct compaction first, as it's likely
4022 	 * that we have enough base pages and don't need to reclaim. For non-
4023 	 * movable high-order allocations, do that as well, as compaction will
4024 	 * try prevent permanent fragmentation by migrating from blocks of the
4025 	 * same migratetype.
4026 	 * Don't try this for allocations that are allowed to ignore
4027 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4028 	 */
4029 	if (can_direct_reclaim && can_compact &&
4030 			(costly_order ||
4031 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4032 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4033 		page = __alloc_pages_direct_compact(gfp_mask, order,
4034 						alloc_flags, ac,
4035 						INIT_COMPACT_PRIORITY,
4036 						&compact_result);
4037 		if (page)
4038 			goto got_pg;
4039 
4040 		/*
4041 		 * Checks for costly allocations with __GFP_NORETRY, which
4042 		 * includes some THP page fault allocations
4043 		 */
4044 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4045 			/*
4046 			 * If allocating entire pageblock(s) and compaction
4047 			 * failed because all zones are below low watermarks
4048 			 * or is prohibited because it recently failed at this
4049 			 * order, fail immediately unless the allocator has
4050 			 * requested compaction and reclaim retry.
4051 			 *
4052 			 * Reclaim is
4053 			 *  - potentially very expensive because zones are far
4054 			 *    below their low watermarks or this is part of very
4055 			 *    bursty high order allocations,
4056 			 *  - not guaranteed to help because isolate_freepages()
4057 			 *    may not iterate over freed pages as part of its
4058 			 *    linear scan, and
4059 			 *  - unlikely to make entire pageblocks free on its
4060 			 *    own.
4061 			 */
4062 			if (compact_result == COMPACT_SKIPPED ||
4063 			    compact_result == COMPACT_DEFERRED)
4064 				goto nopage;
4065 
4066 			/*
4067 			 * Looks like reclaim/compaction is worth trying, but
4068 			 * sync compaction could be very expensive, so keep
4069 			 * using async compaction.
4070 			 */
4071 			compact_priority = INIT_COMPACT_PRIORITY;
4072 		}
4073 	}
4074 
4075 retry:
4076 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4077 	if (alloc_flags & ALLOC_KSWAPD)
4078 		wake_all_kswapds(order, gfp_mask, ac);
4079 
4080 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4081 	if (reserve_flags)
4082 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4083 					  (alloc_flags & ALLOC_KSWAPD);
4084 
4085 	/*
4086 	 * Reset the nodemask and zonelist iterators if memory policies can be
4087 	 * ignored. These allocations are high priority and system rather than
4088 	 * user oriented.
4089 	 */
4090 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4091 		ac->nodemask = NULL;
4092 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4093 					ac->highest_zoneidx, ac->nodemask);
4094 	}
4095 
4096 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4097 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4098 	if (page)
4099 		goto got_pg;
4100 
4101 	/* Caller is not willing to reclaim, we can't balance anything */
4102 	if (!can_direct_reclaim)
4103 		goto nopage;
4104 
4105 	/* Avoid recursion of direct reclaim */
4106 	if (current->flags & PF_MEMALLOC)
4107 		goto nopage;
4108 
4109 	/* Try direct reclaim and then allocating */
4110 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4111 							&did_some_progress);
4112 	if (page)
4113 		goto got_pg;
4114 
4115 	/* Try direct compaction and then allocating */
4116 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4117 					compact_priority, &compact_result);
4118 	if (page)
4119 		goto got_pg;
4120 
4121 	/* Do not loop if specifically requested */
4122 	if (gfp_mask & __GFP_NORETRY)
4123 		goto nopage;
4124 
4125 	/*
4126 	 * Do not retry costly high order allocations unless they are
4127 	 * __GFP_RETRY_MAYFAIL and we can compact
4128 	 */
4129 	if (costly_order && (!can_compact ||
4130 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4131 		goto nopage;
4132 
4133 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4134 				 did_some_progress > 0, &no_progress_loops))
4135 		goto retry;
4136 
4137 	/*
4138 	 * It doesn't make any sense to retry for the compaction if the order-0
4139 	 * reclaim is not able to make any progress because the current
4140 	 * implementation of the compaction depends on the sufficient amount
4141 	 * of free memory (see __compaction_suitable)
4142 	 */
4143 	if (did_some_progress > 0 && can_compact &&
4144 			should_compact_retry(ac, order, alloc_flags,
4145 				compact_result, &compact_priority,
4146 				&compaction_retries))
4147 		goto retry;
4148 
4149 
4150 	/*
4151 	 * Deal with possible cpuset update races or zonelist updates to avoid
4152 	 * a unnecessary OOM kill.
4153 	 */
4154 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4155 	    check_retry_zonelist(zonelist_iter_cookie))
4156 		goto restart;
4157 
4158 	/* Reclaim has failed us, start killing things */
4159 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4160 	if (page)
4161 		goto got_pg;
4162 
4163 	/* Avoid allocations with no watermarks from looping endlessly */
4164 	if (tsk_is_oom_victim(current) &&
4165 	    (alloc_flags & ALLOC_OOM ||
4166 	     (gfp_mask & __GFP_NOMEMALLOC)))
4167 		goto nopage;
4168 
4169 	/* Retry as long as the OOM killer is making progress */
4170 	if (did_some_progress) {
4171 		no_progress_loops = 0;
4172 		goto retry;
4173 	}
4174 
4175 nopage:
4176 	/*
4177 	 * Deal with possible cpuset update races or zonelist updates to avoid
4178 	 * a unnecessary OOM kill.
4179 	 */
4180 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4181 	    check_retry_zonelist(zonelist_iter_cookie))
4182 		goto restart;
4183 
4184 	/*
4185 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4186 	 * we always retry
4187 	 */
4188 	if (gfp_mask & __GFP_NOFAIL) {
4189 		/*
4190 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4191 		 * of any new users that actually require GFP_NOWAIT
4192 		 */
4193 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4194 			goto fail;
4195 
4196 		/*
4197 		 * PF_MEMALLOC request from this context is rather bizarre
4198 		 * because we cannot reclaim anything and only can loop waiting
4199 		 * for somebody to do a work for us
4200 		 */
4201 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4202 
4203 		/*
4204 		 * non failing costly orders are a hard requirement which we
4205 		 * are not prepared for much so let's warn about these users
4206 		 * so that we can identify them and convert them to something
4207 		 * else.
4208 		 */
4209 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4210 
4211 		/*
4212 		 * Help non-failing allocations by giving some access to memory
4213 		 * reserves normally used for high priority non-blocking
4214 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4215 		 * could deplete whole memory reserves which would just make
4216 		 * the situation worse.
4217 		 */
4218 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4219 		if (page)
4220 			goto got_pg;
4221 
4222 		cond_resched();
4223 		goto retry;
4224 	}
4225 fail:
4226 	warn_alloc(gfp_mask, ac->nodemask,
4227 			"page allocation failure: order:%u", order);
4228 got_pg:
4229 	return page;
4230 }
4231 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4232 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4233 		int preferred_nid, nodemask_t *nodemask,
4234 		struct alloc_context *ac, gfp_t *alloc_gfp,
4235 		unsigned int *alloc_flags)
4236 {
4237 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4238 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4239 	ac->nodemask = nodemask;
4240 	ac->migratetype = gfp_migratetype(gfp_mask);
4241 
4242 	if (cpusets_enabled()) {
4243 		*alloc_gfp |= __GFP_HARDWALL;
4244 		/*
4245 		 * When we are in the interrupt context, it is irrelevant
4246 		 * to the current task context. It means that any node ok.
4247 		 */
4248 		if (in_task() && !ac->nodemask)
4249 			ac->nodemask = &cpuset_current_mems_allowed;
4250 		else
4251 			*alloc_flags |= ALLOC_CPUSET;
4252 	}
4253 
4254 	might_alloc(gfp_mask);
4255 
4256 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4257 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4258 		wake_all_zswapd();
4259 #endif
4260 
4261 	if (should_fail_alloc_page(gfp_mask, order))
4262 		return false;
4263 
4264 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4265 
4266 	/* Dirty zone balancing only done in the fast path */
4267 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4268 
4269 	/*
4270 	 * The preferred zone is used for statistics but crucially it is
4271 	 * also used as the starting point for the zonelist iterator. It
4272 	 * may get reset for allocations that ignore memory policies.
4273 	 */
4274 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4275 					ac->highest_zoneidx, ac->nodemask);
4276 
4277 	return true;
4278 }
4279 
4280 /*
4281  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4282  * @gfp: GFP flags for the allocation
4283  * @preferred_nid: The preferred NUMA node ID to allocate from
4284  * @nodemask: Set of nodes to allocate from, may be NULL
4285  * @nr_pages: The number of pages desired on the list or array
4286  * @page_list: Optional list to store the allocated pages
4287  * @page_array: Optional array to store the pages
4288  *
4289  * This is a batched version of the page allocator that attempts to
4290  * allocate nr_pages quickly. Pages are added to page_list if page_list
4291  * is not NULL, otherwise it is assumed that the page_array is valid.
4292  *
4293  * For lists, nr_pages is the number of pages that should be allocated.
4294  *
4295  * For arrays, only NULL elements are populated with pages and nr_pages
4296  * is the maximum number of pages that will be stored in the array.
4297  *
4298  * Returns the number of pages on the list or array.
4299  */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4300 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4301 			nodemask_t *nodemask, int nr_pages,
4302 			struct list_head *page_list,
4303 			struct page **page_array)
4304 {
4305 	struct page *page;
4306 	unsigned long __maybe_unused UP_flags;
4307 	struct zone *zone;
4308 	struct zoneref *z;
4309 	struct per_cpu_pages *pcp;
4310 	struct list_head *pcp_list;
4311 	struct alloc_context ac;
4312 	gfp_t alloc_gfp;
4313 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4314 	int nr_populated = 0, nr_account = 0;
4315 
4316 	/*
4317 	 * Skip populated array elements to determine if any pages need
4318 	 * to be allocated before disabling IRQs.
4319 	 */
4320 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4321 		nr_populated++;
4322 
4323 	/* No pages requested? */
4324 	if (unlikely(nr_pages <= 0))
4325 		goto out;
4326 
4327 	/* Already populated array? */
4328 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4329 		goto out;
4330 
4331 	/* Bulk allocator does not support memcg accounting. */
4332 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4333 		goto failed;
4334 
4335 	/* Use the single page allocator for one page. */
4336 	if (nr_pages - nr_populated == 1)
4337 		goto failed;
4338 
4339 #ifdef CONFIG_PAGE_OWNER
4340 	/*
4341 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4342 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4343 	 * removes much of the performance benefit of bulk allocation so
4344 	 * force the caller to allocate one page at a time as it'll have
4345 	 * similar performance to added complexity to the bulk allocator.
4346 	 */
4347 	if (static_branch_unlikely(&page_owner_inited))
4348 		goto failed;
4349 #endif
4350 
4351 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4352 	gfp &= gfp_allowed_mask;
4353 	alloc_gfp = gfp;
4354 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4355 		goto out;
4356 	gfp = alloc_gfp;
4357 
4358 	/* Find an allowed local zone that meets the low watermark. */
4359 	z = ac.preferred_zoneref;
4360 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4361 		unsigned long mark;
4362 
4363 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4364 		    !__cpuset_zone_allowed(zone, gfp)) {
4365 			continue;
4366 		}
4367 
4368 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4369 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4370 			goto failed;
4371 		}
4372 
4373 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4374 		if (zone_watermark_fast(zone, 0,  mark,
4375 				zonelist_zone_idx(ac.preferred_zoneref),
4376 				alloc_flags, gfp)) {
4377 			break;
4378 		}
4379 	}
4380 
4381 	/*
4382 	 * If there are no allowed local zones that meets the watermarks then
4383 	 * try to allocate a single page and reclaim if necessary.
