1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/zswapd.h>
55 #ifdef CONFIG_RECLAIM_ACCT
56 #include <linux/reclaim_acct.h>
57 #endif
58 #include <linux/delayacct.h>
59 #include <asm/div64.h>
60 #include "internal.h"
61 #include "shuffle.h"
62 #include "page_reporting.h"
63
64 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
65 typedef int __bitwise fpi_t;
66
67 /* No special request */
68 #define FPI_NONE ((__force fpi_t)0)
69
70 /*
71 * Skip free page reporting notification for the (possibly merged) page.
72 * This does not hinder free page reporting from grabbing the page,
73 * reporting it and marking it "reported" - it only skips notifying
74 * the free page reporting infrastructure about a newly freed page. For
75 * example, used when temporarily pulling a page from a freelist and
76 * putting it back unmodified.
77 */
78 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
79
80 /*
81 * Place the (possibly merged) page to the tail of the freelist. Will ignore
82 * page shuffling (relevant code - e.g., memory onlining - is expected to
83 * shuffle the whole zone).
84 *
85 * Note: No code should rely on this flag for correctness - it's purely
86 * to allow for optimizations when handing back either fresh pages
87 * (memory onlining) or untouched pages (page isolation, free page
88 * reporting).
89 */
90 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
91
92 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
93 static DEFINE_MUTEX(pcp_batch_high_lock);
94 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95
96 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 /*
98 * On SMP, spin_trylock is sufficient protection.
99 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100 */
101 #define pcp_trylock_prepare(flags) do { } while (0)
102 #define pcp_trylock_finish(flag) do { } while (0)
103 #else
104
105 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
106 #define pcp_trylock_prepare(flags) local_irq_save(flags)
107 #define pcp_trylock_finish(flags) local_irq_restore(flags)
108 #endif
109
110 /*
111 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
112 * a migration causing the wrong PCP to be locked and remote memory being
113 * potentially allocated, pin the task to the CPU for the lookup+lock.
114 * preempt_disable is used on !RT because it is faster than migrate_disable.
115 * migrate_disable is used on RT because otherwise RT spinlock usage is
116 * interfered with and a high priority task cannot preempt the allocator.
117 */
118 #ifndef CONFIG_PREEMPT_RT
119 #define pcpu_task_pin() preempt_disable()
120 #define pcpu_task_unpin() preempt_enable()
121 #else
122 #define pcpu_task_pin() migrate_disable()
123 #define pcpu_task_unpin() migrate_enable()
124 #endif
125
126 /*
127 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
128 * Return value should be used with equivalent unlock helper.
129 */
130 #define pcpu_spin_lock(type, member, ptr) \
131 ({ \
132 type *_ret; \
133 pcpu_task_pin(); \
134 _ret = this_cpu_ptr(ptr); \
135 spin_lock(&_ret->member); \
136 _ret; \
137 })
138
139 #define pcpu_spin_trylock(type, member, ptr) \
140 ({ \
141 type *_ret; \
142 pcpu_task_pin(); \
143 _ret = this_cpu_ptr(ptr); \
144 if (!spin_trylock(&_ret->member)) { \
145 pcpu_task_unpin(); \
146 _ret = NULL; \
147 } \
148 _ret; \
149 })
150
151 #define pcpu_spin_unlock(member, ptr) \
152 ({ \
153 spin_unlock(&ptr->member); \
154 pcpu_task_unpin(); \
155 })
156
157 /* struct per_cpu_pages specific helpers. */
158 #define pcp_spin_lock(ptr) \
159 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160
161 #define pcp_spin_trylock(ptr) \
162 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163
164 #define pcp_spin_unlock(ptr) \
165 pcpu_spin_unlock(lock, ptr)
166
167 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
168 DEFINE_PER_CPU(int, numa_node);
169 EXPORT_PER_CPU_SYMBOL(numa_node);
170 #endif
171
172 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
173
174 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 /*
176 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
177 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
178 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
179 * defined in <linux/topology.h>.
180 */
181 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
182 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
183 #endif
184
185 static DEFINE_MUTEX(pcpu_drain_mutex);
186
187 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
188 volatile unsigned long latent_entropy __latent_entropy;
189 EXPORT_SYMBOL(latent_entropy);
190 #endif
191
192 /*
193 * Array of node states.
194 */
195 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
196 [N_POSSIBLE] = NODE_MASK_ALL,
197 [N_ONLINE] = { { [0] = 1UL } },
198 #ifndef CONFIG_NUMA
199 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
200 #ifdef CONFIG_HIGHMEM
201 [N_HIGH_MEMORY] = { { [0] = 1UL } },
202 #endif
203 [N_MEMORY] = { { [0] = 1UL } },
204 [N_CPU] = { { [0] = 1UL } },
205 #endif /* NUMA */
206 };
207 EXPORT_SYMBOL(node_states);
208
209 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
210
211 /*
212 * A cached value of the page's pageblock's migratetype, used when the page is
213 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
214 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
215 * Also the migratetype set in the page does not necessarily match the pcplist
216 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
217 * other index - this ensures that it will be put on the correct CMA freelist.
218 */
get_pcppage_migratetype(struct page * page)219 static inline int get_pcppage_migratetype(struct page *page)
220 {
221 return page->index;
222 }
223
set_pcppage_migratetype(struct page * page,int migratetype)224 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 {
226 page->index = migratetype;
227 }
228
229 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
230 unsigned int pageblock_order __read_mostly;
231 #endif
232
233 static void __free_pages_ok(struct page *page, unsigned int order,
234 fpi_t fpi_flags);
235
236 /*
237 * results with 256, 32 in the lowmem_reserve sysctl:
238 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
239 * 1G machine -> (16M dma, 784M normal, 224M high)
240 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
241 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
242 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
243 *
244 * TBD: should special case ZONE_DMA32 machines here - in those we normally
245 * don't need any ZONE_NORMAL reservation
246 */
247 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
248 #ifdef CONFIG_ZONE_DMA
249 [ZONE_DMA] = 256,
250 #endif
251 #ifdef CONFIG_ZONE_DMA32
252 [ZONE_DMA32] = 256,
253 #endif
254 [ZONE_NORMAL] = 32,
255 #ifdef CONFIG_HIGHMEM
256 [ZONE_HIGHMEM] = 0,
257 #endif
258 [ZONE_MOVABLE] = 0,
259 };
260
261 char * const zone_names[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 "DMA",
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 "DMA32",
267 #endif
268 "Normal",
269 #ifdef CONFIG_HIGHMEM
270 "HighMem",
271 #endif
272 "Movable",
273 #ifdef CONFIG_ZONE_DEVICE
274 "Device",
275 #endif
276 };
277
278 const char * const migratetype_names[MIGRATE_TYPES] = {
279 "Unmovable",
280 "Movable",
281 "Reclaimable",
282 #ifdef CONFIG_CMA_REUSE
283 "CMA",
284 #endif
285 "HighAtomic",
286 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
287 "CMA",
288 #endif
289 #ifdef CONFIG_MEMORY_ISOLATION
290 "Isolate",
291 #endif
292 };
293
294 int min_free_kbytes = 1024;
295 int user_min_free_kbytes = -1;
296 static int watermark_boost_factor __read_mostly = 15000;
297 static int watermark_scale_factor = 10;
298
299 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300 int movable_zone;
301 EXPORT_SYMBOL(movable_zone);
302
303 #if MAX_NUMNODES > 1
304 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
305 unsigned int nr_online_nodes __read_mostly = 1;
306 EXPORT_SYMBOL(nr_node_ids);
307 EXPORT_SYMBOL(nr_online_nodes);
308 #endif
309
310 static bool page_contains_unaccepted(struct page *page, unsigned int order);
311 static void accept_page(struct page *page, unsigned int order);
312 static bool cond_accept_memory(struct zone *zone, unsigned int order);
313 static inline bool has_unaccepted_memory(void);
314 static bool __free_unaccepted(struct page *page);
315
316 int page_group_by_mobility_disabled __read_mostly;
317
318 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
319 /*
320 * During boot we initialize deferred pages on-demand, as needed, but once
321 * page_alloc_init_late() has finished, the deferred pages are all initialized,
322 * and we can permanently disable that path.
323 */
324 DEFINE_STATIC_KEY_TRUE(deferred_pages);
325
deferred_pages_enabled(void)326 static inline bool deferred_pages_enabled(void)
327 {
328 return static_branch_unlikely(&deferred_pages);
329 }
330
331 /*
332 * deferred_grow_zone() is __init, but it is called from
333 * get_page_from_freelist() during early boot until deferred_pages permanently
334 * disables this call. This is why we have refdata wrapper to avoid warning,
335 * and to ensure that the function body gets unloaded.
336 */
337 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)338 _deferred_grow_zone(struct zone *zone, unsigned int order)
339 {
340 return deferred_grow_zone(zone, order);
341 }
342 #else
deferred_pages_enabled(void)343 static inline bool deferred_pages_enabled(void)
344 {
345 return false;
346 }
347 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
348
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)350 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
351 unsigned long pfn)
352 {
353 #ifdef CONFIG_SPARSEMEM
354 return section_to_usemap(__pfn_to_section(pfn));
355 #else
356 return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
358 }
359
pfn_to_bitidx(const struct page * page,unsigned long pfn)360 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 #else
365 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
366 #endif /* CONFIG_SPARSEMEM */
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 }
369
370 /**
371 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
372 * @page: The page within the block of interest
373 * @pfn: The target page frame number
374 * @mask: mask of bits that the caller is interested in
375 *
376 * Return: pageblock_bits flags
377 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)378 unsigned long get_pfnblock_flags_mask(const struct page *page,
379 unsigned long pfn, unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389 /*
390 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
391 * a consistent read of the memory array, so that results, even though
392 * racy, are not corrupted.
393 */
394 word = READ_ONCE(bitmap[word_bitidx]);
395 return (word >> bitidx) & mask;
396 }
397
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)398 static __always_inline int get_pfnblock_migratetype(const struct page *page,
399 unsigned long pfn)
400 {
401 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
402 }
403
404 /**
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @mask: mask of bits that the caller is interested in
410 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)411 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
412 unsigned long pfn,
413 unsigned long mask)
414 {
415 unsigned long *bitmap;
416 unsigned long bitidx, word_bitidx;
417 unsigned long word;
418
419 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
420 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
421
422 bitmap = get_pageblock_bitmap(page, pfn);
423 bitidx = pfn_to_bitidx(page, pfn);
424 word_bitidx = bitidx / BITS_PER_LONG;
425 bitidx &= (BITS_PER_LONG-1);
426
427 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
428
429 mask <<= bitidx;
430 flags <<= bitidx;
431
432 word = READ_ONCE(bitmap[word_bitidx]);
433 do {
434 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
435 }
436
set_pageblock_migratetype(struct page * page,int migratetype)437 void set_pageblock_migratetype(struct page *page, int migratetype)
438 {
439 if (unlikely(page_group_by_mobility_disabled &&
440 migratetype < MIGRATE_PCPTYPES))
441 migratetype = MIGRATE_UNMOVABLE;
442
443 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
444 page_to_pfn(page), MIGRATETYPE_MASK);
445 }
446
447 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)448 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
449 {
450 int ret;
451 unsigned seq;
452 unsigned long pfn = page_to_pfn(page);
453 unsigned long sp, start_pfn;
454
455 do {
456 seq = zone_span_seqbegin(zone);
457 start_pfn = zone->zone_start_pfn;
458 sp = zone->spanned_pages;
459 ret = !zone_spans_pfn(zone, pfn);
460 } while (zone_span_seqretry(zone, seq));
461
462 if (ret)
463 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
464 pfn, zone_to_nid(zone), zone->name,
465 start_pfn, start_pfn + sp);
466
467 return ret;
468 }
469
470 /*
471 * Temporary debugging check for pages not lying within a given zone.
472 */
bad_range(struct zone * zone,struct page * page)473 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
474 {
475 if (page_outside_zone_boundaries(zone, page))
476 return 1;
477 if (zone != page_zone(page))
478 return 1;
479
480 return 0;
481 }
482 #else
bad_range(struct zone * zone,struct page * page)483 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
484 {
485 return 0;
486 }
487 #endif
488
bad_page(struct page * page,const char * reason)489 static void bad_page(struct page *page, const char *reason)
490 {
491 static unsigned long resume;
492 static unsigned long nr_shown;
493 static unsigned long nr_unshown;
494
495 /*
496 * Allow a burst of 60 reports, then keep quiet for that minute;
497 * or allow a steady drip of one report per second.
498 */
499 if (nr_shown == 60) {
500 if (time_before(jiffies, resume)) {
501 nr_unshown++;
502 goto out;
503 }
504 if (nr_unshown) {
505 pr_alert(
506 "BUG: Bad page state: %lu messages suppressed\n",
507 nr_unshown);
508 nr_unshown = 0;
509 }
510 nr_shown = 0;
511 }
512 if (nr_shown++ == 0)
513 resume = jiffies + 60 * HZ;
514
515 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
516 current->comm, page_to_pfn(page));
517 dump_page(page, reason);
518
519 print_modules();
520 dump_stack();
521 out:
522 /* Leave bad fields for debug, except PageBuddy could make trouble */
523 page_mapcount_reset(page); /* remove PageBuddy */
524 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
525 }
526
order_to_pindex(int migratetype,int order)527 static inline unsigned int order_to_pindex(int migratetype, int order)
528 {
529 bool __maybe_unused movable;
530
531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
532 if (order > PAGE_ALLOC_COSTLY_ORDER) {
533 VM_BUG_ON(order != pageblock_order);
534
535 movable = migratetype == MIGRATE_MOVABLE;
536
537 return NR_LOWORDER_PCP_LISTS + movable;
538 }
539 #else
540 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
541 #endif
542
543 return (MIGRATE_PCPTYPES * order) + migratetype;
544 }
545
pindex_to_order(unsigned int pindex)546 static inline int pindex_to_order(unsigned int pindex)
547 {
548 int order = pindex / MIGRATE_PCPTYPES;
549
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 if (pindex >= NR_LOWORDER_PCP_LISTS)
552 order = pageblock_order;
553 #else
554 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
555 #endif
556
557 return order;
558 }
559
pcp_allowed_order(unsigned int order)560 static inline bool pcp_allowed_order(unsigned int order)
561 {
562 if (order <= PAGE_ALLOC_COSTLY_ORDER)
563 return true;
564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
565 if (order == pageblock_order)
566 return true;
567 #endif
568 return false;
569 }
570
free_the_page(struct page * page,unsigned int order)571 static inline void free_the_page(struct page *page, unsigned int order)
572 {
573 if (pcp_allowed_order(order)) /* Via pcp? */
574 free_unref_page(page, order);
575 else
576 __free_pages_ok(page, order, FPI_NONE);
577 }
578
579 /*
580 * Higher-order pages are called "compound pages". They are structured thusly:
581 *
582 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
583 *
584 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
585 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
586 *
587 * The first tail page's ->compound_order holds the order of allocation.
588 * This usage means that zero-order pages may not be compound.
589 */
590
prep_compound_page(struct page * page,unsigned int order)591 void prep_compound_page(struct page *page, unsigned int order)
592 {
593 int i;
594 int nr_pages = 1 << order;
595
596 __SetPageHead(page);
597 for (i = 1; i < nr_pages; i++)
598 prep_compound_tail(page, i);
599
600 prep_compound_head(page, order);
601 }
602
destroy_large_folio(struct folio * folio)603 void destroy_large_folio(struct folio *folio)
604 {
605 if (folio_test_hugetlb(folio)) {
606 free_huge_folio(folio);
607 return;
608 }
609
610 folio_unqueue_deferred_split(folio);
611 mem_cgroup_uncharge(folio);
612 free_the_page(&folio->page, folio_order(folio));
613 }
614
set_buddy_order(struct page * page,unsigned int order)615 static inline void set_buddy_order(struct page *page, unsigned int order)
616 {
617 set_page_private(page, order);
618 __SetPageBuddy(page);
619 }
620
621 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 struct capture_control *capc = current->capture_control;
625
626 return unlikely(capc) &&
627 !(current->flags & PF_KTHREAD) &&
628 !capc->page &&
629 capc->cc->zone == zone ? capc : NULL;
630 }
631
632 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)633 compaction_capture(struct capture_control *capc, struct page *page,
634 int order, int migratetype)
635 {
636 if (!capc || order != capc->cc->order)
637 return false;
638
639 /* Do not accidentally pollute CMA or isolated regions*/
640 if (is_migrate_cma(migratetype) ||
641 is_migrate_isolate(migratetype))
642 return false;
643
644 /*
645 * Do not let lower order allocations pollute a movable pageblock.
646 * This might let an unmovable request use a reclaimable pageblock
647 * and vice-versa but no more than normal fallback logic which can
648 * have trouble finding a high-order free page.
649 */
650 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
651 return false;
652
653 capc->page = page;
654 return true;
655 }
656
657 #else
task_capc(struct zone * zone)658 static inline struct capture_control *task_capc(struct zone *zone)
659 {
660 return NULL;
661 }
662
663 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)664 compaction_capture(struct capture_control *capc, struct page *page,
665 int order, int migratetype)
666 {
667 return false;
668 }
669 #endif /* CONFIG_COMPACTION */
670
671 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)672 static inline void add_to_free_list(struct page *page, struct zone *zone,
673 unsigned int order, int migratetype)
674 {
675 struct free_area *area = &zone->free_area[order];
676
677 list_add(&page->buddy_list, &area->free_list[migratetype]);
678 area->nr_free++;
679 }
680
681 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)682 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
683 unsigned int order, int migratetype)
684 {
685 struct free_area *area = &zone->free_area[order];
686
687 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
688 area->nr_free++;
689 }
690
691 /*
692 * Used for pages which are on another list. Move the pages to the tail
693 * of the list - so the moved pages won't immediately be considered for
694 * allocation again (e.g., optimization for memory onlining).
695 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)696 static inline void move_to_free_list(struct page *page, struct zone *zone,
697 unsigned int order, int migratetype)
698 {
699 struct free_area *area = &zone->free_area[order];
700
701 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
702 }
703
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)704 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
705 unsigned int order)
706 {
707 /* clear reported state and update reported page count */
708 if (page_reported(page))
709 __ClearPageReported(page);
710
711 list_del(&page->buddy_list);
712 __ClearPageBuddy(page);
713 set_page_private(page, 0);
714 zone->free_area[order].nr_free--;
715 }
716
get_page_from_free_area(struct free_area * area,int migratetype)717 static inline struct page *get_page_from_free_area(struct free_area *area,
718 int migratetype)
719 {
720 return list_first_entry_or_null(&area->free_list[migratetype],
721 struct page, buddy_list);
722 }
723
724 /*
725 * If this is not the largest possible page, check if the buddy
726 * of the next-highest order is free. If it is, it's possible
727 * that pages are being freed that will coalesce soon. In case,
728 * that is happening, add the free page to the tail of the list
729 * so it's less likely to be used soon and more likely to be merged
730 * as a higher order page
731 */
732 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)733 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
734 struct page *page, unsigned int order)
735 {
736 unsigned long higher_page_pfn;
737 struct page *higher_page;
738
739 if (order >= MAX_ORDER - 1)
740 return false;
741
742 higher_page_pfn = buddy_pfn & pfn;
743 higher_page = page + (higher_page_pfn - pfn);
744
745 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
746 NULL) != NULL;
747 }
748
749 /*
750 * Freeing function for a buddy system allocator.
751 *
752 * The concept of a buddy system is to maintain direct-mapped table
753 * (containing bit values) for memory blocks of various "orders".
754 * The bottom level table contains the map for the smallest allocatable
755 * units of memory (here, pages), and each level above it describes
756 * pairs of units from the levels below, hence, "buddies".
757 * At a high level, all that happens here is marking the table entry
758 * at the bottom level available, and propagating the changes upward
759 * as necessary, plus some accounting needed to play nicely with other
760 * parts of the VM system.
761 * At each level, we keep a list of pages, which are heads of continuous
762 * free pages of length of (1 << order) and marked with PageBuddy.
763 * Page's order is recorded in page_private(page) field.
764 * So when we are allocating or freeing one, we can derive the state of the
765 * other. That is, if we allocate a small block, and both were
766 * free, the remainder of the region must be split into blocks.
767 * If a block is freed, and its buddy is also free, then this
768 * triggers coalescing into a block of larger size.
769 *
770 * -- nyc
771 */
772
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)773 static inline void __free_one_page(struct page *page,
774 unsigned long pfn,
775 struct zone *zone, unsigned int order,
776 int migratetype, fpi_t fpi_flags)
777 {
778 struct capture_control *capc = task_capc(zone);
779 unsigned long buddy_pfn = 0;
780 unsigned long combined_pfn;
781 struct page *buddy;
782 bool to_tail;
783
784 VM_BUG_ON(!zone_is_initialized(zone));
785 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
786
787 VM_BUG_ON(migratetype == -1);
788 if (likely(!is_migrate_isolate(migratetype)))
789 __mod_zone_freepage_state(zone, 1 << order, migratetype);
790
791 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794 while (order < MAX_ORDER) {
795 if (compaction_capture(capc, page, order, migratetype)) {
796 __mod_zone_freepage_state(zone, -(1 << order),
797 migratetype);
798 return;
799 }
800
801 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
802 if (!buddy)
803 goto done_merging;
804
805 if (unlikely(order >= pageblock_order)) {
806 /*
807 * We want to prevent merge between freepages on pageblock
808 * without fallbacks and normal pageblock. Without this,
809 * pageblock isolation could cause incorrect freepage or CMA
810 * accounting or HIGHATOMIC accounting.
811 */
812 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
813
814 if (migratetype != buddy_mt
815 && (!migratetype_is_mergeable(migratetype) ||
816 !migratetype_is_mergeable(buddy_mt)))
817 goto done_merging;
818 }
819
820 /*
821 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
822 * merge with it and move up one order.
823 */
824 if (page_is_guard(buddy))
825 clear_page_guard(zone, buddy, order, migratetype);
826 else
827 del_page_from_free_list(buddy, zone, order);
828 combined_pfn = buddy_pfn & pfn;
829 page = page + (combined_pfn - pfn);
830 pfn = combined_pfn;
831 order++;
832 }
833
834 done_merging:
835 set_buddy_order(page, order);
836
837 if (fpi_flags & FPI_TO_TAIL)
838 to_tail = true;
839 else if (is_shuffle_order(order))
840 to_tail = shuffle_pick_tail();
841 else
842 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
843
844 if (to_tail)
845 add_to_free_list_tail(page, zone, order, migratetype);
846 else
847 add_to_free_list(page, zone, order, migratetype);
848
849 /* Notify page reporting subsystem of freed page */
850 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
851 page_reporting_notify_free(order);
852 }
853
854 /**
855 * split_free_page() -- split a free page at split_pfn_offset
856 * @free_page: the original free page
857 * @order: the order of the page
858 * @split_pfn_offset: split offset within the page
859 *
860 * Return -ENOENT if the free page is changed, otherwise 0
861 *
862 * It is used when the free page crosses two pageblocks with different migratetypes
863 * at split_pfn_offset within the page. The split free page will be put into
864 * separate migratetype lists afterwards. Otherwise, the function achieves
865 * nothing.
866 */
split_free_page(struct page * free_page,unsigned int order,unsigned long split_pfn_offset)867 int split_free_page(struct page *free_page,
868 unsigned int order, unsigned long split_pfn_offset)
869 {
870 struct zone *zone = page_zone(free_page);
871 unsigned long free_page_pfn = page_to_pfn(free_page);
872 unsigned long pfn;
873 unsigned long flags;
874 int free_page_order;
875 int mt;
876 int ret = 0;
877
878 if (split_pfn_offset == 0)
879 return ret;
880
881 spin_lock_irqsave(&zone->lock, flags);
882
883 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
884 ret = -ENOENT;
885 goto out;
886 }
887
888 mt = get_pfnblock_migratetype(free_page, free_page_pfn);
889 if (likely(!is_migrate_isolate(mt)))
890 __mod_zone_freepage_state(zone, -(1UL << order), mt);
891
892 del_page_from_free_list(free_page, zone, order);
893 for (pfn = free_page_pfn;
894 pfn < free_page_pfn + (1UL << order);) {
895 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
896
897 free_page_order = min_t(unsigned int,
898 pfn ? __ffs(pfn) : order,
899 __fls(split_pfn_offset));
900 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
901 mt, FPI_NONE);
902 pfn += 1UL << free_page_order;
903 split_pfn_offset -= (1UL << free_page_order);
904 /* we have done the first part, now switch to second part */
905 if (split_pfn_offset == 0)
906 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
907 }
908 out:
909 spin_unlock_irqrestore(&zone->lock, flags);
910 return ret;
911 }
912 /*
913 * A bad page could be due to a number of fields. Instead of multiple branches,
914 * try and check multiple fields with one check. The caller must do a detailed
915 * check if necessary.
