• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
49 
50 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
51 struct lru_rotate {
52 	local_lock_t lock;
53 	struct folio_batch fbatch;
54 };
55 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
56 	.lock = INIT_LOCAL_LOCK(lock),
57 };
58 
59 /*
60  * The following folio batches are grouped together because they are protected
61  * by disabling preemption (and interrupts remain enabled).
62  */
63 struct cpu_fbatches {
64 	local_lock_t lock;
65 	struct folio_batch lru_add;
66 	struct folio_batch lru_deactivate_file;
67 	struct folio_batch lru_deactivate;
68 	struct folio_batch lru_lazyfree;
69 #ifdef CONFIG_SMP
70 	struct folio_batch activate;
71 #endif
72 };
73 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
74 	.lock = INIT_LOCAL_LOCK(lock),
75 };
76 
77 /*
78  * This path almost never happens for VM activity - pages are normally freed
79  * in batches.  But it gets used by networking - and for compound pages.
80  */
__page_cache_release(struct folio * folio)81 static void __page_cache_release(struct folio *folio)
82 {
83 	if (folio_test_lru(folio)) {
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		lruvec_del_folio(lruvec, folio);
89 		__folio_clear_lru_flags(folio);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 }
93 
__folio_put_small(struct folio * folio)94 static void __folio_put_small(struct folio *folio)
95 {
96 	__page_cache_release(folio);
97 	mem_cgroup_uncharge(folio);
98 	free_unref_page(&folio->page, 0);
99 }
100 
__folio_put_large(struct folio * folio)101 static void __folio_put_large(struct folio *folio)
102 {
103 	/*
104 	 * __page_cache_release() is supposed to be called for thp, not for
105 	 * hugetlb. This is because hugetlb page does never have PageLRU set
106 	 * (it's never listed to any LRU lists) and no memcg routines should
107 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 	 */
109 	if (!folio_test_hugetlb(folio))
110 		__page_cache_release(folio);
111 	destroy_large_folio(folio);
112 }
113 
__folio_put(struct folio * folio)114 void __folio_put(struct folio *folio)
115 {
116 	if (unlikely(folio_is_zone_device(folio)))
117 		free_zone_device_page(&folio->page);
118 	else if (unlikely(folio_test_large(folio)))
119 		__folio_put_large(folio);
120 	else
121 		__folio_put_small(folio);
122 }
123 EXPORT_SYMBOL(__folio_put);
124 
125 /**
126  * put_pages_list() - release a list of pages
127  * @pages: list of pages threaded on page->lru
128  *
129  * Release a list of pages which are strung together on page.lru.
130  */
put_pages_list(struct list_head * pages)131 void put_pages_list(struct list_head *pages)
132 {
133 	struct folio *folio, *next;
134 
135 	list_for_each_entry_safe(folio, next, pages, lru) {
136 		if (!folio_put_testzero(folio)) {
137 			list_del(&folio->lru);
138 			continue;
139 		}
140 		if (folio_test_large(folio)) {
141 			list_del(&folio->lru);
142 			__folio_put_large(folio);
143 			continue;
144 		}
145 		/* LRU flag must be clear because it's passed using the lru */
146 	}
147 
148 	free_unref_page_list(pages);
149 	INIT_LIST_HEAD(pages);
150 }
151 EXPORT_SYMBOL(put_pages_list);
152 
153 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
154 
lru_add_fn(struct lruvec * lruvec,struct folio * folio)155 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
156 {
157 	int was_unevictable = folio_test_clear_unevictable(folio);
158 	long nr_pages = folio_nr_pages(folio);
159 
160 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
161 
162 	/*
163 	 * Is an smp_mb__after_atomic() still required here, before
164 	 * folio_evictable() tests the mlocked flag, to rule out the possibility
165 	 * of stranding an evictable folio on an unevictable LRU?  I think
166 	 * not, because __munlock_folio() only clears the mlocked flag
167 	 * while the LRU lock is held.
168 	 *
169 	 * (That is not true of __page_cache_release(), and not necessarily
170 	 * true of release_pages(): but those only clear the mlocked flag after
171 	 * folio_put_testzero() has excluded any other users of the folio.)
172 	 */
173 	if (folio_evictable(folio)) {
174 		if (was_unevictable)
175 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
176 	} else {
177 		folio_clear_active(folio);
178 		folio_set_unevictable(folio);
179 		/*
180 		 * folio->mlock_count = !!folio_test_mlocked(folio)?
