• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
4  *
5  *  Swap reorganised 29.12.95, Stephen Tweedie.
6  *  kswapd added: 7.1.96  sct
7  *  Removed kswapd_ctl limits, and swap out as many pages as needed
8  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10  *  Multiqueue VM started 5.8.00, Rik van Riel.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
58 #include <linux/rculist_nulls.h>
59 #include <linux/random.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
67 
68 #include "internal.h"
69 #include "swap.h"
70 
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
73 
74 #ifdef CONFIG_HYPERHOLD_FILE_LRU
75 #include <linux/memcg_policy.h>
76 #endif
77 #ifdef CONFIG_RECLAIM_ACCT
78 #include <linux/reclaim_acct.h>
79 #endif
80 
81 #ifdef ARCH_HAS_PREFETCHW
82 #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
83 	do {								\
84 		if ((_folio)->lru.prev != _base) {			\
85 			struct folio *prev;				\
86 									\
87 			prev = lru_to_folio(&(_folio->lru));		\
88 			prefetchw(&prev->_field);			\
89 		}							\
90 	} while (0)
91 #else
92 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
93 #endif
94 
95 #ifdef CONFIG_HYPERHOLD_FILE_LRU
96 unsigned int enough_inactive_file = 1;
97 #endif
98 
99 /*
100  * From 0 .. 200.  Higher means more swappy.
101  */
102 int vm_swappiness = 60;
103 
104 LIST_HEAD(shrinker_list);
105 DECLARE_RWSEM(shrinker_rwsem);
106 
107 #ifdef CONFIG_MEMCG
108 static int shrinker_nr_max;
109 
110 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
shrinker_map_size(int nr_items)111 static inline int shrinker_map_size(int nr_items)
112 {
113 	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
114 }
115 
shrinker_defer_size(int nr_items)116 static inline int shrinker_defer_size(int nr_items)
117 {
118 	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
119 }
120 
shrinker_info_protected(struct mem_cgroup * memcg,int nid)121 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
122 						     int nid)
123 {
124 	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
125 					 lockdep_is_held(&shrinker_rwsem));
126 }
127 
expand_one_shrinker_info(struct mem_cgroup * memcg,int map_size,int defer_size,int old_map_size,int old_defer_size,int new_nr_max)128 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
129 				    int map_size, int defer_size,
130 				    int old_map_size, int old_defer_size,
131 				    int new_nr_max)
132 {
133 	struct shrinker_info *new, *old;
134 	struct mem_cgroup_per_node *pn;
135 	int nid;
136 	int size = map_size + defer_size;
137 
138 	for_each_node(nid) {
139 		pn = memcg->nodeinfo[nid];
140 		old = shrinker_info_protected(memcg, nid);
141 		/* Not yet online memcg */
142 		if (!old)
143 			return 0;
144 
145 		/* Already expanded this shrinker_info */
146 		if (new_nr_max <= old->map_nr_max)
147 			continue;
148 
149 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
150 		if (!new)
151 			return -ENOMEM;
152 
153 		new->nr_deferred = (atomic_long_t *)(new + 1);
154 		new->map = (void *)new->nr_deferred + defer_size;
155 		new->map_nr_max = new_nr_max;
156 
157 		/* map: set all old bits, clear all new bits */
158 		memset(new->map, (int)0xff, old_map_size);
159 		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
160 		/* nr_deferred: copy old values, clear all new values */
161 		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
162 		memset((void *)new->nr_deferred + old_defer_size, 0,
163 		       defer_size - old_defer_size);
164 
165 		rcu_assign_pointer(pn->shrinker_info, new);
166 		kvfree_rcu(old, rcu);
167 	}
168 
169 	return 0;
170 }
171 
free_shrinker_info(struct mem_cgroup * memcg)172 void free_shrinker_info(struct mem_cgroup *memcg)
173 {
174 	struct mem_cgroup_per_node *pn;
175 	struct shrinker_info *info;
176 	int nid;
177 
178 	for_each_node(nid) {
179 		pn = memcg->nodeinfo[nid];
180 		info = rcu_dereference_protected(pn->shrinker_info, true);
181 		kvfree(info);
182 		rcu_assign_pointer(pn->shrinker_info, NULL);
183 	}
184 }
185 
alloc_shrinker_info(struct mem_cgroup * memcg)186 int alloc_shrinker_info(struct mem_cgroup *memcg)
187 {
188 	struct shrinker_info *info;
189 	int nid, size, ret = 0;
190 	int map_size, defer_size = 0;
191 
192 	down_write(&shrinker_rwsem);
193 	map_size = shrinker_map_size(shrinker_nr_max);
194 	defer_size = shrinker_defer_size(shrinker_nr_max);
195 	size = map_size + defer_size;
196 	for_each_node(nid) {
197 		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
198 		if (!info) {
199 			free_shrinker_info(memcg);
200 			ret = -ENOMEM;
201 			break;
202 		}
203 		info->nr_deferred = (atomic_long_t *)(info + 1);
204 		info->map = (void *)info->nr_deferred + defer_size;
205 		info->map_nr_max = shrinker_nr_max;
206 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
207 	}
208 	up_write(&shrinker_rwsem);
209 
210 	return ret;
211 }
212 
expand_shrinker_info(int new_id)213 static int expand_shrinker_info(int new_id)
214 {
215 	int ret = 0;
216 	int new_nr_max = round_up(new_id + 1, BITS_PER_LONG);
217 	int map_size, defer_size = 0;
218 	int old_map_size, old_defer_size = 0;
219 	struct mem_cgroup *memcg;
220 
221 	if (!root_mem_cgroup)
222 		goto out;
223 
224 	lockdep_assert_held(&shrinker_rwsem);
225 
226 	map_size = shrinker_map_size(new_nr_max);
227 	defer_size = shrinker_defer_size(new_nr_max);
228 	old_map_size = shrinker_map_size(shrinker_nr_max);
229 	old_defer_size = shrinker_defer_size(shrinker_nr_max);
230 
231 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
232 	do {
233 		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
234 					       old_map_size, old_defer_size,
235 					       new_nr_max);
236 		if (ret) {
237 			mem_cgroup_iter_break(NULL, memcg);
238 			goto out;
239 		}
240 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
241 out:
242 	if (!ret)
243 		shrinker_nr_max = new_nr_max;
244 
245 	return ret;
246 }
247 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)248 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
249 {
250 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
251 		struct shrinker_info *info;
252 
253 		rcu_read_lock();
254 		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
255 		if (!WARN_ON_ONCE(shrinker_id >= info->map_nr_max)) {
256 			/* Pairs with smp mb in shrink_slab() */
257 			smp_mb__before_atomic();
258 			set_bit(shrinker_id, info->map);
259 		}
260 		rcu_read_unlock();
261 	}
262 }
263 
264 static DEFINE_IDR(shrinker_idr);
265 
prealloc_memcg_shrinker(struct shrinker * shrinker)266 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
267 {
268 	int id, ret = -ENOMEM;
269 
270 	if (mem_cgroup_disabled())
271 		return -ENOSYS;
272 
273 	down_write(&shrinker_rwsem);
274 	/* This may call shrinker, so it must use down_read_trylock() */
275 	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
276 	if (id < 0)
277 		goto unlock;
278 
279 	if (id >= shrinker_nr_max) {
280 		if (expand_shrinker_info(id)) {
281 			idr_remove(&shrinker_idr, id);
282 			goto unlock;
283 		}
284 	}
285 	shrinker->id = id;
286 	ret = 0;
287 unlock:
288 	up_write(&shrinker_rwsem);
289 	return ret;
290 }
291 
unregister_memcg_shrinker(struct shrinker * shrinker)292 static void unregister_memcg_shrinker(struct shrinker *shrinker)
293 {
294 	int id = shrinker->id;
295 
296 	BUG_ON(id < 0);
297 
298 	lockdep_assert_held(&shrinker_rwsem);
299 
300 	idr_remove(&shrinker_idr, id);
301 }
302 
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)303 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
304 				   struct mem_cgroup *memcg)
305 {
306 	struct shrinker_info *info;
307 
308 	info = shrinker_info_protected(memcg, nid);
309 	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
310 }
311 
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)312 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
313 				  struct mem_cgroup *memcg)
314 {
315 	struct shrinker_info *info;
316 
317 	info = shrinker_info_protected(memcg, nid);
318 	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
319 }
320 
reparent_shrinker_deferred(struct mem_cgroup * memcg)321 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
322 {
323 	int i, nid;
324 	long nr;
325 	struct mem_cgroup *parent;
326 	struct shrinker_info *child_info, *parent_info;
327 
328 	parent = parent_mem_cgroup(memcg);
329 	if (!parent)
330 		parent = root_mem_cgroup;
331 
332 	/* Prevent from concurrent shrinker_info expand */
333 	down_read(&shrinker_rwsem);
334 	for_each_node(nid) {
335 		child_info = shrinker_info_protected(memcg, nid);
336 		parent_info = shrinker_info_protected(parent, nid);
337 		for (i = 0; i < child_info->map_nr_max; i++) {
338 			nr = atomic_long_read(&child_info->nr_deferred[i]);
339 			atomic_long_add(nr, &parent_info->nr_deferred[i]);
340 		}
341 	}
342 	up_read(&shrinker_rwsem);
343 }
344 
345 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)346 bool cgroup_reclaim(struct scan_control *sc)
347 {
348 	return sc->target_mem_cgroup;
349 }
350 
351 /*
352  * Returns true for reclaim on the root cgroup. This is true for direct
353  * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
354  */
root_reclaim(struct scan_control * sc)355 static bool root_reclaim(struct scan_control *sc)
356 {
357 	return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
358 }
359 
360 /**
361  * writeback_throttling_sane - is the usual dirty throttling mechanism available?
362  * @sc: scan_control in question
363  *
364  * The normal page dirty throttling mechanism in balance_dirty_pages() is
365  * completely broken with the legacy memcg and direct stalling in
366  * shrink_folio_list() is used for throttling instead, which lacks all the
367  * niceties such as fairness, adaptive pausing, bandwidth proportional
368  * allocation and configurability.
369  *
370  * This function tests whether the vmscan currently in progress can assume
371  * that the normal dirty throttling mechanism is operational.
372  */
writeback_throttling_sane(struct scan_control * sc)373 bool writeback_throttling_sane(struct scan_control *sc)
374 {
375 	if (!cgroup_reclaim(sc))
376 		return true;
377 #ifdef CONFIG_CGROUP_WRITEBACK
378 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
379 		return true;
380 #endif
381 	return false;
382 }
383 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)384 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
385 {
386 	return -ENOSYS;
387 }
388 
unregister_memcg_shrinker(struct shrinker * shrinker)389 static void unregister_memcg_shrinker(struct shrinker *shrinker)
390 {
391 }
392 
xchg_nr_deferred_memcg(int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)393 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
394 				   struct mem_cgroup *memcg)
395 {
396 	return 0;
397 }
398 
add_nr_deferred_memcg(long nr,int nid,struct shrinker * shrinker,struct mem_cgroup * memcg)399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 				  struct mem_cgroup *memcg)
401 {
402 	return 0;
403 }
404 
cgroup_reclaim(struct scan_control * sc)405 bool cgroup_reclaim(struct scan_control *sc)
406 {
407 	return false;
408 }
409 
root_reclaim(struct scan_control * sc)410 static bool root_reclaim(struct scan_control *sc)
411 {
412 	return true;
413 }
414 
writeback_throttling_sane(struct scan_control * sc)415 bool writeback_throttling_sane(struct scan_control *sc)
416 {
417 	return true;
418 }
419 #endif
420 
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)421 static void set_task_reclaim_state(struct task_struct *task,
422 				   struct reclaim_state *rs)
423 {
424 	/* Check for an overwrite */
425 	WARN_ON_ONCE(rs && task->reclaim_state);
426 
427 	/* Check for the nulling of an already-nulled member */
428 	WARN_ON_ONCE(!rs && !task->reclaim_state);
429 
430 	task->reclaim_state = rs;
431 }
432 
433 /*
434  * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
435  * scan_control->nr_reclaimed.
436  */
flush_reclaim_state(struct scan_control * sc)437 static void flush_reclaim_state(struct scan_control *sc)
438 {
439 	/*
440 	 * Currently, reclaim_state->reclaimed includes three types of pages
441 	 * freed outside of vmscan:
442 	 * (1) Slab pages.
443 	 * (2) Clean file pages from pruned inodes (on highmem systems).
444 	 * (3) XFS freed buffer pages.
445 	 *
446 	 * For all of these cases, we cannot universally link the pages to a
447 	 * single memcg. For example, a memcg-aware shrinker can free one object
448 	 * charged to the target memcg, causing an entire page to be freed.
449 	 * If we count the entire page as reclaimed from the memcg, we end up
450 	 * overestimating the reclaimed amount (potentially under-reclaiming).
451 	 *
452 	 * Only count such pages for global reclaim to prevent under-reclaiming
453 	 * from the target memcg; preventing unnecessary retries during memcg
454 	 * charging and false positives from proactive reclaim.
455 	 *
456 	 * For uncommon cases where the freed pages were actually mostly
457 	 * charged to the target memcg, we end up underestimating the reclaimed
458 	 * amount. This should be fine. The freed pages will be uncharged
459 	 * anyway, even if they are not counted here properly, and we will be
460 	 * able to make forward progress in charging (which is usually in a
461 	 * retry loop).
462 	 *
463 	 * We can go one step further, and report the uncharged objcg pages in
464 	 * memcg reclaim, to make reporting more accurate and reduce
465 	 * underestimation, but it's probably not worth the complexity for now.
466 	 */
467 	if (current->reclaim_state && root_reclaim(sc)) {
468 		sc->nr_reclaimed += current->reclaim_state->reclaimed;
469 		current->reclaim_state->reclaimed = 0;
470 	}
471 }
472 
xchg_nr_deferred(struct shrinker * shrinker,struct shrink_control * sc)473 static long xchg_nr_deferred(struct shrinker *shrinker,
474 			     struct shrink_control *sc)
475 {
476 	int nid = sc->nid;
477 
478 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
479 		nid = 0;
480 
481 	if (sc->memcg &&
482 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
483 		return xchg_nr_deferred_memcg(nid, shrinker,
484 					      sc->memcg);
485 
486 	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
487 }
488 
489 
add_nr_deferred(long nr,struct shrinker * shrinker,struct shrink_control * sc)490 static long add_nr_deferred(long nr, struct shrinker *shrinker,
491 			    struct shrink_control *sc)
492 {
493 	int nid = sc->nid;
494 
495 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
496 		nid = 0;
497 
498 	if (sc->memcg &&
499 	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
500 		return add_nr_deferred_memcg(nr, nid, shrinker,
501 					     sc->memcg);
502 
503 	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
504 }
505 
can_demote(int nid,struct scan_control * sc)506 static bool can_demote(int nid, struct scan_control *sc)
507 {
508 	if (!numa_demotion_enabled)
509 		return false;
510 	if (sc && sc->no_demotion)
511 		return false;
512 	if (next_demotion_node(nid) == NUMA_NO_NODE)
513 		return false;
514 
515 	return true;
516 }
517 
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)518 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
519 					  int nid,
520 					  struct scan_control *sc)
521 {
522 	if (memcg == NULL) {
523 		/*
524 		 * For non-memcg reclaim, is there
525 		 * space in any swap device?
526 		 */
527 		if (get_nr_swap_pages() > 0)
528 			return true;
529 	} else {
530 		/* Is the memcg below its swap limit? */
531 		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
532 			return true;
533 	}
534 
535 	/*
536 	 * The page can not be swapped.
537 	 *
538 	 * Can it be reclaimed from this node via demotion?
539 	 */
540 	return can_demote(nid, sc);
541 }
542 
543 /*
544  * This misses isolated folios which are not accounted for to save counters.
545  * As the data only determines if reclaim or compaction continues, it is
546  * not expected that isolated folios will be a dominating factor.
547  */
zone_reclaimable_pages(struct zone * zone)548 unsigned long zone_reclaimable_pages(struct zone *zone)
549 {
550 	unsigned long nr;
551 
552 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
553 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
554 	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
555 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
556 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
557 	/*
558 	 * If there are no reclaimable file-backed or anonymous pages,
559 	 * ensure zones with sufficient free pages are not skipped.
560 	 * This prevents zones like DMA32 from being ignored in reclaim
561 	 * scenarios where they can still help alleviate memory pressure.
562 	 */
563 	if (nr == 0)
564 		nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
565 	return nr;
566 }
567 
568 /**
569  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
570  * @lruvec: lru vector
571  * @lru: lru to use
572  * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
573  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)574 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
575 				     int zone_idx)
576 {
577 	unsigned long size = 0;
578 	int zid;
579 
580 #ifdef CONFIG_HYPERHOLD_FILE_LRU
581 	if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
582 		for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
583 			struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
584 
585 			if (!managed_zone(zone))
586 				continue;
587 
588 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
589 		}
590 
591 		return size;
592 	}
593 #endif
594 
595 	for (zid = 0; zid <= zone_idx; zid++) {
596 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
597 
598 		if (!managed_zone(zone))
599 			continue;
600 
601 		if (!mem_cgroup_disabled())
602 			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
603 		else
604 			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
605 	}
606 	return size;
607 }
608 
609 /*
610  * Add a shrinker callback to be called from the vm.
611  */
__prealloc_shrinker(struct shrinker * shrinker)612 static int __prealloc_shrinker(struct shrinker *shrinker)
613 {
614 	unsigned int size;
615 	int err;
616 
617 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
618 		err = prealloc_memcg_shrinker(shrinker);
619 		if (err != -ENOSYS)
620 			return err;
621 
622 		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
623 	}
624 
625 	size = sizeof(*shrinker->nr_deferred);
626 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
627 		size *= nr_node_ids;
628 
629 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
630 	if (!shrinker->nr_deferred)
631 		return -ENOMEM;
632 
633 	return 0;
634 }
635 
636 #ifdef CONFIG_SHRINKER_DEBUG
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)637 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
638 {
639 	va_list ap;
640 	int err;
641 
642 	va_start(ap, fmt);
643 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
644 	va_end(ap);
645 	if (!shrinker->name)
646 		return -ENOMEM;
647 
648 	err = __prealloc_shrinker(shrinker);
649 	if (err) {
650 		kfree_const(shrinker->name);
651 		shrinker->name = NULL;
652 	}
653 
654 	return err;
655 }
656 #else
prealloc_shrinker(struct shrinker * shrinker,const char * fmt,...)657 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
658 {
659 	return __prealloc_shrinker(shrinker);
660 }
661 #endif
662 
free_prealloced_shrinker(struct shrinker * shrinker)663 void free_prealloced_shrinker(struct shrinker *shrinker)
664 {
665 #ifdef CONFIG_SHRINKER_DEBUG
666 	kfree_const(shrinker->name);
667 	shrinker->name = NULL;
668 #endif
669 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
670 		down_write(&shrinker_rwsem);
671 		unregister_memcg_shrinker(shrinker);
672 		up_write(&shrinker_rwsem);
673 		return;
674 	}
675 
676 	kfree(shrinker->nr_deferred);
677 	shrinker->nr_deferred = NULL;
678 }
679 
register_shrinker_prepared(struct shrinker * shrinker)680 void register_shrinker_prepared(struct shrinker *shrinker)
681 {
682 	down_write(&shrinker_rwsem);
683 	list_add_tail(&shrinker->list, &shrinker_list);
684 	shrinker->flags |= SHRINKER_REGISTERED;
685 	shrinker_debugfs_add(shrinker);
686 	up_write(&shrinker_rwsem);
687 }
688 
__register_shrinker(struct shrinker * shrinker)689 static int __register_shrinker(struct shrinker *shrinker)
690 {
691 	int err = __prealloc_shrinker(shrinker);
692 
693 	if (err)
694 		return err;
695 	register_shrinker_prepared(shrinker);
696 	return 0;
697 }
698 
699 #ifdef CONFIG_SHRINKER_DEBUG
register_shrinker(struct shrinker * shrinker,const char * fmt,...)700 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
701 {
702 	va_list ap;
703 	int err;
704 
705 	va_start(ap, fmt);
706 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
707 	va_end(ap);
708 	if (!shrinker->name)
709 		return -ENOMEM;
710 
711 	err = __register_shrinker(shrinker);
712 	if (err) {
713 		kfree_const(shrinker->name);
714 		shrinker->name = NULL;
715 	}
716 	return err;
717 }
718 #else
register_shrinker(struct shrinker * shrinker,const char * fmt,...)719 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
720 {
721 	return __register_shrinker(shrinker);
722 }
723 #endif
724 EXPORT_SYMBOL(register_shrinker);
725 
726 /*
727  * Remove one
728  */
unregister_shrinker(struct shrinker * shrinker)729 void unregister_shrinker(struct shrinker *shrinker)
730 {
731 	struct dentry *debugfs_entry;
732 	int debugfs_id;
733 
734 	if (!(shrinker->flags & SHRINKER_REGISTERED))
735 		return;
736 
737 	down_write(&shrinker_rwsem);
738 	list_del(&shrinker->list);
739 	shrinker->flags &= ~SHRINKER_REGISTERED;
740 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
741 		unregister_memcg_shrinker(shrinker);
742 	debugfs_entry = shrinker_debugfs_detach(shrinker, &debugfs_id);
743 	up_write(&shrinker_rwsem);
744 
745 	shrinker_debugfs_remove(debugfs_entry, debugfs_id);
746 
747 	kfree(shrinker->nr_deferred);
748 	shrinker->nr_deferred = NULL;
749 }
750 EXPORT_SYMBOL(unregister_shrinker);
751 
752 /**
753  * synchronize_shrinkers - Wait for all running shrinkers to complete.
754  *
755  * This is equivalent to calling unregister_shrink() and register_shrinker(),
756  * but atomically and with less overhead. This is useful to guarantee that all
757  * shrinker invocations have seen an update, before freeing memory, similar to
758  * rcu.
759  */
synchronize_shrinkers(void)760 void synchronize_shrinkers(void)
761 {
762 	down_write(&shrinker_rwsem);
763 	up_write(&shrinker_rwsem);
764 }
765 EXPORT_SYMBOL(synchronize_shrinkers);
766 
767 #define SHRINK_BATCH 128
768 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)769 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
770 				    struct shrinker *shrinker, int priority)
771 {
772 	unsigned long freed = 0;
773 	unsigned long long delta;
774 	long total_scan;
775 	long freeable;
776 	long nr;
777 	long new_nr;
778 	long batch_size = shrinker->batch ? shrinker->batch
779 					  : SHRINK_BATCH;
780 	long scanned = 0, next_deferred;
781 
782 	freeable = shrinker->count_objects(shrinker, shrinkctl);
783 	if (freeable == 0 || freeable == SHRINK_EMPTY)
784 		return freeable;
785 
786 	/*
787 	 * copy the current shrinker scan count into a local variable
788 	 * and zero it so that other concurrent shrinker invocations
789 	 * don't also do this scanning work.
790 	 */
791 	nr = xchg_nr_deferred(shrinker, shrinkctl);
792 
793 	if (shrinker->seeks) {
794 		delta = freeable >> priority;
795 		delta *= 4;
796 		do_div(delta, shrinker->seeks);
797 	} else {
798 		/*
799 		 * These objects don't require any IO to create. Trim
800 		 * them aggressively under memory pressure to keep
801 		 * them from causing refetches in the IO caches.
802 		 */
803 		delta = freeable / 2;
804 	}
805 
806 	total_scan = nr >> priority;
807 	total_scan += delta;
808 	total_scan = min(total_scan, (2 * freeable));
809 
810 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
811 				   freeable, delta, total_scan, priority);
812 
813 	/*
814 	 * Normally, we should not scan less than batch_size objects in one
815 	 * pass to avoid too frequent shrinker calls, but if the slab has less
816 	 * than batch_size objects in total and we are really tight on memory,
817 	 * we will try to reclaim all available objects, otherwise we can end
818 	 * up failing allocations although there are plenty of reclaimable
819 	 * objects spread over several slabs with usage less than the
820 	 * batch_size.
821 	 *
822 	 * We detect the "tight on memory" situations by looking at the total
823 	 * number of objects we want to scan (total_scan). If it is greater
824 	 * than the total number of objects on slab (freeable), we must be
825 	 * scanning at high prio and therefore should try to reclaim as much as
826 	 * possible.
827 	 */
828 	while (total_scan >= batch_size ||
829 	       total_scan >= freeable) {
830 		unsigned long ret;
831 		unsigned long nr_to_scan = min(batch_size, total_scan);
832 
833 		shrinkctl->nr_to_scan = nr_to_scan;
834 		shrinkctl->nr_scanned = nr_to_scan;
835 		ret = shrinker->scan_objects(shrinker, shrinkctl);
836 		if (ret == SHRINK_STOP)
837 			break;
838 		freed += ret;
839 
840 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
841 		total_scan -= shrinkctl->nr_scanned;
842 		scanned += shrinkctl->nr_scanned;
843 
844 		cond_resched();
845 	}
846 
847 	/*
848 	 * The deferred work is increased by any new work (delta) that wasn't
849 	 * done, decreased by old deferred work that was done now.
850 	 *
851 	 * And it is capped to two times of the freeable items.
852 	 */
853 	next_deferred = max_t(long, (nr + delta - scanned), 0);
854 	next_deferred = min(next_deferred, (2 * freeable));
855 
856 	/*
857 	 * move the unused scan count back into the shrinker in a
858 	 * manner that handles concurrent updates.
859 	 */
860 	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
861 
862 	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
863 	return freed;
864 }
865 
866 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)867 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
868 			struct mem_cgroup *memcg, int priority)
869 {
870 	struct shrinker_info *info;
871 	unsigned long ret, freed = 0;
872 	int i;
873 
874 	if (!mem_cgroup_online(memcg))
875 		return 0;
876 
877 	if (!down_read_trylock(&shrinker_rwsem))
878 		return 0;
879 
880 	info = shrinker_info_protected(memcg, nid);
881 	if (unlikely(!info))
882 		goto unlock;
883 
884 	for_each_set_bit(i, info->map, info->map_nr_max) {
885 		struct shrink_control sc = {
886 			.gfp_mask = gfp_mask,
887 			.nid = nid,
888 			.memcg = memcg,
889 		};
890 		struct shrinker *shrinker;
891 
892 		shrinker = idr_find(&shrinker_idr, i);
893 		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
894 			if (!shrinker)
895 				clear_bit(i, info->map);
896 			continue;
897 		}
898 
899 		/* Call non-slab shrinkers even though kmem is disabled */
900 		if (!memcg_kmem_online() &&
901 		    !(shrinker->flags & SHRINKER_NONSLAB))
902 			continue;
903 
904 		ret = do_shrink_slab(&sc, shrinker, priority);
905 		if (ret == SHRINK_EMPTY) {
906 			clear_bit(i, info->map);
907 			/*
908 			 * After the shrinker reported that it had no objects to
909 			 * free, but before we cleared the corresponding bit in
910 			 * the memcg shrinker map, a new object might have been
911 			 * added. To make sure, we have the bit set in this
912 			 * case, we invoke the shrinker one more time and reset
913 			 * the bit if it reports that it is not empty anymore.
914 			 * The memory barrier here pairs with the barrier in
915 			 * set_shrinker_bit():
916 			 *
917 			 * list_lru_add()     shrink_slab_memcg()
918 			 *   list_add_tail()    clear_bit()
919 			 *   <MB>               <MB>
920 			 *   set_bit()          do_shrink_slab()
921 			 */
922 			smp_mb__after_atomic();
923 			ret = do_shrink_slab(&sc, shrinker, priority);
924 			if (ret == SHRINK_EMPTY)
925 				ret = 0;
926 			else
927 				set_shrinker_bit(memcg, nid, i);
928 		}
929 		freed += ret;
930 
931 		if (rwsem_is_contended(&shrinker_rwsem)) {
932 			freed = freed ? : 1;
933 			break;
934 		}
935 	}
936 unlock:
937 	up_read(&shrinker_rwsem);
938 	return freed;
939 }
940 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)941 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
942 			struct mem_cgroup *memcg, int priority)
943 {
944 	return 0;
945 }
946 #endif /* CONFIG_MEMCG */
947 
948 /**
949  * shrink_slab - shrink slab caches
950  * @gfp_mask: allocation context
951  * @nid: node whose slab caches to target
952  * @memcg: memory cgroup whose slab caches to target
953  * @priority: the reclaim priority
954  *
955  * Call the shrink functions to age shrinkable caches.
956  *
957  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
958  * unaware shrinkers will receive a node id of 0 instead.
959  *
960  * @memcg specifies the memory cgroup to target. Unaware shrinkers
961  * are called only if it is the root cgroup.
962  *
963  * @priority is sc->priority, we take the number of objects and >> by priority
964  * in order to get the scan target.
965  *
966  * Returns the number of reclaimed slab objects.
967  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)968 unsigned long shrink_slab(gfp_t gfp_mask, int nid,
969 				 struct mem_cgroup *memcg,
970 				 int priority)
971 {
972 	unsigned long ret, freed = 0;
973 	struct shrinker *shrinker;
974 
975 	/*
976 	 * The root memcg might be allocated even though memcg is disabled
977 	 * via "cgroup_disable=memory" boot parameter.  This could make
978 	 * mem_cgroup_is_root() return false, then just run memcg slab
979 	 * shrink, but skip global shrink.  This may result in premature
980 	 * oom.
981 	 */
982 	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
983 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
984 
985 	if (!down_read_trylock(&shrinker_rwsem))
986 		goto out;
987 
988 	list_for_each_entry(shrinker, &shrinker_list, list) {
989 		struct shrink_control sc = {
990 			.gfp_mask = gfp_mask,
991 			.nid = nid,
992 			.memcg = memcg,
993 		};
994 
995 		ret = do_shrink_slab(&sc, shrinker, priority);
996 		if (ret == SHRINK_EMPTY)
997 			ret = 0;
998 		freed += ret;
999 		/*
1000 		 * Bail out if someone want to register a new shrinker to
1001 		 * prevent the registration from being stalled for long periods
1002 		 * by parallel ongoing shrinking.
1003 		 */
1004 		if (rwsem_is_contended(&shrinker_rwsem)) {
1005 			freed = freed ? : 1;
1006 			break;
1007 		}
1008 	}
1009 
1010 	up_read(&shrinker_rwsem);
1011 out:
1012 	cond_resched();
1013 	return freed;
1014 }
1015 
drop_slab_node(int nid)1016 static unsigned long drop_slab_node(int nid)
1017 {
1018 	unsigned long freed = 0;
1019 	struct mem_cgroup *memcg = NULL;
1020 
1021 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
1022 	do {
1023 		freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1024 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1025 
1026 	return freed;
1027 }
1028 
drop_slab(void)1029 void drop_slab(void)
1030 {
1031 	int nid;
1032 	int shift = 0;
1033 	unsigned long freed;
1034 
1035 	do {
1036 		freed = 0;
1037 		for_each_online_node(nid) {
1038 			if (fatal_signal_pending(current))
1039 				return;
1040 
1041 			freed += drop_slab_node(nid);
1042 		}
1043 	} while ((freed >> shift++) > 1);
1044 }
1045 
reclaimer_offset(void)1046 static int reclaimer_offset(void)
1047 {
1048 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1049 			PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1050 	BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1051 			PGSCAN_DIRECT - PGSCAN_KSWAPD);
1052 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1053 			PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1054 	BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1055 			PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1056 
1057 	if (current_is_kswapd())
1058 		return 0;
1059 	if (current_is_khugepaged())
1060 		return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1061 	return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1062 }
1063 
is_page_cache_freeable(struct folio * folio)1064 static inline int is_page_cache_freeable(struct folio *folio)
1065 {
1066 	/*
1067 	 * A freeable page cache folio is referenced only by the caller
1068 	 * that isolated the folio, the page cache and optional filesystem
1069 	 * private data at folio->private.
1070 	 */
1071 	return folio_ref_count(folio) - folio_test_private(folio) ==
1072 		1 + folio_nr_pages(folio);
1073 }
1074 
1075 /*
1076  * We detected a synchronous write error writing a folio out.  Probably
1077  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
1078  * fsync(), msync() or close().
1079  *
1080  * The tricky part is that after writepage we cannot touch the mapping: nothing
1081  * prevents it from being freed up.  But we have a ref on the folio and once
1082  * that folio is locked, the mapping is pinned.
1083  *
1084  * We're allowed to run sleeping folio_lock() here because we know the caller has
1085  * __GFP_FS.
1086  */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)1087 static void handle_write_error(struct address_space *mapping,
1088 				struct folio *folio, int error)
1089 {
1090 	folio_lock(folio);
1091 	if (folio_mapping(folio) == mapping)
1092 		mapping_set_error(mapping, error);
1093 	folio_unlock(folio);
1094 }
1095 
skip_throttle_noprogress(pg_data_t * pgdat)1096 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1097 {
1098 	int reclaimable = 0, write_pending = 0;
1099 	int i;
1100 
1101 	/*
1102 	 * If kswapd is disabled, reschedule if necessary but do not
1103 	 * throttle as the system is likely near OOM.