4384 	 */
4385 	if (unlikely(!zone))
4386 		goto failed;
4387 
4388 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4389 	pcp_trylock_prepare(UP_flags);
4390 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4391 	if (!pcp)
4392 		goto failed_irq;
4393 
4394 	/* Attempt the batch allocation */
4395 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4396 	while (nr_populated < nr_pages) {
4397 
4398 		/* Skip existing pages */
4399 		if (page_array && page_array[nr_populated]) {
4400 			nr_populated++;
4401 			continue;
4402 		}
4403 
4404 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4405 								pcp, pcp_list);
4406 		if (unlikely(!page)) {
4407 			/* Try and allocate at least one page */
4408 			if (!nr_account) {
4409 				pcp_spin_unlock(pcp);
4410 				goto failed_irq;
4411 			}
4412 			break;
4413 		}
4414 		nr_account++;
4415 
4416 		prep_new_page(page, 0, gfp, 0);
4417 		if (page_list)
4418 			list_add(&page->lru, page_list);
4419 		else
4420 			page_array[nr_populated] = page;
4421 		nr_populated++;
4422 	}
4423 
4424 	pcp_spin_unlock(pcp);
4425 	pcp_trylock_finish(UP_flags);
4426 
4427 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4428 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4429 
4430 out:
4431 	return nr_populated;
4432 
4433 failed_irq:
4434 	pcp_trylock_finish(UP_flags);
4435 
4436 failed:
4437 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4438 	if (page) {
4439 		if (page_list)
4440 			list_add(&page->lru, page_list);
4441 		else
4442 			page_array[nr_populated] = page;
4443 		nr_populated++;
4444 	}
4445 
4446 	goto out;
4447 }
4448 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4449 
4450 /*
4451  * This is the 'heart' of the zoned buddy allocator.
4452  */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4453 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4454 							nodemask_t *nodemask)
4455 {
4456 	struct page *page;
4457 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4458 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4459 	struct alloc_context ac = { };
4460 
4461 	/*
4462 	 * There are several places where we assume that the order value is sane
4463 	 * so bail out early if the request is out of bound.
4464 	 */
4465 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4466 		return NULL;
4467 
4468 	gfp &= gfp_allowed_mask;
4469 	/*
4470 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4471 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4472 	 * from a particular context which has been marked by
4473 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4474 	 * movable zones are not used during allocation.
4475 	 */
4476 	gfp = current_gfp_context(gfp);
4477 	alloc_gfp = gfp;
4478 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4479 			&alloc_gfp, &alloc_flags))
4480 		return NULL;
4481 
4482 	/*
4483 	 * Forbid the first pass from falling back to types that fragment
4484 	 * memory until all local zones are considered.
4485 	 */
4486 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4487 
4488 	/* First allocation attempt */
4489 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4490 	if (likely(page))
4491 		goto out;
4492 
4493 	alloc_gfp = gfp;
4494 	ac.spread_dirty_pages = false;
4495 
4496 	/*
4497 	 * Restore the original nodemask if it was potentially replaced with
4498 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4499 	 */
4500 	ac.nodemask = nodemask;
4501 
4502 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4503 
4504 out:
4505 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4506 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4507 		__free_pages(page, order);
4508 		page = NULL;
4509 	}
4510 
4511 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4512 	kmsan_alloc_page(page, order, alloc_gfp);
4513 
4514 	return page;
4515 }
4516 EXPORT_SYMBOL(__alloc_pages);
4517 
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4518 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4519 		nodemask_t *nodemask)
4520 {
4521 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4522 					preferred_nid, nodemask);
4523 	return page_rmappable_folio(page);
4524 }
4525 EXPORT_SYMBOL(__folio_alloc);
4526 
4527 /*
4528  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4529  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4530  * you need to access high mem.
4531  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4532 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4533 {
4534 	struct page *page;
4535 
4536 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4537 	if (!page)
4538 		return 0;
4539 	return (unsigned long) page_address(page);
4540 }
4541 EXPORT_SYMBOL(__get_free_pages);
4542 
get_zeroed_page(gfp_t gfp_mask)4543 unsigned long get_zeroed_page(gfp_t gfp_mask)
4544 {
4545 	return __get_free_page(gfp_mask | __GFP_ZERO);
4546 }
4547 EXPORT_SYMBOL(get_zeroed_page);
4548 
4549 /**
4550  * __free_pages - Free pages allocated with alloc_pages().
4551  * @page: The page pointer returned from alloc_pages().
4552  * @order: The order of the allocation.
4553  *
4554  * This function can free multi-page allocations that are not compound
4555  * pages.  It does not check that the @order passed in matches that of
4556  * the allocation, so it is easy to leak memory.  Freeing more memory
4557  * than was allocated will probably emit a warning.
4558  *
4559  * If the last reference to this page is speculative, it will be released
4560  * by put_page() which only frees the first page of a non-compound
4561  * allocation.  To prevent the remaining pages from being leaked, we free
4562  * the subsequent pages here.  If you want to use the page's reference
4563  * count to decide when to free the allocation, you should allocate a
4564  * compound page, and use put_page() instead of __free_pages().
4565  *
4566  * Context: May be called in interrupt context or while holding a normal
4567  * spinlock, but not in NMI context or while holding a raw spinlock.
4568  */
__free_pages(struct page * page,unsigned int order)4569 void __free_pages(struct page *page, unsigned int order)
4570 {
4571 	/* get PageHead before we drop reference */
4572 	int head = PageHead(page);
4573 
4574 	if (put_page_testzero(page))
4575 		free_the_page(page, order);
4576 	else if (!head)
4577 		while (order-- > 0)
4578 			free_the_page(page + (1 << order), order);
4579 }
4580 EXPORT_SYMBOL(__free_pages);
4581 
free_pages(unsigned long addr,unsigned int order)4582 void free_pages(unsigned long addr, unsigned int order)
4583 {
4584 	if (addr != 0) {
4585 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4586 		__free_pages(virt_to_page((void *)addr), order);
4587 	}
4588 }
4589 
4590 EXPORT_SYMBOL(free_pages);
4591 
4592 /*
4593  * Page Fragment:
4594  *  An arbitrary-length arbitrary-offset area of memory which resides
4595  *  within a 0 or higher order page.  Multiple fragments within that page
4596  *  are individually refcounted, in the page's reference counter.
4597  *
4598  * The page_frag functions below provide a simple allocation framework for
4599  * page fragments.  This is used by the network stack and network device
4600  * drivers to provide a backing region of memory for use as either an
4601  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4602  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4603 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4604 					     gfp_t gfp_mask)
4605 {
4606 	struct page *page = NULL;
4607 	gfp_t gfp = gfp_mask;
4608 
4609 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4610 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4611 		    __GFP_NOMEMALLOC;
4612 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4613 				PAGE_FRAG_CACHE_MAX_ORDER);
4614 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4615 #endif
4616 	if (unlikely(!page))
4617 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4618 
4619 	nc->va = page ? page_address(page) : NULL;
4620 
4621 	return page;
4622 }
4623 
__page_frag_cache_drain(struct page * page,unsigned int count)4624 void __page_frag_cache_drain(struct page *page, unsigned int count)
4625 {
4626 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4627 
4628 	if (page_ref_sub_and_test(page, count))
4629 		free_the_page(page, compound_order(page));
4630 }
4631 EXPORT_SYMBOL(__page_frag_cache_drain);
4632 
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4633 void *page_frag_alloc_align(struct page_frag_cache *nc,
4634 		      unsigned int fragsz, gfp_t gfp_mask,
4635 		      unsigned int align_mask)
4636 {
4637 	unsigned int size = PAGE_SIZE;
4638 	struct page *page;
4639 	int offset;
4640 
4641 	if (unlikely(!nc->va)) {
4642 refill:
4643 		page = __page_frag_cache_refill(nc, gfp_mask);
4644 		if (!page)
4645 			return NULL;
4646 
4647 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4648 		/* if size can vary use size else just use PAGE_SIZE */
4649 		size = nc->size;
4650 #endif
4651 		/* Even if we own the page, we do not use atomic_set().
4652 		 * This would break get_page_unless_zero() users.
4653 		 */
4654 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4655 
4656 		/* reset page count bias and offset to start of new frag */
4657 		nc->pfmemalloc = page_is_pfmemalloc(page);
4658 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4659 		nc->offset = size;
4660 	}
4661 
4662 	offset = nc->offset - fragsz;
4663 	if (unlikely(offset < 0)) {
4664 		page = virt_to_page(nc->va);
4665 
4666 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4667 			goto refill;
4668 
4669 		if (unlikely(nc->pfmemalloc)) {
4670 			free_the_page(page, compound_order(page));
4671 			goto refill;
4672 		}
4673 
4674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4675 		/* if size can vary use size else just use PAGE_SIZE */
4676 		size = nc->size;
4677 #endif
4678 		/* OK, page count is 0, we can safely set it */
4679 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4680 
4681 		/* reset page count bias and offset to start of new frag */
4682 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4683 		offset = size - fragsz;
4684 		if (unlikely(offset < 0)) {
4685 			/*
4686 			 * The caller is trying to allocate a fragment
4687 			 * with fragsz > PAGE_SIZE but the cache isn't big
4688 			 * enough to satisfy the request, this may
4689 			 * happen in low memory conditions.
4690 			 * We don't release the cache page because
4691 			 * it could make memory pressure worse
4692 			 * so we simply return NULL here.
4693 			 */
4694 			return NULL;
4695 		}
4696 	}
4697 
4698 	nc->pagecnt_bias--;
4699 	offset &= align_mask;
4700 	nc->offset = offset;
4701 
4702 	return nc->va + offset;
4703 }
4704 EXPORT_SYMBOL(page_frag_alloc_align);
4705 
4706 /*
4707  * Frees a page fragment allocated out of either a compound or order 0 page.
4708  */
page_frag_free(void * addr)4709 void page_frag_free(void *addr)
4710 {
4711 	struct page *page = virt_to_head_page(addr);
4712 
4713 	if (unlikely(put_page_testzero(page)))
4714 		free_the_page(page, compound_order(page));
4715 }
4716 EXPORT_SYMBOL(page_frag_free);
4717 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4718 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4719 		size_t size)
4720 {
4721 	if (addr) {
4722 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4723 		struct page *page = virt_to_page((void *)addr);
4724 		struct page *last = page + nr;
4725 
4726 		split_page_owner(page, 1 << order);
4727 		split_page_memcg(page, 1 << order);
4728 		while (page < --last)
4729 			set_page_refcounted(last);
4730 
4731 		last = page + (1UL << order);
4732 		for (page += nr; page < last; page++)
4733 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4734 	}
4735 	return (void *)addr;
4736 }
4737 
4738 /**
4739  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4740  * @size: the number of bytes to allocate
4741  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4742  *
4743  * This function is similar to alloc_pages(), except that it allocates the
4744  * minimum number of pages to satisfy the request.  alloc_pages() can only
4745  * allocate memory in power-of-two pages.