181 		 * But that leaves __mlock_folio() in doubt whether another
182 		 * actor has already counted the mlock or not.  Err on the
183 		 * safe side, underestimate, let page reclaim fix it, rather
184 		 * than leaving a page on the unevictable LRU indefinitely.
185 		 */
186 		folio->mlock_count = 0;
187 		if (!was_unevictable)
188 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
189 	}
190 
191 	lruvec_add_folio(lruvec, folio);
192 	trace_mm_lru_insertion(folio);
193 }
194 
folio_batch_move_lru(struct folio_batch * fbatch,move_fn_t move_fn)195 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
196 {
197 	int i;
198 	struct lruvec *lruvec = NULL;
199 	unsigned long flags = 0;
200 
201 	for (i = 0; i < folio_batch_count(fbatch); i++) {
202 		struct folio *folio = fbatch->folios[i];
203 
204 		/* block memcg migration while the folio moves between lru */
205 		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
206 			continue;
207 
208 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
209 		move_fn(lruvec, folio);
210 
211 		folio_set_lru(folio);
212 	}
213 
214 	if (lruvec)
215 		unlock_page_lruvec_irqrestore(lruvec, flags);
216 	folios_put(fbatch->folios, folio_batch_count(fbatch));
217 	folio_batch_reinit(fbatch);
218 }
219 
folio_batch_add_and_move(struct folio_batch * fbatch,struct folio * folio,move_fn_t move_fn)220 static void folio_batch_add_and_move(struct folio_batch *fbatch,
221 		struct folio *folio, move_fn_t move_fn)
222 {
223 	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
224 	    !lru_cache_disabled())
225 		return;
226 	folio_batch_move_lru(fbatch, move_fn);
227 }
228 
lru_move_tail_fn(struct lruvec * lruvec,struct folio * folio)229 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
230 {
231 	if (!folio_test_unevictable(folio)) {
232 		lruvec_del_folio(lruvec, folio);
233 		folio_clear_active(folio);
234 		lruvec_add_folio_tail(lruvec, folio);
235 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
236 	}
237 }
238 
239 /*
240  * Writeback is about to end against a folio which has been marked for
241  * immediate reclaim.  If it still appears to be reclaimable, move it
242  * to the tail of the inactive list.
243  *
244  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
245  */
folio_rotate_reclaimable(struct folio * folio)246 void folio_rotate_reclaimable(struct folio *folio)
247 {
248 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
249 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
250 		struct folio_batch *fbatch;
251 		unsigned long flags;
252 
253 		folio_get(folio);
254 		local_lock_irqsave(&lru_rotate.lock, flags);
255 		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
256 		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
257 		local_unlock_irqrestore(&lru_rotate.lock, flags);
258 	}
259 }
260 
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_io,unsigned int nr_rotated)261 void lru_note_cost(struct lruvec *lruvec, bool file,
262 		   unsigned int nr_io, unsigned int nr_rotated)
263 {
264 	unsigned long cost;
265 
266 	/*
267 	 * Reflect the relative cost of incurring IO and spending CPU
268 	 * time on rotations. This doesn't attempt to make a precise
269 	 * comparison, it just says: if reloads are about comparable
270 	 * between the LRU lists, or rotations are overwhelmingly
271 	 * different between them, adjust scan balance for CPU work.
272 	 */
273 	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
274 
275 	do {
276 		unsigned long lrusize;
277 
278 		/*
279 		 * Hold lruvec->lru_lock is safe here, since
280 		 * 1) The pinned lruvec in reclaim, or
281 		 * 2) From a pre-LRU page during refault (which also holds the
282 		 *    rcu lock, so would be safe even if the page was on the LRU
283 		 *    and could move simultaneously to a new lruvec).
284 		 */
285 		spin_lock_irq(&lruvec->lru_lock);
286 		/* Record cost event */
287 		if (file)
288 			lruvec->file_cost += cost;
289 		else
290 			lruvec->anon_cost += cost;
291 
292 		/*
293 		 * Decay previous events
294 		 *
295 		 * Because workloads change over time (and to avoid
296 		 * overflow) we keep these statistics as a floating
297 		 * average, which ends up weighing recent refaults
298 		 * more than old ones.