1104 	 */
1105 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1106 		return true;
1107 
1108 	/*
1109 	 * If there are a lot of dirty/writeback folios then do not
1110 	 * throttle as throttling will occur when the folios cycle
1111 	 * towards the end of the LRU if still under writeback.
1112 	 */
1113 	for (i = 0; i < MAX_NR_ZONES; i++) {
1114 		struct zone *zone = pgdat->node_zones + i;
1115 
1116 		if (!managed_zone(zone))
1117 			continue;
1118 
1119 		reclaimable += zone_reclaimable_pages(zone);
1120 		write_pending += zone_page_state_snapshot(zone,
1121 						  NR_ZONE_WRITE_PENDING);
1122 	}
1123 	if (2 * write_pending <= reclaimable)
1124 		return true;
1125 
1126 	return false;
1127 }
1128 
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)1129 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1130 {
1131 	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1132 	long timeout, ret;
1133 	DEFINE_WAIT(wait);
1134 
1135 	/*
1136 	 * Do not throttle user workers, kthreads other than kswapd or
1137 	 * workqueues. They may be required for reclaim to make
1138 	 * forward progress (e.g. journalling workqueues or kthreads).
1139 	 */
1140 	if (!current_is_kswapd() &&
1141 	    current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
1142 		cond_resched();
1143 		return;
1144 	}
1145 
1146 	/*
1147 	 * These figures are pulled out of thin air.
1148 	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1149 	 * parallel reclaimers which is a short-lived event so the timeout is
1150 	 * short. Failing to make progress or waiting on writeback are
1151 	 * potentially long-lived events so use a longer timeout. This is shaky
1152 	 * logic as a failure to make progress could be due to anything from
1153 	 * writeback to a slow device to excessive referenced folios at the tail
1154 	 * of the inactive LRU.
1155 	 */
1156 	switch(reason) {
1157 	case VMSCAN_THROTTLE_WRITEBACK:
1158 		timeout = HZ/10;
1159 
1160 		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1161 			WRITE_ONCE(pgdat->nr_reclaim_start,
1162 				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1163 		}
1164 
1165 		break;
1166 	case VMSCAN_THROTTLE_CONGESTED:
1167 		fallthrough;
1168 	case VMSCAN_THROTTLE_NOPROGRESS:
1169 		if (skip_throttle_noprogress(pgdat)) {
1170 			cond_resched();
1171 			return;
1172 		}
1173 
1174 		timeout = 1;
1175 
1176 		break;
1177 	case VMSCAN_THROTTLE_ISOLATED:
1178 		timeout = HZ/50;
1179 		break;
1180 	default:
1181 		WARN_ON_ONCE(1);
1182 		timeout = HZ;
1183 		break;
1184 	}
1185 
1186 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1187 	ret = schedule_timeout(timeout);
1188 	finish_wait(wqh, &wait);
1189 
1190 	if (reason == VMSCAN_THROTTLE_WRITEBACK)
1191 		atomic_dec(&pgdat->nr_writeback_throttled);
1192 
1193 	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1194 				jiffies_to_usecs(timeout - ret),
1195 				reason);
1196 }
1197 
1198 /*
1199  * Account for folios written if tasks are throttled waiting on dirty
1200  * folios to clean. If enough folios have been cleaned since throttling
1201  * started then wakeup the throttled tasks.
1202  */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)1203 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1204 							int nr_throttled)
1205 {
1206 	unsigned long nr_written;
1207 
1208 	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1209 
1210 	/*
1211 	 * This is an inaccurate read as the per-cpu deltas may not
1212 	 * be synchronised. However, given that the system is
1213 	 * writeback throttled, it is not worth taking the penalty
1214 	 * of getting an accurate count. At worst, the throttle
1215 	 * timeout guarantees forward progress.
1216 	 */
1217 	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1218 		READ_ONCE(pgdat->nr_reclaim_start);
1219 
1220 	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1221 		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1222 }
1223 
1224 /* possible outcome of pageout() */
1225 typedef enum {
1226 	/* failed to write folio out, folio is locked */
1227 	PAGE_KEEP,
1228 	/* move folio to the active list, folio is locked */
1229 	PAGE_ACTIVATE,
1230 	/* folio has been sent to the disk successfully, folio is unlocked */
1231 	PAGE_SUCCESS,
1232 	/* folio is clean and locked */
1233 	PAGE_CLEAN,
1234 } pageout_t;
1235 
1236 /*
1237  * pageout is called by shrink_folio_list() for each dirty folio.
1238  * Calls ->writepage().
1239  */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug)1240 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1241 			 struct swap_iocb **plug)
1242 {
1243 	/*
1244 	 * If the folio is dirty, only perform writeback if that write
1245 	 * will be non-blocking.  To prevent this allocation from being
1246 	 * stalled by pagecache activity.  But note that there may be
1247 	 * stalls if we need to run get_block().  We could test
1248 	 * PagePrivate for that.
1249 	 *
1250 	 * If this process is currently in __generic_file_write_iter() against
1251 	 * this folio's queue, we can perform writeback even if that
1252 	 * will block.
1253 	 *
1254 	 * If the folio is swapcache, write it back even if that would
1255 	 * block, for some throttling. This happens by accident, because
1256 	 * swap_backing_dev_info is bust: it doesn't reflect the
1257 	 * congestion state of the swapdevs.  Easy to fix, if needed.
1258 	 */
1259 	if (!is_page_cache_freeable(folio))
1260 		return PAGE_KEEP;
1261 	if (!mapping) {
1262 		/*
1263 		 * Some data journaling orphaned folios can have
1264 		 * folio->mapping == NULL while being dirty with clean buffers.
1265 		 */
1266 		if (folio_test_private(folio)) {
1267 			if (try_to_free_buffers(folio)) {
1268 				folio_clear_dirty(folio);
1269 				pr_info("%s: orphaned folio\n", __func__);
1270 				return PAGE_CLEAN;
1271 			}
1272 		}
1273 		return PAGE_KEEP;
1274 	}
1275 	if (mapping->a_ops->writepage == NULL)
1276 		return PAGE_ACTIVATE;
1277 
1278 	if (folio_clear_dirty_for_io(folio)) {
1279 		int res;
1280 		struct writeback_control wbc = {
1281 			.sync_mode = WB_SYNC_NONE,
1282 			.nr_to_write = SWAP_CLUSTER_MAX,
1283 			.range_start = 0,
1284 			.range_end = LLONG_MAX,
1285 			.for_reclaim = 1,
1286 			.swap_plug = plug,
1287 		};
1288 
1289 		folio_set_reclaim(folio);
1290 		res = mapping->a_ops->writepage(&folio->page, &wbc);
1291 		if (res < 0)
1292 			handle_write_error(mapping, folio, res);
1293 		if (res == AOP_WRITEPAGE_ACTIVATE) {
1294 			folio_clear_reclaim(folio);
1295 			return PAGE_ACTIVATE;
1296 		}
1297 
1298 		if (!folio_test_writeback(folio)) {
1299 			/* synchronous write or broken a_ops? */
1300 			folio_clear_reclaim(folio);
1301 		}
1302 		trace_mm_vmscan_write_folio(folio);
1303 		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1304 		return PAGE_SUCCESS;
1305 	}
1306 
1307 	return PAGE_CLEAN;
1308 }
1309 
1310 /*
1311  * Same as remove_mapping, but if the folio is removed from the mapping, it
1312  * gets returned with a refcount of 0.
1313  */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)1314 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1315 			    bool reclaimed, struct mem_cgroup *target_memcg)
1316 {
1317 	int refcount;
1318 	void *shadow = NULL;
1319 
1320 	BUG_ON(!folio_test_locked(folio));
1321 	BUG_ON(mapping != folio_mapping(folio));
1322 
1323 	if (!folio_test_swapcache(folio))
1324 		spin_lock(&mapping->host->i_lock);
1325 	xa_lock_irq(&mapping->i_pages);
1326 	/*
1327 	 * The non racy check for a busy folio.
1328 	 *
1329 	 * Must be careful with the order of the tests. When someone has
1330 	 * a ref to the folio, it may be possible that they dirty it then
1331 	 * drop the reference. So if the dirty flag is tested before the
1332 	 * refcount here, then the following race may occur:
1333 	 *
1334 	 * get_user_pages(&page);
1335 	 * [user mapping goes away]
1336 	 * write_to(page);
1337 	 *				!folio_test_dirty(folio)    [good]
1338 	 * folio_set_dirty(folio);
1339 	 * folio_put(folio);
1340 	 *				!refcount(folio)   [good, discard it]
1341 	 *
1342 	 * [oops, our write_to data is lost]
1343 	 *
1344 	 * Reversing the order of the tests ensures such a situation cannot
1345 	 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1346 	 * load is not satisfied before that of folio->_refcount.
1347 	 *
1348 	 * Note that if the dirty flag is always set via folio_mark_dirty,
1349 	 * and thus under the i_pages lock, then this ordering is not required.
1350 	 */
1351 	refcount = 1 + folio_nr_pages(folio);
1352 	if (!folio_ref_freeze(folio, refcount))
1353 		goto cannot_free;
1354 	/* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1355 	if (unlikely(folio_test_dirty(folio))) {
1356 		folio_ref_unfreeze(folio, refcount);
1357 		goto cannot_free;
1358 	}
1359 
1360 	if (folio_test_swapcache(folio)) {
1361 		swp_entry_t swap = folio->swap;
1362 
1363 		if (reclaimed && !mapping_exiting(mapping))
1364 			shadow = workingset_eviction(folio, target_memcg);
1365 		__delete_from_swap_cache(folio, swap, shadow);
1366 		mem_cgroup_swapout(folio, swap);
1367 		xa_unlock_irq(&mapping->i_pages);
1368 		put_swap_folio(folio, swap);
1369 	} else {
1370 		void (*free_folio)(struct folio *);
1371 
1372 		free_folio = mapping->a_ops->free_folio;
1373 		/*
1374 		 * Remember a shadow entry for reclaimed file cache in
1375 		 * order to detect refaults, thus thrashing, later on.
1376 		 *
1377 		 * But don't store shadows in an address space that is
1378 		 * already exiting.  This is not just an optimization,
1379 		 * inode reclaim needs to empty out the radix tree or
1380 		 * the nodes are lost.  Don't plant shadows behind its
1381 		 * back.
1382 		 *
1383 		 * We also don't store shadows for DAX mappings because the
1384 		 * only page cache folios found in these are zero pages
1385 		 * covering holes, and because we don't want to mix DAX
1386 		 * exceptional entries and shadow exceptional entries in the
1387 		 * same address_space.
1388 		 */
1389 		if (reclaimed && folio_is_file_lru(folio) &&
1390 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
1391 			shadow = workingset_eviction(folio, target_memcg);
1392 		__filemap_remove_folio(folio, shadow);
1393 		xa_unlock_irq(&mapping->i_pages);
1394 		if (mapping_shrinkable(mapping))
1395 			inode_add_lru(mapping->host);
1396 		spin_unlock(&mapping->host->i_lock);
1397 
1398 		if (free_folio)
1399 			free_folio(folio);
1400 	}
1401 
1402 	return 1;
1403 
1404 cannot_free:
1405 	xa_unlock_irq(&mapping->i_pages);
1406 	if (!folio_test_swapcache(folio))
1407 		spin_unlock(&mapping->host->i_lock);
1408 	return 0;
1409 }
1410 
1411 /**
1412  * remove_mapping() - Attempt to remove a folio from its mapping.
1413  * @mapping: The address space.
1414  * @folio: The folio to remove.
1415  *
1416  * If the folio is dirty, under writeback or if someone else has a ref
1417  * on it, removal will fail.
1418  * Return: The number of pages removed from the mapping.  0 if the folio
1419  * could not be removed.
1420  * Context: The caller should have a single refcount on the folio and
1421  * hold its lock.
1422  */
remove_mapping(struct address_space * mapping,struct folio * folio)1423 long remove_mapping(struct address_space *mapping, struct folio *folio)
1424 {
1425 	if (__remove_mapping(mapping, folio, false, NULL)) {
1426 		/*
1427 		 * Unfreezing the refcount with 1 effectively
1428 		 * drops the pagecache ref for us without requiring another
1429 		 * atomic operation.
1430 		 */
1431 		folio_ref_unfreeze(folio, 1);
1432 		return folio_nr_pages(folio);
1433 	}
1434 	return 0;
1435 }
1436 
1437 /**
1438  * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1439  * @folio: Folio to be returned to an LRU list.
1440  *
1441  * Add previously isolated @folio to appropriate LRU list.
1442  * The folio may still be unevictable for other reasons.
1443  *
1444  * Context: lru_lock must not be held, interrupts must be enabled.
1445  */
folio_putback_lru(struct folio * folio)1446 void folio_putback_lru(struct folio *folio)
1447 {
1448 	folio_add_lru(folio);
1449 	folio_put(folio);		/* drop ref from isolate */
1450 }
1451 
1452 enum folio_references {
1453 	FOLIOREF_RECLAIM,
1454 	FOLIOREF_RECLAIM_CLEAN,
1455 	FOLIOREF_RECLAIM_PURGEABLE,
1456 	FOLIOREF_KEEP,
1457 	FOLIOREF_ACTIVATE,
1458 };
1459 
folio_check_references(struct folio * folio,struct scan_control * sc)1460 static enum folio_references folio_check_references(struct folio *folio,
1461 						  struct scan_control *sc)
1462 {
1463 	int referenced_ptes, referenced_folio;
1464 	unsigned long vm_flags;
1465 
1466 	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1467 					   &vm_flags);
1468 	referenced_folio = folio_test_clear_referenced(folio);
1469 
1470 	/*
1471 	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1472 	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1473 	 */
1474 	if (vm_flags & VM_LOCKED)
1475 		return FOLIOREF_ACTIVATE;
1476 
1477 
1478 	/* rmap lock contention: rotate */
1479 	if (referenced_ptes == -1)
1480 		return FOLIOREF_KEEP;
1481 
1482 #ifdef CONFIG_MEM_PURGEABLE
1483 	if (vm_flags & VM_PURGEABLE)
1484 		return FOLIOREF_RECLAIM_PURGEABLE;
1485 #endif
1486 
1487 	if (referenced_ptes) {
1488 		/*
1489 		 * All mapped folios start out with page table
1490 		 * references from the instantiating fault, so we need
1491 		 * to look twice if a mapped file/anon folio is used more
1492 		 * than once.
1493 		 *
1494 		 * Mark it and spare it for another trip around the
1495 		 * inactive list.  Another page table reference will
1496 		 * lead to its activation.
1497 		 *
1498 		 * Note: the mark is set for activated folios as well
1499 		 * so that recently deactivated but used folios are
1500 		 * quickly recovered.
1501 		 */
1502 		folio_set_referenced(folio);
1503 
1504 		if (referenced_folio || referenced_ptes > 1)
1505 			return FOLIOREF_ACTIVATE;
1506 
1507 		/*
1508 		 * Activate file-backed executable folios after first usage.
1509 		 */
1510 		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1511 			return FOLIOREF_ACTIVATE;
1512 
1513 		return FOLIOREF_KEEP;
1514 	}
1515 
1516 	/* Reclaim if clean, defer dirty folios to writeback */
1517 	if (referenced_folio && folio_is_file_lru(folio))
1518 		return FOLIOREF_RECLAIM_CLEAN;
1519 
1520 	return FOLIOREF_RECLAIM;
1521 }
1522 
1523 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)1524 static void folio_check_dirty_writeback(struct folio *folio,
1525 				       bool *dirty, bool *writeback)
1526 {
1527 	struct address_space *mapping;
1528 
1529 	/*
1530 	 * Anonymous folios are not handled by flushers and must be written
1531 	 * from reclaim context. Do not stall reclaim based on them.
1532 	 * MADV_FREE anonymous folios are put into inactive file list too.
1533 	 * They could be mistakenly treated as file lru. So further anon
1534 	 * test is needed.
1535 	 */
1536 	if (!folio_is_file_lru(folio) ||
1537 	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1538 		*dirty = false;
1539 		*writeback = false;
1540 		return;
1541 	}
1542 
1543 	/* By default assume that the folio flags are accurate */
1544 	*dirty = folio_test_dirty(folio);
1545 	*writeback = folio_test_writeback(folio);
1546 
1547 	/* Verify dirty/writeback state if the filesystem supports it */
1548 	if (!folio_test_private(folio))
1549 		return;
1550 
1551 	mapping = folio_mapping(folio);
1552 	if (mapping && mapping->a_ops->is_dirty_writeback)
1553 		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1554 }
1555 
alloc_demote_folio(struct folio * src,unsigned long private)1556 static struct folio *alloc_demote_folio(struct folio *src,
1557 		unsigned long private)
1558 {
1559 	struct folio *dst;
1560 	nodemask_t *allowed_mask;
1561 	struct migration_target_control *mtc;
1562 
1563 	mtc = (struct migration_target_control *)private;
1564 
1565 	allowed_mask = mtc->nmask;
1566 	/*
1567 	 * make sure we allocate from the target node first also trying to
1568 	 * demote or reclaim pages from the target node via kswapd if we are
1569 	 * low on free memory on target node. If we don't do this and if
1570 	 * we have free memory on the slower(lower) memtier, we would start
1571 	 * allocating pages from slower(lower) memory tiers without even forcing
1572 	 * a demotion of cold pages from the target memtier. This can result
1573 	 * in the kernel placing hot pages in slower(lower) memory tiers.
1574 	 */
1575 	mtc->nmask = NULL;
1576 	mtc->gfp_mask |= __GFP_THISNODE;
1577 	dst = alloc_migration_target(src, (unsigned long)mtc);
1578 	if (dst)
1579 		return dst;
1580 
1581 	mtc->gfp_mask &= ~__GFP_THISNODE;
1582 	mtc->nmask = allowed_mask;
1583 
1584 	return alloc_migration_target(src, (unsigned long)mtc);
1585 }
1586 
1587 /*
1588  * Take folios on @demote_folios and attempt to demote them to another node.
1589  * Folios which are not demoted are left on @demote_folios.
1590  */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1591 static unsigned int demote_folio_list(struct list_head *demote_folios,
1592 				     struct pglist_data *pgdat)
1593 {
1594 	int target_nid = next_demotion_node(pgdat->node_id);
1595 	unsigned int nr_succeeded;
1596 	nodemask_t allowed_mask;
1597 
1598 	struct migration_target_control mtc = {
1599 		/*
1600 		 * Allocate from 'node', or fail quickly and quietly.
1601 		 * When this happens, 'page' will likely just be discarded
1602 		 * instead of migrated.
1603 		 */
1604 		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1605 			__GFP_NOMEMALLOC | GFP_NOWAIT,
1606 		.nid = target_nid,
1607 		.nmask = &allowed_mask
1608 	};
1609 
1610 	if (list_empty(demote_folios))
1611 		return 0;
1612 
1613 	if (target_nid == NUMA_NO_NODE)
1614 		return 0;
1615 
1616 	node_get_allowed_targets(pgdat, &allowed_mask);
1617 
1618 	/* Demotion ignores all cpuset and mempolicy settings */
1619 	migrate_pages(demote_folios, alloc_demote_folio, NULL,
1620 		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1621 		      &nr_succeeded);
1622 
1623 	__count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1624 
1625 	return nr_succeeded;
1626 }
1627 
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1628 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1629 {
1630 	if (gfp_mask & __GFP_FS)
1631 		return true;
1632 	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1633 		return false;
1634 	/*
1635 	 * We can "enter_fs" for swap-cache with only __GFP_IO
1636 	 * providing this isn't SWP_FS_OPS.
1637 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1638 	 * but that will never affect SWP_FS_OPS, so the data_race
1639 	 * is safe.
1640 	 */
1641 	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1642 }
1643 
1644 /*
1645  * shrink_folio_list() returns the number of reclaimed pages
1646  */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1647 unsigned int shrink_folio_list(struct list_head *folio_list,
1648 		struct pglist_data *pgdat, struct scan_control *sc,
1649 		struct reclaim_stat *stat, bool ignore_references)
1650 {
1651 	LIST_HEAD(ret_folios);
1652 	LIST_HEAD(free_folios);
1653 	LIST_HEAD(demote_folios);
1654 	unsigned int nr_reclaimed = 0;
1655 	unsigned int pgactivate = 0;
1656 	bool do_demote_pass;
1657 	struct swap_iocb *plug = NULL;
1658 
1659 	memset(stat, 0, sizeof(*stat));
1660 	cond_resched();
1661 	do_demote_pass = can_demote(pgdat->node_id, sc);
1662 
1663 retry:
1664 	while (!list_empty(folio_list)) {
1665 		struct address_space *mapping;
1666 		struct folio *folio;
1667 		enum folio_references references = FOLIOREF_RECLAIM;
1668 		bool dirty, writeback;
1669 		unsigned int nr_pages;
1670 
1671 		cond_resched();
1672 
1673 		folio = lru_to_folio(folio_list);
1674 		list_del(&folio->lru);
1675 
1676 		if (!folio_trylock(folio))
1677 			goto keep;
1678 
1679 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1680 
1681 		nr_pages = folio_nr_pages(folio);
1682 
1683 		/* Account the number of base pages */
1684 		sc->nr_scanned += nr_pages;
1685 
1686 		if (unlikely(!folio_evictable(folio)))
1687 			goto activate_locked;
1688 
1689 		if (!sc->may_unmap && folio_mapped(folio))
1690 			goto keep_locked;
1691 
1692 		/* folio_update_gen() tried to promote this page? */
1693 		if (lru_gen_enabled() && !ignore_references &&
1694 		    folio_mapped(folio) && folio_test_referenced(folio))
1695 			goto keep_locked;
1696 
1697 		/*
1698 		 * The number of dirty pages determines if a node is marked
1699 		 * reclaim_congested. kswapd will stall and start writing
1700 		 * folios if the tail of the LRU is all dirty unqueued folios.
1701 		 */
1702 		folio_check_dirty_writeback(folio, &dirty, &writeback);
1703 		if (dirty || writeback)
1704 			stat->nr_dirty += nr_pages;
1705 
1706 		if (dirty && !writeback)
1707 			stat->nr_unqueued_dirty += nr_pages;
1708 
1709 		/*
1710 		 * Treat this folio as congested if folios are cycling
1711 		 * through the LRU so quickly that the folios marked
1712 		 * for immediate reclaim are making it to the end of
1713 		 * the LRU a second time.
1714 		 */
1715 		if (writeback && folio_test_reclaim(folio))
1716 			stat->nr_congested += nr_pages;
1717 
1718 		/*
1719 		 * If a folio at the tail of the LRU is under writeback, there
1720 		 * are three cases to consider.
1721 		 *
1722 		 * 1) If reclaim is encountering an excessive number
1723 		 *    of folios under writeback and this folio has both
1724 		 *    the writeback and reclaim flags set, then it
1725 		 *    indicates that folios are being queued for I/O but
1726 		 *    are being recycled through the LRU before the I/O
1727 		 *    can complete. Waiting on the folio itself risks an
1728 		 *    indefinite stall if it is impossible to writeback
1729 		 *    the folio due to I/O error or disconnected storage
1730 		 *    so instead note that the LRU is being scanned too
1731 		 *    quickly and the caller can stall after the folio
1732 		 *    list has been processed.
1733 		 *
1734 		 * 2) Global or new memcg reclaim encounters a folio that is
1735 		 *    not marked for immediate reclaim, or the caller does not
1736 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1737 		 *    not to fs). In this case mark the folio for immediate
1738 		 *    reclaim and continue scanning.
1739 		 *
1740 		 *    Require may_enter_fs() because we would wait on fs, which
1741 		 *    may not have submitted I/O yet. And the loop driver might
1742 		 *    enter reclaim, and deadlock if it waits on a folio for
1743 		 *    which it is needed to do the write (loop masks off
1744 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1745 		 *    would probably show more reasons.
1746 		 *
1747 		 * 3) Legacy memcg encounters a folio that already has the
1748 		 *    reclaim flag set. memcg does not have any dirty folio
1749 		 *    throttling so we could easily OOM just because too many
1750 		 *    folios are in writeback and there is nothing else to
1751 		 *    reclaim. Wait for the writeback to complete.
1752 		 *
1753 		 * In cases 1) and 2) we activate the folios to get them out of
1754 		 * the way while we continue scanning for clean folios on the
1755 		 * inactive list and refilling from the active list. The
1756 		 * observation here is that waiting for disk writes is more
1757 		 * expensive than potentially causing reloads down the line.
1758 		 * Since they're marked for immediate reclaim, they won't put
1759 		 * memory pressure on the cache working set any longer than it
1760 		 * takes to write them to disk.
1761 		 */
1762 		if (folio_test_writeback(folio)) {
1763 			/* Case 1 above */
1764 			if (current_is_kswapd() &&
1765 			    folio_test_reclaim(folio) &&
1766 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1767 				stat->nr_immediate += nr_pages;
1768 				goto activate_locked;
1769 
1770 			/* Case 2 above */
1771 			} else if (writeback_throttling_sane(sc) ||
1772 			    !folio_test_reclaim(folio) ||
1773 			    !may_enter_fs(folio, sc->gfp_mask)) {
1774 				/*
1775 				 * This is slightly racy -
1776 				 * folio_end_writeback() might have
1777 				 * just cleared the reclaim flag, then
1778 				 * setting the reclaim flag here ends up
1779 				 * interpreted as the readahead flag - but
1780 				 * that does not matter enough to care.
1781 				 * What we do want is for this folio to
1782 				 * have the reclaim flag set next time
1783 				 * memcg reclaim reaches the tests above,
1784 				 * so it will then wait for writeback to
1785 				 * avoid OOM; and it's also appropriate
1786 				 * in global reclaim.
1787 				 */
1788 				folio_set_reclaim(folio);
1789 				stat->nr_writeback += nr_pages;
1790 				goto activate_locked;
1791 
1792 			/* Case 3 above */
1793 			} else {
1794 				folio_unlock(folio);
1795 				folio_wait_writeback(folio);
1796 				/* then go back and try same folio again */
1797 				list_add_tail(&folio->lru, folio_list);
1798 				continue;
1799 			}
1800 		}
1801 
1802 		if (!ignore_references)
1803 			references = folio_check_references(folio, sc);
1804 
1805 		switch (references) {
1806 		case FOLIOREF_ACTIVATE:
1807 			goto activate_locked;
1808 		case FOLIOREF_KEEP:
1809 			stat->nr_ref_keep += nr_pages;
1810 			goto keep_locked;
1811 		case FOLIOREF_RECLAIM:
1812 		case FOLIOREF_RECLAIM_CLEAN:
1813 		case FOLIOREF_RECLAIM_PURGEABLE:
1814 			; /* try to reclaim the folio below */
1815 		}
1816 
1817 		/*
1818 		 * Before reclaiming the folio, try to relocate
1819 		 * its contents to another node.
1820 		 */
1821 		if (do_demote_pass &&
1822 		    (thp_migration_supported() || !folio_test_large(folio))) {
1823 			list_add(&folio->lru, &demote_folios);
1824 			folio_unlock(folio);
1825 			continue;
1826 		}
1827 
1828 		/*
1829 		 * Anonymous process memory has backing store?
1830 		 * Try to allocate it some swap space here.
1831 		 * Lazyfree folio could be freed directly
1832 		 */
1833 		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1834 			if (!folio_test_swapcache(folio) && references != FOLIOREF_RECLAIM_PURGEABLE) {
1835 				if (!(sc->gfp_mask & __GFP_IO))
1836 					goto keep_locked;
1837 				if (folio_maybe_dma_pinned(folio))
1838 					goto keep_locked;
1839 				if (folio_test_large(folio)) {
1840 					/* cannot split folio, skip it */
1841 					if (!can_split_folio(folio, NULL))
1842 						goto activate_locked;
1843 					/*
1844 					 * Split folios without a PMD map right
1845 					 * away. Chances are some or all of the
1846 					 * tail pages can be freed without IO.
1847 					 */
1848 					if (!folio_entire_mapcount(folio) &&
1849 					    split_folio_to_list(folio,
1850 								folio_list))
1851 						goto activate_locked;
1852 				}
1853 				if (!add_to_swap(folio)) {
1854 					if (!folio_test_large(folio))
1855 						goto activate_locked_split;
1856 					/* Fallback to swap normal pages */
1857 					if (split_folio_to_list(folio,
1858 								folio_list))
1859 						goto activate_locked;
1860 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1861 					count_vm_event(THP_SWPOUT_FALLBACK);
1862 #endif
1863 					if (!add_to_swap(folio))
1864 						goto activate_locked_split;
1865 				}
1866 			}
1867 		} else if (folio_test_swapbacked(folio) &&
1868 			   folio_test_large(folio)) {
1869 			/* Split shmem folio */
1870 			if (split_folio_to_list(folio, folio_list))
1871 				goto keep_locked;
1872 		}
1873 
1874 		/*
1875 		 * If the folio was split above, the tail pages will make
1876 		 * their own pass through this function and be accounted
1877 		 * then.
1878 		 */
1879 		if ((nr_pages > 1) && !folio_test_large(folio)) {
1880 			sc->nr_scanned -= (nr_pages - 1);
1881 			nr_pages = 1;
1882 		}
1883 
1884 		/*
1885 		 * The folio is mapped into the page tables of one or more
1886 		 * processes. Try to unmap it here.
1887 		 */
1888 		if (folio_mapped(folio)) {
1889 			enum ttu_flags flags = TTU_BATCH_FLUSH;
1890 			bool was_swapbacked = folio_test_swapbacked(folio);
1891 
1892 			if (folio_test_pmd_mappable(folio))
1893 				flags |= TTU_SPLIT_HUGE_PMD;
1894 
1895 			try_to_unmap(folio, flags);
1896 			if (folio_mapped(folio)) {
1897 				stat->nr_unmap_fail += nr_pages;
1898 				if (!was_swapbacked &&
1899 				    folio_test_swapbacked(folio))
1900 					stat->nr_lazyfree_fail += nr_pages;
1901 				goto activate_locked;
1902 			}
1903 		}
1904 
1905 		/*
1906 		 * Folio is unmapped now so it cannot be newly pinned anymore.
1907 		 * No point in trying to reclaim folio if it is pinned.
1908 		 * Furthermore we don't want to reclaim underlying fs metadata
1909 		 * if the folio is pinned and thus potentially modified by the
1910 		 * pinning process as that may upset the filesystem.
1911 		 */
1912 		if (folio_maybe_dma_pinned(folio))
1913 			goto activate_locked;
1914 
1915 		mapping = folio_mapping(folio);
1916 		if (folio_test_dirty(folio) && references != FOLIOREF_RECLAIM_PURGEABLE) {
1917 			/*
1918 			 * Only kswapd can writeback filesystem folios
1919 			 * to avoid risk of stack overflow. But avoid
1920 			 * injecting inefficient single-folio I/O into
1921 			 * flusher writeback as much as possible: only
1922 			 * write folios when we've encountered many
1923 			 * dirty folios, and when we've already scanned
1924 			 * the rest of the LRU for clean folios and see
1925 			 * the same dirty folios again (with the reclaim
1926 			 * flag set).
1927 			 */
1928 			if (folio_is_file_lru(folio) &&
1929 			    (!current_is_kswapd() ||
1930 			     !folio_test_reclaim(folio) ||
1931 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1932 				/*
1933 				 * Immediately reclaim when written back.
1934 				 * Similar in principle to folio_deactivate()
1935 				 * except we already have the folio isolated
1936 				 * and know it's dirty
1937 				 */
1938 				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1939 						nr_pages);
1940 				folio_set_reclaim(folio);
1941 
1942 				goto activate_locked;
1943 			}
1944 
1945 			if (references == FOLIOREF_RECLAIM_CLEAN)
1946 				goto keep_locked;
1947 			if (!may_enter_fs(folio, sc->gfp_mask))
1948 				goto keep_locked;
1949 			if (!sc->may_writepage)
1950 				goto keep_locked;
1951 
1952 			/*
1953 			 * Folio is dirty. Flush the TLB if a writable entry
1954 			 * potentially exists to avoid CPU writes after I/O
1955 			 * starts and then write it out here.
1956 			 */
1957 			try_to_unmap_flush_dirty();
1958 			switch (pageout(folio, mapping, &plug)) {
1959 			case PAGE_KEEP:
1960 				goto keep_locked;
1961 			case PAGE_ACTIVATE:
1962 				goto activate_locked;
1963 			case PAGE_SUCCESS:
1964 				stat->nr_pageout += nr_pages;
1965 
1966 				if (folio_test_writeback(folio))
1967 					goto keep;
1968 				if (folio_test_dirty(folio))
1969 					goto keep;
1970 
1971 				/*
1972 				 * A synchronous write - probably a ramdisk.  Go
1973 				 * ahead and try to reclaim the folio.