916 */
page_expected_state(struct page * page,unsigned long check_flags)917 static inline bool page_expected_state(struct page *page,
918 unsigned long check_flags)
919 {
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 return false;
922
923 if (unlikely((unsigned long)page->mapping |
924 page_ref_count(page) |
925 #ifdef CONFIG_MEMCG
926 page->memcg_data |
927 #endif
928 (page->flags & check_flags)))
929 return false;
930
931 return true;
932 }
933
page_bad_reason(struct page * page,unsigned long flags)934 static const char *page_bad_reason(struct page *page, unsigned long flags)
935 {
936 const char *bad_reason = NULL;
937
938 if (unlikely(atomic_read(&page->_mapcount) != -1))
939 bad_reason = "nonzero mapcount";
940 if (unlikely(page->mapping != NULL))
941 bad_reason = "non-NULL mapping";
942 if (unlikely(page_ref_count(page) != 0))
943 bad_reason = "nonzero _refcount";
944 if (unlikely(page->flags & flags)) {
945 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
946 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
947 else
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 }
950 #ifdef CONFIG_MEMCG
951 if (unlikely(page->memcg_data))
952 bad_reason = "page still charged to cgroup";
953 #endif
954 return bad_reason;
955 }
956
free_page_is_bad_report(struct page * page)957 static void free_page_is_bad_report(struct page *page)
958 {
959 bad_page(page,
960 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
961 }
962
free_page_is_bad(struct page * page)963 static inline bool free_page_is_bad(struct page *page)
964 {
965 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
966 return false;
967
968 /* Something has gone sideways, find it */
969 free_page_is_bad_report(page);
970 return true;
971 }
972
is_check_pages_enabled(void)973 static inline bool is_check_pages_enabled(void)
974 {
975 return static_branch_unlikely(&check_pages_enabled);
976 }
977
free_tail_page_prepare(struct page * head_page,struct page * page)978 static int free_tail_page_prepare(struct page *head_page, struct page *page)
979 {
980 struct folio *folio = (struct folio *)head_page;
981 int ret = 1;
982
983 /*
984 * We rely page->lru.next never has bit 0 set, unless the page
985 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
986 */
987 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
988
989 if (!is_check_pages_enabled()) {
990 ret = 0;
991 goto out;
992 }
993 switch (page - head_page) {
994 case 1:
995 /* the first tail page: these may be in place of ->mapping */
996 if (unlikely(folio_entire_mapcount(folio))) {
997 bad_page(page, "nonzero entire_mapcount");
998 goto out;
999 }
1000 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1001 bad_page(page, "nonzero nr_pages_mapped");
1002 goto out;
1003 }
1004 if (unlikely(atomic_read(&folio->_pincount))) {
1005 bad_page(page, "nonzero pincount");
1006 goto out;
1007 }
1008 break;
1009 case 2:
1010 /* the second tail page: deferred_list overlaps ->mapping */
1011 if (unlikely(!list_empty(&folio->_deferred_list))) {
1012 bad_page(page, "on deferred list");
1013 goto out;
1014 }
1015 break;
1016 default:
1017 if (page->mapping != TAIL_MAPPING) {
1018 bad_page(page, "corrupted mapping in tail page");
1019 goto out;
1020 }
1021 break;
1022 }
1023 if (unlikely(!PageTail(page))) {
1024 bad_page(page, "PageTail not set");
1025 goto out;
1026 }
1027 if (unlikely(compound_head(page) != head_page)) {
1028 bad_page(page, "compound_head not consistent");
1029 goto out;
1030 }
1031 ret = 0;
1032 out:
1033 page->mapping = NULL;
1034 clear_compound_head(page);
1035 return ret;
1036 }
1037
1038 /*
1039 * Skip KASAN memory poisoning when either:
1040 *
1041 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1042 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1043 * using page tags instead (see below).
1044 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1045 * that error detection is disabled for accesses via the page address.
1046 *
1047 * Pages will have match-all tags in the following circumstances:
1048 *
1049 * 1. Pages are being initialized for the first time, including during deferred
1050 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1051 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1052 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1053 * 3. The allocation was excluded from being checked due to sampling,
1054 * see the call to kasan_unpoison_pages.
1055 *
1056 * Poisoning pages during deferred memory init will greatly lengthen the
1057 * process and cause problem in large memory systems as the deferred pages
1058 * initialization is done with interrupt disabled.
1059 *
1060 * Assuming that there will be no reference to those newly initialized
1061 * pages before they are ever allocated, this should have no effect on
1062 * KASAN memory tracking as the poison will be properly inserted at page
1063 * allocation time. The only corner case is when pages are allocated by
1064 * on-demand allocation and then freed again before the deferred pages
1065 * initialization is done, but this is not likely to happen.
1066 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)1067 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1068 {
1069 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1070 return deferred_pages_enabled();
1071
1072 return page_kasan_tag(page) == 0xff;
1073 }
1074
kernel_init_pages(struct page * page,int numpages)1075 static void kernel_init_pages(struct page *page, int numpages)
1076 {
1077 int i;
1078
1079 /* s390's use of memset() could override KASAN redzones. */
1080 kasan_disable_current();
1081 for (i = 0; i < numpages; i++)
1082 clear_highpage_kasan_tagged(page + i);
1083 kasan_enable_current();
1084 }
1085
free_pages_prepare(struct page * page,unsigned int order,fpi_t fpi_flags)1086 static __always_inline bool free_pages_prepare(struct page *page,
1087 unsigned int order, fpi_t fpi_flags)
1088 {
1089 int bad = 0;
1090 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1091 bool init = want_init_on_free();
1092 struct folio *folio = page_folio(page);
1093
1094 VM_BUG_ON_PAGE(PageTail(page), page);
1095
1096 trace_mm_page_free(page, order);
1097 kmsan_free_page(page, order);
1098
1099 /*
1100 * In rare cases, when truncation or holepunching raced with
1101 * munlock after VM_LOCKED was cleared, Mlocked may still be
1102 * found set here. This does not indicate a problem, unless
1103 * "unevictable_pgs_cleared" appears worryingly large.
1104 */
1105 if (unlikely(folio_test_mlocked(folio))) {
1106 long nr_pages = folio_nr_pages(folio);
1107
1108 __folio_clear_mlocked(folio);
1109 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1110 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1111 }
1112
1113 if (unlikely(PageHWPoison(page)) && !order) {
1114 /*
1115 * Do not let hwpoison pages hit pcplists/buddy
1116 * Untie memcg state and reset page's owner
1117 */
1118 if (memcg_kmem_online() && PageMemcgKmem(page))
1119 __memcg_kmem_uncharge_page(page, order);
1120 reset_page_owner(page, order);
1121 page_table_check_free(page, order);
1122 return false;
1123 }
1124
1125 /*
1126 * Check tail pages before head page information is cleared to
1127 * avoid checking PageCompound for order-0 pages.
1128 */
1129 if (unlikely(order)) {
1130 bool compound = PageCompound(page);
1131 int i;
1132
1133 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1134
1135 if (compound)
1136 page[1].flags &= ~PAGE_FLAGS_SECOND;
1137 for (i = 1; i < (1 << order); i++) {
1138 if (compound)
1139 bad += free_tail_page_prepare(page, page + i);
1140 if (is_check_pages_enabled()) {
1141 if (free_page_is_bad(page + i)) {
1142 bad++;
1143 continue;
1144 }
1145 }
1146 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1147 }
1148 }
1149 if (PageMappingFlags(page))
1150 page->mapping = NULL;
1151 if (memcg_kmem_online() && PageMemcgKmem(page))
1152 __memcg_kmem_uncharge_page(page, order);
1153 if (is_check_pages_enabled()) {
1154 if (free_page_is_bad(page))
1155 bad++;
1156 if (bad)
1157 return false;
1158 }
1159
1160 page_cpupid_reset_last(page);
1161 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1162 reset_page_owner(page, order);
1163 page_table_check_free(page, order);
1164
1165 if (!PageHighMem(page)) {
1166 debug_check_no_locks_freed(page_address(page),
1167 PAGE_SIZE << order);
1168 debug_check_no_obj_freed(page_address(page),
1169 PAGE_SIZE << order);
1170 }
1171
1172 kernel_poison_pages(page, 1 << order);
1173
1174 /*
1175 * As memory initialization might be integrated into KASAN,
1176 * KASAN poisoning and memory initialization code must be
1177 * kept together to avoid discrepancies in behavior.
1178 *
1179 * With hardware tag-based KASAN, memory tags must be set before the
1180 * page becomes unavailable via debug_pagealloc or arch_free_page.
1181 */
1182 if (!skip_kasan_poison) {
1183 kasan_poison_pages(page, order, init);
1184
1185 /* Memory is already initialized if KASAN did it internally. */
1186 if (kasan_has_integrated_init())
1187 init = false;
1188 }
1189 if (init)
1190 kernel_init_pages(page, 1 << order);
1191
1192 /*
1193 * arch_free_page() can make the page's contents inaccessible. s390
1194 * does this. So nothing which can access the page's contents should
1195 * happen after this.
1196 */
1197 arch_free_page(page, order);
1198
1199 debug_pagealloc_unmap_pages(page, 1 << order);
1200
1201 return true;
1202 }
1203
1204 /*
1205 * Frees a number of pages from the PCP lists
1206 * Assumes all pages on list are in same zone.
1207 * count is the number of pages to free.
1208 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp,int pindex)1209 static void free_pcppages_bulk(struct zone *zone, int count,
1210 struct per_cpu_pages *pcp,
1211 int pindex)
1212 {
1213 unsigned long flags;
1214 unsigned int order;
1215 bool isolated_pageblocks;
1216 struct page *page;
1217
1218 /*
1219 * Ensure proper count is passed which otherwise would stuck in the
1220 * below while (list_empty(list)) loop.
1221 */
1222 count = min(pcp->count, count);
1223
1224 /* Ensure requested pindex is drained first. */
1225 pindex = pindex - 1;
1226
1227 spin_lock_irqsave(&zone->lock, flags);
1228 isolated_pageblocks = has_isolate_pageblock(zone);
1229
1230 while (count > 0) {
1231 struct list_head *list;
1232 int nr_pages;
1233
1234 /* Remove pages from lists in a round-robin fashion. */
1235 do {
1236 if (++pindex > NR_PCP_LISTS - 1)
1237 pindex = 0;
1238 list = &pcp->lists[pindex];
1239 } while (list_empty(list));
1240
1241 order = pindex_to_order(pindex);
1242 nr_pages = 1 << order;
1243 do {
1244 int mt;
1245
1246 page = list_last_entry(list, struct page, pcp_list);
1247 mt = get_pcppage_migratetype(page);
1248
1249 /* must delete to avoid corrupting pcp list */
1250 list_del(&page->pcp_list);
1251 count -= nr_pages;
1252 pcp->count -= nr_pages;
1253
1254 /* MIGRATE_ISOLATE page should not go to pcplists */
1255 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1256 /* Pageblock could have been isolated meanwhile */
1257 if (unlikely(isolated_pageblocks))
1258 mt = get_pageblock_migratetype(page);
1259
1260 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1261 trace_mm_page_pcpu_drain(page, order, mt);
1262 } while (count > 0 && !list_empty(list));
1263 }
1264
1265 spin_unlock_irqrestore(&zone->lock, flags);
1266 }
1267
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1268 static void free_one_page(struct zone *zone,
1269 struct page *page, unsigned long pfn,
1270 unsigned int order,
1271 int migratetype, fpi_t fpi_flags)
1272 {
1273 unsigned long flags;
1274
1275 spin_lock_irqsave(&zone->lock, flags);
1276 if (unlikely(has_isolate_pageblock(zone) ||
1277 is_migrate_isolate(migratetype))) {
1278 migratetype = get_pfnblock_migratetype(page, pfn);
1279 }
1280 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1281 spin_unlock_irqrestore(&zone->lock, flags);
1282 }
1283
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1284 static void __free_pages_ok(struct page *page, unsigned int order,
1285 fpi_t fpi_flags)
1286 {
1287 unsigned long flags;
1288 int migratetype;
1289 unsigned long pfn = page_to_pfn(page);
1290 struct zone *zone = page_zone(page);
1291
1292 if (!free_pages_prepare(page, order, fpi_flags))
1293 return;
1294
1295 /*
1296 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1297 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1298 * This will reduce the lock holding time.
1299 */
1300 migratetype = get_pfnblock_migratetype(page, pfn);
1301
1302 spin_lock_irqsave(&zone->lock, flags);
1303 if (unlikely(has_isolate_pageblock(zone) ||
1304 is_migrate_isolate(migratetype))) {
1305 migratetype = get_pfnblock_migratetype(page, pfn);
1306 }
1307 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1308 spin_unlock_irqrestore(&zone->lock, flags);
1309
1310 __count_vm_events(PGFREE, 1 << order);
1311 }
1312
__free_pages_core(struct page * page,unsigned int order)1313 void __free_pages_core(struct page *page, unsigned int order)
1314 {
1315 unsigned int nr_pages = 1 << order;
1316 struct page *p = page;
1317 unsigned int loop;
1318
1319 /*
1320 * When initializing the memmap, __init_single_page() sets the refcount
1321 * of all pages to 1 ("allocated"/"not free"). We have to set the
1322 * refcount of all involved pages to 0.
1323 */
1324 prefetchw(p);
1325 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1326 prefetchw(p + 1);
1327 __ClearPageReserved(p);
1328 set_page_count(p, 0);
1329 }
1330 __ClearPageReserved(p);
1331 set_page_count(p, 0);
1332
1333 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1334
1335 if (page_contains_unaccepted(page, order)) {
1336 if (order == MAX_ORDER && __free_unaccepted(page))
1337 return;
1338
1339 accept_page(page, order);
1340 }
1341
1342 /*
1343 * Bypass PCP and place fresh pages right to the tail, primarily
1344 * relevant for memory onlining.
1345 */
1346 __free_pages_ok(page, order, FPI_TO_TAIL);
1347 }
1348
1349 /*
1350 * Check that the whole (or subset of) a pageblock given by the interval of
1351 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1352 * with the migration of free compaction scanner.
1353 *
1354 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1355 *
1356 * It's possible on some configurations to have a setup like node0 node1 node0
1357 * i.e. it's possible that all pages within a zones range of pages do not
1358 * belong to a single zone. We assume that a border between node0 and node1
1359 * can occur within a single pageblock, but not a node0 node1 node0
1360 * interleaving within a single pageblock. It is therefore sufficient to check
1361 * the first and last page of a pageblock and avoid checking each individual
1362 * page in a pageblock.
1363 *
1364 * Note: the function may return non-NULL struct page even for a page block
1365 * which contains a memory hole (i.e. there is no physical memory for a subset
1366 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1367 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1368 * even though the start pfn is online and valid. This should be safe most of
1369 * the time because struct pages are still initialized via init_unavailable_range()
1370 * and pfn walkers shouldn't touch any physical memory range for which they do
1371 * not recognize any specific metadata in struct pages.
1372 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375 {
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(end_pfn))
1383 return NULL;
1384
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399 }
1400
1401 /*
1402 * The order of subdivision here is critical for the IO subsystem.
1403 * Please do not alter this order without good reasons and regression
1404 * testing. Specifically, as large blocks of memory are subdivided,
1405 * the order in which smaller blocks are delivered depends on the order
1406 * they're subdivided in this function. This is the primary factor
1407 * influencing the order in which pages are delivered to the IO
1408 * subsystem according to empirical testing, and this is also justified
1409 * by considering the behavior of a buddy system containing a single
1410 * large block of memory acted on by a series of small allocations.
1411 * This behavior is a critical factor in sglist merging's success.
1412 *
1413 * -- nyc
1414 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)1415 static inline void expand(struct zone *zone, struct page *page,
1416 int low, int high, int migratetype)
1417 {
1418 unsigned long size = 1 << high;
1419
1420 while (high > low) {
1421 high--;
1422 size >>= 1;
1423 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1424
1425 /*
1426 * Mark as guard pages (or page), that will allow to
1427 * merge back to allocator when buddy will be freed.
1428 * Corresponding page table entries will not be touched,
1429 * pages will stay not present in virtual address space
1430 */
1431 if (set_page_guard(zone, &page[size], high, migratetype))
1432 continue;
1433
1434 add_to_free_list(&page[size], zone, high, migratetype);
1435 set_buddy_order(&page[size], high);
1436 }
1437 }
1438
check_new_page_bad(struct page * page)1439 static void check_new_page_bad(struct page *page)
1440 {
1441 if (unlikely(page->flags & __PG_HWPOISON)) {
1442 /* Don't complain about hwpoisoned pages */
1443 page_mapcount_reset(page); /* remove PageBuddy */
1444 return;
1445 }
1446
1447 bad_page(page,
1448 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1449 }
1450
1451 /*
1452 * This page is about to be returned from the page allocator
1453 */
check_new_page(struct page * page)1454 static int check_new_page(struct page *page)
1455 {
1456 if (likely(page_expected_state(page,
1457 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1458 return 0;
1459
1460 check_new_page_bad(page);
1461 return 1;
1462 }
1463
check_new_pages(struct page * page,unsigned int order)1464 static inline bool check_new_pages(struct page *page, unsigned int order)
1465 {
1466 if (is_check_pages_enabled()) {
1467 for (int i = 0; i < (1 << order); i++) {
1468 struct page *p = page + i;
1469
1470 if (check_new_page(p))
1471 return true;
1472 }
1473 }
1474
1475 return false;
1476 }
1477
should_skip_kasan_unpoison(gfp_t flags)1478 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1479 {
1480 /* Don't skip if a software KASAN mode is enabled. */
1481 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1482 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1483 return false;
1484
1485 /* Skip, if hardware tag-based KASAN is not enabled. */
1486 if (!kasan_hw_tags_enabled())
1487 return true;
1488
1489 /*
1490 * With hardware tag-based KASAN enabled, skip if this has been
1491 * requested via __GFP_SKIP_KASAN.
1492 */
1493 return flags & __GFP_SKIP_KASAN;
1494 }
1495
should_skip_init(gfp_t flags)1496 static inline bool should_skip_init(gfp_t flags)
1497 {
1498 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1499 if (!kasan_hw_tags_enabled())
1500 return false;
1501
1502 /* For hardware tag-based KASAN, skip if requested. */
1503 return (flags & __GFP_SKIP_ZERO);
1504 }
1505
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1506 inline void post_alloc_hook(struct page *page, unsigned int order,
1507 gfp_t gfp_flags)
1508 {
1509 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1510 !should_skip_init(gfp_flags);
1511 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1512 int i;
1513
1514 set_page_private(page, 0);
1515 set_page_refcounted(page);
1516
1517 arch_alloc_page(page, order);
1518 debug_pagealloc_map_pages(page, 1 << order);
1519
1520 /*
1521 * Page unpoisoning must happen before memory initialization.
1522 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1523 * allocations and the page unpoisoning code will complain.
1524 */
1525 kernel_unpoison_pages(page, 1 << order);
1526
1527 /*
1528 * As memory initialization might be integrated into KASAN,
1529 * KASAN unpoisoning and memory initializion code must be
1530 * kept together to avoid discrepancies in behavior.
1531 */
1532
1533 /*
1534 * If memory tags should be zeroed
1535 * (which happens only when memory should be initialized as well).
1536 */
1537 if (zero_tags) {
1538 /* Initialize both memory and memory tags. */
1539 for (i = 0; i != 1 << order; ++i)
1540 tag_clear_highpage(page + i);
1541
1542 /* Take note that memory was initialized by the loop above. */
1543 init = false;
1544 }
1545 if (!should_skip_kasan_unpoison(gfp_flags) &&
1546 kasan_unpoison_pages(page, order, init)) {
1547 /* Take note that memory was initialized by KASAN. */
1548 if (kasan_has_integrated_init())
1549 init = false;
1550 } else {
1551 /*
1552 * If memory tags have not been set by KASAN, reset the page
1553 * tags to ensure page_address() dereferencing does not fault.
1554 */
1555 for (i = 0; i != 1 << order; ++i)
1556 page_kasan_tag_reset(page + i);
1557 }
1558 /* If memory is still not initialized, initialize it now. */
1559 if (init)
1560 kernel_init_pages(page, 1 << order);
1561
1562 set_page_owner(page, order, gfp_flags);
1563 page_table_check_alloc(page, order);
1564 }
1565
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1566 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1567 unsigned int alloc_flags)
1568 {
1569 post_alloc_hook(page, order, gfp_flags);
1570
1571 if (order && (gfp_flags & __GFP_COMP))
1572 prep_compound_page(page, order);
1573
1574 /*
1575 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1576 * allocate the page. The expectation is that the caller is taking
1577 * steps that will free more memory. The caller should avoid the page
1578 * being used for !PFMEMALLOC purposes.
1579 */
1580 if (alloc_flags & ALLOC_NO_WATERMARKS)
1581 set_page_pfmemalloc(page);
1582 else
1583 clear_page_pfmemalloc(page);
1584 }
1585
1586 /*
1587 * Go through the free lists for the given migratetype and remove
1588 * the smallest available page from the freelists
1589 */
1590 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1591 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1592 int migratetype)
1593 {
1594 unsigned int current_order;
1595 struct free_area *area;
1596 struct page *page;
1597
1598 /* Find a page of the appropriate size in the preferred list */
1599 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1600 area = &(zone->free_area[current_order]);
1601 page = get_page_from_free_area(area, migratetype);
1602 if (!page)
1603 continue;
1604 del_page_from_free_list(page, zone, current_order);
1605 expand(zone, page, order, current_order, migratetype);
1606 set_pcppage_migratetype(page, migratetype);
1607 trace_mm_page_alloc_zone_locked(page, order, migratetype,
1608 pcp_allowed_order(order) &&
1609 migratetype < MIGRATE_PCPTYPES);
1610 return page;
1611 }
1612
1613 return NULL;
1614 }
1615
1616
1617 /*
1618 * This array describes the order lists are fallen back to when
1619 * the free lists for the desirable migrate type are depleted
1620 *
1621 * The other migratetypes do not have fallbacks.
1622 */
1623 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1624 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
1625 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1626 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
1627 };
1628
1629 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1630 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1631 unsigned int order)
1632 {
1633 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1634 }
1635 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1636 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1637 unsigned int order) { return NULL; }
1638 #endif
1639
1640 /*
1641 * Move the free pages in a range to the freelist tail of the requested type.
1642 * Note that start_page and end_pages are not aligned on a pageblock
1643 * boundary. If alignment is required, use move_freepages_block()
1644 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)1645 static int move_freepages(struct zone *zone,
1646 unsigned long start_pfn, unsigned long end_pfn,
1647 int migratetype, int *num_movable)
1648 {
1649 struct page *page;
1650 unsigned long pfn;
1651 unsigned int order;
1652 int pages_moved = 0;
1653
1654 for (pfn = start_pfn; pfn <= end_pfn;) {
1655 page = pfn_to_page(pfn);
1656 if (!PageBuddy(page)) {
1657 /*
1658 * We assume that pages that could be isolated for
1659 * migration are movable. But we don't actually try
1660 * isolating, as that would be expensive.
1661 */
1662 if (num_movable &&
1663 (PageLRU(page) || __PageMovable(page)))
1664 (*num_movable)++;
1665 pfn++;
1666 continue;
1667 }
1668
1669 /* Make sure we are not inadvertently changing nodes */
1670 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1671 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1672
1673 order = buddy_order(page);
1674 move_to_free_list(page, zone, order, migratetype);
1675 pfn += 1 << order;
1676 pages_moved += 1 << order;
1677 }
1678
1679 return pages_moved;
1680 }
1681
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)1682 int move_freepages_block(struct zone *zone, struct page *page,
1683 int migratetype, int *num_movable)
1684 {
1685 unsigned long start_pfn, end_pfn, pfn;
1686
1687 if (num_movable)
1688 *num_movable = 0;
1689
1690 pfn = page_to_pfn(page);
1691 start_pfn = pageblock_start_pfn(pfn);
1692 end_pfn = pageblock_end_pfn(pfn) - 1;
1693
1694 /* Do not cross zone boundaries */
1695 if (!zone_spans_pfn(zone, start_pfn))
1696 start_pfn = pfn;
1697 if (!zone_spans_pfn(zone, end_pfn))
1698 return 0;
1699
1700 return move_freepages(zone, start_pfn, end_pfn, migratetype,
1701 num_movable);
1702 }
1703
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1704 static void change_pageblock_range(struct page *pageblock_page,
1705 int start_order, int migratetype)
1706 {
1707 int nr_pageblocks = 1 << (start_order - pageblock_order);
1708
1709 while (nr_pageblocks--) {
1710 set_pageblock_migratetype(pageblock_page, migratetype);
1711 pageblock_page += pageblock_nr_pages;
1712 }
1713 }
1714
1715 /*
1716 * When we are falling back to another migratetype during allocation, try to
1717 * steal extra free pages from the same pageblocks to satisfy further
1718 * allocations, instead of polluting multiple pageblocks.
1719 *
1720 * If we are stealing a relatively large buddy page, it is likely there will
1721 * be more free pages in the pageblock, so try to steal them all. For
1722 * reclaimable and unmovable allocations, we steal regardless of page size,
1723 * as fragmentation caused by those allocations polluting movable pageblocks
1724 * is worse than movable allocations stealing from unmovable and reclaimable
1725 * pageblocks.
1726 */
can_steal_fallback(unsigned int order,int start_mt)1727 static bool can_steal_fallback(unsigned int order, int start_mt)
1728 {
1729 /*
1730 * Leaving this order check is intended, although there is
1731 * relaxed order check in next check. The reason is that
1732 * we can actually steal whole pageblock if this condition met,
1733 * but, below check doesn't guarantee it and that is just heuristic
1734 * so could be changed anytime.
1735 */
1736 if (order >= pageblock_order)
1737 return true;
1738
1739 if (order >= pageblock_order / 2 ||
1740 start_mt == MIGRATE_RECLAIMABLE ||
1741 start_mt == MIGRATE_UNMOVABLE ||
1742 page_group_by_mobility_disabled)
1743 return true;
1744
1745 return false;
1746 }
1747
boost_watermark(struct zone * zone)1748 static inline bool boost_watermark(struct zone *zone)
1749 {
1750 unsigned long max_boost;
1751
1752 if (!watermark_boost_factor)
1753 return false;
1754 /*
1755 * Don't bother in zones that are unlikely to produce results.