299 		 */
300 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
304 
305 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 			lruvec->file_cost /= 2;
307 			lruvec->anon_cost /= 2;
308 		}
309 		spin_unlock_irq(&lruvec->lru_lock);
310 	} while ((lruvec = parent_lruvec(lruvec)));
311 }
312 
lru_note_cost_refault(struct folio * folio)313 void lru_note_cost_refault(struct folio *folio)
314 {
315 #ifdef CONFIG_HYPERHOLD_FILE_LRU
316 	if (page_is_file_lru(folio_page(folio, 0))) {
317 		lru_note_cost(&(folio_pgdat(folio)->__lruvec), 1, folio_nr_pages(folio), 0);
318 		return;
319 	}
320 #endif
321 
322 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
323 		      folio_nr_pages(folio), 0);
324 }
325 
folio_activate_fn(struct lruvec * lruvec,struct folio * folio)326 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
327 {
328 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
329 		long nr_pages = folio_nr_pages(folio);
330 
331 		lruvec_del_folio(lruvec, folio);
332 		folio_set_active(folio);
333 		lruvec_add_folio(lruvec, folio);
334 		trace_mm_lru_activate(folio);
335 
336 		__count_vm_events(PGACTIVATE, nr_pages);
337 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
338 				     nr_pages);
339 	}
340 }
341 
342 #ifdef CONFIG_SMP
folio_activate_drain(int cpu)343 static void folio_activate_drain(int cpu)
344 {
345 	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
346 
347 	if (folio_batch_count(fbatch))
348 		folio_batch_move_lru(fbatch, folio_activate_fn);
349 }
350 
folio_activate(struct folio * folio)351 void folio_activate(struct folio *folio)
352 {
353 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
354 	    !folio_test_unevictable(folio)) {
355 		struct folio_batch *fbatch;
356 
357 		folio_get(folio);
358 		local_lock(&cpu_fbatches.lock);
359 		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
360 		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
361 		local_unlock(&cpu_fbatches.lock);
362 	}
363 }
364 
365 #else
folio_activate_drain(int cpu)366 static inline void folio_activate_drain(int cpu)
367 {
368 }
369 
folio_activate(struct folio * folio)370 void folio_activate(struct folio *folio)
371 {
372 	struct lruvec *lruvec;
373 
374 	if (folio_test_clear_lru(folio)) {
375 		lruvec = folio_lruvec_lock_irq(folio);
376 		folio_activate_fn(lruvec, folio);
377 		unlock_page_lruvec_irq(lruvec);
378 		folio_set_lru(folio);
379 	}
380 }
381 #endif
382 
__lru_cache_activate_folio(struct folio * folio)383 static void __lru_cache_activate_folio(struct folio *folio)
384 {
385 	struct folio_batch *fbatch;
386 	int i;
387 
388 	local_lock(&cpu_fbatches.lock);
389 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
390 
391 	/*
392 	 * Search backwards on the optimistic assumption that the folio being
393 	 * activated has just been added to this batch. Note that only
394 	 * the local batch is examined as a !LRU folio could be in the
395 	 * process of being released, reclaimed, migrated or on a remote
396 	 * batch that is currently being drained. Furthermore, marking
397 	 * a remote batch's folio active potentially hits a race where
398 	 * a folio is marked active just after it is added to the inactive
399 	 * list causing accounting errors and BUG_ON checks to trigger.
400 	 */
401 	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
402 		struct folio *batch_folio = fbatch->folios[i];
403 
404 		if (batch_folio == folio) {
405 			folio_set_active(folio);
406 			break;
407 		}
408 	}
409 
410 	local_unlock(&cpu_fbatches.lock);
411 }
412 
413 #ifdef CONFIG_LRU_GEN
folio_inc_refs(struct folio * folio)414 static void folio_inc_refs(struct folio *folio)
415 {
416 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
417 
418 	if (folio_test_unevictable(folio))
419 		return;
420 
421 	if (!folio_test_referenced(folio)) {
422 		folio_set_referenced(folio);
423 		return;
424 	}
425 
426 	if (!folio_test_workingset(folio)) {
427 		folio_set_workingset(folio);
428 		return;
429 	}
430 
431 	/* see the comment on MAX_NR_TIERS */
432 	do {
433 		new_flags = old_flags & LRU_REFS_MASK;
434 		if (new_flags == LRU_REFS_MASK)
435 			break;
436 
437 		new_flags += BIT(LRU_REFS_PGOFF);
438 		new_flags |= old_flags & ~LRU_REFS_MASK;
439 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
440 }
441 #else
folio_inc_refs(struct folio * folio)442 static void folio_inc_refs(struct folio *folio)
443 {
444 }
445 #endif /* CONFIG_LRU_GEN */
446 
447 /*
448  * Mark a page as having seen activity.