1974 				 */
1975 				if (!folio_trylock(folio))
1976 					goto keep;
1977 				if (folio_test_dirty(folio) ||
1978 				    folio_test_writeback(folio))
1979 					goto keep_locked;
1980 				mapping = folio_mapping(folio);
1981 				fallthrough;
1982 			case PAGE_CLEAN:
1983 				; /* try to free the folio below */
1984 			}
1985 		}
1986 
1987 		/*
1988 		 * If the folio has buffers, try to free the buffer
1989 		 * mappings associated with this folio. If we succeed
1990 		 * we try to free the folio as well.
1991 		 *
1992 		 * We do this even if the folio is dirty.
1993 		 * filemap_release_folio() does not perform I/O, but it
1994 		 * is possible for a folio to have the dirty flag set,
1995 		 * but it is actually clean (all its buffers are clean).
1996 		 * This happens if the buffers were written out directly,
1997 		 * with submit_bh(). ext3 will do this, as well as
1998 		 * the blockdev mapping.  filemap_release_folio() will
1999 		 * discover that cleanness and will drop the buffers
2000 		 * and mark the folio clean - it can be freed.
2001 		 *
2002 		 * Rarely, folios can have buffers and no ->mapping.
2003 		 * These are the folios which were not successfully
2004 		 * invalidated in truncate_cleanup_folio().  We try to
2005 		 * drop those buffers here and if that worked, and the
2006 		 * folio is no longer mapped into process address space
2007 		 * (refcount == 1) it can be freed.  Otherwise, leave
2008 		 * the folio on the LRU so it is swappable.
2009 		 */
2010 		if (folio_needs_release(folio)) {
2011 			if (!filemap_release_folio(folio, sc->gfp_mask))
2012 				goto activate_locked;
2013 			if (!mapping && folio_ref_count(folio) == 1) {
2014 				folio_unlock(folio);
2015 				if (folio_put_testzero(folio))
2016 					goto free_it;
2017 				else {
2018 					/*
2019 					 * rare race with speculative reference.
2020 					 * the speculative reference will free
2021 					 * this folio shortly, so we may
2022 					 * increment nr_reclaimed here (and
2023 					 * leave it off the LRU).
2024 					 */
2025 					nr_reclaimed += nr_pages;
2026 					continue;
2027 				}
2028 			}
2029 		}
2030 
2031 		if (folio_test_anon(folio) && (!folio_test_swapbacked(folio) || references == FOLIOREF_RECLAIM_PURGEABLE)) {
2032 			/* follow __remove_mapping for reference */
2033 			if (!folio_ref_freeze(folio, 1))
2034 				goto keep_locked;
2035 
2036 			/*
2037 			 * The folio has only one reference left, which is
2038 			 * from the isolation. After the caller puts the
2039 			 * folio back on the lru and drops the reference, the
2040 			 * folio will be freed anyway. It doesn't matter
2041 			 * which lru it goes on. So we don't bother checking
2042 			 * the dirty flag here.
2043 			 */
2044 			count_vm_events(PGLAZYFREED, nr_pages);
2045 			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2046 		} else if (!mapping || !__remove_mapping(mapping, folio, true,
2047 							 sc->target_mem_cgroup))
2048 			goto keep_locked;
2049 
2050 		folio_unlock(folio);
2051 free_it:
2052 		/*
2053 		 * Folio may get swapped out as a whole, need to account
2054 		 * all pages in it.
2055 		 */
2056 		nr_reclaimed += nr_pages;
2057 
2058 		/*
2059 		 * Is there need to periodically free_folio_list? It would
2060 		 * appear not as the counts should be low
2061 		 */
2062 		if (unlikely(folio_test_large(folio)))
2063 			destroy_large_folio(folio);
2064 		else
2065 			list_add(&folio->lru, &free_folios);
2066 		continue;
2067 
2068 activate_locked_split:
2069 		/*
2070 		 * The tail pages that are failed to add into swap cache
2071 		 * reach here.  Fixup nr_scanned and nr_pages.
2072 		 */
2073 		if (nr_pages > 1) {
2074 			sc->nr_scanned -= (nr_pages - 1);
2075 			nr_pages = 1;
2076 		}
2077 activate_locked:
2078 		/* Not a candidate for swapping, so reclaim swap space. */
2079 		if (folio_test_swapcache(folio) &&
2080 		    (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2081 			folio_free_swap(folio);
2082 		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2083 		if (!folio_test_mlocked(folio)) {
2084 			int type = folio_is_file_lru(folio);
2085 			folio_set_active(folio);
2086 			stat->nr_activate[type] += nr_pages;
2087 			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2088 		}
2089 keep_locked:
2090 		folio_unlock(folio);
2091 keep:
2092 		list_add(&folio->lru, &ret_folios);
2093 		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2094 				folio_test_unevictable(folio), folio);
2095 	}
2096 	/* 'folio_list' is always empty here */
2097 
2098 	/* Migrate folios selected for demotion */
2099 	nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2100 	/* Folios that could not be demoted are still in @demote_folios */
2101 	if (!list_empty(&demote_folios)) {
2102 		/* Folios which weren't demoted go back on @folio_list */
2103 		list_splice_init(&demote_folios, folio_list);
2104 
2105 		/*
2106 		 * goto retry to reclaim the undemoted folios in folio_list if
2107 		 * desired.
2108 		 *
2109 		 * Reclaiming directly from top tier nodes is not often desired
2110 		 * due to it breaking the LRU ordering: in general memory
2111 		 * should be reclaimed from lower tier nodes and demoted from
2112 		 * top tier nodes.
2113 		 *
2114 		 * However, disabling reclaim from top tier nodes entirely
2115 		 * would cause ooms in edge scenarios where lower tier memory
2116 		 * is unreclaimable for whatever reason, eg memory being
2117 		 * mlocked or too hot to reclaim. We can disable reclaim
2118 		 * from top tier nodes in proactive reclaim though as that is
2119 		 * not real memory pressure.
2120 		 */
2121 		if (!sc->proactive) {
2122 			do_demote_pass = false;
2123 			goto retry;
2124 		}
2125 	}
2126 
2127 	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2128 
2129 	mem_cgroup_uncharge_list(&free_folios);
2130 	try_to_unmap_flush();
2131 	free_unref_page_list(&free_folios);
2132 
2133 	list_splice(&ret_folios, folio_list);
2134 	count_vm_events(PGACTIVATE, pgactivate);
2135 
2136 	if (plug)
2137 		swap_write_unplug(plug);
2138 	return nr_reclaimed;
2139 }
2140 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)2141 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2142 					   struct list_head *folio_list)
2143 {
2144 	struct scan_control sc = {
2145 		.gfp_mask = GFP_KERNEL,
2146 		.may_unmap = 1,
2147 	};
2148 	struct reclaim_stat stat;
2149 	unsigned int nr_reclaimed;
2150 	struct folio *folio, *next;
2151 	LIST_HEAD(clean_folios);
2152 	unsigned int noreclaim_flag;
2153 
2154 	list_for_each_entry_safe(folio, next, folio_list, lru) {
2155 		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2156 		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2157 		    !folio_test_unevictable(folio)) {
2158 			folio_clear_active(folio);
2159 			list_move(&folio->lru, &clean_folios);
2160 		}
2161 	}
2162 
2163 	/*
2164 	 * We should be safe here since we are only dealing with file pages and
2165 	 * we are not kswapd and therefore cannot write dirty file pages. But
2166 	 * call memalloc_noreclaim_save() anyway, just in case these conditions
2167 	 * change in the future.
2168 	 */
2169 	noreclaim_flag = memalloc_noreclaim_save();
2170 	nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2171 					&stat, true);
2172 	memalloc_noreclaim_restore(noreclaim_flag);
2173 
2174 	list_splice(&clean_folios, folio_list);
2175 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2176 			    -(long)nr_reclaimed);
2177 	/*
2178 	 * Since lazyfree pages are isolated from file LRU from the beginning,
2179 	 * they will rotate back to anonymous LRU in the end if it failed to
2180 	 * discard so isolated count will be mismatched.
2181 	 * Compensate the isolated count for both LRU lists.
2182 	 */
2183 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2184 			    stat.nr_lazyfree_fail);
2185 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2186 			    -(long)stat.nr_lazyfree_fail);
2187 	return nr_reclaimed;
2188 }
2189 
2190 /*
2191  * Update LRU sizes after isolating pages. The LRU size updates must
2192  * be complete before mem_cgroup_update_lru_size due to a sanity check.
2193  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)2194 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2195 			enum lru_list lru, unsigned long *nr_zone_taken)
2196 {
2197 	int zid;
2198 
2199 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2200 		if (!nr_zone_taken[zid])
2201 			continue;
2202 
2203 		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2204 	}
2205 
2206 }
2207 
2208 /*
2209  * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2210  *
2211  * lruvec->lru_lock is heavily contended.  Some of the functions that
2212  * shrink the lists perform better by taking out a batch of pages
2213  * and working on them outside the LRU lock.
2214  *
2215  * For pagecache intensive workloads, this function is the hottest
2216  * spot in the kernel (apart from copy_*_user functions).
2217  *
2218  * Lru_lock must be held before calling this function.
2219  *
2220  * @nr_to_scan:	The number of eligible pages to look through on the list.
2221  * @lruvec:	The LRU vector to pull pages from.
2222  * @dst:	The temp list to put pages on to.
2223  * @nr_scanned:	The number of pages that were scanned.
2224  * @sc:		The scan_control struct for this reclaim session
2225  * @lru:	LRU list id for isolating
2226  *
2227  * returns how many pages were moved onto *@dst.
2228  */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)2229 unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2230 		struct lruvec *lruvec, struct list_head *dst,
2231 		unsigned long *nr_scanned, struct scan_control *sc,
2232 		enum lru_list lru)
2233 {
2234 	struct list_head *src = &lruvec->lists[lru];
2235 	unsigned long nr_taken = 0;
2236 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2237 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2238 	unsigned long skipped = 0;
2239 	unsigned long scan, total_scan, nr_pages;
2240 	LIST_HEAD(folios_skipped);
2241 
2242 	total_scan = 0;
2243 	scan = 0;
2244 	while (scan < nr_to_scan && !list_empty(src)) {
2245 		struct list_head *move_to = src;
2246 		struct folio *folio;
2247 
2248 		folio = lru_to_folio(src);
2249 		prefetchw_prev_lru_folio(folio, src, flags);
2250 
2251 		nr_pages = folio_nr_pages(folio);
2252 		total_scan += nr_pages;
2253 
2254 		if (folio_zonenum(folio) > sc->reclaim_idx) {
2255 			nr_skipped[folio_zonenum(folio)] += nr_pages;
2256 			move_to = &folios_skipped;
2257 			goto move;
2258 		}
2259 
2260 		/*
2261 		 * Do not count skipped folios because that makes the function
2262 		 * return with no isolated folios if the LRU mostly contains
2263 		 * ineligible folios.  This causes the VM to not reclaim any
2264 		 * folios, triggering a premature OOM.
2265 		 * Account all pages in a folio.
2266 		 */
2267 		scan += nr_pages;
2268 
2269 		if (!folio_test_lru(folio))
2270 			goto move;
2271 		if (!sc->may_unmap && folio_mapped(folio))
2272 			goto move;
2273 
2274 		/*
2275 		 * Be careful not to clear the lru flag until after we're
2276 		 * sure the folio is not being freed elsewhere -- the
2277 		 * folio release code relies on it.
2278 		 */
2279 		if (unlikely(!folio_try_get(folio)))
2280 			goto move;
2281 
2282 		if (!folio_test_clear_lru(folio)) {
2283 			/* Another thread is already isolating this folio */
2284 			folio_put(folio);
2285 			goto move;
2286 		}
2287 
2288 		nr_taken += nr_pages;
2289 		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2290 		move_to = dst;
2291 move:
2292 		list_move(&folio->lru, move_to);
2293 	}
2294 
2295 	/*
2296 	 * Splice any skipped folios to the start of the LRU list. Note that
2297 	 * this disrupts the LRU order when reclaiming for lower zones but
2298 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2299 	 * scanning would soon rescan the same folios to skip and waste lots
2300 	 * of cpu cycles.
2301 	 */
2302 	if (!list_empty(&folios_skipped)) {
2303 		int zid;
2304 
2305 		list_splice(&folios_skipped, src);
2306 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2307 			if (!nr_skipped[zid])
2308 				continue;
2309 
2310 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2311 			skipped += nr_skipped[zid];
2312 		}
2313 	}
2314 	*nr_scanned = total_scan;
2315 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2316 				    total_scan, skipped, nr_taken,
2317 				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2318 	update_lru_sizes(lruvec, lru, nr_zone_taken);
2319 	return nr_taken;
2320 }
2321 
2322 /**
2323  * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2324  * @folio: Folio to isolate from its LRU list.
2325  *
2326  * Isolate a @folio from an LRU list and adjust the vmstat statistic
2327  * corresponding to whatever LRU list the folio was on.
2328  *
2329  * The folio will have its LRU flag cleared.  If it was found on the
2330  * active list, it will have the Active flag set.  If it was found on the
2331  * unevictable list, it will have the Unevictable flag set.  These flags
2332  * may need to be cleared by the caller before letting the page go.
2333  *
2334  * Context:
2335  *
2336  * (1) Must be called with an elevated refcount on the folio. This is a
2337  *     fundamental difference from isolate_lru_folios() (which is called
2338  *     without a stable reference).
2339  * (2) The lru_lock must not be held.
2340  * (3) Interrupts must be enabled.
2341  *
2342  * Return: true if the folio was removed from an LRU list.
2343  * false if the folio was not on an LRU list.
2344  */
folio_isolate_lru(struct folio * folio)2345 bool folio_isolate_lru(struct folio *folio)
2346 {
2347 	bool ret = false;
2348 
2349 	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2350 
2351 	if (folio_test_clear_lru(folio)) {
2352 		struct lruvec *lruvec;
2353 
2354 		folio_get(folio);
2355 		lruvec = folio_lruvec_lock_irq(folio);
2356 		lruvec_del_folio(lruvec, folio);
2357 		unlock_page_lruvec_irq(lruvec);
2358 		ret = true;
2359 	}
2360 
2361 	return ret;
2362 }
2363 
2364 /*
2365  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2366  * then get rescheduled. When there are massive number of tasks doing page
2367  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2368  * the LRU list will go small and be scanned faster than necessary, leading to
2369  * unnecessary swapping, thrashing and OOM.
2370  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)2371 static int too_many_isolated(struct pglist_data *pgdat, int file,
2372 		struct scan_control *sc)
2373 {
2374 	unsigned long inactive, isolated;
2375 	bool too_many;
2376 
2377 	if (current_is_kswapd())
2378 		return 0;
2379 
2380 	if (!writeback_throttling_sane(sc))
2381 		return 0;
2382 
2383 	if (file) {
2384 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2385 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2386 	} else {
2387 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2388 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2389 	}
2390 
2391 	/*
2392 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2393 	 * won't get blocked by normal direct-reclaimers, forming a circular
2394 	 * deadlock.
2395 	 */
2396 	if (gfp_has_io_fs(sc->gfp_mask))
2397 		inactive >>= 3;
2398 
2399 	too_many = isolated > inactive;
2400 
2401 	/* Wake up tasks throttled due to too_many_isolated. */
2402 	if (!too_many)
2403 		wake_throttle_isolated(pgdat);
2404 
2405 	return too_many;
2406 }
2407 
2408 /*
2409  * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2410  * On return, @list is reused as a list of folios to be freed by the caller.
2411  *
2412  * Returns the number of pages moved to the given lruvec.
2413  */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)2414 unsigned int move_folios_to_lru(struct lruvec *lruvec,
2415 		struct list_head *list)
2416 {
2417 	int nr_pages, nr_moved = 0;
2418 	LIST_HEAD(folios_to_free);
2419 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2420 	bool prot;
2421 	bool file;
2422 #endif
2423 
2424 	while (!list_empty(list)) {
2425 		struct folio *folio = lru_to_folio(list);
2426 
2427 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2428 		list_del(&folio->lru);
2429 		if (unlikely(!folio_evictable(folio))) {
2430 			spin_unlock_irq(&lruvec->lru_lock);
2431 			folio_putback_lru(folio);
2432 			spin_lock_irq(&lruvec->lru_lock);
2433 			continue;
2434 		}
2435 
2436 		/*
2437 		 * The folio_set_lru needs to be kept here for list integrity.
2438 		 * Otherwise:
2439 		 *   #0 move_folios_to_lru             #1 release_pages
2440 		 *   if (!folio_put_testzero())
2441 		 *				      if (folio_put_testzero())
2442 		 *				        !lru //skip lru_lock
2443 		 *     folio_set_lru()
2444 		 *     list_add(&folio->lru,)
2445 		 *                                        list_add(&folio->lru,)
2446 		 */
2447 		folio_set_lru(folio);
2448 
2449 		if (unlikely(folio_put_testzero(folio))) {
2450 			__folio_clear_lru_flags(folio);
2451 
2452 			if (unlikely(folio_test_large(folio))) {
2453 				spin_unlock_irq(&lruvec->lru_lock);
2454 				destroy_large_folio(folio);
2455 				spin_lock_irq(&lruvec->lru_lock);
2456 			} else
2457 				list_add(&folio->lru, &folios_to_free);
2458 
2459 			continue;
2460 		}
2461 
2462 		/*
2463 		 * All pages were isolated from the same lruvec (and isolation
2464 		 * inhibits memcg migration).
2465 		 */
2466 		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2467 		lruvec_add_folio(lruvec, folio);
2468 		nr_pages = folio_nr_pages(folio);
2469 		nr_moved += nr_pages;
2470 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2471 		if (folio_test_active(folio)) {
2472 			prot = is_prot_page(folio_page(folio, 0));
2473 			file = page_is_file_lru(folio_page(folio, 0));
2474 			if (!prot && file) {
2475 				lruvec = folio_lruvec(folio);
2476 				workingset_age_nonresident(lruvec,
2477 							   nr_pages);
2478 			} else {
2479 				workingset_age_nonresident(lruvec,
2480 							   nr_pages);
2481 			}
2482 		}
2483 #else
2484 		if (folio_test_active(folio))
2485 			workingset_age_nonresident(lruvec, nr_pages);
2486 #endif
2487 	}
2488 
2489 	/*
2490 	 * To save our caller's stack, now use input list for pages to free.
2491 	 */
2492 	list_splice(&folios_to_free, list);
2493 
2494 	return nr_moved;
2495 }
2496 
2497 /*
2498  * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2499  * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2500  * we should not throttle.  Otherwise it is safe to do so.
2501  */
current_may_throttle(void)2502 int current_may_throttle(void)
2503 {
2504 	return !(current->flags & PF_LOCAL_THROTTLE);
2505 }
2506 
2507 /*
2508  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
2509  * of reclaimed pages
2510  */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2511 unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2512 		struct lruvec *lruvec, struct scan_control *sc,
2513 		enum lru_list lru)
2514 {
2515 	LIST_HEAD(folio_list);
2516 	unsigned long nr_scanned;
2517 	unsigned int nr_reclaimed = 0;
2518 	unsigned long nr_taken;
2519 	struct reclaim_stat stat;
2520 	bool file = is_file_lru(lru);
2521 	enum vm_event_item item;
2522 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2523 	bool stalled = false;
2524 
2525 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
2526 		if (stalled)
2527 			return 0;
2528 
2529 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2530 		sc->isolate_count++;
2531 #endif
2532 		/* wait a bit for the reclaimer. */
2533 		stalled = true;
2534 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2535 
2536 		/* We are about to die and free our memory. Return now. */
2537 		if (fatal_signal_pending(current))
2538 			return SWAP_CLUSTER_MAX;
2539 	}
2540 
2541 	lru_add_drain();
2542 
2543 	spin_lock_irq(&lruvec->lru_lock);
2544 
2545 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2546 				     &nr_scanned, sc, lru);
2547 
2548 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2549 	item = PGSCAN_KSWAPD + reclaimer_offset();
2550 	if (!cgroup_reclaim(sc))
2551 		__count_vm_events(item, nr_scanned);
2552 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2553 	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
2554 
2555 	spin_unlock_irq(&lruvec->lru_lock);
2556 
2557 	if (nr_taken == 0)
2558 		return 0;
2559 
2560 	nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2561 
2562 	spin_lock_irq(&lruvec->lru_lock);
2563 	move_folios_to_lru(lruvec, &folio_list);
2564 
2565 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2566 	item = PGSTEAL_KSWAPD + reclaimer_offset();
2567 	if (!cgroup_reclaim(sc))
2568 		__count_vm_events(item, nr_reclaimed);
2569 	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2570 	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2571 	spin_unlock_irq(&lruvec->lru_lock);
2572 
2573 #ifdef CONFIG_HYPERHOLD_FILE_LRU
2574 	if (file)
2575 		lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2576 	else
2577 		lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2578 #else
2579 	lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2580 #endif
2581 	mem_cgroup_uncharge_list(&folio_list);
2582 	free_unref_page_list(&folio_list);
2583 
2584 	/*
2585 	 * If dirty folios are scanned that are not queued for IO, it
2586 	 * implies that flushers are not doing their job. This can
2587 	 * happen when memory pressure pushes dirty folios to the end of
2588 	 * the LRU before the dirty limits are breached and the dirty
2589 	 * data has expired. It can also happen when the proportion of
2590 	 * dirty folios grows not through writes but through memory
2591 	 * pressure reclaiming all the clean cache. And in some cases,
2592 	 * the flushers simply cannot keep up with the allocation
2593 	 * rate. Nudge the flusher threads in case they are asleep.
2594 	 */
2595 	if (stat.nr_unqueued_dirty == nr_taken) {
2596 		wakeup_flusher_threads(WB_REASON_VMSCAN);
2597 		/*
2598 		 * For cgroupv1 dirty throttling is achieved by waking up
2599 		 * the kernel flusher here and later waiting on folios
2600 		 * which are in writeback to finish (see shrink_folio_list()).
2601 		 *
2602 		 * Flusher may not be able to issue writeback quickly
2603 		 * enough for cgroupv1 writeback throttling to work
2604 		 * on a large system.
2605 		 */
2606 		if (!writeback_throttling_sane(sc))
2607 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2608 	}
2609 
2610 	sc->nr.dirty += stat.nr_dirty;
2611 	sc->nr.congested += stat.nr_congested;
2612 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2613 	sc->nr.writeback += stat.nr_writeback;
2614 	sc->nr.immediate += stat.nr_immediate;
2615 	sc->nr.taken += nr_taken;
2616 	if (file)
2617 		sc->nr.file_taken += nr_taken;
2618 
2619 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2620 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2621 	return nr_reclaimed;
2622 }
2623 
2624 /*
2625  * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2626  *
2627  * We move them the other way if the folio is referenced by one or more
2628  * processes.
2629  *
2630  * If the folios are mostly unmapped, the processing is fast and it is
2631  * appropriate to hold lru_lock across the whole operation.  But if
2632  * the folios are mapped, the processing is slow (folio_referenced()), so
2633  * we should drop lru_lock around each folio.  It's impossible to balance
2634  * this, so instead we remove the folios from the LRU while processing them.
2635  * It is safe to rely on the active flag against the non-LRU folios in here
2636  * because nobody will play with that bit on a non-LRU folio.
2637  *
2638  * The downside is that we have to touch folio->_refcount against each folio.
2639  * But we had to alter folio->flags anyway.
2640  */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2641 void shrink_active_list(unsigned long nr_to_scan,
2642 			       struct lruvec *lruvec,
2643 			       struct scan_control *sc,
2644 			       enum lru_list lru)
2645 {
2646 	unsigned long nr_taken;
2647 	unsigned long nr_scanned;
2648 	unsigned long vm_flags;
2649 	LIST_HEAD(l_hold);	/* The folios which were snipped off */
2650 	LIST_HEAD(l_active);
2651 	LIST_HEAD(l_inactive);
2652 	unsigned nr_deactivate, nr_activate;
2653 	unsigned nr_rotated = 0;
2654 	int file = is_file_lru(lru);
2655 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2656 
2657 	lru_add_drain();
2658 
2659 	spin_lock_irq(&lruvec->lru_lock);
2660 
2661 	nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2662 				     &nr_scanned, sc, lru);
2663 
2664 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2665 
2666 	if (!cgroup_reclaim(sc))
2667 		__count_vm_events(PGREFILL, nr_scanned);
2668 	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2669 
2670 	spin_unlock_irq(&lruvec->lru_lock);
2671 
2672 	while (!list_empty(&l_hold)) {
2673 		struct folio *folio;
2674 
2675 		cond_resched();
2676 		folio = lru_to_folio(&l_hold);
2677 		list_del(&folio->lru);
2678 
2679 		if (unlikely(!folio_evictable(folio))) {
2680 			folio_putback_lru(folio);
2681 			continue;
2682 		}
2683 
2684 		if (unlikely(buffer_heads_over_limit)) {
2685 			if (folio_needs_release(folio) &&
2686 			    folio_trylock(folio)) {
2687 				filemap_release_folio(folio, 0);
2688 				folio_unlock(folio);
2689 			}
2690 		}
2691 
2692 		/* Referenced or rmap lock contention: rotate */
2693 		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2694 				     &vm_flags) != 0) {
2695 			/*
2696 			 * Identify referenced, file-backed active folios and
2697 			 * give them one more trip around the active list. So
2698 			 * that executable code get better chances to stay in
2699 			 * memory under moderate memory pressure.  Anon folios
2700 			 * are not likely to be evicted by use-once streaming
2701 			 * IO, plus JVM can create lots of anon VM_EXEC folios,
2702 			 * so we ignore them here.
2703 			 */
2704 			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2705 				nr_rotated += folio_nr_pages(folio);
2706 				list_add(&folio->lru, &l_active);
2707 				continue;
2708 			}
2709 		}
2710 
2711 		folio_clear_active(folio);	/* we are de-activating */
2712 		folio_set_workingset(folio);
2713 		list_add(&folio->lru, &l_inactive);
2714 	}
2715 
2716 	/*
2717 	 * Move folios back to the lru list.
2718 	 */
2719 	spin_lock_irq(&lruvec->lru_lock);
2720 
2721 	nr_activate = move_folios_to_lru(lruvec, &l_active);
2722 	nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2723 	/* Keep all free folios in l_active list */
2724 	list_splice(&l_inactive, &l_active);
2725 
2726 	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2727 	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2728 
2729 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2730 	spin_unlock_irq(&lruvec->lru_lock);
2731 
2732 	if (nr_rotated)
2733 		lru_note_cost(lruvec, file, 0, nr_rotated);
2734 	mem_cgroup_uncharge_list(&l_active);
2735 	free_unref_page_list(&l_active);
2736 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2737 			nr_deactivate, nr_rotated, sc->priority, file);
2738 }
2739 
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2740 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2741 				      struct pglist_data *pgdat)
2742 {
2743 	struct reclaim_stat dummy_stat;
2744 	unsigned int nr_reclaimed;
2745 	struct folio *folio;
2746 	struct scan_control sc = {
2747 		.gfp_mask = GFP_KERNEL,
2748 		.may_writepage = 1,
2749 		.may_unmap = 1,
2750 		.may_swap = 1,
2751 		.no_demotion = 1,
2752 	};
2753 
2754 	nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2755 	while (!list_empty(folio_list)) {
2756 		folio = lru_to_folio(folio_list);
2757 		list_del(&folio->lru);
2758 		folio_putback_lru(folio);
2759 	}
2760 
2761 	return nr_reclaimed;
2762 }
2763 
reclaim_pages(struct list_head * folio_list)2764 unsigned long reclaim_pages(struct list_head *folio_list)
2765 {
2766 	int nid;
2767 	unsigned int nr_reclaimed = 0;
2768 	LIST_HEAD(node_folio_list);
2769 	unsigned int noreclaim_flag;
2770 
2771 	if (list_empty(folio_list))
2772 		return nr_reclaimed;
2773 
2774 	noreclaim_flag = memalloc_noreclaim_save();
2775 
2776 	nid = folio_nid(lru_to_folio(folio_list));
2777 	do {
2778 		struct folio *folio = lru_to_folio(folio_list);
2779 
2780 		if (nid == folio_nid(folio)) {
2781 			folio_clear_active(folio);
2782 			list_move(&folio->lru, &node_folio_list);
2783 			continue;
2784 		}
2785 
2786 		nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2787 		nid = folio_nid(lru_to_folio(folio_list));
2788 	} while (!list_empty(folio_list));
2789 
2790 	nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2791 
2792 	memalloc_noreclaim_restore(noreclaim_flag);
2793 
2794 	return nr_reclaimed;
2795 }
2796 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2797 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2798 				 struct lruvec *lruvec, struct scan_control *sc)
2799 {
2800 	if (is_active_lru(lru)) {
2801 		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2802 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2803 		else
2804 			sc->skipped_deactivate = 1;
2805 		return 0;
2806 	}
2807 
2808 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2809 }
2810 
2811 /*
2812  * The inactive anon list should be small enough that the VM never has
2813  * to do too much work.
2814  *
2815  * The inactive file list should be small enough to leave most memory
2816  * to the established workingset on the scan-resistant active list,
2817  * but large enough to avoid thrashing the aggregate readahead window.
2818  *
2819  * Both inactive lists should also be large enough that each inactive
2820  * folio has a chance to be referenced again before it is reclaimed.
2821  *
2822  * If that fails and refaulting is observed, the inactive list grows.
2823  *
2824  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2825  * on this LRU, maintained by the pageout code. An inactive_ratio
2826  * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2827  *
2828  * total     target    max
2829  * memory    ratio     inactive
2830  * -------------------------------------
2831  *   10MB       1         5MB
2832  *  100MB       1        50MB
2833  *    1GB       3       250MB
2834  *   10GB      10       0.9GB
2835  *  100GB      31         3GB
2836  *    1TB     101        10GB
2837  *   10TB     320        32GB
2838  */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2839 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2840 {
2841 	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2842 	unsigned long inactive, active;
2843 	unsigned long inactive_ratio;
2844 	unsigned long gb;
2845 
2846 	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2847 	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2848 
2849 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2850 	if (gb)
2851 		inactive_ratio = int_sqrt(10 * gb);
2852 	else
2853 		inactive_ratio = 1;
2854 
2855 	return inactive * inactive_ratio < active;
2856 }
2857 
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)2858 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2859 {
2860 	unsigned long file;
2861 	struct lruvec *target_lruvec;
2862 
2863 	if (lru_gen_enabled())
2864 		return;
2865 
2866 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2867 
2868 	/*
2869 	 * Flush the memory cgroup stats, so that we read accurate per-memcg
2870 	 * lruvec stats for heuristics.
2871 	 */
2872 	mem_cgroup_flush_stats();
2873 
2874 	/*
2875 	 * Determine the scan balance between anon and file LRUs.
2876 	 */
2877 	spin_lock_irq(&target_lruvec->lru_lock);
2878 	sc->anon_cost = target_lruvec->anon_cost;
2879 	sc->file_cost = target_lruvec->file_cost;
2880 	spin_unlock_irq(&target_lruvec->lru_lock);
2881 
2882 	/*
2883 	 * Target desirable inactive:active list ratios for the anon
2884 	 * and file LRU lists.
2885 	 */
2886 	if (!sc->force_deactivate) {
2887 		unsigned long refaults;
2888 
2889 		/*
2890 		 * When refaults are being observed, it means a new
2891 		 * workingset is being established. Deactivate to get
2892 		 * rid of any stale active pages quickly.
2893 		 */
2894 		refaults = lruvec_page_state(target_lruvec,
2895 				WORKINGSET_ACTIVATE_ANON);
2896 		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2897 			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2898 			sc->may_deactivate |= DEACTIVATE_ANON;
2899 		else
2900 			sc->may_deactivate &= ~DEACTIVATE_ANON;
2901 
2902 		refaults = lruvec_page_state(target_lruvec,
2903 				WORKINGSET_ACTIVATE_FILE);
2904 		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2905 		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2906 			sc->may_deactivate |= DEACTIVATE_FILE;
2907 		else
2908 			sc->may_deactivate &= ~DEACTIVATE_FILE;
2909 	} else
2910 		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2911 
2912 	/*
2913 	 * If we have plenty of inactive file pages that aren't
2914 	 * thrashing, try to reclaim those first before touching
2915 	 * anonymous pages.