1756 * On small machines, including kdump capture kernels running
1757 * in a small area, boosting the watermark can cause an out of
1758 * memory situation immediately.
1759 */
1760 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1761 return false;
1762
1763 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1764 watermark_boost_factor, 10000);
1765
1766 /*
1767 * high watermark may be uninitialised if fragmentation occurs
1768 * very early in boot so do not boost. We do not fall
1769 * through and boost by pageblock_nr_pages as failing
1770 * allocations that early means that reclaim is not going
1771 * to help and it may even be impossible to reclaim the
1772 * boosted watermark resulting in a hang.
1773 */
1774 if (!max_boost)
1775 return false;
1776
1777 max_boost = max(pageblock_nr_pages, max_boost);
1778
1779 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1780 max_boost);
1781
1782 return true;
1783 }
1784
1785 /*
1786 * This function implements actual steal behaviour. If order is large enough,
1787 * we can steal whole pageblock. If not, we first move freepages in this
1788 * pageblock to our migratetype and determine how many already-allocated pages
1789 * are there in the pageblock with a compatible migratetype. If at least half
1790 * of pages are free or compatible, we can change migratetype of the pageblock
1791 * itself, so pages freed in the future will be put on the correct free list.
1792 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)1793 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1794 unsigned int alloc_flags, int start_type, bool whole_block)
1795 {
1796 unsigned int current_order = buddy_order(page);
1797 int free_pages, movable_pages, alike_pages;
1798 int old_block_type;
1799
1800 old_block_type = get_pageblock_migratetype(page);
1801
1802 /*
1803 * This can happen due to races and we want to prevent broken
1804 * highatomic accounting.
1805 */
1806 if (is_migrate_highatomic(old_block_type))
1807 goto single_page;
1808
1809 /* Take ownership for orders >= pageblock_order */
1810 if (current_order >= pageblock_order) {
1811 change_pageblock_range(page, current_order, start_type);
1812 goto single_page;
1813 }
1814
1815 /*
1816 * Boost watermarks to increase reclaim pressure to reduce the
1817 * likelihood of future fallbacks. Wake kswapd now as the node
1818 * may be balanced overall and kswapd will not wake naturally.
1819 */
1820 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1821 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1822
1823 /* We are not allowed to try stealing from the whole block */
1824 if (!whole_block)
1825 goto single_page;
1826
1827 free_pages = move_freepages_block(zone, page, start_type,
1828 &movable_pages);
1829 /* moving whole block can fail due to zone boundary conditions */
1830 if (!free_pages)
1831 goto single_page;
1832
1833 /*
1834 * Determine how many pages are compatible with our allocation.
1835 * For movable allocation, it's the number of movable pages which
1836 * we just obtained. For other types it's a bit more tricky.
1837 */
1838 if (start_type == MIGRATE_MOVABLE) {
1839 alike_pages = movable_pages;
1840 } else {
1841 /*
1842 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1843 * to MOVABLE pageblock, consider all non-movable pages as
1844 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1845 * vice versa, be conservative since we can't distinguish the
1846 * exact migratetype of non-movable pages.
1847 */
1848 if (old_block_type == MIGRATE_MOVABLE)
1849 alike_pages = pageblock_nr_pages
1850 - (free_pages + movable_pages);
1851 else
1852 alike_pages = 0;
1853 }
1854 /*
1855 * If a sufficient number of pages in the block are either free or of
1856 * compatible migratability as our allocation, claim the whole block.
1857 */
1858 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1859 page_group_by_mobility_disabled)
1860 set_pageblock_migratetype(page, start_type);
1861
1862 return;
1863
1864 single_page:
1865 move_to_free_list(page, zone, current_order, start_type);
1866 }
1867
1868 /*
1869 * Check whether there is a suitable fallback freepage with requested order.
1870 * If only_stealable is true, this function returns fallback_mt only if
1871 * we can steal other freepages all together. This would help to reduce
1872 * fragmentation due to mixed migratetype pages in one pageblock.
1873 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)1874 int find_suitable_fallback(struct free_area *area, unsigned int order,
1875 int migratetype, bool only_stealable, bool *can_steal)
1876 {
1877 int i;
1878 int fallback_mt;
1879
1880 if (area->nr_free == 0)
1881 return -1;
1882
1883 *can_steal = false;
1884 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1885 fallback_mt = fallbacks[migratetype][i];
1886 if (free_area_empty(area, fallback_mt))
1887 continue;
1888
1889 if (can_steal_fallback(order, migratetype))
1890 *can_steal = true;
1891
1892 if (!only_stealable)
1893 return fallback_mt;
1894
1895 if (*can_steal)
1896 return fallback_mt;
1897 }
1898
1899 return -1;
1900 }
1901
1902 /*
1903 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1904 * there are no empty page blocks that contain a page with a suitable order
1905 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone)1906 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1907 {
1908 int mt;
1909 unsigned long max_managed, flags;
1910
1911 /*
1912 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1913 * Check is race-prone but harmless.
1914 */
1915 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1916 if (zone->nr_reserved_highatomic >= max_managed)
1917 return;
1918
1919 spin_lock_irqsave(&zone->lock, flags);
1920
1921 /* Recheck the nr_reserved_highatomic limit under the lock */
1922 if (zone->nr_reserved_highatomic >= max_managed)
1923 goto out_unlock;
1924
1925 /* Yoink! */
1926 mt = get_pageblock_migratetype(page);
1927 /* Only reserve normal pageblocks (i.e., they can merge with others) */
1928 if (migratetype_is_mergeable(mt)) {
1929 zone->nr_reserved_highatomic += pageblock_nr_pages;
1930 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1931 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1932 }
1933
1934 out_unlock:
1935 spin_unlock_irqrestore(&zone->lock, flags);
1936 }
1937
1938 /*
1939 * Used when an allocation is about to fail under memory pressure. This
1940 * potentially hurts the reliability of high-order allocations when under
1941 * intense memory pressure but failed atomic allocations should be easier
1942 * to recover from than an OOM.
1943 *
1944 * If @force is true, try to unreserve a pageblock even though highatomic
1945 * pageblock is exhausted.
1946 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)1947 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1948 bool force)
1949 {
1950 struct zonelist *zonelist = ac->zonelist;
1951 unsigned long flags;
1952 struct zoneref *z;
1953 struct zone *zone;
1954 struct page *page;
1955 int order;
1956 bool ret;
1957
1958 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1959 ac->nodemask) {
1960 /*
1961 * Preserve at least one pageblock unless memory pressure
1962 * is really high.
1963 */
1964 if (!force && zone->nr_reserved_highatomic <=
1965 pageblock_nr_pages)
1966 continue;
1967
1968 spin_lock_irqsave(&zone->lock, flags);
1969 for (order = 0; order < NR_PAGE_ORDERS; order++) {
1970 struct free_area *area = &(zone->free_area[order]);
1971
1972 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1973 if (!page)
1974 continue;
1975
1976 /*
1977 * In page freeing path, migratetype change is racy so
1978 * we can counter several free pages in a pageblock
1979 * in this loop although we changed the pageblock type
1980 * from highatomic to ac->migratetype. So we should
1981 * adjust the count once.
1982 */
1983 if (is_migrate_highatomic_page(page)) {
1984 /*
1985 * It should never happen but changes to
1986 * locking could inadvertently allow a per-cpu
1987 * drain to add pages to MIGRATE_HIGHATOMIC
1988 * while unreserving so be safe and watch for
1989 * underflows.
1990 */
1991 zone->nr_reserved_highatomic -= min(
1992 pageblock_nr_pages,
1993 zone->nr_reserved_highatomic);
1994 }
1995
1996 /*
1997 * Convert to ac->migratetype and avoid the normal
1998 * pageblock stealing heuristics. Minimally, the caller
1999 * is doing the work and needs the pages. More
2000 * importantly, if the block was always converted to
2001 * MIGRATE_UNMOVABLE or another type then the number
2002 * of pageblocks that cannot be completely freed
2003 * may increase.
2004 */
2005 set_pageblock_migratetype(page, ac->migratetype);
2006 ret = move_freepages_block(zone, page, ac->migratetype,
2007 NULL);
2008 if (ret) {
2009 spin_unlock_irqrestore(&zone->lock, flags);
2010 return ret;
2011 }
2012 }
2013 spin_unlock_irqrestore(&zone->lock, flags);
2014 }
2015
2016 return false;
2017 }
2018
2019 /*
2020 * Try finding a free buddy page on the fallback list and put it on the free
2021 * list of requested migratetype, possibly along with other pages from the same
2022 * block, depending on fragmentation avoidance heuristics. Returns true if
2023 * fallback was found so that __rmqueue_smallest() can grab it.
2024 *
2025 * The use of signed ints for order and current_order is a deliberate
2026 * deviation from the rest of this file, to make the for loop
2027 * condition simpler.
2028 */
2029 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2030 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2031 unsigned int alloc_flags)
2032 {
2033 struct free_area *area;
2034 int current_order;
2035 int min_order = order;
2036 struct page *page;
2037 int fallback_mt;
2038 bool can_steal;
2039
2040 /*
2041 * Do not steal pages from freelists belonging to other pageblocks
2042 * i.e. orders < pageblock_order. If there are no local zones free,
2043 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2044 */
2045 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2046 min_order = pageblock_order;
2047
2048 /*
2049 * Find the largest available free page in the other list. This roughly
2050 * approximates finding the pageblock with the most free pages, which
2051 * would be too costly to do exactly.
2052 */
2053 for (current_order = MAX_ORDER; current_order >= min_order;
2054 --current_order) {
2055 area = &(zone->free_area[current_order]);
2056 fallback_mt = find_suitable_fallback(area, current_order,
2057 start_migratetype, false, &can_steal);
2058 if (fallback_mt == -1)
2059 continue;
2060
2061 /*
2062 * We cannot steal all free pages from the pageblock and the
2063 * requested migratetype is movable. In that case it's better to
2064 * steal and split the smallest available page instead of the
2065 * largest available page, because even if the next movable
2066 * allocation falls back into a different pageblock than this
2067 * one, it won't cause permanent fragmentation.
2068 */
2069 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2070 && current_order > order)
2071 goto find_smallest;
2072
2073 goto do_steal;
2074 }
2075
2076 return false;
2077
2078 find_smallest:
2079 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2080 area = &(zone->free_area[current_order]);
2081 fallback_mt = find_suitable_fallback(area, current_order,
2082 start_migratetype, false, &can_steal);
2083 if (fallback_mt != -1)
2084 break;
2085 }
2086
2087 /*
2088 * This should not happen - we already found a suitable fallback
2089 * when looking for the largest page.
2090 */
2091 VM_BUG_ON(current_order > MAX_ORDER);
2092
2093 do_steal:
2094 page = get_page_from_free_area(area, fallback_mt);
2095
2096 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2097 can_steal);
2098
2099 trace_mm_page_alloc_extfrag(page, order, current_order,
2100 start_migratetype, fallback_mt);
2101
2102 return true;
2103
2104 }
2105
2106 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2107 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2108 int migratetype, unsigned int alloc_flags)
2109 {
2110 struct page *page = NULL;
2111 retry:
2112 page = __rmqueue_smallest(zone, order, migratetype);
2113
2114 if (unlikely(!page) && is_migrate_cma(migratetype)) {
2115 migratetype = MIGRATE_MOVABLE;
2116 alloc_flags &= ~ALLOC_CMA;
2117 page = __rmqueue_smallest(zone, order, migratetype);
2118 }
2119
2120 if (unlikely(!page) &&
2121 __rmqueue_fallback(zone, order, migratetype, alloc_flags))
2122 goto retry;
2123
2124 return page;
2125 }
2126
2127 /*
2128 * Do the hard work of removing an element from the buddy allocator.
2129 * Call me with the zone->lock already held.
2130 */
2131 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2132 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2133 unsigned int alloc_flags)
2134 {
2135 struct page *page;
2136
2137 #ifdef CONFIG_CMA_REUSE
2138 page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2139 if (page)
2140 return page;
2141 #endif
2142
2143 if (IS_ENABLED(CONFIG_CMA)) {
2144 /*
2145 * Balance movable allocations between regular and CMA areas by
2146 * allocating from CMA when over half of the zone's free memory
2147 * is in the CMA area.
2148 */
2149 if (alloc_flags & ALLOC_CMA &&
2150 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2151 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2152 page = __rmqueue_cma_fallback(zone, order);
2153 if (page)
2154 return page;
2155 }
2156 }
2157 retry:
2158 page = __rmqueue_smallest(zone, order, migratetype);
2159 if (unlikely(!page)) {
2160 if (alloc_flags & ALLOC_CMA)
2161 page = __rmqueue_cma_fallback(zone, order);
2162
2163 if (!page && __rmqueue_fallback(zone, order, migratetype,
2164 alloc_flags))
2165 goto retry;
2166 }
2167 return page;
2168 }
2169
2170 /*
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2175 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2176 unsigned long count, struct list_head *list,
2177 int migratetype, unsigned int alloc_flags)
2178 {
2179 unsigned long flags;
2180 int i;
2181
2182 spin_lock_irqsave(&zone->lock, flags);
2183 for (i = 0; i < count; ++i) {
2184 struct page *page = __rmqueue(zone, order, migratetype,
2185 alloc_flags);
2186 if (unlikely(page == NULL))
2187 break;
2188
2189 /*
2190 * Split buddy pages returned by expand() are received here in
2191 * physical page order. The page is added to the tail of
2192 * caller's list. From the callers perspective, the linked list
2193 * is ordered by page number under some conditions. This is
2194 * useful for IO devices that can forward direction from the
2195 * head, thus also in the physical page order. This is useful
2196 * for IO devices that can merge IO requests if the physical
2197 * pages are ordered properly.
2198 */
2199 list_add_tail(&page->pcp_list, list);
2200 if (is_migrate_cma(get_pcppage_migratetype(page)))
2201 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2202 -(1 << order));
2203 }
2204
2205 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 spin_unlock_irqrestore(&zone->lock, flags);
2207
2208 return i;
2209 }
2210
2211 #ifdef CONFIG_NUMA
2212 /*
2213 * Called from the vmstat counter updater to drain pagesets of this
2214 * currently executing processor on remote nodes after they have
2215 * expired.
2216 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2217 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2218 {
2219 int to_drain, batch;
2220
2221 batch = READ_ONCE(pcp->batch);
2222 to_drain = min(pcp->count, batch);
2223 if (to_drain > 0) {
2224 spin_lock(&pcp->lock);
2225 free_pcppages_bulk(zone, to_drain, pcp, 0);
2226 spin_unlock(&pcp->lock);
2227 }
2228 }
2229 #endif
2230
2231 /*
2232 * Drain pcplists of the indicated processor and zone.
2233 */
drain_pages_zone(unsigned int cpu,struct zone * zone)2234 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2235 {
2236 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2237 int count;
2238
2239 do {
2240 spin_lock(&pcp->lock);
2241 count = pcp->count;
2242 if (count) {
2243 int to_drain = min(count,
2244 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2245
2246 free_pcppages_bulk(zone, to_drain, pcp, 0);
2247 count -= to_drain;
2248 }
2249 spin_unlock(&pcp->lock);
2250 } while (count);
2251 }
2252
2253 /*
2254 * Drain pcplists of all zones on the indicated processor.
2255 */
drain_pages(unsigned int cpu)2256 static void drain_pages(unsigned int cpu)
2257 {
2258 struct zone *zone;
2259
2260 for_each_populated_zone(zone) {
2261 drain_pages_zone(cpu, zone);
2262 }
2263 }
2264
2265 /*
2266 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2267 */
drain_local_pages(struct zone * zone)2268 void drain_local_pages(struct zone *zone)
2269 {
2270 int cpu = smp_processor_id();
2271
2272 if (zone)
2273 drain_pages_zone(cpu, zone);
2274 else
2275 drain_pages(cpu);
2276 }
2277
2278 /*
2279 * The implementation of drain_all_pages(), exposing an extra parameter to
2280 * drain on all cpus.
2281 *
2282 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2283 * not empty. The check for non-emptiness can however race with a free to
2284 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2285 * that need the guarantee that every CPU has drained can disable the
2286 * optimizing racy check.
2287 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)2288 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2289 {
2290 int cpu;
2291
2292 /*
2293 * Allocate in the BSS so we won't require allocation in
2294 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2295 */
2296 static cpumask_t cpus_with_pcps;
2297
2298 /*
2299 * Do not drain if one is already in progress unless it's specific to
2300 * a zone. Such callers are primarily CMA and memory hotplug and need
2301 * the drain to be complete when the call returns.
2302 */
2303 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2304 if (!zone)
2305 return;
2306 mutex_lock(&pcpu_drain_mutex);
2307 }
2308
2309 /*
2310 * We don't care about racing with CPU hotplug event
2311 * as offline notification will cause the notified
2312 * cpu to drain that CPU pcps and on_each_cpu_mask
2313 * disables preemption as part of its processing
2314 */
2315 for_each_online_cpu(cpu) {
2316 struct per_cpu_pages *pcp;
2317 struct zone *z;
2318 bool has_pcps = false;
2319
2320 if (force_all_cpus) {
2321 /*
2322 * The pcp.count check is racy, some callers need a
2323 * guarantee that no cpu is missed.
2324 */
2325 has_pcps = true;
2326 } else if (zone) {
2327 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2328 if (pcp->count)
2329 has_pcps = true;
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2333 if (pcp->count) {
2334 has_pcps = true;
2335 break;
2336 }
2337 }
2338 }
2339
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
2345
2346 for_each_cpu(cpu, &cpus_with_pcps) {
2347 if (zone)
2348 drain_pages_zone(cpu, zone);
2349 else
2350 drain_pages(cpu);
2351 }
2352
2353 mutex_unlock(&pcpu_drain_mutex);
2354 }
2355
2356 /*
2357 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2358 *
2359 * When zone parameter is non-NULL, spill just the single zone's pages.
2360 */
drain_all_pages(struct zone * zone)2361 void drain_all_pages(struct zone *zone)
2362 {
2363 __drain_all_pages(zone, false);
2364 }
2365
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)2366 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2367 unsigned int order)
2368 {
2369 int migratetype;
2370
2371 if (!free_pages_prepare(page, order, FPI_NONE))
2372 return false;
2373
2374 migratetype = get_pfnblock_migratetype(page, pfn);
2375 set_pcppage_migratetype(page, migratetype);
2376 return true;
2377 }
2378
nr_pcp_free(struct per_cpu_pages * pcp,int high,bool free_high)2379 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, bool free_high)
2380 {
2381 int min_nr_free, max_nr_free;
2382 int batch = READ_ONCE(pcp->batch);
2383
2384 /* Free everything if batch freeing high-order pages. */
2385 if (unlikely(free_high))
2386 return pcp->count;
2387
2388 /* Check for PCP disabled or boot pageset */
2389 if (unlikely(high < batch))
2390 return 1;
2391
2392 /* Leave at least pcp->batch pages on the list */
2393 min_nr_free = batch;
2394 max_nr_free = high - batch;
2395
2396 /*
2397 * Double the number of pages freed each time there is subsequent
2398 * freeing of pages without any allocation.
2399 */
2400 batch <<= pcp->free_factor;
2401 if (batch < max_nr_free && pcp->free_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2402 pcp->free_factor++;
2403 batch = clamp(batch, min_nr_free, max_nr_free);
2404
2405 return batch;
2406 }
2407
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone,bool free_high)2408 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2409 bool free_high)
2410 {
2411 int high = READ_ONCE(pcp->high);
2412
2413 if (unlikely(!high || free_high))
2414 return 0;
2415
2416 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
2417 return high;
2418
2419 /*
2420 * If reclaim is active, limit the number of pages that can be
2421 * stored on pcp lists
2422 */
2423 return min(READ_ONCE(pcp->batch) << 2, high);
2424 }
2425
free_unref_page_commit(struct zone * zone,struct per_cpu_pages * pcp,struct page * page,int migratetype,unsigned int order)2426 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2427 struct page *page, int migratetype,
2428 unsigned int order)
2429 {
2430 int high;
2431 int pindex;
2432 bool free_high;
2433
2434 __count_vm_events(PGFREE, 1 << order);
2435 pindex = order_to_pindex(migratetype, order);
2436 list_add(&page->pcp_list, &pcp->lists[pindex]);
2437 pcp->count += 1 << order;
2438
2439 /*
2440 * As high-order pages other than THP's stored on PCP can contribute
2441 * to fragmentation, limit the number stored when PCP is heavily
2442 * freeing without allocation. The remainder after bulk freeing
2443 * stops will be drained from vmstat refresh context.
2444 */
2445 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
2446
2447 high = nr_pcp_high(pcp, zone, free_high);
2448 if (pcp->count >= high) {
2449 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, free_high), pcp, pindex);
2450 }
2451 }
2452
2453 /*
2454 * Free a pcp page
2455 */
free_unref_page(struct page * page,unsigned int order)2456 void free_unref_page(struct page *page, unsigned int order)
2457 {
2458 unsigned long __maybe_unused UP_flags;
2459 struct per_cpu_pages *pcp;
2460 struct zone *zone;
2461 unsigned long pfn = page_to_pfn(page);
2462 int migratetype, pcpmigratetype;
2463
2464 if (!free_unref_page_prepare(page, pfn, order))
2465 return;
2466
2467 /*
2468 * We only track unmovable, reclaimable and movable on pcp lists.
2469 * Place ISOLATE pages on the isolated list because they are being
2470 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2471 * get those areas back if necessary. Otherwise, we may have to free
2472 * excessively into the page allocator
2473 */
2474 migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2475 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2476 if (unlikely(is_migrate_isolate(migratetype))) {
2477 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2478 return;
2479 }
2480 pcpmigratetype = MIGRATE_MOVABLE;
2481 }
2482
2483 zone = page_zone(page);
2484 pcp_trylock_prepare(UP_flags);
2485 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2486 if (pcp) {
2487 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2488 pcp_spin_unlock(pcp);
2489 } else {
2490 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2491 }
2492 pcp_trylock_finish(UP_flags);
2493 }
2494
2495 /*
2496 * Free a list of 0-order pages
2497 */
free_unref_page_list(struct list_head * list)2498 void free_unref_page_list(struct list_head *list)
2499 {
2500 unsigned long __maybe_unused UP_flags;
2501 struct page *page, *next;
2502 struct per_cpu_pages *pcp = NULL;
2503 struct zone *locked_zone = NULL;
2504 int batch_count = 0;
2505 int migratetype;
2506
2507 /* Prepare pages for freeing */
2508 list_for_each_entry_safe(page, next, list, lru) {
2509 unsigned long pfn = page_to_pfn(page);
2510 if (!free_unref_page_prepare(page, pfn, 0)) {
2511 list_del(&page->lru);
2512 continue;
2513 }
2514
2515 /*
2516 * Free isolated pages directly to the allocator, see
2517 * comment in free_unref_page.
2518 */
2519 migratetype = get_pcppage_migratetype(page);
2520 if (unlikely(is_migrate_isolate(migratetype))) {
2521 list_del(&page->lru);
2522 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2523 continue;
2524 }
2525 }
2526
2527 list_for_each_entry_safe(page, next, list, lru) {
2528 struct zone *zone = page_zone(page);
2529
2530 list_del(&page->lru);
2531 migratetype = get_pcppage_migratetype(page);
2532
2533 /*
2534 * Either different zone requiring a different pcp lock or
2535 * excessive lock hold times when freeing a large list of
2536 * pages.
2537 */
2538 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2539 if (pcp) {
2540 pcp_spin_unlock(pcp);
2541 pcp_trylock_finish(UP_flags);
2542 }
2543
2544 batch_count = 0;
2545
2546 /*
2547 * trylock is necessary as pages may be getting freed
2548 * from IRQ or SoftIRQ context after an IO completion.
2549 */
2550 pcp_trylock_prepare(UP_flags);
2551 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2552 if (unlikely(!pcp)) {
2553 pcp_trylock_finish(UP_flags);
2554 free_one_page(zone, page, page_to_pfn(page),
2555 0, migratetype, FPI_NONE);
2556 locked_zone = NULL;
2557 continue;
2558 }
2559 locked_zone = zone;
2560 }
2561
2562 /*
2563 * Non-isolated types over MIGRATE_PCPTYPES get added
2564 * to the MIGRATE_MOVABLE pcp list.
2565 */
2566 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2567 migratetype = MIGRATE_MOVABLE;
2568
2569 trace_mm_page_free_batched(page);
2570 free_unref_page_commit(zone, pcp, page, migratetype, 0);
2571 batch_count++;
2572 }
2573
2574 if (pcp) {
2575 pcp_spin_unlock(pcp);
2576 pcp_trylock_finish(UP_flags);
2577 }
2578 }
2579
2580 /*
2581 * split_page takes a non-compound higher-order page, and splits it into
2582 * n (1<<order) sub-pages: page[0..n]
2583 * Each sub-page must be freed individually.
2584 *
2585 * Note: this is probably too low level an operation for use in drivers.
2586 * Please consult with lkml before using this in your driver.
2587 */
split_page(struct page * page,unsigned int order)2588 void split_page(struct page *page, unsigned int order)
2589 {
2590 int i;
2591
2592 VM_BUG_ON_PAGE(PageCompound(page), page);
2593 VM_BUG_ON_PAGE(!page_count(page), page);
2594
2595 for (i = 1; i < (1 << order); i++)
2596 set_page_refcounted(page + i);
2597 split_page_owner(page, 1 << order);
2598 split_page_memcg(page, 1 << order);
2599 }
2600 EXPORT_SYMBOL_GPL(split_page);
2601
__isolate_free_page(struct page * page,unsigned int order)2602 int __isolate_free_page(struct page *page, unsigned int order)
2603 {
2604 struct zone *zone = page_zone(page);
2605 int mt = get_pageblock_migratetype(page);
2606
2607 if (!is_migrate_isolate(mt)) {
2608 unsigned long watermark;
2609 /*
2610 * Obey watermarks as if the page was being allocated. We can
2611 * emulate a high-order watermark check with a raised order-0
2612 * watermark, because we already know our high-order page
2613 * exists.