449  *
450  * inactive,unreferenced	->	inactive,referenced
451  * inactive,referenced		->	active,unreferenced
452  * active,unreferenced		->	active,referenced
453  *
454  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
455  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
456  */
folio_mark_accessed(struct folio * folio)457 void folio_mark_accessed(struct folio *folio)
458 {
459 	if (lru_gen_enabled()) {
460 		folio_inc_refs(folio);
461 		return;
462 	}
463 
464 	if (!folio_test_referenced(folio)) {
465 		folio_set_referenced(folio);
466 	} else if (folio_test_unevictable(folio)) {
467 		/*
468 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
469 		 * this list is never rotated or maintained, so marking an
470 		 * unevictable page accessed has no effect.
471 		 */
472 	} else if (!folio_test_active(folio)) {
473 		/*
474 		 * If the folio is on the LRU, queue it for activation via
475 		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
476 		 * folio_batch, mark it active and it'll be moved to the active
477 		 * LRU on the next drain.
478 		 */
479 		if (folio_test_lru(folio))
480 			folio_activate(folio);
481 		else
482 			__lru_cache_activate_folio(folio);
483 		folio_clear_referenced(folio);
484 		workingset_activation(folio);
485 	}
486 	if (folio_test_idle(folio))
487 		folio_clear_idle(folio);
488 }
489 EXPORT_SYMBOL(folio_mark_accessed);
490 
491 /**
492  * folio_add_lru - Add a folio to an LRU list.
493  * @folio: The folio to be added to the LRU.
494  *
495  * Queue the folio for addition to the LRU. The decision on whether
496  * to add the page to the [in]active [file|anon] list is deferred until the
497  * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
498  * have the folio added to the active list using folio_mark_accessed().
499  */
folio_add_lru(struct folio * folio)500 void folio_add_lru(struct folio *folio)
501 {
502 	struct folio_batch *fbatch;
503 
504 	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
505 			folio_test_unevictable(folio), folio);
506 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
507 
508 	/* see the comment in lru_gen_add_folio() */
509 	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
510 	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
511 		folio_set_active(folio);
512 
513 	folio_get(folio);
514 	local_lock(&cpu_fbatches.lock);
515 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
516 	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
517 	local_unlock(&cpu_fbatches.lock);
518 }
519 EXPORT_SYMBOL(folio_add_lru);
520 
521 /**
522  * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
523  * @folio: The folio to be added to the LRU.
524  * @vma: VMA in which the folio is mapped.
525  *
526  * If the VMA is mlocked, @folio is added to the unevictable list.
527  * Otherwise, it is treated the same way as folio_add_lru().
528  */
folio_add_lru_vma(struct folio * folio,struct vm_area_struct * vma)529 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
530 {
531 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
532 
533 	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
534 		mlock_new_folio(folio);
535 	else
536 		folio_add_lru(folio);
537 }
538 
539 /*
540  * If the folio cannot be invalidated, it is moved to the
541  * inactive list to speed up its reclaim.  It is moved to the
542  * head of the list, rather than the tail, to give the flusher
543  * threads some time to write it out, as this is much more
544  * effective than the single-page writeout from reclaim.
545  *
546  * If the folio isn't mapped and dirty/writeback, the folio
547  * could be reclaimed asap using the reclaim flag.
548  *
549  * 1. active, mapped folio -> none
550  * 2. active, dirty/writeback folio -> inactive, head, reclaim
551  * 3. inactive, mapped folio -> none
552  * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
553  * 5. inactive, clean -> inactive, tail
554  * 6. Others -> none
555  *
556  * In 4, it moves to the head of the inactive list so the folio is
557  * written out by flusher threads as this is much more efficient
558  * than the single-page writeout from reclaim.
559  */
lru_deactivate_file_fn(struct lruvec * lruvec,struct folio * folio)560 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
561 {
562 	bool active = folio_test_active(folio);
563 	long nr_pages = folio_nr_pages(folio);
564 
565 	if (folio_test_unevictable(folio))
566 		return;
567 
568 	/* Some processes are using the folio */
569 	if (folio_mapped(folio))
570 		return;
571 
572 	lruvec_del_folio(lruvec, folio);
573 	folio_clear_active(folio);
574 	folio_clear_referenced(folio);
575 
576 	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
577 		/*
578 		 * Setting the reclaim flag could race with
579 		 * folio_end_writeback() and confuse readahead.  But the
580 		 * race window is _really_ small and  it's not a critical
581 		 * problem.