2916 	 */
2917 	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2918 	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2919 		sc->cache_trim_mode = 1;
2920 	else
2921 		sc->cache_trim_mode = 0;
2922 
2923 	/*
2924 	 * Prevent the reclaimer from falling into the cache trap: as
2925 	 * cache pages start out inactive, every cache fault will tip
2926 	 * the scan balance towards the file LRU.  And as the file LRU
2927 	 * shrinks, so does the window for rotation from references.
2928 	 * This means we have a runaway feedback loop where a tiny
2929 	 * thrashing file LRU becomes infinitely more attractive than
2930 	 * anon pages.  Try to detect this based on file LRU size.
2931 	 */
2932 	if (!cgroup_reclaim(sc)) {
2933 		unsigned long total_high_wmark = 0;
2934 		unsigned long free, anon;
2935 		int z;
2936 
2937 		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2938 		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2939 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2940 
2941 		for (z = 0; z < MAX_NR_ZONES; z++) {
2942 			struct zone *zone = &pgdat->node_zones[z];
2943 
2944 			if (!managed_zone(zone))
2945 				continue;
2946 
2947 			total_high_wmark += high_wmark_pages(zone);
2948 		}
2949 
2950 		/*
2951 		 * Consider anon: if that's low too, this isn't a
2952 		 * runaway file reclaim problem, but rather just
2953 		 * extreme pressure. Reclaim as per usual then.
2954 		 */
2955 		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2956 
2957 		sc->file_is_tiny =
2958 			file + free <= total_high_wmark &&
2959 			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2960 			anon >> sc->priority;
2961 	}
2962 }
2963 
2964 /*
2965  * Determine how aggressively the anon and file LRU lists should be
2966  * scanned.
2967  *
2968  * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2969  * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2970  */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2971 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2972 			   unsigned long *nr)
2973 {
2974 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2975 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2976 	unsigned long anon_cost, file_cost, total_cost;
2977 	int swappiness = mem_cgroup_swappiness(memcg);
2978 	u64 fraction[ANON_AND_FILE];
2979 	u64 denominator = 0;	/* gcc */
2980 	enum scan_balance scan_balance;
2981 	unsigned long ap, fp;
2982 	enum lru_list lru;
2983 
2984 	/* If we have no swap space, do not bother scanning anon folios. */
2985 	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2986 		scan_balance = SCAN_FILE;
2987 		goto out;
2988 	}
2989 
2990 	/*
2991 	 * Global reclaim will swap to prevent OOM even with no
2992 	 * swappiness, but memcg users want to use this knob to
2993 	 * disable swapping for individual groups completely when
2994 	 * using the memory controller's swap limit feature would be
2995 	 * too expensive.
2996 	 */
2997 	if (cgroup_reclaim(sc) && !swappiness) {
2998 		scan_balance = SCAN_FILE;
2999 		goto out;
3000 	}
3001 
3002 	/*
3003 	 * Do not apply any pressure balancing cleverness when the
3004 	 * system is close to OOM, scan both anon and file equally
3005 	 * (unless the swappiness setting disagrees with swapping).
3006 	 */
3007 	if (!sc->priority && swappiness) {
3008 		scan_balance = SCAN_EQUAL;
3009 		goto out;
3010 	}
3011 
3012 	/*
3013 	 * If the system is almost out of file pages, force-scan anon.
3014 	 */
3015 	if (sc->file_is_tiny) {
3016 		scan_balance = SCAN_ANON;
3017 		goto out;
3018 	}
3019 
3020 	/*
3021 	 * If there is enough inactive page cache, we do not reclaim
3022 	 * anything from the anonymous working right now.
3023 	 */
3024 	if (sc->cache_trim_mode) {
3025 		scan_balance = SCAN_FILE;
3026 		goto out;
3027 	}
3028 
3029 	scan_balance = SCAN_FRACT;
3030 	/*
3031 	 * Calculate the pressure balance between anon and file pages.
3032 	 *
3033 	 * The amount of pressure we put on each LRU is inversely
3034 	 * proportional to the cost of reclaiming each list, as
3035 	 * determined by the share of pages that are refaulting, times
3036 	 * the relative IO cost of bringing back a swapped out
3037 	 * anonymous page vs reloading a filesystem page (swappiness).
3038 	 *
3039 	 * Although we limit that influence to ensure no list gets
3040 	 * left behind completely: at least a third of the pressure is
3041 	 * applied, before swappiness.
3042 	 *
3043 	 * With swappiness at 100, anon and file have equal IO cost.
3044 	 */
3045 	total_cost = sc->anon_cost + sc->file_cost;
3046 	anon_cost = total_cost + sc->anon_cost;
3047 	file_cost = total_cost + sc->file_cost;
3048 	total_cost = anon_cost + file_cost;
3049 
3050 	ap = swappiness * (total_cost + 1);
3051 	ap /= anon_cost + 1;
3052 
3053 	fp = (200 - swappiness) * (total_cost + 1);
3054 	fp /= file_cost + 1;
3055 
3056 	fraction[0] = ap;
3057 	fraction[1] = fp;
3058 	denominator = ap + fp;
3059 out:
3060 	for_each_evictable_lru(lru) {
3061 		int file = is_file_lru(lru);
3062 		unsigned long lruvec_size;
3063 		unsigned long low, min;
3064 		unsigned long scan;
3065 
3066 		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3067 		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3068 				      &min, &low);
3069 
3070 		if (min || low) {
3071 			/*
3072 			 * Scale a cgroup's reclaim pressure by proportioning
3073 			 * its current usage to its memory.low or memory.min
3074 			 * setting.
3075 			 *
3076 			 * This is important, as otherwise scanning aggression
3077 			 * becomes extremely binary -- from nothing as we
3078 			 * approach the memory protection threshold, to totally
3079 			 * nominal as we exceed it.  This results in requiring
3080 			 * setting extremely liberal protection thresholds. It
3081 			 * also means we simply get no protection at all if we
3082 			 * set it too low, which is not ideal.
3083 			 *
3084 			 * If there is any protection in place, we reduce scan
3085 			 * pressure by how much of the total memory used is
3086 			 * within protection thresholds.
3087 			 *
3088 			 * There is one special case: in the first reclaim pass,
3089 			 * we skip over all groups that are within their low
3090 			 * protection. If that fails to reclaim enough pages to
3091 			 * satisfy the reclaim goal, we come back and override
3092 			 * the best-effort low protection. However, we still
3093 			 * ideally want to honor how well-behaved groups are in
3094 			 * that case instead of simply punishing them all
3095 			 * equally. As such, we reclaim them based on how much
3096 			 * memory they are using, reducing the scan pressure
3097 			 * again by how much of the total memory used is under
3098 			 * hard protection.
3099 			 */
3100 			unsigned long cgroup_size = mem_cgroup_size(memcg);
3101 			unsigned long protection;
3102 
3103 			/* memory.low scaling, make sure we retry before OOM */
3104 			if (!sc->memcg_low_reclaim && low > min) {
3105 				protection = low;
3106 				sc->memcg_low_skipped = 1;
3107 			} else {
3108 				protection = min;
3109 			}
3110 
3111 			/* Avoid TOCTOU with earlier protection check */
3112 			cgroup_size = max(cgroup_size, protection);
3113 
3114 			scan = lruvec_size - lruvec_size * protection /
3115 				(cgroup_size + 1);
3116 
3117 			/*
3118 			 * Minimally target SWAP_CLUSTER_MAX pages to keep
3119 			 * reclaim moving forwards, avoiding decrementing
3120 			 * sc->priority further than desirable.
3121 			 */
3122 			scan = max(scan, SWAP_CLUSTER_MAX);
3123 		} else {
3124 			scan = lruvec_size;
3125 		}
3126 
3127 		scan >>= sc->priority;
3128 
3129 		/*
3130 		 * If the cgroup's already been deleted, make sure to
3131 		 * scrape out the remaining cache.
3132 		 */
3133 		if (!scan && !mem_cgroup_online(memcg))
3134 			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3135 
3136 		switch (scan_balance) {
3137 		case SCAN_EQUAL:
3138 			/* Scan lists relative to size */
3139 			break;
3140 		case SCAN_FRACT:
3141 			/*
3142 			 * Scan types proportional to swappiness and
3143 			 * their relative recent reclaim efficiency.
3144 			 * Make sure we don't miss the last page on
3145 			 * the offlined memory cgroups because of a
3146 			 * round-off error.
3147 			 */
3148 			scan = mem_cgroup_online(memcg) ?
3149 			       div64_u64(scan * fraction[file], denominator) :
3150 			       DIV64_U64_ROUND_UP(scan * fraction[file],
3151 						  denominator);
3152 			break;
3153 		case SCAN_FILE:
3154 		case SCAN_ANON:
3155 			/* Scan one type exclusively */
3156 			if ((scan_balance == SCAN_FILE) != file)
3157 				scan = 0;
3158 			break;
3159 		default:
3160 			/* Look ma, no brain */
3161 			BUG();
3162 		}
3163 
3164 		nr[lru] = scan;
3165 	}
3166 }
3167 
3168 /*
3169  * Anonymous LRU management is a waste if there is
3170  * ultimately no way to reclaim the memory.
3171  */
can_age_anon_pages(struct pglist_data * pgdat,struct scan_control * sc)3172 static bool can_age_anon_pages(struct pglist_data *pgdat,
3173 			       struct scan_control *sc)
3174 {
3175 	/* Aging the anon LRU is valuable if swap is present: */
3176 	if (total_swap_pages > 0)
3177 		return true;
3178 
3179 	/* Also valuable if anon pages can be demoted: */
3180 	return can_demote(pgdat->node_id, sc);
3181 }
3182 
3183 #ifdef CONFIG_LRU_GEN
3184 
3185 #ifdef CONFIG_LRU_GEN_ENABLED
3186 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3187 #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
3188 #else
3189 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3190 #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
3191 #endif
3192 
should_walk_mmu(void)3193 static bool should_walk_mmu(void)
3194 {
3195 	return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
3196 }
3197 
should_clear_pmd_young(void)3198 static bool should_clear_pmd_young(void)
3199 {
3200 	return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
3201 }
3202 
3203 /******************************************************************************
3204  *                          shorthand helpers
3205  ******************************************************************************/
3206 
3207 #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
3208 
3209 #define DEFINE_MAX_SEQ(lruvec)						\
3210 	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3211 
3212 #define DEFINE_MIN_SEQ(lruvec)						\
3213 	unsigned long min_seq[ANON_AND_FILE] = {			\
3214 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
3215 		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
3216 	}
3217 
3218 #define for_each_gen_type_zone(gen, type, zone)				\
3219 	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
3220 		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
3221 			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3222 
3223 #define get_memcg_gen(seq)	((seq) % MEMCG_NR_GENS)
3224 #define get_memcg_bin(bin)	((bin) % MEMCG_NR_BINS)
3225 
get_lruvec(struct mem_cgroup * memcg,int nid)3226 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3227 {
3228 	struct pglist_data *pgdat = NODE_DATA(nid);
3229 
3230 #ifdef CONFIG_MEMCG
3231 	if (memcg) {
3232 		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3233 
3234 		/* see the comment in mem_cgroup_lruvec() */
3235 		if (!lruvec->pgdat)
3236 			lruvec->pgdat = pgdat;
3237 
3238 		return lruvec;
3239 	}
3240 #endif
3241 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3242 
3243 	return &pgdat->__lruvec;
3244 }
3245 
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)3246 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3247 {
3248 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3249 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3250 
3251 	if (!sc->may_swap)
3252 		return 0;
3253 
3254 	if (!can_demote(pgdat->node_id, sc) &&
3255 	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3256 		return 0;
3257 
3258 	return mem_cgroup_swappiness(memcg);
3259 }
3260 
get_nr_gens(struct lruvec * lruvec,int type)3261 static int get_nr_gens(struct lruvec *lruvec, int type)
3262 {
3263 	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3264 }
3265 
seq_is_valid(struct lruvec * lruvec)3266 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3267 {
3268 	/* see the comment on lru_gen_folio */
3269 	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3270 	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3271 	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3272 }
3273 
3274 /******************************************************************************
3275  *                          Bloom filters
3276  ******************************************************************************/
3277 
3278 /*
3279  * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3280  * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3281  * bits in a bitmap, k is the number of hash functions and n is the number of
3282  * inserted items.
3283  *
3284  * Page table walkers use one of the two filters to reduce their search space.
3285  * To get rid of non-leaf entries that no longer have enough leaf entries, the
3286  * aging uses the double-buffering technique to flip to the other filter each
3287  * time it produces a new generation. For non-leaf entries that have enough
3288  * leaf entries, the aging carries them over to the next generation in
3289  * walk_pmd_range(); the eviction also report them when walking the rmap
3290  * in lru_gen_look_around().
3291  *
3292  * For future optimizations:
3293  * 1. It's not necessary to keep both filters all the time. The spare one can be
3294  *    freed after the RCU grace period and reallocated if needed again.
3295  * 2. And when reallocating, it's worth scaling its size according to the number
3296  *    of inserted entries in the other filter, to reduce the memory overhead on
3297  *    small systems and false positives on large systems.
3298  * 3. Jenkins' hash function is an alternative to Knuth's.
3299  */
3300 #define BLOOM_FILTER_SHIFT	15
3301 
filter_gen_from_seq(unsigned long seq)3302 static inline int filter_gen_from_seq(unsigned long seq)
3303 {
3304 	return seq % NR_BLOOM_FILTERS;
3305 }
3306 
get_item_key(void * item,int * key)3307 static void get_item_key(void *item, int *key)
3308 {
3309 	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3310 
3311 	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3312 
3313 	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3314 	key[1] = hash >> BLOOM_FILTER_SHIFT;
3315 }
3316 
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3317 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3318 {
3319 	int key[2];
3320 	unsigned long *filter;
3321 	int gen = filter_gen_from_seq(seq);
3322 
3323 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3324 	if (!filter)
3325 		return true;
3326 
3327 	get_item_key(item, key);
3328 
3329 	return test_bit(key[0], filter) && test_bit(key[1], filter);
3330 }
3331 
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)3332 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3333 {
3334 	int key[2];
3335 	unsigned long *filter;
3336 	int gen = filter_gen_from_seq(seq);
3337 
3338 	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3339 	if (!filter)
3340 		return;
3341 
3342 	get_item_key(item, key);
3343 
3344 	if (!test_bit(key[0], filter))
3345 		set_bit(key[0], filter);
3346 	if (!test_bit(key[1], filter))
3347 		set_bit(key[1], filter);
3348 }
3349 
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)3350 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3351 {
3352 	unsigned long *filter;
3353 	int gen = filter_gen_from_seq(seq);
3354 
3355 	filter = lruvec->mm_state.filters[gen];
3356 	if (filter) {
3357 		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3358 		return;
3359 	}
3360 
3361 	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3362 			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3363 	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3364 }
3365 
3366 /******************************************************************************
3367  *                          mm_struct list
3368  ******************************************************************************/
3369 
get_mm_list(struct mem_cgroup * memcg)3370 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3371 {
3372 	static struct lru_gen_mm_list mm_list = {
3373 		.fifo = LIST_HEAD_INIT(mm_list.fifo),
3374 		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3375 	};
3376 
3377 #ifdef CONFIG_MEMCG
3378 	if (memcg)
3379 		return &memcg->mm_list;
3380 #endif
3381 	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3382 
3383 	return &mm_list;
3384 }
3385 
lru_gen_add_mm(struct mm_struct * mm)3386 void lru_gen_add_mm(struct mm_struct *mm)
3387 {
3388 	int nid;
3389 	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3390 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3391 
3392 	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3393 #ifdef CONFIG_MEMCG
3394 	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3395 	mm->lru_gen.memcg = memcg;
3396 #endif
3397 	spin_lock(&mm_list->lock);
3398 
3399 	for_each_node_state(nid, N_MEMORY) {
3400 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3401 
3402 		/* the first addition since the last iteration */
3403 		if (lruvec->mm_state.tail == &mm_list->fifo)
3404 			lruvec->mm_state.tail = &mm->lru_gen.list;
3405 	}
3406 
3407 	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3408 
3409 	spin_unlock(&mm_list->lock);
3410 }
3411 
lru_gen_del_mm(struct mm_struct * mm)3412 void lru_gen_del_mm(struct mm_struct *mm)
3413 {
3414 	int nid;
3415 	struct lru_gen_mm_list *mm_list;
3416 	struct mem_cgroup *memcg = NULL;
3417 
3418 	if (list_empty(&mm->lru_gen.list))
3419 		return;
3420 
3421 #ifdef CONFIG_MEMCG
3422 	memcg = mm->lru_gen.memcg;
3423 #endif
3424 	mm_list = get_mm_list(memcg);
3425 
3426 	spin_lock(&mm_list->lock);
3427 
3428 	for_each_node(nid) {
3429 		struct lruvec *lruvec = get_lruvec(memcg, nid);
3430 
3431 		/* where the current iteration continues after */
3432 		if (lruvec->mm_state.head == &mm->lru_gen.list)
3433 			lruvec->mm_state.head = lruvec->mm_state.head->prev;
3434 
3435 		/* where the last iteration ended before */
3436 		if (lruvec->mm_state.tail == &mm->lru_gen.list)
3437 			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3438 	}
3439 
3440 	list_del_init(&mm->lru_gen.list);
3441 
3442 	spin_unlock(&mm_list->lock);
3443 
3444 #ifdef CONFIG_MEMCG
3445 	mem_cgroup_put(mm->lru_gen.memcg);
3446 	mm->lru_gen.memcg = NULL;
3447 #endif
3448 }
3449 
3450 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)3451 void lru_gen_migrate_mm(struct mm_struct *mm)
3452 {
3453 	struct mem_cgroup *memcg;
3454 	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3455 
3456 	VM_WARN_ON_ONCE(task->mm != mm);
3457 	lockdep_assert_held(&task->alloc_lock);
3458 
3459 	/* for mm_update_next_owner() */
3460 	if (mem_cgroup_disabled())
3461 		return;
3462 
3463 	/* migration can happen before addition */
3464 	if (!mm->lru_gen.memcg)
3465 		return;
3466 
3467 	rcu_read_lock();
3468 	memcg = mem_cgroup_from_task(task);
3469 	rcu_read_unlock();
3470 	if (memcg == mm->lru_gen.memcg)
3471 		return;
3472 
3473 	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3474 
3475 	lru_gen_del_mm(mm);
3476 	lru_gen_add_mm(mm);
3477 }
3478 #endif
3479 
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)3480 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3481 {
3482 	int i;
3483 	int hist;
3484 
3485 	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3486 
3487 	if (walk) {
3488 		hist = lru_hist_from_seq(walk->max_seq);
3489 
3490 		for (i = 0; i < NR_MM_STATS; i++) {
3491 			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3492 				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3493 			walk->mm_stats[i] = 0;
3494 		}
3495 	}
3496 
3497 	if (NR_HIST_GENS > 1 && last) {
3498 		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3499 
3500 		for (i = 0; i < NR_MM_STATS; i++)
3501 			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3502 	}
3503 }
3504 
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3505 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3506 {
3507 	int type;
3508 	unsigned long size = 0;
3509 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3510 	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3511 
3512 	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3513 		return true;
3514 
3515 	clear_bit(key, &mm->lru_gen.bitmap);
3516 
3517 	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3518 		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3519 			       get_mm_counter(mm, MM_ANONPAGES) +
3520 			       get_mm_counter(mm, MM_SHMEMPAGES);
3521 	}
3522 
3523 	if (size < MIN_LRU_BATCH)
3524 		return true;
3525 
3526 	return !mmget_not_zero(mm);
3527 }
3528 
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3529 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3530 			    struct mm_struct **iter)
3531 {
3532 	bool first = false;
3533 	bool last = false;
3534 	struct mm_struct *mm = NULL;
3535 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3536 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3537 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3538 
3539 	/*
3540 	 * mm_state->seq is incremented after each iteration of mm_list. There
3541 	 * are three interesting cases for this page table walker:
3542 	 * 1. It tries to start a new iteration with a stale max_seq: there is
3543 	 *    nothing left to do.
3544 	 * 2. It started the next iteration: it needs to reset the Bloom filter
3545 	 *    so that a fresh set of PTE tables can be recorded.
3546 	 * 3. It ended the current iteration: it needs to reset the mm stats
3547 	 *    counters and tell its caller to increment max_seq.
3548 	 */
3549 	spin_lock(&mm_list->lock);
3550 
3551 	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3552 
3553 	if (walk->max_seq <= mm_state->seq)
3554 		goto done;
3555 
3556 	if (!mm_state->head)
3557 		mm_state->head = &mm_list->fifo;
3558 
3559 	if (mm_state->head == &mm_list->fifo)
3560 		first = true;
3561 
3562 	do {
3563 		mm_state->head = mm_state->head->next;
3564 		if (mm_state->head == &mm_list->fifo) {
3565 			WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3566 			last = true;
3567 			break;
3568 		}
3569 
3570 		/* force scan for those added after the last iteration */
3571 		if (!mm_state->tail || mm_state->tail == mm_state->head) {
3572 			mm_state->tail = mm_state->head->next;
3573 			walk->force_scan = true;
3574 		}
3575 
3576 		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3577 		if (should_skip_mm(mm, walk))
3578 			mm = NULL;
3579 	} while (!mm);
3580 done:
3581 	if (*iter || last)
3582 		reset_mm_stats(lruvec, walk, last);
3583 
3584 	spin_unlock(&mm_list->lock);
3585 
3586 	if (mm && first)
3587 		reset_bloom_filter(lruvec, walk->max_seq + 1);
3588 
3589 	if (*iter)
3590 		mmput_async(*iter);
3591 
3592 	*iter = mm;
3593 
3594 	return last;
3595 }
3596 
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3597 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3598 {
3599 	bool success = false;
3600 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3601 	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3602 	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3603 
3604 	spin_lock(&mm_list->lock);
3605 
3606 	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3607 
3608 	if (max_seq > mm_state->seq) {
3609 		mm_state->head = NULL;
3610 		mm_state->tail = NULL;
3611 		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3612 		reset_mm_stats(lruvec, NULL, true);
3613 		success = true;
3614 	}
3615 
3616 	spin_unlock(&mm_list->lock);
3617 
3618 	return success;
3619 }
3620 
3621 /******************************************************************************
3622  *                          PID controller
3623  ******************************************************************************/
3624 
3625 /*
3626  * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3627  *
3628  * The P term is refaulted/(evicted+protected) from a tier in the generation
3629  * currently being evicted; the I term is the exponential moving average of the
3630  * P term over the generations previously evicted, using the smoothing factor
3631  * 1/2; the D term isn't supported.
3632  *
3633  * The setpoint (SP) is always the first tier of one type; the process variable
3634  * (PV) is either any tier of the other type or any other tier of the same
3635  * type.
3636  *
3637  * The error is the difference between the SP and the PV; the correction is to
3638  * turn off protection when SP>PV or turn on protection when SP<PV.
3639  *
3640  * For future optimizations:
3641  * 1. The D term may discount the other two terms over time so that long-lived
3642  *    generations can resist stale information.
3643  */
3644 struct ctrl_pos {
3645 	unsigned long refaulted;
3646 	unsigned long total;
3647 	int gain;
3648 };
3649 
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3650 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3651 			  struct ctrl_pos *pos)
3652 {
3653 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3654 	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3655 
3656 	pos->refaulted = lrugen->avg_refaulted[type][tier] +
3657 			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3658 	pos->total = lrugen->avg_total[type][tier] +
3659 		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
3660 	if (tier)
3661 		pos->total += lrugen->protected[hist][type][tier - 1];
3662 	pos->gain = gain;
3663 }
3664 
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3665 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3666 {
3667 	int hist, tier;
3668 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3669 	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3670 	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3671 
3672 	lockdep_assert_held(&lruvec->lru_lock);
3673 
3674 	if (!carryover && !clear)
3675 		return;
3676 
3677 	hist = lru_hist_from_seq(seq);
3678 
3679 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3680 		if (carryover) {
3681 			unsigned long sum;
3682 
3683 			sum = lrugen->avg_refaulted[type][tier] +
3684 			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3685 			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3686 
3687 			sum = lrugen->avg_total[type][tier] +
3688 			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
3689 			if (tier)
3690 				sum += lrugen->protected[hist][type][tier - 1];
3691 			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3692 		}
3693 
3694 		if (clear) {
3695 			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3696 			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3697 			if (tier)
3698 				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3699 		}
3700 	}
3701 }
3702 
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3703 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3704 {
3705 	/*
3706 	 * Return true if the PV has a limited number of refaults or a lower
3707 	 * refaulted/total than the SP.
3708 	 */
3709 	return pv->refaulted < MIN_LRU_BATCH ||
3710 	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3711 	       (sp->refaulted + 1) * pv->total * pv->gain;
3712 }
3713 
3714 /******************************************************************************
3715  *                          the aging
3716  ******************************************************************************/
3717 
3718 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3719 static int folio_update_gen(struct folio *folio, int gen)
3720 {
3721 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3722 
3723 	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3724 	VM_WARN_ON_ONCE(!rcu_read_lock_held());
3725 
3726 	do {
3727 		/* lru_gen_del_folio() has isolated this page? */
3728 		if (!(old_flags & LRU_GEN_MASK)) {
3729 			/* for shrink_folio_list() */
3730 			new_flags = old_flags | BIT(PG_referenced);
3731 			continue;
3732 		}
3733 
3734 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3735 		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3736 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3737 
3738 	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3739 }
3740 
3741 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3742 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3743 {
3744 	int type = folio_is_file_lru(folio);
3745 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3746 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3747 	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3748 
3749 	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3750 
3751 	do {
3752 		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3753 		/* folio_update_gen() has promoted this page? */
3754 		if (new_gen >= 0 && new_gen != old_gen)
3755 			return new_gen;
3756 
3757 		new_gen = (old_gen + 1) % MAX_NR_GENS;
3758 
3759 		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3760 		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3761 		/* for folio_end_writeback() */
3762 		if (reclaiming)
3763 			new_flags |= BIT(PG_reclaim);
3764 	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3765 
3766 	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3767 
3768 	return new_gen;
3769 }
3770 
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3771 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3772 			      int old_gen, int new_gen)
3773 {
3774 	int type = folio_is_file_lru(folio);
3775 	int zone = folio_zonenum(folio);
3776 	int delta = folio_nr_pages(folio);
3777 
3778 	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3779 	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3780 
3781 	walk->batched++;
3782 
3783 	walk->nr_pages[old_gen][type][zone] -= delta;
3784 	walk->nr_pages[new_gen][type][zone] += delta;
3785 }
3786 
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3787 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3788 {
3789 	int gen, type, zone;
3790 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
3791 
3792 	walk->batched = 0;
3793 
3794 	for_each_gen_type_zone(gen, type, zone) {
3795 		enum lru_list lru = type * LRU_INACTIVE_FILE;
3796 		int delta = walk->nr_pages[gen][type][zone];
3797 
3798 		if (!delta)
3799 			continue;
3800 
3801 		walk->nr_pages[gen][type][zone] = 0;
3802 		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3803 			   lrugen->nr_pages[gen][type][zone] + delta);
3804 
3805 		if (lru_gen_is_active(lruvec, gen))
3806 			lru += LRU_ACTIVE;
3807 		__update_lru_size(lruvec, lru, zone, delta);
3808 	}
3809 }
3810 
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3811 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3812 {
3813 	struct address_space *mapping;
3814 	struct vm_area_struct *vma = args->vma;
3815 	struct lru_gen_mm_walk *walk = args->private;
3816 
3817 	if (!vma_is_accessible(vma))
3818 		return true;
3819 
3820 	if (is_vm_hugetlb_page(vma))
3821 		return true;
3822 
3823 	if (!vma_has_recency(vma))
3824 		return true;
3825 
3826 	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3827 		return true;
3828 
3829 	if (vma == get_gate_vma(vma->vm_mm))
3830 		return true;
3831 
3832 	if (vma_is_anonymous(vma))
3833 		return !walk->can_swap;
3834 
3835 	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3836 		return true;
3837 
3838 	mapping = vma->vm_file->f_mapping;
3839 	if (mapping_unevictable(mapping))
3840 		return true;
3841 
3842 	if (shmem_mapping(mapping))
3843 		return !walk->can_swap;
3844 
3845 	/* to exclude special mappings like dax, etc. */
3846 	return !mapping->a_ops->read_folio;
3847 }
3848 
3849 /*
3850  * Some userspace memory allocators map many single-page VMAs. Instead of
3851  * returning back to the PGD table for each of such VMAs, finish an entire PMD
3852  * table to reduce zigzags and improve cache performance.
3853  */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3854 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3855 			 unsigned long *vm_start, unsigned long *vm_end)
3856 {
3857 	unsigned long start = round_up(*vm_end, size);
3858 	unsigned long end = (start | ~mask) + 1;
3859 	VMA_ITERATOR(vmi, args->mm, start);
3860 
3861 	VM_WARN_ON_ONCE(mask & size);
3862 	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3863 
3864 	for_each_vma(vmi, args->vma) {
3865 		if (end && end <= args->vma->vm_start)
3866 			return false;
3867 
3868 		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3869 			continue;
3870 
3871 		*vm_start = max(start, args->vma->vm_start);
3872 		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3873 
3874 		return true;
3875 	}
3876 
3877 	return false;
3878 }
3879 
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3880 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3881 {
3882 	unsigned long pfn = pte_pfn(pte);
3883 
3884 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3885 
3886 	if (!pte_present(pte) || is_zero_pfn(pfn))
3887 		return -1;
3888 
3889 	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3890 		return -1;
3891 
3892 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3893 		return -1;
3894 
3895 	return pfn;
3896 }
3897 
3898 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3899 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3900 {
3901 	unsigned long pfn = pmd_pfn(pmd);
3902 
3903 	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3904 
3905 	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3906 		return -1;
3907 
3908 	if (WARN_ON_ONCE(pmd_devmap(pmd)))
3909 		return -1;
3910 
3911 	if (WARN_ON_ONCE(!pfn_valid(pfn)))
3912 		return -1;
3913 
3914 	return pfn;
3915 }
3916 #endif
3917 
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3918 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3919 				   struct pglist_data *pgdat, bool can_swap)
3920 {
3921 	struct folio *folio;
3922 
3923 	/* try to avoid unnecessary memory loads */
3924 	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3925 		return NULL;
3926 
3927 	folio = pfn_folio(pfn);
3928 	if (folio_nid(folio) != pgdat->node_id)
3929 		return NULL;
3930 
3931 	if (folio_memcg_rcu(folio) != memcg)
3932 		return NULL;
3933 
3934 	/* file VMAs can contain anon pages from COW */
3935 	if (!folio_is_file_lru(folio) && !can_swap)
3936 		return NULL;
3937 
3938 	return folio;
3939 }
3940 
suitable_to_scan(int total,int young)3941 static bool suitable_to_scan(int total, int young)
3942 {
3943 	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3944 
3945 	/* suitable if the average number of young PTEs per cacheline is >=1 */
3946 	return young * n >= total;
3947 }
3948 
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3949 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3950 			   struct mm_walk *args)
3951 {
3952 	int i;
3953 	pte_t *pte;
3954 	spinlock_t *ptl;
3955 	unsigned long addr;
3956 	int total = 0;
3957 	int young = 0;
3958 	struct lru_gen_mm_walk *walk = args->private;
3959 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3960 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3961 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3962 
3963 	pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3964 	if (!pte)
3965 		return false;
3966 	if (!spin_trylock(ptl)) {
3967 		pte_unmap(pte);
3968 		return false;
3969 	}
3970 
3971 	arch_enter_lazy_mmu_mode();
3972 restart:
3973 	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3974 		unsigned long pfn;
3975 		struct folio *folio;
3976 		pte_t ptent = ptep_get(pte + i);
3977 
3978 		total++;
3979 		walk->mm_stats[MM_LEAF_TOTAL]++;
3980 
3981 		pfn = get_pte_pfn(ptent, args->vma, addr);
3982 		if (pfn == -1)
3983 			continue;
3984 
3985 		if (!pte_young(ptent)) {
3986 			walk->mm_stats[MM_LEAF_OLD]++;
3987 			continue;
3988 		}
3989 
3990 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3991 		if (!folio)
3992 			continue;
3993 
3994 		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3995 			VM_WARN_ON_ONCE(true);
3996 
3997 		young++;
3998 		walk->mm_stats[MM_LEAF_YOUNG]++;
3999 
4000 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4001 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4002 		      !folio_test_swapcache(folio)))
4003 			folio_mark_dirty(folio);
4004 
4005 		old_gen = folio_update_gen(folio, new_gen);
4006 		if (old_gen >= 0 && old_gen != new_gen)
4007 			update_batch_size(walk, folio, old_gen, new_gen);
4008 	}
4009 
4010 	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
4011 		goto restart;
4012 
4013 	arch_leave_lazy_mmu_mode();
4014 	pte_unmap_unlock(pte, ptl);
4015 
4016 	return suitable_to_scan(total, young);
4017 }
4018 
4019 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4020 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4021 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4022 {
4023 	int i;
4024 	pmd_t *pmd;
4025 	spinlock_t *ptl;
4026 	struct lru_gen_mm_walk *walk = args->private;
4027 	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
4028 	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4029 	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
4030 
4031 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4032 
4033 	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
4034 	if (*first == -1) {
4035 		*first = addr;
4036 		bitmap_zero(bitmap, MIN_LRU_BATCH);
4037 		return;
4038 	}
4039 
4040 	i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
4041 	if (i && i <= MIN_LRU_BATCH) {
4042 		__set_bit(i - 1, bitmap);
4043 		return;
4044 	}
4045 
4046 	pmd = pmd_offset(pud, *first);
4047 
4048 	ptl = pmd_lockptr(args->mm, pmd);
4049 	if (!spin_trylock(ptl))
4050 		goto done;
4051 
4052 	arch_enter_lazy_mmu_mode();
4053 
4054 	do {
4055 		unsigned long pfn;
4056 		struct folio *folio;
4057 
4058 		/* don't round down the first address */
4059 		addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
4060 
4061 		pfn = get_pmd_pfn(pmd[i], vma, addr);
4062 		if (pfn == -1)
4063 			goto next;
4064 
4065 		if (!pmd_trans_huge(pmd[i])) {
4066 			if (should_clear_pmd_young())
4067 				pmdp_test_and_clear_young(vma, addr, pmd + i);
4068 			goto next;
4069 		}
4070 
4071 		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4072 		if (!folio)
4073 			goto next;
4074 
4075 		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4076 			goto next;
4077 
4078 		walk->mm_stats[MM_LEAF_YOUNG]++;
4079 
4080 		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4081 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4082 		      !folio_test_swapcache(folio)))
4083 			folio_mark_dirty(folio);
4084 
4085 		old_gen = folio_update_gen(folio, new_gen);
4086 		if (old_gen >= 0 && old_gen != new_gen)
4087 			update_batch_size(walk, folio, old_gen, new_gen);
4088 next:
4089 		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4090 	} while (i <= MIN_LRU_BATCH);
4091 
4092 	arch_leave_lazy_mmu_mode();
4093 	spin_unlock(ptl);
4094 done:
4095 	*first = -1;
4096 }
4097 #else
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)4098 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
4099 				  struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
4100 {
4101 }
4102 #endif
4103 
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)4104 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4105 			   struct mm_walk *args)
4106 {
4107 	int i;
4108 	pmd_t *pmd;
4109 	unsigned long next;
4110 	unsigned long addr;
4111 	struct vm_area_struct *vma;
4112 	DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
4113 	unsigned long first = -1;
4114 	struct lru_gen_mm_walk *walk = args->private;
4115 
4116 	VM_WARN_ON_ONCE(pud_leaf(*pud));
4117 
4118 	/*
4119 	 * Finish an entire PMD in two passes: the first only reaches to PTE
4120 	 * tables to avoid taking the PMD lock; the second, if necessary, takes
4121 	 * the PMD lock to clear the accessed bit in PMD entries.