2614 */
2615 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2616 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2617 return 0;
2618
2619 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2620 }
2621
2622 del_page_from_free_list(page, zone, order);
2623
2624 /*
2625 * Set the pageblock if the isolated page is at least half of a
2626 * pageblock
2627 */
2628 if (order >= pageblock_order - 1) {
2629 struct page *endpage = page + (1 << order) - 1;
2630 for (; page < endpage; page += pageblock_nr_pages) {
2631 int mt = get_pageblock_migratetype(page);
2632 /*
2633 * Only change normal pageblocks (i.e., they can merge
2634 * with others)
2635 */
2636 if (migratetype_is_mergeable(mt))
2637 set_pageblock_migratetype(page,
2638 MIGRATE_MOVABLE);
2639 }
2640 }
2641
2642 return 1UL << order;
2643 }
2644
2645 /**
2646 * __putback_isolated_page - Return a now-isolated page back where we got it
2647 * @page: Page that was isolated
2648 * @order: Order of the isolated page
2649 * @mt: The page's pageblock's migratetype
2650 *
2651 * This function is meant to return a page pulled from the free lists via
2652 * __isolate_free_page back to the free lists they were pulled from.
2653 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)2654 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2655 {
2656 struct zone *zone = page_zone(page);
2657
2658 /* zone lock should be held when this function is called */
2659 lockdep_assert_held(&zone->lock);
2660
2661 /* Return isolated page to tail of freelist. */
2662 __free_one_page(page, page_to_pfn(page), zone, order, mt,
2663 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2664 }
2665
2666 /*
2667 * Update NUMA hit/miss statistics
2668 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2670 long nr_account)
2671 {
2672 #ifdef CONFIG_NUMA
2673 enum numa_stat_item local_stat = NUMA_LOCAL;
2674
2675 /* skip numa counters update if numa stats is disabled */
2676 if (!static_branch_likely(&vm_numa_stat_key))
2677 return;
2678
2679 if (zone_to_nid(z) != numa_node_id())
2680 local_stat = NUMA_OTHER;
2681
2682 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2683 __count_numa_events(z, NUMA_HIT, nr_account);
2684 else {
2685 __count_numa_events(z, NUMA_MISS, nr_account);
2686 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2687 }
2688 __count_numa_events(z, local_stat, nr_account);
2689 #endif
2690 }
2691
2692 static __always_inline
rmqueue_buddy(struct zone * preferred_zone,struct zone * zone,unsigned int order,unsigned int alloc_flags,int migratetype)2693 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2694 unsigned int order, unsigned int alloc_flags,
2695 int migratetype)
2696 {
2697 struct page *page;
2698 unsigned long flags;
2699
2700 do {
2701 page = NULL;
2702 spin_lock_irqsave(&zone->lock, flags);
2703 if (alloc_flags & ALLOC_HIGHATOMIC)
2704 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2705 if (!page) {
2706 page = __rmqueue(zone, order, migratetype, alloc_flags);
2707
2708 /*
2709 * If the allocation fails, allow OOM handling and
2710 * order-0 (atomic) allocs access to HIGHATOMIC
2711 * reserves as failing now is worse than failing a
2712 * high-order atomic allocation in the future.
2713 */
2714 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2715 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2716
2717 if (!page) {
2718 spin_unlock_irqrestore(&zone->lock, flags);
2719 return NULL;
2720 }
2721 }
2722 __mod_zone_freepage_state(zone, -(1 << order),
2723 get_pcppage_migratetype(page));
2724 spin_unlock_irqrestore(&zone->lock, flags);
2725 } while (check_new_pages(page, order));
2726
2727 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2728 zone_statistics(preferred_zone, zone, 1);
2729
2730 return page;
2731 }
2732
2733 /* Remove page from the per-cpu list, caller must protect the list */
2734 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)2735 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2736 int migratetype,
2737 unsigned int alloc_flags,
2738 struct per_cpu_pages *pcp,
2739 struct list_head *list)
2740 {
2741 struct page *page;
2742
2743 do {
2744 if (list_empty(list)) {
2745 int batch = READ_ONCE(pcp->batch);
2746 int alloced;
2747
2748 /*
2749 * Scale batch relative to order if batch implies
2750 * free pages can be stored on the PCP. Batch can
2751 * be 1 for small zones or for boot pagesets which
2752 * should never store free pages as the pages may
2753 * belong to arbitrary zones.
2754 */
2755 if (batch > 1)
2756 batch = max(batch >> order, 2);
2757 alloced = rmqueue_bulk(zone, order,
2758 batch, list,
2759 migratetype, alloc_flags);
2760
2761 pcp->count += alloced << order;
2762 if (unlikely(list_empty(list)))
2763 return NULL;
2764 }
2765
2766 page = list_first_entry(list, struct page, pcp_list);
2767 list_del(&page->pcp_list);
2768 pcp->count -= 1 << order;
2769 } while (check_new_pages(page, order));
2770
2771 return page;
2772 }
2773
2774 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2775 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2776 struct zone *zone, unsigned int order,
2777 int migratetype, unsigned int alloc_flags)
2778 {
2779 struct per_cpu_pages *pcp;
2780 struct list_head *list;
2781 struct page *page;
2782 unsigned long __maybe_unused UP_flags;
2783
2784 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2785 pcp_trylock_prepare(UP_flags);
2786 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2787 if (!pcp) {
2788 pcp_trylock_finish(UP_flags);
2789 return NULL;
2790 }
2791
2792 /*
2793 * On allocation, reduce the number of pages that are batch freed.
2794 * See nr_pcp_free() where free_factor is increased for subsequent
2795 * frees.
2796 */
2797 pcp->free_factor >>= 1;
2798 list = &pcp->lists[order_to_pindex(migratetype, order)];
2799 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2800 pcp_spin_unlock(pcp);
2801 pcp_trylock_finish(UP_flags);
2802 if (page) {
2803 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 zone_statistics(preferred_zone, zone, 1);
2805 }
2806 return page;
2807 }
2808
2809 /*
2810 * Allocate a page from the given zone.
2811 * Use pcplists for THP or "cheap" high-order allocations.
2812 */
2813
2814 /*
2815 * Do not instrument rmqueue() with KMSAN. This function may call
2816 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2817 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2818 * may call rmqueue() again, which will result in a deadlock.
2819 */
2820 __no_sanitize_memory
2821 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2822 struct page *rmqueue(struct zone *preferred_zone,
2823 struct zone *zone, unsigned int order,
2824 gfp_t gfp_flags, unsigned int alloc_flags,
2825 int migratetype)
2826 {
2827 struct page *page;
2828
2829 /*
2830 * We most definitely don't want callers attempting to
2831 * allocate greater than order-1 page units with __GFP_NOFAIL.
2832 */
2833 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2834
2835 if (likely(pcp_allowed_order(order))) {
2836 page = rmqueue_pcplist(preferred_zone, zone, order,
2837 migratetype, alloc_flags);
2838 if (likely(page))
2839 goto out;
2840 }
2841
2842 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2843 migratetype);
2844
2845 out:
2846 /* Separate test+clear to avoid unnecessary atomics */
2847 if ((alloc_flags & ALLOC_KSWAPD) &&
2848 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2849 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2850 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2851 }
2852
2853 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2854 return page;
2855 }
2856
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2857 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2858 {
2859 return __should_fail_alloc_page(gfp_mask, order);
2860 }
2861 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2862
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)2863 static inline long __zone_watermark_unusable_free(struct zone *z,
2864 unsigned int order, unsigned int alloc_flags)
2865 {
2866 long unusable_free = (1 << order) - 1;
2867
2868 /*
2869 * If the caller does not have rights to reserves below the min
2870 * watermark then subtract the high-atomic reserves. This will
2871 * over-estimate the size of the atomic reserve but it avoids a search.
2872 */
2873 if (likely(!(alloc_flags & ALLOC_RESERVES)))
2874 unusable_free += z->nr_reserved_highatomic;
2875
2876 #ifdef CONFIG_CMA
2877 /* If allocation can't use CMA areas don't use free CMA pages */
2878 if (!(alloc_flags & ALLOC_CMA))
2879 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2880 #endif
2881
2882 return unusable_free;
2883 }
2884
2885 /*
2886 * Return true if free base pages are above 'mark'. For high-order checks it
2887 * will return true of the order-0 watermark is reached and there is at least
2888 * one free page of a suitable size. Checking now avoids taking the zone lock
2889 * to check in the allocation paths if no pages are free.
2890 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)2891 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2892 int highest_zoneidx, unsigned int alloc_flags,
2893 long free_pages)
2894 {
2895 long min = mark;
2896 int o;
2897
2898 /* free_pages may go negative - that's OK */
2899 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2900
2901 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2902 /*
2903 * __GFP_HIGH allows access to 50% of the min reserve as well
2904 * as OOM.
2905 */
2906 if (alloc_flags & ALLOC_MIN_RESERVE) {
2907 min -= min / 2;
2908
2909 /*
2910 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2911 * access more reserves than just __GFP_HIGH. Other
2912 * non-blocking allocations requests such as GFP_NOWAIT
2913 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2914 * access to the min reserve.
2915 */
2916 if (alloc_flags & ALLOC_NON_BLOCK)
2917 min -= min / 4;
2918 }
2919
2920 /*
2921 * OOM victims can try even harder than the normal reserve
2922 * users on the grounds that it's definitely going to be in
2923 * the exit path shortly and free memory. Any allocation it
2924 * makes during the free path will be small and short-lived.
2925 */
2926 if (alloc_flags & ALLOC_OOM)
2927 min -= min / 2;
2928 }
2929
2930 /*
2931 * Check watermarks for an order-0 allocation request. If these
2932 * are not met, then a high-order request also cannot go ahead
2933 * even if a suitable page happened to be free.
2934 */
2935 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
2936 return false;
2937
2938 /* If this is an order-0 request then the watermark is fine */
2939 if (!order)
2940 return true;
2941
2942 /* For a high-order request, check at least one suitable page is free */
2943 for (o = order; o < NR_PAGE_ORDERS; o++) {
2944 struct free_area *area = &z->free_area[o];
2945 int mt;
2946
2947 if (!area->nr_free)
2948 continue;
2949
2950 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2951 if (!free_area_empty(area, mt))
2952 return true;
2953 }
2954
2955 #ifdef CONFIG_CMA
2956 if ((alloc_flags & ALLOC_CMA) &&
2957 !free_area_empty(area, MIGRATE_CMA)) {
2958 return true;
2959 }
2960 #endif
2961 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
2962 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
2963 return true;
2964 }
2965 }
2966 return false;
2967 }
2968
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)2969 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2970 int highest_zoneidx, unsigned int alloc_flags)
2971 {
2972 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
2973 zone_page_state(z, NR_FREE_PAGES));
2974 }
2975
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)2976 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2977 unsigned long mark, int highest_zoneidx,
2978 unsigned int alloc_flags, gfp_t gfp_mask)
2979 {
2980 long free_pages;
2981
2982 free_pages = zone_page_state(z, NR_FREE_PAGES);
2983
2984 /*
2985 * Fast check for order-0 only. If this fails then the reserves
2986 * need to be calculated.
2987 */
2988 if (!order) {
2989 long usable_free;
2990 long reserved;
2991
2992 usable_free = free_pages;
2993 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
2994
2995 /* reserved may over estimate high-atomic reserves. */
2996 usable_free -= min(usable_free, reserved);
2997 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
2998 return true;
2999 }
3000
3001 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3002 free_pages))
3003 return true;
3004
3005 /*
3006 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3007 * when checking the min watermark. The min watermark is the
3008 * point where boosting is ignored so that kswapd is woken up
3009 * when below the low watermark.
3010 */
3011 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3012 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3013 mark = z->_watermark[WMARK_MIN];
3014 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3015 alloc_flags, free_pages);
3016 }
3017
3018 return false;
3019 }
3020
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3021 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3022 unsigned long mark, int highest_zoneidx)
3023 {
3024 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3025
3026 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3027 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3028
3029 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3030 free_pages);
3031 }
3032
3033 #ifdef CONFIG_NUMA
3034 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3035
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3036 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3037 {
3038 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3039 node_reclaim_distance;
3040 }
3041 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3042 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3043 {
3044 return true;
3045 }
3046 #endif /* CONFIG_NUMA */
3047
3048 /*
3049 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3050 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3051 * premature use of a lower zone may cause lowmem pressure problems that
3052 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3053 * probably too small. It only makes sense to spread allocations to avoid
3054 * fragmentation between the Normal and DMA32 zones.
3055 */
3056 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3057 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3058 {
3059 unsigned int alloc_flags;
3060
3061 /*
3062 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3063 * to save a branch.
3064 */
3065 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3066
3067 #ifdef CONFIG_ZONE_DMA32
3068 if (!zone)
3069 return alloc_flags;
3070
3071 if (zone_idx(zone) != ZONE_NORMAL)
3072 return alloc_flags;
3073
3074 /*
3075 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3076 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3077 * on UMA that if Normal is populated then so is DMA32.
3078 */
3079 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3080 if (nr_online_nodes > 1 && !populated_zone(--zone))
3081 return alloc_flags;
3082
3083 alloc_flags |= ALLOC_NOFRAGMENT;
3084 #endif /* CONFIG_ZONE_DMA32 */
3085 return alloc_flags;
3086 }
3087
3088 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)3089 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3090 unsigned int alloc_flags)
3091 {
3092 #ifdef CONFIG_CMA
3093 if (gfp_migratetype(gfp_mask) == get_cma_migratetype())
3094 alloc_flags |= ALLOC_CMA;
3095 #endif
3096 return alloc_flags;
3097 }
3098
3099 /*
3100 * get_page_from_freelist goes through the zonelist trying to allocate
3101 * a page.
3102 */
3103 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3104 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3105 const struct alloc_context *ac)
3106 {
3107 struct zoneref *z;
3108 struct zone *zone;
3109 struct pglist_data *last_pgdat = NULL;
3110 bool last_pgdat_dirty_ok = false;
3111 bool no_fallback;
3112
3113 retry:
3114 /*
3115 * Scan zonelist, looking for a zone with enough free.
3116 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3117 */
3118 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3119 z = ac->preferred_zoneref;
3120 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3121 ac->nodemask) {
3122 struct page *page;
3123 unsigned long mark;
3124
3125 if (cpusets_enabled() &&
3126 (alloc_flags & ALLOC_CPUSET) &&
3127 !__cpuset_zone_allowed(zone, gfp_mask))
3128 continue;
3129 /*
3130 * When allocating a page cache page for writing, we
3131 * want to get it from a node that is within its dirty
3132 * limit, such that no single node holds more than its
3133 * proportional share of globally allowed dirty pages.
3134 * The dirty limits take into account the node's
3135 * lowmem reserves and high watermark so that kswapd
3136 * should be able to balance it without having to
3137 * write pages from its LRU list.
3138 *
3139 * XXX: For now, allow allocations to potentially
3140 * exceed the per-node dirty limit in the slowpath
3141 * (spread_dirty_pages unset) before going into reclaim,
3142 * which is important when on a NUMA setup the allowed
3143 * nodes are together not big enough to reach the
3144 * global limit. The proper fix for these situations
3145 * will require awareness of nodes in the
3146 * dirty-throttling and the flusher threads.
3147 */
3148 if (ac->spread_dirty_pages) {
3149 if (last_pgdat != zone->zone_pgdat) {
3150 last_pgdat = zone->zone_pgdat;
3151 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3152 }
3153
3154 if (!last_pgdat_dirty_ok)
3155 continue;
3156 }
3157
3158 if (no_fallback && nr_online_nodes > 1 &&
3159 zone != ac->preferred_zoneref->zone) {
3160 int local_nid;
3161
3162 /*
3163 * If moving to a remote node, retry but allow
3164 * fragmenting fallbacks. Locality is more important
3165 * than fragmentation avoidance.
3166 */
3167 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3168 if (zone_to_nid(zone) != local_nid) {
3169 alloc_flags &= ~ALLOC_NOFRAGMENT;
3170 goto retry;
3171 }
3172 }
3173
3174 cond_accept_memory(zone, order);
3175
3176 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3177 if (!zone_watermark_fast(zone, order, mark,
3178 ac->highest_zoneidx, alloc_flags,
3179 gfp_mask)) {
3180 int ret;
3181
3182 if (cond_accept_memory(zone, order))
3183 goto try_this_zone;
3184
3185 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3186 /*
3187 * Watermark failed for this zone, but see if we can
3188 * grow this zone if it contains deferred pages.
3189 */
3190 if (deferred_pages_enabled()) {
3191 if (_deferred_grow_zone(zone, order))
3192 goto try_this_zone;
3193 }
3194 #endif
3195 /* Checked here to keep the fast path fast */
3196 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3197 if (alloc_flags & ALLOC_NO_WATERMARKS)
3198 goto try_this_zone;
3199
3200 if (!node_reclaim_enabled() ||
3201 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3202 continue;
3203
3204 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3205 switch (ret) {
3206 case NODE_RECLAIM_NOSCAN:
3207 /* did not scan */
3208 continue;
3209 case NODE_RECLAIM_FULL:
3210 /* scanned but unreclaimable */
3211 continue;
3212 default:
3213 /* did we reclaim enough */
3214 if (zone_watermark_ok(zone, order, mark,
3215 ac->highest_zoneidx, alloc_flags))
3216 goto try_this_zone;
3217
3218 continue;
3219 }
3220 }
3221
3222 try_this_zone:
3223 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3224 gfp_mask, alloc_flags, ac->migratetype);
3225 if (page) {
3226 prep_new_page(page, order, gfp_mask, alloc_flags);
3227
3228 /*
3229 * If this is a high-order atomic allocation then check
3230 * if the pageblock should be reserved for the future
3231 */
3232 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3233 reserve_highatomic_pageblock(page, zone);
3234
3235 return page;
3236 } else {
3237 if (cond_accept_memory(zone, order))
3238 goto try_this_zone;
3239
3240 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3241 /* Try again if zone has deferred pages */
3242 if (deferred_pages_enabled()) {
3243 if (_deferred_grow_zone(zone, order))
3244 goto try_this_zone;
3245 }
3246 #endif
3247 }
3248 }
3249
3250 /*
3251 * It's possible on a UMA machine to get through all zones that are
3252 * fragmented. If avoiding fragmentation, reset and try again.
3253 */
3254 if (no_fallback) {
3255 alloc_flags &= ~ALLOC_NOFRAGMENT;
3256 goto retry;
3257 }
3258
3259 return NULL;
3260 }
3261
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3262 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3263 {
3264 unsigned int filter = SHOW_MEM_FILTER_NODES;
3265
3266 /*
3267 * This documents exceptions given to allocations in certain
3268 * contexts that are allowed to allocate outside current's set
3269 * of allowed nodes.
3270 */
3271 if (!(gfp_mask & __GFP_NOMEMALLOC))
3272 if (tsk_is_oom_victim(current) ||
3273 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3274 filter &= ~SHOW_MEM_FILTER_NODES;
3275 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3276 filter &= ~SHOW_MEM_FILTER_NODES;
3277
3278 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
3279 }
3280
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3281 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3282 {
3283 struct va_format vaf;
3284 va_list args;
3285 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3286
3287 if ((gfp_mask & __GFP_NOWARN) ||
3288 !__ratelimit(&nopage_rs) ||
3289 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3290 return;
3291
3292 va_start(args, fmt);
3293 vaf.fmt = fmt;
3294 vaf.va = &args;
3295 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3296 current->comm, &vaf, gfp_mask, &gfp_mask,
3297 nodemask_pr_args(nodemask));
3298 va_end(args);
3299
3300 cpuset_print_current_mems_allowed();
3301 pr_cont("\n");
3302 dump_stack();
3303 warn_alloc_show_mem(gfp_mask, nodemask);
3304 }
3305
3306 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)3307 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3308 unsigned int alloc_flags,
3309 const struct alloc_context *ac)
3310 {
3311 struct page *page;
3312
3313 page = get_page_from_freelist(gfp_mask, order,
3314 alloc_flags|ALLOC_CPUSET, ac);
3315 /*
3316 * fallback to ignore cpuset restriction if our nodes
3317 * are depleted
3318 */
3319 if (!page)
3320 page = get_page_from_freelist(gfp_mask, order,
3321 alloc_flags, ac);
3322
3323 return page;
3324 }
3325
3326 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3327 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3328 const struct alloc_context *ac, unsigned long *did_some_progress)
3329 {
3330 struct oom_control oc = {
3331 .zonelist = ac->zonelist,
3332 .nodemask = ac->nodemask,
3333 .memcg = NULL,
3334 .gfp_mask = gfp_mask,
3335 .order = order,
3336 };
3337 struct page *page;
3338
3339 *did_some_progress = 0;
3340
3341 /*
3342 * Acquire the oom lock. If that fails, somebody else is
3343 * making progress for us.
3344 */
3345 if (!mutex_trylock(&oom_lock)) {
3346 *did_some_progress = 1;
3347 schedule_timeout_uninterruptible(1);
3348 return NULL;
3349 }
3350
3351 /*
3352 * Go through the zonelist yet one more time, keep very high watermark
3353 * here, this is only to catch a parallel oom killing, we must fail if
3354 * we're still under heavy pressure. But make sure that this reclaim
3355 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3356 * allocation which will never fail due to oom_lock already held.
3357 */
3358 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3359 ~__GFP_DIRECT_RECLAIM, order,
3360 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3361 if (page)
3362 goto out;
3363
3364 /* Coredumps can quickly deplete all memory reserves */
3365 if (current->flags & PF_DUMPCORE)
3366 goto out;
3367 /* The OOM killer will not help higher order allocs */
3368 if (order > PAGE_ALLOC_COSTLY_ORDER)
3369 goto out;
3370 /*
3371 * We have already exhausted all our reclaim opportunities without any
3372 * success so it is time to admit defeat. We will skip the OOM killer
3373 * because it is very likely that the caller has a more reasonable
3374 * fallback than shooting a random task.
3375 *
3376 * The OOM killer may not free memory on a specific node.
3377 */
3378 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3379 goto out;
3380 /* The OOM killer does not needlessly kill tasks for lowmem */
3381 if (ac->highest_zoneidx < ZONE_NORMAL)
3382 goto out;
3383 if (pm_suspended_storage())
3384 goto out;
3385 /*
3386 * XXX: GFP_NOFS allocations should rather fail than rely on
3387 * other request to make a forward progress.
3388 * We are in an unfortunate situation where out_of_memory cannot
3389 * do much for this context but let's try it to at least get
3390 * access to memory reserved if the current task is killed (see
3391 * out_of_memory). Once filesystems are ready to handle allocation
3392 * failures more gracefully we should just bail out here.
3393 */
3394
3395 /* Exhausted what can be done so it's blame time */
3396 if (out_of_memory(&oc) ||
3397 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3398 *did_some_progress = 1;
3399
3400 /*
3401 * Help non-failing allocations by giving them access to memory
3402 * reserves
3403 */
3404 if (gfp_mask & __GFP_NOFAIL)
3405 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3406 ALLOC_NO_WATERMARKS, ac);
3407 }
3408 out:
3409 mutex_unlock(&oom_lock);
3410 return page;
3411 }
3412
3413 /*
3414 * Maximum number of compaction retries with a progress before OOM
3415 * killer is consider as the only way to move forward.
3416 */
3417 #define MAX_COMPACT_RETRIES 16
3418
3419 #ifdef CONFIG_COMPACTION
3420 /* Try memory compaction for high-order allocations before reclaim */
3421 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3422 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3423 unsigned int alloc_flags, const struct alloc_context *ac,
3424 enum compact_priority prio, enum compact_result *compact_result)
3425 {
3426 struct page *page = NULL;
3427 unsigned long pflags;
3428 unsigned int noreclaim_flag;
3429
3430 if (!order)
3431 return NULL;
3432
3433 psi_memstall_enter(&pflags);
3434 delayacct_compact_start();
3435 noreclaim_flag = memalloc_noreclaim_save();
3436
3437 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3438 prio, &page);
3439
3440 memalloc_noreclaim_restore(noreclaim_flag);
3441 psi_memstall_leave(&pflags);
3442 delayacct_compact_end();
3443
3444 if (*compact_result == COMPACT_SKIPPED)
3445 return NULL;
3446 /*
3447 * At least in one zone compaction wasn't deferred or skipped, so let's
3448 * count a compaction stall
3449 */
3450 count_vm_event(COMPACTSTALL);
3451
3452 /* Prep a captured page if available */
3453 if (page)
3454 prep_new_page(page, order, gfp_mask, alloc_flags);
3455
3456 /* Try get a page from the freelist if available */
3457 if (!page)
3458 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3459
3460 if (page) {
3461 struct zone *zone = page_zone(page);
3462
3463 zone->compact_blockskip_flush = false;
3464 compaction_defer_reset(zone, order, true);
3465 count_vm_event(COMPACTSUCCESS);
3466 return page;
3467 }
3468
3469 /*
3470 * It's bad if compaction run occurs and fails. The most likely reason
3471 * is that pages exist, but not enough to satisfy watermarks.