582 		 */
583 		lruvec_add_folio(lruvec, folio);
584 		folio_set_reclaim(folio);
585 	} else {
586 		/*
587 		 * The folio's writeback ended while it was in the batch.
588 		 * We move that folio to the tail of the inactive list.
589 		 */
590 		lruvec_add_folio_tail(lruvec, folio);
591 		__count_vm_events(PGROTATED, nr_pages);
592 	}
593 
594 	if (active) {
595 		__count_vm_events(PGDEACTIVATE, nr_pages);
596 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
597 				     nr_pages);
598 	}
599 }
600 
lru_deactivate_fn(struct lruvec * lruvec,struct folio * folio)601 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
602 {
603 	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
604 		long nr_pages = folio_nr_pages(folio);
605 
606 		lruvec_del_folio(lruvec, folio);
607 		folio_clear_active(folio);
608 		folio_clear_referenced(folio);
609 		lruvec_add_folio(lruvec, folio);
610 
611 		__count_vm_events(PGDEACTIVATE, nr_pages);
612 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
613 				     nr_pages);
614 	}
615 }
616 
lru_lazyfree_fn(struct lruvec * lruvec,struct folio * folio)617 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
618 {
619 	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
620 	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
621 		long nr_pages = folio_nr_pages(folio);
622 
623 		lruvec_del_folio(lruvec, folio);
624 		folio_clear_active(folio);
625 		folio_clear_referenced(folio);
626 		/*
627 		 * Lazyfree folios are clean anonymous folios.  They have
628 		 * the swapbacked flag cleared, to distinguish them from normal
629 		 * anonymous folios
630 		 */
631 		folio_clear_swapbacked(folio);
632 		lruvec_add_folio(lruvec, folio);
633 
634 		__count_vm_events(PGLAZYFREE, nr_pages);
635 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
636 				     nr_pages);
637 	}
638 }
639 
640 /*
641  * Drain pages out of the cpu's folio_batch.
642  * Either "cpu" is the current CPU, and preemption has already been
643  * disabled; or "cpu" is being hot-unplugged, and is already dead.
644  */
lru_add_drain_cpu(int cpu)645 void lru_add_drain_cpu(int cpu)
646 {
647 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
648 	struct folio_batch *fbatch = &fbatches->lru_add;
649 
650 	if (folio_batch_count(fbatch))
651 		folio_batch_move_lru(fbatch, lru_add_fn);
652 
653 	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
654 	/* Disabling interrupts below acts as a compiler barrier. */
655 	if (data_race(folio_batch_count(fbatch))) {
656 		unsigned long flags;
657 
658 		/* No harm done if a racing interrupt already did this */
659 		local_lock_irqsave(&lru_rotate.lock, flags);
660 		folio_batch_move_lru(fbatch, lru_move_tail_fn);
661 		local_unlock_irqrestore(&lru_rotate.lock, flags);
662 	}
663 
664 	fbatch = &fbatches->lru_deactivate_file;
665 	if (folio_batch_count(fbatch))
666 		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
667 
668 	fbatch = &fbatches->lru_deactivate;
669 	if (folio_batch_count(fbatch))
670 		folio_batch_move_lru(fbatch, lru_deactivate_fn);
671 
672 	fbatch = &fbatches->lru_lazyfree;
673 	if (folio_batch_count(fbatch))
674 		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
675 
676 	folio_activate_drain(cpu);
677 }
678 
679 /**
680  * deactivate_file_folio() - Deactivate a file folio.
681  * @folio: Folio to deactivate.
682  *
683  * This function hints to the VM that @folio is a good reclaim candidate,
684  * for example if its invalidation fails due to the folio being dirty
685  * or under writeback.
686  *
687  * Context: Caller holds a reference on the folio.
688  */
deactivate_file_folio(struct folio * folio)689 void deactivate_file_folio(struct folio *folio)
690 {
691 	struct folio_batch *fbatch;
692 
693 	/* Deactivating an unevictable folio will not accelerate reclaim */
694 	if (folio_test_unevictable(folio))
695 		return;
696 
697 	folio_get(folio);
698 	local_lock(&cpu_fbatches.lock);
699 	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
700 	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
701 	local_unlock(&cpu_fbatches.lock);
702 }
703 
704 /*
705  * folio_deactivate - deactivate a folio
706  * @folio: folio to deactivate
707  *
708  * folio_deactivate() moves @folio to the inactive list if @folio was on the
709  * active list and was not unevictable. This is done to accelerate the
710  * reclaim of @folio.