4746  *
4747  * This function is also limited by MAX_ORDER.
4748  *
4749  * Memory allocated by this function must be released by free_pages_exact().
4750  *
4751  * Return: pointer to the allocated area or %NULL in case of error.
4752  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4754 {
4755 	unsigned int order = get_order(size);
4756 	unsigned long addr;
4757 
4758 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4759 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4760 
4761 	addr = __get_free_pages(gfp_mask, order);
4762 	return make_alloc_exact(addr, order, size);
4763 }
4764 EXPORT_SYMBOL(alloc_pages_exact);
4765 
4766 /**
4767  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4768  *			   pages on a node.
4769  * @nid: the preferred node ID where memory should be allocated
4770  * @size: the number of bytes to allocate
4771  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4772  *
4773  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4774  * back.
4775  *
4776  * Return: pointer to the allocated area or %NULL in case of error.
4777  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4778 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4779 {
4780 	unsigned int order = get_order(size);
4781 	struct page *p;
4782 
4783 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4784 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4785 
4786 	p = alloc_pages_node(nid, gfp_mask, order);
4787 	if (!p)
4788 		return NULL;
4789 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4790 }
4791 
4792 /**
4793  * free_pages_exact - release memory allocated via alloc_pages_exact()
4794  * @virt: the value returned by alloc_pages_exact.
4795  * @size: size of allocation, same value as passed to alloc_pages_exact().
4796  *
4797  * Release the memory allocated by a previous call to alloc_pages_exact.
4798  */
free_pages_exact(void * virt,size_t size)4799 void free_pages_exact(void *virt, size_t size)
4800 {
4801 	unsigned long addr = (unsigned long)virt;
4802 	unsigned long end = addr + PAGE_ALIGN(size);
4803 
4804 	while (addr < end) {
4805 		free_page(addr);
4806 		addr += PAGE_SIZE;
4807 	}
4808 }
4809 EXPORT_SYMBOL(free_pages_exact);
4810 
4811 /**
4812  * nr_free_zone_pages - count number of pages beyond high watermark
4813  * @offset: The zone index of the highest zone
4814  *
4815  * nr_free_zone_pages() counts the number of pages which are beyond the
4816  * high watermark within all zones at or below a given zone index.  For each
4817  * zone, the number of pages is calculated as:
4818  *
4819  *     nr_free_zone_pages = managed_pages - high_pages
4820  *
4821  * Return: number of pages beyond high watermark.
4822  */
nr_free_zone_pages(int offset)4823 static unsigned long nr_free_zone_pages(int offset)
4824 {
4825 	struct zoneref *z;
4826 	struct zone *zone;
4827 
4828 	/* Just pick one node, since fallback list is circular */
4829 	unsigned long sum = 0;
4830 
4831 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4832 
4833 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4834 		unsigned long size = zone_managed_pages(zone);
4835 		unsigned long high = high_wmark_pages(zone);
4836 		if (size > high)
4837 			sum += size - high;
4838 	}
4839 
4840 	return sum;
4841 }
4842 
4843 /**
4844  * nr_free_buffer_pages - count number of pages beyond high watermark
4845  *
4846  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4847  * watermark within ZONE_DMA and ZONE_NORMAL.
4848  *
4849  * Return: number of pages beyond high watermark within ZONE_DMA and
4850  * ZONE_NORMAL.
4851  */
nr_free_buffer_pages(void)4852 unsigned long nr_free_buffer_pages(void)
4853 {
4854 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4855 }
4856 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4857 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4858 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4859 {
4860 	zoneref->zone = zone;
4861 	zoneref->zone_idx = zone_idx(zone);
4862 }
4863 
4864 /*
4865  * Builds allocation fallback zone lists.
4866  *
4867  * Add all populated zones of a node to the zonelist.
4868  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4869 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4870 {
4871 	struct zone *zone;
4872 	enum zone_type zone_type = MAX_NR_ZONES;
4873 	int nr_zones = 0;
4874 
4875 	do {
4876 		zone_type--;
4877 		zone = pgdat->node_zones + zone_type;
4878 		if (populated_zone(zone)) {
4879 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4880 			check_highest_zone(zone_type);
4881 		}
4882 	} while (zone_type);
4883 
4884 	return nr_zones;
4885 }
4886 
4887 #ifdef CONFIG_NUMA
4888 
__parse_numa_zonelist_order(char * s)4889 static int __parse_numa_zonelist_order(char *s)
4890 {
4891 	/*
4892 	 * We used to support different zonelists modes but they turned
4893 	 * out to be just not useful. Let's keep the warning in place
4894 	 * if somebody still use the cmd line parameter so that we do
4895 	 * not fail it silently
4896 	 */
4897 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4898 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4899 		return -EINVAL;
4900 	}
4901 	return 0;
4902 }
4903 
4904 static char numa_zonelist_order[] = "Node";
4905 #define NUMA_ZONELIST_ORDER_LEN	16
4906 /*
4907  * sysctl handler for numa_zonelist_order
4908  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4909 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4910 		void *buffer, size_t *length, loff_t *ppos)
4911 {
4912 	if (write)
4913 		return __parse_numa_zonelist_order(buffer);
4914 	return proc_dostring(table, write, buffer, length, ppos);
4915 }
4916 
4917 static int node_load[MAX_NUMNODES];
4918 
4919 /**
4920  * find_next_best_node - find the next node that should appear in a given node's fallback list
4921  * @node: node whose fallback list we're appending
4922  * @used_node_mask: nodemask_t of already used nodes
4923  *
4924  * We use a number of factors to determine which is the next node that should
4925  * appear on a given node's fallback list.  The node should not have appeared
4926  * already in @node's fallback list, and it should be the next closest node
4927  * according to the distance array (which contains arbitrary distance values
4928  * from each node to each node in the system), and should also prefer nodes
4929  * with no CPUs, since presumably they'll have very little allocation pressure
4930  * on them otherwise.
4931  *
4932  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4933  */
find_next_best_node(int node,nodemask_t * used_node_mask)4934 int find_next_best_node(int node, nodemask_t *used_node_mask)
4935 {
4936 	int n, val;
4937 	int min_val = INT_MAX;
4938 	int best_node = NUMA_NO_NODE;
4939 
4940 	/* Use the local node if we haven't already */
4941 	if (!node_isset(node, *used_node_mask)) {
4942 		node_set(node, *used_node_mask);
4943 		return node;
4944 	}
4945 
4946 	for_each_node_state(n, N_MEMORY) {
4947 
4948 		/* Don't want a node to appear more than once */
4949 		if (node_isset(n, *used_node_mask))
4950 			continue;
4951 
4952 		/* Use the distance array to find the distance */
4953 		val = node_distance(node, n);
4954 
4955 		/* Penalize nodes under us ("prefer the next node") */
4956 		val += (n < node);
4957 
4958 		/* Give preference to headless and unused nodes */
4959 		if (!cpumask_empty(cpumask_of_node(n)))
4960 			val += PENALTY_FOR_NODE_WITH_CPUS;
4961 
4962 		/* Slight preference for less loaded node */
4963 		val *= MAX_NUMNODES;
4964 		val += node_load[n];
4965 
4966 		if (val < min_val) {
4967 			min_val = val;
4968 			best_node = n;
4969 		}
4970 	}
4971 
4972 	if (best_node >= 0)
4973 		node_set(best_node, *used_node_mask);
4974 
4975 	return best_node;
4976 }
4977 
4978 
4979 /*
4980  * Build zonelists ordered by node and zones within node.
4981  * This results in maximum locality--normal zone overflows into local
4982  * DMA zone, if any--but risks exhausting DMA zone.
4983  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4984 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4985 		unsigned nr_nodes)
4986 {
4987 	struct zoneref *zonerefs;
4988 	int i;
4989 
4990 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4991 
4992 	for (i = 0; i < nr_nodes; i++) {
4993 		int nr_zones;
4994 
4995 		pg_data_t *node = NODE_DATA(node_order[i]);
4996 
4997 		nr_zones = build_zonerefs_node(node, zonerefs);
4998 		zonerefs += nr_zones;
4999 	}
5000 	zonerefs->zone = NULL;
5001 	zonerefs->zone_idx = 0;
5002 }
5003 
5004 /*
5005  * Build gfp_thisnode zonelists
5006  */
build_thisnode_zonelists(pg_data_t * pgdat)5007 static void build_thisnode_zonelists(pg_data_t *pgdat)
5008 {
5009 	struct zoneref *zonerefs;
5010 	int nr_zones;
5011 
5012 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5013 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5014 	zonerefs += nr_zones;
5015 	zonerefs->zone = NULL;
5016 	zonerefs->zone_idx = 0;
5017 }
5018 
5019 /*
5020  * Build zonelists ordered by zone and nodes within zones.
5021  * This results in conserving DMA zone[s] until all Normal memory is
5022  * exhausted, but results in overflowing to remote node while memory
5023  * may still exist in local DMA zone.
5024  */
5025 
build_zonelists(pg_data_t * pgdat)5026 static void build_zonelists(pg_data_t *pgdat)
5027 {
5028 	static int node_order[MAX_NUMNODES];
5029 	int node, nr_nodes = 0;
5030 	nodemask_t used_mask = NODE_MASK_NONE;
5031 	int local_node, prev_node;
5032 
5033 	/* NUMA-aware ordering of nodes */
5034 	local_node = pgdat->node_id;
5035 	prev_node = local_node;
5036 
5037 	memset(node_order, 0, sizeof(node_order));
5038 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5039 		/*
5040 		 * We don't want to pressure a particular node.
5041 		 * So adding penalty to the first node in same
5042 		 * distance group to make it round-robin.
5043 		 */
5044 		if (node_distance(local_node, node) !=
5045 		    node_distance(local_node, prev_node))
5046 			node_load[node] += 1;
5047 
5048 		node_order[nr_nodes++] = node;
5049 		prev_node = node;
5050 	}
5051 
5052 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5053 	build_thisnode_zonelists(pgdat);
5054 	pr_info("Fallback order for Node %d: ", local_node);
5055 	for (node = 0; node < nr_nodes; node++)
5056 		pr_cont("%d ", node_order[node]);
5057 	pr_cont("\n");
5058 }
5059 
5060 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5061 /*
5062  * Return node id of node used for "local" allocations.
5063  * I.e., first node id of first zone in arg node's generic zonelist.
5064  * Used for initializing percpu 'numa_mem', which is used primarily
5065  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5066  */
local_memory_node(int node)5067 int local_memory_node(int node)
5068 {
5069 	struct zoneref *z;
5070 
5071 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5072 				   gfp_zone(GFP_KERNEL),
5073 				   NULL);
5074 	return zone_to_nid(z->zone);
5075 }
5076 #endif
5077 
5078 static void setup_min_unmapped_ratio(void);
5079 static void setup_min_slab_ratio(void);
5080 #else	/* CONFIG_NUMA */
5081 
build_zonelists(pg_data_t * pgdat)5082 static void build_zonelists(pg_data_t *pgdat)
5083 {
5084 	int node, local_node;
5085 	struct zoneref *zonerefs;
5086 	int nr_zones;
5087 
5088 	local_node = pgdat->node_id;
5089 
5090 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5091 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5092 	zonerefs += nr_zones;
5093 
5094 	/*
5095 	 * Now we build the zonelist so that it contains the zones
5096 	 * of all the other nodes.