4122 	 */
4123 	pmd = pmd_offset(pud, start & PUD_MASK);
4124 restart:
4125 	/* walk_pte_range() may call get_next_vma() */
4126 	vma = args->vma;
4127 	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4128 		pmd_t val = pmdp_get_lockless(pmd + i);
4129 
4130 		next = pmd_addr_end(addr, end);
4131 
4132 		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4133 			walk->mm_stats[MM_LEAF_TOTAL]++;
4134 			continue;
4135 		}
4136 
4137 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4138 		if (pmd_trans_huge(val)) {
4139 			unsigned long pfn = pmd_pfn(val);
4140 			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4141 
4142 			walk->mm_stats[MM_LEAF_TOTAL]++;
4143 
4144 			if (!pmd_young(val)) {
4145 				walk->mm_stats[MM_LEAF_OLD]++;
4146 				continue;
4147 			}
4148 
4149 			/* try to avoid unnecessary memory loads */
4150 			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4151 				continue;
4152 
4153 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4154 			continue;
4155 		}
4156 #endif
4157 		walk->mm_stats[MM_NONLEAF_TOTAL]++;
4158 
4159 		if (should_clear_pmd_young()) {
4160 			if (!pmd_young(val))
4161 				continue;
4162 
4163 			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
4164 		}
4165 
4166 		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4167 			continue;
4168 
4169 		walk->mm_stats[MM_NONLEAF_FOUND]++;
4170 
4171 		if (!walk_pte_range(&val, addr, next, args))
4172 			continue;
4173 
4174 		walk->mm_stats[MM_NONLEAF_ADDED]++;
4175 
4176 		/* carry over to the next generation */
4177 		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4178 	}
4179 
4180 	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
4181 
4182 	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4183 		goto restart;
4184 }
4185 
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)4186 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4187 			  struct mm_walk *args)
4188 {
4189 	int i;
4190 	pud_t *pud;
4191 	unsigned long addr;
4192 	unsigned long next;
4193 	struct lru_gen_mm_walk *walk = args->private;
4194 
4195 	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4196 
4197 	pud = pud_offset(p4d, start & P4D_MASK);
4198 restart:
4199 	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4200 		pud_t val = READ_ONCE(pud[i]);
4201 
4202 		next = pud_addr_end(addr, end);
4203 
4204 		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4205 			continue;
4206 
4207 		walk_pmd_range(&val, addr, next, args);
4208 
4209 		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4210 			end = (addr | ~PUD_MASK) + 1;
4211 			goto done;
4212 		}
4213 	}
4214 
4215 	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4216 		goto restart;
4217 
4218 	end = round_up(end, P4D_SIZE);
4219 done:
4220 	if (!end || !args->vma)
4221 		return 1;
4222 
4223 	walk->next_addr = max(end, args->vma->vm_start);
4224 
4225 	return -EAGAIN;
4226 }
4227 
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)4228 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4229 {
4230 	static const struct mm_walk_ops mm_walk_ops = {
4231 		.test_walk = should_skip_vma,
4232 		.p4d_entry = walk_pud_range,
4233 		.walk_lock = PGWALK_RDLOCK,
4234 	};
4235 
4236 	int err;
4237 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4238 
4239 	walk->next_addr = FIRST_USER_ADDRESS;
4240 
4241 	do {
4242 		DEFINE_MAX_SEQ(lruvec);
4243 
4244 		err = -EBUSY;
4245 
4246 		/* another thread might have called inc_max_seq() */
4247 		if (walk->max_seq != max_seq)
4248 			break;
4249 
4250 		/* folio_update_gen() requires stable folio_memcg() */
4251 		if (!mem_cgroup_trylock_pages(memcg))
4252 			break;
4253 
4254 		/* the caller might be holding the lock for write */
4255 		if (mmap_read_trylock(mm)) {
4256 			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4257 
4258 			mmap_read_unlock(mm);
4259 		}
4260 
4261 		mem_cgroup_unlock_pages();
4262 
4263 		if (walk->batched) {
4264 			spin_lock_irq(&lruvec->lru_lock);
4265 			reset_batch_size(lruvec, walk);
4266 			spin_unlock_irq(&lruvec->lru_lock);
4267 		}
4268 
4269 		cond_resched();
4270 	} while (err == -EAGAIN);
4271 }
4272 
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)4273 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
4274 {
4275 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4276 
4277 	if (pgdat && current_is_kswapd()) {
4278 		VM_WARN_ON_ONCE(walk);
4279 
4280 		walk = &pgdat->mm_walk;
4281 	} else if (!walk && force_alloc) {
4282 		VM_WARN_ON_ONCE(current_is_kswapd());
4283 
4284 		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4285 	}
4286 
4287 	current->reclaim_state->mm_walk = walk;
4288 
4289 	return walk;
4290 }
4291 
clear_mm_walk(void)4292 static void clear_mm_walk(void)
4293 {
4294 	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4295 
4296 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4297 	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4298 
4299 	current->reclaim_state->mm_walk = NULL;
4300 
4301 	if (!current_is_kswapd())
4302 		kfree(walk);
4303 }
4304 
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)4305 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4306 {
4307 	int zone;
4308 	int remaining = MAX_LRU_BATCH;
4309 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4310 	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4311 
4312 	if (type == LRU_GEN_ANON && !can_swap)
4313 		goto done;
4314 
4315 	/* prevent cold/hot inversion if force_scan is true */
4316 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4317 		struct list_head *head = &lrugen->folios[old_gen][type][zone];
4318 
4319 		while (!list_empty(head)) {
4320 			struct folio *folio = lru_to_folio(head);
4321 
4322 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4323 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4324 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4325 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4326 
4327 			new_gen = folio_inc_gen(lruvec, folio, false);
4328 			list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
4329 
4330 			if (!--remaining)
4331 				return false;
4332 		}
4333 	}
4334 done:
4335 	reset_ctrl_pos(lruvec, type, true);
4336 	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4337 
4338 	return true;
4339 }
4340 
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)4341 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4342 {
4343 	int gen, type, zone;
4344 	bool success = false;
4345 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4346 	DEFINE_MIN_SEQ(lruvec);
4347 
4348 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4349 
4350 	/* find the oldest populated generation */
4351 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4352 		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4353 			gen = lru_gen_from_seq(min_seq[type]);
4354 
4355 			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4356 				if (!list_empty(&lrugen->folios[gen][type][zone]))
4357 					goto next;
4358 			}
4359 
4360 			min_seq[type]++;
4361 		}
4362 next:
4363 		;
4364 	}
4365 
4366 	/* see the comment on lru_gen_folio */
4367 	if (can_swap) {
4368 		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4369 		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4370 	}
4371 
4372 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4373 		if (min_seq[type] == lrugen->min_seq[type])
4374 			continue;
4375 
4376 		reset_ctrl_pos(lruvec, type, true);
4377 		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4378 		success = true;
4379 	}
4380 
4381 	return success;
4382 }
4383 
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool force_scan)4384 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4385 {
4386 	int prev, next;
4387 	int type, zone;
4388 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4389 restart:
4390 	spin_lock_irq(&lruvec->lru_lock);
4391 
4392 	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4393 
4394 	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4395 		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4396 			continue;
4397 
4398 		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4399 
4400 		if (inc_min_seq(lruvec, type, can_swap))
4401 			continue;
4402 
4403 		spin_unlock_irq(&lruvec->lru_lock);
4404 		cond_resched();
4405 		goto restart;
4406 	}
4407 
4408 	/*
4409 	 * Update the active/inactive LRU sizes for compatibility. Both sides of
4410 	 * the current max_seq need to be covered, since max_seq+1 can overlap
4411 	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4412 	 * overlap, cold/hot inversion happens.
4413 	 */
4414 	prev = lru_gen_from_seq(lrugen->max_seq - 1);
4415 	next = lru_gen_from_seq(lrugen->max_seq + 1);
4416 
4417 	for (type = 0; type < ANON_AND_FILE; type++) {
4418 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4419 			enum lru_list lru = type * LRU_INACTIVE_FILE;
4420 			long delta = lrugen->nr_pages[prev][type][zone] -
4421 				     lrugen->nr_pages[next][type][zone];
4422 
4423 			if (!delta)
4424 				continue;
4425 
4426 			__update_lru_size(lruvec, lru, zone, delta);
4427 			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4428 		}
4429 	}
4430 
4431 	for (type = 0; type < ANON_AND_FILE; type++)
4432 		reset_ctrl_pos(lruvec, type, false);
4433 
4434 	WRITE_ONCE(lrugen->timestamps[next], jiffies);
4435 	/* make sure preceding modifications appear */
4436 	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4437 
4438 	spin_unlock_irq(&lruvec->lru_lock);
4439 }
4440 
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool force_scan)4441 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4442 			       struct scan_control *sc, bool can_swap, bool force_scan)
4443 {
4444 	bool success;
4445 	struct lru_gen_mm_walk *walk;
4446 	struct mm_struct *mm = NULL;
4447 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4448 
4449 	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4450 
4451 	/* see the comment in iterate_mm_list() */
4452 	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4453 		success = false;
4454 		goto done;
4455 	}
4456 
4457 	/*
4458 	 * If the hardware doesn't automatically set the accessed bit, fallback
4459 	 * to lru_gen_look_around(), which only clears the accessed bit in a
4460 	 * handful of PTEs. Spreading the work out over a period of time usually
4461 	 * is less efficient, but it avoids bursty page faults.
4462 	 */
4463 	if (!should_walk_mmu()) {
4464 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4465 		goto done;
4466 	}
4467 
4468 	walk = set_mm_walk(NULL, true);
4469 	if (!walk) {
4470 		success = iterate_mm_list_nowalk(lruvec, max_seq);
4471 		goto done;
4472 	}
4473 
4474 	walk->lruvec = lruvec;
4475 	walk->max_seq = max_seq;
4476 	walk->can_swap = can_swap;
4477 	walk->force_scan = force_scan;
4478 
4479 	do {
4480 		success = iterate_mm_list(lruvec, walk, &mm);
4481 		if (mm)
4482 			walk_mm(lruvec, mm, walk);
4483 	} while (mm);
4484 done:
4485 	if (success)
4486 		inc_max_seq(lruvec, can_swap, force_scan);
4487 
4488 	return success;
4489 }
4490 
4491 /******************************************************************************
4492  *                          working set protection
4493  ******************************************************************************/
4494 
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4495 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4496 {
4497 	int priority;
4498 	unsigned long reclaimable;
4499 
4500 	if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4501 		return;
4502 	/*
4503 	 * Determine the initial priority based on
4504 	 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4505 	 * where reclaimed_to_scanned_ratio = inactive / total.
4506 	 */
4507 	reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4508 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4509 		reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4510 
4511 	/* round down reclaimable and round up sc->nr_to_reclaim */
4512 	priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4513 
4514 	/*
4515 	 * The estimation is based on LRU pages only, so cap it to prevent
4516 	 * overshoots of shrinker objects by large margins.
4517 	 */
4518 	sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4519 }
4520 
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4521 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4522 {
4523 	int gen, type, zone;
4524 	unsigned long total = 0;
4525 	bool can_swap = get_swappiness(lruvec, sc);
4526 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4527 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4528 	DEFINE_MAX_SEQ(lruvec);
4529 	DEFINE_MIN_SEQ(lruvec);
4530 
4531 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
4532 		unsigned long seq;
4533 
4534 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
4535 			gen = lru_gen_from_seq(seq);
4536 
4537 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
4538 				total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4539 		}
4540 	}
4541 
4542 	/* whether the size is big enough to be helpful */
4543 	return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4544 }
4545 
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4546 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4547 				  unsigned long min_ttl)
4548 {
4549 	int gen;
4550 	unsigned long birth;
4551 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4552 	DEFINE_MIN_SEQ(lruvec);
4553 
4554 	if (mem_cgroup_below_min(NULL, memcg))
4555 		return false;
4556 
4557 	if (!lruvec_is_sizable(lruvec, sc))
4558 		return false;
4559 
4560 	/* see the comment on lru_gen_folio */
4561 	gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4562 	birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4563 
4564 	return time_is_before_jiffies(birth + min_ttl);
4565 }
4566 
4567 /* to protect the working set of the last N jiffies */
4568 static unsigned long lru_gen_min_ttl __read_mostly;
4569 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4570 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4571 {
4572 	struct mem_cgroup *memcg;
4573 	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4574 	bool reclaimable = !min_ttl;
4575 
4576 	VM_WARN_ON_ONCE(!current_is_kswapd());
4577 
4578 	set_initial_priority(pgdat, sc);
4579 
4580 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
4581 	do {
4582 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4583 
4584 		mem_cgroup_calculate_protection(NULL, memcg);
4585 
4586 		if (!reclaimable)
4587 			reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4588 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4589 
4590 	/*
4591 	 * The main goal is to OOM kill if every generation from all memcgs is
4592 	 * younger than min_ttl. However, another possibility is all memcgs are
4593 	 * either too small or below min.
4594 	 */
4595 	if (!reclaimable && mutex_trylock(&oom_lock)) {
4596 		struct oom_control oc = {
4597 			.gfp_mask = sc->gfp_mask,
4598 		};
4599 
4600 		out_of_memory(&oc);
4601 
4602 		mutex_unlock(&oom_lock);
4603 	}
4604 }
4605 
4606 /******************************************************************************
4607  *                          rmap/PT walk feedback
4608  ******************************************************************************/
4609 
4610 /*
4611  * This function exploits spatial locality when shrink_folio_list() walks the
4612  * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4613  * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4614  * the PTE table to the Bloom filter. This forms a feedback loop between the
4615  * eviction and the aging.
4616  */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4617 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4618 {
4619 	int i;
4620 	unsigned long start;
4621 	unsigned long end;
4622 	struct lru_gen_mm_walk *walk;
4623 	int young = 0;
4624 	pte_t *pte = pvmw->pte;
4625 	unsigned long addr = pvmw->address;
4626 	struct vm_area_struct *vma = pvmw->vma;
4627 	struct folio *folio = pfn_folio(pvmw->pfn);
4628 	bool can_swap = !folio_is_file_lru(folio);
4629 	struct mem_cgroup *memcg = folio_memcg(folio);
4630 	struct pglist_data *pgdat = folio_pgdat(folio);
4631 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4632 	DEFINE_MAX_SEQ(lruvec);
4633 	int old_gen, new_gen = lru_gen_from_seq(max_seq);
4634 
4635 	lockdep_assert_held(pvmw->ptl);
4636 	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4637 
4638 	if (spin_is_contended(pvmw->ptl))
4639 		return;
4640 
4641 	/* exclude special VMAs containing anon pages from COW */
4642 	if (vma->vm_flags & VM_SPECIAL)
4643 		return;
4644 
4645 	/* avoid taking the LRU lock under the PTL when possible */
4646 	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4647 
4648 	start = max(addr & PMD_MASK, vma->vm_start);
4649 	end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4650 
4651 	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4652 		if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4653 			end = start + MIN_LRU_BATCH * PAGE_SIZE;
4654 		else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4655 			start = end - MIN_LRU_BATCH * PAGE_SIZE;
4656 		else {
4657 			start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4658 			end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4659 		}
4660 	}
4661 
4662 	/* folio_update_gen() requires stable folio_memcg() */
4663 	if (!mem_cgroup_trylock_pages(memcg))
4664 		return;
4665 
4666 	arch_enter_lazy_mmu_mode();
4667 
4668 	pte -= (addr - start) / PAGE_SIZE;
4669 
4670 	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4671 		unsigned long pfn;
4672 		pte_t ptent = ptep_get(pte + i);
4673 
4674 		pfn = get_pte_pfn(ptent, vma, addr);
4675 		if (pfn == -1)
4676 			continue;
4677 
4678 		if (!pte_young(ptent))
4679 			continue;
4680 
4681 		folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4682 		if (!folio)
4683 			continue;
4684 
4685 		if (!ptep_test_and_clear_young(vma, addr, pte + i))
4686 			VM_WARN_ON_ONCE(true);
4687 
4688 		young++;
4689 
4690 		if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4691 		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4692 		      !folio_test_swapcache(folio)))
4693 			folio_mark_dirty(folio);
4694 
4695 		if (walk) {
4696 			old_gen = folio_update_gen(folio, new_gen);
4697 			if (old_gen >= 0 && old_gen != new_gen)
4698 				update_batch_size(walk, folio, old_gen, new_gen);
4699 
4700 			continue;
4701 		}
4702 
4703 		old_gen = folio_lru_gen(folio);
4704 		if (old_gen < 0)
4705 			folio_set_referenced(folio);
4706 		else if (old_gen != new_gen)
4707 			folio_activate(folio);
4708 	}
4709 
4710 	arch_leave_lazy_mmu_mode();
4711 	mem_cgroup_unlock_pages();
4712 
4713 	/* feedback from rmap walkers to page table walkers */
4714 	if (suitable_to_scan(i, young))
4715 		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4716 }
4717 
4718 /******************************************************************************
4719  *                          memcg LRU
4720  ******************************************************************************/
4721 
4722 /* see the comment on MEMCG_NR_GENS */
4723 enum {
4724 	MEMCG_LRU_NOP,
4725 	MEMCG_LRU_HEAD,
4726 	MEMCG_LRU_TAIL,
4727 	MEMCG_LRU_OLD,
4728 	MEMCG_LRU_YOUNG,
4729 };
4730 
4731 #ifdef CONFIG_MEMCG
4732 
lru_gen_memcg_seg(struct lruvec * lruvec)4733 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4734 {
4735 	return READ_ONCE(lruvec->lrugen.seg);
4736 }
4737 
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4738 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4739 {
4740 	int seg;
4741 	int old, new;
4742 	unsigned long flags;
4743 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4744 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4745 
4746 	spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4747 
4748 	VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4749 
4750 	seg = 0;
4751 	new = old = lruvec->lrugen.gen;
4752 
4753 	/* see the comment on MEMCG_NR_GENS */
4754 	if (op == MEMCG_LRU_HEAD)
4755 		seg = MEMCG_LRU_HEAD;
4756 	else if (op == MEMCG_LRU_TAIL)
4757 		seg = MEMCG_LRU_TAIL;
4758 	else if (op == MEMCG_LRU_OLD)
4759 		new = get_memcg_gen(pgdat->memcg_lru.seq);
4760 	else if (op == MEMCG_LRU_YOUNG)
4761 		new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4762 	else
4763 		VM_WARN_ON_ONCE(true);
4764 
4765 	WRITE_ONCE(lruvec->lrugen.seg, seg);
4766 	WRITE_ONCE(lruvec->lrugen.gen, new);
4767 
4768 	hlist_nulls_del_rcu(&lruvec->lrugen.list);
4769 
4770 	if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4771 		hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4772 	else
4773 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4774 
4775 	pgdat->memcg_lru.nr_memcgs[old]--;
4776 	pgdat->memcg_lru.nr_memcgs[new]++;
4777 
4778 	if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4779 		WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4780 
4781 	spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4782 }
4783 
lru_gen_online_memcg(struct mem_cgroup * memcg)4784 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4785 {
4786 	int gen;
4787 	int nid;
4788 	int bin = get_random_u32_below(MEMCG_NR_BINS);
4789 
4790 	for_each_node(nid) {
4791 		struct pglist_data *pgdat = NODE_DATA(nid);
4792 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4793 
4794 		spin_lock_irq(&pgdat->memcg_lru.lock);
4795 
4796 		VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4797 
4798 		gen = get_memcg_gen(pgdat->memcg_lru.seq);
4799 
4800 		lruvec->lrugen.gen = gen;
4801 
4802 		hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4803 		pgdat->memcg_lru.nr_memcgs[gen]++;
4804 
4805 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4806 	}
4807 }
4808 
lru_gen_offline_memcg(struct mem_cgroup * memcg)4809 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4810 {
4811 	int nid;
4812 
4813 	for_each_node(nid) {
4814 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4815 
4816 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4817 	}
4818 }
4819 
lru_gen_release_memcg(struct mem_cgroup * memcg)4820 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4821 {
4822 	int gen;
4823 	int nid;
4824 
4825 	for_each_node(nid) {
4826 		struct pglist_data *pgdat = NODE_DATA(nid);
4827 		struct lruvec *lruvec = get_lruvec(memcg, nid);
4828 
4829 		spin_lock_irq(&pgdat->memcg_lru.lock);
4830 
4831 		if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4832 			goto unlock;
4833 
4834 		gen = lruvec->lrugen.gen;
4835 
4836 		hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4837 		pgdat->memcg_lru.nr_memcgs[gen]--;
4838 
4839 		if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4840 			WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4841 unlock:
4842 		spin_unlock_irq(&pgdat->memcg_lru.lock);
4843 	}
4844 }
4845 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4846 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4847 {
4848 	struct lruvec *lruvec = get_lruvec(memcg, nid);
4849 
4850 	/* see the comment on MEMCG_NR_GENS */
4851 	if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4852 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4853 }
4854 
4855 #else /* !CONFIG_MEMCG */
4856 
lru_gen_memcg_seg(struct lruvec * lruvec)4857 static int lru_gen_memcg_seg(struct lruvec *lruvec)
4858 {
4859 	return 0;
4860 }
4861 
4862 #endif
4863 
4864 /******************************************************************************
4865  *                          the eviction
4866  ******************************************************************************/
4867 
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4868 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4869 		       int tier_idx)
4870 {
4871 	bool success;
4872 	int gen = folio_lru_gen(folio);
4873 	int type = folio_is_file_lru(folio);
4874 	int zone = folio_zonenum(folio);
4875 	int delta = folio_nr_pages(folio);
4876 	int refs = folio_lru_refs(folio);
4877 	int tier = lru_tier_from_refs(refs);
4878 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4879 
4880 	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4881 
4882 	/* unevictable */
4883 	if (!folio_evictable(folio)) {
4884 		success = lru_gen_del_folio(lruvec, folio, true);
4885 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4886 		folio_set_unevictable(folio);
4887 		lruvec_add_folio(lruvec, folio);
4888 		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
4889 		return true;
4890 	}
4891 
4892 	/* dirty lazyfree */
4893 	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4894 		success = lru_gen_del_folio(lruvec, folio, true);
4895 		VM_WARN_ON_ONCE_FOLIO(!success, folio);
4896 		folio_set_swapbacked(folio);
4897 		lruvec_add_folio_tail(lruvec, folio);
4898 		return true;
4899 	}
4900 
4901 	/* promoted */
4902 	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4903 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4904 		return true;
4905 	}
4906 
4907 	/* protected */
4908 	if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4909 		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4910 
4911 		gen = folio_inc_gen(lruvec, folio, false);
4912 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4913 
4914 		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4915 			   lrugen->protected[hist][type][tier - 1] + delta);
4916 		return true;
4917 	}
4918 
4919 	/* ineligible */
4920 	if (zone > sc->reclaim_idx) {
4921 		gen = folio_inc_gen(lruvec, folio, false);
4922 		list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4923 		return true;
4924 	}
4925 
4926 	/* waiting for writeback */
4927 	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4928 	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4929 		gen = folio_inc_gen(lruvec, folio, true);
4930 		list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4931 		return true;
4932 	}
4933 
4934 	return false;
4935 }
4936 
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4937 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4938 {
4939 	bool success;
4940 
4941 	/* swapping inhibited */
4942 	if (!(sc->gfp_mask & __GFP_IO) &&
4943 	    (folio_test_dirty(folio) ||
4944 	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4945 		return false;
4946 
4947 	/* raced with release_pages() */
4948 	if (!folio_try_get(folio))
4949 		return false;
4950 
4951 	/* raced with another isolation */
4952 	if (!folio_test_clear_lru(folio)) {
4953 		folio_put(folio);
4954 		return false;
4955 	}
4956 
4957 	/* see the comment on MAX_NR_TIERS */
4958 	if (!folio_test_referenced(folio))
4959 		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4960 
4961 	/* for shrink_folio_list() */
4962 	folio_clear_reclaim(folio);
4963 	folio_clear_referenced(folio);
4964 
4965 	success = lru_gen_del_folio(lruvec, folio, true);
4966 	VM_WARN_ON_ONCE_FOLIO(!success, folio);
4967 
4968 	return true;
4969 }
4970 
scan_folios(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4971 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4972 		       int type, int tier, struct list_head *list)
4973 {
4974 	int i;
4975 	int gen;
4976 	enum vm_event_item item;
4977 	int sorted = 0;
4978 	int scanned = 0;
4979 	int isolated = 0;
4980 	int remaining = MAX_LRU_BATCH;
4981 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
4982 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4983 
4984 	VM_WARN_ON_ONCE(!list_empty(list));
4985 
4986 	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4987 		return 0;
4988 
4989 	gen = lru_gen_from_seq(lrugen->min_seq[type]);
4990 
4991 	for (i = MAX_NR_ZONES; i > 0; i--) {
4992 		LIST_HEAD(moved);
4993 		int skipped = 0;
4994 		int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4995 		struct list_head *head = &lrugen->folios[gen][type][zone];
4996 
4997 		while (!list_empty(head)) {
4998 			struct folio *folio = lru_to_folio(head);
4999 			int delta = folio_nr_pages(folio);
5000 
5001 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5002 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5003 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5004 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5005 
5006 			scanned += delta;
5007 
5008 			if (sort_folio(lruvec, folio, sc, tier))
5009 				sorted += delta;
5010 			else if (isolate_folio(lruvec, folio, sc)) {
5011 				list_add(&folio->lru, list);
5012 				isolated += delta;
5013 			} else {
5014 				list_move(&folio->lru, &moved);
5015 				skipped += delta;
5016 			}
5017 
5018 			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
5019 				break;
5020 		}
5021 
5022 		if (skipped) {
5023 			list_splice(&moved, head);
5024 			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
5025 		}
5026 
5027 		if (!remaining || isolated >= MIN_LRU_BATCH)
5028 			break;
5029 	}
5030 
5031 	item = PGSCAN_KSWAPD + reclaimer_offset();
5032 	if (!cgroup_reclaim(sc)) {
5033 		__count_vm_events(item, isolated);
5034 		__count_vm_events(PGREFILL, sorted);
5035 	}
5036 	__count_memcg_events(memcg, item, isolated);
5037 	__count_memcg_events(memcg, PGREFILL, sorted);
5038 	__count_vm_events(PGSCAN_ANON + type, isolated);
5039 
5040 	/*
5041 	 * There might not be eligible folios due to reclaim_idx. Check the
5042 	 * remaining to prevent livelock if it's not making progress.
5043 	 */
5044 	return isolated || !remaining ? scanned : 0;
5045 }
5046 
get_tier_idx(struct lruvec * lruvec,int type)5047 static int get_tier_idx(struct lruvec *lruvec, int type)
5048 {
5049 	int tier;
5050 	struct ctrl_pos sp, pv;
5051 
5052 	/*
5053 	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
5054 	 * This value is chosen because any other tier would have at least twice
5055 	 * as many refaults as the first tier.
5056 	 */
5057 	read_ctrl_pos(lruvec, type, 0, 1, &sp);
5058 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5059 		read_ctrl_pos(lruvec, type, tier, 2, &pv);
5060 		if (!positive_ctrl_err(&sp, &pv))
5061 			break;
5062 	}
5063 
5064 	return tier - 1;
5065 }
5066 
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)5067 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
5068 {
5069 	int type, tier;
5070 	struct ctrl_pos sp, pv;
5071 	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
5072 
5073 	/*
5074 	 * Compare the first tier of anon with that of file to determine which
5075 	 * type to scan. Also need to compare other tiers of the selected type
5076 	 * with the first tier of the other type to determine the last tier (of
5077 	 * the selected type) to evict.
5078 	 */
5079 	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
5080 	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
5081 	type = positive_ctrl_err(&sp, &pv);
5082 
5083 	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
5084 	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
5085 		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
5086 		if (!positive_ctrl_err(&sp, &pv))
5087 			break;
5088 	}
5089 
5090 	*tier_idx = tier - 1;
5091 
5092 	return type;
5093 }
5094 
isolate_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)5095 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
5096 			  int *type_scanned, struct list_head *list)
5097 {
5098 	int i;
5099 	int type;
5100 	int scanned;
5101 	int tier = -1;
5102 	DEFINE_MIN_SEQ(lruvec);
5103 
5104 	/*
5105 	 * Try to make the obvious choice first. When anon and file are both
5106 	 * available from the same generation, interpret swappiness 1 as file
5107 	 * first and 200 as anon first.