711  */
folio_deactivate(struct folio * folio)712 void folio_deactivate(struct folio *folio)
713 {
714 	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
715 	    (folio_test_active(folio) || lru_gen_enabled())) {
716 		struct folio_batch *fbatch;
717 
718 		folio_get(folio);
719 		local_lock(&cpu_fbatches.lock);
720 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
721 		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
722 		local_unlock(&cpu_fbatches.lock);
723 	}
724 }
725 
726 /**
727  * folio_mark_lazyfree - make an anon folio lazyfree
728  * @folio: folio to deactivate
729  *
730  * folio_mark_lazyfree() moves @folio to the inactive file list.
731  * This is done to accelerate the reclaim of @folio.
732  */
folio_mark_lazyfree(struct folio * folio)733 void folio_mark_lazyfree(struct folio *folio)
734 {
735 	if (folio_test_lru(folio) && folio_test_anon(folio) &&
736 	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
737 	    !folio_test_unevictable(folio)) {
738 		struct folio_batch *fbatch;
739 
740 		folio_get(folio);
741 		local_lock(&cpu_fbatches.lock);
742 		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
743 		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
744 		local_unlock(&cpu_fbatches.lock);
745 	}
746 }
747 
lru_add_drain(void)748 void lru_add_drain(void)
749 {
750 	local_lock(&cpu_fbatches.lock);
751 	lru_add_drain_cpu(smp_processor_id());
752 	local_unlock(&cpu_fbatches.lock);
753 	mlock_drain_local();
754 }
755 
756 /*
757  * It's called from per-cpu workqueue context in SMP case so
758  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
759  * the same cpu. It shouldn't be a problem in !SMP case since
760  * the core is only one and the locks will disable preemption.
761  */
lru_add_and_bh_lrus_drain(void)762 static void lru_add_and_bh_lrus_drain(void)
763 {
764 	local_lock(&cpu_fbatches.lock);
765 	lru_add_drain_cpu(smp_processor_id());
766 	local_unlock(&cpu_fbatches.lock);
767 	invalidate_bh_lrus_cpu();
768 	mlock_drain_local();
769 }
770 
lru_add_drain_cpu_zone(struct zone * zone)771 void lru_add_drain_cpu_zone(struct zone *zone)
772 {
773 	local_lock(&cpu_fbatches.lock);
774 	lru_add_drain_cpu(smp_processor_id());
775 	drain_local_pages(zone);
776 	local_unlock(&cpu_fbatches.lock);
777 	mlock_drain_local();
778 }
779 
780 #ifdef CONFIG_SMP
781 
782 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
783 
lru_add_drain_per_cpu(struct work_struct * dummy)784 static void lru_add_drain_per_cpu(struct work_struct *dummy)
785 {
786 	lru_add_and_bh_lrus_drain();
787 }
788 
cpu_needs_drain(unsigned int cpu)789 static bool cpu_needs_drain(unsigned int cpu)
790 {
791 	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
792 
793 	/* Check these in order of likelihood that they're not zero */
794 	return folio_batch_count(&fbatches->lru_add) ||
795 		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
796 		folio_batch_count(&fbatches->lru_deactivate_file) ||
797 		folio_batch_count(&fbatches->lru_deactivate) ||
798 		folio_batch_count(&fbatches->lru_lazyfree) ||
799 		folio_batch_count(&fbatches->activate) ||
800 		need_mlock_drain(cpu) ||
801 		has_bh_in_lru(cpu, NULL);
802 }
803 
804 /*
805  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
806  * kworkers being shut down before our page_alloc_cpu_dead callback is
807  * executed on the offlined cpu.
808  * Calling this function with cpu hotplug locks held can actually lead
809  * to obscure indirect dependencies via WQ context.
810  */
__lru_add_drain_all(bool force_all_cpus)811 static inline void __lru_add_drain_all(bool force_all_cpus)
812 {
813 	/*
814 	 * lru_drain_gen - Global pages generation number
815 	 *
816 	 * (A) Definition: global lru_drain_gen = x implies that all generations
817 	 *     0 < n <= x are already *scheduled* for draining.
818 	 *
819 	 * This is an optimization for the highly-contended use case where a
820 	 * user space workload keeps constantly generating a flow of pages for
821 	 * each CPU.