5097 	 * We don't want to pressure a particular node, so when
5098 	 * building the zones for node N, we make sure that the
5099 	 * zones coming right after the local ones are those from
5100 	 * node N+1 (modulo N)
5101 	 */
5102 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5103 		if (!node_online(node))
5104 			continue;
5105 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5106 		zonerefs += nr_zones;
5107 	}
5108 	for (node = 0; node < local_node; node++) {
5109 		if (!node_online(node))
5110 			continue;
5111 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5112 		zonerefs += nr_zones;
5113 	}
5114 
5115 	zonerefs->zone = NULL;
5116 	zonerefs->zone_idx = 0;
5117 }
5118 
5119 #endif	/* CONFIG_NUMA */
5120 
5121 /*
5122  * Boot pageset table. One per cpu which is going to be used for all
5123  * zones and all nodes. The parameters will be set in such a way
5124  * that an item put on a list will immediately be handed over to
5125  * the buddy list. This is safe since pageset manipulation is done
5126  * with interrupts disabled.
5127  *
5128  * The boot_pagesets must be kept even after bootup is complete for
5129  * unused processors and/or zones. They do play a role for bootstrapping
5130  * hotplugged processors.
5131  *
5132  * zoneinfo_show() and maybe other functions do
5133  * not check if the processor is online before following the pageset pointer.
5134  * Other parts of the kernel may not check if the zone is available.
5135  */
5136 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5137 /* These effectively disable the pcplists in the boot pageset completely */
5138 #define BOOT_PAGESET_HIGH	0
5139 #define BOOT_PAGESET_BATCH	1
5140 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5141 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5142 
__build_all_zonelists(void * data)5143 static void __build_all_zonelists(void *data)
5144 {
5145 	int nid;
5146 	int __maybe_unused cpu;
5147 	pg_data_t *self = data;
5148 	unsigned long flags;
5149 
5150 	/*
5151 	 * The zonelist_update_seq must be acquired with irqsave because the
5152 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5153 	 */
5154 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5155 	/*
5156 	 * Also disable synchronous printk() to prevent any printk() from
5157 	 * trying to hold port->lock, for
5158 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5159 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5160 	 */
5161 	printk_deferred_enter();
5162 
5163 #ifdef CONFIG_NUMA
5164 	memset(node_load, 0, sizeof(node_load));
5165 #endif
5166 
5167 	/*
5168 	 * This node is hotadded and no memory is yet present.   So just
5169 	 * building zonelists is fine - no need to touch other nodes.
5170 	 */
5171 	if (self && !node_online(self->node_id)) {
5172 		build_zonelists(self);
5173 	} else {
5174 		/*
5175 		 * All possible nodes have pgdat preallocated
5176 		 * in free_area_init
5177 		 */
5178 		for_each_node(nid) {
5179 			pg_data_t *pgdat = NODE_DATA(nid);
5180 
5181 			build_zonelists(pgdat);
5182 		}
5183 
5184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5185 		/*
5186 		 * We now know the "local memory node" for each node--
5187 		 * i.e., the node of the first zone in the generic zonelist.
5188 		 * Set up numa_mem percpu variable for on-line cpus.  During
5189 		 * boot, only the boot cpu should be on-line;  we'll init the
5190 		 * secondary cpus' numa_mem as they come on-line.  During
5191 		 * node/memory hotplug, we'll fixup all on-line cpus.
5192 		 */
5193 		for_each_online_cpu(cpu)
5194 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5195 #endif
5196 	}
5197 
5198 	printk_deferred_exit();
5199 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5200 }
5201 
5202 static noinline void __init
build_all_zonelists_init(void)5203 build_all_zonelists_init(void)
5204 {
5205 	int cpu;
5206 
5207 	__build_all_zonelists(NULL);
5208 
5209 	/*
5210 	 * Initialize the boot_pagesets that are going to be used
5211 	 * for bootstrapping processors. The real pagesets for
5212 	 * each zone will be allocated later when the per cpu
5213 	 * allocator is available.
5214 	 *
5215 	 * boot_pagesets are used also for bootstrapping offline
5216 	 * cpus if the system is already booted because the pagesets
5217 	 * are needed to initialize allocators on a specific cpu too.
5218 	 * F.e. the percpu allocator needs the page allocator which
5219 	 * needs the percpu allocator in order to allocate its pagesets
5220 	 * (a chicken-egg dilemma).
5221 	 */
5222 	for_each_possible_cpu(cpu)
5223 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5224 
5225 	mminit_verify_zonelist();
5226 	cpuset_init_current_mems_allowed();
5227 }
5228 
5229 /*
5230  * unless system_state == SYSTEM_BOOTING.
5231  *
5232  * __ref due to call of __init annotated helper build_all_zonelists_init
5233  * [protected by SYSTEM_BOOTING].
5234  */
build_all_zonelists(pg_data_t * pgdat)5235 void __ref build_all_zonelists(pg_data_t *pgdat)
5236 {
5237 	unsigned long vm_total_pages;
5238 
5239 	if (system_state == SYSTEM_BOOTING) {
5240 		build_all_zonelists_init();
5241 	} else {
5242 		__build_all_zonelists(pgdat);
5243 		/* cpuset refresh routine should be here */
5244 	}
5245 	/* Get the number of free pages beyond high watermark in all zones. */
5246 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5247 	/*
5248 	 * Disable grouping by mobility if the number of pages in the
5249 	 * system is too low to allow the mechanism to work. It would be
5250 	 * more accurate, but expensive to check per-zone. This check is
5251 	 * made on memory-hotadd so a system can start with mobility
5252 	 * disabled and enable it later
5253 	 */
5254 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5255 		page_group_by_mobility_disabled = 1;
5256 	else
5257 		page_group_by_mobility_disabled = 0;
5258 
5259 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5260 		nr_online_nodes,
5261 		page_group_by_mobility_disabled ? "off" : "on",
5262 		vm_total_pages);
5263 #ifdef CONFIG_NUMA
5264 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5265 #endif
5266 }
5267 
zone_batchsize(struct zone * zone)5268 static int zone_batchsize(struct zone *zone)
5269 {
5270 #ifdef CONFIG_MMU
5271 	int batch;
5272 
5273 	/*
5274 	 * The number of pages to batch allocate is either ~0.1%
5275 	 * of the zone or 1MB, whichever is smaller. The batch
5276 	 * size is striking a balance between allocation latency
5277 	 * and zone lock contention.
5278 	 */
5279 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5280 	batch /= 4;		/* We effectively *= 4 below */
5281 	if (batch < 1)
5282 		batch = 1;
5283 
5284 	/*
5285 	 * Clamp the batch to a 2^n - 1 value. Having a power
5286 	 * of 2 value was found to be more likely to have
5287 	 * suboptimal cache aliasing properties in some cases.
5288 	 *
5289 	 * For example if 2 tasks are alternately allocating
5290 	 * batches of pages, one task can end up with a lot
5291 	 * of pages of one half of the possible page colors
5292 	 * and the other with pages of the other colors.
5293 	 */
5294 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5295 
5296 	return batch;
5297 
5298 #else
5299 	/* The deferral and batching of frees should be suppressed under NOMMU
5300 	 * conditions.
5301 	 *
5302 	 * The problem is that NOMMU needs to be able to allocate large chunks
5303 	 * of contiguous memory as there's no hardware page translation to
5304 	 * assemble apparent contiguous memory from discontiguous pages.
5305 	 *
5306 	 * Queueing large contiguous runs of pages for batching, however,
5307 	 * causes the pages to actually be freed in smaller chunks.  As there
5308 	 * can be a significant delay between the individual batches being
5309 	 * recycled, this leads to the once large chunks of space being
5310 	 * fragmented and becoming unavailable for high-order allocations.
5311 	 */
5312 	return 0;
5313 #endif
5314 }
5315 
5316 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5317 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5318 {
5319 #ifdef CONFIG_MMU
5320 	int high;
5321 	int nr_split_cpus;
5322 	unsigned long total_pages;
5323 
5324 	if (!percpu_pagelist_high_fraction) {
5325 		/*
5326 		 * By default, the high value of the pcp is based on the zone
5327 		 * low watermark so that if they are full then background
5328 		 * reclaim will not be started prematurely.
5329 		 */
5330 		total_pages = low_wmark_pages(zone);
5331 	} else {
5332 		/*
5333 		 * If percpu_pagelist_high_fraction is configured, the high
5334 		 * value is based on a fraction of the managed pages in the
5335 		 * zone.
5336 		 */
5337 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5338 	}
5339 
5340 	/*
5341 	 * Split the high value across all online CPUs local to the zone. Note
5342 	 * that early in boot that CPUs may not be online yet and that during
5343 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5344 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
5345 	 * all online CPUs to mitigate the risk that reclaim is triggered
5346 	 * prematurely due to pages stored on pcp lists.
5347 	 */
5348 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5349 	if (!nr_split_cpus)
5350 		nr_split_cpus = num_online_cpus();
5351 	high = total_pages / nr_split_cpus;
5352 
5353 	/*
5354 	 * Ensure high is at least batch*4. The multiple is based on the
5355 	 * historical relationship between high and batch.
5356 	 */
5357 	high = max(high, batch << 2);
5358 
5359 	return high;
5360 #else
5361 	return 0;
5362 #endif
5363 }
5364 
5365 /*
5366  * pcp->high and pcp->batch values are related and generally batch is lower
5367  * than high. They are also related to pcp->count such that count is lower
5368  * than high, and as soon as it reaches high, the pcplist is flushed.
5369  *
5370  * However, guaranteeing these relations at all times would require e.g. write
5371  * barriers here but also careful usage of read barriers at the read side, and
5372  * thus be prone to error and bad for performance. Thus the update only prevents
5373  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5374  * can cope with those fields changing asynchronously, and fully trust only the
5375  * pcp->count field on the local CPU with interrupts disabled.
5376  *
5377  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5378  * outside of boot time (or some other assurance that no concurrent updaters
5379  * exist).
5380  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5381 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5382 		unsigned long batch)
5383 {
5384 	WRITE_ONCE(pcp->batch, batch);
5385 	WRITE_ONCE(pcp->high, high);
5386 }
5387 
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5388 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5389 {
5390 	int pindex;
5391 
5392 	memset(pcp, 0, sizeof(*pcp));
5393 	memset(pzstats, 0, sizeof(*pzstats));
5394 
5395 	spin_lock_init(&pcp->lock);
5396 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5397 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5398 
5399 	/*
5400 	 * Set batch and high values safe for a boot pageset. A true percpu
5401 	 * pageset's initialization will update them subsequently. Here we don't
5402 	 * need to be as careful as pageset_update() as nobody can access the
5403 	 * pageset yet.
5404 	 */
5405 	pcp->high = BOOT_PAGESET_HIGH;
5406 	pcp->batch = BOOT_PAGESET_BATCH;
5407 	pcp->free_factor = 0;
5408 }
5409 
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5410 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5411 		unsigned long batch)
5412 {
5413 	struct per_cpu_pages *pcp;
5414 	int cpu;
5415 
5416 	for_each_possible_cpu(cpu) {
5417 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5418 		pageset_update(pcp, high, batch);
5419 	}
5420 }
5421 
5422 /*
5423  * Calculate and set new high and batch values for all per-cpu pagesets of a
5424  * zone based on the zone's size.