5108 	 */
5109 	if (!swappiness)
5110 		type = LRU_GEN_FILE;
5111 	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
5112 		type = LRU_GEN_ANON;
5113 	else if (swappiness == 1)
5114 		type = LRU_GEN_FILE;
5115 	else if (swappiness == 200)
5116 		type = LRU_GEN_ANON;
5117 	else
5118 		type = get_type_to_scan(lruvec, swappiness, &tier);
5119 
5120 	for (i = !swappiness; i < ANON_AND_FILE; i++) {
5121 		if (tier < 0)
5122 			tier = get_tier_idx(lruvec, type);
5123 
5124 		scanned = scan_folios(lruvec, sc, type, tier, list);
5125 		if (scanned)
5126 			break;
5127 
5128 		type = !type;
5129 		tier = -1;
5130 	}
5131 
5132 	*type_scanned = type;
5133 
5134 	return scanned;
5135 }
5136 
evict_folios(struct lruvec * lruvec,struct scan_control * sc,int swappiness)5137 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
5138 {
5139 	int type;
5140 	int scanned;
5141 	int reclaimed;
5142 	LIST_HEAD(list);
5143 	LIST_HEAD(clean);
5144 	struct folio *folio;
5145 	struct folio *next;
5146 	enum vm_event_item item;
5147 	struct reclaim_stat stat;
5148 	struct lru_gen_mm_walk *walk;
5149 	bool skip_retry = false;
5150 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5151 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5152 
5153 	spin_lock_irq(&lruvec->lru_lock);
5154 
5155 	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5156 
5157 	scanned += try_to_inc_min_seq(lruvec, swappiness);
5158 
5159 	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5160 		scanned = 0;
5161 
5162 	spin_unlock_irq(&lruvec->lru_lock);
5163 
5164 	if (list_empty(&list))
5165 		return scanned;
5166 retry:
5167 	reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5168 	sc->nr_reclaimed += reclaimed;
5169 
5170 	list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5171 		if (!folio_evictable(folio)) {
5172 			list_del(&folio->lru);
5173 			folio_putback_lru(folio);
5174 			continue;
5175 		}
5176 
5177 		if (folio_test_reclaim(folio) &&
5178 		    (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5179 			/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5180 			if (folio_test_workingset(folio))
5181 				folio_set_referenced(folio);
5182 			continue;
5183 		}
5184 
5185 		if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5186 		    folio_mapped(folio) || folio_test_locked(folio) ||
5187 		    folio_test_dirty(folio) || folio_test_writeback(folio)) {
5188 			/* don't add rejected folios to the oldest generation */
5189 			set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5190 				      BIT(PG_active));
5191 			continue;
5192 		}
5193 
5194 		/* retry folios that may have missed folio_rotate_reclaimable() */
5195 		list_move(&folio->lru, &clean);
5196 	}
5197 
5198 	spin_lock_irq(&lruvec->lru_lock);
5199 
5200 	move_folios_to_lru(lruvec, &list);
5201 
5202 	walk = current->reclaim_state->mm_walk;
5203 	if (walk && walk->batched)
5204 		reset_batch_size(lruvec, walk);
5205 
5206 	item = PGSTEAL_KSWAPD + reclaimer_offset();
5207 	if (!cgroup_reclaim(sc))
5208 		__count_vm_events(item, reclaimed);
5209 	__count_memcg_events(memcg, item, reclaimed);
5210 	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
5211 
5212 	spin_unlock_irq(&lruvec->lru_lock);
5213 
5214 	mem_cgroup_uncharge_list(&list);
5215 	free_unref_page_list(&list);
5216 
5217 	INIT_LIST_HEAD(&list);
5218 	list_splice_init(&clean, &list);
5219 
5220 	if (!list_empty(&list)) {
5221 		skip_retry = true;
5222 		goto retry;
5223 	}
5224 
5225 	return scanned;
5226 }
5227 
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)5228 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
5229 			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
5230 {
5231 	int gen, type, zone;
5232 	unsigned long old = 0;
5233 	unsigned long young = 0;
5234 	unsigned long total = 0;
5235 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5236 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5237 	DEFINE_MIN_SEQ(lruvec);
5238 
5239 	/* whether this lruvec is completely out of cold folios */
5240 	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
5241 		*nr_to_scan = 0;
5242 		return true;
5243 	}
5244 
5245 	for (type = !can_swap; type < ANON_AND_FILE; type++) {
5246 		unsigned long seq;
5247 
5248 		for (seq = min_seq[type]; seq <= max_seq; seq++) {
5249 			unsigned long size = 0;
5250 
5251 			gen = lru_gen_from_seq(seq);
5252 
5253 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5254 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5255 
5256 			total += size;
5257 			if (seq == max_seq)
5258 				young += size;
5259 			else if (seq + MIN_NR_GENS == max_seq)
5260 				old += size;
5261 		}
5262 	}
5263 
5264 	/* try to scrape all its memory if this memcg was deleted */
5265 	if (!mem_cgroup_online(memcg)) {
5266 		*nr_to_scan = total;
5267 		return false;
5268 	}
5269 
5270 	*nr_to_scan = total >> sc->priority;
5271 
5272 	/*
5273 	 * The aging tries to be lazy to reduce the overhead, while the eviction
5274 	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
5275 	 * ideal number of generations is MIN_NR_GENS+1.
5276 	 */
5277 	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
5278 		return false;
5279 
5280 	/*
5281 	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
5282 	 * of the total number of pages for each generation. A reasonable range
5283 	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
5284 	 * aging cares about the upper bound of hot pages, while the eviction
5285 	 * cares about the lower bound of cold pages.
5286 	 */
5287 	if (young * MIN_NR_GENS > total)
5288 		return true;
5289 	if (old * (MIN_NR_GENS + 2) < total)
5290 		return true;
5291 
5292 	return false;
5293 }
5294 
5295 /*
5296  * For future optimizations:
5297  * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5298  *    reclaim.
5299  */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap)5300 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
5301 {
5302 	unsigned long nr_to_scan;
5303 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5304 	DEFINE_MAX_SEQ(lruvec);
5305 
5306 	if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
5307 		return -1;
5308 
5309 	if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
5310 		return nr_to_scan;
5311 
5312 	/* skip the aging path at the default priority */
5313 	if (sc->priority == DEF_PRIORITY)
5314 		return nr_to_scan;
5315 
5316 	/* skip this lruvec as it's low on cold folios */
5317 	return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
5318 }
5319 
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)5320 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
5321 {
5322 	int i;
5323 	enum zone_watermarks mark;
5324 
5325 	/* don't abort memcg reclaim to ensure fairness */
5326 	if (!root_reclaim(sc))
5327 		return false;
5328 
5329 	if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
5330 		return true;
5331 
5332 	/* check the order to exclude compaction-induced reclaim */
5333 	if (!current_is_kswapd() || sc->order)
5334 		return false;
5335 
5336 	mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
5337 	       WMARK_PROMO : WMARK_HIGH;
5338 
5339 	for (i = 0; i <= sc->reclaim_idx; i++) {
5340 		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5341 		unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
5342 
5343 		if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
5344 			return false;
5345 	}
5346 
5347 	/* kswapd should abort if all eligible zones are safe */
5348 	return true;
5349 }
5350 
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5351 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5352 {
5353 	long nr_to_scan;
5354 	unsigned long scanned = 0;
5355 	int swappiness = get_swappiness(lruvec, sc);
5356 
5357 	/* clean file folios are more likely to exist */
5358 	if (swappiness && !(sc->gfp_mask & __GFP_IO))
5359 		swappiness = 1;
5360 
5361 	while (true) {
5362 		int delta;
5363 
5364 		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
5365 		if (nr_to_scan <= 0)
5366 			break;
5367 
5368 		delta = evict_folios(lruvec, sc, swappiness);
5369 		if (!delta)
5370 			break;
5371 
5372 		scanned += delta;
5373 		if (scanned >= nr_to_scan)
5374 			break;
5375 
5376 		if (should_abort_scan(lruvec, sc))
5377 			break;
5378 
5379 		cond_resched();
5380 	}
5381 
5382 	/* whether this lruvec should be rotated */
5383 	return nr_to_scan < 0;
5384 }
5385 
shrink_one(struct lruvec * lruvec,struct scan_control * sc)5386 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
5387 {
5388 	bool success;
5389 	unsigned long scanned = sc->nr_scanned;
5390 	unsigned long reclaimed = sc->nr_reclaimed;
5391 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5392 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5393 
5394 	/* lru_gen_age_node() called mem_cgroup_calculate_protection() */
5395 	if (mem_cgroup_below_min(NULL, memcg))
5396 		return MEMCG_LRU_YOUNG;
5397 
5398 	if (mem_cgroup_below_low(NULL, memcg)) {
5399 		/* see the comment on MEMCG_NR_GENS */
5400 		if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL)
5401 			return MEMCG_LRU_TAIL;
5402 
5403 		memcg_memory_event(memcg, MEMCG_LOW);
5404 	}
5405 
5406 	success = try_to_shrink_lruvec(lruvec, sc);
5407 
5408 	shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
5409 
5410 	if (!sc->proactive)
5411 		vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
5412 			   sc->nr_reclaimed - reclaimed);
5413 
5414 	flush_reclaim_state(sc);
5415 
5416 	if (success && mem_cgroup_online(memcg))
5417 		return MEMCG_LRU_YOUNG;
5418 
5419 	if (!success && lruvec_is_sizable(lruvec, sc))
5420 		return 0;
5421 
5422 	/* one retry if offlined or too small */
5423 	return lru_gen_memcg_seg(lruvec) != MEMCG_LRU_TAIL ?
5424 	       MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
5425 }
5426 
5427 #ifdef CONFIG_MEMCG
5428 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5429 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5430 {
5431 	int op;
5432 	int gen;
5433 	int bin;
5434 	int first_bin;
5435 	struct lruvec *lruvec;
5436 	struct lru_gen_folio *lrugen;
5437 	struct mem_cgroup *memcg;
5438 	struct hlist_nulls_node *pos;
5439 
5440 	gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
5441 	bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
5442 restart:
5443 	op = 0;
5444 	memcg = NULL;
5445 
5446 	rcu_read_lock();
5447 
5448 	hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
5449 		if (op) {
5450 			lru_gen_rotate_memcg(lruvec, op);
5451 			op = 0;
5452 		}
5453 
5454 		mem_cgroup_put(memcg);
5455 		memcg = NULL;
5456 
5457 		if (gen != READ_ONCE(lrugen->gen))
5458 			continue;
5459 
5460 		lruvec = container_of(lrugen, struct lruvec, lrugen);
5461 		memcg = lruvec_memcg(lruvec);
5462 
5463 		if (!mem_cgroup_tryget(memcg)) {
5464 			lru_gen_release_memcg(memcg);
5465 			memcg = NULL;
5466 			continue;
5467 		}
5468 
5469 		rcu_read_unlock();
5470 
5471 		op = shrink_one(lruvec, sc);
5472 
5473 		rcu_read_lock();
5474 
5475 		if (should_abort_scan(lruvec, sc))
5476 			break;
5477 	}
5478 
5479 	rcu_read_unlock();
5480 
5481 	if (op)
5482 		lru_gen_rotate_memcg(lruvec, op);
5483 
5484 	mem_cgroup_put(memcg);
5485 
5486 	if (!is_a_nulls(pos))
5487 		return;
5488 
5489 	/* restart if raced with lru_gen_rotate_memcg() */
5490 	if (gen != get_nulls_value(pos))
5491 		goto restart;
5492 
5493 	/* try the rest of the bins of the current generation */
5494 	bin = get_memcg_bin(bin + 1);
5495 	if (bin != first_bin)
5496 		goto restart;
5497 }
5498 
5499 #ifndef CONFIG_HYPERHOLD_FILE_LRU
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5500 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5501 {
5502 	struct blk_plug plug;
5503 
5504 	VM_WARN_ON_ONCE(root_reclaim(sc));
5505 	VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5506 
5507 	lru_add_drain();
5508 
5509 	blk_start_plug(&plug);
5510 
5511 	set_mm_walk(NULL, sc->proactive);
5512 
5513 	if (try_to_shrink_lruvec(lruvec, sc))
5514 		lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5515 
5516 	clear_mm_walk();
5517 
5518 	blk_finish_plug(&plug);
5519 }
5520 #endif
5521 
5522 #else /* !CONFIG_MEMCG */
5523 
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)5524 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
5525 {
5526 	BUILD_BUG();
5527 }
5528 
5529 #ifndef CONFIG_HYPERHOLD_FILE_LRU
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5530 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5531 {
5532 	BUILD_BUG();
5533 }
5534 #endif
5535 
5536 #endif
5537 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5538 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5539 {
5540 	struct blk_plug plug;
5541 	unsigned long reclaimed = sc->nr_reclaimed;
5542 
5543 	VM_WARN_ON_ONCE(!root_reclaim(sc));
5544 
5545 	/*
5546 	 * Unmapped clean folios are already prioritized. Scanning for more of
5547 	 * them is likely futile and can cause high reclaim latency when there
5548 	 * is a large number of memcgs.
5549 	 */
5550 	if (!sc->may_writepage || !sc->may_unmap)
5551 		goto done;
5552 
5553 	lru_add_drain();
5554 
5555 	blk_start_plug(&plug);
5556 
5557 	set_mm_walk(pgdat, sc->proactive);
5558 
5559 	set_initial_priority(pgdat, sc);
5560 
5561 	if (current_is_kswapd())
5562 		sc->nr_reclaimed = 0;
5563 
5564 	if (mem_cgroup_disabled())
5565 		shrink_one(&pgdat->__lruvec, sc);
5566 	else
5567 		shrink_many(pgdat, sc);
5568 
5569 	if (current_is_kswapd())
5570 		sc->nr_reclaimed += reclaimed;
5571 
5572 	clear_mm_walk();
5573 
5574 	blk_finish_plug(&plug);
5575 done:
5576 	if (sc->nr_reclaimed > reclaimed)
5577 		pgdat->kswapd_failures = 0;
5578 }
5579 
5580 /******************************************************************************
5581  *                          state change
5582  ******************************************************************************/
5583 
state_is_valid(struct lruvec * lruvec)5584 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5585 {
5586 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5587 
5588 	if (lrugen->enabled) {
5589 		enum lru_list lru;
5590 
5591 		for_each_evictable_lru(lru) {
5592 			if (!list_empty(&lruvec->lists[lru]))
5593 				return false;
5594 		}
5595 	} else {
5596 		int gen, type, zone;
5597 
5598 		for_each_gen_type_zone(gen, type, zone) {
5599 			if (!list_empty(&lrugen->folios[gen][type][zone]))
5600 				return false;
5601 		}
5602 	}
5603 
5604 	return true;
5605 }
5606 
fill_evictable(struct lruvec * lruvec)5607 static bool fill_evictable(struct lruvec *lruvec)
5608 {
5609 	enum lru_list lru;
5610 	int remaining = MAX_LRU_BATCH;
5611 
5612 	for_each_evictable_lru(lru) {
5613 		int type = is_file_lru(lru);
5614 		bool active = is_active_lru(lru);
5615 		struct list_head *head = &lruvec->lists[lru];
5616 
5617 		while (!list_empty(head)) {
5618 			bool success;
5619 			struct folio *folio = lru_to_folio(head);
5620 
5621 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5622 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5623 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5624 			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5625 
5626 			lruvec_del_folio(lruvec, folio);
5627 			success = lru_gen_add_folio(lruvec, folio, false);
5628 			VM_WARN_ON_ONCE(!success);
5629 
5630 			if (!--remaining)
5631 				return false;
5632 		}
5633 	}
5634 
5635 	return true;
5636 }
5637 
drain_evictable(struct lruvec * lruvec)5638 static bool drain_evictable(struct lruvec *lruvec)
5639 {
5640 	int gen, type, zone;
5641 	int remaining = MAX_LRU_BATCH;
5642 
5643 	for_each_gen_type_zone(gen, type, zone) {
5644 		struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5645 
5646 		while (!list_empty(head)) {
5647 			bool success;
5648 			struct folio *folio = lru_to_folio(head);
5649 
5650 			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5651 			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5652 			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5653 			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5654 
5655 			success = lru_gen_del_folio(lruvec, folio, false);
5656 			VM_WARN_ON_ONCE(!success);
5657 			lruvec_add_folio(lruvec, folio);
5658 
5659 			if (!--remaining)
5660 				return false;
5661 		}
5662 	}
5663 
5664 	return true;
5665 }
5666 
lru_gen_change_state(bool enabled)5667 static void lru_gen_change_state(bool enabled)
5668 {
5669 	static DEFINE_MUTEX(state_mutex);
5670 
5671 	struct mem_cgroup *memcg;
5672 
5673 	cgroup_lock();
5674 	cpus_read_lock();
5675 	get_online_mems();
5676 	mutex_lock(&state_mutex);
5677 
5678 	if (enabled == lru_gen_enabled())
5679 		goto unlock;
5680 
5681 	if (enabled)
5682 		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5683 	else
5684 		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5685 
5686 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5687 	do {
5688 		int nid;
5689 
5690 		for_each_node(nid) {
5691 			struct lruvec *lruvec = get_lruvec(memcg, nid);
5692 
5693 			spin_lock_irq(&lruvec->lru_lock);
5694 
5695 			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5696 			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5697 
5698 			lruvec->lrugen.enabled = enabled;
5699 
5700 			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5701 				spin_unlock_irq(&lruvec->lru_lock);
5702 				cond_resched();
5703 				spin_lock_irq(&lruvec->lru_lock);
5704 			}
5705 
5706 			spin_unlock_irq(&lruvec->lru_lock);
5707 		}
5708 
5709 		cond_resched();
5710 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5711 unlock:
5712 	mutex_unlock(&state_mutex);
5713 	put_online_mems();
5714 	cpus_read_unlock();
5715 	cgroup_unlock();
5716 }
5717 
5718 /******************************************************************************
5719  *                          sysfs interface
5720  ******************************************************************************/
5721 
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5722 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5723 {
5724 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5725 }
5726 
5727 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5728 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5729 				const char *buf, size_t len)
5730 {
5731 	unsigned int msecs;
5732 
5733 	if (kstrtouint(buf, 0, &msecs))
5734 		return -EINVAL;
5735 
5736 	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5737 
5738 	return len;
5739 }
5740 
5741 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5742 
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5743 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5744 {
5745 	unsigned int caps = 0;
5746 
5747 	if (get_cap(LRU_GEN_CORE))
5748 		caps |= BIT(LRU_GEN_CORE);
5749 
5750 	if (should_walk_mmu())
5751 		caps |= BIT(LRU_GEN_MM_WALK);
5752 
5753 	if (should_clear_pmd_young())
5754 		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5755 
5756 	return sysfs_emit(buf, "0x%04x\n", caps);
5757 }
5758 
5759 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5760 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5761 			     const char *buf, size_t len)
5762 {
5763 	int i;
5764 	unsigned int caps;
5765 
5766 	if (tolower(*buf) == 'n')
5767 		caps = 0;
5768 	else if (tolower(*buf) == 'y')
5769 		caps = -1;
5770 	else if (kstrtouint(buf, 0, &caps))
5771 		return -EINVAL;
5772 
5773 	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5774 		bool enabled = caps & BIT(i);
5775 
5776 		if (i == LRU_GEN_CORE)
5777 			lru_gen_change_state(enabled);
5778 		else if (enabled)
5779 			static_branch_enable(&lru_gen_caps[i]);
5780 		else
5781 			static_branch_disable(&lru_gen_caps[i]);
5782 	}
5783 
5784 	return len;
5785 }
5786 
5787 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5788 
5789 static struct attribute *lru_gen_attrs[] = {
5790 	&lru_gen_min_ttl_attr.attr,
5791 	&lru_gen_enabled_attr.attr,
5792 	NULL
5793 };
5794 
5795 static const struct attribute_group lru_gen_attr_group = {
5796 	.name = "lru_gen",
5797 	.attrs = lru_gen_attrs,
5798 };
5799 
5800 /******************************************************************************
5801  *                          debugfs interface
5802  ******************************************************************************/
5803 
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5804 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5805 {
5806 	struct mem_cgroup *memcg;
5807 	loff_t nr_to_skip = *pos;
5808 
5809 	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5810 	if (!m->private)
5811 		return ERR_PTR(-ENOMEM);
5812 
5813 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
5814 	do {
5815 		int nid;
5816 
5817 		for_each_node_state(nid, N_MEMORY) {
5818 			if (!nr_to_skip--)
5819 				return get_lruvec(memcg, nid);
5820 		}
5821 	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5822 
5823 	return NULL;
5824 }
5825 
lru_gen_seq_stop(struct seq_file * m,void * v)5826 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5827 {
5828 	if (!IS_ERR_OR_NULL(v))
5829 		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5830 
5831 	kvfree(m->private);
5832 	m->private = NULL;
5833 }
5834 
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5835 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5836 {
5837 	int nid = lruvec_pgdat(v)->node_id;
5838 	struct mem_cgroup *memcg = lruvec_memcg(v);
5839 
5840 	++*pos;
5841 
5842 	nid = next_memory_node(nid);
5843 	if (nid == MAX_NUMNODES) {
5844 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
5845 		if (!memcg)
5846 			return NULL;
5847 
5848 		nid = first_memory_node;
5849 	}
5850 
5851 	return get_lruvec(memcg, nid);
5852 }
5853 
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5854 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5855 				  unsigned long max_seq, unsigned long *min_seq,
5856 				  unsigned long seq)
5857 {
5858 	int i;
5859 	int type, tier;
5860 	int hist = lru_hist_from_seq(seq);
5861 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5862 
5863 	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5864 		seq_printf(m, "            %10d", tier);
5865 		for (type = 0; type < ANON_AND_FILE; type++) {
5866 			const char *s = "   ";
5867 			unsigned long n[3] = {};
5868 
5869 			if (seq == max_seq) {
5870 				s = "RT ";
5871 				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5872 				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5873 			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5874 				s = "rep";
5875 				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5876 				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5877 				if (tier)
5878 					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5879 			}
5880 
5881 			for (i = 0; i < 3; i++)
5882 				seq_printf(m, " %10lu%c", n[i], s[i]);
5883 		}
5884 		seq_putc(m, '\n');
5885 	}
5886 
5887 	seq_puts(m, "                      ");
5888 	for (i = 0; i < NR_MM_STATS; i++) {
5889 		const char *s = "      ";
5890 		unsigned long n = 0;
5891 
5892 		if (seq == max_seq && NR_HIST_GENS == 1) {
5893 			s = "LOYNFA";
5894 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5895 		} else if (seq != max_seq && NR_HIST_GENS > 1) {
5896 			s = "loynfa";
5897 			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5898 		}
5899 
5900 		seq_printf(m, " %10lu%c", n, s[i]);
5901 	}
5902 	seq_putc(m, '\n');
5903 }
5904 
5905 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5906 static int lru_gen_seq_show(struct seq_file *m, void *v)
5907 {
5908 	unsigned long seq;
5909 	bool full = !debugfs_real_fops(m->file)->write;
5910 	struct lruvec *lruvec = v;
5911 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
5912 	int nid = lruvec_pgdat(lruvec)->node_id;
5913 	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5914 	DEFINE_MAX_SEQ(lruvec);
5915 	DEFINE_MIN_SEQ(lruvec);
5916 
5917 	if (nid == first_memory_node) {
5918 		const char *path = memcg ? m->private : "";
5919 
5920 #ifdef CONFIG_MEMCG
5921 		if (memcg)
5922 			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5923 #endif
5924 		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5925 	}
5926 
5927 	seq_printf(m, " node %5d\n", nid);
5928 
5929 	if (!full)
5930 		seq = min_seq[LRU_GEN_ANON];
5931 	else if (max_seq >= MAX_NR_GENS)
5932 		seq = max_seq - MAX_NR_GENS + 1;
5933 	else
5934 		seq = 0;
5935 
5936 	for (; seq <= max_seq; seq++) {
5937 		int type, zone;
5938 		int gen = lru_gen_from_seq(seq);
5939 		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5940 
5941 		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5942 
5943 		for (type = 0; type < ANON_AND_FILE; type++) {
5944 			unsigned long size = 0;
5945 			char mark = full && seq < min_seq[type] ? 'x' : ' ';
5946 
5947 			for (zone = 0; zone < MAX_NR_ZONES; zone++)
5948 				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5949 
5950 			seq_printf(m, " %10lu%c", size, mark);
5951 		}
5952 
5953 		seq_putc(m, '\n');
5954 
5955 		if (full)
5956 			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5957 	}
5958 
5959 	return 0;
5960 }
5961 
5962 static const struct seq_operations lru_gen_seq_ops = {
5963 	.start = lru_gen_seq_start,
5964 	.stop = lru_gen_seq_stop,
5965 	.next = lru_gen_seq_next,
5966 	.show = lru_gen_seq_show,
5967 };
5968 
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool force_scan)5969 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5970 		     bool can_swap, bool force_scan)
5971 {
5972 	DEFINE_MAX_SEQ(lruvec);
5973 	DEFINE_MIN_SEQ(lruvec);
5974 
5975 	if (seq < max_seq)
5976 		return 0;
5977 
5978 	if (seq > max_seq)
5979 		return -EINVAL;
5980 
5981 	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5982 		return -ERANGE;
5983 
5984 	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5985 
5986 	return 0;
5987 }
5988 
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5989 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5990 			int swappiness, unsigned long nr_to_reclaim)
5991 {
5992 	DEFINE_MAX_SEQ(lruvec);
5993 
5994 	if (seq + MIN_NR_GENS > max_seq)
5995 		return -EINVAL;
5996 
5997 	sc->nr_reclaimed = 0;
5998 
5999 	while (!signal_pending(current)) {
6000 		DEFINE_MIN_SEQ(lruvec);
6001 
6002 		if (seq < min_seq[!swappiness])
6003 			return 0;
6004 
6005 		if (sc->nr_reclaimed >= nr_to_reclaim)
6006 			return 0;
6007 
6008 		if (!evict_folios(lruvec, sc, swappiness))
6009 			return 0;
6010 
6011 		cond_resched();
6012 	}
6013 
6014 	return -EINTR;
6015 }
6016 
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)6017 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
6018 		   struct scan_control *sc, int swappiness, unsigned long opt)
6019 {
6020 	struct lruvec *lruvec;
6021 	int err = -EINVAL;
6022 	struct mem_cgroup *memcg = NULL;
6023 
6024 	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
6025 		return -EINVAL;
6026 
6027 	if (!mem_cgroup_disabled()) {
6028 		rcu_read_lock();
6029 
6030 		memcg = mem_cgroup_from_id(memcg_id);
6031 		if (!mem_cgroup_tryget(memcg))
6032 			memcg = NULL;
6033 
6034 		rcu_read_unlock();
6035 
6036 		if (!memcg)
6037 			return -EINVAL;
6038 	}
6039 
6040 	if (memcg_id != mem_cgroup_id(memcg))
6041 		goto done;
6042 
6043 	lruvec = get_lruvec(memcg, nid);
6044 
6045 	if (swappiness < 0)
6046 		swappiness = get_swappiness(lruvec, sc);
6047 	else if (swappiness > 200)
6048 		goto done;
6049 
6050 	switch (cmd) {
6051 	case '+':
6052 		err = run_aging(lruvec, seq, sc, swappiness, opt);
6053 		break;
6054 	case '-':
6055 		err = run_eviction(lruvec, seq, sc, swappiness, opt);
6056 		break;
6057 	}
6058 done:
6059 	mem_cgroup_put(memcg);
6060 
6061 	return err;
6062 }
6063 
6064 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)6065 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
6066 				 size_t len, loff_t *pos)
6067 {
6068 	void *buf;
6069 	char *cur, *next;
6070 	unsigned int flags;
6071 	struct blk_plug plug;
6072 	int err = -EINVAL;
6073 	struct scan_control sc = {
6074 		.may_writepage = true,
6075 		.may_unmap = true,
6076 		.may_swap = true,
6077 		.reclaim_idx = MAX_NR_ZONES - 1,
6078 		.gfp_mask = GFP_KERNEL,
6079 	};
6080 
6081 	buf = kvmalloc(len + 1, GFP_KERNEL);
6082 	if (!buf)
6083 		return -ENOMEM;
6084 
6085 	if (copy_from_user(buf, src, len)) {
6086 		kvfree(buf);
6087 		return -EFAULT;
6088 	}
6089 
6090 	set_task_reclaim_state(current, &sc.reclaim_state);
6091 	flags = memalloc_noreclaim_save();
6092 	blk_start_plug(&plug);
6093 	if (!set_mm_walk(NULL, true)) {
6094 		err = -ENOMEM;
6095 		goto done;
6096 	}
6097 
6098 	next = buf;
6099 	next[len] = '\0';
6100 
6101 	while ((cur = strsep(&next, ",;\n"))) {
6102 		int n;
6103 		int end;
6104 		char cmd;
6105 		unsigned int memcg_id;
6106 		unsigned int nid;
6107 		unsigned long seq;
6108 		unsigned int swappiness = -1;
6109 		unsigned long opt = -1;
6110 
6111 		cur = skip_spaces(cur);
6112 		if (!*cur)
6113 			continue;
6114 
6115 		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
6116 			   &seq, &end, &swappiness, &end, &opt, &end);
6117 		if (n < 4 || cur[end]) {
6118 			err = -EINVAL;
6119 			break;
6120 		}
6121 
6122 		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
6123 		if (err)
6124 			break;
6125 	}
6126 done:
6127 	clear_mm_walk();
6128 	blk_finish_plug(&plug);
6129 	memalloc_noreclaim_restore(flags);
6130 	set_task_reclaim_state(current, NULL);
6131 
6132 	kvfree(buf);
6133 
6134 	return err ? : len;
6135 }
6136 
lru_gen_seq_open(struct inode * inode,struct file * file)6137 static int lru_gen_seq_open(struct inode *inode, struct file *file)
6138 {
6139 	return seq_open(file, &lru_gen_seq_ops);
6140 }
6141 
6142 static const struct file_operations lru_gen_rw_fops = {
6143 	.open = lru_gen_seq_open,
6144 	.read = seq_read,
6145 	.write = lru_gen_seq_write,
6146 	.llseek = seq_lseek,
6147 	.release = seq_release,
6148 };
6149 
6150 static const struct file_operations lru_gen_ro_fops = {
6151 	.open = lru_gen_seq_open,
6152 	.read = seq_read,
6153 	.llseek = seq_lseek,
6154 	.release = seq_release,
6155 };
6156 
6157 /******************************************************************************
6158  *                          initialization
6159  ******************************************************************************/
6160 
lru_gen_init_lruvec(struct lruvec * lruvec)6161 void lru_gen_init_lruvec(struct lruvec *lruvec)
6162 {
6163 	int i;
6164 	int gen, type, zone;
6165 	struct lru_gen_folio *lrugen = &lruvec->lrugen;
6166 
6167 	lrugen->max_seq = MIN_NR_GENS + 1;
6168 	lrugen->enabled = lru_gen_enabled();
6169 
6170 	for (i = 0; i <= MIN_NR_GENS + 1; i++)
6171 		lrugen->timestamps[i] = jiffies;
6172 
6173 	for_each_gen_type_zone(gen, type, zone)
6174 		INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
6175 
6176 	lruvec->mm_state.seq = MIN_NR_GENS;
6177 }
6178 
6179 #ifdef CONFIG_MEMCG
6180 
lru_gen_init_pgdat(struct pglist_data * pgdat)6181 void lru_gen_init_pgdat(struct pglist_data *pgdat)
6182 {
6183 	int i, j;
6184 
6185 	spin_lock_init(&pgdat->memcg_lru.lock);
6186 
6187 	for (i = 0; i < MEMCG_NR_GENS; i++) {
6188 		for (j = 0; j < MEMCG_NR_BINS; j++)
6189 			INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
6190 	}
6191 }
6192 
lru_gen_init_memcg(struct mem_cgroup * memcg)6193 void lru_gen_init_memcg(struct mem_cgroup *memcg)
6194 {
6195 	INIT_LIST_HEAD(&memcg->mm_list.fifo);
6196 	spin_lock_init(&memcg->mm_list.lock);
6197 }
6198 
lru_gen_exit_memcg(struct mem_cgroup * memcg)6199 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
6200 {
6201 	int i;
6202 	int nid;
6203 
6204 	VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
6205 
6206 	for_each_node(nid) {
6207 		struct lruvec *lruvec = get_lruvec(memcg, nid);
6208 
6209 		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
6210 					   sizeof(lruvec->lrugen.nr_pages)));
6211 
6212 		lruvec->lrugen.list.next = LIST_POISON1;
6213 
6214 		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
6215 			bitmap_free(lruvec->mm_state.filters[i]);
6216 			lruvec->mm_state.filters[i] = NULL;
6217 		}
6218 	}
6219 }
6220 
6221 #endif /* CONFIG_MEMCG */
6222 
init_lru_gen(void)6223 static int __init init_lru_gen(void)
6224 {
6225 	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
6226 	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
6227 
6228 	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
6229 		pr_err("lru_gen: failed to create sysfs group\n");
6230 
6231 	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
6232 	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
6233 
6234 	return 0;
6235 };
6236 late_initcall(init_lru_gen);
6237 
6238 #else /* !CONFIG_LRU_GEN */
6239 
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)6240 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6241 {
6242 }
6243 
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6244 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6245 {
6246 }
6247 
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)6248 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
6249 {
6250 }
6251 
6252 #endif /* CONFIG_LRU_GEN */
6253 
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)6254 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
6255 {
6256 	unsigned long nr[NR_LRU_LISTS];
6257 	unsigned long targets[NR_LRU_LISTS];
6258 	unsigned long nr_to_scan;
6259 	enum lru_list lru;
6260 	unsigned long nr_reclaimed = 0;
6261 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
6262 	bool proportional_reclaim;
6263 	struct blk_plug plug;
6264 
6265 	if (lru_gen_enabled() && !root_reclaim(sc)) {
6266 		lru_gen_shrink_lruvec(lruvec, sc);
6267 		return;
6268 	}
6269 
6270 	get_scan_count(lruvec, sc, nr);
6271 
6272 	/* Record the original scan target for proportional adjustments later */
6273 	memcpy(targets, nr, sizeof(nr));
6274 
6275 	/*
6276 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
6277 	 * event that can occur when there is little memory pressure e.g.