3472 */
3473 count_vm_event(COMPACTFAIL);
3474
3475 cond_resched();
3476
3477 return NULL;
3478 }
3479
3480 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3481 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3482 enum compact_result compact_result,
3483 enum compact_priority *compact_priority,
3484 int *compaction_retries)
3485 {
3486 int max_retries = MAX_COMPACT_RETRIES;
3487 int min_priority;
3488 bool ret = false;
3489 int retries = *compaction_retries;
3490 enum compact_priority priority = *compact_priority;
3491
3492 if (!order)
3493 return false;
3494
3495 if (fatal_signal_pending(current))
3496 return false;
3497
3498 /*
3499 * Compaction was skipped due to a lack of free order-0
3500 * migration targets. Continue if reclaim can help.
3501 */
3502 if (compact_result == COMPACT_SKIPPED) {
3503 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3504 goto out;
3505 }
3506
3507 /*
3508 * Compaction managed to coalesce some page blocks, but the
3509 * allocation failed presumably due to a race. Retry some.
3510 */
3511 if (compact_result == COMPACT_SUCCESS) {
3512 /*
3513 * !costly requests are much more important than
3514 * __GFP_RETRY_MAYFAIL costly ones because they are de
3515 * facto nofail and invoke OOM killer to move on while
3516 * costly can fail and users are ready to cope with
3517 * that. 1/4 retries is rather arbitrary but we would
3518 * need much more detailed feedback from compaction to
3519 * make a better decision.
3520 */
3521 if (order > PAGE_ALLOC_COSTLY_ORDER)
3522 max_retries /= 4;
3523
3524 if (++(*compaction_retries) <= max_retries) {
3525 ret = true;
3526 goto out;
3527 }
3528 }
3529
3530 /*
3531 * Compaction failed. Retry with increasing priority.
3532 */
3533 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3534 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3535
3536 if (*compact_priority > min_priority) {
3537 (*compact_priority)--;
3538 *compaction_retries = 0;
3539 ret = true;
3540 }
3541 out:
3542 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3543 return ret;
3544 }
3545 #else
3546 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548 unsigned int alloc_flags, const struct alloc_context *ac,
3549 enum compact_priority prio, enum compact_result *compact_result)
3550 {
3551 *compact_result = COMPACT_SKIPPED;
3552 return NULL;
3553 }
3554
3555 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3556 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3557 enum compact_result compact_result,
3558 enum compact_priority *compact_priority,
3559 int *compaction_retries)
3560 {
3561 struct zone *zone;
3562 struct zoneref *z;
3563
3564 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3565 return false;
3566
3567 /*
3568 * There are setups with compaction disabled which would prefer to loop
3569 * inside the allocator rather than hit the oom killer prematurely.
3570 * Let's give them a good hope and keep retrying while the order-0
3571 * watermarks are OK.
3572 */
3573 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3574 ac->highest_zoneidx, ac->nodemask) {
3575 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3576 ac->highest_zoneidx, alloc_flags))
3577 return true;
3578 }
3579 return false;
3580 }
3581 #endif /* CONFIG_COMPACTION */
3582
3583 #ifdef CONFIG_LOCKDEP
3584 static struct lockdep_map __fs_reclaim_map =
3585 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3586
__need_reclaim(gfp_t gfp_mask)3587 static bool __need_reclaim(gfp_t gfp_mask)
3588 {
3589 /* no reclaim without waiting on it */
3590 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3591 return false;
3592
3593 /* this guy won't enter reclaim */
3594 if (current->flags & PF_MEMALLOC)
3595 return false;
3596
3597 if (gfp_mask & __GFP_NOLOCKDEP)
3598 return false;
3599
3600 return true;
3601 }
3602
__fs_reclaim_acquire(unsigned long ip)3603 void __fs_reclaim_acquire(unsigned long ip)
3604 {
3605 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3606 }
3607
__fs_reclaim_release(unsigned long ip)3608 void __fs_reclaim_release(unsigned long ip)
3609 {
3610 lock_release(&__fs_reclaim_map, ip);
3611 }
3612
fs_reclaim_acquire(gfp_t gfp_mask)3613 void fs_reclaim_acquire(gfp_t gfp_mask)
3614 {
3615 gfp_mask = current_gfp_context(gfp_mask);
3616
3617 if (__need_reclaim(gfp_mask)) {
3618 if (gfp_mask & __GFP_FS)
3619 __fs_reclaim_acquire(_RET_IP_);
3620
3621 #ifdef CONFIG_MMU_NOTIFIER
3622 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3623 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3624 #endif
3625
3626 }
3627 }
3628 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3629
fs_reclaim_release(gfp_t gfp_mask)3630 void fs_reclaim_release(gfp_t gfp_mask)
3631 {
3632 gfp_mask = current_gfp_context(gfp_mask);
3633
3634 if (__need_reclaim(gfp_mask)) {
3635 if (gfp_mask & __GFP_FS)
3636 __fs_reclaim_release(_RET_IP_);
3637 }
3638 }
3639 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3640 #endif
3641
3642 /*
3643 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3644 * have been rebuilt so allocation retries. Reader side does not lock and
3645 * retries the allocation if zonelist changes. Writer side is protected by the
3646 * embedded spin_lock.
3647 */
3648 static DEFINE_SEQLOCK(zonelist_update_seq);
3649
zonelist_iter_begin(void)3650 static unsigned int zonelist_iter_begin(void)
3651 {
3652 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3653 return read_seqbegin(&zonelist_update_seq);
3654
3655 return 0;
3656 }
3657
check_retry_zonelist(unsigned int seq)3658 static unsigned int check_retry_zonelist(unsigned int seq)
3659 {
3660 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3661 return read_seqretry(&zonelist_update_seq, seq);
3662
3663 return seq;
3664 }
3665
3666 /* Perform direct synchronous page reclaim */
3667 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3668 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3669 const struct alloc_context *ac)
3670 {
3671 unsigned int noreclaim_flag;
3672 unsigned long progress;
3673
3674 cond_resched();
3675
3676 /* We now go into synchronous reclaim */
3677 cpuset_memory_pressure_bump();
3678 fs_reclaim_acquire(gfp_mask);
3679 noreclaim_flag = memalloc_noreclaim_save();
3680
3681 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3682 ac->nodemask);
3683
3684 memalloc_noreclaim_restore(noreclaim_flag);
3685 fs_reclaim_release(gfp_mask);
3686
3687 cond_resched();
3688
3689 return progress;
3690 }
3691
3692 /* The really slow allocator path where we enter direct reclaim */
3693 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3694 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3695 unsigned int alloc_flags, const struct alloc_context *ac,
3696 unsigned long *did_some_progress)
3697 {
3698 struct page *page = NULL;
3699 unsigned long pflags;
3700 bool drained = false;
3701
3702 psi_memstall_enter(&pflags);
3703 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3704 if (unlikely(!(*did_some_progress)))
3705 goto out;
3706
3707 retry:
3708 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3709
3710 /*
3711 * If an allocation failed after direct reclaim, it could be because
3712 * pages are pinned on the per-cpu lists or in high alloc reserves.
3713 * Shrink them and try again
3714 */
3715 if (!page && !drained) {
3716 unreserve_highatomic_pageblock(ac, false);
3717 drain_all_pages(NULL);
3718 drained = true;
3719 goto retry;
3720 }
3721 out:
3722 psi_memstall_leave(&pflags);
3723
3724 return page;
3725 }
3726
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)3727 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3728 const struct alloc_context *ac)
3729 {
3730 struct zoneref *z;
3731 struct zone *zone;
3732 pg_data_t *last_pgdat = NULL;
3733 enum zone_type highest_zoneidx = ac->highest_zoneidx;
3734
3735 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3736 ac->nodemask) {
3737 if (!managed_zone(zone))
3738 continue;
3739 if (last_pgdat != zone->zone_pgdat) {
3740 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3741 last_pgdat = zone->zone_pgdat;
3742 }
3743 }
3744 }
3745
3746 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask,unsigned int order)3747 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3748 {
3749 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3750
3751 /*
3752 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3753 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3754 * to save two branches.
3755 */
3756 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3757 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3758
3759 /*
3760 * The caller may dip into page reserves a bit more if the caller
3761 * cannot run direct reclaim, or if the caller has realtime scheduling
3762 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3763 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3764 */
3765 alloc_flags |= (__force int)
3766 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3767
3768 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3769 /*
3770 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3771 * if it can't schedule.
3772 */
3773 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3774 alloc_flags |= ALLOC_NON_BLOCK;
3775
3776 if (order > 0)
3777 alloc_flags |= ALLOC_HIGHATOMIC;
3778 }
3779
3780 /*
3781 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3782 * GFP_ATOMIC) rather than fail, see the comment for
3783 * cpuset_node_allowed().
3784 */
3785 if (alloc_flags & ALLOC_MIN_RESERVE)
3786 alloc_flags &= ~ALLOC_CPUSET;
3787 } else if (unlikely(rt_task(current)) && in_task())
3788 alloc_flags |= ALLOC_MIN_RESERVE;
3789
3790 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3791
3792 return alloc_flags;
3793 }
3794
oom_reserves_allowed(struct task_struct * tsk)3795 static bool oom_reserves_allowed(struct task_struct *tsk)
3796 {
3797 if (!tsk_is_oom_victim(tsk))
3798 return false;
3799
3800 /*
3801 * !MMU doesn't have oom reaper so give access to memory reserves
3802 * only to the thread with TIF_MEMDIE set
3803 */
3804 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3805 return false;
3806
3807 return true;
3808 }
3809
3810 /*
3811 * Distinguish requests which really need access to full memory
3812 * reserves from oom victims which can live with a portion of it
3813 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)3814 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3815 {
3816 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3817 return 0;
3818 if (gfp_mask & __GFP_MEMALLOC)
3819 return ALLOC_NO_WATERMARKS;
3820 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3821 return ALLOC_NO_WATERMARKS;
3822 if (!in_interrupt()) {
3823 if (current->flags & PF_MEMALLOC)
3824 return ALLOC_NO_WATERMARKS;
3825 else if (oom_reserves_allowed(current))
3826 return ALLOC_OOM;
3827 }
3828
3829 return 0;
3830 }
3831
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3832 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3833 {
3834 return !!__gfp_pfmemalloc_flags(gfp_mask);
3835 }
3836
3837 /*
3838 * Checks whether it makes sense to retry the reclaim to make a forward progress
3839 * for the given allocation request.
3840 *
3841 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3842 * without success, or when we couldn't even meet the watermark if we
3843 * reclaimed all remaining pages on the LRU lists.
3844 *
3845 * Returns true if a retry is viable or false to enter the oom path.
3846 */
3847 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3848 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3849 struct alloc_context *ac, int alloc_flags,
3850 bool did_some_progress, int *no_progress_loops)
3851 {
3852 struct zone *zone;
3853 struct zoneref *z;
3854 bool ret = false;
3855
3856 /*
3857 * Costly allocations might have made a progress but this doesn't mean
3858 * their order will become available due to high fragmentation so
3859 * always increment the no progress counter for them
3860 */
3861 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3862 *no_progress_loops = 0;
3863 else
3864 (*no_progress_loops)++;
3865
3866 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3867 goto out;
3868
3869
3870 /*
3871 * Keep reclaiming pages while there is a chance this will lead
3872 * somewhere. If none of the target zones can satisfy our allocation
3873 * request even if all reclaimable pages are considered then we are
3874 * screwed and have to go OOM.
3875 */
3876 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3877 ac->highest_zoneidx, ac->nodemask) {
3878 unsigned long available;
3879 unsigned long reclaimable;
3880 unsigned long min_wmark = min_wmark_pages(zone);
3881 bool wmark;
3882
3883 available = reclaimable = zone_reclaimable_pages(zone);
3884 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3885
3886 /*
3887 * Would the allocation succeed if we reclaimed all
3888 * reclaimable pages?
3889 */
3890 wmark = __zone_watermark_ok(zone, order, min_wmark,
3891 ac->highest_zoneidx, alloc_flags, available);
3892 trace_reclaim_retry_zone(z, order, reclaimable,
3893 available, min_wmark, *no_progress_loops, wmark);
3894 if (wmark) {
3895 ret = true;
3896 break;
3897 }
3898 }
3899
3900 /*
3901 * Memory allocation/reclaim might be called from a WQ context and the
3902 * current implementation of the WQ concurrency control doesn't
3903 * recognize that a particular WQ is congested if the worker thread is
3904 * looping without ever sleeping. Therefore we have to do a short sleep
3905 * here rather than calling cond_resched().
3906 */
3907 if (current->flags & PF_WQ_WORKER)
3908 schedule_timeout_uninterruptible(1);
3909 else
3910 cond_resched();
3911 out:
3912 /* Before OOM, exhaust highatomic_reserve */
3913 if (!ret)
3914 return unreserve_highatomic_pageblock(ac, true);
3915
3916 return ret;
3917 }
3918
3919 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)3920 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3921 {
3922 /*
3923 * It's possible that cpuset's mems_allowed and the nodemask from
3924 * mempolicy don't intersect. This should be normally dealt with by
3925 * policy_nodemask(), but it's possible to race with cpuset update in
3926 * such a way the check therein was true, and then it became false
3927 * before we got our cpuset_mems_cookie here.
3928 * This assumes that for all allocations, ac->nodemask can come only
3929 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3930 * when it does not intersect with the cpuset restrictions) or the
3931 * caller can deal with a violated nodemask.
3932 */
3933 if (cpusets_enabled() && ac->nodemask &&
3934 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3935 ac->nodemask = NULL;
3936 return true;
3937 }
3938
3939 /*
3940 * When updating a task's mems_allowed or mempolicy nodemask, it is
3941 * possible to race with parallel threads in such a way that our
3942 * allocation can fail while the mask is being updated. If we are about
3943 * to fail, check if the cpuset changed during allocation and if so,
3944 * retry.
3945 */
3946 if (read_mems_allowed_retry(cpuset_mems_cookie))
3947 return true;
3948
3949 return false;
3950 }
3951
3952 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3953 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3954 struct alloc_context *ac)
3955 {
3956 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3957 bool can_compact = gfp_compaction_allowed(gfp_mask);
3958 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3959 struct page *page = NULL;
3960 unsigned int alloc_flags;
3961 unsigned long did_some_progress;
3962 enum compact_priority compact_priority;
3963 enum compact_result compact_result;
3964 int compaction_retries;
3965 int no_progress_loops;
3966 unsigned int cpuset_mems_cookie;
3967 unsigned int zonelist_iter_cookie;
3968 int reserve_flags;
3969
3970 restart:
3971 compaction_retries = 0;
3972 no_progress_loops = 0;
3973 compact_result = COMPACT_SKIPPED;
3974 compact_priority = DEF_COMPACT_PRIORITY;
3975 cpuset_mems_cookie = read_mems_allowed_begin();
3976 zonelist_iter_cookie = zonelist_iter_begin();
3977
3978 /*
3979 * The fast path uses conservative alloc_flags to succeed only until
3980 * kswapd needs to be woken up, and to avoid the cost of setting up
3981 * alloc_flags precisely. So we do that now.
3982 */
3983 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
3984
3985 /*
3986 * We need to recalculate the starting point for the zonelist iterator
3987 * because we might have used different nodemask in the fast path, or
3988 * there was a cpuset modification and we are retrying - otherwise we
3989 * could end up iterating over non-eligible zones endlessly.
3990 */
3991 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3992 ac->highest_zoneidx, ac->nodemask);
3993 if (!ac->preferred_zoneref->zone)
3994 goto nopage;
3995
3996 /*
3997 * Check for insane configurations where the cpuset doesn't contain
3998 * any suitable zone to satisfy the request - e.g. non-movable
3999 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4000 */
4001 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4002 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4003 ac->highest_zoneidx,
4004 &cpuset_current_mems_allowed);
4005 if (!z->zone)
4006 goto nopage;
4007 }
4008
4009 if (alloc_flags & ALLOC_KSWAPD)
4010 wake_all_kswapds(order, gfp_mask, ac);
4011
4012 /*
4013 * The adjusted alloc_flags might result in immediate success, so try
4014 * that first
4015 */
4016 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4017 if (page)
4018 goto got_pg;
4019
4020 /*
4021 * For costly allocations, try direct compaction first, as it's likely
4022 * that we have enough base pages and don't need to reclaim. For non-
4023 * movable high-order allocations, do that as well, as compaction will
4024 * try prevent permanent fragmentation by migrating from blocks of the
4025 * same migratetype.
4026 * Don't try this for allocations that are allowed to ignore
4027 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4028 */
4029 if (can_direct_reclaim && can_compact &&
4030 (costly_order ||
4031 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4032 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4033 page = __alloc_pages_direct_compact(gfp_mask, order,
4034 alloc_flags, ac,
4035 INIT_COMPACT_PRIORITY,
4036 &compact_result);
4037 if (page)
4038 goto got_pg;
4039
4040 /*
4041 * Checks for costly allocations with __GFP_NORETRY, which
4042 * includes some THP page fault allocations
4043 */
4044 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4045 /*
4046 * If allocating entire pageblock(s) and compaction
4047 * failed because all zones are below low watermarks
4048 * or is prohibited because it recently failed at this
4049 * order, fail immediately unless the allocator has
4050 * requested compaction and reclaim retry.
4051 *
4052 * Reclaim is
4053 * - potentially very expensive because zones are far
4054 * below their low watermarks or this is part of very
4055 * bursty high order allocations,
4056 * - not guaranteed to help because isolate_freepages()
4057 * may not iterate over freed pages as part of its
4058 * linear scan, and
4059 * - unlikely to make entire pageblocks free on its
4060 * own.
4061 */
4062 if (compact_result == COMPACT_SKIPPED ||
4063 compact_result == COMPACT_DEFERRED)
4064 goto nopage;
4065
4066 /*
4067 * Looks like reclaim/compaction is worth trying, but
4068 * sync compaction could be very expensive, so keep
4069 * using async compaction.
4070 */
4071 compact_priority = INIT_COMPACT_PRIORITY;
4072 }
4073 }
4074
4075 retry:
4076 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4077 if (alloc_flags & ALLOC_KSWAPD)
4078 wake_all_kswapds(order, gfp_mask, ac);
4079
4080 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4081 if (reserve_flags)
4082 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4083 (alloc_flags & ALLOC_KSWAPD);
4084
4085 /*
4086 * Reset the nodemask and zonelist iterators if memory policies can be
4087 * ignored. These allocations are high priority and system rather than
4088 * user oriented.
4089 */
4090 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4091 ac->nodemask = NULL;
4092 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4093 ac->highest_zoneidx, ac->nodemask);
4094 }
4095
4096 /* Attempt with potentially adjusted zonelist and alloc_flags */
4097 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4098 if (page)
4099 goto got_pg;
4100
4101 /* Caller is not willing to reclaim, we can't balance anything */
4102 if (!can_direct_reclaim)
4103 goto nopage;
4104
4105 /* Avoid recursion of direct reclaim */
4106 if (current->flags & PF_MEMALLOC)
4107 goto nopage;
4108
4109 /* Try direct reclaim and then allocating */
4110 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4111 &did_some_progress);
4112 if (page)
4113 goto got_pg;
4114
4115 /* Try direct compaction and then allocating */
4116 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4117 compact_priority, &compact_result);
4118 if (page)
4119 goto got_pg;
4120
4121 /* Do not loop if specifically requested */
4122 if (gfp_mask & __GFP_NORETRY)
4123 goto nopage;
4124
4125 /*
4126 * Do not retry costly high order allocations unless they are
4127 * __GFP_RETRY_MAYFAIL and we can compact
4128 */
4129 if (costly_order && (!can_compact ||
4130 !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4131 goto nopage;
4132
4133 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4134 did_some_progress > 0, &no_progress_loops))
4135 goto retry;
4136
4137 /*
4138 * It doesn't make any sense to retry for the compaction if the order-0
4139 * reclaim is not able to make any progress because the current
4140 * implementation of the compaction depends on the sufficient amount
4141 * of free memory (see __compaction_suitable)
4142 */
4143 if (did_some_progress > 0 && can_compact &&
4144 should_compact_retry(ac, order, alloc_flags,
4145 compact_result, &compact_priority,
4146 &compaction_retries))
4147 goto retry;
4148
4149
4150 /*
4151 * Deal with possible cpuset update races or zonelist updates to avoid
4152 * a unnecessary OOM kill.
4153 */
4154 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4155 check_retry_zonelist(zonelist_iter_cookie))
4156 goto restart;
4157
4158 /* Reclaim has failed us, start killing things */
4159 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4160 if (page)
4161 goto got_pg;
4162
4163 /* Avoid allocations with no watermarks from looping endlessly */
4164 if (tsk_is_oom_victim(current) &&
4165 (alloc_flags & ALLOC_OOM ||
4166 (gfp_mask & __GFP_NOMEMALLOC)))
4167 goto nopage;
4168
4169 /* Retry as long as the OOM killer is making progress */
4170 if (did_some_progress) {
4171 no_progress_loops = 0;
4172 goto retry;
4173 }
4174
4175 nopage:
4176 /*
4177 * Deal with possible cpuset update races or zonelist updates to avoid
4178 * a unnecessary OOM kill.
4179 */
4180 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4181 check_retry_zonelist(zonelist_iter_cookie))
4182 goto restart;
4183
4184 /*
4185 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4186 * we always retry
4187 */
4188 if (gfp_mask & __GFP_NOFAIL) {
4189 /*
4190 * All existing users of the __GFP_NOFAIL are blockable, so warn
4191 * of any new users that actually require GFP_NOWAIT
4192 */
4193 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4194 goto fail;
4195
4196 /*
4197 * PF_MEMALLOC request from this context is rather bizarre
4198 * because we cannot reclaim anything and only can loop waiting
4199 * for somebody to do a work for us
4200 */
4201 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4202
4203 /*
4204 * non failing costly orders are a hard requirement which we
4205 * are not prepared for much so let's warn about these users
4206 * so that we can identify them and convert them to something
4207 * else.
4208 */
4209 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4210
4211 /*
4212 * Help non-failing allocations by giving some access to memory
4213 * reserves normally used for high priority non-blocking
4214 * allocations but do not use ALLOC_NO_WATERMARKS because this
4215 * could deplete whole memory reserves which would just make
4216 * the situation worse.
4217 */
4218 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4219 if (page)
4220 goto got_pg;
4221
4222 cond_resched();
4223 goto retry;
4224 }
4225 fail:
4226 warn_alloc(gfp_mask, ac->nodemask,
4227 "page allocation failure: order:%u", order);
4228 got_pg:
4229 return page;
4230 }
4231
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)4232 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4233 int preferred_nid, nodemask_t *nodemask,
4234 struct alloc_context *ac, gfp_t *alloc_gfp,
4235 unsigned int *alloc_flags)
4236 {
4237 ac->highest_zoneidx = gfp_zone(gfp_mask);
4238 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4239 ac->nodemask = nodemask;
4240 ac->migratetype = gfp_migratetype(gfp_mask);
4241
4242 if (cpusets_enabled()) {
4243 *alloc_gfp |= __GFP_HARDWALL;
4244 /*
4245 * When we are in the interrupt context, it is irrelevant
4246 * to the current task context. It means that any node ok.
4247 */
4248 if (in_task() && !ac->nodemask)
4249 ac->nodemask = &cpuset_current_mems_allowed;
4250 else
4251 *alloc_flags |= ALLOC_CPUSET;
4252 }
4253
4254 might_alloc(gfp_mask);
4255
4256 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4257 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4258 wake_all_zswapd();
4259 #endif
4260
4261 if (should_fail_alloc_page(gfp_mask, order))
4262 return false;
4263
4264 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4265
4266 /* Dirty zone balancing only done in the fast path */
4267 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4268
4269 /*
4270 * The preferred zone is used for statistics but crucially it is
4271 * also used as the starting point for the zonelist iterator. It
4272 * may get reset for allocations that ignore memory policies.
4273 */
4274 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4275 ac->highest_zoneidx, ac->nodemask);
4276
4277 return true;
4278 }
4279
4280 /*
4281 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4282 * @gfp: GFP flags for the allocation
4283 * @preferred_nid: The preferred NUMA node ID to allocate from
4284 * @nodemask: Set of nodes to allocate from, may be NULL
4285 * @nr_pages: The number of pages desired on the list or array
4286 * @page_list: Optional list to store the allocated pages
4287 * @page_array: Optional array to store the pages
4288 *
4289 * This is a batched version of the page allocator that attempts to
4290 * allocate nr_pages quickly. Pages are added to page_list if page_list
4291 * is not NULL, otherwise it is assumed that the page_array is valid.
4292 *
4293 * For lists, nr_pages is the number of pages that should be allocated.
4294 *
4295 * For arrays, only NULL elements are populated with pages and nr_pages
4296 * is the maximum number of pages that will be stored in the array.
4297 *
4298 * Returns the number of pages on the list or array.
4299 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)4300 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4301 nodemask_t *nodemask, int nr_pages,
4302 struct list_head *page_list,
4303 struct page **page_array)
4304 {
4305 struct page *page;
4306 unsigned long __maybe_unused UP_flags;
4307 struct zone *zone;
4308 struct zoneref *z;
4309 struct per_cpu_pages *pcp;
4310 struct list_head *pcp_list;
4311 struct alloc_context ac;
4312 gfp_t alloc_gfp;
4313 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4314 int nr_populated = 0, nr_account = 0;
4315
4316 /*
4317 * Skip populated array elements to determine if any pages need
4318 * to be allocated before disabling IRQs.