822 	 */
823 	static unsigned int lru_drain_gen;
824 	static struct cpumask has_work;
825 	static DEFINE_MUTEX(lock);
826 	unsigned cpu, this_gen;
827 
828 	/*
829 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
830 	 * initialized.
831 	 */
832 	if (WARN_ON(!mm_percpu_wq))
833 		return;
834 
835 	/*
836 	 * Guarantee folio_batch counter stores visible by this CPU
837 	 * are visible to other CPUs before loading the current drain
838 	 * generation.
839 	 */
840 	smp_mb();
841 
842 	/*
843 	 * (B) Locally cache global LRU draining generation number
844 	 *
845 	 * The read barrier ensures that the counter is loaded before the mutex
846 	 * is taken. It pairs with smp_mb() inside the mutex critical section
847 	 * at (D).
848 	 */
849 	this_gen = smp_load_acquire(&lru_drain_gen);
850 
851 	mutex_lock(&lock);
852 
853 	/*
854 	 * (C) Exit the draining operation if a newer generation, from another
855 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
856 	 */
857 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
858 		goto done;
859 
860 	/*
861 	 * (D) Increment global generation number
862 	 *
863 	 * Pairs with smp_load_acquire() at (B), outside of the critical
864 	 * section. Use a full memory barrier to guarantee that the
865 	 * new global drain generation number is stored before loading
866 	 * folio_batch counters.
867 	 *
868 	 * This pairing must be done here, before the for_each_online_cpu loop
869 	 * below which drains the page vectors.
870 	 *
871 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
872 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
873 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
874 	 * along, adds some pages to its per-cpu vectors, then calls
875 	 * lru_add_drain_all().
876 	 *
877 	 * If the paired barrier is done at any later step, e.g. after the
878 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
879 	 * added pages.
880 	 */
881 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
882 	smp_mb();
883 
884 	cpumask_clear(&has_work);
885 	for_each_online_cpu(cpu) {
886 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
887 
888 		if (cpu_needs_drain(cpu)) {
889 			INIT_WORK(work, lru_add_drain_per_cpu);
890 			queue_work_on(cpu, mm_percpu_wq, work);
891 			__cpumask_set_cpu(cpu, &has_work);
892 		}
893 	}
894 
895 	for_each_cpu(cpu, &has_work)
896 		flush_work(&per_cpu(lru_add_drain_work, cpu));
897 
898 done:
899 	mutex_unlock(&lock);
900 }
901 
lru_add_drain_all(void)902 void lru_add_drain_all(void)
903 {
904 	__lru_add_drain_all(false);
905 }
906 #else
lru_add_drain_all(void)907 void lru_add_drain_all(void)
908 {
909 	lru_add_drain();
910 }
911 #endif /* CONFIG_SMP */
912 
913 atomic_t lru_disable_count = ATOMIC_INIT(0);
914 
915 /*
916  * lru_cache_disable() needs to be called before we start compiling
917  * a list of pages to be migrated using isolate_lru_page().
918  * It drains pages on LRU cache and then disable on all cpus until
919  * lru_cache_enable is called.
920  *
921  * Must be paired with a call to lru_cache_enable().
922  */
lru_cache_disable(void)923 void lru_cache_disable(void)
924 {
925 	atomic_inc(&lru_disable_count);
926 	/*
927 	 * Readers of lru_disable_count are protected by either disabling
928 	 * preemption or rcu_read_lock:
929 	 *
930 	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
931 	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
932 	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
933 	 *
934 	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
935 	 * preempt_disable() regions of code. So any CPU which sees
936 	 * lru_disable_count = 0 will have exited the critical
937 	 * section when synchronize_rcu() returns.
938 	 */
939 	synchronize_rcu_expedited();
940 #ifdef CONFIG_SMP
941 	__lru_add_drain_all(true);
942 #else
943 	lru_add_and_bh_lrus_drain();
944 #endif
945 }
946 
947 /**
948  * release_pages - batched put_page()
949  * @arg: array of pages to release
950  * @nr: number of pages
951  *
952  * Decrement the reference count on all the pages in @arg.  If it
953  * fell to zero, remove the page from the LRU and free it.
954  *
955  * Note that the argument can be an array of pages, encoded pages,
956  * or folio pointers. We ignore any encoded bits, and turn any of
957  * them into just a folio that gets free'd.