6278 	 * multiple streaming readers/writers. Hence, we do not abort scanning
6279 	 * when the requested number of pages are reclaimed when scanning at
6280 	 * DEF_PRIORITY on the assumption that the fact we are direct
6281 	 * reclaiming implies that kswapd is not keeping up and it is best to
6282 	 * do a batch of work at once. For memcg reclaim one check is made to
6283 	 * abort proportional reclaim if either the file or anon lru has already
6284 	 * dropped to zero at the first pass.
6285 	 */
6286 	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
6287 				sc->priority == DEF_PRIORITY);
6288 
6289 	blk_start_plug(&plug);
6290 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
6291 					nr[LRU_INACTIVE_FILE]) {
6292 		unsigned long nr_anon, nr_file, percentage;
6293 		unsigned long nr_scanned;
6294 
6295 		for_each_evictable_lru(lru) {
6296 			if (nr[lru]) {
6297 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
6298 				nr[lru] -= nr_to_scan;
6299 
6300 				nr_reclaimed += shrink_list(lru, nr_to_scan,
6301 							    lruvec, sc);
6302 			}
6303 		}
6304 
6305 		cond_resched();
6306 
6307 		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
6308 			continue;
6309 
6310 		/*
6311 		 * For kswapd and memcg, reclaim at least the number of pages
6312 		 * requested. Ensure that the anon and file LRUs are scanned
6313 		 * proportionally what was requested by get_scan_count(). We
6314 		 * stop reclaiming one LRU and reduce the amount scanning
6315 		 * proportional to the original scan target.
6316 		 */
6317 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
6318 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
6319 
6320 		/*
6321 		 * It's just vindictive to attack the larger once the smaller
6322 		 * has gone to zero.  And given the way we stop scanning the
6323 		 * smaller below, this makes sure that we only make one nudge
6324 		 * towards proportionality once we've got nr_to_reclaim.
6325 		 */
6326 		if (!nr_file || !nr_anon)
6327 			break;
6328 
6329 		if (nr_file > nr_anon) {
6330 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
6331 						targets[LRU_ACTIVE_ANON] + 1;
6332 			lru = LRU_BASE;
6333 			percentage = nr_anon * 100 / scan_target;
6334 		} else {
6335 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
6336 						targets[LRU_ACTIVE_FILE] + 1;
6337 			lru = LRU_FILE;
6338 			percentage = nr_file * 100 / scan_target;
6339 		}
6340 
6341 		/* Stop scanning the smaller of the LRU */
6342 		nr[lru] = 0;
6343 		nr[lru + LRU_ACTIVE] = 0;
6344 
6345 		/*
6346 		 * Recalculate the other LRU scan count based on its original
6347 		 * scan target and the percentage scanning already complete
6348 		 */
6349 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
6350 		nr_scanned = targets[lru] - nr[lru];
6351 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6352 		nr[lru] -= min(nr[lru], nr_scanned);
6353 
6354 		lru += LRU_ACTIVE;
6355 		nr_scanned = targets[lru] - nr[lru];
6356 		nr[lru] = targets[lru] * (100 - percentage) / 100;
6357 		nr[lru] -= min(nr[lru], nr_scanned);
6358 	}
6359 	blk_finish_plug(&plug);
6360 	sc->nr_reclaimed += nr_reclaimed;
6361 
6362 	/*
6363 	 * Even if we did not try to evict anon pages at all, we want to
6364 	 * rebalance the anon lru active/inactive ratio.
6365 	 */
6366 	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6367 	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6368 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6369 				   sc, LRU_ACTIVE_ANON);
6370 }
6371 
6372 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)6373 static bool in_reclaim_compaction(struct scan_control *sc)
6374 {
6375 	if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
6376 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6377 			 sc->priority < DEF_PRIORITY - 2))
6378 		return true;
6379 
6380 	return false;
6381 }
6382 
6383 /*
6384  * Reclaim/compaction is used for high-order allocation requests. It reclaims
6385  * order-0 pages before compacting the zone. should_continue_reclaim() returns
6386  * true if more pages should be reclaimed such that when the page allocator
6387  * calls try_to_compact_pages() that it will have enough free pages to succeed.
6388  * It will give up earlier than that if there is difficulty reclaiming pages.
6389  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)6390 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6391 					unsigned long nr_reclaimed,
6392 					struct scan_control *sc)
6393 {
6394 	unsigned long pages_for_compaction;
6395 	unsigned long inactive_lru_pages;
6396 	int z;
6397 
6398 	/* If not in reclaim/compaction mode, stop */
6399 	if (!in_reclaim_compaction(sc))
6400 		return false;
6401 
6402 	/*
6403 	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6404 	 * number of pages that were scanned. This will return to the caller
6405 	 * with the risk reclaim/compaction and the resulting allocation attempt
6406 	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6407 	 * allocations through requiring that the full LRU list has been scanned
6408 	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6409 	 * scan, but that approximation was wrong, and there were corner cases
6410 	 * where always a non-zero amount of pages were scanned.
6411 	 */
6412 	if (!nr_reclaimed)
6413 		return false;
6414 
6415 	/* If compaction would go ahead or the allocation would succeed, stop */
6416 	for (z = 0; z <= sc->reclaim_idx; z++) {
6417 		struct zone *zone = &pgdat->node_zones[z];
6418 		if (!managed_zone(zone))
6419 			continue;
6420 
6421 		/* Allocation can already succeed, nothing to do */
6422 		if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6423 				      sc->reclaim_idx, 0))
6424 			return false;
6425 
6426 		if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
6427 			return false;
6428 	}
6429 
6430 	/*
6431 	 * If we have not reclaimed enough pages for compaction and the
6432 	 * inactive lists are large enough, continue reclaiming
6433 	 */
6434 	pages_for_compaction = compact_gap(sc->order);
6435 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6436 	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6437 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6438 
6439 	return inactive_lru_pages > pages_for_compaction;
6440 }
6441 
6442 #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)6443 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6444 {
6445 	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6446 	struct mem_cgroup *memcg;
6447 
6448 	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6449 	do {
6450 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6451 		unsigned long reclaimed;
6452 		unsigned long scanned;
6453 
6454 		/*
6455 		 * This loop can become CPU-bound when target memcgs
6456 		 * aren't eligible for reclaim - either because they
6457 		 * don't have any reclaimable pages, or because their
6458 		 * memory is explicitly protected. Avoid soft lockups.
6459 		 */
6460 		cond_resched();
6461 
6462 		mem_cgroup_calculate_protection(target_memcg, memcg);
6463 
6464 		if (mem_cgroup_below_min(target_memcg, memcg)) {
6465 			/*
6466 			 * Hard protection.
6467 			 * If there is no reclaimable memory, OOM.
6468 			 */
6469 			continue;
6470 		} else if (mem_cgroup_below_low(target_memcg, memcg)) {
6471 			/*
6472 			 * Soft protection.
6473 			 * Respect the protection only as long as
6474 			 * there is an unprotected supply
6475 			 * of reclaimable memory from other cgroups.
6476 			 */
6477 			if (!sc->memcg_low_reclaim) {
6478 				sc->memcg_low_skipped = 1;
6479 				continue;
6480 			}
6481 			memcg_memory_event(memcg, MEMCG_LOW);
6482 		}
6483 
6484 		reclaimed = sc->nr_reclaimed;
6485 		scanned = sc->nr_scanned;
6486 
6487 		shrink_lruvec(lruvec, sc);
6488 
6489 		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6490 			    sc->priority);
6491 
6492 		/* Record the group's reclaim efficiency */
6493 		if (!sc->proactive)
6494 			vmpressure(sc->gfp_mask, memcg, false,
6495 				   sc->nr_scanned - scanned,
6496 				   sc->nr_reclaimed - reclaimed);
6497 
6498 	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6499 }
6500 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6501 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6502 {
6503 	unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6504 	struct lruvec *target_lruvec;
6505 	bool reclaimable = false;
6506 
6507 	if (lru_gen_enabled() && root_reclaim(sc)) {
6508 		lru_gen_shrink_node(pgdat, sc);
6509 		return;
6510 	}
6511 
6512 	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6513 
6514 again:
6515 	memset(&sc->nr, 0, sizeof(sc->nr));
6516 
6517 	nr_reclaimed = sc->nr_reclaimed;
6518 	nr_scanned = sc->nr_scanned;
6519 
6520 	prepare_scan_count(pgdat, sc);
6521 
6522 	shrink_node_memcgs(pgdat, sc);
6523 
6524 	flush_reclaim_state(sc);
6525 
6526 	nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6527 
6528 	/* Record the subtree's reclaim efficiency */
6529 	if (!sc->proactive)
6530 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6531 			   sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6532 
6533 	if (nr_node_reclaimed)
6534 		reclaimable = true;
6535 
6536 	if (current_is_kswapd()) {
6537 		/*
6538 		 * If reclaim is isolating dirty pages under writeback,
6539 		 * it implies that the long-lived page allocation rate
6540 		 * is exceeding the page laundering rate. Either the
6541 		 * global limits are not being effective at throttling
6542 		 * processes due to the page distribution throughout
6543 		 * zones or there is heavy usage of a slow backing
6544 		 * device. The only option is to throttle from reclaim
6545 		 * context which is not ideal as there is no guarantee
6546 		 * the dirtying process is throttled in the same way
6547 		 * balance_dirty_pages() manages.
6548 		 *
6549 		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6550 		 * count the number of pages under pages flagged for
6551 		 * immediate reclaim and stall if any are encountered
6552 		 * in the nr_immediate check below.
6553 		 */
6554 		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6555 			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6556 
6557 		/* Allow kswapd to start writing pages during reclaim.*/
6558 		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6559 			set_bit(PGDAT_DIRTY, &pgdat->flags);
6560 
6561 		/*
6562 		 * If kswapd scans pages marked for immediate
6563 		 * reclaim and under writeback (nr_immediate), it
6564 		 * implies that pages are cycling through the LRU
6565 		 * faster than they are written so forcibly stall
6566 		 * until some pages complete writeback.
6567 		 */
6568 		if (sc->nr.immediate)
6569 			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6570 	}
6571 
6572 	/*
6573 	 * Tag a node/memcg as congested if all the dirty pages were marked
6574 	 * for writeback and immediate reclaim (counted in nr.congested).
6575 	 *
6576 	 * Legacy memcg will stall in page writeback so avoid forcibly
6577 	 * stalling in reclaim_throttle().
6578 	 */
6579 	if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6580 		if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6581 			set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6582 
6583 		if (current_is_kswapd())
6584 			set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6585 	}
6586 
6587 	/*
6588 	 * Stall direct reclaim for IO completions if the lruvec is
6589 	 * node is congested. Allow kswapd to continue until it
6590 	 * starts encountering unqueued dirty pages or cycling through
6591 	 * the LRU too quickly.
6592 	 */
6593 	if (!current_is_kswapd() && current_may_throttle() &&
6594 	    !sc->hibernation_mode &&
6595 	    (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6596 	     test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6597 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6598 
6599 	if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6600 		goto again;
6601 
6602 	/*
6603 	 * Kswapd gives up on balancing particular nodes after too
6604 	 * many failures to reclaim anything from them and goes to
6605 	 * sleep. On reclaim progress, reset the failure counter. A
6606 	 * successful direct reclaim run will revive a dormant kswapd.
6607 	 */
6608 	if (reclaimable)
6609 		pgdat->kswapd_failures = 0;
6610 }
6611 #endif
6612 
6613 /*
6614  * Returns true if compaction should go ahead for a costly-order request, or
6615  * the allocation would already succeed without compaction. Return false if we
6616  * should reclaim first.
6617  */
compaction_ready(struct zone * zone,struct scan_control * sc)6618 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6619 {
6620 	unsigned long watermark;
6621 
6622 	if (!gfp_compaction_allowed(sc->gfp_mask))
6623 		return false;
6624 
6625 	/* Allocation can already succeed, nothing to do */
6626 	if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6627 			      sc->reclaim_idx, 0))
6628 		return true;
6629 
6630 	/* Compaction cannot yet proceed. Do reclaim. */
6631 	if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6632 		return false;
6633 
6634 	/*
6635 	 * Compaction is already possible, but it takes time to run and there
6636 	 * are potentially other callers using the pages just freed. So proceed
6637 	 * with reclaim to make a buffer of free pages available to give
6638 	 * compaction a reasonable chance of completing and allocating the page.
6639 	 * Note that we won't actually reclaim the whole buffer in one attempt
6640 	 * as the target watermark in should_continue_reclaim() is lower. But if
6641 	 * we are already above the high+gap watermark, don't reclaim at all.
6642 	 */
6643 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6644 
6645 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6646 }
6647 
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6648 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6649 {
6650 	/*
6651 	 * If reclaim is making progress greater than 12% efficiency then
6652 	 * wake all the NOPROGRESS throttled tasks.
6653 	 */
6654 	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6655 		wait_queue_head_t *wqh;
6656 
6657 		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6658 		if (waitqueue_active(wqh))
6659 			wake_up(wqh);
6660 
6661 		return;
6662 	}
6663 
6664 	/*
6665 	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6666 	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6667 	 * under writeback and marked for immediate reclaim at the tail of the
6668 	 * LRU.
6669 	 */
6670 	if (current_is_kswapd() || cgroup_reclaim(sc))
6671 		return;
6672 
6673 	/* Throttle if making no progress at high prioities. */
6674 	if (sc->priority == 1 && !sc->nr_reclaimed)
6675 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6676 }
6677 
6678 /*
6679  * This is the direct reclaim path, for page-allocating processes.  We only
6680  * try to reclaim pages from zones which will satisfy the caller's allocation
6681  * request.
6682  *
6683  * If a zone is deemed to be full of pinned pages then just give it a light
6684  * scan then give up on it.
6685  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6686 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6687 {
6688 	struct zoneref *z;
6689 	struct zone *zone;
6690 	unsigned long nr_soft_reclaimed;
6691 	unsigned long nr_soft_scanned;
6692 	gfp_t orig_mask;
6693 	pg_data_t *last_pgdat = NULL;
6694 	pg_data_t *first_pgdat = NULL;
6695 
6696 	/*
6697 	 * If the number of buffer_heads in the machine exceeds the maximum
6698 	 * allowed level, force direct reclaim to scan the highmem zone as
6699 	 * highmem pages could be pinning lowmem pages storing buffer_heads
6700 	 */
6701 	orig_mask = sc->gfp_mask;
6702 	if (buffer_heads_over_limit) {
6703 		sc->gfp_mask |= __GFP_HIGHMEM;
6704 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6705 	}
6706 
6707 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6708 					sc->reclaim_idx, sc->nodemask) {
6709 		/*
6710 		 * Take care memory controller reclaiming has small influence
6711 		 * to global LRU.
6712 		 */
6713 		if (!cgroup_reclaim(sc)) {
6714 			if (!cpuset_zone_allowed(zone,
6715 						 GFP_KERNEL | __GFP_HARDWALL))
6716 				continue;
6717 
6718 			/*
6719 			 * If we already have plenty of memory free for
6720 			 * compaction in this zone, don't free any more.
6721 			 * Even though compaction is invoked for any
6722 			 * non-zero order, only frequent costly order
6723 			 * reclamation is disruptive enough to become a
6724 			 * noticeable problem, like transparent huge
6725 			 * page allocations.
6726 			 */
6727 			if (IS_ENABLED(CONFIG_COMPACTION) &&
6728 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6729 			    compaction_ready(zone, sc)) {
6730 				sc->compaction_ready = true;
6731 				continue;
6732 			}
6733 
6734 			/*
6735 			 * Shrink each node in the zonelist once. If the
6736 			 * zonelist is ordered by zone (not the default) then a
6737 			 * node may be shrunk multiple times but in that case
6738 			 * the user prefers lower zones being preserved.
6739 			 */
6740 			if (zone->zone_pgdat == last_pgdat)
6741 				continue;
6742 
6743 			/*
6744 			 * This steals pages from memory cgroups over softlimit
6745 			 * and returns the number of reclaimed pages and
6746 			 * scanned pages. This works for global memory pressure
6747 			 * and balancing, not for a memcg's limit.
6748 			 */
6749 			nr_soft_scanned = 0;
6750 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6751 						sc->order, sc->gfp_mask,
6752 						&nr_soft_scanned);
6753 			sc->nr_reclaimed += nr_soft_reclaimed;
6754 			sc->nr_scanned += nr_soft_scanned;
6755 			/* need some check for avoid more shrink_zone() */
6756 		}
6757 
6758 		if (!first_pgdat)
6759 			first_pgdat = zone->zone_pgdat;
6760 
6761 		/* See comment about same check for global reclaim above */
6762 		if (zone->zone_pgdat == last_pgdat)
6763 			continue;
6764 		last_pgdat = zone->zone_pgdat;
6765 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6766 		shrink_node_hyperhold(zone->zone_pgdat, sc);
6767 #else
6768 		shrink_node(zone->zone_pgdat, sc);
6769 #endif
6770 	}
6771 
6772 	if (first_pgdat)
6773 		consider_reclaim_throttle(first_pgdat, sc);
6774 
6775 	/*
6776 	 * Restore to original mask to avoid the impact on the caller if we
6777 	 * promoted it to __GFP_HIGHMEM.
6778 	 */
6779 	sc->gfp_mask = orig_mask;
6780 }
6781 
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6782 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6783 {
6784 	struct lruvec *target_lruvec;
6785 	unsigned long refaults;
6786 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6787 	struct lruvec *lruvec;
6788 #endif
6789 
6790 	if (lru_gen_enabled())
6791 		return;
6792 
6793 #ifdef CONFIG_HYPERHOLD_FILE_LRU
6794 	lruvec = node_lruvec(pgdat);
6795 	lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
6796 	lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
6797 #endif
6798 
6799 	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6800 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6801 	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6802 	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6803 	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6804 }
6805 
6806 /*
6807  * This is the main entry point to direct page reclaim.
6808  *
6809  * If a full scan of the inactive list fails to free enough memory then we
6810  * are "out of memory" and something needs to be killed.
6811  *
6812  * If the caller is !__GFP_FS then the probability of a failure is reasonably
6813  * high - the zone may be full of dirty or under-writeback pages, which this
6814  * caller can't do much about.  We kick the writeback threads and take explicit
6815  * naps in the hope that some of these pages can be written.  But if the
6816  * allocating task holds filesystem locks which prevent writeout this might not
6817  * work, and the allocation attempt will fail.
6818  *
6819  * returns:	0, if no pages reclaimed
6820  * 		else, the number of pages reclaimed
6821  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6822 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6823 					  struct scan_control *sc)
6824 {
6825 	int initial_priority = sc->priority;
6826 	pg_data_t *last_pgdat;
6827 	struct zoneref *z;
6828 	struct zone *zone;
6829 retry:
6830 	delayacct_freepages_start();
6831 
6832 	if (!cgroup_reclaim(sc))
6833 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6834 
6835 	do {
6836 		if (!sc->proactive)
6837 			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6838 					sc->priority);
6839 		sc->nr_scanned = 0;
6840 		shrink_zones(zonelist, sc);
6841 
6842 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6843 			break;
6844 
6845 		if (sc->compaction_ready)
6846 			break;
6847 
6848 		/*
6849 		 * If we're getting trouble reclaiming, start doing
6850 		 * writepage even in laptop mode.
6851 		 */
6852 		if (sc->priority < DEF_PRIORITY - 2)
6853 			sc->may_writepage = 1;
6854 	} while (--sc->priority >= 0);
6855 
6856 	last_pgdat = NULL;
6857 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6858 					sc->nodemask) {
6859 		if (zone->zone_pgdat == last_pgdat)
6860 			continue;
6861 		last_pgdat = zone->zone_pgdat;
6862 
6863 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6864 
6865 		if (cgroup_reclaim(sc)) {
6866 			struct lruvec *lruvec;
6867 
6868 			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6869 						   zone->zone_pgdat);
6870 			clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6871 		}
6872 	}
6873 
6874 	delayacct_freepages_end();
6875 
6876 	if (sc->nr_reclaimed)
6877 		return sc->nr_reclaimed;
6878 
6879 	/* Aborted reclaim to try compaction? don't OOM, then */
6880 	if (sc->compaction_ready)
6881 		return 1;
6882 
6883 	/*
6884 	 * We make inactive:active ratio decisions based on the node's
6885 	 * composition of memory, but a restrictive reclaim_idx or a
6886 	 * memory.low cgroup setting can exempt large amounts of
6887 	 * memory from reclaim. Neither of which are very common, so
6888 	 * instead of doing costly eligibility calculations of the
6889 	 * entire cgroup subtree up front, we assume the estimates are
6890 	 * good, and retry with forcible deactivation if that fails.
6891 	 */
6892 	if (sc->skipped_deactivate) {
6893 		sc->priority = initial_priority;
6894 		sc->force_deactivate = 1;
6895 		sc->skipped_deactivate = 0;
6896 		goto retry;
6897 	}
6898 
6899 	/* Untapped cgroup reserves?  Don't OOM, retry. */
6900 	if (sc->memcg_low_skipped) {
6901 		sc->priority = initial_priority;
6902 		sc->force_deactivate = 0;
6903 		sc->memcg_low_reclaim = 1;
6904 		sc->memcg_low_skipped = 0;
6905 		goto retry;
6906 	}
6907 
6908 	return 0;
6909 }
6910 
allow_direct_reclaim(pg_data_t * pgdat)6911 static bool allow_direct_reclaim(pg_data_t *pgdat)
6912 {
6913 	struct zone *zone;
6914 	unsigned long pfmemalloc_reserve = 0;
6915 	unsigned long free_pages = 0;
6916 	int i;
6917 	bool wmark_ok;
6918 
6919 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6920 		return true;
6921 
6922 	for (i = 0; i <= ZONE_NORMAL; i++) {
6923 		zone = &pgdat->node_zones[i];
6924 		if (!managed_zone(zone))
6925 			continue;
6926 
6927 		if (!zone_reclaimable_pages(zone))
6928 			continue;
6929 
6930 		pfmemalloc_reserve += min_wmark_pages(zone);
6931 		free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6932 	}
6933 
6934 	/* If there are no reserves (unexpected config) then do not throttle */
6935 	if (!pfmemalloc_reserve)
6936 		return true;
6937 
6938 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
6939 
6940 	/* kswapd must be awake if processes are being throttled */
6941 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6942 		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6943 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6944 
6945 		wake_up_interruptible(&pgdat->kswapd_wait);
6946 	}
6947 
6948 	return wmark_ok;
6949 }
6950 
6951 /*
6952  * Throttle direct reclaimers if backing storage is backed by the network
6953  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6954  * depleted. kswapd will continue to make progress and wake the processes
6955  * when the low watermark is reached.
6956  *
6957  * Returns true if a fatal signal was delivered during throttling. If this
6958  * happens, the page allocator should not consider triggering the OOM killer.
6959  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6960 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6961 					nodemask_t *nodemask)
6962 {
6963 	struct zoneref *z;
6964 	struct zone *zone;
6965 	pg_data_t *pgdat = NULL;
6966 
6967 	/*
6968 	 * Kernel threads should not be throttled as they may be indirectly
6969 	 * responsible for cleaning pages necessary for reclaim to make forward
6970 	 * progress. kjournald for example may enter direct reclaim while
6971 	 * committing a transaction where throttling it could forcing other
6972 	 * processes to block on log_wait_commit().
6973 	 */
6974 	if (current->flags & PF_KTHREAD)
6975 		goto out;
6976 
6977 	/*
6978 	 * If a fatal signal is pending, this process should not throttle.
6979 	 * It should return quickly so it can exit and free its memory
6980 	 */
6981 	if (fatal_signal_pending(current))
6982 		goto out;
6983 
6984 	/*
6985 	 * Check if the pfmemalloc reserves are ok by finding the first node
6986 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6987 	 * GFP_KERNEL will be required for allocating network buffers when
6988 	 * swapping over the network so ZONE_HIGHMEM is unusable.
6989 	 *
6990 	 * Throttling is based on the first usable node and throttled processes
6991 	 * wait on a queue until kswapd makes progress and wakes them. There
6992 	 * is an affinity then between processes waking up and where reclaim
6993 	 * progress has been made assuming the process wakes on the same node.
6994 	 * More importantly, processes running on remote nodes will not compete
6995 	 * for remote pfmemalloc reserves and processes on different nodes
6996 	 * should make reasonable progress.
6997 	 */
6998 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6999 					gfp_zone(gfp_mask), nodemask) {
7000 		if (zone_idx(zone) > ZONE_NORMAL)
7001 			continue;
7002 
7003 		/* Throttle based on the first usable node */
7004 		pgdat = zone->zone_pgdat;
7005 		if (allow_direct_reclaim(pgdat))
7006 			goto out;
7007 		break;
7008 	}
7009 
7010 	/* If no zone was usable by the allocation flags then do not throttle */
7011 	if (!pgdat)
7012 		goto out;
7013 
7014 	/* Account for the throttling */
7015 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
7016 
7017 	/*
7018 	 * If the caller cannot enter the filesystem, it's possible that it
7019 	 * is due to the caller holding an FS lock or performing a journal
7020 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
7021 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
7022 	 * blocked waiting on the same lock. Instead, throttle for up to a
7023 	 * second before continuing.
7024 	 */
7025 	if (!(gfp_mask & __GFP_FS))
7026 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
7027 			allow_direct_reclaim(pgdat), HZ);
7028 	else
7029 		/* Throttle until kswapd wakes the process */
7030 		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
7031 			allow_direct_reclaim(pgdat));
7032 
7033 	if (fatal_signal_pending(current))
7034 		return true;
7035 
7036 out:
7037 	return false;
7038 }
7039 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)7040 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
7041 				gfp_t gfp_mask, nodemask_t *nodemask)
7042 {
7043 	unsigned long nr_reclaimed;
7044 	struct scan_control sc = {
7045 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7046 		.gfp_mask = current_gfp_context(gfp_mask),
7047 		.reclaim_idx = gfp_zone(gfp_mask),
7048 		.order = order,
7049 		.nodemask = nodemask,
7050 		.priority = DEF_PRIORITY,
7051 		.may_writepage = !laptop_mode,
7052 		.may_unmap = 1,
7053 		.may_swap = 1,
7054 	};
7055 
7056 	/*
7057 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
7058 	 * Confirm they are large enough for max values.
7059 	 */
7060 	BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
7061 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
7062 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
7063 
7064 	/*
7065 	 * Do not enter reclaim if fatal signal was delivered while throttled.
7066 	 * 1 is returned so that the page allocator does not OOM kill at this
7067 	 * point.
7068 	 */
7069 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
7070 		return 1;
7071 
7072 	set_task_reclaim_state(current, &sc.reclaim_state);
7073 	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
7074 
7075 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7076 
7077 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
7078 	set_task_reclaim_state(current, NULL);
7079 
7080 	return nr_reclaimed;
7081 }
7082 
7083 #ifdef CONFIG_MEMCG
7084 
7085 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)7086 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
7087 						gfp_t gfp_mask, bool noswap,
7088 						pg_data_t *pgdat,
7089 						unsigned long *nr_scanned)
7090 {
7091 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
7092 	struct scan_control sc = {
7093 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
7094 		.target_mem_cgroup = memcg,
7095 		.may_writepage = !laptop_mode,
7096 		.may_unmap = 1,
7097 		.reclaim_idx = MAX_NR_ZONES - 1,
7098 		.may_swap = !noswap,
7099 	};
7100 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7101 	unsigned long nr[NR_LRU_LISTS];
7102 #endif
7103 
7104 	WARN_ON_ONCE(!current->reclaim_state);
7105 
7106 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
7107 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
7108 
7109 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
7110 						      sc.gfp_mask);
7111 
7112 	/*
7113 	 * NOTE: Although we can get the priority field, using it
7114 	 * here is not a good idea, since it limits the pages we can scan.
7115 	 * if we don't reclaim here, the shrink_node from balance_pgdat
7116 	 * will pick up pages from other mem cgroup's as well. We hack
7117 	 * the priority and make it zero.
7118 	 */
7119 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7120 	nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
7121 			LRU_ACTIVE_ANON, MAX_NR_ZONES);
7122 	nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
7123 			LRU_INACTIVE_ANON, MAX_NR_ZONES);
7124 	nr[LRU_ACTIVE_FILE] = 0;
7125 	nr[LRU_INACTIVE_FILE] = 0;
7126 	shrink_anon_memcg(pgdat, memcg, &sc, nr);
7127 #else
7128 	shrink_lruvec(lruvec, &sc);
7129 #endif
7130 
7131 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
7132 
7133 	*nr_scanned = sc.nr_scanned;
7134 
7135 	return sc.nr_reclaimed;
7136 }
7137 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options)7138 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
7139 					   unsigned long nr_pages,
7140 					   gfp_t gfp_mask,
7141 					   unsigned int reclaim_options)
7142 {
7143 	unsigned long nr_reclaimed;
7144 	unsigned int noreclaim_flag;
7145 	struct scan_control sc = {
7146 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7147 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
7148 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
7149 		.reclaim_idx = MAX_NR_ZONES - 1,
7150 		.target_mem_cgroup = memcg,
7151 		.priority = DEF_PRIORITY,
7152 		.may_writepage = !laptop_mode,
7153 		.may_unmap = 1,
7154 		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
7155 		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
7156 	};
7157 	/*
7158 	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
7159 	 * equal pressure on all the nodes. This is based on the assumption that
7160 	 * the reclaim does not bail out early.
7161 	 */
7162 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7163 
7164 	set_task_reclaim_state(current, &sc.reclaim_state);
7165 	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
7166 	noreclaim_flag = memalloc_noreclaim_save();
7167 
7168 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7169 
7170 	memalloc_noreclaim_restore(noreclaim_flag);
7171 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
7172 	set_task_reclaim_state(current, NULL);
7173 
7174 	return nr_reclaimed;
7175 }
7176 #endif
7177 
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)7178 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
7179 {
7180 	struct mem_cgroup *memcg;
7181 	struct lruvec *lruvec;
7182 
7183 	if (lru_gen_enabled()) {
7184 		lru_gen_age_node(pgdat, sc);
7185 		return;
7186 	}
7187 
7188 	if (!can_age_anon_pages(pgdat, sc))
7189 		return;
7190 
7191 	lruvec = mem_cgroup_lruvec(NULL, pgdat);
7192 	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
7193 		return;
7194 
7195 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
7196 	do {
7197 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
7198 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
7199 				   sc, LRU_ACTIVE_ANON);
7200 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
7201 	} while (memcg);
7202 }
7203 
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)7204 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
7205 {
7206 	int i;
7207 	struct zone *zone;
7208 
7209 	/*
7210 	 * Check for watermark boosts top-down as the higher zones
7211 	 * are more likely to be boosted. Both watermarks and boosts
7212 	 * should not be checked at the same time as reclaim would
7213 	 * start prematurely when there is no boosting and a lower
7214 	 * zone is balanced.
7215 	 */
7216 	for (i = highest_zoneidx; i >= 0; i--) {
7217 		zone = pgdat->node_zones + i;
7218 		if (!managed_zone(zone))
7219 			continue;
7220 
7221 		if (zone->watermark_boost)
7222 			return true;
7223 	}
7224 
7225 	return false;
7226 }
7227 
7228 /*
7229  * Returns true if there is an eligible zone balanced for the request order
7230  * and highest_zoneidx
7231  */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)7232 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
7233 {
7234 	int i;
7235 	unsigned long mark = -1;
7236 	struct zone *zone;
7237 
7238 	/*
7239 	 * Check watermarks bottom-up as lower zones are more likely to
7240 	 * meet watermarks.
7241 	 */
7242 	for (i = 0; i <= highest_zoneidx; i++) {
7243 		zone = pgdat->node_zones + i;
7244 
7245 		if (!managed_zone(zone))
7246 			continue;
7247 
7248 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
7249 			mark = wmark_pages(zone, WMARK_PROMO);
7250 		else
7251 			mark = high_wmark_pages(zone);
7252 		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
7253 			return true;
7254 	}
7255 
7256 	/*
7257 	 * If a node has no managed zone within highest_zoneidx, it does not
7258 	 * need balancing by definition. This can happen if a zone-restricted
7259 	 * allocation tries to wake a remote kswapd.
7260 	 */
7261 	if (mark == -1)
7262 		return true;
7263 
7264 	return false;
7265 }
7266 
7267 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)7268 static void clear_pgdat_congested(pg_data_t *pgdat)
7269 {
7270 	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
7271 
7272 	clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
7273 	clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
7274 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
7275 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
7276 }
7277 
7278 /*
7279  * Prepare kswapd for sleeping. This verifies that there are no processes
7280  * waiting in throttle_direct_reclaim() and that watermarks have been met.