4319 */
4320 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4321 nr_populated++;
4322
4323 /* No pages requested? */
4324 if (unlikely(nr_pages <= 0))
4325 goto out;
4326
4327 /* Already populated array? */
4328 if (unlikely(page_array && nr_pages - nr_populated == 0))
4329 goto out;
4330
4331 /* Bulk allocator does not support memcg accounting. */
4332 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4333 goto failed;
4334
4335 /* Use the single page allocator for one page. */
4336 if (nr_pages - nr_populated == 1)
4337 goto failed;
4338
4339 #ifdef CONFIG_PAGE_OWNER
4340 /*
4341 * PAGE_OWNER may recurse into the allocator to allocate space to
4342 * save the stack with pagesets.lock held. Releasing/reacquiring
4343 * removes much of the performance benefit of bulk allocation so
4344 * force the caller to allocate one page at a time as it'll have
4345 * similar performance to added complexity to the bulk allocator.
4346 */
4347 if (static_branch_unlikely(&page_owner_inited))
4348 goto failed;
4349 #endif
4350
4351 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4352 gfp &= gfp_allowed_mask;
4353 alloc_gfp = gfp;
4354 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4355 goto out;
4356 gfp = alloc_gfp;
4357
4358 /* Find an allowed local zone that meets the low watermark. */
4359 z = ac.preferred_zoneref;
4360 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4361 unsigned long mark;
4362
4363 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4364 !__cpuset_zone_allowed(zone, gfp)) {
4365 continue;
4366 }
4367
4368 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4369 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4370 goto failed;
4371 }
4372
4373 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4374 if (zone_watermark_fast(zone, 0, mark,
4375 zonelist_zone_idx(ac.preferred_zoneref),
4376 alloc_flags, gfp)) {
4377 break;
4378 }
4379 }
4380
4381 /*
4382 * If there are no allowed local zones that meets the watermarks then
4383 * try to allocate a single page and reclaim if necessary.
4384 */
4385 if (unlikely(!zone))
4386 goto failed;
4387
4388 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4389 pcp_trylock_prepare(UP_flags);
4390 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4391 if (!pcp)
4392 goto failed_irq;
4393
4394 /* Attempt the batch allocation */
4395 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4396 while (nr_populated < nr_pages) {
4397
4398 /* Skip existing pages */
4399 if (page_array && page_array[nr_populated]) {
4400 nr_populated++;
4401 continue;
4402 }
4403
4404 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4405 pcp, pcp_list);
4406 if (unlikely(!page)) {
4407 /* Try and allocate at least one page */
4408 if (!nr_account) {
4409 pcp_spin_unlock(pcp);
4410 goto failed_irq;
4411 }
4412 break;
4413 }
4414 nr_account++;
4415
4416 prep_new_page(page, 0, gfp, 0);
4417 if (page_list)
4418 list_add(&page->lru, page_list);
4419 else
4420 page_array[nr_populated] = page;
4421 nr_populated++;
4422 }
4423
4424 pcp_spin_unlock(pcp);
4425 pcp_trylock_finish(UP_flags);
4426
4427 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4428 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4429
4430 out:
4431 return nr_populated;
4432
4433 failed_irq:
4434 pcp_trylock_finish(UP_flags);
4435
4436 failed:
4437 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4438 if (page) {
4439 if (page_list)
4440 list_add(&page->lru, page_list);
4441 else
4442 page_array[nr_populated] = page;
4443 nr_populated++;
4444 }
4445
4446 goto out;
4447 }
4448 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4449
4450 /*
4451 * This is the 'heart' of the zoned buddy allocator.
4452 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4453 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4454 nodemask_t *nodemask)
4455 {
4456 struct page *page;
4457 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4458 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4459 struct alloc_context ac = { };
4460
4461 /*
4462 * There are several places where we assume that the order value is sane
4463 * so bail out early if the request is out of bound.
4464 */
4465 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4466 return NULL;
4467
4468 gfp &= gfp_allowed_mask;
4469 /*
4470 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4471 * resp. GFP_NOIO which has to be inherited for all allocation requests
4472 * from a particular context which has been marked by
4473 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4474 * movable zones are not used during allocation.
4475 */
4476 gfp = current_gfp_context(gfp);
4477 alloc_gfp = gfp;
4478 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4479 &alloc_gfp, &alloc_flags))
4480 return NULL;
4481
4482 /*
4483 * Forbid the first pass from falling back to types that fragment
4484 * memory until all local zones are considered.
4485 */
4486 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4487
4488 /* First allocation attempt */
4489 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4490 if (likely(page))
4491 goto out;
4492
4493 alloc_gfp = gfp;
4494 ac.spread_dirty_pages = false;
4495
4496 /*
4497 * Restore the original nodemask if it was potentially replaced with
4498 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4499 */
4500 ac.nodemask = nodemask;
4501
4502 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4503
4504 out:
4505 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4506 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4507 __free_pages(page, order);
4508 page = NULL;
4509 }
4510
4511 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4512 kmsan_alloc_page(page, order, alloc_gfp);
4513
4514 return page;
4515 }
4516 EXPORT_SYMBOL(__alloc_pages);
4517
__folio_alloc(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)4518 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4519 nodemask_t *nodemask)
4520 {
4521 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4522 preferred_nid, nodemask);
4523 return page_rmappable_folio(page);
4524 }
4525 EXPORT_SYMBOL(__folio_alloc);
4526
4527 /*
4528 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4529 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4530 * you need to access high mem.
4531 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)4532 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4533 {
4534 struct page *page;
4535
4536 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4537 if (!page)
4538 return 0;
4539 return (unsigned long) page_address(page);
4540 }
4541 EXPORT_SYMBOL(__get_free_pages);
4542
get_zeroed_page(gfp_t gfp_mask)4543 unsigned long get_zeroed_page(gfp_t gfp_mask)
4544 {
4545 return __get_free_page(gfp_mask | __GFP_ZERO);
4546 }
4547 EXPORT_SYMBOL(get_zeroed_page);
4548
4549 /**
4550 * __free_pages - Free pages allocated with alloc_pages().
4551 * @page: The page pointer returned from alloc_pages().
4552 * @order: The order of the allocation.
4553 *
4554 * This function can free multi-page allocations that are not compound
4555 * pages. It does not check that the @order passed in matches that of
4556 * the allocation, so it is easy to leak memory. Freeing more memory
4557 * than was allocated will probably emit a warning.
4558 *
4559 * If the last reference to this page is speculative, it will be released
4560 * by put_page() which only frees the first page of a non-compound
4561 * allocation. To prevent the remaining pages from being leaked, we free
4562 * the subsequent pages here. If you want to use the page's reference
4563 * count to decide when to free the allocation, you should allocate a
4564 * compound page, and use put_page() instead of __free_pages().
4565 *
4566 * Context: May be called in interrupt context or while holding a normal
4567 * spinlock, but not in NMI context or while holding a raw spinlock.
4568 */
__free_pages(struct page * page,unsigned int order)4569 void __free_pages(struct page *page, unsigned int order)
4570 {
4571 /* get PageHead before we drop reference */
4572 int head = PageHead(page);
4573
4574 if (put_page_testzero(page))
4575 free_the_page(page, order);
4576 else if (!head)
4577 while (order-- > 0)
4578 free_the_page(page + (1 << order), order);
4579 }
4580 EXPORT_SYMBOL(__free_pages);
4581
free_pages(unsigned long addr,unsigned int order)4582 void free_pages(unsigned long addr, unsigned int order)
4583 {
4584 if (addr != 0) {
4585 VM_BUG_ON(!virt_addr_valid((void *)addr));
4586 __free_pages(virt_to_page((void *)addr), order);
4587 }
4588 }
4589
4590 EXPORT_SYMBOL(free_pages);
4591
4592 /*
4593 * Page Fragment:
4594 * An arbitrary-length arbitrary-offset area of memory which resides
4595 * within a 0 or higher order page. Multiple fragments within that page
4596 * are individually refcounted, in the page's reference counter.
4597 *
4598 * The page_frag functions below provide a simple allocation framework for
4599 * page fragments. This is used by the network stack and network device
4600 * drivers to provide a backing region of memory for use as either an
4601 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4602 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)4603 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4604 gfp_t gfp_mask)
4605 {
4606 struct page *page = NULL;
4607 gfp_t gfp = gfp_mask;
4608
4609 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4610 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4611 __GFP_NOMEMALLOC;
4612 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4613 PAGE_FRAG_CACHE_MAX_ORDER);
4614 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4615 #endif
4616 if (unlikely(!page))
4617 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4618
4619 nc->va = page ? page_address(page) : NULL;
4620
4621 return page;
4622 }
4623
__page_frag_cache_drain(struct page * page,unsigned int count)4624 void __page_frag_cache_drain(struct page *page, unsigned int count)
4625 {
4626 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4627
4628 if (page_ref_sub_and_test(page, count))
4629 free_the_page(page, compound_order(page));
4630 }
4631 EXPORT_SYMBOL(__page_frag_cache_drain);
4632
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)4633 void *page_frag_alloc_align(struct page_frag_cache *nc,
4634 unsigned int fragsz, gfp_t gfp_mask,
4635 unsigned int align_mask)
4636 {
4637 unsigned int size = PAGE_SIZE;
4638 struct page *page;
4639 int offset;
4640
4641 if (unlikely(!nc->va)) {
4642 refill:
4643 page = __page_frag_cache_refill(nc, gfp_mask);
4644 if (!page)
4645 return NULL;
4646
4647 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4648 /* if size can vary use size else just use PAGE_SIZE */
4649 size = nc->size;
4650 #endif
4651 /* Even if we own the page, we do not use atomic_set().
4652 * This would break get_page_unless_zero() users.
4653 */
4654 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4655
4656 /* reset page count bias and offset to start of new frag */
4657 nc->pfmemalloc = page_is_pfmemalloc(page);
4658 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4659 nc->offset = size;
4660 }
4661
4662 offset = nc->offset - fragsz;
4663 if (unlikely(offset < 0)) {
4664 page = virt_to_page(nc->va);
4665
4666 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4667 goto refill;
4668
4669 if (unlikely(nc->pfmemalloc)) {
4670 free_the_page(page, compound_order(page));
4671 goto refill;
4672 }
4673
4674 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4675 /* if size can vary use size else just use PAGE_SIZE */
4676 size = nc->size;
4677 #endif
4678 /* OK, page count is 0, we can safely set it */
4679 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4680
4681 /* reset page count bias and offset to start of new frag */
4682 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4683 offset = size - fragsz;
4684 if (unlikely(offset < 0)) {
4685 /*
4686 * The caller is trying to allocate a fragment
4687 * with fragsz > PAGE_SIZE but the cache isn't big
4688 * enough to satisfy the request, this may
4689 * happen in low memory conditions.
4690 * We don't release the cache page because
4691 * it could make memory pressure worse
4692 * so we simply return NULL here.
4693 */
4694 return NULL;
4695 }
4696 }
4697
4698 nc->pagecnt_bias--;
4699 offset &= align_mask;
4700 nc->offset = offset;
4701
4702 return nc->va + offset;
4703 }
4704 EXPORT_SYMBOL(page_frag_alloc_align);
4705
4706 /*
4707 * Frees a page fragment allocated out of either a compound or order 0 page.
4708 */
page_frag_free(void * addr)4709 void page_frag_free(void *addr)
4710 {
4711 struct page *page = virt_to_head_page(addr);
4712
4713 if (unlikely(put_page_testzero(page)))
4714 free_the_page(page, compound_order(page));
4715 }
4716 EXPORT_SYMBOL(page_frag_free);
4717
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4718 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4719 size_t size)
4720 {
4721 if (addr) {
4722 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4723 struct page *page = virt_to_page((void *)addr);
4724 struct page *last = page + nr;
4725
4726 split_page_owner(page, 1 << order);
4727 split_page_memcg(page, 1 << order);
4728 while (page < --last)
4729 set_page_refcounted(last);
4730
4731 last = page + (1UL << order);
4732 for (page += nr; page < last; page++)
4733 __free_pages_ok(page, 0, FPI_TO_TAIL);
4734 }
4735 return (void *)addr;
4736 }
4737
4738 /**
4739 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4740 * @size: the number of bytes to allocate
4741 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4742 *
4743 * This function is similar to alloc_pages(), except that it allocates the
4744 * minimum number of pages to satisfy the request. alloc_pages() can only
4745 * allocate memory in power-of-two pages.
4746 *
4747 * This function is also limited by MAX_ORDER.
4748 *
4749 * Memory allocated by this function must be released by free_pages_exact().
4750 *
4751 * Return: pointer to the allocated area or %NULL in case of error.
4752 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4754 {
4755 unsigned int order = get_order(size);
4756 unsigned long addr;
4757
4758 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4759 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4760
4761 addr = __get_free_pages(gfp_mask, order);
4762 return make_alloc_exact(addr, order, size);
4763 }
4764 EXPORT_SYMBOL(alloc_pages_exact);
4765
4766 /**
4767 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4768 * pages on a node.
4769 * @nid: the preferred node ID where memory should be allocated
4770 * @size: the number of bytes to allocate
4771 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4772 *
4773 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4774 * back.
4775 *
4776 * Return: pointer to the allocated area or %NULL in case of error.
4777 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4778 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4779 {
4780 unsigned int order = get_order(size);
4781 struct page *p;
4782
4783 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4784 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4785
4786 p = alloc_pages_node(nid, gfp_mask, order);
4787 if (!p)
4788 return NULL;
4789 return make_alloc_exact((unsigned long)page_address(p), order, size);
4790 }
4791
4792 /**
4793 * free_pages_exact - release memory allocated via alloc_pages_exact()
4794 * @virt: the value returned by alloc_pages_exact.
4795 * @size: size of allocation, same value as passed to alloc_pages_exact().
4796 *
4797 * Release the memory allocated by a previous call to alloc_pages_exact.
4798 */
free_pages_exact(void * virt,size_t size)4799 void free_pages_exact(void *virt, size_t size)
4800 {
4801 unsigned long addr = (unsigned long)virt;
4802 unsigned long end = addr + PAGE_ALIGN(size);
4803
4804 while (addr < end) {
4805 free_page(addr);
4806 addr += PAGE_SIZE;
4807 }
4808 }
4809 EXPORT_SYMBOL(free_pages_exact);
4810
4811 /**
4812 * nr_free_zone_pages - count number of pages beyond high watermark
4813 * @offset: The zone index of the highest zone
4814 *
4815 * nr_free_zone_pages() counts the number of pages which are beyond the
4816 * high watermark within all zones at or below a given zone index. For each
4817 * zone, the number of pages is calculated as:
4818 *
4819 * nr_free_zone_pages = managed_pages - high_pages
4820 *
4821 * Return: number of pages beyond high watermark.
4822 */
nr_free_zone_pages(int offset)4823 static unsigned long nr_free_zone_pages(int offset)
4824 {
4825 struct zoneref *z;
4826 struct zone *zone;
4827
4828 /* Just pick one node, since fallback list is circular */
4829 unsigned long sum = 0;
4830
4831 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4832
4833 for_each_zone_zonelist(zone, z, zonelist, offset) {
4834 unsigned long size = zone_managed_pages(zone);
4835 unsigned long high = high_wmark_pages(zone);
4836 if (size > high)
4837 sum += size - high;
4838 }
4839
4840 return sum;
4841 }
4842
4843 /**
4844 * nr_free_buffer_pages - count number of pages beyond high watermark
4845 *
4846 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4847 * watermark within ZONE_DMA and ZONE_NORMAL.
4848 *
4849 * Return: number of pages beyond high watermark within ZONE_DMA and
4850 * ZONE_NORMAL.
4851 */
nr_free_buffer_pages(void)4852 unsigned long nr_free_buffer_pages(void)
4853 {
4854 return nr_free_zone_pages(gfp_zone(GFP_USER));
4855 }
4856 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4857
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4858 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4859 {
4860 zoneref->zone = zone;
4861 zoneref->zone_idx = zone_idx(zone);
4862 }
4863
4864 /*
4865 * Builds allocation fallback zone lists.
4866 *
4867 * Add all populated zones of a node to the zonelist.
4868 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)4869 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4870 {
4871 struct zone *zone;
4872 enum zone_type zone_type = MAX_NR_ZONES;
4873 int nr_zones = 0;
4874
4875 do {
4876 zone_type--;
4877 zone = pgdat->node_zones + zone_type;
4878 if (populated_zone(zone)) {
4879 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4880 check_highest_zone(zone_type);
4881 }
4882 } while (zone_type);
4883
4884 return nr_zones;
4885 }
4886
4887 #ifdef CONFIG_NUMA
4888
__parse_numa_zonelist_order(char * s)4889 static int __parse_numa_zonelist_order(char *s)
4890 {
4891 /*
4892 * We used to support different zonelists modes but they turned
4893 * out to be just not useful. Let's keep the warning in place
4894 * if somebody still use the cmd line parameter so that we do
4895 * not fail it silently
4896 */
4897 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4898 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4899 return -EINVAL;
4900 }
4901 return 0;
4902 }
4903
4904 static char numa_zonelist_order[] = "Node";
4905 #define NUMA_ZONELIST_ORDER_LEN 16
4906 /*
4907 * sysctl handler for numa_zonelist_order
4908 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4909 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4910 void *buffer, size_t *length, loff_t *ppos)
4911 {
4912 if (write)
4913 return __parse_numa_zonelist_order(buffer);
4914 return proc_dostring(table, write, buffer, length, ppos);
4915 }
4916
4917 static int node_load[MAX_NUMNODES];
4918
4919 /**
4920 * find_next_best_node - find the next node that should appear in a given node's fallback list
4921 * @node: node whose fallback list we're appending
4922 * @used_node_mask: nodemask_t of already used nodes
4923 *
4924 * We use a number of factors to determine which is the next node that should
4925 * appear on a given node's fallback list. The node should not have appeared
4926 * already in @node's fallback list, and it should be the next closest node
4927 * according to the distance array (which contains arbitrary distance values
4928 * from each node to each node in the system), and should also prefer nodes
4929 * with no CPUs, since presumably they'll have very little allocation pressure
4930 * on them otherwise.
4931 *
4932 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
4933 */
find_next_best_node(int node,nodemask_t * used_node_mask)4934 int find_next_best_node(int node, nodemask_t *used_node_mask)
4935 {
4936 int n, val;
4937 int min_val = INT_MAX;
4938 int best_node = NUMA_NO_NODE;
4939
4940 /* Use the local node if we haven't already */
4941 if (!node_isset(node, *used_node_mask)) {
4942 node_set(node, *used_node_mask);
4943 return node;
4944 }
4945
4946 for_each_node_state(n, N_MEMORY) {
4947
4948 /* Don't want a node to appear more than once */
4949 if (node_isset(n, *used_node_mask))
4950 continue;
4951
4952 /* Use the distance array to find the distance */
4953 val = node_distance(node, n);
4954
4955 /* Penalize nodes under us ("prefer the next node") */
4956 val += (n < node);
4957
4958 /* Give preference to headless and unused nodes */
4959 if (!cpumask_empty(cpumask_of_node(n)))
4960 val += PENALTY_FOR_NODE_WITH_CPUS;
4961
4962 /* Slight preference for less loaded node */
4963 val *= MAX_NUMNODES;
4964 val += node_load[n];
4965
4966 if (val < min_val) {
4967 min_val = val;
4968 best_node = n;
4969 }
4970 }
4971
4972 if (best_node >= 0)
4973 node_set(best_node, *used_node_mask);
4974
4975 return best_node;
4976 }
4977
4978
4979 /*
4980 * Build zonelists ordered by node and zones within node.
4981 * This results in maximum locality--normal zone overflows into local
4982 * DMA zone, if any--but risks exhausting DMA zone.
4983 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)4984 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
4985 unsigned nr_nodes)
4986 {
4987 struct zoneref *zonerefs;
4988 int i;
4989
4990 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
4991
4992 for (i = 0; i < nr_nodes; i++) {
4993 int nr_zones;
4994
4995 pg_data_t *node = NODE_DATA(node_order[i]);
4996
4997 nr_zones = build_zonerefs_node(node, zonerefs);
4998 zonerefs += nr_zones;
4999 }
5000 zonerefs->zone = NULL;
5001 zonerefs->zone_idx = 0;
5002 }
5003
5004 /*
5005 * Build gfp_thisnode zonelists
5006 */
build_thisnode_zonelists(pg_data_t * pgdat)5007 static void build_thisnode_zonelists(pg_data_t *pgdat)
5008 {
5009 struct zoneref *zonerefs;
5010 int nr_zones;
5011
5012 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5013 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5014 zonerefs += nr_zones;
5015 zonerefs->zone = NULL;
5016 zonerefs->zone_idx = 0;
5017 }
5018
5019 /*
5020 * Build zonelists ordered by zone and nodes within zones.
5021 * This results in conserving DMA zone[s] until all Normal memory is
5022 * exhausted, but results in overflowing to remote node while memory
5023 * may still exist in local DMA zone.
5024 */
5025
build_zonelists(pg_data_t * pgdat)5026 static void build_zonelists(pg_data_t *pgdat)
5027 {
5028 static int node_order[MAX_NUMNODES];
5029 int node, nr_nodes = 0;
5030 nodemask_t used_mask = NODE_MASK_NONE;
5031 int local_node, prev_node;
5032
5033 /* NUMA-aware ordering of nodes */
5034 local_node = pgdat->node_id;
5035 prev_node = local_node;
5036
5037 memset(node_order, 0, sizeof(node_order));
5038 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5039 /*
5040 * We don't want to pressure a particular node.
5041 * So adding penalty to the first node in same
5042 * distance group to make it round-robin.
5043 */
5044 if (node_distance(local_node, node) !=
5045 node_distance(local_node, prev_node))
5046 node_load[node] += 1;
5047
5048 node_order[nr_nodes++] = node;
5049 prev_node = node;
5050 }
5051
5052 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5053 build_thisnode_zonelists(pgdat);
5054 pr_info("Fallback order for Node %d: ", local_node);
5055 for (node = 0; node < nr_nodes; node++)
5056 pr_cont("%d ", node_order[node]);
5057 pr_cont("\n");
5058 }
5059
5060 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5061 /*
5062 * Return node id of node used for "local" allocations.
5063 * I.e., first node id of first zone in arg node's generic zonelist.
5064 * Used for initializing percpu 'numa_mem', which is used primarily
5065 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5066 */
local_memory_node(int node)5067 int local_memory_node(int node)
5068 {
5069 struct zoneref *z;
5070
5071 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5072 gfp_zone(GFP_KERNEL),
5073 NULL);
5074 return zone_to_nid(z->zone);
5075 }
5076 #endif
5077
5078 static void setup_min_unmapped_ratio(void);
5079 static void setup_min_slab_ratio(void);
5080 #else /* CONFIG_NUMA */
5081
build_zonelists(pg_data_t * pgdat)5082 static void build_zonelists(pg_data_t *pgdat)
5083 {
5084 int node, local_node;
5085 struct zoneref *zonerefs;
5086 int nr_zones;
5087
5088 local_node = pgdat->node_id;
5089
5090 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5091 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5092 zonerefs += nr_zones;
5093
5094 /*
5095 * Now we build the zonelist so that it contains the zones
5096 * of all the other nodes.
5097 * We don't want to pressure a particular node, so when
5098 * building the zones for node N, we make sure that the
5099 * zones coming right after the local ones are those from
5100 * node N+1 (modulo N)
5101 */
5102 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5103 if (!node_online(node))
5104 continue;
5105 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5106 zonerefs += nr_zones;
5107 }
5108 for (node = 0; node < local_node; node++) {
5109 if (!node_online(node))
5110 continue;
5111 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5112 zonerefs += nr_zones;
5113 }
5114
5115 zonerefs->zone = NULL;
5116 zonerefs->zone_idx = 0;
5117 }
5118
5119 #endif /* CONFIG_NUMA */
5120
5121 /*
5122 * Boot pageset table. One per cpu which is going to be used for all
5123 * zones and all nodes. The parameters will be set in such a way
5124 * that an item put on a list will immediately be handed over to
5125 * the buddy list. This is safe since pageset manipulation is done
5126 * with interrupts disabled.
5127 *
5128 * The boot_pagesets must be kept even after bootup is complete for
5129 * unused processors and/or zones. They do play a role for bootstrapping
5130 * hotplugged processors.
5131 *
5132 * zoneinfo_show() and maybe other functions do
5133 * not check if the processor is online before following the pageset pointer.
5134 * Other parts of the kernel may not check if the zone is available.
5135 */
5136 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5137 /* These effectively disable the pcplists in the boot pageset completely */
5138 #define BOOT_PAGESET_HIGH 0
5139 #define BOOT_PAGESET_BATCH 1
5140 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5141 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5142
__build_all_zonelists(void * data)5143 static void __build_all_zonelists(void *data)
5144 {
5145 int nid;
5146 int __maybe_unused cpu;
5147 pg_data_t *self = data;
5148 unsigned long flags;
5149
5150 /*
5151 * The zonelist_update_seq must be acquired with irqsave because the
5152 * reader can be invoked from IRQ with GFP_ATOMIC.
5153 */
5154 write_seqlock_irqsave(&zonelist_update_seq, flags);
5155 /*
5156 * Also disable synchronous printk() to prevent any printk() from
5157 * trying to hold port->lock, for
5158 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5159 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5160 */
5161 printk_deferred_enter();
5162
5163 #ifdef CONFIG_NUMA
5164 memset(node_load, 0, sizeof(node_load));
5165 #endif
5166
5167 /*
5168 * This node is hotadded and no memory is yet present. So just
5169 * building zonelists is fine - no need to touch other nodes.
5170 */
5171 if (self && !node_online(self->node_id)) {
5172 build_zonelists(self);
5173 } else {
5174 /*
5175 * All possible nodes have pgdat preallocated
5176 * in free_area_init
5177 */
5178 for_each_node(nid) {
5179 pg_data_t *pgdat = NODE_DATA(nid);
5180
5181 build_zonelists(pgdat);
5182 }
5183
5184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5185 /*
5186 * We now know the "local memory node" for each node--
5187 * i.e., the node of the first zone in the generic zonelist.