958  */
release_pages(release_pages_arg arg,int nr)959 void release_pages(release_pages_arg arg, int nr)
960 {
961 	int i;
962 	struct encoded_page **encoded = arg.encoded_pages;
963 	LIST_HEAD(pages_to_free);
964 	struct lruvec *lruvec = NULL;
965 	unsigned long flags = 0;
966 	unsigned int lock_batch;
967 
968 	for (i = 0; i < nr; i++) {
969 		struct folio *folio;
970 
971 		/* Turn any of the argument types into a folio */
972 		folio = page_folio(encoded_page_ptr(encoded[i]));
973 
974 		/*
975 		 * Make sure the IRQ-safe lock-holding time does not get
976 		 * excessive with a continuous string of pages from the
977 		 * same lruvec. The lock is held only if lruvec != NULL.
978 		 */
979 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
980 			unlock_page_lruvec_irqrestore(lruvec, flags);
981 			lruvec = NULL;
982 		}
983 
984 		if (is_huge_zero_page(&folio->page))
985 			continue;
986 
987 		if (folio_is_zone_device(folio)) {
988 			if (lruvec) {
989 				unlock_page_lruvec_irqrestore(lruvec, flags);
990 				lruvec = NULL;
991 			}
992 			if (put_devmap_managed_page(&folio->page))
993 				continue;
994 			if (folio_put_testzero(folio))
995 				free_zone_device_page(&folio->page);
996 			continue;
997 		}
998 
999 		if (!folio_put_testzero(folio))
1000 			continue;
1001 
1002 		if (folio_test_large(folio)) {
1003 			if (lruvec) {
1004 				unlock_page_lruvec_irqrestore(lruvec, flags);
1005 				lruvec = NULL;
1006 			}
1007 			__folio_put_large(folio);
1008 			continue;
1009 		}
1010 
1011 		if (folio_test_lru(folio)) {
1012 			struct lruvec *prev_lruvec = lruvec;
1013 
1014 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1015 									&flags);
1016 			if (prev_lruvec != lruvec)
1017 				lock_batch = 0;
1018 
1019 			lruvec_del_folio(lruvec, folio);
1020 			__folio_clear_lru_flags(folio);
1021 		}
1022 
1023 		list_add(&folio->lru, &pages_to_free);
1024 	}
1025 	if (lruvec)
1026 		unlock_page_lruvec_irqrestore(lruvec, flags);
1027 
1028 	mem_cgroup_uncharge_list(&pages_to_free);
1029 	free_unref_page_list(&pages_to_free);
1030 }
1031 EXPORT_SYMBOL(release_pages);
1032 
1033 /*
1034  * The folios which we're about to release may be in the deferred lru-addition
1035  * queues.  That would prevent them from really being freed right now.  That's
1036  * OK from a correctness point of view but is inefficient - those folios may be
1037  * cache-warm and we want to give them back to the page allocator ASAP.
1038  *
1039  * So __folio_batch_release() will drain those queues here.
1040  * folio_batch_move_lru() calls folios_put() directly to avoid
1041  * mutual recursion.
1042  */
__folio_batch_release(struct folio_batch * fbatch)1043 void __folio_batch_release(struct folio_batch *fbatch)
1044 {
1045 	if (!fbatch->percpu_pvec_drained) {
1046 		lru_add_drain();
1047 		fbatch->percpu_pvec_drained = true;
1048 	}
1049 	release_pages(fbatch->folios, folio_batch_count(fbatch));
1050 	folio_batch_reinit(fbatch);
1051 }
1052 EXPORT_SYMBOL(__folio_batch_release);
1053 
1054 /**
1055  * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1056  * @fbatch: The batch to prune
1057  *
1058  * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1059  * entries.  This function prunes all the non-folio entries from @fbatch
1060  * without leaving holes, so that it can be passed on to folio-only batch
1061  * operations.
1062  */
folio_batch_remove_exceptionals(struct folio_batch * fbatch)1063 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1064 {
1065 	unsigned int i, j;
1066 
1067 	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1068 		struct folio *folio = fbatch->folios[i];
1069 		if (!xa_is_value(folio))
1070 			fbatch->folios[j++] = folio;
1071 	}
1072 	fbatch->nr = j;
1073 }
1074 
1075 /*
1076  * Perform any setup for the swap system
1077  */
swap_setup(void)1078 void __init swap_setup(void)
1079 {
1080 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1081 
1082 	/* Use a smaller cluster for small-memory machines */
1083 	if (megs < 16)
1084 		page_cluster = 2;
1085 	else
1086 		page_cluster = 3;
1087 	/*
1088 	 * Right now other parts of the system means that we
1089 	 * _really_ don't want to cluster much more
1090 	 */
1091 }
1092