7281  *
7282  * Returns true if kswapd is ready to sleep
7283  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)7284 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
7285 				int highest_zoneidx)
7286 {
7287 	/*
7288 	 * The throttled processes are normally woken up in balance_pgdat() as
7289 	 * soon as allow_direct_reclaim() is true. But there is a potential
7290 	 * race between when kswapd checks the watermarks and a process gets
7291 	 * throttled. There is also a potential race if processes get
7292 	 * throttled, kswapd wakes, a large process exits thereby balancing the
7293 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
7294 	 * the wake up checks. If kswapd is going to sleep, no process should
7295 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
7296 	 * the wake up is premature, processes will wake kswapd and get
7297 	 * throttled again. The difference from wake ups in balance_pgdat() is
7298 	 * that here we are under prepare_to_wait().
7299 	 */
7300 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
7301 		wake_up_all(&pgdat->pfmemalloc_wait);
7302 
7303 	/* Hopeless node, leave it to direct reclaim */
7304 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
7305 		return true;
7306 
7307 	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
7308 		clear_pgdat_congested(pgdat);
7309 		return true;
7310 	}
7311 
7312 	return false;
7313 }
7314 
7315 /*
7316  * kswapd shrinks a node of pages that are at or below the highest usable
7317  * zone that is currently unbalanced.
7318  *
7319  * Returns true if kswapd scanned at least the requested number of pages to
7320  * reclaim or if the lack of progress was due to pages under writeback.
7321  * This is used to determine if the scanning priority needs to be raised.
7322  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)7323 static bool kswapd_shrink_node(pg_data_t *pgdat,
7324 			       struct scan_control *sc)
7325 {
7326 	struct zone *zone;
7327 	int z;
7328 	unsigned long nr_reclaimed = sc->nr_reclaimed;
7329 
7330 	/* Reclaim a number of pages proportional to the number of zones */
7331 	sc->nr_to_reclaim = 0;
7332 	for (z = 0; z <= sc->reclaim_idx; z++) {
7333 		zone = pgdat->node_zones + z;
7334 		if (!managed_zone(zone))
7335 			continue;
7336 
7337 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
7338 	}
7339 
7340 	/*
7341 	 * Historically care was taken to put equal pressure on all zones but
7342 	 * now pressure is applied based on node LRU order.
7343 	 */
7344 #ifdef CONFIG_HYPERHOLD_FILE_LRU
7345 	shrink_node_hyperhold(pgdat, sc);
7346 #else
7347 	shrink_node(pgdat, sc);
7348 #endif
7349 
7350 	/*
7351 	 * Fragmentation may mean that the system cannot be rebalanced for
7352 	 * high-order allocations. If twice the allocation size has been
7353 	 * reclaimed then recheck watermarks only at order-0 to prevent
7354 	 * excessive reclaim. Assume that a process requested a high-order
7355 	 * can direct reclaim/compact.
7356 	 */
7357 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
7358 		sc->order = 0;
7359 
7360 	/* account for progress from mm_account_reclaimed_pages() */
7361 	return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
7362 }
7363 
7364 /* Page allocator PCP high watermark is lowered if reclaim is active. */
7365 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)7366 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
7367 {
7368 	int i;
7369 	struct zone *zone;
7370 
7371 	for (i = 0; i <= highest_zoneidx; i++) {
7372 		zone = pgdat->node_zones + i;
7373 
7374 		if (!managed_zone(zone))
7375 			continue;
7376 
7377 		if (active)
7378 			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7379 		else
7380 			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
7381 	}
7382 }
7383 
7384 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7385 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7386 {
7387 	update_reclaim_active(pgdat, highest_zoneidx, true);
7388 }
7389 
7390 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)7391 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
7392 {
7393 	update_reclaim_active(pgdat, highest_zoneidx, false);
7394 }
7395 
7396 /*
7397  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
7398  * that are eligible for use by the caller until at least one zone is
7399  * balanced.
7400  *
7401  * Returns the order kswapd finished reclaiming at.
7402  *
7403  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
7404  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7405  * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7406  * or lower is eligible for reclaim until at least one usable zone is
7407  * balanced.
7408  */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)7409 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7410 {
7411 	int i;
7412 	unsigned long nr_soft_reclaimed;
7413 	unsigned long nr_soft_scanned;
7414 	unsigned long pflags;
7415 	unsigned long nr_boost_reclaim;
7416 	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7417 	bool boosted;
7418 	struct zone *zone;
7419 	struct scan_control sc = {
7420 		.gfp_mask = GFP_KERNEL,
7421 		.order = order,
7422 		.may_unmap = 1,
7423 	};
7424 
7425 	set_task_reclaim_state(current, &sc.reclaim_state);
7426 	psi_memstall_enter(&pflags);
7427 	__fs_reclaim_acquire(_THIS_IP_);
7428 
7429 	count_vm_event(PAGEOUTRUN);
7430 
7431 	/*
7432 	 * Account for the reclaim boost. Note that the zone boost is left in
7433 	 * place so that parallel allocations that are near the watermark will
7434 	 * stall or direct reclaim until kswapd is finished.
7435 	 */
7436 	nr_boost_reclaim = 0;
7437 	for (i = 0; i <= highest_zoneidx; i++) {
7438 		zone = pgdat->node_zones + i;
7439 		if (!managed_zone(zone))
7440 			continue;
7441 
7442 		nr_boost_reclaim += zone->watermark_boost;
7443 		zone_boosts[i] = zone->watermark_boost;
7444 	}
7445 	boosted = nr_boost_reclaim;
7446 
7447 restart:
7448 	set_reclaim_active(pgdat, highest_zoneidx);
7449 	sc.priority = DEF_PRIORITY;
7450 	do {
7451 		unsigned long nr_reclaimed = sc.nr_reclaimed;
7452 		bool raise_priority = true;
7453 		bool balanced;
7454 		bool ret;
7455 
7456 		sc.reclaim_idx = highest_zoneidx;
7457 
7458 		/*
7459 		 * If the number of buffer_heads exceeds the maximum allowed
7460 		 * then consider reclaiming from all zones. This has a dual
7461 		 * purpose -- on 64-bit systems it is expected that
7462 		 * buffer_heads are stripped during active rotation. On 32-bit
7463 		 * systems, highmem pages can pin lowmem memory and shrinking
7464 		 * buffers can relieve lowmem pressure. Reclaim may still not
7465 		 * go ahead if all eligible zones for the original allocation
7466 		 * request are balanced to avoid excessive reclaim from kswapd.
7467 		 */
7468 		if (buffer_heads_over_limit) {
7469 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7470 				zone = pgdat->node_zones + i;
7471 				if (!managed_zone(zone))
7472 					continue;
7473 
7474 				sc.reclaim_idx = i;
7475 				break;
7476 			}
7477 		}
7478 
7479 		/*
7480 		 * If the pgdat is imbalanced then ignore boosting and preserve
7481 		 * the watermarks for a later time and restart. Note that the
7482 		 * zone watermarks will be still reset at the end of balancing
7483 		 * on the grounds that the normal reclaim should be enough to
7484 		 * re-evaluate if boosting is required when kswapd next wakes.
7485 		 */
7486 		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7487 		if (!balanced && nr_boost_reclaim) {
7488 			nr_boost_reclaim = 0;
7489 			goto restart;
7490 		}
7491 
7492 		/*
7493 		 * If boosting is not active then only reclaim if there are no
7494 		 * eligible zones. Note that sc.reclaim_idx is not used as
7495 		 * buffer_heads_over_limit may have adjusted it.
7496 		 */
7497 		if (!nr_boost_reclaim && balanced)
7498 			goto out;
7499 
7500 		/* Limit the priority of boosting to avoid reclaim writeback */
7501 		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7502 			raise_priority = false;
7503 
7504 		/*
7505 		 * Do not writeback or swap pages for boosted reclaim. The
7506 		 * intent is to relieve pressure not issue sub-optimal IO
7507 		 * from reclaim context. If no pages are reclaimed, the
7508 		 * reclaim will be aborted.
7509 		 */
7510 		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7511 		sc.may_swap = !nr_boost_reclaim;
7512 
7513 		/*
7514 		 * Do some background aging, to give pages a chance to be
7515 		 * referenced before reclaiming. All pages are rotated
7516 		 * regardless of classzone as this is about consistent aging.
7517 		 */
7518 		kswapd_age_node(pgdat, &sc);
7519 
7520 		/*
7521 		 * If we're getting trouble reclaiming, start doing writepage
7522 		 * even in laptop mode.
7523 		 */
7524 		if (sc.priority < DEF_PRIORITY - 2)
7525 			sc.may_writepage = 1;
7526 
7527 		/* Call soft limit reclaim before calling shrink_node. */
7528 		sc.nr_scanned = 0;
7529 		nr_soft_scanned = 0;
7530 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7531 						sc.gfp_mask, &nr_soft_scanned);
7532 		sc.nr_reclaimed += nr_soft_reclaimed;
7533 
7534 		/*
7535 		 * There should be no need to raise the scanning priority if
7536 		 * enough pages are already being scanned that that high
7537 		 * watermark would be met at 100% efficiency.
7538 		 */
7539 		if (kswapd_shrink_node(pgdat, &sc))
7540 			raise_priority = false;
7541 
7542 		/*
7543 		 * If the low watermark is met there is no need for processes
7544 		 * to be throttled on pfmemalloc_wait as they should not be
7545 		 * able to safely make forward progress. Wake them
7546 		 */
7547 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7548 				allow_direct_reclaim(pgdat))
7549 			wake_up_all(&pgdat->pfmemalloc_wait);
7550 
7551 		/* Check if kswapd should be suspending */
7552 		__fs_reclaim_release(_THIS_IP_);
7553 		ret = try_to_freeze();
7554 		__fs_reclaim_acquire(_THIS_IP_);
7555 		if (ret || kthread_should_stop())
7556 			break;
7557 
7558 		/*
7559 		 * Raise priority if scanning rate is too low or there was no
7560 		 * progress in reclaiming pages
7561 		 */
7562 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7563 		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7564 
7565 		/*
7566 		 * If reclaim made no progress for a boost, stop reclaim as
7567 		 * IO cannot be queued and it could be an infinite loop in
7568 		 * extreme circumstances.
7569 		 */
7570 		if (nr_boost_reclaim && !nr_reclaimed)
7571 			break;
7572 
7573 		if (raise_priority || !nr_reclaimed)
7574 			sc.priority--;
7575 	} while (sc.priority >= 1);
7576 
7577 	if (!sc.nr_reclaimed)
7578 		pgdat->kswapd_failures++;
7579 
7580 out:
7581 	clear_reclaim_active(pgdat, highest_zoneidx);
7582 
7583 	/* If reclaim was boosted, account for the reclaim done in this pass */
7584 	if (boosted) {
7585 		unsigned long flags;
7586 
7587 		for (i = 0; i <= highest_zoneidx; i++) {
7588 			if (!zone_boosts[i])
7589 				continue;
7590 
7591 			/* Increments are under the zone lock */
7592 			zone = pgdat->node_zones + i;
7593 			spin_lock_irqsave(&zone->lock, flags);
7594 			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7595 			spin_unlock_irqrestore(&zone->lock, flags);
7596 		}
7597 
7598 		/*
7599 		 * As there is now likely space, wakeup kcompact to defragment
7600 		 * pageblocks.
7601 		 */
7602 		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7603 	}
7604 
7605 	snapshot_refaults(NULL, pgdat);
7606 	__fs_reclaim_release(_THIS_IP_);
7607 	psi_memstall_leave(&pflags);
7608 	set_task_reclaim_state(current, NULL);
7609 
7610 	/*
7611 	 * Return the order kswapd stopped reclaiming at as
7612 	 * prepare_kswapd_sleep() takes it into account. If another caller
7613 	 * entered the allocator slow path while kswapd was awake, order will
7614 	 * remain at the higher level.
7615 	 */
7616 	return sc.order;
7617 }
7618 
7619 /*
7620  * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7621  * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7622  * not a valid index then either kswapd runs for first time or kswapd couldn't
7623  * sleep after previous reclaim attempt (node is still unbalanced). In that
7624  * case return the zone index of the previous kswapd reclaim cycle.
7625  */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7626 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7627 					   enum zone_type prev_highest_zoneidx)
7628 {
7629 	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7630 
7631 	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7632 }
7633 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7634 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7635 				unsigned int highest_zoneidx)
7636 {
7637 	long remaining = 0;
7638 	DEFINE_WAIT(wait);
7639 
7640 	if (freezing(current) || kthread_should_stop())
7641 		return;
7642 
7643 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7644 
7645 	/*
7646 	 * Try to sleep for a short interval. Note that kcompactd will only be
7647 	 * woken if it is possible to sleep for a short interval. This is
7648 	 * deliberate on the assumption that if reclaim cannot keep an
7649 	 * eligible zone balanced that it's also unlikely that compaction will
7650 	 * succeed.
7651 	 */
7652 	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7653 		/*
7654 		 * Compaction records what page blocks it recently failed to
7655 		 * isolate pages from and skips them in the future scanning.
7656 		 * When kswapd is going to sleep, it is reasonable to assume
7657 		 * that pages and compaction may succeed so reset the cache.
7658 		 */
7659 		reset_isolation_suitable(pgdat);
7660 
7661 		/*
7662 		 * We have freed the memory, now we should compact it to make
7663 		 * allocation of the requested order possible.
7664 		 */
7665 		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7666 
7667 		remaining = schedule_timeout(HZ/10);
7668 
7669 		/*
7670 		 * If woken prematurely then reset kswapd_highest_zoneidx and
7671 		 * order. The values will either be from a wakeup request or
7672 		 * the previous request that slept prematurely.
7673 		 */
7674 		if (remaining) {
7675 			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7676 					kswapd_highest_zoneidx(pgdat,
7677 							highest_zoneidx));
7678 
7679 			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7680 				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7681 		}
7682 
7683 		finish_wait(&pgdat->kswapd_wait, &wait);
7684 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7685 	}
7686 
7687 	/*
7688 	 * After a short sleep, check if it was a premature sleep. If not, then
7689 	 * go fully to sleep until explicitly woken up.
7690 	 */
7691 	if (!remaining &&
7692 	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7693 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7694 
7695 		/*
7696 		 * vmstat counters are not perfectly accurate and the estimated
7697 		 * value for counters such as NR_FREE_PAGES can deviate from the
7698 		 * true value by nr_online_cpus * threshold. To avoid the zone
7699 		 * watermarks being breached while under pressure, we reduce the
7700 		 * per-cpu vmstat threshold while kswapd is awake and restore
7701 		 * them before going back to sleep.
7702 		 */
7703 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7704 
7705 		if (!kthread_should_stop())
7706 			schedule();
7707 
7708 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7709 	} else {
7710 		if (remaining)
7711 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7712 		else
7713 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7714 	}
7715 	finish_wait(&pgdat->kswapd_wait, &wait);
7716 }
7717 
7718 /*
7719  * The background pageout daemon, started as a kernel thread
7720  * from the init process.
7721  *
7722  * This basically trickles out pages so that we have _some_
7723  * free memory available even if there is no other activity
7724  * that frees anything up. This is needed for things like routing
7725  * etc, where we otherwise might have all activity going on in
7726  * asynchronous contexts that cannot page things out.
7727  *
7728  * If there are applications that are active memory-allocators
7729  * (most normal use), this basically shouldn't matter.
7730  */
kswapd(void * p)7731 static int kswapd(void *p)
7732 {
7733 	unsigned int alloc_order, reclaim_order;
7734 	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7735 	pg_data_t *pgdat = (pg_data_t *)p;
7736 	struct task_struct *tsk = current;
7737 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7738 
7739 	if (!cpumask_empty(cpumask))
7740 		set_cpus_allowed_ptr(tsk, cpumask);
7741 
7742 	/*
7743 	 * Tell the memory management that we're a "memory allocator",
7744 	 * and that if we need more memory we should get access to it
7745 	 * regardless (see "__alloc_pages()"). "kswapd" should
7746 	 * never get caught in the normal page freeing logic.
7747 	 *
7748 	 * (Kswapd normally doesn't need memory anyway, but sometimes
7749 	 * you need a small amount of memory in order to be able to
7750 	 * page out something else, and this flag essentially protects
7751 	 * us from recursively trying to free more memory as we're
7752 	 * trying to free the first piece of memory in the first place).
7753 	 */
7754 	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7755 	set_freezable();
7756 
7757 	WRITE_ONCE(pgdat->kswapd_order, 0);
7758 	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7759 	atomic_set(&pgdat->nr_writeback_throttled, 0);
7760 	for ( ; ; ) {
7761 		bool ret;
7762 
7763 		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7764 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7765 							highest_zoneidx);
7766 
7767 kswapd_try_sleep:
7768 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7769 					highest_zoneidx);
7770 
7771 		/* Read the new order and highest_zoneidx */
7772 		alloc_order = READ_ONCE(pgdat->kswapd_order);
7773 		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7774 							highest_zoneidx);
7775 		WRITE_ONCE(pgdat->kswapd_order, 0);
7776 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7777 
7778 		ret = try_to_freeze();
7779 		if (kthread_should_stop())
7780 			break;
7781 
7782 		/*
7783 		 * We can speed up thawing tasks if we don't call balance_pgdat
7784 		 * after returning from the refrigerator
7785 		 */
7786 		if (ret)
7787 			continue;
7788 
7789 		/*
7790 		 * Reclaim begins at the requested order but if a high-order
7791 		 * reclaim fails then kswapd falls back to reclaiming for
7792 		 * order-0. If that happens, kswapd will consider sleeping
7793 		 * for the order it finished reclaiming at (reclaim_order)
7794 		 * but kcompactd is woken to compact for the original
7795 		 * request (alloc_order).
7796 		 */
7797 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7798 						alloc_order);
7799 #ifdef CONFIG_MEMORY_MONITOR
7800 		kswapd_monitor_wake_up_queue();
7801 #endif
7802 		reclaim_order = balance_pgdat(pgdat, alloc_order,
7803 						highest_zoneidx);
7804 		if (reclaim_order < alloc_order)
7805 			goto kswapd_try_sleep;
7806 	}
7807 
7808 	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7809 
7810 	return 0;
7811 }
7812 
7813 /*
7814  * A zone is low on free memory or too fragmented for high-order memory.  If
7815  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7816  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
7817  * has failed or is not needed, still wake up kcompactd if only compaction is
7818  * needed.
7819  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7820 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7821 		   enum zone_type highest_zoneidx)
7822 {
7823 	pg_data_t *pgdat;
7824 	enum zone_type curr_idx;
7825 
7826 	if (!managed_zone(zone))
7827 		return;
7828 
7829 	if (!cpuset_zone_allowed(zone, gfp_flags))
7830 		return;
7831 
7832 	pgdat = zone->zone_pgdat;
7833 	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7834 
7835 	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7836 		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7837 
7838 	if (READ_ONCE(pgdat->kswapd_order) < order)
7839 		WRITE_ONCE(pgdat->kswapd_order, order);
7840 
7841 	if (!waitqueue_active(&pgdat->kswapd_wait))
7842 		return;
7843 
7844 	/* Hopeless node, leave it to direct reclaim if possible */
7845 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7846 	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7847 	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7848 		/*
7849 		 * There may be plenty of free memory available, but it's too
7850 		 * fragmented for high-order allocations.  Wake up kcompactd
7851 		 * and rely on compaction_suitable() to determine if it's
7852 		 * needed.  If it fails, it will defer subsequent attempts to
7853 		 * ratelimit its work.
7854 		 */
7855 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7856 			wakeup_kcompactd(pgdat, order, highest_zoneidx);
7857 		return;
7858 	}
7859 
7860 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7861 				      gfp_flags);
7862 	wake_up_interruptible(&pgdat->kswapd_wait);
7863 }
7864 
7865 #ifdef CONFIG_HIBERNATION
7866 /*
7867  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7868  * freed pages.
7869  *
7870  * Rather than trying to age LRUs the aim is to preserve the overall
7871  * LRU order by reclaiming preferentially
7872  * inactive > active > active referenced > active mapped
7873  */
shrink_all_memory(unsigned long nr_to_reclaim)7874 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7875 {
7876 	struct scan_control sc = {
7877 		.nr_to_reclaim = nr_to_reclaim,
7878 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
7879 		.reclaim_idx = MAX_NR_ZONES - 1,
7880 		.priority = DEF_PRIORITY,
7881 		.may_writepage = 1,
7882 		.may_unmap = 1,
7883 		.may_swap = 1,
7884 		.hibernation_mode = 1,
7885 	};
7886 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7887 	unsigned long nr_reclaimed;
7888 	unsigned int noreclaim_flag;
7889 
7890 	fs_reclaim_acquire(sc.gfp_mask);
7891 	noreclaim_flag = memalloc_noreclaim_save();
7892 	set_task_reclaim_state(current, &sc.reclaim_state);
7893 
7894 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7895 
7896 	set_task_reclaim_state(current, NULL);
7897 	memalloc_noreclaim_restore(noreclaim_flag);
7898 	fs_reclaim_release(sc.gfp_mask);
7899 
7900 	return nr_reclaimed;
7901 }
7902 #endif /* CONFIG_HIBERNATION */
7903 
7904 /*
7905  * This kswapd start function will be called by init and node-hot-add.
7906  */
kswapd_run(int nid)7907 void __meminit kswapd_run(int nid)
7908 {
7909 	pg_data_t *pgdat = NODE_DATA(nid);
7910 
7911 	pgdat_kswapd_lock(pgdat);
7912 	if (!pgdat->kswapd) {
7913 		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7914 		if (IS_ERR(pgdat->kswapd)) {
7915 			/* failure at boot is fatal */
7916 			BUG_ON(system_state < SYSTEM_RUNNING);
7917 			pr_err("Failed to start kswapd on node %d\n", nid);
7918 			pgdat->kswapd = NULL;
7919 		}
7920 	}
7921 	pgdat_kswapd_unlock(pgdat);
7922 }
7923 
7924 /*
7925  * Called by memory hotplug when all memory in a node is offlined.  Caller must
7926  * be holding mem_hotplug_begin/done().
7927  */
kswapd_stop(int nid)7928 void __meminit kswapd_stop(int nid)
7929 {
7930 	pg_data_t *pgdat = NODE_DATA(nid);
7931 	struct task_struct *kswapd;
7932 
7933 	pgdat_kswapd_lock(pgdat);
7934 	kswapd = pgdat->kswapd;
7935 	if (kswapd) {
7936 		kthread_stop(kswapd);
7937 		pgdat->kswapd = NULL;
7938 	}
7939 	pgdat_kswapd_unlock(pgdat);
7940 }
7941 
7942 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
7943 static void __init purgeable_debugfs_init(void);
7944 #endif
7945 
kswapd_init(void)7946 static int __init kswapd_init(void)
7947 {
7948 	int nid;
7949 
7950 	swap_setup();
7951 	for_each_node_state(nid, N_MEMORY)
7952  		kswapd_run(nid);
7953 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
7954 	purgeable_debugfs_init();
7955 #endif
7956 	return 0;
7957 }
7958 
7959 module_init(kswapd_init)
7960 
7961 #ifdef CONFIG_NUMA
7962 /*
7963  * Node reclaim mode
7964  *
7965  * If non-zero call node_reclaim when the number of free pages falls below
7966  * the watermarks.
7967  */
7968 int node_reclaim_mode __read_mostly;
7969 
7970 /*
7971  * Priority for NODE_RECLAIM. This determines the fraction of pages
7972  * of a node considered for each zone_reclaim. 4 scans 1/16th of
7973  * a zone.
7974  */
7975 #define NODE_RECLAIM_PRIORITY 4
7976 
7977 /*
7978  * Percentage of pages in a zone that must be unmapped for node_reclaim to
7979  * occur.
7980  */
7981 int sysctl_min_unmapped_ratio = 1;
7982 
7983 /*
7984  * If the number of slab pages in a zone grows beyond this percentage then
7985  * slab reclaim needs to occur.
7986  */
7987 int sysctl_min_slab_ratio = 5;
7988 
node_unmapped_file_pages(struct pglist_data * pgdat)7989 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7990 {
7991 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7992 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7993 		node_page_state(pgdat, NR_ACTIVE_FILE);
7994 
7995 	/*
7996 	 * It's possible for there to be more file mapped pages than
7997 	 * accounted for by the pages on the file LRU lists because
7998 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7999 	 */
8000 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
8001 }
8002 
8003 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)8004 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
8005 {
8006 	unsigned long nr_pagecache_reclaimable;
8007 	unsigned long delta = 0;
8008 
8009 	/*
8010 	 * If RECLAIM_UNMAP is set, then all file pages are considered
8011 	 * potentially reclaimable. Otherwise, we have to worry about
8012 	 * pages like swapcache and node_unmapped_file_pages() provides
8013 	 * a better estimate
8014 	 */
8015 	if (node_reclaim_mode & RECLAIM_UNMAP)
8016 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
8017 	else
8018 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
8019 
8020 	/* If we can't clean pages, remove dirty pages from consideration */
8021 	if (!(node_reclaim_mode & RECLAIM_WRITE))
8022 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
8023 
8024 	/* Watch for any possible underflows due to delta */
8025 	if (unlikely(delta > nr_pagecache_reclaimable))
8026 		delta = nr_pagecache_reclaimable;
8027 
8028 	return nr_pagecache_reclaimable - delta;
8029 }
8030 
8031 /*
8032  * Try to free up some pages from this node through reclaim.
8033  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8034 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8035 {
8036 	/* Minimum pages needed in order to stay on node */
8037 	const unsigned long nr_pages = 1 << order;
8038 	struct task_struct *p = current;
8039 	unsigned int noreclaim_flag;
8040 	struct scan_control sc = {
8041 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
8042 		.gfp_mask = current_gfp_context(gfp_mask),
8043 		.order = order,
8044 		.priority = NODE_RECLAIM_PRIORITY,
8045 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
8046 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
8047 		.may_swap = 1,
8048 		.reclaim_idx = gfp_zone(gfp_mask),
8049 	};
8050 	unsigned long pflags;
8051 
8052 	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
8053 					   sc.gfp_mask);
8054 
8055 	cond_resched();
8056 	psi_memstall_enter(&pflags);
8057 	fs_reclaim_acquire(sc.gfp_mask);
8058 	/*
8059 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
8060 	 */
8061 	noreclaim_flag = memalloc_noreclaim_save();
8062 	set_task_reclaim_state(p, &sc.reclaim_state);
8063 
8064 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
8065 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
8066 		/*
8067 		 * Free memory by calling shrink node with increasing
8068 		 * priorities until we have enough memory freed.
8069 		 */
8070 		do {
8071 #ifdef CONFIG_HYPERHOLD_FILE_LRU
8072 			shrink_node_hyperhold(pgdat, &sc);
8073 #else
8074 			shrink_node(pgdat, &sc);
8075 #endif
8076 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
8077 	}
8078 
8079 	set_task_reclaim_state(p, NULL);
8080 	memalloc_noreclaim_restore(noreclaim_flag);
8081 	fs_reclaim_release(sc.gfp_mask);
8082 	psi_memstall_leave(&pflags);
8083 
8084 	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
8085 
8086 	return sc.nr_reclaimed >= nr_pages;
8087 }
8088 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)8089 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
8090 {
8091 	int ret;
8092 
8093 	/*
8094 	 * Node reclaim reclaims unmapped file backed pages and
8095 	 * slab pages if we are over the defined limits.
8096 	 *
8097 	 * A small portion of unmapped file backed pages is needed for
8098 	 * file I/O otherwise pages read by file I/O will be immediately
8099 	 * thrown out if the node is overallocated. So we do not reclaim
8100 	 * if less than a specified percentage of the node is used by
8101 	 * unmapped file backed pages.
8102 	 */
8103 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
8104 	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
8105 	    pgdat->min_slab_pages)
8106 		return NODE_RECLAIM_FULL;
8107 
8108 	/*
8109 	 * Do not scan if the allocation should not be delayed.
8110 	 */
8111 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
8112 		return NODE_RECLAIM_NOSCAN;
8113 
8114 	/*
8115 	 * Only run node reclaim on the local node or on nodes that do not
8116 	 * have associated processors. This will favor the local processor
8117 	 * over remote processors and spread off node memory allocations
8118 	 * as wide as possible.
8119 	 */
8120 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
8121 		return NODE_RECLAIM_NOSCAN;
8122 
8123 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
8124 		return NODE_RECLAIM_NOSCAN;
8125 
8126 	ret = __node_reclaim(pgdat, gfp_mask, order);
8127 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
8128 
8129 	if (!ret)
8130 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
8131 
8132 	return ret;
8133 }
8134 #endif
8135 
8136 /**
8137  * check_move_unevictable_folios - Move evictable folios to appropriate zone
8138  * lru list
8139  * @fbatch: Batch of lru folios to check.
8140  *
8141  * Checks folios for evictability, if an evictable folio is in the unevictable
8142  * lru list, moves it to the appropriate evictable lru list. This function
8143  * should be only used for lru folios.
8144  */
check_move_unevictable_folios(struct folio_batch * fbatch)8145 void check_move_unevictable_folios(struct folio_batch *fbatch)
8146 {
8147 	struct lruvec *lruvec = NULL;
8148 	int pgscanned = 0;
8149 	int pgrescued = 0;
8150 	int i;
8151 
8152 	for (i = 0; i < fbatch->nr; i++) {
8153 		struct folio *folio = fbatch->folios[i];
8154 		int nr_pages = folio_nr_pages(folio);
8155 
8156 		pgscanned += nr_pages;
8157 
8158 		/* block memcg migration while the folio moves between lrus */
8159 		if (!folio_test_clear_lru(folio))
8160 			continue;
8161 
8162 		lruvec = folio_lruvec_relock_irq(folio, lruvec);
8163 		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
8164 			lruvec_del_folio(lruvec, folio);
8165 			folio_clear_unevictable(folio);
8166 			lruvec_add_folio(lruvec, folio);
8167 			pgrescued += nr_pages;
8168 		}
8169 		folio_set_lru(folio);
8170 	}
8171 
8172 	if (lruvec) {
8173 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
8174 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8175 		unlock_page_lruvec_irq(lruvec);
8176 	} else if (pgscanned) {
8177 		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
8178 	}
8179 }
8180 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
8181 
8182 #ifdef CONFIG_MEM_PURGEABLE_DEBUG
purgeable_node(pg_data_t * pgdata,struct scan_control * sc)8183 static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc)
8184 {
8185 	struct mem_cgroup *memcg = NULL;
8186 	unsigned long nr = 0;
8187 #ifdef CONFIG_MEMCG
8188 	while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)))
8189 #endif
8190 	{
8191 		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata);
8192 
8193 		shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc);
8194 		nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc);
8195 	}
8196 
8197 	pr_info("reclaim %lu purgeable pages.\n", nr);
8198 
8199 	return nr;
8200 }
8201 
purgeable(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)8202 static int purgeable(struct ctl_table *table, int write, void *buffer,
8203 		size_t *lenp, loff_t *ppos)
8204 {
8205 	struct scan_control sc = {
8206 		.gfp_mask = GFP_KERNEL,
8207 		.order = 0,
8208 		.priority = DEF_PRIORITY,
8209 		.may_deactivate = DEACTIVATE_ANON,
8210 		.may_writepage = 1,
8211 		.may_unmap = 1,
8212 		.may_swap = 1,
8213 		.reclaim_idx = MAX_NR_ZONES - 1,
8214 	};
8215 	int nid = 0;
8216 	const struct cred *cred = current_cred();
8217 	if (!cred)
8218 		return 0;
8219 
8220 	if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
8221 			!uid_eq(cred->euid, GLOBAL_ROOT_UID)) {
8222 			pr_err("no permission to shrink purgeable heap!\n");
8223 			return -EINVAL;
8224 	}
8225 	for_each_node_state(nid, N_MEMORY)
8226 		purgeable_node(NODE_DATA(nid), &sc);
8227 	return 0;
8228 }
8229 
8230 static struct ctl_table ker_tab[] = {
8231 	{
8232 		.procname = "purgeable",
8233 		.mode = 0666,
8234 		.proc_handler = purgeable,
8235 	},
8236 	{},
8237 };
8238 
8239 static struct ctl_table_header *purgeable_header;
8240 
purgeable_debugfs_init(void)8241 static void __init purgeable_debugfs_init(void)
8242 {
8243 	purgeable_header = register_sysctl("kernel", ker_tab);
8244 	if (!purgeable_header)
8245 		pr_err("register purgeable sysctl table failed.\n");
8246 }
8247 
purgeable_debugfs_exit(void)8248 static void __exit purgeable_debugfs_exit(void)
8249 {
8250 	unregister_sysctl_table(purgeable_header);
8251 }
8252 #endif /* CONFIG_MEM_PURGEABLE_DEBUG */
8253