5188 * Set up numa_mem percpu variable for on-line cpus. During
5189 * boot, only the boot cpu should be on-line; we'll init the
5190 * secondary cpus' numa_mem as they come on-line. During
5191 * node/memory hotplug, we'll fixup all on-line cpus.
5192 */
5193 for_each_online_cpu(cpu)
5194 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5195 #endif
5196 }
5197
5198 printk_deferred_exit();
5199 write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5200 }
5201
5202 static noinline void __init
build_all_zonelists_init(void)5203 build_all_zonelists_init(void)
5204 {
5205 int cpu;
5206
5207 __build_all_zonelists(NULL);
5208
5209 /*
5210 * Initialize the boot_pagesets that are going to be used
5211 * for bootstrapping processors. The real pagesets for
5212 * each zone will be allocated later when the per cpu
5213 * allocator is available.
5214 *
5215 * boot_pagesets are used also for bootstrapping offline
5216 * cpus if the system is already booted because the pagesets
5217 * are needed to initialize allocators on a specific cpu too.
5218 * F.e. the percpu allocator needs the page allocator which
5219 * needs the percpu allocator in order to allocate its pagesets
5220 * (a chicken-egg dilemma).
5221 */
5222 for_each_possible_cpu(cpu)
5223 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5224
5225 mminit_verify_zonelist();
5226 cpuset_init_current_mems_allowed();
5227 }
5228
5229 /*
5230 * unless system_state == SYSTEM_BOOTING.
5231 *
5232 * __ref due to call of __init annotated helper build_all_zonelists_init
5233 * [protected by SYSTEM_BOOTING].
5234 */
build_all_zonelists(pg_data_t * pgdat)5235 void __ref build_all_zonelists(pg_data_t *pgdat)
5236 {
5237 unsigned long vm_total_pages;
5238
5239 if (system_state == SYSTEM_BOOTING) {
5240 build_all_zonelists_init();
5241 } else {
5242 __build_all_zonelists(pgdat);
5243 /* cpuset refresh routine should be here */
5244 }
5245 /* Get the number of free pages beyond high watermark in all zones. */
5246 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5247 /*
5248 * Disable grouping by mobility if the number of pages in the
5249 * system is too low to allow the mechanism to work. It would be
5250 * more accurate, but expensive to check per-zone. This check is
5251 * made on memory-hotadd so a system can start with mobility
5252 * disabled and enable it later
5253 */
5254 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5255 page_group_by_mobility_disabled = 1;
5256 else
5257 page_group_by_mobility_disabled = 0;
5258
5259 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5260 nr_online_nodes,
5261 page_group_by_mobility_disabled ? "off" : "on",
5262 vm_total_pages);
5263 #ifdef CONFIG_NUMA
5264 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5265 #endif
5266 }
5267
zone_batchsize(struct zone * zone)5268 static int zone_batchsize(struct zone *zone)
5269 {
5270 #ifdef CONFIG_MMU
5271 int batch;
5272
5273 /*
5274 * The number of pages to batch allocate is either ~0.1%
5275 * of the zone or 1MB, whichever is smaller. The batch
5276 * size is striking a balance between allocation latency
5277 * and zone lock contention.
5278 */
5279 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5280 batch /= 4; /* We effectively *= 4 below */
5281 if (batch < 1)
5282 batch = 1;
5283
5284 /*
5285 * Clamp the batch to a 2^n - 1 value. Having a power
5286 * of 2 value was found to be more likely to have
5287 * suboptimal cache aliasing properties in some cases.
5288 *
5289 * For example if 2 tasks are alternately allocating
5290 * batches of pages, one task can end up with a lot
5291 * of pages of one half of the possible page colors
5292 * and the other with pages of the other colors.
5293 */
5294 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5295
5296 return batch;
5297
5298 #else
5299 /* The deferral and batching of frees should be suppressed under NOMMU
5300 * conditions.
5301 *
5302 * The problem is that NOMMU needs to be able to allocate large chunks
5303 * of contiguous memory as there's no hardware page translation to
5304 * assemble apparent contiguous memory from discontiguous pages.
5305 *
5306 * Queueing large contiguous runs of pages for batching, however,
5307 * causes the pages to actually be freed in smaller chunks. As there
5308 * can be a significant delay between the individual batches being
5309 * recycled, this leads to the once large chunks of space being
5310 * fragmented and becoming unavailable for high-order allocations.
5311 */
5312 return 0;
5313 #endif
5314 }
5315
5316 static int percpu_pagelist_high_fraction;
zone_highsize(struct zone * zone,int batch,int cpu_online)5317 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
5318 {
5319 #ifdef CONFIG_MMU
5320 int high;
5321 int nr_split_cpus;
5322 unsigned long total_pages;
5323
5324 if (!percpu_pagelist_high_fraction) {
5325 /*
5326 * By default, the high value of the pcp is based on the zone
5327 * low watermark so that if they are full then background
5328 * reclaim will not be started prematurely.
5329 */
5330 total_pages = low_wmark_pages(zone);
5331 } else {
5332 /*
5333 * If percpu_pagelist_high_fraction is configured, the high
5334 * value is based on a fraction of the managed pages in the
5335 * zone.
5336 */
5337 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
5338 }
5339
5340 /*
5341 * Split the high value across all online CPUs local to the zone. Note
5342 * that early in boot that CPUs may not be online yet and that during
5343 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5344 * onlined. For memory nodes that have no CPUs, split pcp->high across
5345 * all online CPUs to mitigate the risk that reclaim is triggered
5346 * prematurely due to pages stored on pcp lists.
5347 */
5348 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5349 if (!nr_split_cpus)
5350 nr_split_cpus = num_online_cpus();
5351 high = total_pages / nr_split_cpus;
5352
5353 /*
5354 * Ensure high is at least batch*4. The multiple is based on the
5355 * historical relationship between high and batch.
5356 */
5357 high = max(high, batch << 2);
5358
5359 return high;
5360 #else
5361 return 0;
5362 #endif
5363 }
5364
5365 /*
5366 * pcp->high and pcp->batch values are related and generally batch is lower
5367 * than high. They are also related to pcp->count such that count is lower
5368 * than high, and as soon as it reaches high, the pcplist is flushed.
5369 *
5370 * However, guaranteeing these relations at all times would require e.g. write
5371 * barriers here but also careful usage of read barriers at the read side, and
5372 * thus be prone to error and bad for performance. Thus the update only prevents
5373 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
5374 * can cope with those fields changing asynchronously, and fully trust only the
5375 * pcp->count field on the local CPU with interrupts disabled.
5376 *
5377 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5378 * outside of boot time (or some other assurance that no concurrent updaters
5379 * exist).
5380 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5381 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5382 unsigned long batch)
5383 {
5384 WRITE_ONCE(pcp->batch, batch);
5385 WRITE_ONCE(pcp->high, high);
5386 }
5387
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)5388 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5389 {
5390 int pindex;
5391
5392 memset(pcp, 0, sizeof(*pcp));
5393 memset(pzstats, 0, sizeof(*pzstats));
5394
5395 spin_lock_init(&pcp->lock);
5396 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5397 INIT_LIST_HEAD(&pcp->lists[pindex]);
5398
5399 /*
5400 * Set batch and high values safe for a boot pageset. A true percpu
5401 * pageset's initialization will update them subsequently. Here we don't
5402 * need to be as careful as pageset_update() as nobody can access the
5403 * pageset yet.
5404 */
5405 pcp->high = BOOT_PAGESET_HIGH;
5406 pcp->batch = BOOT_PAGESET_BATCH;
5407 pcp->free_factor = 0;
5408 }
5409
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)5410 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
5411 unsigned long batch)
5412 {
5413 struct per_cpu_pages *pcp;
5414 int cpu;
5415
5416 for_each_possible_cpu(cpu) {
5417 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5418 pageset_update(pcp, high, batch);
5419 }
5420 }
5421
5422 /*
5423 * Calculate and set new high and batch values for all per-cpu pagesets of a
5424 * zone based on the zone's size.
5425 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)5426 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5427 {
5428 int new_high, new_batch;
5429
5430 new_batch = max(1, zone_batchsize(zone));
5431 new_high = zone_highsize(zone, new_batch, cpu_online);
5432
5433 if (zone->pageset_high == new_high &&
5434 zone->pageset_batch == new_batch)
5435 return;
5436
5437 zone->pageset_high = new_high;
5438 zone->pageset_batch = new_batch;
5439
5440 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
5441 }
5442
setup_zone_pageset(struct zone * zone)5443 void __meminit setup_zone_pageset(struct zone *zone)
5444 {
5445 int cpu;
5446
5447 /* Size may be 0 on !SMP && !NUMA */
5448 if (sizeof(struct per_cpu_zonestat) > 0)
5449 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5450
5451 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5452 for_each_possible_cpu(cpu) {
5453 struct per_cpu_pages *pcp;
5454 struct per_cpu_zonestat *pzstats;
5455
5456 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5457 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5458 per_cpu_pages_init(pcp, pzstats);
5459 }
5460
5461 zone_set_pageset_high_and_batch(zone, 0);
5462 }
5463
5464 /*
5465 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5466 * page high values need to be recalculated.
5467 */
zone_pcp_update(struct zone * zone,int cpu_online)5468 static void zone_pcp_update(struct zone *zone, int cpu_online)
5469 {
5470 mutex_lock(&pcp_batch_high_lock);
5471 zone_set_pageset_high_and_batch(zone, cpu_online);
5472 mutex_unlock(&pcp_batch_high_lock);
5473 }
5474
5475 /*
5476 * Allocate per cpu pagesets and initialize them.
5477 * Before this call only boot pagesets were available.
5478 */
setup_per_cpu_pageset(void)5479 void __init setup_per_cpu_pageset(void)
5480 {
5481 struct pglist_data *pgdat;
5482 struct zone *zone;
5483 int __maybe_unused cpu;
5484
5485 for_each_populated_zone(zone)
5486 setup_zone_pageset(zone);
5487
5488 #ifdef CONFIG_NUMA
5489 /*
5490 * Unpopulated zones continue using the boot pagesets.
5491 * The numa stats for these pagesets need to be reset.
5492 * Otherwise, they will end up skewing the stats of
5493 * the nodes these zones are associated with.
5494 */
5495 for_each_possible_cpu(cpu) {
5496 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5497 memset(pzstats->vm_numa_event, 0,
5498 sizeof(pzstats->vm_numa_event));
5499 }
5500 #endif
5501
5502 for_each_online_pgdat(pgdat)
5503 pgdat->per_cpu_nodestats =
5504 alloc_percpu(struct per_cpu_nodestat);
5505 }
5506
zone_pcp_init(struct zone * zone)5507 __meminit void zone_pcp_init(struct zone *zone)
5508 {
5509 /*
5510 * per cpu subsystem is not up at this point. The following code
5511 * relies on the ability of the linker to provide the
5512 * offset of a (static) per cpu variable into the per cpu area.
5513 */
5514 zone->per_cpu_pageset = &boot_pageset;
5515 zone->per_cpu_zonestats = &boot_zonestats;
5516 zone->pageset_high = BOOT_PAGESET_HIGH;
5517 zone->pageset_batch = BOOT_PAGESET_BATCH;
5518
5519 if (populated_zone(zone))
5520 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5521 zone->present_pages, zone_batchsize(zone));
5522 }
5523
adjust_managed_page_count(struct page * page,long count)5524 void adjust_managed_page_count(struct page *page, long count)
5525 {
5526 atomic_long_add(count, &page_zone(page)->managed_pages);
5527 totalram_pages_add(count);
5528 #ifdef CONFIG_HIGHMEM
5529 if (PageHighMem(page))
5530 totalhigh_pages_add(count);
5531 #endif
5532 }
5533 EXPORT_SYMBOL(adjust_managed_page_count);
5534
free_reserved_area(void * start,void * end,int poison,const char * s)5535 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5536 {
5537 void *pos;
5538 unsigned long pages = 0;
5539
5540 start = (void *)PAGE_ALIGN((unsigned long)start);
5541 end = (void *)((unsigned long)end & PAGE_MASK);
5542 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5543 struct page *page = virt_to_page(pos);
5544 void *direct_map_addr;
5545
5546 /*
5547 * 'direct_map_addr' might be different from 'pos'
5548 * because some architectures' virt_to_page()
5549 * work with aliases. Getting the direct map
5550 * address ensures that we get a _writeable_
5551 * alias for the memset().
5552 */
5553 direct_map_addr = page_address(page);
5554 /*
5555 * Perform a kasan-unchecked memset() since this memory
5556 * has not been initialized.
5557 */
5558 direct_map_addr = kasan_reset_tag(direct_map_addr);
5559 if ((unsigned int)poison <= 0xFF)
5560 memset(direct_map_addr, poison, PAGE_SIZE);
5561
5562 free_reserved_page(page);
5563 }
5564
5565 if (pages && s)
5566 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5567
5568 return pages;
5569 }
5570
page_alloc_cpu_dead(unsigned int cpu)5571 static int page_alloc_cpu_dead(unsigned int cpu)
5572 {
5573 struct zone *zone;
5574
5575 lru_add_drain_cpu(cpu);
5576 mlock_drain_remote(cpu);
5577 drain_pages(cpu);
5578
5579 /*
5580 * Spill the event counters of the dead processor
5581 * into the current processors event counters.
5582 * This artificially elevates the count of the current
5583 * processor.
5584 */
5585 vm_events_fold_cpu(cpu);
5586
5587 /*
5588 * Zero the differential counters of the dead processor
5589 * so that the vm statistics are consistent.
5590 *
5591 * This is only okay since the processor is dead and cannot
5592 * race with what we are doing.
5593 */
5594 cpu_vm_stats_fold(cpu);
5595
5596 for_each_populated_zone(zone)
5597 zone_pcp_update(zone, 0);
5598
5599 return 0;
5600 }
5601
page_alloc_cpu_online(unsigned int cpu)5602 static int page_alloc_cpu_online(unsigned int cpu)
5603 {
5604 struct zone *zone;
5605
5606 for_each_populated_zone(zone)
5607 zone_pcp_update(zone, 1);
5608 return 0;
5609 }
5610
page_alloc_init_cpuhp(void)5611 void __init page_alloc_init_cpuhp(void)
5612 {
5613 int ret;
5614
5615 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5616 "mm/page_alloc:pcp",
5617 page_alloc_cpu_online,
5618 page_alloc_cpu_dead);
5619 WARN_ON(ret < 0);
5620 }
5621
5622 /*
5623 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5624 * or min_free_kbytes changes.
5625 */
calculate_totalreserve_pages(void)5626 static void calculate_totalreserve_pages(void)
5627 {
5628 struct pglist_data *pgdat;
5629 unsigned long reserve_pages = 0;
5630 enum zone_type i, j;
5631
5632 for_each_online_pgdat(pgdat) {
5633
5634 pgdat->totalreserve_pages = 0;
5635
5636 for (i = 0; i < MAX_NR_ZONES; i++) {
5637 struct zone *zone = pgdat->node_zones + i;
5638 long max = 0;
5639 unsigned long managed_pages = zone_managed_pages(zone);
5640
5641 /* Find valid and maximum lowmem_reserve in the zone */
5642 for (j = i; j < MAX_NR_ZONES; j++) {
5643 if (zone->lowmem_reserve[j] > max)
5644 max = zone->lowmem_reserve[j];
5645 }
5646
5647 /* we treat the high watermark as reserved pages. */
5648 max += high_wmark_pages(zone);
5649
5650 if (max > managed_pages)
5651 max = managed_pages;
5652
5653 pgdat->totalreserve_pages += max;
5654
5655 reserve_pages += max;
5656 }
5657 }
5658 totalreserve_pages = reserve_pages;
5659 }
5660
5661 /*
5662 * setup_per_zone_lowmem_reserve - called whenever
5663 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5664 * has a correct pages reserved value, so an adequate number of
5665 * pages are left in the zone after a successful __alloc_pages().
5666 */
setup_per_zone_lowmem_reserve(void)5667 static void setup_per_zone_lowmem_reserve(void)
5668 {
5669 struct pglist_data *pgdat;
5670 enum zone_type i, j;
5671
5672 for_each_online_pgdat(pgdat) {
5673 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5674 struct zone *zone = &pgdat->node_zones[i];
5675 int ratio = sysctl_lowmem_reserve_ratio[i];
5676 bool clear = !ratio || !zone_managed_pages(zone);
5677 unsigned long managed_pages = 0;
5678
5679 for (j = i + 1; j < MAX_NR_ZONES; j++) {
5680 struct zone *upper_zone = &pgdat->node_zones[j];
5681
5682 managed_pages += zone_managed_pages(upper_zone);
5683
5684 if (clear)
5685 zone->lowmem_reserve[j] = 0;
5686 else
5687 zone->lowmem_reserve[j] = managed_pages / ratio;
5688 }
5689 }
5690 }
5691
5692 /* update totalreserve_pages */
5693 calculate_totalreserve_pages();
5694 }
5695
__setup_per_zone_wmarks(void)5696 static void __setup_per_zone_wmarks(void)
5697 {
5698 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5699 unsigned long lowmem_pages = 0;
5700 struct zone *zone;
5701 unsigned long flags;
5702
5703 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5704 for_each_zone(zone) {
5705 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5706 lowmem_pages += zone_managed_pages(zone);
5707 }
5708
5709 for_each_zone(zone) {
5710 u64 tmp;
5711
5712 spin_lock_irqsave(&zone->lock, flags);
5713 tmp = (u64)pages_min * zone_managed_pages(zone);
5714 do_div(tmp, lowmem_pages);
5715 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5716 /*
5717 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5718 * need highmem and movable zones pages, so cap pages_min
5719 * to a small value here.
5720 *
5721 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5722 * deltas control async page reclaim, and so should
5723 * not be capped for highmem and movable zones.
5724 */
5725 unsigned long min_pages;
5726
5727 min_pages = zone_managed_pages(zone) / 1024;
5728 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5729 zone->_watermark[WMARK_MIN] = min_pages;
5730 } else {
5731 /*
5732 * If it's a lowmem zone, reserve a number of pages
5733 * proportionate to the zone's size.
5734 */
5735 zone->_watermark[WMARK_MIN] = tmp;
5736 }
5737
5738 /*
5739 * Set the kswapd watermarks distance according to the
5740 * scale factor in proportion to available memory, but
5741 * ensure a minimum size on small systems.
5742 */
5743 tmp = max_t(u64, tmp >> 2,
5744 mult_frac(zone_managed_pages(zone),
5745 watermark_scale_factor, 10000));
5746
5747 zone->watermark_boost = 0;
5748 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
5749 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5750 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5751
5752 spin_unlock_irqrestore(&zone->lock, flags);
5753 }
5754
5755 /* update totalreserve_pages */
5756 calculate_totalreserve_pages();
5757 }
5758
5759 /**
5760 * setup_per_zone_wmarks - called when min_free_kbytes changes
5761 * or when memory is hot-{added|removed}
5762 *
5763 * Ensures that the watermark[min,low,high] values for each zone are set
5764 * correctly with respect to min_free_kbytes.
5765 */
setup_per_zone_wmarks(void)5766 void setup_per_zone_wmarks(void)
5767 {
5768 struct zone *zone;
5769 static DEFINE_SPINLOCK(lock);
5770
5771 spin_lock(&lock);
5772 __setup_per_zone_wmarks();
5773 spin_unlock(&lock);
5774
5775 /*
5776 * The watermark size have changed so update the pcpu batch
5777 * and high limits or the limits may be inappropriate.
5778 */
5779 for_each_zone(zone)
5780 zone_pcp_update(zone, 0);
5781 }
5782
5783 /*
5784 * Initialise min_free_kbytes.
5785 *
5786 * For small machines we want it small (128k min). For large machines
5787 * we want it large (256MB max). But it is not linear, because network
5788 * bandwidth does not increase linearly with machine size. We use
5789 *
5790 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5791 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5792 *
5793 * which yields
5794 *
5795 * 16MB: 512k
5796 * 32MB: 724k
5797 * 64MB: 1024k
5798 * 128MB: 1448k
5799 * 256MB: 2048k
5800 * 512MB: 2896k
5801 * 1024MB: 4096k
5802 * 2048MB: 5792k
5803 * 4096MB: 8192k
5804 * 8192MB: 11584k
5805 * 16384MB: 16384k
5806 */
calculate_min_free_kbytes(void)5807 void calculate_min_free_kbytes(void)
5808 {
5809 unsigned long lowmem_kbytes;
5810 int new_min_free_kbytes;
5811
5812 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5813 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5814
5815 if (new_min_free_kbytes > user_min_free_kbytes)
5816 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5817 else
5818 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5819 new_min_free_kbytes, user_min_free_kbytes);
5820
5821 }
5822
init_per_zone_wmark_min(void)5823 int __meminit init_per_zone_wmark_min(void)
5824 {
5825 calculate_min_free_kbytes();
5826 setup_per_zone_wmarks();
5827 refresh_zone_stat_thresholds();
5828 setup_per_zone_lowmem_reserve();
5829
5830 #ifdef CONFIG_NUMA
5831 setup_min_unmapped_ratio();
5832 setup_min_slab_ratio();
5833 #endif
5834
5835 khugepaged_min_free_kbytes_update();
5836
5837 return 0;
5838 }
postcore_initcall(init_per_zone_wmark_min)5839 postcore_initcall(init_per_zone_wmark_min)
5840
5841 /*
5842 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5843 * that we can call two helper functions whenever min_free_kbytes
5844 * changes.
5845 */
5846 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5847 void *buffer, size_t *length, loff_t *ppos)
5848 {
5849 int rc;
5850
5851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5852 if (rc)
5853 return rc;
5854
5855 if (write) {
5856 user_min_free_kbytes = min_free_kbytes;
5857 setup_per_zone_wmarks();
5858 }
5859 return 0;
5860 }
5861
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5862 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5863 void *buffer, size_t *length, loff_t *ppos)
5864 {
5865 int rc;
5866
5867 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5868 if (rc)
5869 return rc;
5870
5871 if (write)
5872 setup_per_zone_wmarks();
5873
5874 return 0;
5875 }
5876
5877 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)5878 static void setup_min_unmapped_ratio(void)
5879 {
5880 pg_data_t *pgdat;
5881 struct zone *zone;
5882
5883 for_each_online_pgdat(pgdat)
5884 pgdat->min_unmapped_pages = 0;
5885
5886 for_each_zone(zone)
5887 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
5888 sysctl_min_unmapped_ratio) / 100;
5889 }
5890
5891
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5892 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5893 void *buffer, size_t *length, loff_t *ppos)
5894 {
5895 int rc;
5896
5897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5898 if (rc)
5899 return rc;
5900
5901 setup_min_unmapped_ratio();
5902
5903 return 0;
5904 }
5905
setup_min_slab_ratio(void)5906 static void setup_min_slab_ratio(void)
5907 {
5908 pg_data_t *pgdat;
5909 struct zone *zone;
5910
5911 for_each_online_pgdat(pgdat)
5912 pgdat->min_slab_pages = 0;
5913
5914 for_each_zone(zone)
5915 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
5916 sysctl_min_slab_ratio) / 100;
5917 }
5918
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5919 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5920 void *buffer, size_t *length, loff_t *ppos)
5921 {
5922 int rc;
5923
5924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 if (rc)
5926 return rc;
5927
5928 setup_min_slab_ratio();
5929
5930 return 0;
5931 }
5932 #endif
5933
5934 /*
5935 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5936 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5937 * whenever sysctl_lowmem_reserve_ratio changes.
5938 *
5939 * The reserve ratio obviously has absolutely no relation with the
5940 * minimum watermarks. The lowmem reserve ratio can only make sense
5941 * if in function of the boot time zone sizes.
5942 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5943 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
5944 int write, void *buffer, size_t *length, loff_t *ppos)
5945 {
5946 int i;
5947
5948 proc_dointvec_minmax(table, write, buffer, length, ppos);
5949
5950 for (i = 0; i < MAX_NR_ZONES; i++) {
5951 if (sysctl_lowmem_reserve_ratio[i] < 1)
5952 sysctl_lowmem_reserve_ratio[i] = 0;
5953 }
5954
5955 setup_per_zone_lowmem_reserve();
5956 return 0;
5957 }
5958
5959 /*
5960 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
5961 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5962 * pagelist can have before it gets flushed back to buddy allocator.