5425  */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5426 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5427 {
5428 	int new_high, new_batch;
5429 
5430 	new_batch = max(1, zone_batchsize(zone));
5431 	new_high = zone_highsize(zone, new_batch, cpu_online);
5432 
5433 	if (zone->pageset_high == new_high &&
5434 	    zone->pageset_batch == new_batch)
5435 		return;
5436 
5437 	zone->pageset_high = new_high;
5438 	zone->pageset_batch = new_batch;
5439 
5440 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5441 }
5442 
setup_zone_pageset(struct zone * zone)5443 void __meminit setup_zone_pageset(struct zone *zone)
5444 {
5445 	int cpu;
5446 
5447 	/* Size may be 0 on !SMP && !NUMA */
5448 	if (sizeof(struct per_cpu_zonestat) > 0)
5449 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5450 
5451 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5452 	for_each_possible_cpu(cpu) {
5453 		struct per_cpu_pages *pcp;
5454 		struct per_cpu_zonestat *pzstats;
5455 
5456 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5457 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5458 		per_cpu_pages_init(pcp, pzstats);
5459 	}
5460 
5461 	zone_set_pageset_high_and_batch(zone, 0);
5462 }
5463 
5464 /*
5465  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5466  * page high values need to be recalculated.
5467  */
zone_pcp_update(struct zone * zone,int cpu_online)5468 static void zone_pcp_update(struct zone *zone, int cpu_online)
5469 {
5470 	mutex_lock(&pcp_batch_high_lock);
5471 	zone_set_pageset_high_and_batch(zone, cpu_online);
5472 	mutex_unlock(&pcp_batch_high_lock);
5473 }
5474 
5475 /*
5476  * Allocate per cpu pagesets and initialize them.
5477  * Before this call only boot pagesets were available.
5478  */
setup_per_cpu_pageset(void)5479 void __init setup_per_cpu_pageset(void)
5480 {
5481 	struct pglist_data *pgdat;
5482 	struct zone *zone;
5483 	int __maybe_unused cpu;
5484 
5485 	for_each_populated_zone(zone)
5486 		setup_zone_pageset(zone);
5487 
5488 #ifdef CONFIG_NUMA
5489 	/*
5490 	 * Unpopulated zones continue using the boot pagesets.
5491 	 * The numa stats for these pagesets need to be reset.
5492 	 * Otherwise, they will end up skewing the stats of
5493 	 * the nodes these zones are associated with.
5494 	 */
5495 	for_each_possible_cpu(cpu) {
5496 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5497 		memset(pzstats->vm_numa_event, 0,
5498 		       sizeof(pzstats->vm_numa_event));
5499 	}
5500 #endif
5501 
5502 	for_each_online_pgdat(pgdat)
5503 		pgdat->per_cpu_nodestats =
5504 			alloc_percpu(struct per_cpu_nodestat);
5505 }
5506 
zone_pcp_init(struct zone * zone)5507 __meminit void zone_pcp_init(struct zone *zone)
5508 {
5509 	/*
5510 	 * per cpu subsystem is not up at this point. The following code
5511 	 * relies on the ability of the linker to provide the
5512 	 * offset of a (static) per cpu variable into the per cpu area.
5513 	 */
5514 	zone->per_cpu_pageset = &boot_pageset;
5515 	zone->per_cpu_zonestats = &boot_zonestats;
5516 	zone->pageset_high = BOOT_PAGESET_HIGH;
5517 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5518 
5519 	if (populated_zone(zone))
5520 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5521 			 zone->present_pages, zone_batchsize(zone));
5522 }
5523 
adjust_managed_page_count(struct page * page,long count)5524 void adjust_managed_page_count(struct page *page, long count)
5525 {
5526 	atomic_long_add(count, &page_zone(page)->managed_pages);
5527 	totalram_pages_add(count);
5528 #ifdef CONFIG_HIGHMEM
5529 	if (PageHighMem(page))
5530 		totalhigh_pages_add(count);
5531 #endif
5532 }
5533 EXPORT_SYMBOL(adjust_managed_page_count);
5534 
free_reserved_area(void * start,void * end,int poison,const char * s)5535 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5536 {
5537 	void *pos;
5538 	unsigned long pages = 0;
5539 
5540 	start = (void *)PAGE_ALIGN((unsigned long)start);
5541 	end = (void *)((unsigned long)end & PAGE_MASK);
5542 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5543 		struct page *page = virt_to_page(pos);
5544 		void *direct_map_addr;
5545 
5546 		/*
5547 		 * 'direct_map_addr' might be different from 'pos'
5548 		 * because some architectures' virt_to_page()
5549 		 * work with aliases.  Getting the direct map
5550 		 * address ensures that we get a _writeable_
5551 		 * alias for the memset().
5552 		 */
5553 		direct_map_addr = page_address(page);
5554 		/*
5555 		 * Perform a kasan-unchecked memset() since this memory
5556 		 * has not been initialized.
5557 		 */
5558 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5559 		if ((unsigned int)poison <= 0xFF)
5560 			memset(direct_map_addr, poison, PAGE_SIZE);
5561 
5562 		free_reserved_page(page);
5563 	}
5564 
5565 	if (pages && s)
5566 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5567 
5568 	return pages;
5569 }
5570 
page_alloc_cpu_dead(unsigned int cpu)5571 static int page_alloc_cpu_dead(unsigned int cpu)
5572 {
5573 	struct zone *zone;
5574 
5575 	lru_add_drain_cpu(cpu);
5576 	mlock_drain_remote(cpu);
5577 	drain_pages(cpu);
5578 
5579 	/*
5580 	 * Spill the event counters of the dead processor
5581 	 * into the current processors event counters.
5582 	 * This artificially elevates the count of the current
5583 	 * processor.
5584 	 */
5585 	vm_events_fold_cpu(cpu);
5586 
5587 	/*
5588 	 * Zero the differential counters of the dead processor
5589 	 * so that the vm statistics are consistent.
5590 	 *
5591 	 * This is only okay since the processor is dead and cannot
5592 	 * race with what we are doing.
5593 	 */
5594 	cpu_vm_stats_fold(cpu);
5595 
5596 	for_each_populated_zone(zone)
5597 		zone_pcp_update(zone, 0);
5598 
5599 	return 0;
5600 }
5601 
page_alloc_cpu_online(unsigned int cpu)5602 static int page_alloc_cpu_online(unsigned int cpu)
5603 {
5604 	struct zone *zone;
5605 
5606 	for_each_populated_zone(zone)
5607 		zone_pcp_update(zone, 1);
5608 	return 0;
5609 }
5610 
page_alloc_init_cpuhp(void)5611 void __init page_alloc_init_cpuhp(void)
5612 {
5613 	int ret;
5614 
5615 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5616 					"mm/page_alloc:pcp",
5617 					page_alloc_cpu_online,
5618 					page_alloc_cpu_dead);
5619 	WARN_ON(ret < 0);
5620 }
5621 
5622 /*
5623  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5624  *	or min_free_kbytes changes.
5625  */
calculate_totalreserve_pages(void)5626 static void calculate_totalreserve_pages(void)
5627 {
5628 	struct pglist_data *pgdat;
5629 	unsigned long reserve_pages = 0;
5630 	enum zone_type i, j;
5631 
5632 	for_each_online_pgdat(pgdat) {
5633 
5634 		pgdat->totalreserve_pages = 0;
5635 
5636 		for (i = 0; i < MAX_NR_ZONES; i++) {
5637 			struct zone *zone = pgdat->node_zones + i;
5638 			long max = 0;
5639 			unsigned long managed_pages = zone_managed_pages(zone);
5640 
5641 			/* Find valid and maximum lowmem_reserve in the zone */
5642 			for (j = i; j < MAX_NR_ZONES; j++) {
5643 				if (zone->lowmem_reserve[j] > max)
5644 					max = zone->lowmem_reserve[j];
5645 			}
5646 
5647 			/* we treat the high watermark as reserved pages. */
5648 			max += high_wmark_pages(zone);
5649 
5650 			if (max > managed_pages)
5651 				max = managed_pages;
5652 
5653 			pgdat->totalreserve_pages += max;
5654 
5655 			reserve_pages += max;
5656 		}
5657 	}
5658 	totalreserve_pages = reserve_pages;
5659 }
5660 
5661 /*
5662  * setup_per_zone_lowmem_reserve - called whenever
5663  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5664  *	has a correct pages reserved value, so an adequate number of
5665  *	pages are left in the zone after a successful __alloc_pages().
5666  */
setup_per_zone_lowmem_reserve(void)5667 static void setup_per_zone_lowmem_reserve(void)
5668 {
5669 	struct pglist_data *pgdat;
5670 	enum zone_type i, j;
5671 
5672 	for_each_online_pgdat(pgdat) {
5673 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5674 			struct zone *zone = &pgdat->node_zones[i];
5675 			int ratio = sysctl_lowmem_reserve_ratio[i];
5676 			bool clear = !ratio || !zone_managed_pages(zone);
5677 			unsigned long managed_pages = 0;
5678 
5679 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5680 				struct zone *upper_zone = &pgdat->node_zones[j];
5681 
5682 				managed_pages += zone_managed_pages(upper_zone);
5683 
5684 				if (clear)
5685 					zone->lowmem_reserve[j] = 0;
5686 				else
5687 					zone->lowmem_reserve[j] = managed_pages / ratio;
5688 			}
5689 		}
5690 	}
5691 
5692 	/* update totalreserve_pages */
5693 	calculate_totalreserve_pages();
5694 }
5695 
__setup_per_zone_wmarks(void)5696 static void __setup_per_zone_wmarks(void)
5697 {
5698 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5699 	unsigned long lowmem_pages = 0;
5700 	struct zone *zone;
5701 	unsigned long flags;
5702 
5703 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5704 	for_each_zone(zone) {
5705 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5706 			lowmem_pages += zone_managed_pages(zone);
5707 	}
5708 
5709 	for_each_zone(zone) {
5710 		u64 tmp;
5711 
5712 		spin_lock_irqsave(&zone->lock, flags);
5713 		tmp = (u64)pages_min * zone_managed_pages(zone);
5714 		do_div(tmp, lowmem_pages);
5715 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5716 			/*
5717 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5718 			 * need highmem and movable zones pages, so cap pages_min
5719 			 * to a small  value here.
5720 			 *
5721 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5722 			 * deltas control async page reclaim, and so should
5723 			 * not be capped for highmem and movable zones.
5724 			 */
5725 			unsigned long min_pages;
5726 
5727 			min_pages = zone_managed_pages(zone) / 1024;
5728 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5729 			zone->_watermark[WMARK_MIN] = min_pages;
5730 		} else {
5731 			/*
5732 			 * If it's a lowmem zone, reserve a number of pages
5733 			 * proportionate to the zone's size.
5734 			 */
5735 			zone->_watermark[WMARK_MIN] = tmp;
5736 		}
5737 
5738 		/*
5739 		 * Set the kswapd watermarks distance according to the
5740 		 * scale factor in proportion to available memory, but
5741 		 * ensure a minimum size on small systems.
5742 		 */
5743 		tmp = max_t(u64, tmp >> 2,
5744 			    mult_frac(zone_managed_pages(zone),
5745 				      watermark_scale_factor, 10000));
5746 
5747 		zone->watermark_boost = 0;
5748 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5749 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5750 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5751 
5752 		spin_unlock_irqrestore(&zone->lock, flags);
5753 	}
5754 
5755 	/* update totalreserve_pages */
5756 	calculate_totalreserve_pages();
5757 }
5758 
5759 /**
5760  * setup_per_zone_wmarks - called when min_free_kbytes changes
5761  * or when memory is hot-{added|removed}
5762  *
5763  * Ensures that the watermark[min,low,high] values for each zone are set
5764  * correctly with respect to min_free_kbytes.
5765  */
setup_per_zone_wmarks(void)5766 void setup_per_zone_wmarks(void)
5767 {
5768 	struct zone *zone;
5769 	static DEFINE_SPINLOCK(lock);
5770 
5771 	spin_lock(&lock);
5772 	__setup_per_zone_wmarks();
5773 	spin_unlock(&lock);
5774 
5775 	/*
5776 	 * The watermark size have changed so update the pcpu batch
5777 	 * and high limits or the limits may be inappropriate.
5778 	 */
5779 	for_each_zone(zone)
5780 		zone_pcp_update(zone, 0);
5781 }
5782 
5783 /*
5784  * Initialise min_free_kbytes.
5785  *
5786  * For small machines we want it small (128k min).  For large machines
5787  * we want it large (256MB max).  But it is not linear, because network
5788  * bandwidth does not increase linearly with machine size.  We use
5789  *
5790  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5791  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5792  *
5793  * which yields
5794  *
5795  * 16MB:	512k
5796  * 32MB:	724k
5797  * 64MB:	1024k
5798  * 128MB:	1448k
5799  * 256MB:	2048k
5800  * 512MB:	2896k
5801  * 1024MB:	4096k
5802  * 2048MB:	5792k
5803  * 4096MB:	8192k
5804  * 8192MB:	11584k
5805  * 16384MB:	16384k
5806  */
calculate_min_free_kbytes(void)5807 void calculate_min_free_kbytes(void)
5808 {
5809 	unsigned long lowmem_kbytes;
5810 	int new_min_free_kbytes;
5811 
5812 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5813 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5814 
5815 	if (new_min_free_kbytes > user_min_free_kbytes)
5816 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5817 	else
5818 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5819 				new_min_free_kbytes, user_min_free_kbytes);
5820 
5821 }
5822 
init_per_zone_wmark_min(void)5823 int __meminit init_per_zone_wmark_min(void)
5824 {
5825 	calculate_min_free_kbytes();
5826 	setup_per_zone_wmarks();
5827 	refresh_zone_stat_thresholds();
5828 	setup_per_zone_lowmem_reserve();
5829 
5830 #ifdef CONFIG_NUMA
5831 	setup_min_unmapped_ratio();
5832 	setup_min_slab_ratio();
5833 #endif
5834 
5835 	khugepaged_min_free_kbytes_update();
5836 
5837 	return 0;
5838 }
postcore_initcall(init_per_zone_wmark_min)5839 postcore_initcall(init_per_zone_wmark_min)
5840 
5841 /*
5842  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5843  *	that we can call two helper functions whenever min_free_kbytes
5844  *	changes.
5845  */
5846 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5847 		void *buffer, size_t *length, loff_t *ppos)
5848 {
5849 	int rc;
5850 
5851 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5852 	if (rc)
5853 		return rc;
5854 
5855 	if (write) {
5856 		user_min_free_kbytes = min_free_kbytes;
5857 		setup_per_zone_wmarks();
5858 	}
5859 	return 0;
5860 }
5861 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5862 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5863 		void *buffer, size_t *length, loff_t *ppos)
5864 {
5865 	int rc;
5866 
5867 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 	if (rc)
5869 		return rc;
5870 
5871 	if (write)
5872 		setup_per_zone_wmarks();
5873 
5874 	return 0;
5875 }
5876 
5877 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5878 static void setup_min_unmapped_ratio(void)
5879 {
5880 	pg_data_t *pgdat;
5881 	struct zone *zone;
5882 
5883 	for_each_online_pgdat(pgdat)
5884 		pgdat->min_unmapped_pages = 0;
5885 
5886 	for_each_zone(zone)
5887 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5888 						         sysctl_min_unmapped_ratio) / 100;
5889 }
5890 
5891 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5892 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5893 		void *buffer, size_t *length, loff_t *ppos)
5894 {
5895 	int rc;
5896 
5897 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5898 	if (rc)
5899 		return rc;
5900 
5901 	setup_min_unmapped_ratio();
5902 
5903 	return 0;
5904 }
5905 
setup_min_slab_ratio(void)5906 static void setup_min_slab_ratio(void)
5907 {
5908 	pg_data_t *pgdat;
5909 	struct zone *zone;
5910 
5911 	for_each_online_pgdat(pgdat)
5912 		pgdat->min_slab_pages = 0;
5913 
5914 	for_each_zone(zone)
5915 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5916 						     sysctl_min_slab_ratio) / 100;
5917 }
5918 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5919 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5920 		void *buffer, size_t *length, loff_t *ppos)
5921 {
5922 	int rc;
5923 
5924 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 	if (rc)
5926 		return rc;
5927 
5928 	setup_min_slab_ratio();
5929 
5930 	return 0;
5931 }
5932 #endif
5933 
5934 /*
5935  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5936  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5937  *	whenever sysctl_lowmem_reserve_ratio changes.
5938  *
5939  * The reserve ratio obviously has absolutely no relation with the
5940  * minimum watermarks. The lowmem reserve ratio can only make sense
5941  * if in function of the boot time zone sizes.
5942  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5943 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5944 		int write, void *buffer, size_t *length, loff_t *ppos)
5945 {
5946 	int i;
5947 
5948 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5949 
5950 	for (i = 0; i < MAX_NR_ZONES; i++) {
5951 		if (sysctl_lowmem_reserve_ratio[i] < 1)
5952 			sysctl_lowmem_reserve_ratio[i] = 0;
5953 	}
5954 
5955 	setup_per_zone_lowmem_reserve();
5956 	return 0;
5957 }
5958 
5959 /*
5960  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5961  * cpu. It is the fraction of total pages in each zone that a hot per cpu
5962  * pagelist can have before it gets flushed back to buddy allocator.
5963  */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5964 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5965 		int write, void *buffer, size_t *length, loff_t *ppos)
5966 {
5967 	struct zone *zone;
5968 	int old_percpu_pagelist_high_fraction;
5969 	int ret;
5970 
5971 	mutex_lock(&pcp_batch_high_lock);
5972 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5973 
5974 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5975 	if (!write || ret < 0)
5976 		goto out;
5977 
5978 	/* Sanity checking to avoid pcp imbalance */
5979 	if (percpu_pagelist_high_fraction &&
5980 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5981 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5982 		ret = -EINVAL;
5983 		goto out;
5984 	}
5985 
5986 	/* No change? */
5987 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5988 		goto out;
5989 
5990 	for_each_populated_zone(zone)
5991 		zone_set_pageset_high_and_batch(zone, 0);
5992 out:
5993 	mutex_unlock(&pcp_batch_high_lock);
5994 	return ret;
5995 }
5996 
5997 static struct ctl_table page_alloc_sysctl_table[] = {
5998 	{
5999 		.procname	= "min_free_kbytes",
6000 		.data		= &min_free_kbytes,
6001 		.maxlen		= sizeof(min_free_kbytes),
6002 		.mode		= 0644,
6003 		.proc_handler	= min_free_kbytes_sysctl_handler,
6004 		.extra1		= SYSCTL_ZERO,
6005 	},
6006 	{
6007 		.procname	= "watermark_boost_factor",
6008 		.data		= &watermark_boost_factor,
6009 		.maxlen		= sizeof(watermark_boost_factor),
6010 		.mode		= 0644,
6011 		.proc_handler	= proc_dointvec_minmax,
6012 		.extra1		= SYSCTL_ZERO,
6013 	},
6014 	{
6015 		.procname	= "watermark_scale_factor",
6016 		.data		= &watermark_scale_factor,
6017 		.maxlen		= sizeof(watermark_scale_factor),
6018 		.mode		= 0644,
6019 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6020 		.extra1		= SYSCTL_ONE,
6021 		.extra2		= SYSCTL_THREE_THOUSAND,
6022 	},
6023 	{
6024 		.procname	= "percpu_pagelist_high_fraction",
6025 		.data		= &percpu_pagelist_high_fraction,
6026 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6027 		.mode		= 0644,
6028 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6029 		.extra1		= SYSCTL_ZERO,
6030 	},
6031 	{
6032 		.procname	= "lowmem_reserve_ratio",
6033 		.data		= &sysctl_lowmem_reserve_ratio,
6034 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6035 		.mode		= 0644,
6036 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6037 	},
6038 #ifdef CONFIG_NUMA
6039 	{
6040 		.procname	= "numa_zonelist_order",
6041 		.data		= &numa_zonelist_order,
6042 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6043 		.mode		= 0644,
6044 		.proc_handler	= numa_zonelist_order_handler,
6045 	},
6046 	{
6047 		.procname	= "min_unmapped_ratio",
6048 		.data		= &sysctl_min_unmapped_ratio,
6049 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6050 		.mode		= 0644,
6051 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6052 		.extra1		= SYSCTL_ZERO,
6053 		.extra2		= SYSCTL_ONE_HUNDRED,
6054 	},
6055 	{
6056 		.procname	= "min_slab_ratio",
6057 		.data		= &sysctl_min_slab_ratio,
6058 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6059 		.mode		= 0644,
6060 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6061 		.extra1		= SYSCTL_ZERO,
6062 		.extra2		= SYSCTL_ONE_HUNDRED,
6063 	},
6064 #endif
6065 	{}
6066 };
6067 
page_alloc_sysctl_init(void)6068 void __init page_alloc_sysctl_init(void)
6069 {
6070 	register_sysctl_init("vm", page_alloc_sysctl_table);
6071 }
6072 
6073 #ifdef CONFIG_CONTIG_ALLOC
6074 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6075 static void alloc_contig_dump_pages(struct list_head *page_list)
6076 {
6077 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6078 
6079 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6080 		struct page *page;
6081 
6082 		dump_stack();
6083 		list_for_each_entry(page, page_list, lru)
6084 			dump_page(page, "migration failure");
6085 	}
6086 }
6087 
6088 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6089 int __alloc_contig_migrate_range(struct compact_control *cc,
6090 					unsigned long start, unsigned long end)
6091 {
6092 	/* This function is based on compact_zone() from compaction.c. */
6093 	unsigned int nr_reclaimed;
6094 	unsigned long pfn = start;
6095 	unsigned int tries = 0;
6096 	int ret = 0;
6097 	struct migration_target_control mtc = {
6098 		.nid = zone_to_nid(cc->zone),
6099 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6100 	};
6101 
6102 	lru_cache_disable();
6103 
6104 	while (pfn < end || !list_empty(&cc->migratepages)) {
6105 		if (fatal_signal_pending(current)) {
6106 			ret = -EINTR;
6107 			break;
6108 		}
6109 
6110 		if (list_empty(&cc->migratepages)) {
6111 			cc->nr_migratepages = 0;
6112 			ret = isolate_migratepages_range(cc, pfn, end);
6113 			if (ret && ret != -EAGAIN)
6114 				break;
6115 			pfn = cc->migrate_pfn;
6116 			tries = 0;
6117 		} else if (++tries == 5) {
6118 			ret = -EBUSY;
6119 			break;
6120 		}
6121 
6122 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6123 							&cc->migratepages);
6124 		cc->nr_migratepages -= nr_reclaimed;
6125 
6126 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6127 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6128 
6129 		/*
6130 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6131 		 * to retry again over this error, so do the same here.