5963 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5964 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
5965 int write, void *buffer, size_t *length, loff_t *ppos)
5966 {
5967 struct zone *zone;
5968 int old_percpu_pagelist_high_fraction;
5969 int ret;
5970
5971 mutex_lock(&pcp_batch_high_lock);
5972 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
5973
5974 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5975 if (!write || ret < 0)
5976 goto out;
5977
5978 /* Sanity checking to avoid pcp imbalance */
5979 if (percpu_pagelist_high_fraction &&
5980 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
5981 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
5982 ret = -EINVAL;
5983 goto out;
5984 }
5985
5986 /* No change? */
5987 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
5988 goto out;
5989
5990 for_each_populated_zone(zone)
5991 zone_set_pageset_high_and_batch(zone, 0);
5992 out:
5993 mutex_unlock(&pcp_batch_high_lock);
5994 return ret;
5995 }
5996
5997 static struct ctl_table page_alloc_sysctl_table[] = {
5998 {
5999 .procname = "min_free_kbytes",
6000 .data = &min_free_kbytes,
6001 .maxlen = sizeof(min_free_kbytes),
6002 .mode = 0644,
6003 .proc_handler = min_free_kbytes_sysctl_handler,
6004 .extra1 = SYSCTL_ZERO,
6005 },
6006 {
6007 .procname = "watermark_boost_factor",
6008 .data = &watermark_boost_factor,
6009 .maxlen = sizeof(watermark_boost_factor),
6010 .mode = 0644,
6011 .proc_handler = proc_dointvec_minmax,
6012 .extra1 = SYSCTL_ZERO,
6013 },
6014 {
6015 .procname = "watermark_scale_factor",
6016 .data = &watermark_scale_factor,
6017 .maxlen = sizeof(watermark_scale_factor),
6018 .mode = 0644,
6019 .proc_handler = watermark_scale_factor_sysctl_handler,
6020 .extra1 = SYSCTL_ONE,
6021 .extra2 = SYSCTL_THREE_THOUSAND,
6022 },
6023 {
6024 .procname = "percpu_pagelist_high_fraction",
6025 .data = &percpu_pagelist_high_fraction,
6026 .maxlen = sizeof(percpu_pagelist_high_fraction),
6027 .mode = 0644,
6028 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler,
6029 .extra1 = SYSCTL_ZERO,
6030 },
6031 {
6032 .procname = "lowmem_reserve_ratio",
6033 .data = &sysctl_lowmem_reserve_ratio,
6034 .maxlen = sizeof(sysctl_lowmem_reserve_ratio),
6035 .mode = 0644,
6036 .proc_handler = lowmem_reserve_ratio_sysctl_handler,
6037 },
6038 #ifdef CONFIG_NUMA
6039 {
6040 .procname = "numa_zonelist_order",
6041 .data = &numa_zonelist_order,
6042 .maxlen = NUMA_ZONELIST_ORDER_LEN,
6043 .mode = 0644,
6044 .proc_handler = numa_zonelist_order_handler,
6045 },
6046 {
6047 .procname = "min_unmapped_ratio",
6048 .data = &sysctl_min_unmapped_ratio,
6049 .maxlen = sizeof(sysctl_min_unmapped_ratio),
6050 .mode = 0644,
6051 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler,
6052 .extra1 = SYSCTL_ZERO,
6053 .extra2 = SYSCTL_ONE_HUNDRED,
6054 },
6055 {
6056 .procname = "min_slab_ratio",
6057 .data = &sysctl_min_slab_ratio,
6058 .maxlen = sizeof(sysctl_min_slab_ratio),
6059 .mode = 0644,
6060 .proc_handler = sysctl_min_slab_ratio_sysctl_handler,
6061 .extra1 = SYSCTL_ZERO,
6062 .extra2 = SYSCTL_ONE_HUNDRED,
6063 },
6064 #endif
6065 {}
6066 };
6067
page_alloc_sysctl_init(void)6068 void __init page_alloc_sysctl_init(void)
6069 {
6070 register_sysctl_init("vm", page_alloc_sysctl_table);
6071 }
6072
6073 #ifdef CONFIG_CONTIG_ALLOC
6074 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)6075 static void alloc_contig_dump_pages(struct list_head *page_list)
6076 {
6077 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6078
6079 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6080 struct page *page;
6081
6082 dump_stack();
6083 list_for_each_entry(page, page_list, lru)
6084 dump_page(page, "migration failure");
6085 }
6086 }
6087
6088 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6089 int __alloc_contig_migrate_range(struct compact_control *cc,
6090 unsigned long start, unsigned long end)
6091 {
6092 /* This function is based on compact_zone() from compaction.c. */
6093 unsigned int nr_reclaimed;
6094 unsigned long pfn = start;
6095 unsigned int tries = 0;
6096 int ret = 0;
6097 struct migration_target_control mtc = {
6098 .nid = zone_to_nid(cc->zone),
6099 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6100 };
6101
6102 lru_cache_disable();
6103
6104 while (pfn < end || !list_empty(&cc->migratepages)) {
6105 if (fatal_signal_pending(current)) {
6106 ret = -EINTR;
6107 break;
6108 }
6109
6110 if (list_empty(&cc->migratepages)) {
6111 cc->nr_migratepages = 0;
6112 ret = isolate_migratepages_range(cc, pfn, end);
6113 if (ret && ret != -EAGAIN)
6114 break;
6115 pfn = cc->migrate_pfn;
6116 tries = 0;
6117 } else if (++tries == 5) {
6118 ret = -EBUSY;
6119 break;
6120 }
6121
6122 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6123 &cc->migratepages);
6124 cc->nr_migratepages -= nr_reclaimed;
6125
6126 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6127 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6128
6129 /*
6130 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6131 * to retry again over this error, so do the same here.
6132 */
6133 if (ret == -ENOMEM)
6134 break;
6135 }
6136
6137 lru_cache_enable();
6138 if (ret < 0) {
6139 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6140 alloc_contig_dump_pages(&cc->migratepages);
6141 putback_movable_pages(&cc->migratepages);
6142 return ret;
6143 }
6144 return 0;
6145 }
6146
6147 /**
6148 * alloc_contig_range() -- tries to allocate given range of pages
6149 * @start: start PFN to allocate
6150 * @end: one-past-the-last PFN to allocate
6151 * @migratetype: migratetype of the underlying pageblocks (either
6152 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6153 * in range must have the same migratetype and it must
6154 * be either of the two.
6155 * @gfp_mask: GFP mask to use during compaction
6156 *
6157 * The PFN range does not have to be pageblock aligned. The PFN range must
6158 * belong to a single zone.
6159 *
6160 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6161 * pageblocks in the range. Once isolated, the pageblocks should not
6162 * be modified by others.
6163 *
6164 * Return: zero on success or negative error code. On success all
6165 * pages which PFN is in [start, end) are allocated for the caller and
6166 * need to be freed with free_contig_range().
6167 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)6168 int alloc_contig_range(unsigned long start, unsigned long end,
6169 unsigned migratetype, gfp_t gfp_mask)
6170 {
6171 unsigned long outer_start, outer_end;
6172 int order;
6173 int ret = 0;
6174
6175 struct compact_control cc = {
6176 .nr_migratepages = 0,
6177 .order = -1,
6178 .zone = page_zone(pfn_to_page(start)),
6179 .mode = MIGRATE_SYNC,
6180 .ignore_skip_hint = true,
6181 .no_set_skip_hint = true,
6182 .gfp_mask = current_gfp_context(gfp_mask),
6183 .alloc_contig = true,
6184 };
6185 INIT_LIST_HEAD(&cc.migratepages);
6186
6187 /*
6188 * What we do here is we mark all pageblocks in range as
6189 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6190 * have different sizes, and due to the way page allocator
6191 * work, start_isolate_page_range() has special handlings for this.
6192 *
6193 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6194 * migrate the pages from an unaligned range (ie. pages that
6195 * we are interested in). This will put all the pages in
6196 * range back to page allocator as MIGRATE_ISOLATE.
6197 *
6198 * When this is done, we take the pages in range from page
6199 * allocator removing them from the buddy system. This way
6200 * page allocator will never consider using them.
6201 *
6202 * This lets us mark the pageblocks back as
6203 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6204 * aligned range but not in the unaligned, original range are
6205 * put back to page allocator so that buddy can use them.
6206 */
6207
6208 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6209 if (ret)
6210 goto done;
6211
6212 drain_all_pages(cc.zone);
6213
6214 /*
6215 * In case of -EBUSY, we'd like to know which page causes problem.
6216 * So, just fall through. test_pages_isolated() has a tracepoint
6217 * which will report the busy page.
6218 *
6219 * It is possible that busy pages could become available before
6220 * the call to test_pages_isolated, and the range will actually be
6221 * allocated. So, if we fall through be sure to clear ret so that
6222 * -EBUSY is not accidentally used or returned to caller.
6223 */
6224 ret = __alloc_contig_migrate_range(&cc, start, end);
6225 if (ret && ret != -EBUSY)
6226 goto done;
6227 ret = 0;
6228
6229 /*
6230 * Pages from [start, end) are within a pageblock_nr_pages
6231 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6232 * more, all pages in [start, end) are free in page allocator.
6233 * What we are going to do is to allocate all pages from
6234 * [start, end) (that is remove them from page allocator).
6235 *
6236 * The only problem is that pages at the beginning and at the
6237 * end of interesting range may be not aligned with pages that
6238 * page allocator holds, ie. they can be part of higher order
6239 * pages. Because of this, we reserve the bigger range and
6240 * once this is done free the pages we are not interested in.
6241 *
6242 * We don't have to hold zone->lock here because the pages are
6243 * isolated thus they won't get removed from buddy.
6244 */
6245
6246 order = 0;
6247 outer_start = start;
6248 while (!PageBuddy(pfn_to_page(outer_start))) {
6249 if (++order > MAX_ORDER) {
6250 outer_start = start;
6251 break;
6252 }
6253 outer_start &= ~0UL << order;
6254 }
6255
6256 if (outer_start != start) {
6257 order = buddy_order(pfn_to_page(outer_start));
6258
6259 /*
6260 * outer_start page could be small order buddy page and
6261 * it doesn't include start page. Adjust outer_start
6262 * in this case to report failed page properly
6263 * on tracepoint in test_pages_isolated()
6264 */
6265 if (outer_start + (1UL << order) <= start)
6266 outer_start = start;
6267 }
6268
6269 /* Make sure the range is really isolated. */
6270 if (test_pages_isolated(outer_start, end, 0)) {
6271 ret = -EBUSY;
6272 goto done;
6273 }
6274
6275 /* Grab isolated pages from freelists. */
6276 outer_end = isolate_freepages_range(&cc, outer_start, end);
6277 if (!outer_end) {
6278 ret = -EBUSY;
6279 goto done;
6280 }
6281
6282 /* Free head and tail (if any) */
6283 if (start != outer_start)
6284 free_contig_range(outer_start, start - outer_start);
6285 if (end != outer_end)
6286 free_contig_range(end, outer_end - end);
6287
6288 done:
6289 undo_isolate_page_range(start, end, migratetype);
6290 return ret;
6291 }
6292 EXPORT_SYMBOL(alloc_contig_range);
6293
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)6294 static int __alloc_contig_pages(unsigned long start_pfn,
6295 unsigned long nr_pages, gfp_t gfp_mask)
6296 {
6297 unsigned long end_pfn = start_pfn + nr_pages;
6298
6299 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6300 gfp_mask);
6301 }
6302
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)6303 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6304 unsigned long nr_pages)
6305 {
6306 unsigned long i, end_pfn = start_pfn + nr_pages;
6307 struct page *page;
6308
6309 for (i = start_pfn; i < end_pfn; i++) {
6310 page = pfn_to_online_page(i);
6311 if (!page)
6312 return false;
6313
6314 if (page_zone(page) != z)
6315 return false;
6316
6317 if (PageReserved(page))
6318 return false;
6319
6320 if (PageHuge(page))
6321 return false;
6322 }
6323 return true;
6324 }
6325
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)6326 static bool zone_spans_last_pfn(const struct zone *zone,
6327 unsigned long start_pfn, unsigned long nr_pages)
6328 {
6329 unsigned long last_pfn = start_pfn + nr_pages - 1;
6330
6331 return zone_spans_pfn(zone, last_pfn);
6332 }
6333
6334 /**
6335 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6336 * @nr_pages: Number of contiguous pages to allocate
6337 * @gfp_mask: GFP mask to limit search and used during compaction
6338 * @nid: Target node
6339 * @nodemask: Mask for other possible nodes
6340 *
6341 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6342 * on an applicable zonelist to find a contiguous pfn range which can then be
6343 * tried for allocation with alloc_contig_range(). This routine is intended
6344 * for allocation requests which can not be fulfilled with the buddy allocator.
6345 *
6346 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6347 * power of two, then allocated range is also guaranteed to be aligned to same
6348 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6349 *
6350 * Allocated pages can be freed with free_contig_range() or by manually calling
6351 * __free_page() on each allocated page.
6352 *
6353 * Return: pointer to contiguous pages on success, or NULL if not successful.
6354 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)6355 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6356 int nid, nodemask_t *nodemask)
6357 {
6358 unsigned long ret, pfn, flags;
6359 struct zonelist *zonelist;
6360 struct zone *zone;
6361 struct zoneref *z;
6362
6363 zonelist = node_zonelist(nid, gfp_mask);
6364 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6365 gfp_zone(gfp_mask), nodemask) {
6366 spin_lock_irqsave(&zone->lock, flags);
6367
6368 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6369 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6370 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6371 /*
6372 * We release the zone lock here because
6373 * alloc_contig_range() will also lock the zone
6374 * at some point. If there's an allocation
6375 * spinning on this lock, it may win the race
6376 * and cause alloc_contig_range() to fail...
6377 */
6378 spin_unlock_irqrestore(&zone->lock, flags);
6379 ret = __alloc_contig_pages(pfn, nr_pages,
6380 gfp_mask);
6381 if (!ret)
6382 return pfn_to_page(pfn);
6383 spin_lock_irqsave(&zone->lock, flags);
6384 }
6385 pfn += nr_pages;
6386 }
6387 spin_unlock_irqrestore(&zone->lock, flags);
6388 }
6389 return NULL;
6390 }
6391 #endif /* CONFIG_CONTIG_ALLOC */
6392
free_contig_range(unsigned long pfn,unsigned long nr_pages)6393 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6394 {
6395 unsigned long count = 0;
6396
6397 for (; nr_pages--; pfn++) {
6398 struct page *page = pfn_to_page(pfn);
6399
6400 count += page_count(page) != 1;
6401 __free_page(page);
6402 }
6403 WARN(count != 0, "%lu pages are still in use!\n", count);
6404 }
6405 EXPORT_SYMBOL(free_contig_range);
6406
6407 /*
6408 * Effectively disable pcplists for the zone by setting the high limit to 0
6409 * and draining all cpus. A concurrent page freeing on another CPU that's about
6410 * to put the page on pcplist will either finish before the drain and the page
6411 * will be drained, or observe the new high limit and skip the pcplist.
6412 *
6413 * Must be paired with a call to zone_pcp_enable().
6414 */
zone_pcp_disable(struct zone * zone)6415 void zone_pcp_disable(struct zone *zone)
6416 {
6417 mutex_lock(&pcp_batch_high_lock);
6418 __zone_set_pageset_high_and_batch(zone, 0, 1);
6419 __drain_all_pages(zone, true);
6420 }
6421
zone_pcp_enable(struct zone * zone)6422 void zone_pcp_enable(struct zone *zone)
6423 {
6424 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
6425 mutex_unlock(&pcp_batch_high_lock);
6426 }
6427
zone_pcp_reset(struct zone * zone)6428 void zone_pcp_reset(struct zone *zone)
6429 {
6430 int cpu;
6431 struct per_cpu_zonestat *pzstats;
6432
6433 if (zone->per_cpu_pageset != &boot_pageset) {
6434 for_each_online_cpu(cpu) {
6435 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6436 drain_zonestat(zone, pzstats);
6437 }
6438 free_percpu(zone->per_cpu_pageset);
6439 zone->per_cpu_pageset = &boot_pageset;
6440 if (zone->per_cpu_zonestats != &boot_zonestats) {
6441 free_percpu(zone->per_cpu_zonestats);
6442 zone->per_cpu_zonestats = &boot_zonestats;
6443 }
6444 }
6445 }
6446
6447 #ifdef CONFIG_MEMORY_HOTREMOVE
6448 /*
6449 * All pages in the range must be in a single zone, must not contain holes,
6450 * must span full sections, and must be isolated before calling this function.
6451 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6452 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6453 {
6454 unsigned long pfn = start_pfn;
6455 struct page *page;
6456 struct zone *zone;
6457 unsigned int order;
6458 unsigned long flags;
6459
6460 offline_mem_sections(pfn, end_pfn);
6461 zone = page_zone(pfn_to_page(pfn));
6462 spin_lock_irqsave(&zone->lock, flags);
6463 while (pfn < end_pfn) {
6464 page = pfn_to_page(pfn);
6465 /*
6466 * The HWPoisoned page may be not in buddy system, and
6467 * page_count() is not 0.
6468 */
6469 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6470 pfn++;
6471 continue;
6472 }
6473 /*
6474 * At this point all remaining PageOffline() pages have a
6475 * reference count of 0 and can simply be skipped.
6476 */
6477 if (PageOffline(page)) {
6478 BUG_ON(page_count(page));
6479 BUG_ON(PageBuddy(page));
6480 pfn++;
6481 continue;
6482 }
6483
6484 BUG_ON(page_count(page));
6485 BUG_ON(!PageBuddy(page));
6486 order = buddy_order(page);
6487 del_page_from_free_list(page, zone, order);
6488 pfn += (1 << order);
6489 }
6490 spin_unlock_irqrestore(&zone->lock, flags);
6491 }
6492 #endif
6493
6494 /*
6495 * This function returns a stable result only if called under zone lock.
6496 */
is_free_buddy_page(struct page * page)6497 bool is_free_buddy_page(struct page *page)
6498 {
6499 unsigned long pfn = page_to_pfn(page);
6500 unsigned int order;
6501
6502 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6503 struct page *page_head = page - (pfn & ((1 << order) - 1));
6504
6505 if (PageBuddy(page_head) &&
6506 buddy_order_unsafe(page_head) >= order)
6507 break;
6508 }
6509
6510 return order <= MAX_ORDER;
6511 }
6512 EXPORT_SYMBOL(is_free_buddy_page);
6513
6514 #ifdef CONFIG_MEMORY_FAILURE
6515 /*
6516 * Break down a higher-order page in sub-pages, and keep our target out of
6517 * buddy allocator.
6518 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)6519 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6520 struct page *target, int low, int high,
6521 int migratetype)
6522 {
6523 unsigned long size = 1 << high;
6524 struct page *current_buddy, *next_page;
6525
6526 while (high > low) {
6527 high--;
6528 size >>= 1;
6529
6530 if (target >= &page[size]) {
6531 next_page = page + size;
6532 current_buddy = page;
6533 } else {
6534 next_page = page;
6535 current_buddy = page + size;
6536 }
6537 page = next_page;
6538
6539 if (set_page_guard(zone, current_buddy, high, migratetype))
6540 continue;
6541
6542 if (current_buddy != target) {
6543 add_to_free_list(current_buddy, zone, high, migratetype);
6544 set_buddy_order(current_buddy, high);
6545 }
6546 }
6547 }
6548
6549 /*
6550 * Take a page that will be marked as poisoned off the buddy allocator.
6551 */
take_page_off_buddy(struct page * page)6552 bool take_page_off_buddy(struct page *page)
6553 {
6554 struct zone *zone = page_zone(page);
6555 unsigned long pfn = page_to_pfn(page);
6556 unsigned long flags;
6557 unsigned int order;
6558 bool ret = false;
6559
6560 spin_lock_irqsave(&zone->lock, flags);
6561 for (order = 0; order < NR_PAGE_ORDERS; order++) {
6562 struct page *page_head = page - (pfn & ((1 << order) - 1));
6563 int page_order = buddy_order(page_head);
6564
6565 if (PageBuddy(page_head) && page_order >= order) {
6566 unsigned long pfn_head = page_to_pfn(page_head);
6567 int migratetype = get_pfnblock_migratetype(page_head,
6568 pfn_head);
6569
6570 del_page_from_free_list(page_head, zone, page_order);
6571 break_down_buddy_pages(zone, page_head, page, 0,
6572 page_order, migratetype);
6573 SetPageHWPoisonTakenOff(page);
6574 if (!is_migrate_isolate(migratetype))
6575 __mod_zone_freepage_state(zone, -1, migratetype);
6576 ret = true;
6577 break;
6578 }
6579 if (page_count(page_head) > 0)
6580 break;
6581 }
6582 spin_unlock_irqrestore(&zone->lock, flags);
6583 return ret;
6584 }
6585
6586 /*
6587 * Cancel takeoff done by take_page_off_buddy().
6588 */
put_page_back_buddy(struct page * page)6589 bool put_page_back_buddy(struct page *page)
6590 {
6591 struct zone *zone = page_zone(page);
6592 unsigned long pfn = page_to_pfn(page);
6593 unsigned long flags;
6594 int migratetype = get_pfnblock_migratetype(page, pfn);
6595 bool ret = false;
6596
6597 spin_lock_irqsave(&zone->lock, flags);
6598 if (put_page_testzero(page)) {
6599 ClearPageHWPoisonTakenOff(page);
6600 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6601 if (TestClearPageHWPoison(page)) {
6602 ret = true;
6603 }
6604 }
6605 spin_unlock_irqrestore(&zone->lock, flags);
6606
6607 return ret;
6608 }
6609 #endif
6610
6611 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)6612 bool has_managed_dma(void)
6613 {
6614 struct pglist_data *pgdat;
6615
6616 for_each_online_pgdat(pgdat) {
6617 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6618
6619 if (managed_zone(zone))
6620 return true;
6621 }
6622 return false;
6623 }
6624 #endif /* CONFIG_ZONE_DMA */
6625
6626 #ifdef CONFIG_UNACCEPTED_MEMORY
6627
6628 /* Counts number of zones with unaccepted pages. */
6629 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6630
6631 static bool lazy_accept = true;
6632
accept_memory_parse(char * p)6633 static int __init accept_memory_parse(char *p)
6634 {
6635 if (!strcmp(p, "lazy")) {
6636 lazy_accept = true;
6637 return 0;
6638 } else if (!strcmp(p, "eager")) {
6639 lazy_accept = false;
6640 return 0;
6641 } else {
6642 return -EINVAL;
6643 }
6644 }
6645 early_param("accept_memory", accept_memory_parse);
6646
page_contains_unaccepted(struct page * page,unsigned int order)6647 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6648 {
6649 phys_addr_t start = page_to_phys(page);
6650 phys_addr_t end = start + (PAGE_SIZE << order);
6651
6652 return range_contains_unaccepted_memory(start, end);
6653 }
6654
accept_page(struct page * page,unsigned int order)6655 static void accept_page(struct page *page, unsigned int order)
6656 {
6657 phys_addr_t start = page_to_phys(page);
6658
6659 accept_memory(start, start + (PAGE_SIZE << order));
6660 }
6661
try_to_accept_memory_one(struct zone * zone)6662 static bool try_to_accept_memory_one(struct zone *zone)
6663 {
6664 unsigned long flags;
6665 struct page *page;
6666 bool last;
6667
6668 spin_lock_irqsave(&zone->lock, flags);
6669 page = list_first_entry_or_null(&zone->unaccepted_pages,
6670 struct page, lru);
6671 if (!page) {
6672 spin_unlock_irqrestore(&zone->lock, flags);
6673 return false;
6674 }
6675
6676 list_del(&page->lru);
6677 last = list_empty(&zone->unaccepted_pages);
6678
6679 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6680 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6681 spin_unlock_irqrestore(&zone->lock, flags);
6682
6683 accept_page(page, MAX_ORDER);
6684
6685 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6686
6687 if (last)
6688 static_branch_dec(&zones_with_unaccepted_pages);
6689
6690 return true;
6691 }
6692
cond_accept_memory(struct zone * zone,unsigned int order)6693 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6694 {
6695 long to_accept, wmark;
6696 bool ret = false;
6697
6698 if (!has_unaccepted_memory())
6699 return false;
6700
6701 if (list_empty(&zone->unaccepted_pages))
6702 return false;
6703
6704 wmark = high_wmark_pages(zone);
6705
6706 /*
6707 * Watermarks have not been initialized yet.
6708 *
6709 * Accepting one MAX_ORDER page to ensure progress.
6710 */
6711 if (!wmark)
6712 return try_to_accept_memory_one(zone);
6713
6714 /* How much to accept to get to high watermark? */
6715 to_accept = wmark -
6716 (zone_page_state(zone, NR_FREE_PAGES) -
6717 __zone_watermark_unusable_free(zone, order, 0) -
6718 zone_page_state(zone, NR_UNACCEPTED));
6719
6720 while (to_accept > 0) {
6721 if (!try_to_accept_memory_one(zone))
6722 break;
6723 ret = true;
6724 to_accept -= MAX_ORDER_NR_PAGES;
6725 }
6726
6727 return ret;
6728 }
6729
has_unaccepted_memory(void)6730 static inline bool has_unaccepted_memory(void)
6731 {
6732 return static_branch_unlikely(&zones_with_unaccepted_pages);
6733 }
6734
__free_unaccepted(struct page * page)6735 static bool __free_unaccepted(struct page *page)
6736 {
6737 struct zone *zone = page_zone(page);
6738 unsigned long flags;
6739 bool first = false;
6740
6741 if (!lazy_accept)
6742 return false;
6743
6744 spin_lock_irqsave(&zone->lock, flags);
6745 first = list_empty(&zone->unaccepted_pages);
6746 list_add_tail(&page->lru, &zone->unaccepted_pages);
6747 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6748 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6749 spin_unlock_irqrestore(&zone->lock, flags);
6750
6751 if (first)
6752 static_branch_inc(&zones_with_unaccepted_pages);
6753
6754 return true;
6755 }
6756
6757 #else
6758
page_contains_unaccepted(struct page * page,unsigned int order)6759 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6760 {
6761 return false;
6762 }
6763
accept_page(struct page * page,unsigned int order)6764 static void accept_page(struct page *page, unsigned int order)
6765 {
6766 }
6767
cond_accept_memory(struct zone * zone,unsigned int order)6768 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6769 {
6770 return false;
6771 }
6772
has_unaccepted_memory(void)6773 static inline bool has_unaccepted_memory(void)
6774 {
6775 return false;
6776 }
6777
__free_unaccepted(struct page * page)6778 static bool __free_unaccepted(struct page *page)
6779 {
6780 BUILD_BUG();
6781 return false;
6782 }
6783
6784 #endif /* CONFIG_UNACCEPTED_MEMORY */
6785