6132 		 */
6133 		if (ret == -ENOMEM)
6134 			break;
6135 	}
6136 
6137 	lru_cache_enable();
6138 	if (ret < 0) {
6139 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6140 			alloc_contig_dump_pages(&cc->migratepages);
6141 		putback_movable_pages(&cc->migratepages);
6142 		return ret;
6143 	}
6144 	return 0;
6145 }
6146 
6147 /**
6148  * alloc_contig_range() -- tries to allocate given range of pages
6149  * @start:	start PFN to allocate
6150  * @end:	one-past-the-last PFN to allocate
6151  * @migratetype:	migratetype of the underlying pageblocks (either
6152  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6153  *			in range must have the same migratetype and it must
6154  *			be either of the two.
6155  * @gfp_mask:	GFP mask to use during compaction
6156  *
6157  * The PFN range does not have to be pageblock aligned. The PFN range must
6158  * belong to a single zone.
6159  *
6160  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6161  * pageblocks in the range.  Once isolated, the pageblocks should not
6162  * be modified by others.
6163  *
6164  * Return: zero on success or negative error code.  On success all
6165  * pages which PFN is in [start, end) are allocated for the caller and
6166  * need to be freed with free_contig_range().
6167  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6168 int alloc_contig_range(unsigned long start, unsigned long end,
6169 		       unsigned migratetype, gfp_t gfp_mask)
6170 {
6171 	unsigned long outer_start, outer_end;
6172 	int order;
6173 	int ret = 0;
6174 
6175 	struct compact_control cc = {
6176 		.nr_migratepages = 0,
6177 		.order = -1,
6178 		.zone = page_zone(pfn_to_page(start)),
6179 		.mode = MIGRATE_SYNC,
6180 		.ignore_skip_hint = true,
6181 		.no_set_skip_hint = true,
6182 		.gfp_mask = current_gfp_context(gfp_mask),
6183 		.alloc_contig = true,
6184 	};
6185 	INIT_LIST_HEAD(&cc.migratepages);
6186 
6187 	/*
6188 	 * What we do here is we mark all pageblocks in range as
6189 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6190 	 * have different sizes, and due to the way page allocator
6191 	 * work, start_isolate_page_range() has special handlings for this.
6192 	 *
6193 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6194 	 * migrate the pages from an unaligned range (ie. pages that
6195 	 * we are interested in). This will put all the pages in
6196 	 * range back to page allocator as MIGRATE_ISOLATE.
6197 	 *
6198 	 * When this is done, we take the pages in range from page
6199 	 * allocator removing them from the buddy system.  This way
6200 	 * page allocator will never consider using them.
6201 	 *
6202 	 * This lets us mark the pageblocks back as
6203 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6204 	 * aligned range but not in the unaligned, original range are
6205 	 * put back to page allocator so that buddy can use them.
6206 	 */
6207 
6208 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6209 	if (ret)
6210 		goto done;
6211 
6212 	drain_all_pages(cc.zone);
6213 
6214 	/*
6215 	 * In case of -EBUSY, we'd like to know which page causes problem.
6216 	 * So, just fall through. test_pages_isolated() has a tracepoint
6217 	 * which will report the busy page.
6218 	 *
6219 	 * It is possible that busy pages could become available before
6220 	 * the call to test_pages_isolated, and the range will actually be
6221 	 * allocated.  So, if we fall through be sure to clear ret so that
6222 	 * -EBUSY is not accidentally used or returned to caller.
6223 	 */
6224 	ret = __alloc_contig_migrate_range(&cc, start, end);
6225 	if (ret && ret != -EBUSY)
6226 		goto done;
6227 	ret = 0;
6228 
6229 	/*
6230 	 * Pages from [start, end) are within a pageblock_nr_pages
6231 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6232 	 * more, all pages in [start, end) are free in page allocator.
6233 	 * What we are going to do is to allocate all pages from
6234 	 * [start, end) (that is remove them from page allocator).
6235 	 *
6236 	 * The only problem is that pages at the beginning and at the
6237 	 * end of interesting range may be not aligned with pages that
6238 	 * page allocator holds, ie. they can be part of higher order
6239 	 * pages.  Because of this, we reserve the bigger range and
6240 	 * once this is done free the pages we are not interested in.
6241 	 *
6242 	 * We don't have to hold zone->lock here because the pages are
6243 	 * isolated thus they won't get removed from buddy.
6244 	 */
6245 
6246 	order = 0;
6247 	outer_start = start;
6248 	while (!PageBuddy(pfn_to_page(outer_start))) {
6249 		if (++order > MAX_ORDER) {
6250 			outer_start = start;
6251 			break;
6252 		}
6253 		outer_start &= ~0UL << order;
6254 	}
6255 
6256 	if (outer_start != start) {
6257 		order = buddy_order(pfn_to_page(outer_start));
6258 
6259 		/*
6260 		 * outer_start page could be small order buddy page and
6261 		 * it doesn't include start page. Adjust outer_start
6262 		 * in this case to report failed page properly
6263 		 * on tracepoint in test_pages_isolated()
6264 		 */
6265 		if (outer_start + (1UL << order) <= start)
6266 			outer_start = start;
6267 	}
6268 
6269 	/* Make sure the range is really isolated. */
6270 	if (test_pages_isolated(outer_start, end, 0)) {
6271 		ret = -EBUSY;
6272 		goto done;
6273 	}
6274 
6275 	/* Grab isolated pages from freelists. */
6276 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6277 	if (!outer_end) {
6278 		ret = -EBUSY;
6279 		goto done;
6280 	}
6281 
6282 	/* Free head and tail (if any) */
6283 	if (start != outer_start)
6284 		free_contig_range(outer_start, start - outer_start);
6285 	if (end != outer_end)
6286 		free_contig_range(end, outer_end - end);
6287 
6288 done:
6289 	undo_isolate_page_range(start, end, migratetype);
6290 	return ret;
6291 }
6292 EXPORT_SYMBOL(alloc_contig_range);
6293 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6294 static int __alloc_contig_pages(unsigned long start_pfn,
6295 				unsigned long nr_pages, gfp_t gfp_mask)
6296 {
6297 	unsigned long end_pfn = start_pfn + nr_pages;
6298 
6299 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6300 				  gfp_mask);
6301 }
6302 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6303 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6304 				   unsigned long nr_pages)
6305 {
6306 	unsigned long i, end_pfn = start_pfn + nr_pages;
6307 	struct page *page;
6308 
6309 	for (i = start_pfn; i < end_pfn; i++) {
6310 		page = pfn_to_online_page(i);
6311 		if (!page)
6312 			return false;
6313 
6314 		if (page_zone(page) != z)
6315 			return false;
6316 
6317 		if (PageReserved(page))
6318 			return false;
6319 
6320 		if (PageHuge(page))
6321 			return false;
6322 	}
6323 	return true;
6324 }
6325 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6326 static bool zone_spans_last_pfn(const struct zone *zone,
6327 				unsigned long start_pfn, unsigned long nr_pages)
6328 {
6329 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6330 
6331 	return zone_spans_pfn(zone, last_pfn);
6332 }
6333 
6334 /**
6335  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6336  * @nr_pages:	Number of contiguous pages to allocate
6337  * @gfp_mask:	GFP mask to limit search and used during compaction
6338  * @nid:	Target node
6339  * @nodemask:	Mask for other possible nodes
6340  *
6341  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6342  * on an applicable zonelist to find a contiguous pfn range which can then be
6343  * tried for allocation with alloc_contig_range(). This routine is intended
6344  * for allocation requests which can not be fulfilled with the buddy allocator.
6345  *
6346  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6347  * power of two, then allocated range is also guaranteed to be aligned to same
6348  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6349  *
6350  * Allocated pages can be freed with free_contig_range() or by manually calling
6351  * __free_page() on each allocated page.
6352  *
6353  * Return: pointer to contiguous pages on success, or NULL if not successful.
6354  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6355 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6356 				int nid, nodemask_t *nodemask)
6357 {
6358 	unsigned long ret, pfn, flags;
6359 	struct zonelist *zonelist;
6360 	struct zone *zone;
6361 	struct zoneref *z;
6362 
6363 	zonelist = node_zonelist(nid, gfp_mask);
6364 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6365 					gfp_zone(gfp_mask), nodemask) {
6366 		spin_lock_irqsave(&zone->lock, flags);
6367 
6368 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6369 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6370 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6371 				/*
6372 				 * We release the zone lock here because
6373 				 * alloc_contig_range() will also lock the zone
6374 				 * at some point. If there's an allocation
6375 				 * spinning on this lock, it may win the race
6376 				 * and cause alloc_contig_range() to fail...
6377 				 */
6378 				spin_unlock_irqrestore(&zone->lock, flags);
6379 				ret = __alloc_contig_pages(pfn, nr_pages,
6380 							gfp_mask);
6381 				if (!ret)
6382 					return pfn_to_page(pfn);
6383 				spin_lock_irqsave(&zone->lock, flags);
6384 			}
6385 			pfn += nr_pages;
6386 		}
6387 		spin_unlock_irqrestore(&zone->lock, flags);
6388 	}
6389 	return NULL;
6390 }
6391 #endif /* CONFIG_CONTIG_ALLOC */
6392 
free_contig_range(unsigned long pfn,unsigned long nr_pages)6393 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6394 {
6395 	unsigned long count = 0;
6396 
6397 	for (; nr_pages--; pfn++) {
6398 		struct page *page = pfn_to_page(pfn);
6399 
6400 		count += page_count(page) != 1;
6401 		__free_page(page);
6402 	}
6403 	WARN(count != 0, "%lu pages are still in use!\n", count);
6404 }
6405 EXPORT_SYMBOL(free_contig_range);
6406 
6407 /*
6408  * Effectively disable pcplists for the zone by setting the high limit to 0
6409  * and draining all cpus. A concurrent page freeing on another CPU that's about
6410  * to put the page on pcplist will either finish before the drain and the page
6411  * will be drained, or observe the new high limit and skip the pcplist.
6412  *
6413  * Must be paired with a call to zone_pcp_enable().
6414  */
zone_pcp_disable(struct zone * zone)6415 void zone_pcp_disable(struct zone *zone)
6416 {
6417 	mutex_lock(&pcp_batch_high_lock);
6418 	__zone_set_pageset_high_and_batch(zone, 0, 1);
6419 	__drain_all_pages(zone, true);
6420 }
6421 
zone_pcp_enable(struct zone * zone)6422 void zone_pcp_enable(struct zone *zone)
6423 {
6424 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6425 	mutex_unlock(&pcp_batch_high_lock);
6426 }
6427 
zone_pcp_reset(struct zone * zone)6428 void zone_pcp_reset(struct zone *zone)
6429 {
6430 	int cpu;
6431 	struct per_cpu_zonestat *pzstats;
6432 
6433 	if (zone->per_cpu_pageset != &boot_pageset) {
6434 		for_each_online_cpu(cpu) {
6435 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6436 			drain_zonestat(zone, pzstats);
6437 		}
6438 		free_percpu(zone->per_cpu_pageset);
6439 		zone->per_cpu_pageset = &boot_pageset;
6440 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6441 			free_percpu(zone->per_cpu_zonestats);
6442 			zone->per_cpu_zonestats = &boot_zonestats;
6443 		}
6444 	}
6445 }
6446 
6447 #ifdef CONFIG_MEMORY_HOTREMOVE
6448 /*
6449  * All pages in the range must be in a single zone, must not contain holes,
6450  * must span full sections, and must be isolated before calling this function.
6451  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6452 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6453 {
6454 	unsigned long pfn = start_pfn;
6455 	struct page *page;
6456 	struct zone *zone;
6457 	unsigned int order;
6458 	unsigned long flags;
6459 
6460 	offline_mem_sections(pfn, end_pfn);
6461 	zone = page_zone(pfn_to_page(pfn));
6462 	spin_lock_irqsave(&zone->lock, flags);
6463 	while (pfn < end_pfn) {
6464 		page = pfn_to_page(pfn);
6465 		/*
6466 		 * The HWPoisoned page may be not in buddy system, and
6467 		 * page_count() is not 0.
6468 		 */
6469 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6470 			pfn++;
6471 			continue;
6472 		}
6473 		/*
6474 		 * At this point all remaining PageOffline() pages have a
6475 		 * reference count of 0 and can simply be skipped.
6476 		 */
6477 		if (PageOffline(page)) {
6478 			BUG_ON(page_count(page));
6479 			BUG_ON(PageBuddy(page));
6480 			pfn++;
6481 			continue;
6482 		}
6483 
6484 		BUG_ON(page_count(page));
6485 		BUG_ON(!PageBuddy(page));
6486 		order = buddy_order(page);
6487 		del_page_from_free_list(page, zone, order);
6488 		pfn += (1 << order);
6489 	}
6490 	spin_unlock_irqrestore(&zone->lock, flags);
6491 }
6492 #endif
6493 
6494 /*
6495  * This function returns a stable result only if called under zone lock.
6496  */
is_free_buddy_page(struct page * page)6497 bool is_free_buddy_page(struct page *page)
6498 {
6499 	unsigned long pfn = page_to_pfn(page);
6500 	unsigned int order;
6501 
6502 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6503 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6504 
6505 		if (PageBuddy(page_head) &&
6506 		    buddy_order_unsafe(page_head) >= order)
6507 			break;
6508 	}
6509 
6510 	return order <= MAX_ORDER;
6511 }
6512 EXPORT_SYMBOL(is_free_buddy_page);
6513 
6514 #ifdef CONFIG_MEMORY_FAILURE
6515 /*
6516  * Break down a higher-order page in sub-pages, and keep our target out of
6517  * buddy allocator.
6518  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6519 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6520 				   struct page *target, int low, int high,
6521 				   int migratetype)
6522 {
6523 	unsigned long size = 1 << high;
6524 	struct page *current_buddy, *next_page;
6525 
6526 	while (high > low) {
6527 		high--;
6528 		size >>= 1;
6529 
6530 		if (target >= &page[size]) {
6531 			next_page = page + size;
6532 			current_buddy = page;
6533 		} else {
6534 			next_page = page;
6535 			current_buddy = page + size;
6536 		}
6537 		page = next_page;
6538 
6539 		if (set_page_guard(zone, current_buddy, high, migratetype))
6540 			continue;
6541 
6542 		if (current_buddy != target) {
6543 			add_to_free_list(current_buddy, zone, high, migratetype);
6544 			set_buddy_order(current_buddy, high);
6545 		}
6546 	}
6547 }
6548 
6549 /*
6550  * Take a page that will be marked as poisoned off the buddy allocator.
6551  */
take_page_off_buddy(struct page * page)6552 bool take_page_off_buddy(struct page *page)
6553 {
6554 	struct zone *zone = page_zone(page);
6555 	unsigned long pfn = page_to_pfn(page);
6556 	unsigned long flags;
6557 	unsigned int order;
6558 	bool ret = false;
6559 
6560 	spin_lock_irqsave(&zone->lock, flags);
6561 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6562 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6563 		int page_order = buddy_order(page_head);
6564 
6565 		if (PageBuddy(page_head) && page_order >= order) {
6566 			unsigned long pfn_head = page_to_pfn(page_head);
6567 			int migratetype = get_pfnblock_migratetype(page_head,
6568 								   pfn_head);
6569 
6570 			del_page_from_free_list(page_head, zone, page_order);
6571 			break_down_buddy_pages(zone, page_head, page, 0,
6572 						page_order, migratetype);
6573 			SetPageHWPoisonTakenOff(page);
6574 			if (!is_migrate_isolate(migratetype))
6575 				__mod_zone_freepage_state(zone, -1, migratetype);
6576 			ret = true;
6577 			break;
6578 		}
6579 		if (page_count(page_head) > 0)
6580 			break;
6581 	}
6582 	spin_unlock_irqrestore(&zone->lock, flags);
6583 	return ret;
6584 }
6585 
6586 /*
6587  * Cancel takeoff done by take_page_off_buddy().
6588  */
put_page_back_buddy(struct page * page)6589 bool put_page_back_buddy(struct page *page)
6590 {
6591 	struct zone *zone = page_zone(page);
6592 	unsigned long pfn = page_to_pfn(page);
6593 	unsigned long flags;
6594 	int migratetype = get_pfnblock_migratetype(page, pfn);
6595 	bool ret = false;
6596 
6597 	spin_lock_irqsave(&zone->lock, flags);
6598 	if (put_page_testzero(page)) {
6599 		ClearPageHWPoisonTakenOff(page);
6600 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6601 		if (TestClearPageHWPoison(page)) {
6602 			ret = true;
6603 		}
6604 	}
6605 	spin_unlock_irqrestore(&zone->lock, flags);
6606 
6607 	return ret;
6608 }
6609 #endif
6610 
6611 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6612 bool has_managed_dma(void)
6613 {
6614 	struct pglist_data *pgdat;
6615 
6616 	for_each_online_pgdat(pgdat) {
6617 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6618 
6619 		if (managed_zone(zone))
6620 			return true;
6621 	}
6622 	return false;
6623 }
6624 #endif /* CONFIG_ZONE_DMA */
6625 
6626 #ifdef CONFIG_UNACCEPTED_MEMORY
6627 
6628 /* Counts number of zones with unaccepted pages. */
6629 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6630 
6631 static bool lazy_accept = true;
6632 
accept_memory_parse(char * p)6633 static int __init accept_memory_parse(char *p)
6634 {
6635 	if (!strcmp(p, "lazy")) {
6636 		lazy_accept = true;
6637 		return 0;
6638 	} else if (!strcmp(p, "eager")) {
6639 		lazy_accept = false;
6640 		return 0;
6641 	} else {
6642 		return -EINVAL;
6643 	}
6644 }
6645 early_param("accept_memory", accept_memory_parse);
6646 
page_contains_unaccepted(struct page * page,unsigned int order)6647 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6648 {
6649 	phys_addr_t start = page_to_phys(page);
6650 	phys_addr_t end = start + (PAGE_SIZE << order);
6651 
6652 	return range_contains_unaccepted_memory(start, end);
6653 }
6654 
accept_page(struct page * page,unsigned int order)6655 static void accept_page(struct page *page, unsigned int order)
6656 {
6657 	phys_addr_t start = page_to_phys(page);
6658 
6659 	accept_memory(start, start + (PAGE_SIZE << order));
6660 }
6661 
try_to_accept_memory_one(struct zone * zone)6662 static bool try_to_accept_memory_one(struct zone *zone)
6663 {
6664 	unsigned long flags;
6665 	struct page *page;
6666 	bool last;
6667 
6668 	spin_lock_irqsave(&zone->lock, flags);
6669 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6670 					struct page, lru);
6671 	if (!page) {
6672 		spin_unlock_irqrestore(&zone->lock, flags);
6673 		return false;
6674 	}
6675 
6676 	list_del(&page->lru);
6677 	last = list_empty(&zone->unaccepted_pages);
6678 
6679 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6680 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6681 	spin_unlock_irqrestore(&zone->lock, flags);
6682 
6683 	accept_page(page, MAX_ORDER);
6684 
6685 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6686 
6687 	if (last)
6688 		static_branch_dec(&zones_with_unaccepted_pages);
6689 
6690 	return true;
6691 }
6692 
cond_accept_memory(struct zone * zone,unsigned int order)6693 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6694 {
6695 	long to_accept, wmark;
6696 	bool ret = false;
6697 
6698 	if (!has_unaccepted_memory())
6699 		return false;
6700 
6701 	if (list_empty(&zone->unaccepted_pages))
6702 		return false;
6703 
6704 	wmark = high_wmark_pages(zone);
6705 
6706 	/*
6707 	 * Watermarks have not been initialized yet.
6708 	 *
6709 	 * Accepting one MAX_ORDER page to ensure progress.
6710 	 */
6711 	if (!wmark)
6712 		return try_to_accept_memory_one(zone);
6713 
6714 	/* How much to accept to get to high watermark? */
6715 	to_accept = wmark -
6716 		    (zone_page_state(zone, NR_FREE_PAGES) -
6717 		    __zone_watermark_unusable_free(zone, order, 0) -
6718 		    zone_page_state(zone, NR_UNACCEPTED));
6719 
6720 	while (to_accept > 0) {
6721 		if (!try_to_accept_memory_one(zone))
6722 			break;
6723 		ret = true;
6724 		to_accept -= MAX_ORDER_NR_PAGES;
6725 	}
6726 
6727 	return ret;
6728 }
6729 
has_unaccepted_memory(void)6730 static inline bool has_unaccepted_memory(void)
6731 {
6732 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6733 }
6734 
__free_unaccepted(struct page * page)6735 static bool __free_unaccepted(struct page *page)
6736 {
6737 	struct zone *zone = page_zone(page);
6738 	unsigned long flags;
6739 	bool first = false;
6740 
6741 	if (!lazy_accept)
6742 		return false;
6743 
6744 	spin_lock_irqsave(&zone->lock, flags);
6745 	first = list_empty(&zone->unaccepted_pages);
6746 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6747 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6748 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6749 	spin_unlock_irqrestore(&zone->lock, flags);
6750 
6751 	if (first)
6752 		static_branch_inc(&zones_with_unaccepted_pages);
6753 
6754 	return true;
6755 }
6756 
6757 #else
6758 
page_contains_unaccepted(struct page * page,unsigned int order)6759 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6760 {
6761 	return false;
6762 }
6763 
accept_page(struct page * page,unsigned int order)6764 static void accept_page(struct page *page, unsigned int order)
6765 {
6766 }
6767 
cond_accept_memory(struct zone * zone,unsigned int order)6768 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6769 {
6770 	return false;
6771 }
6772 
has_unaccepted_memory(void)6773 static inline bool has_unaccepted_memory(void)
6774 {
6775 	return false;
6776 }
6777 
__free_unaccepted(struct page * page)6778 static bool __free_unaccepted(struct page *page)
6779 {
6780 	BUILD_BUG();
6781 	return false;
6782 }
6783 
6784 #endif /* CONFIG_UNACCEPTED_MEMORY */
6785